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SECTION 1 

INTRODUCTION AND SUMMARY 

The objective of this contract is to evaluate the performance of 

(AlGa)As-GaAs solar cells irradiated by medium energy protons (2, 5, and 

10 MeV), and to investigate the influence of thermal annealing on 

radiation damage in GaAs solar cells. This study, together with our previous 

work on low-energy (50 to 300 keV) and high-energy (15 to 40 MeV) proton 

irradiation, forms a solid foundation for a thorough evaluation of the suita

bility of these cells for space missions. Our goal is to minimize the radi

ation damage to GaAs cells during these missions by incorporating appropriate 

low temperature (less than 200°C) annealing procedures into the solar panel 

design. Our results to date indicate that substantial gains in end-of-life 

efficiency can be made by this technique, resulting in a corresponding reduc

tion in the panel area necessary to provide the power for the mission. 

Figure 1 represents the (A1Ga)As-GaAs solar cell structure used in this 

contract. This is the same structure used in the two preceding high- and low

energy proton irradiation damage contracts (contracts NAS1-14727 and 

NAS1-15443). 

The medium-energy proton irradiations were performed at Caltech using 

their tandem accelerator. The irradiation experiment is described in 

Appendix A. In this experiment, both the Si (without coverglass) and a number 

of GaAs solar cells with 12 mil coverglass were irradiated simultaneously with 

our bare GaAs solar cells. We included the GaAs cells with 12 mil coverglass 

to verify the effectiveness of coverglass shielding of the GaAs cells. We 

found that this shielding provided the expected protection against the protons 

whose energy is 55 MeV (see Figure 2(a)). 

The results of our medium-energy proton irradiation tests are summarized 

in Figure 2. They are also integrated with our prior measurements at low or 

high proton energies. Our general observation is that the radiation damage 

does indeed decrease monotonically with increasing proton energy, once the 

energy exceeds the values at which the protons are stopped within the rela

tively shallow active region of the GaAs solar cell (proton energies in excess 
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of 300 keV and active region thicknesses on the order of 2~m). Figure 2(b) 

demonstrates the proton damage characteristics in GaAs solar cells; it also 

shows that for proton energies higher than 5 MeV, the GaAs cells have higher 

radiation resistance than the Si cells. In the region below 5 MeV, where 

GaAs cells are more susceptible to proton radiation damage, they are effec

tively shielded by the normal coverglass protection used with solar cells in 

all space missions (see Figure 2(a)). Some of the high-energy protons can also 

cause damage,to the cell since they become low-energy protons by losing their 

energy while penetrating through the coverglass. However, the amount of 

damage depends on the total number of protons available at decreased energy. 

Figure 3 shows the cumulative solar proton fluence as a function of 

proton energy encountered in geosynchronous orbit over a period of 11 years. 

The figure shows that the proton fluence decreases as proton energy increases; 

the low fluence of high-energy protons is even further attenuated by the 

coverglass, and hence their damaging effect is expected to be relatively small 

during a la-year mission. Analysis of the data of Figure 2 can also provide 

information to determine the optimum coverglass protection desirable for 

GaAs cells in a specific space mission. Furthermore, it is very encouraging 

that our early results on annealing studies indicate that low-energy proton 

damage in GaAs cells may be substantially reduced by annealing at tempera

tures as low as 150 to 200°C. 

In the thermal annealing study, we limit our experiments to the 
11 -2 single proton energy of 200 keV and a fluence of 1 x 10 p cm We chose 

the 200 keV protons because they generate defects and produce severe damage 

within the active region of the GaAs solar cells. Our choice of 200 keV for 

the proton energy thus leads to the worst case. As far as the fluence is 
11 -2 concerned, we select a value of 10 p cm bec~use it corresponds to the 

highest value for all protons capable of traversing a 12 mil coverglass during 

11 years in geosynchronous orbit and corresponds again to the worst possible 

case. We performed four cycles of periodic thermal annealing experiments in 

this study. The GaAs solar cells were first subjected to 200 keV of proton 

irradiation and subsequently to isothermal annealing. 

10 
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Figure 4, we compare two sets of GaAs cells which were irradiated to the 

same level by 200 keV protons; one set was subjected to periodic annealing and· 

the other was not. The data show that after the second periodic anneal cycle 

(at lOO°C) of the power ratio PA/Po (PA = power output after annealing, 

Po = initial cell power before irradiation) is maintained at 65% without 

appreciable further degradation. 

In the continuous annealing experiment, we studied the effect of proton 

flux, 1 x lOla versus 1 x lOll p cm-2 hr- l , in our GaAs solar cells at 

temperatures of 25°C and lOOoC, respectively. Figure 5 shows the power ratio 

after irradiation as a function of fluence in this continuous annealing 

experiment. The result shows that after continous annealing at 200°C to a 

fluence of 1 x lOll p cm-2 the cells which were irradiated with low proton 

flux of 1 x lOla p cnC2 hr- l had 6% more power over the cells which were 

irradiated at a flux of 1 x lOll p cm-2 hr- l • Thus the extra hours of 

annealing during irradiation at 200 0 e at low flux did improve the cells' 

radiation resistance 

Although our data on annealing show a substantial reduction of the 

radiation damage to our GaAs solar cells when annealed at temperatures 

as low as lOOoe, there is still damage that cannot be annealed at 200 Ge under 

the conditions of our experiment. Our results, in conjunction with the 

analysis of the nature of the defects obtained from deep level transient 

spectroscopy (DLTS) measurements, lead us to believe that these hardier 

defects are caused by complexes that are formed by the high flux rates used in 

terrestrial laboratory experiments. In the space environment we expect fluxes 

on the order of 103 p cm-2 sec- l , which is about six orders of magnitude 

lower; the slower flux rate is expected to result mainly in simple annealable 

defects. Our GaAs cells now is used on NTS II support this expectation. The 

data on these cells show that the damage is considerably less than would be 

expected in view of their excessive junction depth of 1 ~m. We believe that 

the reduced damage results from a degree of annealing at the 100°C temperature 

that the panel reaches during the NT~ II orbit. Ultimately, our studies on 

annealing lead us to expect that with proper annealing and optimum cell 

design, the need for coverglass protection could be minimized, if not 

eliminated, resulting in a substantial increasee in the power-to-weight ratio 

for the solar panel. 
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SECTION 2 

MEDIUM-ENERGY PROTON RADIATION DAMAGE 

Table 1 gives the full test matrix of GaAs and silicon cells used in our 

investigation. As ~een in the table, a number of GaAs solar cells protected 

with 12-mi1-thick coverg1ass were included to verify the shielding effect of 

glass against the protons. 

Table 1. Test Matrix 

GaAs Solar Cell 
F1uence, Si Solar Cell 

P cm.:.. 2 Without Coverg1ass 12-mil-Thick Coverg1ass LD. No. 

2 MeV Proton Energy 

1xl01O 4166, 4167, 4171 3890 14, 15, 42 

lxl011 4172, 4175, 4177 3896 16, 17, 43 

lxl012 4180, 4190, 4195 3892 18, 19, 44 

1xl013 4199, 4207, 4209 3893 20, 21, 45 

5 MeV Proton Energy 

1x101O 4101, 4095, 4093 26, 34 

1xl011 4035, 4033, 4030 27, 35 

1x1012 4029, 4028, 4010 3901 28, 36 

lx1013 4006, 4000, 4026 3990 

10 MeV Proton Energy 

lx1010 4068, 4064, 4063 22, 30 
lxl011 4062, 4113, 4109 23, 31 
lx1012 4107, 4106, 4105 3988 24, 32 

lxl013 4104, 4103, 4102 3992 25, 33 

T7433 
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Figures B-1 through B-42 in Appendix B show the air mass zero (AMO) 

photo I-V characteristics of GaAs solar cells before and after proton irradi

ation with energies of 2, 5, and 10 MeV. Table 2 has been completed from 

these I-V characteristics and gives the following characteristics of the 

individual cells: I ; V ; fill factor (FF); maximum power output, P • and sc oc max' 
power conversion efficiency, n. 

Table 2 gives the results using both the HRL (xenon) and Spectrolab's 

(X-25) simulators. The agreement is good between the two simulators at proton 

fluence less than 1 x 10 12 p cm-2 However, above 1 x 1012 p cm-2 , the short

circuit currents measured at HRL were consistently a little lower than those 

measured at Spectrolab. This discrepancy is a result of the difference 

between the light spectra of the two simulators. The HRL solar simulator is 

indeed richer than the AMO in the long wavelength region. Thus we expect, as 

observed, that the GaAs solar cell yields less current after irradiation when 

measured using the HRL solar simulator than when measured using the Spectrolab 

X-25 simulator because a substantial part of the radiation damage occurs in the 

long wavelength part of the spectrum. 

Figure 2 shows the power ratio PI/Po as a function of proton energy 

(Po and PI are the maximum solar cell output power before and after proton 

radiation, respectively). Figure 2 also includes data obtained with 0.8 MeV 

protons. These data were not obtained under this contract, but are shown here 

for information purposes. As expected, the low-energy proton does more damage 

to the GaAs solar cell than the high-energy proton. This is because the low

energy protons are stopped and produce damages inside the active region of the 

cell. In space missions, the solar cell is usually shielded against low-energy 

protons by a coverglass, while there is no protection against the high-energy 

protons. The dotted curve in Figure 2 illustrates the effect of 12-mil-thick 

coverglass used to shield against the low-energy protons. It is effective for 

proton energies up to at least 5 MeV. In actual practice, the high-energy 

protons lose some of their energy while penetrating through the coverglass 

and these, again, are capable of damaging the cell. 

16 



Cell 
No. 

4166 
. 
4167 

4171 

*3890 

4172 

4177 

4175 

*3896 

4180 

4190 

Table 2. (A1Ga)As-GaAs Solar Cell Characteristics 
Before and After Proton Irradiation 

Proton 

Energy, F1uence I sc ' Voc. Pmax ' 
MeV p cm-2 rnA V FF mW 

0 0 (HRL) 114 0.98 0.76 84.4 
2 1x10 1O (HRL) 114 0.96 0.75 81.4 
" " (SL) 113 0.97 0.75 81.8 

0 0 (HRL) 112 0.99 0.75 83 
2 1x101O (HRL) 110 0.97 0.74 79 
" " (SL) 108 0.97 0.75 79 

0 0 (HRL 115 0.99 0.76 86.1 
2 1x101O (HRL) 112 0.97 0.76 82 
" " (SL) 112 0.97 0.76 82 

0 0 (HRL) 114 1.0 0.76 87 
2 1x101O (HRL) 114 1.0 0.76 87 
" " (SL) 112 0.99 0.77 86 

0 0 (HRL) 114 0.99 0.76 86.1 
2 1x1011 (HRL) 105 0.94 0.76 74.8 
" " (SL) 106 0.94 0.77 76.6 

0 0 (HRL) 116 0.99 0.74 85.3 
2 lxlOll (HRL) 107 0.93 0.75 74.7 
" " (SL) 108 0.93 0.75 75.0 

0 0 (HRL) 114 0.98 0.74 82.6 
2 1x1011 (HRL) 107 0.93 0.75 74.5 
" " (SL) 108 0.94 0.75 76.0 

0 0 (HRL) 113.5 0.99 0.77 86.6 
2 1x1011 (HRL) 113.5 0.99 0.77 86.6 
" " (SL) 110 0.98 0.77 83.4 

0 . 0 (HRL) 114 1.0 0.75 85.9 
2 lxl012 (HRL) 93 0.87 0.76 60.6 
" " (SL) 96 0.87 0.76 63.6 

0 0 . (HRL) 115 1.0 0.74 85.5 
2 lx1012 (HRL) 93 0.86 0.74 59.3 
" " (SL) 96 0.87 0.75 62.3 

17 

n, 
% 

15.6 
15.0 
15.1 

15.3 
14.6 
14.6 

15.9 
15.2 
15.2 

16.0 
16.0 
15.8 

15.9 
13.8 
14.1 

15.8 
13.8 
13.8 

15.3 
13.8 
14.0 

16.0 
16.0 
15.4 

15.9 
11.2 
11.8 

15.8 
10.9 
11.5 

7433 



Table 2 cont. 

Proton 

Cell Energy, F1uen~~, I 
~' Voc ' Pmax ' n, 

No. MeV p cm V FF mW % 

4195 0 0 (HRL) 116 1.0 0.75 88.4 16.3 
2 1x1012 (HRL) 92 0.86 0.74 58.9 10.9 
" " (SL) 95 0.87 0.73 60.4 11.2 

*3892 0 0 (HRL) 113 0.99 0.75 85.8 15.8 
2 1x1012 (HRL) 110 0.975 0.77 82.7 15.2 
" " (SL) 110 0.98 0.75 80.4 14.9 

4199 0 0 (HRL) 117 1.0 0.74 86.7 16.0 
2 1x1013 (HRL) 73 0.74 0.71 38.4 7.1 
" " (SL) 76 0.76 0.72 41.4 7.6 

4207 0 0 (HRL) 113 0.99 0.75 84.2 15.6 
2 1x10 13 (HRL) 72 0.74 0.71 37.8 7.0 

" " (SL) 76 0.75 0.73 41.5 8.0 

4209 0 0 (HRL) 113 1.0 0.76 85.5 15.8 
2 1x1013 (HRL) 70 0.74 0.72 37.2 6.9 

" " (SL) 75 0.75 0.73 40.9 8.0 

*3893 0 0 (HRL) 114 1.0 0.76 86.6 16.0 
2 1x1013 (HRL) 116 0.925 0.76 81.9 15.1 
" " (SL) 112 0.93 0.77 80.1 14.8 

4093 0 0 (HRL) 111 0.99 0.76 83 15.3 
5 1x1010 (SL) 111 0.98 0.76 83 15.3 
" " (SL) 112 0.98 0.76 83.6 15.4 

4101 0 0 (HRL) 112 1.0 0.77 85.6 15.8 
5 1xl010 (HRL) 112 1.0 0.77 85.6 15.8 
" " (SL) 112 0.98 0.77 85.3 15.8 

4095 0 0 (HRL) 110 1.0 0.76 83.2 15.4 
5 1x1010 (HRL) 110 1.0 0.76 83.2 15.4 
" " (SL) 112 0.98 0.77 84.7 15.7 

7433 
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Table 2 cont. 

Proton 

Cell Energy, Fluen:~, Isc' Voc ' Pmax , n, 
No. MeV p cm rnA V FF mW % 

4033 0 0 (HRL) 113 1.0 85.3 0.76 15.8 
5 lxl011 (HRL) 105 0.96 77 0.76 14.2 

" " (SL) 106 0.96 77 0.87 14.2 

4030 0 0 (HRL) 112 0.99 0.77 85.5 15.8 
5 lxl011 (HRL) 104 0.96 0.78 77 14.2 

" " (SL) 104 0.96 0.78 77 14.2 

4035 0 0 (HRL) 114 1.01 0.76 87.2 16.1 
5 lxl011 (HRL) 105 0.96 0.76 77 14.2 

" " (SL) 106 0.96 0.76 77.0 14.2 

4028 0 0 (HRL) 110 1.0 0.78 85.9 15.9 
5 lx1012 (HRL) 92 0.90 0.77 63.8 11.8 
" " (SL) 96 0.90 0.76 65.5 12.1 

4029 0 0 (HRL) 109 1.0 0.77 84 15.5 
5 lx10 12 (HRL) 92 0.90 0.77 63.8 11.8 
" " (SL) 97 0.89 0.75 64.7 12.0 

*3901 0 0 (HRL) 117 0.99 0.77 89.2 16.5 
5 lxl012 (SL) 113 0.98 0.77 85.7 15.8 

4006 0 0 (HRL) 114 1.0 0.76 86.5 16.5 
5 lxlO 13 (HRL) 78 0.79 0.72 44.0 8.1 
" " (SL) 84 0.80 0.73 48.8 9.0 

4026 0 0 (HRL) 110 1.0 0.77 84.2 15.6 
5 1x10 l3 (HRL) 78 0.80 0.72 44 8.1 
" " (SL) 82 0.80 0.72 47.5 9.0 

*3990 0 0 (HRL) 116 1.01 0.77 89.9 16.6 
5 lx10 l3 (SL) 114 0.97 0.76 84.2 15.6 

4064 0 0 (HRL) 111 0.99 0.77 84.2 15.5 
10 lxlO lO (HRL) 111 0.98 0.77 83.4 15.4 
" " (SL) 110 0.98 0.76 82.4 15.2 

• 
7433 
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Table 2 cont. 

Proton 

Cell Energy, Fluen~2' Isc, Voe , Pmax n, 
No. MeV p cm rnA V FF mW % 

4068 0 0 (HRL) 112 1.0 0.76 83.6 15.5 
10 1x10 1O (HRL) 112 1.0 0.76 83.6 15.5 
" " (SL) 112 0.98 0.75 82.4 15.2 

4063 0 0 (HRL) 110 1.0 0.76 83.6 15.5 
10 1x1010 (HRL) 110 1.0 0.76 83.6 15.5 
" " (SL) 108 0.98 0.77 81.8 15.1 

4062 0 0 (HRL) 112 1.0 0.75 83.64 15.5 
10 1x1011 (HRL) 108 0.97 0.76 79.4 14.7 
" " (SL) 110 0.96 0.76 80.4 14.9 

4109 0 0 (HRL) 113 0.99 0.75 84 15.5 
10 1x1011 (HRL) 109 0.96 0.77 80.4 14.9 
" " (SL) 113 0.96 0.75 81.6 15.1 

4113 0 0 (HRL) 111 1.0 0.77 84.9 15.7 
10 1x1011 (HRL) 109 0.97 0.77 81.8 15.1 
" " (SL) 110 0.96 0.78 82.6 15.3 

4105 0 0 (HRL) 112 1.0 0.77 86.3 15.9 
10 1x1012 (HRL) 100 0.92 0.78 71.8 13.3 
" " (SL) 104 0.92 0.77 73.3 13.5 

4106 0 0 (HRL) 113 0.99 0.75 84 15.5 
10 1x1012 (HRL) 101 0.92 0.76 70.8 13.0 
" " (SL) 105 0.92 0.76 73.5 13.6 

4107 0 0 (HRL) 110 1.0 0.76 84.1 15.5 
10 1x1012 (HRL) 98 0.92 0.78 69.9 12.9 
" " (SL) 102 0.91 0.78 72.4 13.4 

*3988 0 0 (HRL) 116 1.0 0.76 88.2 16.3 
10 1x1012 (HRL) 97 0.91 0.77 67.9 12.5 
" " (SL) 102 0.90 0.77 70.8 13.1 

4104 0 0 (HRL) 110 0.99 0.77 83.8 15.5 
10 1x1013 (HRL) 83 0.82 0.74 50.2 9.3 
" " (SL) 88 0.82 0.74 53.6 10.0 

7433 

20 



Table 2 cant. 

Proton 

Cell Energy, Fluen=2' . I sc ' 
V oc' P max n, 

No. MeV p cm rnA V FF mW % 

4102 0 0 (HRL) 111 1.0 0.76 83.4 15.4 
10 1x1013 (HRL) 85 0.82 0.74 51.0 9.3 

" " (SL) 89 0.82 0.73 53.1 10.0 

4103 0 13 (HRL) 111 0.99 0.76 83.4 15.4 1x1013 10 1x10 (HRL) 84 0.82 0.74 51.2 9.5 

" " (SL) 89 0.82 0.74 54.4 10.1 

(3992 0 0 (SL) 117 1.0 0.77 90.5 16.7 
10 1x1013 (HRL) 83 0.81 0.73 49.0 9.0 

" " (SL 90 0.80 0.74 53.1 10.0 

*Ce11s protected by 12-mi1-thick coverg1ass. 

HRL: Photo I-V measurement performed at HRL using xenon light source. 

SL: Photo I-V measurement performed at Spectro1ab using 
X-25 simulator. 
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Table 3 gives the electrical characteristics of Si solar cells. The Si 

cells used for the intermediate proton energy study do not have back surface 

fields (BSF); they have lower beginnings of life power than the other groups 

of cells with BSF that were used in the low- and high-energy proton studies. 

Furthermore, it is known that the BSF cells degrade at a faster rate at low 

fluences than do the cells without BSF. Once the effect of the BSF is gone, 

* all the Si cells have similar degradation characteristics. Table 4 gives 

the various groups of Si cells used in our proton damage studies. 

Figures 6(a) through 6(c) show the GaAs short-circuit current of the 

solar cells, the open-circuit voltage and fill factor as a function of proton 

energy. Again these experimental data show that the low-energy protons degrade 

the cell both in the bulk and the junction. This is consistent with our 

prediction that the cell damage is correlated to the penetration depth of the 

proton. 

Figures 7(a) through 7(c) show the average spectral response of the 

GaAs solar cell before and after proton irradiation with proton energies of 

2, 5, and 10 MeV, respectively. The 2 MeV protons degrade the cell more than 

the 5 and 10 MeV protons because the 5 and 10 MeV protons produce damages 

farther away from the active region of the cell. The change in the spectral 

response of the GaAs solar cells is in good agreement with the change in I 
sc 

after irradiation. 

Figures 8(a) through B(c) show the spectral response of the GaAs cells 

protected with 12-mil-thick coverglass. Clearly, the 12-mil-thick coverglass 

shields the proton from damaging the cell at energy below 5 MeV. The 10 MeV 

protons demonstrate that they lose some of their energy while traveling 

through the coverglass and cause damage in the active region of the cell. 

In summary, the GaAs solar cells show more radiation resistance than the 

Si cells at energy above 5 MeV. However, at proton energy below 5 MeV, where 

GaAs cells are more susceptible to damage, they can be effectively shielded 

* B.E. Anspaugh, J.A. Scott-Monck, R.G. Downing, D.W. Moffett, and T.F Miyahira 
"Influence of Processing on the Electrical Performance of Proton Irradiated 
Silicon Solar Cells," Prac. IEEE Photovoltaic Specialist Conf., pp. 847-852, 
Jan. 1980. 
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by coverglass. Some of the high-energy protons also can cause damage to the 

cell by losing part of their energy while penetrating through the coverglass. 

But in this case, the amount of damage depends on their number and on their 

energy distribution. In general, the number of these protons is relatively 

small, as shown previously in Figure 3. 
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Cell No. 

14 
14 

15 
15 

16 
16 

17 
17 

18 
18 

19 
19 

26 
26 

34 
34 

27 
27 

35 
35 

28 
28 

36 
36 

Table 3. Silicon Solar Cell Characteristics 
Before and After Proton Irradiation 

Proton Fluence, I V P Energy, sc' oc' max' 
MeV -2 mA FF mW p cm v 

0 0 147 0.56 0.80 65.6 
2 lxl010 

148 0.56 0.78 64 

0 0 147 0.56 0.79 65.3 
2 lxl0 10 148 0.56 0.78 64 

0 0 148 0.56 0.79 65.1 
2 lxlOll 135 0.53 0.76 54 

0 0 145 0.56 0.79 64.1 
2 lxl011 132 0.53 0.77 54 

0 0 146 0.56 0.79 64.9 
2 lxl012 110 0.49 0.75 40 

0 0 146 0.56 0.80 65.1 
2 lxl012 llO 0.49 0.75 40 

0 0 147 0.56 0.80 65.3 
5 lxl010 146 0.55 0.78 63 

0 0 146 0.56 0.66 54.7 
5 lxl0 10 144 0.56 0.65 52.3 

0 0 149 0.56 0.79 65.8 
5 lxl0ll 138 0.53 0.77 56.3 

0 0 145 0.57 0.73 60 
5 lxl011 131 0.54 0.67 47 

0 0 147 0.56 0.80 65.8 
5 lxl012 118 0.50 0.76 44.6 

0 0 148 0.56 0.72 59.4 
5 lxl012 118 0.50 0.69 40.1 
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n, 
% 

12 
1l.8 

12 
11.8 

12 
10 

1l.8 
9.8 

12 
7.4 

12 
7.4 

12 
11.6 

10 
9.7 

12.2 
10 

II 
8.7 

12 
8.2 

10.9 
7.4 
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Table 3 (Continued) 

Proton Fluenee, I V P Energy, 
-2 

se' oe' max' n, 
Cell No. MeV p em rnA v FF mW % 

22 0 0 148 0.56 0.79 65.2 12 
22 10 lx1010 148 0.56 0.78 64.4 11.9 

30 0 0 144 0.56 0.79 63.2 11.6 
30 10 1xl0 lO 146 0.56 0.77 62.3 11.5 

31 0 0 146 0.57 0.71 60 11 
31 10 1xlO11 140 0.54 0.69 52.3 9.7 

23 0 0 146 0.56 0.78 63 11.6 
23 10 lx1011 140 0.54 0.76 57.6 10.6 

24 0 0 146 0.56 0.80 66 12.2 
24 10 lxl012 122 0.51 0.76 47.2 8.7 

32 0 0 150 0.56 0.68 56.3 10.4 
32 10 1x1012 122 0.51 0.65 40 7.4 

7433 
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N 
0'\ 

Type of 
Cell 

A 

B 

C 

Shallow Back 
Junction, Surface 
. 'Vo. 2 llm Field 

X X 

X 

X X 

Table 4. Cell Description 

Typical Parameters 
Back Cell I V P Surface Textured Size, sc' oc' max' Proton 

Reflector Surface cm x cm rnA V mW Used in 

2 x 2.2 170 0.59 76 Low-energy proton 
(50 to 300 keY) 

X 2 x 2 148 0.56 65 Intermediate proton 
(800 keY to 10 MeV 

X X 2 x 2.1 180 0.59 80 High-energy proton 
(15 to 40 MeV 
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Figure 6. (AlGa)As-GaAs solar cell. (a) short-circuit current as a 
function of proton energy, (b) open circuit voltage as a 
function of proton energy, (c) (AlGa)As-GaAs solar cell's 
fill factor as a function of proton energy. 
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Figure 7. Spectral response of (AlGa)As-GaAs solar cells. 
(a) After 2 MeV proton irradiation (without 
coverglass), (b) after 5 MeV proton irradiation 
(without coverglass), (c) after 10 MeV proton 
irradiation (without coverglass). 

28 



100 

80 

60 

40 

20 

0 

100 

,0 
0' 

80 w' 
CI) 
z 
2 60 
CI) 
w 
a:: 
..J 40 <t 
a:: 
b 
w 20 c.. 
CI) 

0 

100 

80 

60 

40 

20 

o 

10662-12 

(a) 
10662-14 

I 
1 x 1013 p em-2 

(b) 
10662-13 

0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.9S 1.05 1.15 1.25 1.35 

WAVELENGTH.llm 
(e) 

Figure 8. Spectral response of (AlGa)As-GaAs solar cells. 
(a) After 2 MeV proton irradiation (with 12 mil cover 
glass), (b) after 5 MeV proton irradiation (with 12 mil 
cover glass), and (c) After 10 MeV proton irradiation 
(with 12 mil cover glass). 

29 



This Page Intentionally Left Blank 



SECTION 3 

PERIODIC THERMAL ANNEALING 

In the periodic thermal annealing experiment, we chose to study the single

proton energy of 200 keV with incremental fluences of 1 x 1011 p cm-2 for the 

reasons given in Section 1. Figure 9 shows the flow chart of the periodic 

thermal annealing experiments. The GaAs solar cells were first subjected to 

200 keV proton irradiation and subsequently to isothermal annealing at various 

temperatures. The proton irradiation and thermal annealing were repeated again. 

Finally, the periodically annealed cells were compared to the cells that have 

been subjected to the same proton irradiation without annealing. 

Figure 10 shows the cross-sectional diagram of the annealing system. It 

consists of a mechanical pump, a cryogenic vacuum pump, a vacuum chamber, a 

power supply, and a temperature controller. The vacuum chamber is located 

directly on top of the cryogenic pump. They are separated by a 3-in.-high 

vacuum valve. The system is capable of reaching 3 x 10-7 Torr in less than 

10 min. At least 20 GaAs solar cells can be loaded into a Ta basket, which is 

then placed in a small oven inside the vacuum chamber. A resistance heater 

is embedded in the oven wall, as shown in Figure 10 0 One of the thermocouples 

is inserted inside the cell basket on top of the cells and the other thermo

couple is placed next to the oven wall to permit the controller to maintain 

the cell temperature within ±50 C up to 700oC. 

Figures ll(a) through ll(c) show the power ratio (PA/Po) as a function of 

annealing time at temperatures of 200, 300, and 400oC. At 200oC, the annealing 
o process occurs in less than 10 hours, and at 300 and 400 C, the recovery 

process is almost instantaneous. Consequently, the annealable damage can be 

quickly recovered at temperatures above 200oC. The photo I-V characteristics 

before and after each cycle of irradiation and annealing are also displayed in 

Figures 12 through 22. Figures 23 through 25 show the average spectral response 

after each cycle of irradiation and annealing. These data are also consistent 

with our photo I-V measurements. 

The periodic annealing characteristics of our GaAs solar cells are 

summarized in Tables 5, 7, and 9. Figure 4 compares the power output of the 

periodic annealed cells with the cells that have been subjected to the same 
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irradiation but not annealed, Tables 6, 8, and 10. By inspection of these 

tables and figures, we observe that periodic thermal annealing at temperatures 

as low as 2000 C considerably reduces the radiation damage to the GaAs solar 

cells. The remaining power of the solar cells is maintained at 65% when 

annealed at 2000 C, even when the proton influence exceeds 4 x 1011 p cm-2 

The first 35% power loss can only be partially annealed at temperatures higher 

than 200o
C. The power loss is only 28 and 22% after being annealed at 300 

o and 400 C, respectively. Finally, the cells that were irradiated to a total 

fluence of 4 x 1011 p cm-2 and subsequently annealed, also recovered to the 

same final power output as those that were periodically annealed after each 
11 -2 

dose of 1 x 10 p cm The net advantages of periodic annealing, compared 

with one single post-annealing step under the conditions of an experiment, is 

that the maximum power loss through the whole sequence is smaller with peri

odic annealing than with single-step annealing, as expected a priori. (pIp = 
11 -2 0 

0.39 after irradiation to a fluence of 4 x 10 p cm and prior to single-

step annealing, compared to pIp = 0.55 after irradiation to the same influence 
o 

with periodic annealing prior to the last annealing step.) (See Tables 5 

through 10.) The fluence at which periodic annealing was initiated in these 

experiments (1 x 1011 p cm-2), however, still seems too high to avoid the 

formation of those complex defect centers that are more difficult to anneal 

(higher activation energy) and which could be prevented by avoiding accumula-

tion of the simpler defect centers (annealing before the density of the latter 

has reached an excessive value). As will be shown in the next seciton, even 
9 2 keeping the incremented proton fluence down to 10 p/cm is not low enough. 
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Figure 9. Periodic thermal annealing flow chart. 
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Figure 12. Photo I-V characteristics of (AIGa)As-GaAs solar cell 
before and after 200 keV; 1 x lOll pcm-2 proton irradia
tion and after isothermal annealing at temperature of 
200°C. (a) first cycle), (b) second cycle, (c) third 
cycle, and (d) fourth cycle (Cell 5549). 
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Figure 13. Photo I-V characteristics of (AlGa)As-GaAs solar cell before 
and after 200 keV; 1 x lOll pcm- 2 proton irradiation and 
after isothermal annealing at temperature of 200°C. (a) first 
cycle, (b) second cycle, (c) third cycle, and (d) fourth cycle. 
(Cell 5551). 
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Figure 14. Photo I-V characteristics of (AlGa)As-GaAs solar cell before 
and after 200 keV, 1 x 1011 pcm- 2 proton irradiation and after 
isothermal annealing at temperature of 300 Dc. (Cell 5552). 
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Figure 15. Photo I-V characteristics of (AlGa)As-GaAs solar cell before 
and after 200 keV, 1 x lOll pcm-2 proton irradiation and after 
isothermal annealing at temperature of 300°C. (a) first cycle, 
(b) second cycle, (c) third cycle, and (d) fourth cycle 
(Cell 5554). 
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Eigure 16. Photo I-V characteristics of (AlGa)As-GaAs solar cell before 
and after 200 keV, 1 x 1011 pcm-2 proton irradiation and after 
isothermal annealing at temperature of 300°C. (a) first cycle, 
(b) second cycle, (c) third cycle, and (d) fourth cycle 
(cell 5555). 
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Figure 17. Photo I-V characteristics of (AlGa)As-GaAs solar cell before 
and after 200 keV, 1 x lOll pcm-2 proton irradiation at 
temperature of 400°C. (a) first cycle, (b) second cycle, 
(c) third cycle, and (d) fourth cycle (cell 5556). 
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Figure 18. Photo I-V characteristics before and after 200 keV; 
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Table 5. Periodic Thermal Annealing Results on (AlGa)As-GaAs Solar Cells 
Damaged by 200 KeV Protons 

Cumulative Thermal Annealing 
Periodic Proton f-- . 

PA!Po ' Cell Annealing Fluence, Temp •• Time. I sc' V oc' Pmax ' "'. 
No. Cycle p cm-2 °c , Hc:ur rnA V FF mW % % 

5549 114 1.0 0.75 85.3 15.8 
1x10" 90 0.84 0.74 55.8 10.5 65 

1st 200 1 92 0.86 0.75 58.8 10.9 69 
6 96 0.87 0.74 62.1 11.5 73 

24 95 0.87 0.75 61.8 11.4 73 

2x10" 79 0.83 0.74 48.3 8.9 56.3 
2nd 200 1 85 0.85 0.75 54.3 10.0 63.3 

20 89 0.86 0.75 57.2 10.6 67 

3x10" 79 0.82 0.74 47.6 8.8 55.7 
3rd 200 2 81 0.83 0.74 49.7 9.2 58.2 

18 88 0.85 0.74 55.3 10.2 64.6 

4x10" 80 0.81 0.73 47.5 8.8 55.7 
4th 200 5 85 0.84 0.73 52.4 9.7 61.5 

21 87 0.85 0.75 55.3 10.2 65.0 

5551 114 1.0 0.75 85.7 15.8 
1x10" 88 0.83 0.75 54.4 10.1 64 

1st 200 1 90 0.85 0.76 57.9 10.7 68 
6 94 0.86 0.75 61.1 11.3 72 

20 93 0.86 0.76 61.1 11.4 72 

2x10" 79 0.82 0.74 47.9 8.9 56.3 
2nd 200 1 85 0.85 0~76 54.6 10.1 63.9 

20 87 0.85 0.76 56 10.3 65.2 

3x10" 77 0.81 0.74 46.2 8.5 53.8 
3rd 200 2 83 0.83 0.75 51 9.4 59.5 

20 87 0.84 0.75 54.5 10.1 63.9 

4x10" 78.5 0.80 0.74 46.2 8.5 54 
4th 200 5 83.5 0.84 0.74 51.8 9.6 61 

21 90 0.85 0.75 57.1 10.5 67 

5561 113 1.0 0.75 84.7 15.6 
1x10" 83 0.81 0.73 48.8 9.0 58.0 
2x10" 70 0.80 0.73 41.0 7.6 48.7 
3x10" 61 0.77 0.73 34.0 6.3 40.7 
4x10" 56 0.74 0.72 29.7 5.5 35.3 

1st 200 5 78 0.83 0.74 47.6 8.8 56.4 
21 82 0.84 0.74 50.72 9.4 60.0 

5591 113 1.02 0.76 87.7 16.2 
1x10" 91 0.84 0.74 56.2 10.4 64.2 
2x10" 79 0.83 0.75 49 9.0 55.6 
3x10" 71 0.79 0.74 41.3 7.6 46.9 
4x10" 68 0.77 0.72 38.1 7.0 43.2 

1st 200 5 84 0.85 0.74 52.9 9.8 60.5 
21 88 0.87 0.75 56.8 10.5 65 

5554 115 1.01 0.75 87.2 16.1 
1x10" 90 0.84 0.74 55.9 10.3 64 

1st 300 1 102.5 0.90 0.76 70.5 13.0 81 
6 104 0.91 0.76 71.6 13.2 82 

2x10" 82 0.84 0.74 51.2 9.5 59 
2nd 300 1 95 0.89 0.76 64 11.8 73.2 

6 98 0.90 0.76 66.8 12.3 76.3 
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Table 5. (Continued) 

Cumulative Thermal Annealing 
Periodic Proton 

I V P P AlP o' Cell Annealing Fluence Temp. , Time, sc' oc' max' "'. No. Cycle p cm-2 DC Hour rnA V FF mW % % 

3x10" 81 0.83 0.74 49.7 9.2 57.1 
3rd 300 I 92 0.88 0.74 59.8 11.0 68.3 

6 91 0.87 0.75 59.4 11.0 68.3 

4.x10 81 0.82 0.74 48.5 9.0 56 
4th 300 I 89 0.87 0.73 56.8 10.5 65.2 

6 89 0.87 0.74 57.2 10.6 66 

5555 115 1.0 0.74 85.3 15.8 
IxlO" 90 0.84 0.74 55.8 10.3 65 

1st 300 I 100 0.92 0.75 69.2 12.8 81 
6 102 0.92 0.74 69.5 12.8 81 

2x10" 83 0.84 0.74 51.8 9.6 60.8 
2nd 300 I 92 0.89 0.75 61.3 11.3 71.5 

6 95 0.91 0.75 64.5 11.9 75.3 

3x10" 80 0.84 0.73 49 9.0 57 
3rd 300 I 89 0.88 0.75 58.4 10.8 68.4 

6 90 0.88 0.75 59 10.9 69 

4x10" 80 0.82 0.74 48.4 8.9 56.3 
4th 300 I 88 0.87 0.74 56.2 10.4 66 

6 87 0.87 0.75 56.5 10.4 66 

5552 114.5 1. 01 0.74 85.5 15.8 
IxlO" 88 0.82 0.74 53.6 9.9 63 

1st 300 I 101 0.90 0.75 68.1 12.6 80 
6 101 0.91 0.75 69.0 12.8 81 

2x10" 83 0.84 0.74 51.8 9.6 61 
2nd 300 I 93 0.89 0.75 62.5 11.6 73.4 

6 96 0.90 0.75 65 12.0 76 

3x10" 81 0.84 0.74 50 9.2 58.2 
3rd 300 I 90 0.87 0.75 59 10.9 69 

6 90 0.88 0.75 59 10.9 69 

4x10" 81 0.82 0.73 48.6 9.0 57 
4th 300 I 85.5 0.87 0.76 56.2 10.4 66 

6 86.5 0.86 0.75 56.1 10.4 66 

5563 112 1.01 0.76 85.5 15.8 
lxlO" 88 0.83 0.73 52.9 9.8 62 
2x10" 75 0.82 0.74 45.2 8.4 53.2 
3x10" 69 0.79 0.74 40.3 7.5 47.5 
4x10" 65 0.77 0.72 36.2 6.7 42.4 

1st 300 I 88 0.88 0.75 57.7 10.7 68 
6 92 0.88 0.76 61. 3 II. 3 72 

5564 114 1.02 0.75 86.3 15.8 
IxIO" 85 0.82 0.73 50.8 9.4 60 
2x10" 73 0.81 0.74 43.6 8.0 50.6 
3x1O" 68 0.79 0.72 38.7 7.2 45.3 
4x10" 63.5 0.76 0.72 34.7 6.4 40.5 

1st 300 1 88 0.87 0.74 56.9 10.5 66.5 
6 95 0.88 0.66 55.4 10.2 65 

5556 115.5 1.0 0.73 84.2 15.6 
lxlO" 89 0.83 0.74 54.4 10.1 65 

1st 400 I 106 0.92 0.75 73 13.5 87 
6 104 0.92 0.75 72 13.3 85 
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Table 5. (Continued) 

Cumulative Thermal Annealing 
Periodic Proton 

Cell Annealing 
I sc' V oc' Pmax ' "'. PA!Po ' Fluence. Temp. , Time. 

No. Cycle p cm-2 °C Hour rnA V FF mW % % 

2xl0" 79 0.84 0.74 49 9.3 58 
2nd 400 1 98 0.92 0.74 66.4 12.0 79 

6 98 0.90 0.72 63.2 11.7 75 

3xl0" 75 0.82 0.70 42.9 7.9 50.6 
3rd 400 1 90 0.89 0.73 58.2 10.8 69.2 

6 96 0.92 0.74 65.3 12.1 78 

4xl0" 75 0.82 0.73 45 8.3 53 
4th 400 1 93 0.92 0.73 61.4 11.3 72.4 

6 93 0.91 0.75 63 11.6 74 

5557 116 1.0 0.75 86.9 16.1 
lxl0" 89 0.84 0.73 54.5 10.1 63 

1st 400 1 104 0.92 0.75 71.3 13.2 82 
6 101 0.92 0.75 69.8 12.9 80 

2x10" 83 0.85 0.74 52.4 9.7 60 
2nd 400 1 96 0.91 0.76 66 12.2 76 

6 104 0.92 0.73 70 12.9 80 

3x10" 81 0.84 0.73 49.6 9.2 57 
400 1 95 0.90 0.74 63.5 11.7 73 

3rd 6 99 0.91 0.73 66.1 12.2 76 

4x10" 82.5 0.83 0.73 49.6 9.2 57 
4th 400 1 97 0.90 0.73 63.7 11.8 73 

6 95 0.90 0.73 62.1 11.5 72 

5558 115 1.01 0.75 87.2 16.1 
1x10" 87 0.83 0.74 53.7 9.9 

-1st 400 1 104 0.93 0.76 73.2 13.5 84 
6 101 0.93 0.76 71.2 13.2 82 

2xlO" 83 0.85 0.75 53.2 9.8 61 
2nd 400 1 97 0.92 0.77 68.5 12.7 79 

6 100 0.91 0.74 67.3 12.4 77 

3x10" 81 0.83 0.73 98.9 9.0 56 
3rd 400 1 95 0.90 0.74 63.6 11.8 73.3 

6 101 0.91 0.75 69 12.8 80 

4x10" 83 0.83 0.73 50.3 9.28 58 
4th 400 1 99 0.90 0.73 65.0 12.0 75 

6 99 0.90 0.75 66.4 12.3 76.4 

5559 115 1.01 0.75 87.2 16.1 
1x10" 90 0.84 0.74 55.8 10.3 64 
2x10" 79 0.82 0.75 48.3 8.9 55.3 
3x10" 67 0.78 0.74 38.4 7.1 44 
4x10" 63 0.76 0.73 35 6.5 40.4 

1st 400 1 99 0.89 0.75 65.7 12.1 75 
6 101 0.90 0.75 68.5 12.6 78.3 

5560 118 1.01 0.76 90.5 16.7 
1x10" 91 0.85 0.75 57.3 10.6 63.5 
2x10" 77 0.82 0.75 47.3 8.7 52.1 
3x10" 66 0.79 0.74 38.4 7.1 42.5 
4xlO" 61.5 0.77 0.73 34.1 6.3 38 

1st 400 1 100 0.90 0.75 67.3 12.4 74 
6 101 0.91 0.75 68.8 12.7 76 
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SECTION 4 

CONTINUOUS ANNEALING 

In the continuous annealing experiment we again chose to study the single 

proton energy of 200 keV. The purpose of this experiment was to study the 

effect of proton flux (1 x 10 10 versus 1 x lOll p cm- 2 hr- l ) in our GaAs cells 

at the temperatures of 200°C and 25°C, respectively. Table 6 gives the test 

matrix of the continuous annealing experiment. Table 7 gives the electrical 

characteristics before and after 200 keV proton irradiation. Appendix C shows 

the photo I-V characteristics of each individual cell. Figure 26 shows the 

power ratio after irradiation as a function of proton fluence. The GaAs solar 

cells which were irradiated at a flux of 1 x 10 10 p cm- 2 hr- l for 10 hours at 

200°C have 6% more power (or pI Po = 66%) than both the cells which were 

irradiated at room temperature under the same irradiation condition and the 

cells that were irradiated at 200°C'for one hour at a flux of 1 x lOll p cm- 2 

hr- l • The cells which were subjected to room temperature irradiation, and 

those that were subjected to a higher flux of 1 x lOll p cm- 2 hr- l at 200°C, 

have the same power degradation, PIPo = 60%. The result clearly shows that 

during proton irradiation, the annealing time (one hour at 200°C) was not long 

enough to have any significant effect on the cell performance. 

In another set of continuous annealing experiments, we irradiated our 

GaAs solar cells with 200 keV protons at a flux of 1 x 10 10 p cm- 2 hr- l to a 

fluence of 1 x 109 p-cm-2 at 200°C. We repeated this experiment 10 times. 

Each time we added 1 hour of annealing at 200°C before the next irradiation, 

until the final fluence accumulated to 1 x 10 10 p cm- 2• Table 8 gives the 

electrical characteristics before and after the irradiation. These results 

show that the one hour annealing time between each step of irradiation is not 

effective in improving the cells radiation resistance, even though the incre

mental flux between each step was kept as low as 10 9 p cm- 2• 

We have also completed the post annealing experiments on the GaAs cells 

which had first been continuously annealed at 200°C (irradiation at 200°C at 

the two fluxes of I x 10 10 p cm- 2 hr- l and 1 x lOll p cm- 2 hr- l , respect

ively). The results of these measurements are given in Tables 7 and 8. The 

GaAs cells which were irradiated at a lower flux of 1 x 10 10 p' cm- 2 hr- l for 
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ten hours at 200°C (continuous annealing) did not improve their efficiency 

with additional annealing at 200°C. This indicates that the annealing time 

provided under continuous annealing under this low flux was adequate. Only 

those cells which were irradiated at room temperature and at high flux 

(1 x lOll p cm-2 hr- l at 200°C) showed an increase in efficiency with 200°C 

post annealing. This correlates with the observation that the time available 

«1 hr) at the annealing temperature of 200° under high flux continuous 

annealing was insufficient for substantial annealing. In conclusion, these 

results show that the continuous annealing experiment at 200°C at lower flux 

provided sufficient time for annealing, even though the cells which were 

irradiated at room temperature exhibited more power output (PI/PO = 74%) 

than the continuously annealed cells (PI/Po = 66%). Thus, within the limits 

of our experiments, the data indicate that continuous annealing does not seem 

more favorable than periodic annealing on GaAs solar cells, at least for 

200 keV proton radiation damage at fluxes )10 10 p cm- 2 hr- l and fluences 

)10 10 P cm-2 • 

Table 6. 200 keV Proton - Continuous Annealing Experiment 

Task Temp. , Flux, Time, F1uence, GaAs Cell I.D. No. 
°c p cm-2 hr- 1 hr p cm-2 

1 200 1 x 1011 1 1 x lOll 7742, 7755, 7756 

2 25 1 x 1010 10 1 x lOll 7743, 7744, 7746 

3 200 1 x 1010 10 1 x lOll 7757, 7758, 7814 

4a 200 1 x lOla 0.1 1 x 10 9 7810, 8259, 8256 

5 200 1 x lOll 0.1 1 x lola 7831, 7869, 8258 

aAnnea1 once an hour and repeat for ten times. The final f1uence 
should be 1 x lOla p cm-2 • 
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Cell No. 

7743 

7744 

7746 

7757 

7758 

7814 

7742 

7755 

7756 

Table 7. Annealing of Proton Radiation Damage, 
F1uence 1 x 1011 p cm-2 

Irradiation Post Anneal Performance 

Flux, Temp •• Time, Temp., Time, I~. V~C' fF Pm' n. 
P cm-2 Hr-1 ·c Hr ·c Hr mil % 

0 0 113 1.0 0.78 87.6 16.2 

1 x 10
10 

25 10 75 0.92 0.79 54.5 10.0 

200 6 88 0.945 0.79 65.6 12.1 

200 10 88 0.94 0.78 64.8 12.0 

0 0 113 1.0 0.77 86.9 16.1 

1 x 10
10 

25 10 76.5 0.90 0.78 53.5 9.89 

200 6 90 0.925 0.78 65.2 12.0 

200 10 90 0.92 0.78 64.7 12.0 

0 0 113 1.01 0.769 87.7 16.2 

1 x 10
10 

25 10 75 0.90 0.787 53.1 9.8 

200 6 87 0.93 0.78 62.8 11.6 

200 10 89 0.92 0.78 63.5 11. 7 

0 0 117.5 1.02 0.78 93.3 17.2 

1 x 10
10 200 10 80 0.97 0.78 60.6 11.2 

200 6 77 0.98 0.79 59.6 11.0 

200 10 78 0.97 0.78 59 10.9 

0 0 117 1.01 0.78 91.8 17.0 

1 x 10
10 200 10 80 0.96 0.79 60.7 11.2 

200 6 79 0.98 0.79 61 11.3 

200 10 17 0.96 0.79 58.6 10.8 

0 0 115 1.01 0.79 91.2 16.8 

1 x 1010 200 10 86 0.89 0.77 59.3 11 

200 6 84 0.90 0.78 59.3 11 

200 10 83 0.89 0.78 57.8 10.7 

0 0 114 1.0 0.78 88.8 16.4 

1 x lOll 200 1 86 0.89 0.77 59.3 11.0 

200 6 88 0.905 0.79 62.7 11.6 

200 10 89 0.89 0.79 62.3 11.5 

0 0 115 1.01 0.775 90.1 16.7 

1 x lOll 200 1 73 0.96 0.784 54.9 10.2 

200 6 79 0.98 0.79 60.9 11.3 

200 10 81 0.97 0.78 61.4 11.3 

0 0 117 1.01 0.78 91.8 17 

1 x lOll 200 1 73 0.96 0.79 55.4 10.2 

200 6 80 0.98 0.78 61.0 11.3 

200 10 82 0.97 0.78 62.3 11.5 
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Figure 8. 

Irradiation 
Cell No. 

Flux, Temp., 
p cm-2 Hr-1 ·C 

8256 

1 x lOll 200 

8259 

1 x lOll 200 

7810 

1 x lOll 200 

7831 * 
1 x 1010 200 

7869* 

laO 

8258 'Ie 

200 

*Irradiated to a f1uence 

Annealing of Proton Radiation Damage, 
200 keV; 1 x 1010 p cm-2 

Post Anneal Performance 

Time, Temp., Time, ISC' V~c FF Pm' 
Hr ·C Hr rnA mW 

113 1.0 0.74 83.6 

0.1 103 0.98 0.77 78 

200 9 103 0.98 0.77 78 

114 0.99 0.75 84 

0.1 105.5 0.94 0.79 77.4 

200 9 105.5 0.94 0.79 77.4 

114 1.01 0.786 90.5 

0.1 104 0.95 0.785 77.6 

200 9 104 0.95 0.79 77.6 

117 1.02 0.768 90.9 

10 108 0.99 0.76 81.3 

117 1.0 0.80 93.7 

10 110 0.97 0.79 84.6 

115 1.01 0.74 85.5 

10 105 0.98 0.77 80 

of 1 9 -2 
x 10 p cm and then annealed once an hour. This 

repeated for ten times until the final f1uence is 1 x lOla p cm-2• 
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SECTION 5 

CONCLUSION 

We have studied the radiation damage characteristics of GaAs solar cells 

under medium-energy proton irradiation at 2, 5, and 10 MeV. This study is a 

continuation of our previous work on low-energy (50 to 300 keV) and high

energy (15 to 50 MeV) proton irrdiation in GaAs solar cells. The key observa

tion is that the GaAs solar cells are superior in radiation hardness to Si 

solar cells at all proton energies higher than 5 MeV. In the region below 5 

MeV, the only proton energy region where GaAs cells are more susceptible to 

damage, conventional coverglass offers sufficient protection to virtually 

eliminate all damages. Some high-energy protons lose some of their energy 

while penetrating through the coverglass and cause damage as low-energy pro

tons. In the geosynchronous orbit, (Figure 3), there are relatively fewer 

high-energy than low-energy protons. For example, there are only 

~2 x 10 10 p cm~2 in the energy range between 20 MeV to 40 MeV, whereas in the 

proton energy between 0 to 200 keV, there are ~1 x 10 10 p cm- 2• Therefore, 

our GaAs solar cells protected by the coverglass should suffer relatively 

small deterioration by proton irradiation in the orbit. 

Under this contract we also performed periodic thermal annealing and 

continous annealing experiments on our GaAs solar cells. Our data show that 

the cells subjected to periodic thermal annealing have improved end-of-life 

efficiency compared to the cells without annealing. In the periodic thermal 

annealing, results at 200°C appear to be almost as good ~s the annealing 

results at temperatures of 300 and 400°C. In general, a 10-hour annealing 

time at 200°C is sufficient. Higher temperatures reduce annealing time, 

becoming almost instantaneous at temperatures above 300°C. In our experi

ments, the remaining power (p/Po) stays constant at 65% after the second 

cycle of periodic annealing at 200°C. 

The results from the continous annealing at 200°C show that one hour 

annealing at 200°C during proton irradiation was not long enough to have a 

substantial effect on the cell performance. The effect of proton flux is 

important only to provide more time for cell annealing at 200°C. Within the 

limits of four experiments in the laboratories, the question that still 
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remains unanswered is whether or not the effective annealing temperature can 

be lowered below 200°C if the cells are subjected to the very low flux in the 

geosynchronous orbit of the order of ~103 p cm-2 see- 1• The alternative 

approach to continuous annealing is to incorporate annealing into a space 

concentrator system with modest solar concentration of ~100 suns. Such a 

system can be used to protect the cell from radiation damage. Also, the 

generated heat by the concentrated sunlight can be utilized for annealing 

cell damage. Consequently, it is highly desirable to continue these annealing 

studies in detail since there are strong indications that with proper panel 

design and the use of only modest solar concentrations, it should be possible 

to achieve desired annealing and tolerate a very severe radiation environment 

while maintaining the end-of-life efficiency close to the beginning-of-life 

value. Alternatively, it may be possible to decrease the thickness of the 

required protective coverglass or to eliminate it in some cases. Such 

approaches could be very desirable to ensure reliable operation of GaAs space 

cells in space missions with power levels remaining close to their beginning

of-life values under severe radiation exposure and in economically attractive 

systems. We plan to make this an imporatant thrust of future programs. 

60 



REFERENCES 

1. J. B. Marion and F. C. Young, Nuclear Reaction Analysis (American Elsevier 
Publishing Company, New York, 1968), pp. 30-31. 

2. C. F. Williamson, Jean-Paul Boujot and Jean Picard, Tables of Range and 
Stopping Power of Chemical Elements for Charged Particles of Energy 
0.05 to 500 MeV (Departement de Physi1ue Nucleaire SACLAY, 1966), p.69. 

61 



This Page Intentionally Left Blank 



APPENDIX A 

MEDIUM ENERGY PROTON IRRADIATION (CALTECH) 

Proton beams from the ONR-CIT EN tandem accelerator were energy analyzed 
o using a previously' calibrated 90 bending magnet. The beams were spread over 

the area of four 2. cm x 2 cm cells by multiple scattering in 0.2-mil to 1.5-

mil-thick gold foils. The geometry of the target system is shown in 

Figure A-l. ~he target was electrically inolated so that the proton flux 

could be measured by integrating the current deposited on the target. The 

target was biased at +45 V to prevent secondary electrons from escaping, 

while the upstream aperture was .biased at -300 V to suppress secondary 

electrons from the gold foils. Measurements of beam current are thus accurate 

to ±2%. There are two major sources of systematic error in beam fluence and 

energy. The multiply scattered beam will have a Gaussian angular profile. 
1 The half angle of,the scattered beam was calculated and is shown in 

Table A-I, along ~ith the percentage ~ifference in flux indicated between the 

center and outside corners of the cells. The second source of error is caused 

by the mechanism of energy loss of the beam passing through the gold foil. 

Energy is lost because of a large number of collisions between the protons 

and electrons in the foil. Statistical deviations in the number of collisions 
2 

cause a spread in the energy of the scattered beam. The total energy loss, 

and the calculated energy spread of the scattered beam are also shown in 

Table A-I. 

Table A-l. Calculated Energy Spread of the Scattered Proton Beam 

Energy Gold Foil Energy Scattering Flux Energy 
MeV Thi'ckness, Mil Lo'ss, MeV. Half Angle . Ratio* Spread 

10.0 1.57 1.37 3.8 0.81 '±0.09 MeV 

4.8 1.20 1.30 6.6 0.93 ±0.07 MeV 

2.0 0.40 0.91 9.1 0.96 ±0.04 MeV 

0.8 0.15 0.45 12.4 0.98 ±0.02 MeV 

*Ratio between the flux at the corner of the target farthest from the center 
(lowest point) and the flux at the corner in the center (highest flux point) 
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Photo I-V characteristics before and after 2 MeV; 1 x lOla p cm- 2 proton irradiation. 
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Photo I-V characteristics before and after 2 MeV; 1 x lOll p cm-2 proton 
irradiation. (a) Cell 4172, without coverglass; (b) Cell 4177, without 
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Figure B-4. Photo I-V characteristics before and after 2 MeV; 1 x 1011 p cm-2 proton 
irradiation. (a) Cell 4175, without coverglass; (b) Cell 3896, with coverglass. 
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Photo I-V characteristics before and after 2 MeV; 1 x 1013 p cm-2 proton 
irradiation. (a) Cell 4166, without coverglass, (b) Cell 4207, without 
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Figure B-19. Photo I-V characteristics before and after 10 MeV; 1 x 1012 p cm-2 proton 
irradiation. (a) Cell 4107, without coverglass; (b) Cell 3988, with 
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APPENDIX C 

PHOTO I-V CHARACTERISTICS OF (AIGa)As GaAs SOLAR CELLS BEFORE AND AFTER A 
CONTINUOUS ANNEALING EXPERIMENT AT 200°C 
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Figure C-l. 
Photo I-V characteristics before and 
after 200 keV proton; 1 x 1011 p cm-2 

at 25°C at a flux of 1 x 1010 p cm-2 hr-l 
(total irradiation time = 10 hrs), and 
after post annealing at 200°C for 10 hr. 
(cell Nos. 7743, 7744, 7746)). 
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Figure C-2. 
Photo I-V characteristics before and 
after 200 keV proton; 1 x 1011 p cm-2 
200°C at a flux of 1 x 1011 p cm-2 hr-1 
(total irradiation time = 1 hr), and 
after post annealing at 200°C for 10 hr. 
(Cell Nos. 7755, 7756, and 7742). 

92 



« 
E 

100 -

11827-11 

I 

"'BEFORE 
IRRADI-
ATION 

-
~: AFTER I I 
~ 50 lRRADIATION 
a: 
::l AFTER POST 
U ANNEALING 

(200 0 C, 10 hrs) 

o '---__ ,'--__ ----LlL--_------1 

o 0.5 1.0 

VOLTAGE, V 

a. CELL NO. 1757 

100 
« 
E 
, 

AFTER I / 
.... 
1-' 
z IRRADIATION w 50 a: 
a: 
::l AFTER POST U ANNEALING 

(200 0 C, 10 hrs) 

0 
0 0.5 1.0 

VOLTAGE, V 

b. CELL NO. 1758 

100 
« 
E 

AFTER I I .... 
1-' 
z IRRADIATION w 

50 a: 
a: 

AFTER POST ::l 
U ANNEALING 

(200 0 C, 10 hrs) 

0 
0 0.5 1.0 

VOLTAGE, V 

c. CELL NO. 7814 

93 

Figure C-3. 
Photo I-V characteristics before and 
after 200 keV proton; 1 x 1011 p cm-2 
at 200°C at a flux of 1 x 1010 p cm-2 hr-1 
(total irradiation time = 10 hr), and 
after post annealing at 200°C for 10 hr. 
(Cell Nos. 7757, 7758, and 7814). 
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Figure C-4. 
Photo I-V characteristics before and 
after 200 keV proton; 1 x 1010 p cm-2 
continuous annealing experiment at 200°C 
at a flux of 1 x 1010 p cm-2 hr-l , and 
after post annealing at 200°C for 10 hr • 
(Cell Nos. 7810, 8259, and 8256). (In 
this experiment, the cells were irradi
ated to a fluence of 1 x 109 p cm-2 and 
then subsequently annealed for an hour at 
200°C. This process was repeated ten 
times until the final fluence was cumu
lated to 1 x 1010 p cm-2). 
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Figure C-5. 
Photo I-V characteristics before and 
after 200 keV proton; 1 x 1010 p cm-2 
at 200°C at a.flux of 1 x 1010 p cm-2 hr-l 
(total irradiation time = 0.1 hr), and 
after post annealing at 200°C for 9 hr. 
(Cell Nos. 8258, 7869, and 7831). 
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