NASA CONTRACTOR REPORT 166346

WWASA CK - 1eb 3o

Automated Verification of Flight Software -

User's Manual

S. H. Saib

CONTRACT NAS2- 10550
April 1982

NNASN

NASA.cRr

-1663
1982002203, 96
TmmARY COnY
CLetatiiil R

~IUL ?151982
LANGLEY RICSZARSH CENTER

Liciny, HASA

HALL-TON, VIKCUA

KR e

NF02616

NASA CONTRACTOR REPORT 166346

Automated Verification of Flight Software -
User's Manual

S. H. Saib
General Research Corp.

Prepared for
Ames Research Center
under Contract NAS2-10550

NASN

National Aeronautics and
Space Administration

Ames Research Center
Moffett Hield. California 94035

B2 -99058™F

ABSTRACT

AFVS (Automated Verifiction of Flight Software) is a collection of
tools for analyzing source programs written in FORTRAN and AED. AVFS

aids in improving the quality and the reliability of flight software by

providing:
° Indented listings of source programs
° Static analysis to detect inconsistencies in the use
of variables and parameters
. Automated documentation
° Instrumentation of source code
. Retesting guidance
° Analysis of assertions
. Symbolic execution
] Generation of verification conditiomns
. Simplification of verification conditions

This manual describes how to use AVFS in the verification of
flight software.

AVFS is one important component of a Digital Flight Control System
Verification Laboratory (DFCSVL) which has been established at NASA Ames
Research Center, Moffett Field, California. The DFCSVL includes a PDP
11/60 processor and a palletized CAPS 6 based digital flight control
system. Most of the AVFS files have been hosted in the Univac 1100
computer system in Santa Clara, California. Access to these files from
the DFCSVL is provided via a direct link connecting the PDP 11/60 and
the Univac 1100.)

ii

CONTENTS

Section PAGE

ABSTRACT i

1 INTRODUCTION
1.1 Testing and Verification Sequence 3
1.2 User's Manual Organization 7

2 AVFS OVERVIEW 9

3 USING AVFS 15
3.1 Interface File 21
3.2 Instrument File 22
3.3 TFirstline 22
3.4 Processing Options 23
3.5 Report 24
3.6 For Modules 25

4 OPTION DESCRIPTIONS 27
4,1 List 27
4,2 Static 31
4.3 Document 39
4,4 Summary 61
4.5 Instrument 67
4,6 Reaching Set 82
4.7 TFormal Verification 86

5 AVFS CONSTRAINTS 93
5.1 Universal Constraints 93
5.2 Syntax Constraints 93

6 ANALYZER COMMANDS 95
6.1 Summary 98
6.2 Nothit 101
6.3 Detailed 103

APPENDIX

A AVFS COMMAND SUMMARY AND CHECKLIST

B FILE DESCRIPTIONS

Cc JOB STREAMS FOR AVFS AT UNIVAC INSTALLATIONS

iii

FIGURES

NO. PAGE
1. Digital Flight Control System Verification Library vi
1.1 DFCS Verification Laboratory Block Diagram 1
1.2 AVFS Capabilities 3
1.3 Steps in Validating a Program with AVFS 4
2.1 Software Verification Augmented by AVFS 10
2.2 Sequence of Source Program Analysis, Test, and Formal
Verification ' 11
2,3 Report Index 14
3.1 AVFS Processing 15
4.,1a FORTRAN Listing 29
4,1b AED Listing 30
4.2 Static Analysis - FORTRAN 35
4.3 Static Analysis - AED 36
4.4 Units Analysis - AED 37
4.5 Interface Analysis - AED 38
4.6a FORTRAN Symbols Report 41
4.6b AED Symbols Report 42
4.7a FORTRAN Cross Reference Report 44
4,70 AED Cross Reference 45
4,.8a FORTRAN Invocation Space Report 47
4.8b AED Invocation Space Report 48
4.9a FORTRAN Invocation Summary Report 49
4.9b AED Invocation Summary Report 50
4.10a FORTRAN Invocations Band 51
4.10b AED Invocations Band 52
4,11 FORTRAN Common Matrices 53
4,12 FORTRAN I/O Statements 54
4,13 FORTRAN Commons Cross Reference 55
4,14a TFORTRAN Externals Cross Reference 56
4,14b AED Global Cross Reference 57
4.15 TFORTRAN Picture of Module Structure _ 59

iv

FIGURES (Continued)

NO. PAGE
4.16 AED Picture of Module Structure 60
4.17a TFORTRAN Statement Profile 64
4.17b AED Statement Profile . 65
4,18 FORTRAN Common Summary 66
4,19 AVFS Instrumentation of Source Code 68
4,20 Loading and Test Execution 70
4.21 DD-Path Definition 72
4.22 Input/Output Listing 75
4.23 FORTRAN Assert Instrumentation 77
4.24 AED Path Definition 79
4,25 Trace Assertion Report 80
4.26 AED Assert Listing 81
4.27a FORTRAN Reaching Set 84
4.270 AED Reaching SET 85
4.28 DD-Path Definition for Verification 87
4,29 Verification Condition Generation 88
4.30 AED Symbolic Execution Report 90
4.31 AED Verification Condition Report 91
6.1 Execution Coverage Sequence 96

6.2 DD-Path Summary (with the Immediately Preceding Test Case) 99

6.3 Multiple Test DD-Path Summary 100
6.4 DD-Paths Not Executed 102
6.5 Single Test DD-Path Execution 104
6.6 Cumulative DD-Path Execution 105

TA

Figure 1.

...

Digital Flight Control System Verification Laboratory

1 INTRODUCTION
AVFS (Automated Verification of Flight Software) 1is a collection

of tools for analyzing flight software. AVFS is one important component
of a Digital Flight Control System Verification Laboratory (DFCSVL),

pictured in Figure 1 (DFCSVL block diagram shown in Figure 1.1), which
has been established at NASA Ames Research Center, Moffett Field,

California.

SOFTWARE PILOT =
TOOLS TOOLS INFORMATION B
COMPUTER DATA PANEL 3
[BASE [
]
ENVIRONMENT FLUIGHT
COMPUTER COMPUTERS
)))
SENSOR/
ACTUATOR
MODELS

L=

-_'

r USER

\\\ DATA
p_—

Figure 1.1 DFCS Verification Laboratory Block Diagram

The DFCSVL includes a PDP 11/60 processor (the environment
computer) and a palletized CAPS 6 based digital flight control system
(flight computers, pilot information panel, and sensor/acutator models).
Most of the AVFS tools have been hosted in a Univac 1100 computer system
(the software tools computer). Access to the AVFS tools from the
environment computer is via a high speed data link over a telephone

line.

AVFS analyzes source programs written in FORTRAN or AED (Automated
Engineering Design). AED is an Algol-like programming language origin-
ally developed at MIT for the U.S. Air Force.

AVFS aids in improving the quality and reliability of flight
software by providing:

] Indented listings of source programs

o Static analysis to detect inconsistencies in the use of

variables and parameters

. Automated documentation

° Instrumentation of source code

e Retesting guidance

° Analysis of assertions

° - Symbolic execution

° Generation of verification conditions

'Y Simplification of verification conditions

AVFS allows the addition of assertions to a program. These asser-
tions make it possible for AVFS to include (1) a more comprehensive
static analysis than is possible without the use of assertions, (2) more
useful results from execution testing, and (3) formal verification by
the generation and simplification of verification conditions. Figure

1.2 shows the various AVFS capabilities.

VERIFICATION -
CONDITION LISTINGS STATIC =
GENERATION ANALYSIS o .
AND 3
SIMPLIFICATION
SYMBOLIC AUTOMATED
EXECUTION AVFS ™ DOCUMENTATION
ASSERTION ’ RETESTING INSTRUMENTATION
ANALYSIS GUIDANCE

Figure 1.2. AVFS Capabilities

1.1 TESTING AND VERIFICATION SEQUENCE

The traditional method of detecting errors is limited to those
errors which surface at compilation and during execution. AVFS, how-
ever, provides assistance to the user through system integration,

testing, documentation, program verification, and maintenance.

As flight software is being written, the programmer can submit ome
or more modules for analysis by AVFS so that errors will be detected
before they propagate through the entire system. Assertions should be
included in the source text, as a valuable part of the analysis relies
on information about the variables that are supplied in the assertioms.
Figure 1.3 illustrates the steps to be taken in validating a program
with AVFS.

PROGRAM
+
ASSERTIONS

TESTED

PROGRAMS
+

DIRECTIVES

CORRECT

CORRECT

CORRECT

SYNTAX ERRORS

SYNTAX

SEMANTIC ERRORS

STATIC

ANALYSIS

EXECUTION ERRORS

EXECUTION

ANALYSIS

TEST

PROGRAM
LISTING
+

DIAGNOSTICS

VARIABLE SET/USE
ASSERTED/ACTUAL USE
EXTERNAL REFERENCES
PHYSICAL UNITS
UNREACHABLE CODE

—

PERFORM FORMAL

i

VERIFICATION

TEST RESULTS
EXECUTION ERRORS
ASSERTION EXCEPTIONS
INPUT/OUTPUT TRACE
PATH COVERAGE

—

PROGRAM
VERIFIER

ANNOTATED
SOURCE
+

Figure 1,3.

SYMBOLIC

EXPRESSIONS
+

VERIFICATION

CONDITIONS

+
SIMPLIFIED
VERIFICATION
CONDITIONS

—

Steps in Validating a Program with AVFS

EXECUTION OF

AN-62757

1.1.1 Syntax Errors

The first step in verifying a program is the elimination of syntax
errors. If the source 1is written in FORTRAN, the FORTRAN compiler
should be used to provide a listing and a diagnostic report. If the
source is written in AED, the AED compiler should be used in a similar

manner.

1.1.2 Static Analysis

Once syntax errors found by the compiler have been corrected, the
source code is ready for the second step in verification (Fig. 1.2),
which 1is static analysis to detect counsistency errors. It is not
necessary to wait for integration of the entire software system to begin
using AVFS; one module at a time can be submitted for static analysis.
By doing this errors will be detected as early as possible. The static
analysis (which will be described in detail in Sec. 4) examines the

source code for the following inconsistencies:

° Physical-units errors: operations on variables whose
asserted physical units (feet, Lkilograms, etc.) do not

correspond to actual use.

° Set/use errors: variables which are used before they are

set to a value, or set to a value and then not used.

° Asserted/actual use errors: parameters which are used as
output variables when they have been restricted, by

assertions, to being input variables, or vice-versa.
® Graph errors: unreachable statements which cannot be
executed because they are structurally disconnected from the

main program.

. Loop errors: wuninitialized loop variables.

] Poor practice errors: unused parameters, constant parame-
ters, double parameters, expression parameters, function

parameters.

1.1.3 Execution Testing

When a software system is fully integrated and the inconsistencies
found by static analysis have been corrected, the next step is execution
testing. When a program is ready for this step, AVFS offers assistance

before, during, and after execution.

In preparation for testing, AVFS analyzes the program to determine
the paths through the program. AVFS instruments the program by auto-
matically inserting probes at appropriate points iIn the program to
- measure testing coverage, to check on assertion violations, or to trace
variables in the code. During an execution test, these probes record
information which can be used to report on execution coverage, assertion
violations, execution time, and the value of important variables. When
parts of a program have been found to be untested, another AVFS tool can
provide help in selecting test cases to exercise these untested paths of
the program by delineating the unreached portions of code. During the
entire testing process, AVFS can be thought of as a partner, supplying a

wide variety of automated aids to comprehensive testing.

le1.4 Formal Verification

Following the correction of any errors found during static
analysis and execution testing, the tested program is ready for formal
verification, which is the final step in verifying a program (Fig. 1.2).
When a program is executed, numerical data is supplied as input. The
procedure for formal verification is to execute the program "symbolic-
ally," that is, using symbols as input data rather than specific
numbers. The program is then verified or "proved" correct for a wider
range of 1its variables then it 1is practical to assign to them during

execution.

AVFS allows the symbolic execution of variables, expressions, or
assertions. The symbolic execution of variables or expressions can be
used to verify that a module’s output is the same as the formula it has
been specified to compute. The symbolic execution of assertion results
in what has been termed verification conditions. By showing that the
verification conditions for a module are true, it is said that the

module has been formally verified with its assertions.

1.2 USER’S MANUAL ORGANIZATION

This manual describes how to use AVFS as an aid from the beginning
to the end of the software development cycle. Information is presented
in the order that the user is expected to need it. Section 2 is an
overview of the type of aid AVFS provides. Section 3 explains how to
use AVFS (commands, files, etc.). Section 4 describes each of the AVFS
capabilities. Section 5 lists AVFS constraints. When the user’s program
has been instrumnted by AVFS and is ready for testing, special commands
are needed to generate execution coverage analysis reports. These

commands are described in Sec. 6.

Appendix A contains a summary of the AVFS commands. Tables
listing the files used in AVFS processing are in Appendix B. . Job
streams for the Univac 1110 in Appendix C.

2 AVFS OVERVIEW

This section contains an ovreview of the way in which AVFS can aid
the user not only in creating the code but during testing and documen-—
tation. The information presented here about what AVFS does is very
general; the following sections contain more complete details of the
full power of AVFS and how to use it.

Figure 2.1 shows how AVFS fits into the software developmené cycle
to augment software analysis and testing. The additional features are
indicated by diagonal lines. The user's source code can be analyzed by
AVFS and the results will be presented in reports which help the user
decide if acceptance criteria are met. AVFS can also instrument source
code prior to execution to provide a measure of test coverage, to
provide automatic checks on the behavior of a program and to trace
module variables. AVFS can be used to perform formal verification of

formulas and assertions via symbolic execution.

The usual program analysis and testing sequence is shown in Fig.

2.2, AVFS analyzes either FORTRAN or AED code and generates the
following information:

° An enhanced listing of each module

° A static analysis of each module

. Interface data and module relationships

° Information about each module in brief form
° Structural information about each module

. Trace information about variables

° Assertion violations

] Assistance in retesting

° Symbolically executed formulas

. Verification conditions

SPECIFICATION

TEST
DATA

ACCEPTANCE

SOURCE
PROGRAM

INTERFACE
FILE
Z

INSTRUMENTED
SOURCE
CODE

TEST

| CRITERIA

sTATIC /]
REPORTS //

77777
| COVERGE /|

77 7777

7777 7]
, ASSERTION

VIOLATIONS 1

22

FORMAL /|
REPORTS /]

DOCUMENT /4
REPORTS

TEST

\
EXECUTICN /

RESULTS

\f

—

AN-62758

TESTER

Figure 2.1.

10

Software Verification Augmented by AVFS

S

SOURCE
~—— r/

LIST

AN-82759

STATIC

INTERFACE

DOCUMENT

SUMMARY

UNITS

TRACE

ASSERT

INSTRUMENT

]

PROGRAM
EXECUTION

REACHING COVERAGE
SETS ANALYSIS

‘ '

TEST
SATISFACTORY
?

NO

YES

]

SYMBOLIC
EXECUTION

VERIFICATION
CONDITION

%

FORMAL
VERIFICATION
SATISFACTORY

Figure 2.2. Sequence of Source Program Analysis,
Test, and Formal Verificationm

11

The TRACE, ASSERT, and INSTRUMENT functions prepare the user's program
for execution testing. Utilizing the knowledge it obtains about the
structure of the program, AVFS can instrument the user's program by
inserting software probes in each path. In addition, INPUT and OUTPUT
assertion statements which 1list selected variables can be added to a
module and AVFS will automatically generate code to output the values of
these variables during execution of the modules. ASSERT statements
which place conditions on selected variables will cause AVFS to auto-—
matically generate code to report on assertion violations during module

execution,

When an instrumented module is executed, data is recorded each
time a path is traversed. For FORTRAN programs, the path data is stored
on a file for later analysis by a coverage analyzer on the Univac. For
AED programs, the path data is stored in the CAPS memory for later
analysis by a coverage analyzer on the PDP 11/60. In either case, these
reports show the user where to focus retesting. AVFS can make further
tests easier by furnishing a Reaching Set Report to list the source code
on paths which were not executed. The user can then determine the
values that must be assigned to the variables on these paths in order to
reach the set of untested statements. The program is executed again and
the procedure is repeated until the user 1s satisfied that testing is

complete.

After execution testing, the user can formally verify the program
by symbolically executing expressions or assertions. This process will
result in formulas which can be checked against a specification or in
verification conditions which can be proved to be valid. During the
formal verification process, the user will often alter the program or

assertions to validate the program until verification is complete.

During analysis of a program by AVFS, an interface file can be

generated and stored. The interface file is the key to multiple module

12

interface checks. The interface report lists each module name which has
been anlayzed and indicates changes in interface properties, such as
parameters added or deleted, changes in type or use of parameters,

changes to common, and changes to invocations.

FORTRAN and AED programs can be made up of single or multiple
modules. In the analysis of a FORTRAN program, the modules are placed
in a single data file and analyzed together with a single execution of
the tool. In the analysis of an AED program, the modules are placed in
elements of a program file and analyzed with separate executions of the
tool for each module. Information for wmultiple module reports 1is
gathered during the analysis of the separate modules and printed after
all the modules have been analyzed. The analysis of a large FORTRAN

program often results in a large listing for which a report index has

been provided. An example of a report index is shown in Fig. 2.3.

13

REPORT INDEX...

MULTI-MODULE REPORTS

INTERFACE CHANGES
INVOCATION SUMMARY
COMMON MATRICES
I/0 STATEMENTS
CROSS REFERENCE

SUBROUTINE PTRSTR (MODULE. ISTMT, IRETRN)

SYMBOLS

CROSS REFERENCE
INVOCATION SPACE
INVOCATION BANDS

SUBROUTINE SDBASA (MODULE, ISTMT. [(RETRN)

SYMBOLS

CROSS REFERENCE

INVOCATION SPACE
INVOCATION BANDS
CROSS REFERENCE

«+ - WRITING INTERFACE LIBRARY

407% UORDS UWRITTEN

Figure 2.3.

Report Index

14

FAGE

14~
18-

b=
9~
13-

29-

17
26

28

muain

PTRSTR

SDBASA

3 USING AVFS

AVFS is a software system which reads as input a user’s source
program in order to perform a number of functions on the source program
(Fig. 3.1). The source program may be written in FORTRAN or AED and may
be read into AVFS directly from a standard input device (card reader,

terminal, or tape) or from a previously prepared source text file.

The user tells AVFS which functions to perform through a series of
commands. These command can be sent to AVFS via a standard input device

or from a previously prepared command text file.

For FORTRAN, the analysis of several modules can be accomplished
if they are part of a single data file. For AED, modules are stored as

elements of a program file.

S

=_

oLD S

INTERFACE S

COMMAND FILE =]

51 {11}

S

NEW
AVFS INTERFACE
FILE
' 8
REPORTS
SOURCE ©
18]

Figure 3.1. AVFS Processing

15

During an interface run, the source code is analyzed and stored in
a data base known as the interface file. The interface file stores the

module name and information on its interface to other modules such as

information on invoked subprograms and commons.

During an instrumentation run, the structure of the source code is
analyzed for the paths between the decision points. Each module’s first
path always starts at program entry and includes all the statements
until a decision or the end of the routine is reached. These paths form
the basis for instrumentation and subsequent execution coverage anal-

ysis. AVFS uses the path information to produce reports.

AVFS can operate on the source code which it reads during its rum
and produce reports. AVFS can also produce reports using information
(from previously processed programs) that is in the data base called the
interface file. The interface file contains the external characteris-
tics of previously analyzed programs and allows reports to be generated
for only the modules under anlaysis. This allows re-analysis of a
changed system at a far lower cost than if the complete system were re-
analyzed. It is a good practice to use separate interface files for

separate software projects.

The logical unit numbers for the files are shown in brackets in
Fig. 3.1. Appendix B has a list of all the file names and numbers used

by AVFS.

Before submitting source text for analysis, the user should take

certain preliminary steps:

1. The source text should be compiled by a FORTRAN or AED

compiler to confirm it is free of syntax errors.

2. The program should be executed if it will be dynamically

tested.

16

AVFS processing is specified by commands. For FORTRAN, either an
OPTION or REPORT command is required for each run. For AED, a separate
XQT command is required for each function. Other commands are used to
assign appropriate files, to change default values, or to make certain
specifications. The order of commands 1is- important to AVFS. When
multiple commands are given to the FORTRAN AVFS, the following order

must be observed:

RESTART.

EXPAND.

FILE,PUNCH = <file number>.

INSTRUMENT, PUNCH, PROBE, (<file number>).

FIRSTLINE = (<run stream command>).

OPTION = <option list>.

REPORT = <report list>.

FOR MOUDLES = (<name l1>,<name 2>, «ec)»

TESTBOUND ,MODULE = (<name>),STATEMENT = <number>.

REACHING SET,MODULE = (<name>),TO = <DD-path number>,
FROM = <DD-path number>{, ITERATIVE}.

Each command consists of a sequence of terms separated by a comma or an
equal sign. These commands--one to a card, or input record--are free
form; blanks are ignored. The commands may be abbreviated by using the
first four letters of the first word in the command. The names of the

options also may be abbreviated in the same way.

Table 3.1 shows the conditions under which the RESTART or EXPAND
comnands should be used. The first line gives the case where it is
desired to analyze new sov.;rce without using an existing interface file.
This case covers the situation of a first run of the tool and the
situation when it is desired to analyze a module in isolation without
using an interface file. In this case, neither command is used. Page

C~1 contains a sample job control for this case.

17

TABLE 3.1
EXPAND -~ RESTART COMMAND CONDITIONS

New Source? Existing Interface File? Command to Use
Yes No —
Yes Yes EXPAND
No No Do Nothing
No Yes RESTART

The second line gives the case when there is an existing interface
file and there is new source code to be analyzed by the tool. In this
case, the EXPAND command is wused. Page C-2 contains a sample job

control for this case.

The third line gives a case that should not occur. If there is
neither source nor an interface file to process, then no commands should

be given.

The fourth lines gives the case where there is no new source, but

it is desired to reanalyze an existing interface file which was created

from a previous execution of the tool. Page C-3 contains a sample job

control for this case.

The FILE, INSTRUMENT, and FIRSTLINE commands are used with the
INSTRUMENT or INPUT/OUTPUT options. Table 3.2 shows the conditions
under which these commands should be used. Normally, neither the FILE
command nor the INSTRUMENT command is used. The FIRSTLINE command is

usually used.

18

The FILE command is used to change the default file number for
where the tool sends the instrumented code. If unit 9 is suitable for
the instrumented code, the FILE command need not be specified. The job
control sequence shown on page C-4 instruments a source program and

places the instrumented source one umnit 10.

The INSTRUMENT command is used to change the default file number
for where the tool collects data during execution of the instrumented
code. If unit 12 is suitable for the data collection file, the INSTRU-

MENT command need not be used. The job control control sequence shown

on page C-4 'instruments a source program to collect data on unit 20.

The FIRSTLINE ‘command is used to insert the FORTRAN compilation
Univac job control between modules. Each module on the file must have a
job control card to cause compilation and storage of the relocatable
element in a program file. In the example shown on page C-4, the ASCII
compiler, FIN, 1is invoked to store the relocatable element in the
temporary program file, TPFS$.

The OPTION command is used to select from one of many possible
processing options for the tool. Examples of the use of the STATIC
option are shown in C-1, C-2, and C-3. Examples of the use of the
INSTRUMENT and LIST options are shown in C-4. The various options are
discussed in detail in Sec. 4.

The REPORT command is used to obtain the flowgraph or picture

report under the DOCUMENT option. An example of the use of this command
is given in C-5.

19

TABLE 3.2
FILE - INSTRUMENT -~ FIRSTLINE
COMMAND CONDITIONS

Is unit 9 suitable for the Yes do not use FILE command

instrumented code output No use FILE command

by the tool?

Is unit 12 suitable for the Yes do not use INSTRUMENT command
data collected during an No use INSTRUMENT command
execution of instrumented

code?

Do Univac job control cards Yes use FIRSTLINE command

need to be inserted between No do not use FIRSTLINE command
modules?

The FOR MODULES command is wused to instrument or report on
selected modules from among a group of modules that have been read into
the tool. Page C-6 shows an example where three modules named MAIN SORT

and CALC are statically analyzed from among the modules input to the
tool.

The TESTBOUND command is used in the instrumentation of a program
when it is desired to specify a statement at which a test case to be
counted. When the TESTBOUND command is omitted, the test boundary is

taken to be the first statement in the main program. Page C-4 shows an

20

example where the TESTBOUND command was used to specify that line 10 of

the main program is defined as a test case boundary.

The REACHING SET command is used after an instrumentation run has
found that some or several paths were not executed. The REACHING SET
comnand is used together with the REACHING SET option to cause a set of
paths to be printed between the two specified paths.. A user can then
concentrate on causing these paths to be executed. Page C-7 shows the
use of the REACHING SET command to list the paths between path 3 and
path 7 in Module SORT.

3.1 INTERFACE FILE

3.1.1 FORTRAN
The FORTRAN AVFS differentiates between when source code is being
read into the tool and when the interface file is being used by itself

to produce intermodule reportse.

™ On the first run of a FORTRAN AVFS, save the interface file
that is created on unit 8. Do not use the RESTART or EXPAND

command on the first rune.

o On the second and subsequent runs of a FORTRAN AVFS, assign
the saved file to unit 1l. If there is just to be a re-
analysis of the file, use the RESTART command. If there is
new or changed source to be read in, use the EXPAND command
instead. A new interface file will be created on unit 8.
This file may be saved.

3.1.2 AED

The AED AVFS interface analysis tool will read an old interface
file from unit 8 and new source from unit 5. If there is new source,
the iInterface file will be generated on unit 1ll. The invocation of the
AED interface analysis requires no additional commands.

21

3.2 INSTRUMENT FILE

The primary function of several AVFS tools is to produce source
output on unit 9 (FORTRAN) or unit 30 (AED). This source normally goes
to a temporary file (which may be saved after the AVFS run). If unit 9,
the default assignment for the source output file is not appropriate for
a FORTRAN program (usually because the program uses that unit for its

own purposes); it may be reassigned with the command
FILE,PUNCH = <file-number>.

where <file-number> is the desired file number. (See Appendix B for

assigned file numbers).

In AED, it is never necessary to change the file number, because

the AED program will not be executing on a Univac.

3.3 FIRSTLINE
When a FORTRAN program is to be INSTRUMENTED, the user’s instru-
mented source program will be written to unit 9. The user may use the

command,

FIRSTLINE = (<run stream command>)

to specify a Univac run stream command that will be added as the first

line of every element of the source program.

A

For example, when a FORTRAN source program will be instrumented,

then compiled and executed, the user could use the command
FIRSTLINE = (@FOR<I TPFS$.+).

AVFS will insert the Univac command,
@FOR,I TPF$.<element name>

as the first 1line of each element with the appropriate element name
following TPF$. If the Univac FIN compiler is being used, the command
could be

FIRSTLINE = (@FIN,I TPF$.+).

22 :

If the source code is written in AED, the FIRSTLINE command is not

needed. Each AED element is in its own program element and is processed

separately.

3.4 PROCESSING OPTIONS
The processing functions for FORTRAN are handled by the OPTION
command. The processing functions for AED are handled by different

execute commands. The possible options are as follows:

FORTRAN AED
LIST GRC*LIST.LIST
STATIC GRC*STATIC.STATIC
DOCUMENT GRC*CROSS.CROSS
GRC*SYMBOL.SYMBOL
GRC*INVOKE. INVOKE
GRC*TREE. TREE
GRC*DEPEND.DEPEND
GRC*GLOBAL.GLOBAL
SUMMARY GRC*PROFILE.PROFILE
UNITS GRC*UNITS.UNITS -
INPUT/OUTPUT GRC*TRACE. TRACE
ASSERT GRC*ASSERT.ASSERT
INSTRUMENT GRC*INST. INST
REACHING SET GRC*REACH.REACH
VCG GRC*VCG.VCG
® LIST - Produces an enhanced listing of each module
° STATIC - Produces a static analysis of each module
o DOCUMENT ~ Produces six reports for each module; the cross

reference, symbol tables, dependence matrix, calling-
tree, invocations report, and global cross reference
reports (for AED, the reports are requested separ-

ately)

23

] SUMMARY -~ Provides an analysis of statements

° UNITS ~ Checks for consistency of units that have been
defined in a UNITS assertion

] INPUT/OUTPUT - Translates INPUT/OUTPUT assertions

o ASSERT - Translates logical assertions

] INSTRUMENT - Instruments the source code

] REACHING SET - Provides assistance in path identification

] VCG - Symbolic execution and verifictaion condition gener-
ation

In the FORTRAN tools, the command form is
OPTION{S} = <option list>

where more than one option may be specified. There must be at least one
option. Multiple options may be separated by commas on a single 80-
character line. More than one OPTION line may be submitted. Detailed
descriptions of each option with examples of the reports that the option

produces may be found in Sec. 4.

In the AED tools, the Univac command is
@XQT optiom

Separate commands may be given to obtain multiple reports in a single

job. The examples of each AED option may be found in Sec. 4.

3.5 REPORT

Selection of individual reports to be produced can be accomplished
by the REPORT command for FORTRAN programs. The separate reports for
AED are handled by different execute commands. The possible reports are

as follows:

24

REPORT FORTRAN AED

_NAME COMMAND COMMAND
COMMONS co

PROFILE PR GRC*PROFILE.PROFILE
INVOCATIONS L GRC*INVOKE. INVOKE
COMMON MATRICES CO/E

CALLING TREE B GRC*TREE. TREE
SPACE SP GRC*DEPEND. DEPEND
SYMBOLS SY GRC*SYMBOL. SYMBOL
1/0 STATEMENTS R

CROSS CR GRC*CROSS.CROSS
FLOWGRAPH PI GRC*FLOW.FLOW

In the FORTRAN tools, the command form is
REPORT = <report list>

where more than one report may be specified. Blanks within the list are
ignored. This command may appear within the command stream in any
location that is valid for the OPTION command. The REPORT command must

fit in 80 characters or separate commands can be given.

AED does not have common reports or I/0 statement reports. AED
has no 1/0 statements and only blank common. The blank common is saved

on the interface library.

Normally the OPTION command is used. The REPORT command is only
used to restrict reports. If the same report is requested via an OPTION

and a REPORT command, the report will not be duplicated.

3.6 FOR MODULES
AVFS will normally analyze all modules. In AED, each module is
individually analyzed via a separate command. In FORTRAN, a data file

25

may contain several modules which are not all to be analyzed. The FOR
MODULES command allows the selection of individual FORTRAN modules.

This command has the form
FOR MODULES = (<name 1>,<name 2>, ees)e

where <name 1> and <name 2> are FORTRAN names for modules which have
been input to AVFS. Main programs which do not have a program card are
given the name MAIN. Only one FOR MODULES command per AVFS rum is
allowed.

26

4 OPTION DESCRIPTIONS

This section contains descriptions of each option which may be
selected by the user to instruct AVFS as to which type of processing to
perform on the modules being input. An example of each type of report

generated by an option follows each description. Table 4.1 shows the

AVFS options and suggested uses for each.

4.1 LIST
The LIST option produces a source listing which shows the state-
ment line number and the automatically indented source code. All refer-

ences to statements in reports developed by AVFS are keyed to statement

line numbers and module name.

The indented listing clearly indicates the control structures and
makes the program much more readable, not only to the original pro-
grammer, but especially to someone unfamiliar with the code who is
trying to understand it. The indented source listing on the output file
is the sole report from the LIST option. Figure 4.1 illustrates a
sample listing for a FORTRAN program and for an AED program.

Some of the other options also provide listings in a different
format. Examples of those 1listings are presented in the section

describing those options.

FORTRAN Command Report
OPTION=LIST or FORTRAN Listing (Fig. 4.la)
@XQT,L GRC*AVFS.AVFS
See Appendix C-8 for complete JCL example

AED Command Report

@XQT GRC*LIST.LIST AED Listing (Fig. 4.1b)
See Appendix C-11 for ccmplete JCL example

27

TABLE 4.1

AVFS PROCESSING OPTIONS WITH SUGGESTED USES FOR EACH OPTION

Suygested Uses

Uptlons
LIST STATIC DOCUMENT SUMMARY UNITS INPUT/OUTPUT ASSERT INSTRUMENT REACHING SET V(G

Software X X X X X X X
Documentation

Maintenance X X X X X X X X X
imp lementation X X X X X X X X X
Obtain Interface X X X

Data

Trace Ranges X

ot Variables

Check Yariables X X X
Execution Test X X X X

Incomp lete Test X X X

Coveraye

Systom Test X X X X X

information

Single Module X X X X X X X
Informatlon

Code Changes X X X X X X X
Unknown Behavior X X X X X X X
Integration X X X X X

Accoptancs X X X X X X X
Dimens ionai X X

Analyslis

Symbol Ic X
Execution

Formai X X

Yeriflcation

28

STATEMENT LISTING
STMT NEST LINE SOURCE...

SUBROUTINE EXAMPL (INFQ.LENGTH)

1

SUBROUTINE EXAMPL (INFO.LENGTH)

1
2 C
3 C ILLUSTRATION OF DMATRAN SYNTAX
4 C
2 S IF C(INFO.LE.10 .AND. LENGTH.GT.O)THEN
3 1 é . CALL CALLER ¢ INFO)
4 7 ELSE
S 1 8 . LENGTH=30
é ? END IF
7 10 CASE OF (INFO+&)
8 11 CASE (14)
9 1 12 . TH-INFO
10 13 CASE (17)
11 1 14 . DO WUHILE (INFO.LT.20)
12 2 13 . . D3 UNTIL (LENGTH.LE.INFO)
13 3 16 . . . INVOKE (COMPUTE LENGTH)
14 3 17 . . . IF (LENGTH.GE.30) THEN
h3 4 i8 f . . . INVOKE (PRINT-RESULTS)
146 3 19 . . . ENDIF
17 2 20 . . END UNTIL
18 2 21 . . INFO=INFQ+L
19 1 2 . END UHILE
20 23 CASE ELSE
21 1 24 . DO WHILE (LENGTH.GT.0)
22 2 23 . . INVOKE (COMPUTE LENGTH)
23 1 26 . END UHILE
24 27 END CASE
25 28 BLOCK (PRINT-RESWLTS)
246 1 29 . WRITE (541)INFO.LENGTH
27 1 30 1 FORMAT (10XsI3,20X,13)
28 31 END BLOCK
2y 32 BLOCK (COMPUTE LENGTH)
30 1 3 . LENGTH = LENGTH -10
31 34 END BLOCX
32 35 RETURN
33 34 END

This report contains the indented module listing with statement numbers,
source line numbers, and nesting levels.

Figure 4,.la. FORIRAN Listing

29

14 DEFINE PROCEDURE B.LONG.COM TOBE

15

16 COMMENT ITERATION RATE = 10 / SEC ;

17 BEGIN

18 NORM.ACC = VOTER(NORM.ACC.PTR) ... VOTE NORMAL ACCELERATION ;
19 NORM.ACC.LP = DLIMIT(NORM.ACC.LP+(NORM.ACC-NORM.ACC.LP)*.5D-2,
20 .442550D-1) «so NORM.ACC.LP IS SUBTRACTED FROM

21 NORM.ACC BY OTHER PROCEDURES FOR A 20
22 SEC WASHOUT ON NORM.ACC ;

23 TAS = TAS.MA l +++. BUFFER TAS FOR GAIN PROGRAMERS ;
24 KVTAS = ««+ GAIN PROGRAMER //

25 IF TAS < .146484 «ss 150 KTS //

26 THEN .5

27 ELSE IF TAS < .341797 ees 350 KTS //

28 THEN .75-TAS/.585936

29 ELSE .166667;

This report contains the indented module listing with statement
line numbers.

Figure 4.1b. AED Listing

30

4.2 STATIC

The static analysis available in AVFS is designed to uncover
inconsistencies in the use of variables and inconsistencies in the
structure of a program. When an inconsistency is found, it indicates

the existence of an error or the possibility of an error.

Static analysis 1s divided into single module analysis, units
analysis, and interface analysis. Assertions are not required for

static analysis, but a more comprehensive analysis is possible when
assertions have been added to the user’s source program. A complete

static analysis checks for the following types of errors:

Set and Use Checking

Variables used before being set to a value or set and not

used.

Loop Checking

Uninitialized loop variables.

Type Checking

Possible misuse of variables in assignments.

Graph Checking

Unreachable statements.

Interface Checking

Checking of actual invocations against formal declaratioms;

checking for consistency in number of parameters and type.

Input/Output Checking

Check that asserted use of a variable is the same as its

actual value

31

UNITS

Units assertions can be inserted into a program so that consis-

tency checks can be made on the use of units. Each variable for which

units are to be specified has its units declared in the form:

COMMENT UNITS <variable> = <units expression>;

For example, to state that the variable named SPEED has the units of
FEET/SEC, write

COMMENT UNITS SPEED = FEET/SEC;
To state that the variable named DIST has the units of FEET, write
COMMENT DIST = FEET;

The units analyzer will check that operations on variables which have
specified units is done in a consistent manner. That is, if an assign-

ment was made such as
SPEED = DIST;

the units analyzer would report om a units error stating that
FEET = FEET/SEC;

was attempted.

Units are combined symbolically across multiplication and division
to form new units. Checks are made across addition, subtraction and

assignment operations to ensure units comsistency.

After the analysis is complete, the units for each variable is

listed in the units table.

The example in Fig. 4.4 shows units specified for speed, distance,
time, work and force. The first assigmment to speed specifies that it
will have the units of SAMPLE. Since SAMPLE does not have its units
specified, no checking is done. The second assigmment statement shows

what is printed when there is an error detected in the units. The units

32

of DIST#TIME are FEET*SEC which is printed on the right of the equals
sign. The units of SPEED are FEET/SEC which is printed on the left hand
side of the equals sign. Since the units on the left do not match the
units on the right, an error is declared. The other two assigmments

have the correct units.

Input/OQutput
Input/Output assertions are used in a static analysis to check for
consistency between the intended use of a variable and the actual use of

a variable.

Variables which provide input data to a module should be asserted
with an input assertionm.

An input assertion has the form
COMMENT INPUT <type> <variable>;
For example, the assertion
COMMENT INPUT REAL HEIGHT;

states that the vraiable named HEIGHT is an input to the module.

Variables which provide output data from a module should be

asserted with an output assertion. An output assertion has the form

COMMENT OUTPUT <type> <variable>.

Variables which are used both as input and output are asserted in

both assertions.

33

FORTRAN Command Report
OPTION=STATIC,LIST. Static Analysis (Fig. 4.2)

or @XQT,LS GRC*AVFS.AVES
See Appendix C-6 for complete JCL example

AED Command Report
@XQT GRC*SYMBOL.SYMBOL Static Analysis (Fig. 4.3)

See Appendix C-12 for complete JCL example

AED Command Report
@XQT GRC*UNITS.UNITS Units Analysis (Fig. 4.4)

See Appendix C-13 for complete JCL example

AED Command Report
@XQT GRC*INTER.INTER Interface Analysis (Fig. 4.5)

See Appendix C-14 for complete JCL example

34

STATIC ANALYSIS SUBROUTINE CIRCLE (AREA)

STHT MEST LINE SOURCE... ++ «SOURCE TAB

1 1 SUBROUTINE CIRCLE (AREA)

2 2 INTEGER AREA

3 3 DATA PI / 3.1416 /

4 S INFUT (/R/ RADIUS)

S é RADIUS = DIAMTR / 2
- SET/USE ERROR -
=~ VARIABLE DIAMTR USED BUT NEVER SET REFER TO STATEMENT(S)-
- 3

& ? AREA = PI £ RADIUSX®2
- MODE UARNING -
= LEFT HAND SIDE HAS MODE INTEGCER RIGHT HAND SIDE HAS MODE REAL -

7 8 IF (AREA .BT. 50) THEN

8 b3 9 f CALL PRINT (AREA)
- HODE UWARNING -
=PARAMETER 1 OF PRINT ACTUAL PARAMETER HAS MODE INTEGER -
- FORMAL PARAMETER HAS MODE REAL -
- CALL ERROR -
- PRINT CALLED UITH 1 ACTUALLY HAS 2 ARGUMENTS -

? 10 END IF

0 1 OUTPUT (/R/ AREA)

11 13 RETURN

14 CALL STACK (RADIUS, AREA)

- GRAPH UARNING -
- STATEMENT 12 IS UNREACHABLE OR IS IN AN INFINITE LOOP -

13 15 END

STATIC ANALYSIS SUMMARY ERRORS UARNINGS

GRAPH CHECKING
CALL CHECKING
MODE CHECKING
SET/USE CHECKING
CALL CHECKXING UAS NOT FERFORMED FOR THE FOLLOWING UNKNOUWN EXTERNALS ...
STACK

OO
ONO»r

The FORTRAN Static Analysis Summary contains the warning and error
messages interspersed in the code. Unknown subprograms are listed at
the bottom of the report. A tabulation of errors and warnings is listed
at the bottom. The STMT column lists the line numbers for each input
source statement. The NEST column lists the nesting level for each
statement in a control structure. The LINE column lists the 1line
numbers for each generated source statement. Since input and output
assertions require two generated lines, the LINE column differs from the
STMT column.

Figure 4.2 Static Analysis — FORTRAN

35

FIRST TOTAL LAST ASSERTED ACTUAL
NAME______ CLASS MoDE STHT. USES STHT. UsE usE__
A PARAMETER REAL 1 3 6 INPUT
N PARAMETER INTEGER 1 4 9 BOTH
ANS PARAMETER - REAL 1 3 9 OUTPUT
1 LOCAL INTEGER 2 5 7
SET/USE ERROR
VARIABLE I USED BEFORE BEING
ASSIGNED A VALUE
0 LOCAL INTEGER 2 2 4
SUM LOCAL REAL 3 4 9

VARIABLE SUM

SET/USE ERROR
USED BEFQRE BEING
ASSIGNED A VALUE

Set use checking and input/output analysis is reported after the
listing is presented for AED.

Figure 4.3.

Static Analysis - AED

36

59

60 COMMENT UNITS SPEED = FEET/SEC;

61 COMMENT UNITS DIST = FEET;

62 COMMENT UNITS TIME = SEC;

63 COMMENT UNITS WORK = POUND*FEET;

64 COMMENT UNITS FORCE = POUND;

65

66 SPEED = SAMPLE;

67 SPEED = DIST * TIME;
kikkkkunits errorkikik
FEET/SEC=FEET*SEC

68 DIST = SPEED * TIME;

69 WORK = FORCE * DIST;

70

7

UNITS TABLE

SPEED FEET/SEC
DIST FEET
TIME SEC
WORK POUND*FEET
FORCE POUND

.

Inconsistent units are reported during units analysis.

Figure 4.4.

Units Analysis -~ AED

37

INTERFACE REPORT

MODULE TYPE OF CHANGE
A.FORE.EXEC NEW MODULE
A.BAK.EXEC ~ UPDATED MODULE

*%%% PARAMETER LENGTH CHANGE

A.YAW.END UPDATED MODULE
%%% COMMON TYPE CHANGE

INTERFACE ANALYSIS

MODULE TYPE OF ERROR

AJMAKE.IT PARAMETER LENGTHS INCONSISTENT
ACTUAL - 2 PARAMETERS
A.BAK.EXEC (C,D)
FORMAL - 3 PARAMETERS
A.BAK.EXEC (A,B,C)

1 INTERFACE ERRORS

Checking between modules on a library is performed to produce an
interface analysis along with changes to the interface.

Figure 4.5. Interface Analysis = AED

38

4.3 DOCUMENT
The DOCUMENT option generates a set of reports for individual

modules and multiple modules. Figures 4.6 - 4.16 contain examples and a

description of each report.

The set of reports are useful for maintenance and testing.
Together with the execution coverage reports, they help to identify
which modules require retesting when changes are made to the source
code. The cross reference reports are particularly useful in finding
where variables are set in order to alter test cases, and also where a
variable is being used that 1is affected by a change in a module. The
flowgraph or picture report is useful for breaking up large FORTRAN

programs.

AED programs have no I/0 statements and only one common block.
There 1s no AED 1I/0 Statements Report or commons matrices. The AED
commons and externals cross references are combined in a single global

cross reference.

FORTRAN AED
Report Command Command
Symbols OPTION=DOCUMENT GRC*SYMBOL.SYMBOL
(Fig. 4.6a) (Fig. 4.6b)
Appendix C-12
Cross Reference OPTION=DOCUMENT GRC*CROSS.CROSS
(Fig. 4.7a) (Fig. 4.7b)
Appendix C-15
Invocation Space OPTION=DOCUMENT GRC*INVOKE. INVOKE
(Fig. 4.8a) (Fig. 4.8Db)
Appendix C-16
Invocation Summary OPTION=DOCUMENT GRC*DEPEND.DEPEND
(Fig. 4.9a) (Fig. 4.9b)
Appendix C~-17
Invocation Bands OPTION=DOCUMENT GRC*TREE. TREE
(Fig. 4.10a) (Fig. 4.10Db)

Appendix C-18

39

Common Matrices

1/0 Statements

Commons Cross
Reference

Externals Cross
Reference

Flowgraph

OPTION=DOCUMENT
(Fig. 4.11)

OPTION=DOCUMENT
(Fig. 4.12)

OPTION=DOCUMENT
(Fig. 4.13)

OPTION=DOCUMENT
(Fig. 4.14a)

OPTION=DOCUMENT
REPORT=PICTURE
(Fig. 4.15)

The FORTRAN command

maybe replaced with the UNIVAC command

OPTION=DOCUMENT

GRC*GLOBAL.GLOBAL
(Fig. 4.14Db)
Appendix C-19

GRC*GLOBAL.GLOBAL
(Fig. 4.14D)
Appendix C-19
GRC.FLOW.FLOW

/
(Fig. 4.16)

@XQT,D GRC*AVFS.AVFS.

The complete JCL for the document command is shown on page C-9.

command will produce the nine reports shown in Figs. 4.6-4.14.

flowgraph report (Fig. 4.15) will also be generated if the command

REPORT=PICTURE

- is added after the OPTION command or the XQT command.

This

The corresponding AED commands are 1listed beside the FORTRAN

comnands.

which corresponds to a FORTRAN report.

The exceptions are:

In most cases a single AED command produces a single report

the command

which causes AFD invocation analysis to produce two reports (Figs. 4.8b,

4.9b) and the command which presents a multiple module cross reference

to incorporate two reports (Fig. 4.14b)

40

SYMBOLS SUBROUTINE SDBASA (MODULE, ISTMT. IRETRN)

NAME SCOPE TYPE MODE USE OTHER INFORMATION...
KXPAR KDELMS VARIABLE INTEGER USED
KXFARM RPTCOM VARIAELE INTEGER USED
KXTFLS RPTCOM VARTABLE INTEGER USED
LIST MTHSTO ARRAY INTEGER SET/USED
MARGS MOB VARIABRLE IMIEGER SET
MBLOKS MDR VARIAELE INTEGER EQuIv
MERCHN HTHTYP VARIABLE INTEGER USED
MCALL MTHTYP VARIABLE INTEGER USED
MCI0 HTHTYP VARIABLE INTEGER USED
MCMMNS MDB VARIABLE INTEGER SET/USED
MDUM26 (LOCAL?> VARIABLE INTEGER EQUIV
MENTR MTHTYP UARIARLE INTEGER USED
MENTRS MDB VARIABLE INTEGER SET/USED
MENTR2 MTHTYP VARIABLE INTEGER USED
MEGLS (LOCAL) VARIAEBLE INTEGER SET/USED
MEQUVS MOR VARLABLE INTEGER SET/USED
MEXEC MTHTYP VARIABLE INTEGER USED
MEXIT MTHTYP VARIABLE INTEGER USED
MGOTO MTHTYP VARIABLE INTEGER USED
MIF MTHTYP VARIAELE INTEGER USED
MJUNCT MTHTYP VARIABLE INTEGER USED
MMODE MDB VARIAEKLE INTEGER SET/USED
MNAME MDE VARIAELE INTEGER EQUIV
MNONX MTHTYP VARIABLE INTEGER USED
MODULE PARAMETER VARIABLE INTEGER
MFRSET MTHTYP VARIABLE INTEGER USED
MREAD MTHTYP VARIAELE INTEGER USED
MREADS MDB VARIABLE INTEGER SET/USED
MTYPE MDB VARIABLE INTEGER SET
MURITS HDB VARIASBLE INTEGER SET/USED
NONEXS (LOCAL) ARRAY INTEGER SET/USED
NUMEXS (LOCAL} VARIABLE INTEGER SET/USED
NUMNON (LOCAL) VARIABLE INTEGER SET/USED

THE FOLLOWING LOCAL VARIABLES WERE LEFINED BUT NOT USED...
TOKADD

THE FCLLOWING NONLOCAL VARIARLES ARE SET...
IRETRN MTYFE MMODE MCMMNS HENTRS MARGS MEQUVS MREADS MURITS [STYFE ISCODE
ISINFO LIST

This report is generated for each module analyzed during an AVFS
run. The symbols are ordered alphabetically, and symbols which are only
defined and never referenced are not included. Symbols which have the
scope (LOCAL) are known only within the module being reported on.
Symbols with the scope parameter are formal parameters for the module.
All other scope classifications indicate the name of the common block
the common variables are defined in. Each symbol is either of type
variable or array, and of mode integer, real, logical, character,
complex, or double precision. The use column provides a summary of how
the symbol is used in the module. Local symbols which were defined but
not referenced and all mnon-local variables (parameters and common
variables) which are set within the module are noted at the end of the
report.

Figure 4.6a. FORTRAN Symbols Report

41

SET/USE ANALYSIS AND PARAMETER REPORT MODULE VOTER
1ST LAST TOTL ASSERTED ACTUAL

NAME SCOPE CLASS STMT STMT USES USE USE
K3 LOCAL VARIABLE 74 74 1
K4 LOCAL VARIABLE 74 74 1
K5 LOCAL VARIABLE 74 74 1
K6 LOCAL VARIABLE 74 74 1
K7 LOCAL VARIABLE 74 74 1
K8 LOCAL VARIABLE 7% 74 1
K9 LOCAL VARIABLE 74 74 1
LIMIT EXTERNAL PROCEDURE 20 23 4
LX1 LOCAL VARIABLE 17 18 2
LX2 LOCAL VARIABLE 17 18 2
LX3 LOCAL VARIABLE 17 17 1
LX4 LOCAL VARIABLE 17 17 1
MONDAY EXTERNAL PROCEDURE 104 104 1
MPS1 - - 47 65 4
MPS2 - - 51 68 4
MPS3 - - 55 69 5
NEWPROC EXTERNAL PROCEDURE 85 117 3
NEWPROC2 - - 119 119 1

- SET/USE ERROR

- VARIABLE NEWPROC2 USED BEFORE BEING ASSIGNED A VALUE
NOCALLFROM EXTERNAL PROCEDURE 88 94 2
OWN.PTR - - 15 62 11
PAR] PARAMETER VARIABLE 5 26 4 INPUT INPUT
PAR2 PARAMETER VARIABLE 5 28 5 OUTPUT OUTPUT
PAR3 PARAMETER VARIABLE 5 28 3 NONE OUTPUT
PROC1 EXTERNAL PROCEDURE 10 46 2
PROC2 EXTERNAL PROCEDURE 13 46 2
PROCCALLO - - 37 37 1
PROCCALLL EXTERNAL PROCEDURE 39 115 10

- PARAMETER ERROR

- PROCEDURE PROCCALLI1 MULTIPLE USE OF SAME ACTUAL

- PARAMETER IN LINE 39

- PARAMETER ERROR

- PROCEDURE PROCCALLI CONSTANT USED AS ACTUAL

- PARAMETER IN LINE 40

- PARAMETER ERROR

~PROCEDURE PROCCALLI1 FUNCTION/PROCEDURE USED AS ACTUAL

PARAMETER IN LINE 41

Figure 4.6b.

42

AED Symbols Report

Figure 4.6(b) continued

This report is generated for each module analyzed by AVFS. The
symbols are ordered alphabetically. Symbols which have the scope LOCAL
are known only within the module being reported on. Other symbols with
the EXTERNAL classification or COMMON classification are known outside
the module. Each symbol is classified as to its class: variable,
array, procedure, and to its type. The use column provides a summary of
how the symbol is used in the module.

43

CROSS REFERENCE SUBRQUTINE SDBASA (MODULE, ISTMT, IRETRN)

NAME SCOFPE MODULE USED/SET/EQUIVALENCED (¢ % INDICATES SET)

ADDEFT EXTERNAL SDBASA 65 84 250

CALLED (LOCAL) SOBASA 24% 274 275k

ERROR EXTERNAL SLEASA 151

I (LOCAL) SDBASA 48% 49 S0 Six 51 75% 76 77 789% 78 120% 121

145 146 161% 162 171x 172 172 173% 173 175 177 19:x
227 228 342% 343 343 344x% 344 3486 353k 354 3S4 3ISS

IAGT ANST SDEASA 149

IBAFAR EXTERNAL SIBASA 115 170 210

ICGT ANST SOBASA 147

ICOMAS (LOCAL) SI'EASA 119% 123% 123 127

IDUM (LOCAL) SURASA 37 34 139 169

IDX (LOCAL) SIIBASA 32x 33 33 33 34x 34 36 At 41 43 49 56
78 80x 80 82x 82 B84

IEND ANSI SDRASA 307

IENT ANSI SDERASA 246 316

IEXECS (LOCAL) SDEBASA 207% 308% 3J09% J10%x 311k 312% 3I13% 314% 315k 314% I17% 318x
327x 328% 329% 330% 331x 332x 333x 334% 335k 336% 337x 354

IFT ANSI SDEASA 113 308

IF2 ANST SDBASA 128

IF3 ANSI SDBASA 131

IGT ANSI SDEBASA 136 311

IGTTOK EXTERNAL SDBASA 137

IMDB (LOCAL) SOEASA 10

IPAR (LOCAL) SDEBASA 115% 116 117 120 170% 172 175 180x 182 182 184

IREADC FTNEXT SIBASA 235

IRET ANST SDEASA 188 315

IRETRN FARAMETE SDEASA 25% 2869%

ISCLAS EXTERNAL SLEASA 138

1SCODE SOUB SUBASA 29% 47% 89% 97% 112% 114X 118% 140% 155x 159% 167X 176X

ISDB (LOCAL) SDEASA 14E

ISEXEC (LOCAL) SIEBAGA 111 358% 3J&60x

ISINFO SDB SDEASA 31x 129% 132% 139% 1469% 199% 204x 210% 212 215 228B% 249%

ISLAEL SDB SOBASA 16E

ISLONG SiB SDEASA 33 36 37 41 59 70 73 115 118 121 139 142
192 206x% 206 210 224 227

ISNONX (LOCAL) SDRASA 88 347% 349%

ISPTR SR SDBASA 117% 145k 177% 184% 183 216x% 234 240

ISTMT FARAMETE SDEASA 65 84 103 230

ISTOF ANSI SIIBASA 188 190 318

ISTYPE SOB SDBASA 27 27 2 42% S92 64 74% 90 93 96 99 100%

166 188 188 1920 198 203 208 208 208 208 208 208

252 205 255 2G5 343 304

ITEM (LOCAL) SDEASA 137% 138
IVMODE EXTERNAL SDBASA S4
IURTEC FTNEXT SUEASA 241
IXAENL FTNEXT SDBASA 302
IXAaSS ANSI SDBASA 202 317

This report provides a symbol cross reference for each module
analyzed during an AVFS run. All local symbols, external symbols, and
common symbols referenced in the module are included. Symbol names are
ordered alphabetically in the first column. The scope column indicates
symbols known only within this module (LOCAL), external symbols, and
symbols which are defined in common blocks included in the module (all
others). Statements (AVFS statement numbers) which use a symbol are
followed by a blank, statements which set a symbol are followed by a
'#!' and equivalence statements containing the symbol are followed by an
'E'.

Figure 4.7a. FORTRAN Cross Reference Report

44

CROSS REFERENCE MODULE VOTER

NAME SCOPE CLASS TYPE USED OR REFERENCE
D /SET (S) /DEFINED (D)

K6 LOCAL VARIABLE INTEGER 74D
K7 LOCAL VARIABLE INTEGER 74D
K8 LOCAL VARIABLE INTEGER 74D
K9 LOCAL VARIABLE INTEGER 74D
LIMIT EXTERNAL PROCEDURE REAL 20 21 22
23
LX1 LOCAL VARIABLE LABEL 17D 18D
LX2 LOCAL VARIABLE LABEL 17D 18D
LX3 LOCAL VARIABLE LABEL 17D
LX4 LOCAL VARIABLE LABEL 17D
MONDAY EXTERNAL PROCEDURE - 104D
MPS1 - - - 47s 63 64
MPS2 - - - S5ls 63 67
MPS3 - - - 555 64 66
NEWPROC EXTERNAL PROCEDURE - 85 97 117D
NEWPROC2 - - - 119
NOCALLFROM EXTERNAL PROCEDURE - 88D 94
OWN.PTR - - - 158 20 20
35 62
PARL PARAMETER VARIABLE INTEGER 5 6D 24
26
PAR2 PARAMETER VARIABLE INTEGER 5 6D 25
27s 28
PAR3 PARAMETER VARIABLE INTEGER 5 6D 28S
PROC1 EXTERNAL PROCEDURE - 10D 46
PROC2 EXTERNAL PROCEDURE INTEGER 13D 46
PROCCALLO - - - 37
PROCCALLL EXTERNAL PROCEDURE - 39 40 41
115
PROCCALL2 EXTERNAL PROCEDURE - 46 110 113D
PROCCALL3 - - - 45
PIR PARAMETER VARIABLE INPUT.POINTE S 6D 15
Rl EXTERNAL VARIABLE INTEGER 11D 12
ROBERT LOCAL SWITCH LABEL 18D
ROBERT1 EXTERNAL PROCEDURE - 820 98
ROBERT2 EXTERNAL PROCEDURE - 100D
ROBERIG - - - 38
SIGNAL - - - 20 21 22
SIGNAL.MA - - - 20s 48 49’
SIGNAL.MB - - - 21s 48 50
SIGNAL.OA - - - 22s 52 54
SIGNAL.OB - - - 238 56 58
SYNL LOCAL SYNONYM - 16D
SYNIA LOCAL SYNONYM - 16D 36
SYNIB LOCAL SYNONYM - 16D

Figure 4,7b. AED Cross Reference

45

Figure 4.7(b) continued

This report provides a symbol cross reference for each module
analyzed by AVFS. All local symbols, external symbols, common symbols,
and parameters referenced in the module are included. Symbol names are
ordered alphabetically in the first column. The scope column indicates
symbols known only in this module (LOCAL), external symbols (EXTERNAL),
and common symbols (COMMON), and parameters (PARAMETER). Statements are
identified by line number as to whether the symbol was defined, set, or
used in a particular line.

46

INVOCATION SPACE SUBROUTINE CRDOUT(CARD.KEY)

INVOCATIONS FROM WITHIN THIS MODULE

MODULE A1IO

STHT = 117 CALL A1I0 ¢(2 , IOUT , LINEX » LLINEX)
STMT = 173 CALL A1I0 (2 « ICUT o HEADX , 120)
STMT = 174 CALL A110 ¢(2 » I0UT , SKIP , 10)
MODULE BUFOUT

STMT = 132 CALL. BUFQUT

STHT = 148 CALL BUFOUT

STMT = 153 CALL BUFQUT

MODULE CVD

STHMT = S0 CALL CVUD { NCARD 4 NCARDS)

STMT = 67 CALL CVUD (NEST , NESTS)

STHMT = 172 CALL CVD (NPAGE , HEADX (111))
MODULE IABS

STMT = 48 IABS (INDENT)

MODULE ICMTST

STHT = 57 ICMTST (CARD ¢ 2))

STMT = 88 ICMTST ¢ CARD ¢ I))

STMT = 121 ICMTST ¢ CARD ¢ 2))

INVOCATIONS TO THIS MODULE FROM WITHIN LIBRARY

MODULE CMTOPT

STMT = 112 CALL CRDOUT ¢ CARD . ICOM)

MODULE IFTRA

STMT = &9 CALL CRDOUT ¢ CARD « 4)

STMT = 80 CALL CRDOUT (CARD , 4)

STMT = 88 CALL CRUOUT ¢ CARD + 4)

STHMT = 97 CALL CRDOUT ¢ CARD 4 1)

STMT = 108 CALL CRDOUT ¢ CARD » 1)

STMT = 176 CALL CRIOUT ¢ CARD 4, 1)

STHMT = 181 CALL CRDOUT ¢ O » = 101)

STMT = 188 CALL CRDOUT (CARD » 1)

STMT = 233 CALL CRDOUT ¢ CARD « 1)

STMT = 238 CALL CRIOUT ¢ CARD 4 0)

STMT = 248 CALL CRDOQUT ¢ CARD + 0)

This module report shows all invocations, along with the AVFS
statement numbers, to and from the specified module. It is useful in
examining actual parameter usage. The text printed is reformatted and
may contain more or fewer blanks than the original text line. A summary
of this report is provided by the externals cross reference report.
This report is produced for modules analyzed during an AVFS run.

Figure 4.8a. FORTRAN Invocation Space Report

47

INVOCATIONS TO THIS MODULE

FROCEDURE NEWPROC

smr 97 XPROC
s 85 ROBERT!
PROCEDURE PROCCALL2
STMT 110 PROCCALL!
STMT 46 VOTER
PROCEDURE PROCCALLI
ST 115 FROCCALL2
sS™MT 111 PROCCALL1
smTr 106 MONDAY .
ST W VOTER
s 43 VOTER
INVOCATIONS REPORT MODULE VOTER

PAGE 1

INVOCATIONS FROM WITHIN TEIS MODULE

PROCEDURE NEWPROC

SIMT 119 NEWPROC2;
PROCEDURE PROCCALL2

SIMT 115 PROCCALLL;
PROCEDURE PROCCALLL

SIMT 111 PROCCALLIL;

STMT 110 PROCCALL2;
PROCEDURE MONDAY

STMT 106 PROCCALL1;

FROCEDURE ROBERT2

=CONTAINS NO PROCEDURE CALLS

This module report shows all invocations, along with the AVFS

statement numbers,

to and from the specified module. It is useful in

examining actual parameter usage.

Figure 4.8b. AED Invocation Space Report

48

INVOCATION SUMMARY
ENTRY LISTS OF CALLS

FUTLST WHICH IS DEFINED IN GETHLK
IS CALLED RY - -NONE-
AND CALLS - GETFRG MARFRG XMIT

FUTURD UWHICH IS DEFINED IN GETBLK
IS CALLED BY - PUTBEF FUTROT
AND CALLS - GETFRG MAKFRG XMIT

XMIT WHICH IS UNDEFINED
IS CALLED BY - GETBLK NEXT FREV PUTAT PUTBEF PUTEOT

THE FOLLOWING ENTRIES ARE NOT CALLED
GETBLK GETLST GETWRD ISRTAB NEXT PREV PUTAT

This report shows the dependencies of the modules on the library
by listing all modules which call an entry point and all calls from that
entry point. If an entry is defined as an entry point within a module,
the name of the module is indicated. This report includes all modules
and entrys on the restart file. An updated version of the report may be
obtained by reanalyzing all changed modules and using the EXPAND option.
The actual statements where invocations to a given entry point occur can
be found in the externals cross reference report.

Figure 4.9a. FORTRAN Invocation Summary Report

49

MODULE VOTER

MODULE DEPENDENCE REPORT
PAGE 1
PROCEDURE DEPENDENCY
NEWPROC IS INVOKED BY ROBERT1 XPROC
AND INVOKES NEWPROC2
PROCCALL2 IS INVOKED BY PROCCALL1 VOTER
AND INVOKES PROCCALLIL
PROCCALLIL IS INVOKED BY MONDAY PROCCALLL
PROCCALL2 VOTER
AND INVOKES PROCCALL1L PROCCALL2
MONDAY IS INVOKED BY ~-NONE
AND INVOKES PROCCALLI
ROBERT2 IS INVOKED BY -NONE -
AND INVOKES =-NONE
XPROC IS INVOKED BY ROBERTI
AND INVOKES NEWPROC NOCALLFROM
ROBERT1 XPROCL
XPROC2
NOCALLFROM IS INVOKED BY XPROC
AND INVOKES -NONE
ROBERTL IS INVOKED BY XPROC
AND INVOKES NEWPROC XPROC
VOTER IS INVOKED BY -NONE
AND INVOKES PROCCALLO PROCCALL1
PROCCALL2 PROCCALL3
ROBERTG

This report shows the dependencies of the modules on the interface
library. It lists all modules which invoke a module and all invocations
in a module. The actual statements where invocations to a given module

occur can be found in the invocation space report or the global cross
reference report.

Figure 4.9b. AED Invocation Summary Report

50

INVOCATION BANDS n SUBROUTINE BLDSDB (MODULE. ISTMT, IACT, IASERT)
TO LEVEL 2

LEVEL -3 -4 -3 -2 -1 [] 1 2 3 Py
BLDSDB
PASTWO ISASGN
SDBASA
ADDEPT
ERROR
IBAFAR
IGTTOK
ISCLAS
IVMODE
JGET
NMBARG
RSTMPL
XMIT
SDRAST
SDBIFT
SDBRUN
SDBSTR ,
TOKACD

This report shows the selected module within the invocation
hierarchy. At the center is the specified module. Each successive band
of modules from the center to the left shows the calling modules; each
successive band to the right shows the called entry points. The left
(calling) modules reside on the library; the right (called) modules can
include modules external to the AVFS library. A summary of this report
is provided by the invocation summary report. More detailed information
about modules and statement numbers containing invocations can be found
in the externals cross reference. This report is produced for modules
analyzed during an AVFS run. The default level of two may be changed by
using the command: REPORT = B/n where n may be any integer from 1 to
5.

Figure 4.10a. FORTRAN Invocations Band

31

CALLING TREE MODULE VOTER

PAGE 1
LEVEL -9 -8 -7 -6 =5 =4 -3 =2 -1 0 +1 42
NEWPROC
ROBERT! NEWPRO
(c2)
XPROC
ROBERT1
XPROC
ROBERT1
XPROC
ROBERT1
XPROC
ROBERT1

YPRNC

This report shows the selected module in a calling tree. At the
center is the specified module. The left hand modules are the calling
modules. The right hand modules are the called modules. A summary of
this report is found in the invocation summary report. The statement
numbers containing invocations can be found in the global cross refer-
ence.

Figure 4.10b. AED Invocations Band

52

COMMON MATRICES

LEGEMD (C=FIRST USED IN A CALL,E=EQUIVALENCED,S=SET,U=USEDL,X=SET AND USED)

%X X ¥ X% X X
X X MODULE * NP P F P.G I X X ¥ MODULE X B P F S %
X X X ERUUUESKX X X XLATDX
b S 4 RXETTT.TRX b ¢ * XDSRBE®
b 3 X X TVABBREBTX X X XS TSAKX
X p X TEOLAKX X x XDWTS X
x b J. FTKBX X X * RORAKX
* X X . *x X *x % X
COMMON x SYMBOL X % . X COMMON X SYMBOL X X X
X *Xk . X X 4 X
AISTO % FLCXXX XxUUUUVUUUUX SDE ¥ ISCODE % X X U S %
X FNUXXX XxUUUUUUUKX % ISCONT x U X X
X FRGEXX ¥ UV UUUUUURX *x ISINOT % S X
% FSZXXX X AU Cx % ISINFO ¥S8 Xx
*® ICHXXX X § S S.S X X ISLARL X EE E E %X
¥ IXXHKXX % X X X X K. X X % * ISLONG * X X X %
X LNGXXX xUUULULUUUUX ¥ ISFTR % XS Xk
¥ MAXXXX X XX X ISTYFE % S X U X %

The common matrices report lists symbols which are used by at
least one of the modules on the restart file. The symbol usage is
explained in the legend at the top of the report; a blank space indi-
cates that the symbol is not used in any way in that particular module.
The symbols within each common are listed alphabetically in this report.
Only modules which use at least one variable of a common block will
occur in the matrix for that common. This report includes all commons
and modules on the restart file. An updated version of this report may
be produced by reanalyzing all changed modules and using the EXPAND
option. When all modules in a software system have been entered onto a
RESTART file, this report can be used to check for global set/use
inconsistencies. A row of one or more U's indicates that a common
variable is used but not set. A row of one or more S's indicates a
common variable which is set but not used. A common variable which is
not included in the matrix is never referenced in an executable state-
ment. The statement numbers where common variables are referenced can
be found in the common variable cross reference report.

Figure 4.11. FORTRAN Commons Matrices

53

THE FOLLOUING MODULES CONTAIN 1/0 STATEMENTS

A110
IFTRAX

1/0 STATEMENTS AND ASSOCIATED FORMATS

— A1llI0 -_—
STMT NEST LINE SOURCE... «+ +SOURCE TAB

S 16 READ(UNIT, 701 AII0 17

3 17 1) (TEXT(D) . I=1.LEN) A1I0 18

18 C END-FILE TEST A1I0 19

12 29 WRITE(UNIT.P01) (TEXTC(L),I=1.LEN) All0 30

30 C A1I0 31

23 48 901 FORMAT(132A1) ALIO0 49

STHT NEST LINE SOURCE... ++ +SOURCE TAB
17 23 READ (INs 900) KNDENT, KCONMVe. KOCOM, KFORIN, KIN, XKOUT, KOUTC IFTRAX24
17 26 z KENCRD, KNLINE. KSAVE IFTRAX27
18 27 900 FORMAT (12,311,413) IFTRAX20
44 St WRITE(IOUT.P01) NCARD. NERR IFTRAXST2
43 s2 901 FORMAT (/ 25H STRUCTRAN-1 STATISTICS IFTRAXSI
45 =3 1 /7 1X,16.20H CARDS READ IFTRAXS4
45 54 2 /7 1%X+14,20H ERROR(S) FOUND IFTRAXSS
43 S x) IFTRAXSS

This report provides a list of all the program modules in which
any type of READ or WRITE statement appears. The source statements are
reproduced along with the defining FORMAT. This report may be used to
locate all the points where variables are being input or output from the
system. This report is produced only for source text which is analyzed
during an AVFS run.

Figure 4.12. FORTRAN I/0 Statements

54

CROSS REFERENCE

NAME SCOPE MODULE USED/SET/EQUIVALENCED (¢ x INDICATES SET)
AIDBG DBGCOM ISRTAB 82
CORE GETDLK 26€
ISRTAB 25E
NEXT 18E
FREV 1B8E
PUTAT 18€
PUTEEF 18E
PUTEQT 188
FLCXXX AISTO GETBLK 146 190 231 266
AISTO ISRTAB &7
AISTO NEXT 39
AISTO PREV 39
AISTO PUTAT 33
AISTO PUTBEF 43
AISTO PUTEOT 43
FNUXXX AISTO GETBLK 142 187 227 2461
AISTO ISKTAB 62
AISTO MEXT 36
AISTO PREV 36
AISTO PUTAT 30
AISTO PUTBCF 40
AISTO FUTEBOT 490
FRGDIR FOOLCH GETELK 149% 193k 240x% 2468%
POOLCM ISRTAB 79%
FPOOLCM 43%
POOLCM PREV 43x%
POOLCM PUTAT I8x
POOLCM SUTELEF SOx
POCLCH FUTBOT Sox
FRGXXX AISTO GETBLK 148 192 240 248
AISTO ISRTAB 79
AISTO NEXT a3
AISTO FREV 43
AISTO FUTAT 338
AISTO FUTBEF =0
AISTO FUTEQT S0
FSZXXX AISTO GETELK 140 141 183 186 2146 219 220 248 249
AISTO ISRTAR 66
ICHXXX AISTO GETBRLK Sé% 81x 118% 168% 235k
AISTQ FUTAT I3
AISTO FUTREF A7%
AISTO FUTEQT a7x :
IXXXXX AISTO CETRLK 147X 147 149 191x 191 193 237% 239 240 267%x 247 248
AISTO ISRTAB 78x 78 79
AISTO NEXT 42¢ 42 43
AISTOD FREV 42% 42 43
AISTO PUTAT 3I7¢ 37 38

This multi-module report shows where variables in common blocks
are used, set or equivalenced. The report is alphabetically ordered by
the name of the common variable. The common block which contains the
variable is indicated in the scope column. Modules which reference the
common variable are alphabetically ordered in the module column.
Statements (AVFS statement numbers) within each module are shown next.
A blank following the statement number indicates the variable is used
there, a '*' indicates the variable is set, and an 'E' indicates the
variable 1is equivalenced. This report is produced for all modules and
all commons on the restart file. An updated version may be obtained by
reanalyzing all changed modules and using the EXPAND option. A summary
of the information in this report is provided in the common matrices
report.

Figure 4.13. FORTRAN Commons Cross Reference

55

CROSS REFERENCE

NAME SCOFE MODULE USED/SET/EQUIVALENCED ¢ X INDICATES SET)
EROR EXTERNAL ISRTAB 87
FRELNK EXTERNAL FUTREF J1
EXTERMNAL FUTEROT 29 31
GETFRG EXTERNAL GETELK 262
EXTERNAL ISKTAB &3
EXTERNAL NEXT 37
EXTERNAL FREV 37
EXTERNAL FUTAT 31
EXTERNAL FPUTEBEF A1
EXTERMAL PUTEOT 41
IGTWRD EXTERNAL NEXT 31 33
EXTERNAL FREV 31 32
EXTERNAL FUTBEF 32
EXTERMAL FUTEROT 33
ITSFRG EXTERNAL ISRTAB 60
EXTERNAL NEXT 35
EXTERNAL FREV 33
EXTERNAL FUTAT 29
EXTERNAL FUTEEF 39
EXTERNAL FUTEQT 39
LGTHLT EXTERNAL ISRTAB 52 33
MARKFRG EXTERNAL GETLDLK 224
MINO EXTERNAL ISRTAER 6é&
FUTURD EXTERNAL FUTEREF 33 35 37
EXTERNAL FUTEQT 32 36 38
XMIT EXTERNAL GETELK 45 S5 234 237
EXTERNAL NEXT 40 46
EXTERNAL. FREV 40 448
EXTERNAL FUTAT 34
EXTERNAL FUTREF 44
EXTERNAL PUTEOT 44

This multi-module report shows the AVFS statement number where
each external is referenced. The report is alphabetically ordered by
the name of the external. Modules which reference the external are
alphabetically ordered in the module column. Statements (AVFS statement
numbers) within each module are shown in the next column. This report
is produced for all modules on the restart file. An updated version may
be obtained be reanalyzing all changed modules and using the EXPAND
option. A summary of information contained in this report is provided
by the Invocation Summary Report. The text of each invocation can be
found by referring the AVFS statement listing or Invocation Report for
each module. Note that these reports are not generated from the restart
file but rather from source analyzed during an AVFS run.

Figure 4.l4a. FORTRAN Externals Cross Reference

56

LS

CROSS REFERENCE MULTI-MODULE REPORT PAGE
NAME CLASS MODULE USED/SET (- INDICATES SET)
Cl COMMON VOTER 71

c2 COMMON VOTER 71

c3 COMMON VOTER 71

C4 COMMON VOTER 76

CCl COMMON VOTER 9

cc2 COMMON VOTER 9

El EXTERNAL VOTER 72

E2 EXTERNAL VOTER 72

E3 EXTERNAL VOTER 72

E4 EXTERNAL VOTER 73

ES COMMON VOTER 78

E6 COMMON VOTER 78

EEl EXTERNAL VOTER 14

EE2 EXTERNAL VOTER 14

NEWPROC EXTERNAL ROBERT1 85 97 117

NOCALLFROM EXTERNAL NOCALLFROM 88 94

PROC1 EXTERNAL VOTER 10 46

PROC2 EXTERNAL VOTER 13 46

PROCCALL1 EXTERNAL VOTER 39 40 41 42 43 44 106 108 111 115
PROCCALL2 EXTERNAL VOTER 46 110 113

Rl EXTERNAL VOTER 11 12

ROBERT1 EXTERNAL ROBERT1 82 98

ROBERT2 EXTERNAL ROBERT2 100

VOTER EXTERNAL VOTER 5 41 43 44 45 45 -61
XPROC EXTERNAL ROBERT1 86 92

Figure 4.14b.

AED Global Cross Reference

Figure 4.14b continued

This multi module report shows the AVFS statement number where
each global variable is referenced. The report is alphabetically
ordered by the name of the global variable in the first column. The
class column denotes whether the variable is EXTERNAL or in COMMON.
The moudles which reference the global variable are alphabetically
ordered in the module column. The remaining columns contains the line
numbers within each module where the variable is referenced.

58

PICTURC SUBRCUTING SORT(A.IT.J0J)

UPUARD 1»PS STATOENT TEXT € P=BEQIN. E=END. S=GELF LOOP) (GHORT) DOWNUARD APPS (LOMG)
AMCDEFOHI L IMOFORSY ABCDEFONI ALIMNOPORSTUMIXYZ1 23434 799

SUBROUTING SORT (A, IT..L1)
DIFENSION A(1)4IUCL4) ILILSD
INTEOER A,T.TT

LR

IR 4

PR)
4 S IF¢ .GE.) GO TQ 70
. 10Kl
. 1= (3o D2
. T = AL
. FL A .LX. T) GQTO 20

ML = D)

ITeyg EDE
IFiACD) .OE.T) OO0 TO 40 DED
€8
. M1 = D
.o M) =T
ve T = AC1ID)
IFC D L. TO 40
A1) o AD)
MDD @7
T = ALY
. €0 TO 40
L. I AL) = AK)
. M) T e
QL=L-1
IF(acL) .6T. T) GO TO 40 .]
TV = AL)
WKeK+2 - 3
IFC AKY LT, T) GO TO 30 8
L3
IFt X .LE. L) G0 TO 30 33
IFC L~1 LK. J-K) GO YO &0 B
EB.

nm e

w-R B- M
o, 0
IR RERERES

1 £
£3. 0) AETURN 3.
My

(W]
(W]
=

")
90 IFtJ-I .GL.11) GO TO 10
IFC I Q. IV 0O TOS

T = A(l+1)
TFU ACI) LK. 7) 00 TD %0

100 A(Xet) » ACK)
KoK~
IF(T .LT. A(X)) GO TO 100
Atxel) o T
oG TO Y0
oo €

The PICTURE report can only be obtained by using the REPORT=PIC-

TURE command; it is not included in any of the options because the
PICTURE report has limited use for structured source programs. The
primary function of this report is to delineate the control flow of
FORTRAN programs. The downward flows are shown on the right of the
report. The upward flows are shown on the left. The B stands for the
start of a path and the E stands for the end of a path. This report is
especially helpful in breaking down large FORTRAN programs into smaller
parts that are more manageable to restructure. Since the PICTURE report
shows the beginning and ending of paths, it helps the user determine
which are logically cohesive sections of code.

Figure 4.15. FORTRAN Picture of Module Structure

59

FLOWGRAPH PROCEDURE YAW.ENG

UPWARD JUMPS STATEMENT TEXT DOWNWARD JUMPS
ABCDEFGHIJK ABCDEFGHIJK
DEFINE PROCEDURE YAW.ENG TO BE B
BEGIN ' .
Y.FAIL.MON=PGM.V AND NOT YAW.SAS.2FAIL; .
IF Y.TEST. COMPL EB
B
THEN BEGIN .
IF IN.CH.A .EB
B.
THEN BEGIN
ASNBIT (Y.FAIL.MON, 8,D0.BUFF.3); ...
END ..E
ELSE .E

ASNBIT (Y.FAIL.MON,5,D0.BUFF.3); .
END; .

GSP.V = REFBIT(13,CD.15.MA); E

Figure 4.16. AED Picture of Module Structure

60

4.4 SUMMARY

The SUMMARY option is intended to be used when a brief introduc-
tion to a module or a set of modules 1is desired. For FORTRAN it
provides an analysis of source statements, common blocks, and entry
points. For AED it provides an analysis of source statements on a

module basis.

The statements of individual modules are classified according to
categories which are appropriate to that language. Under each classi-
fication a tabulated account of the various statement types are listed.
An individual Statement Profile report with this information is gener-
ated for each module. This report is shown in Fig. 4.17.

For FORTRAN, the COMMONS report lists the common blocks in each
module and a report index for multiple module analysis as was shown in
Fig. 2.4. For AED, there is a single COMMON which is analyzed during

interface analysis and reported on in the interface report (see Fig.
4.5).

An Invocation Summary Report is also generated for this option and

for the document option as shown in Fig. 4.9b.

PROFILE
The AED statement profile report (Fig. 4.17b) lists the name of
the module and the number of lines at the top of the report. The module

name is the name of the procedure contained in the module. The number

of lines includes the lines from any inserts and includes blank lines.

AED statements are classified into declarations and statements.
While there can be more than one declaration or statement per line.
Typically there is less than one of each per line. Hence the number of
declarations plus the number of statements will be less than the number

of lines in most cases.

61

Under declarations, there are declarations for arrays, beads,
commons, components, defines, externals, packs, presets, procedures,
switches, synonyms, and variables. Each of these is counted separately.
Inserts are listed under declarations but are not included in the count
for declarations. 1In AED, the inserts normally contain declaratioms.
The line percentage is computed on the basis of the total number of

lines printed on the top of the profile.

Under statements, there are assigmment, compond, if, for, goto,
procedure and while categories. A line can contain several categories.
For example, a compound statement is made up a BEGIN..END construct.
Thus the module is counted as a compound statement. Then an IF state-

ment often contains a BEGIN...END compound statement as well as a

procedure invocation.

Comments and asserts are listed under statements but are counted

separately.
FORTRAN AED
Report Command Command
Statement Profile OPTION=SUMMARY GRC*PROFILE.PROFILE
(Fig. 4.17a) (Fig. 4.17b)
Appendix C-20
Invocation Summary OPTION=SUMMARY GRC*DEPEND.DEPEND
(Fig. 4.9a) (Fig. 4.9b)
Appendix C-17
Common Summary OPTION=SUMMARY GRC*INTER*INTER

(Fig. 4.18) (Fig. 4.5)
Appendix C-14

62

The FORTRAN command
OPTION=SUMMARY
may be replaced by the UNIVAC command

@XQT,B GRC*AVFS.AVFS
The complete UNIVAC JCL is shown on page C-10.

to produce the three reports at one time. The AED commands to produce

the three corresponding reports are separate XQT commands.

63

STATEMENT PROFILE BUBROUTINE EXAMPL (INFO.LENGTH)

INTERFACE CHARACTERISTICS

ARGUMENTS
ENTRY
EXIT
URITE

e N

STATEMENT STATEMENT
CLASSIFICATION TYFE NUMBER PERCENT

DECLARATION. ..
FORMAT 1 2.8
TOTAL

[y
N
[+]

EXECUTABLE. ..

ASSIGNMENT
BLOCK

CALL
CASEELSE
DOUNTIL
ELSE

END
ENDBLOCK
ENDCASE
ENDIF
ENDUHILE
INVOKE
RETURN
SUBROUT INE
WRITE

TOTAL

e et GINN R e s e s d N

NI OODOWrOr OO DD MO MO -

31 NNN(DMMNMMNNNNM:

N
»

DECISION...
CASEDF
DOWHILE

ENDUNTIL
IF-THEN

NIiOcDOOCO

D INERON-
N [IRSNI NI RN

TOTAL
DOCUMENTATION. ..

TOTAL 3 8.2

This report classifies each statement of a module as either a
declaration, executable, decision, or documentation statement. Under
these classifications, a tabulation of the statement types are listed.

Figure 4.17a. FORTRAN Statement Profile

64

STATEMENT PROFILE
module YAW.ENG
number of lines 156

number percentage of lines
declarations 83 53.2
array 0 0.0
bead 1 0.6
common 0 0.0
component 1 0.6
define 1 0.6
external 25 16.0
insert 3 1.9
pack 0 0.0
preset 0 0.0
procedure 1 0.6
switch 0 0.0
synonym 2 1.3
variable 52 33.3
statements 45 28.8
assignment 24 15.4
comment 19 12.2
compound 5 3.2
if 6 3.8
for 0 0.0
goto 0 0.0
procedure 11 7.1
while 1 0.6
assert 5 3.2

AED statements are classified into declarations and statements.
Under each classification, the type of statement is listed along with
its number and frequency in terms of 1lienms. The number of lines
(including blank ilnes) in the module is listed.

Figure 4.17b. AED Statement Profile

65

COMMQN SUMMARY

COMMON MODULES WHICH INCLUOE THE COMMON
AISTO MAKTAB

AL PHA CHATRX

ANSI CHMATRX REFVAR

BLKSTQ DEPVOK

08GCOM MAKTAB

OEPCOM DEPBNO DEPVOX

EPT DEPGRP DEPVOK REFVAFR

FILES CHATRX DEPBND Q0EPGRF DEPVOK XREFER
GL 0BAL DEPEBND

HALPHA XREFER

HCHARS OEPGRP XREFER

HOIGIT CMATRX

ICMMOS STEP1S

KDELMS 0EPVOK

MACHNE OEPVOK

K08 OEPVOK REFVAR

MMRYLS5 STEPLS

MTHSTO 0EPGRP DEPVOX

MTHSTL DEPVOK XREFER

This report lists all modules and all common blocks encountered.

Figure 4.18, FORTRAN Common Summary

66

4.5 INSTRUMENT
Figure 4.19 illustrates AVFS instrumentation of a FORTRAN or AED
program to prepare it for an execution coverage test. There are three

forms of instrumentation:

° path instrumentation
o trace instrumentation
e assertion instrumentation

In each case the instrumented modules will be written to a sequential
file which must be compiled, loaded, and executed in the normal test
environment. During execution, data is collected in a file (FORTRAN) or
in memory (AED) for later analysis. Section 4.5.1 describes FORTRAN

instrumentation and Sec. 4.5.2 describes AED instrumentationm.

4.5.1 FORTRAN Instrumentation

.Path Instrumentation

During FORTRAN instrumentation, the instrumented modules will be
written to UNIT 9 (LPUNCH). A DD path definitions report will be
generated to aid in the interpretation of test results. The user should
use the FIRSTLINE command (see Section 3.3) to specify the name of a
FORTRAN compiler in a UNIVAC run stream command, and AVFS will auto-
matically insert this specification as the first 1line of every sub-
program. For example, if the FIN compiler will be use&, the command
should be:

FIRSTLINE = (@FIN,I TPFS.+).

67

OoLD
INTERFACE
FILE

COMMAND
[5] [11]
- NEW
AVFS INTERFAGE
- FILE
(8]
REPORTS
SOURCE (6]

(3]

Figure 4.19.

__

AVFS Instrumentation of Source Code

68

AN-62756

A DD-path is a sequence of executable statements emanating from a
decision statement and continuing to the next decision statement. Since
complete DD-path testing means exercising all possible outways of
decision statements, this is a more rigorous testing measure than
exercising all program statements., All AVFS execution coverage reports

are presented in terms of DD-paths, not statements.

INSTRUMENT inserts a set of probe statements into each module.

The probe statements are inserted into the source text at each entry and
each exit of the modules and at each statement which begins a DD-path.

Each probe includes a call to a data collection routine which records
information concerning the flow of control in the executing wmodule(s).
A special probe is inserted at the end of the main program to signal the
end of test execution. The user can also have this special probe
inserted at other points in his code, which has the effect of breaking

one test execution into multiple test cases.

The instrumented source text along with an automatically supplied
data collection routine is written to UNIT 9 (LPUNCH) in FORTRAN. The
file is then compiled by a FORTRAN compiler. The instrumented object
code is then ready for loading and test execution (Fig. 4.20).

During execution of the instrumented program, the probes record
execution data, which results from processing the set of test cases for

_this run, on UNIT 12 (LTEST). If UNIT 12 is already assigned to a user

file, the command,

INSTRUMENT ,PUNCH ,PROBE, (<{file number>).

will cause the data collected during execution to be written to the unit

number specified.
There is a special instrumentation command which allows the user

to insert special probes into his instrumented code which delineate test

cases within the test execution. The user specifies a statement within

69

COMPILATION

INSTRUMENTED
SOURCE

El

Y

FORTRAN
COMPILER

Y

INSTRUMENTED
OBJECT
[TPF $]

Y

MAPPER

Y

INSTRUMENTED
ABSOLUTE
[TPF 3]

Figure 4.20.

EXECUTION

NORMAL
INPUTS

INSTRUMENTED
ABSOLUTE

NORMAL
OUTPUTS

"~

70

DATA
COLLECTION
FILE

(12]

N—

Loading and Test Execution

AN-63137

a given module. Before each execution of this statement, the last test
case is terminated and a new test case 1is begun. The form of the

command for identifying a test execution boundary is:
TESTBOUND ,MODULE = (<name)>),STATEMENT = <number>

where <number> is the AVFS statement number in module <name> where the
test-case probe is to be put. The probe is inserted before the number
specified; therefore, the number should be that of the first statement
not to be included in the test case. Up to ten TESTBOUNDS may be
specified during any one instrumented run. All must immediately follow
the OPTIONS command (preceding all REACHING SET commands). The output
of this option when the LIST option is also specified is a DD-path
Definitions report, as shown in Fig. 4.21., It is an indented source
listing of an individual module with additional DD-path information. At
each decision point, the DD-path generated is described in terms of its
decision outways. When measuring testing coverage, the user can refer
to this report to associate the DD-path definitions with his original

source text.

Commands,
INSTRUMENT ,PUNCH,PROBE, (<file number>). (optional)
FIRSTLINE = ({run stream command>). (optional)

OPTION = INSTRUMENT,LIST. @XQT,IL GRC.AVFS.AVFS

TESTBOUND ,MODULE=(<name>) , STATEMENT=<number>. (optional)

See Appendix C-4 for a complete JCL example.

Report
DD-path Definitions (Fig. 4.21)

71

DO-PATH DEFINITIONS

SUBROUTINE EXAMPL (INFOLLENGTH)

STHT NMEST LINE SOURCE... ++ SOURCE TAB
1 1 SUBROGUTINE EXAMPL (INFOLLENGTH)
2 C oaPL2
3 C TLLUSTRATION OF DMATRAN SYNTAX EXAFL3
4 C DXArPLS
8 DOPATH 1 IS PROCEDLRE ENTRY
2 S IF (INFO.LE.10 .AND. LENGTH.GT.O0)THEN EXANPLS
% ODPATH 2 IS TRLE BRANCH
$X DOPATH 3 13 FALSE BRANCH
3 b3 6 . CALL CALLER ¢ INFOQ) EXAPLS
4 ? 8- EXAMPL?
S L 8 . LENGTH=50 EXAewL s
é ? B0 IF EXAPLY
b4 10 CASE OF (INFO+6) EWPLLI0
8 DDPATH 4 IS BRANCH OUTUAY 1
X DDPATH 3 IS BRANCH QUTUAY 2
X DDPATH & IS BRANCH OUTWAY 3
] 11 CASE (14) Ly
= DDPATH 7 1S TRUE BRANCH
8 DOPATH 8 1S FALSE BRANCH
? b3 12 o INFQ DNPL12
10 13 CABE (17 (377 Rk
% DOPATH ¢ 1S TRUE BRANCH
8 DDOPATH 10 IS FALSE BRANCH
13 b3 14 . DO UHILE (INFO.LT.20) NTLIA
22 DDPATH 11 IS LOOP AGAIN
8 DDOPATH 12 IS LOCP ESCAPE
12 2 13 . . DO UNTIL (LENGTH.LE.INFO) EXAPLLS
13 3 14 . . . INVOKE (COMPUTE] EXAMPLLS
14 3 17 . . . IF (LENGTH.GE.30) THEM EXareLL?
38 DDPATH 13 IS TRUE BRANCH
X8 DOPATH 14 IS FALSE BRANCH
13 4 12 . . . « INVOKE (PRINT-RESULTS) EXxareL1s
14 3 19 . . o END IF XL 19
17 2 20 . .« END UNTIL DAPL20
28 DDPATH 13 IS LOOP ESCAPE
B DDPATH 16 IS LOOP AGAIN
18 2 21 . . INFO=INFO+L EXAMPL1L
i 2 . END WHILE EXAPL22
22 23 CAZE LLSE EXAMPL23
28 1 24 « DO WHILE (LENGTH.GT.O) EXAMPL24
2 DOPATH 17 IS LOOP AGAIN
2% DOPATH 18 IS LOOP ESCAPE
2 2 = . « INVOKE (COMPUTE LENGTH) e 2s
23 b Y 26 . END WHILE EXAMPL26
24 27 END CASE EXAMPL27
P~ 2 BLOCK (PRINT-RESULTS) EXaPL2s
S8 DDPATH 19 IS PROCEDURE ENTRY
24 b3 2 . URITE (6+1)INFOLENGTH XLy
27 b 30 1. FORMAT (10X¢13.20Xs23) EXAPL30
28 a1 END BLOCX EXAMPLIL
2 4 2 BLOCK (COMPUTE LEMNGTH) EXAMPLIZ2
X DDPATH 20 IS PROCEDURE ENTRY
30 1 R = . LENGTH = LENGTH ~10 EXAMPLIS
Rt 34 END BLOCX EXAPLIA
p - 3 RETURN EXAPLIS
3 3 END EXAMPL3S

This report is useful for testing purposes because it defines the

decision paths.

Figure 4.21.

72

DD-Path Definitions

TRACE Instrumentation

Additional information may be gathered during execution test by
inserting INPUT and OUTPUT statements into each source module. The
INPUT statements are used to list global variables (either parameters or
in COMMON) that will have a value whenever the routine is entered; the
QUTPUT statements are used to list variables that will be assigned a
value in the .routine. An INPUT variable may also be an OUTPUT variable.
The INPUT/OUTPUT option provides a dynamic tracing of the values of the

program variables.

A type specification must be provided for each variable so the
value will be printed the correct format. Omitted types will result in
variables being printed according to the most recent previous type, and
if there wasn't a previous type the variable(s) will not be printed.

The syntax to provide type information is:

INPUT (/<type>/<variable 1list)>,/<{type>/{variable list>,...)
OUTPUT (/<type>/<{variable list)>,/<{type>/{variable list>,...)

{type> may be REAL, INTEGER, HOLLERITH, or LOGICAL or the respective
abbreviations for each, R, I, H, or L. <variable 1list> may contain
non-subscripted variable names, array names, individual elements of an
array, or an array subrange, such as (LIMIT(I), I = M,N) where LIMIT is
an array with a dimension of at least N. I is a variable whose value
will be undefined after the INPUT or OUTPUT statement is executed.

Some examples are:
INPUT (/I/NUMBER,(LIMIT(I),I=M,N),/R/AREA,RANGE,
* /L/DEBUG,/H/TEST)

OUTPUT (/REAL/AREA,/LOGICAL/DEBUG)

The INPUT and OUTPUT statements are turned into comments by AVFS

so they may be left in the code when the instrumented code is compiled.

73

The INPUT/QUTPUT option also performs the same functions as the
INSTRUMENT option so the instrumented code on UNIT 9 may be used in the

same way as described in Sec. 4.5.1.

The output of this option is the inclusion of a FORTRAN trans-
lation of the INPUT and OUTPUT statements in the code written on UNIT 9
(LPUNCH). When the program is executed, the names and values of the
variables with type specifications 1listed in INPUT and OUTPUT state-
ments, will be reported. In addition, a DD-path Definitions report
identical to the one from the INSTRUMENT option will be generated, if
the LIST option is also specified. Figure 4.22 shows this report for a
subroutine with INPUT and OUTPUT statements.

Command

OPTION = INPUT/OUTPUT,LIST. @XQT,TL GRC*AVFS.AVFS

Report
Input/Qutput Listing (Fig. 4.22)

74

DD-PATH DCFINITIONS

8TMT NEST LIMNE SDURCE..,

SUBROUTINE TIMES ¢ NUM.

RESWULT, SUM)

«« «SOURCE TAR

1

[y

> 0e e

N>

o

USING ADDITION TO MULTIPLY

3

4

S

7 INTEGER RESWLT, SUM, Y
8 INPUT (/17 NUMe RESWLT)
?

10 St =0

11 Y = NUM

12 DO WHILE ¢ ¥ .GT. 0
13 « SUM = SUM + RESULT
14 v YmYe-1Q

13 .

16 END WMILE

{; OUTPUT (/17 SUM)

19 RETURN

20 END

SUBROUTINE TIMES (NUM, RESULT, SUM)

$% DOPATH 1 IS PROCEDURE ENTRY

This example shows INPUT and OUTPUT statements in the code.

Figure 4.22.

Input/Qutput Listing

75

ASSERT Instrumentation

Checks on variables during execution test can be obtained by
inserting ASSERT statements into each source module. The ASSERT
statements present logical conditions which are assumed to be true. If

an assertion goes false, a report giving the module and line number of

the false assertion will be printed.

The syntax to provide assertions is:

ASSERT (boolean expression)

Some examples are:

ASSERT (HEIGHT .GT. MIN)
ASSERT (DELAY .LT. MAX .AND. DELAY .GT. MIN)

The ASSERT statements are turned into comments by AVFS so they may
be left in the code when the instrumented code is compiled.

The ASSERT option performs the same functions as the INSTRUMENT
option so the instrumented code on Unit 9 may be used in the same way as

described in Sec. 4.5.1.

The output of this option is the inclusion of a FORTRAN trans-
lation of the INPUT and OUTPUT statements in the code written on UNIT 9
(LPUNCH). When the program is executed, assertion violations will be
recorded along with their location. Figure 4.23 shows a listing of a
subroutine with ASSERT statements.

Command Report
OPTION=ASSERT,LIST. Assert Listing (Fig. 4.22)

76

SEQ NEST SOURCE PROGRA4 XPONEN (INPUTe OLTPUT. TAPES = QUTOUT)

1 PROGRAM XFOUNEN (INPUTe QUTPUT. TAPEg = OQUTPUT)
2 CASON

3 CUNIT &

4 CMODN XPONEN

S (o

[Cc EXPONENTIATION BY MULTIPLICATION USING

? c SUBRCUTINE TIMES

8 [o '

9 INTEGER ANSWERs RESULTs SUM

1C INITIAL (<TRUES)
11 FRINT 1}
12 1 FORMAT (=1 +HUM IEXPCN ANSHER »)
13 0o (M = 14 4)
1% 1 . KEAD 2+ NUMs IEXPON
15 1 2 « FGRMAT (2(1%5))
16 1 . ASSERT (NUM .GEe 0 +ANC. IEXPON LGEs 0)
17 1 . RESULT = 1

i8 1 . 1 =1

19 1 . WHILE (T «LT. IEXPON)
26 2 . . ASSEHT (RESULT +ECe HUM 33 T <ANDe NU¥ ,GE. O

&y . oAND, IEXPON GEe O oANJe I oLTe TEXPON)

21 2 . . CALL TIMES (NuM, RESULT. SUM)
22 2 . . RESULT = SUM
éd ¢ . . I=1+1
FL I § . END WHILE
25 1 . ANSWER = RESULT
FI- . FRINT 3¢ NUMe IEXPON. ANSWER
27 13 3 . FORMAT (3(1I8))
2b EnD 00

29 FINAL (ANSWER +EQs NUM =s IEXPCON)

k19 STOP
31 END

Figure 4.23. FORTRAN Assert Instrumentation

77

4.5.2 AED Instrumentation

Path Instrumentation

During AED instrumentation, the instrumented module is written to
UNIT 30 (INSTFL). A DD path definitions report is genmerated to aid in
interpreting test results. The instrumented code is ready for compiling
by an AED compiler. The instrumented object code is then ready for

loading and test execution.

Also during instrumentation, a speéial AED problem routine is
generated on the file named PROBE. This routine must be compiled and
loaded with the instrumented modules. During executiton of the instru-
mented program, the AED probe progam records the test history in the
memory of the CAPS computer. After execution halts, this information is
sent to the PDP 11/60 for analysis.

Command Report
@XQT GRC*INST.INST DD path definitions (Fig. 4.24)

See Appendix C-21 for a complete JCL example.

78

1 DEFINE PROCEDURE YAW.ENG TO BE

PATH 1
2 BEGIN
3 Y.FAIL.MON = PGM.V AND NOT YAW.SAS.2FAIL;
4 IF Y.TEST.COMP
5 THEN BEGIN
PATH 2
6 IF IN.CH.A
THEN BEGIN
PATH 3
8 ASNBIT(Y.FAIL.MON,8,D0.BUFF.3);
END
10 ELSE
PATH 4
11 ASNBIT(Y.FAIL.MON,5,D0.BUFF.3);
PATH 5
PATH 6
END;
PATH 7
12 GSP.V=REFBIT(13,CD.15.MA);

Figure 4.24. AED Path Definitions

79

Trace Instrumentation

Additional information may be gathered during execution test by
inserting INPUT and OUTPUT assertions in each source module as was
discussed for FORTRAN. In AED these assertions are written as COMMENTS
in the following syntax:

COMMENT INPUT <type><variable>;
<type> may be one of the AED data types

<variable> is one of the AED data names.

During execution the value of the variable will be stored along
with the execution time, the module name, and the statement number. All
this information is sent to the PDP 11/60 for later analysis during

execution test.

Figure 4.25 shows a listing of some source with AED INPUT/OUTPUT

assertions.
Command Report
@QT GRC*TRACE.TRACE Trace assertion report (Fig. 4.25)

See Appendix C-22 for a complete JCL example.

1 BEGIN
2 BOOLEAN ALIGN;

3 BOOLEAN ROLL.OUT;

4 COMMENT INPUT BOOLEAN ALIGN;

5 COMMENT OUTPUT BOOLEAN ROLL.OUT;
6

7

8

ROLL.OUT = ALIGN OR ROLL.OUT;
END FINI

Figure 4.25. Trace Assertion Report

80

Assert Instrumentation

Checks on AED variables during execution can be obtained by

inserting ASSERT statements into each source module. In AED these

assertions are written as COMMENTS in the following syntax:

COMMENT ASSERT boolean-expression;

Some examples of assertions are:

COMMENT ASSERT HEIGHT > MIN;
COMMENT ASSERT TIME < MAX;
The output of the assertion command is instrumented code on UNIT

30 which may be compiled, loaded, and executed.

During execution false assertions will be saved in the CAPS and
sent to the PDP 11/60 when some maximum number (presently 30) of false

assertions have been detected.

Command Report
@XQT GRC*ASSERT.ASSERT Assert Listing (Fig. 4.26)

See Appendix C-23 for a complete JCL example.

BEGIN
BOOLEAN ALIGN; EXTERNAL ALIGN;
BOOLEAN ROLL.OUT; EXTERNAL ROLL.OUT;
COMMENT ASSERT ROLL.OUT;

COMMENT ASSERT ALIGN AND ROLL.OUT;
ALIGN = FALSE;
END FINI

SN oW

Figure 4.26. AED Assert Listing

81

4.6 REACHING SET

The analysis specified by the REACHING SET option executes the
module retesting assistance capability of AVFS. Presuming that a set of
untested DD-paths has been isolated, AVFS helps the user identify
sections of code to exercise. The user specifies the desired DD-path
number to be "reached," and AVFS generates the reaching set of paths
from module entry or from a designated DD-path up to the second DD-path
number which has been specified. The user may specify either iterative
(explained below) or non-iterative reaching sets to be generated. AVFS
prints a list of DD-paths on the reaching set. With this output, the
user is able to identify which parts of the program need to be executed

(and therefore which program values need to be modified) in order for
the selected DD-path to be executed (or reached). Once this determi-
nation is made, new test cases can be constructed, and the program can

be run again to execute the DD-paths which were not traversed in the

previous tests.

The FORTRAN command
OPTION = REACHING SET
or the AED command
@XQT GRC*REACH.REACH

enables reaching set analysis to be performed. However, no analysis is
performed unless one or more reaching sets are specified. The command

for specifying a reaching set is:

REACHING SET,MODULE= (<name>),TO= <DD-path number>,
FROM= <DD-path number> {, ITERATIVE}.

The reaching set which includes all possible iterative paths may be
generated by appending ITERATIVE (preceded by a coma) to this command,

otherwise the command generates a non-iterative reaching set.

82

A Reaching Set report is in Fig. 4.27; it 1lists the set of
DD-paths within the reaching set, followed by the source statements
which make up that set of paths.

FORTRAN Command Report
OPTION = REACHING SET Reaching Set (Fig. 4.27a)

See Appendix C-27 for a complete JCL example

AED Command Report .
@XQT GRC*REACH.REACH : Reaching Set (Fig. 4.27b)

See Appendix C-24 for a complete JCL example

83

REACHING SET ANALYSIS SUSROUTINE EXAMFL (INFO.LENGTH)

NON-ITERATIVE REACHING SET FROM DD~-PATH 3 TO DD-PATH 14

DDPATHS IN REACHING E€ET
3 4 S 8 ? 111 14

SOURCE CODE IN REACHING SET

" "IF (INFO.LE.10 .AND. LEWGTM.GT.O)THEN

2 3

4 7 ELSE

S 1 8 . LENGTH=S0

é 9 END IF

7 10 CASE OF (INFO+6)

8 11 CASE (14)

10 13 CASE (17)

11 1 14 . DO WHILE (INFO.LT.20)

12 2 15 . . DO UNTIL (LENGTH.LZ.INFO)
13 3 16 . . . INVOKE (COMPUTE LENGTH)
14 3 17 . . . IF (LENGTH.GEZ.30) THEN

XXTARGET DD-FPATH BEGINMINGXX

16 3 19 . . . END IF
17 2

20 . . END UNTIL

This report shows which DD-paths must be traversed, beginning with
a specified DD-path to reach the target DD-path. Both the beginning and
the ending DD-path numbers are designated by the user in the REACHING
SET specification command. Coordination of this report with DD-Path
Definitions report allows the user to determine what values must be
supplied to the variables to affect the decision predicates so the
appropriate path will be taken.

Figure 4.27a. FORTRAN Reaching Set

84

BRSET. LOGi 1 17-MAY=1982 14:49:58. 76 Page 3

1.

REACHING SETS FOR MODULE YAW. ENG

REACHING SET FROM STATEMENT 0 TO STATEMENT 0

nennnrneet REACHING SET ERROR ##%ntstewn
ILLEGAL INPUT STATEMENT NUMBERS... NO COMPUTATION PERFORMED.

Ea s st 2o s ol ot ol ool St st s s

HERE ARE THE STARTING AND ENDING STMT NUMBERS
FOR PROCEDURES IN THIS MODULE:

1. PROCEDURE YAW. ENG . FROM STMT 14 TO STMT 83
2. REACHING SET FROM STATEMENT 14 TO STATEMENT S0
STMTS IN REACHING SET NO. 1: 14 i3S 16 17 18
33 34 3s <l.} 37
40 41 42 44 43
48 49 30
STMTS IN REACHING SET NQ. 2: 14 15 16 . 17 18
33 34 33 36 37
40 41 43 a4 45
48 49 So
STMTS IN REACHING SET NO. 3: 14 138 16 17 18
21 22 23 24 25
33 34 33 36 37
40 41 42 44 45
43 49 S50
STMTS IN REACHING SET NO. 4: 13 15 16 17 18
21 22 23 24 25
33 34 35 36 37
40 41 43 44 45
48 49 S0
STMTS IN REACHING SET NO. S: 14 15 16 17 18
: 21 22 28 29 30
33 34 33 ° 36 37
40 41 42 44 43
48 49 S0
STMTS IN REACHING SET NO. &: 14 15 16 17 18
21 22 28 29 30
33 34 39 36 37

40 41 43 44 45

Figure 4.27b. AED Reaching Set

85

19
38
48

19
38
46

19

-
a

38
a6

19
W
38
L2

19
31
38
a4

19
31
38
40

20
39
47

20
39
47

20
27
39
47

20
Pt

39
47

20
32
39
47

20
32
39
a7

4,7 FORMAL VERIFICATION

Two steps are required to perform symbolic execution or veri-
fication condition generation. The first is a preliminary step to

obtain necessary data, the second is the actual generation.

The formal program verifier uses the program paths of a module to
perform symbolic execution or verification condition generation of

FORTRAN programs. In AED programs, line numbers are used instead.

4.7.1 FORTRAN Verification
For a preliminary analysis of a FORTRAN program, the command is

OPTION = VCG.

This option generates a DD path definitions report as was shown in Fig.
4,21.

The command to generate a verification condition is
VCG,PATH=<number of paths>,{path list>

where the path list consists of a set of DD path numbers. For example,
the command to cover the path from program entry to the first decision

statement would be
VCG,PATH=1,1
To cover DD paths 2,4 in a loop construct, the command would be
s VCG,PATH=2,2,4

Usually several paths are processed at once.

The DD-Path Definitions Report for the subroutine CIRCLE, Fig.
4,28, shows three DD-path numbers. The IF statement provides two
alternative paths, DD-path 2 when the IF expression is evaluated as
“"true” and DD-path 3 when it is "false”.

86

JC-PATH CEFINITICAS SUBKQUTIAE CIARCLE (RACILS, HFIGHT, ARtA, vOLLFE)
1 - SULRSUTINL CIRCLE ¢ :ZM.X;S: hi;b;l" AREMs VCLULME)
es ['PATH 1 1S PRUCECURE ENTIARY
H LCATA Pl /7 Jolule /
3
. INITIAL | WAULUS (6%e O)
] vOLUME 32 0
[AMEA = Pl » RADIUS oo 2
7 IF (AnEA «Glo RACILS)
se [LKMATH 2 1S TALE BRANCH
®s CLFATH 3 IS FALSE GPRANCHM
5t 1) e VULUFE = HEIGHT o aREA
L BN 3] o Fhlnl 3¢ t RIS, vOLUWRL)
16 ¢ 1) 1 o FOmmAT(1Xy 2 (F6.2))
11 LNUIF
12 FINAL ¢t yCLUME oLGe O oCRe vCLUME otue FELEGRT s AKEA)
13 RETLAN
v eNw
Figure 4.28. DD Path Definitions for Verification
For each of these two paths, it is necessary to provide a VCG,PATH
command. The commands for generating the verification conditions for

CIRCLE would be:

OPTION
MODULE
VCG,PATH
VCG,PATH

As a result of

VCG.
(CIRCLE).
=2,1,2
=2,1,3

these commands, a verification path and a verifi-

cation condition will be generated as shown in Fig. 4.29.

87

VEG+PATH=24312. SUBROUTIKE CIRCLE (RACIUS. HEIGHT. AREA. VOLUNE)
LINE PATH SJQLRCE TEXT

SUBROUTINE CLRCLE (RACTUS. WETGHT. AREAs VGLUNE)

INITIAL (RADIUS «GTe. 0)
VOLUME = ¢
AREA = Pl o RACIUS *» 2
IF (ARER +GT., KADILS
«t1n o VOLUME = HEIGhT s AHEA
(1 e FRINT 19 ¢ RADIUSs VCLUKE)
ENDIF
FINAL ¢ VCLUME +EQe¢ O «ORe VOLUME LEQ. HEIGHT & AREA)

NV LS [od

(X

Verification Path

STMBOLICALLY EXECLTEC VERIFICATION CONDITICM

LINE VERIFICATICN CONDITICN
L) RACIUS «GTs 0
AND
7 Pl o { RADIUS e 2) 6T, RADIUS
cocamcsacce IHPLIES wemcvwmccccmcncecncccnccnomnrasencaccnascnscccsnssn

12 REIGHT o Pl a (RALIUS ®% 2) oEWe 0 +GRe HEIGHT o Pl s (RAQIUS w»e 2
) +EGe FEIGHT » Pl s { RADIUS se 2)

Verification Condition

Figure 4.29. Verification Condition Generation

88

The VCG EXPRESSION command together with the previous path command
allows the symbolic execution of a given expression over a specified

path.

Command

VCG,EXPRESSION
{expression> §
VCG,PATH <number of paths>,{path 1list>

Some samples of commands are:

OPTION=VCG
MODULE=(EXAMPL) .
VCG,EXPRESSION

VOLUME
VCG,PATH=3,1,2,3
VCG,EXPRESSION

DIAMTR .GT. HEIGHT §
VCG,PATH=3,2,5,3

4.7.2 AED Verification
AED Verification is similar to FORTRAN verification except that

lines are specified instead of paths.

To symbolically execute an expression C.F.LCH over lines 10, 11,
12 one specifies during the execution of GRC*VCG.VCG:

FOR LINES = 10, 11, 12 DO
C.FO.LCH
END FOR

This would result in the report shown in Fig. 4.30 which 1lists the
original expression, the specified lines, and the executed expression.

A range of lines is specified by

first line .. last line

89

so the previous command could be

FOR LINES = 10..12 DO
C.FO.LCH
END FOR

SYMBOLIC EXECUTION REPORT

ORIGINAL EXPRESSION

C.FD.LCH

SOURCE CODE

10 ALIGN = TRUE;
11 RUN.WAY = FALSE; .

12 C.FD.LCH = ALIGN OR C.FD.LCH;

FINAL EXPRESSION

TRUE OR C.FD.LCH

Figure 4.30. AED Symbolic Execution Report

.90

To generate a verification condition, it is necessary to specify
assertions at each end of the path to be verified. By specifying VCG as
the expression to be symbolically executed, a verification condition
will be generated using assertions previbusly placed in the text.
Figure 4.31 illustrates an AED verification condition report listing the

source and verification condition. The command to generate the figure

would be

FOR LINES 9..12 DO
VCG
END FOR.

SOURCE CODE

9 COMMENT ASSERT GLIDE SLOPE > 2 AND RANGE > 1000;
10

11 ALTITUDE = RANGE * GLIDE SLOPE * 3.14159/180.0;
12 COMMENT ASSERT ALTITUDE > 30;

VERIFICATION CONDITION

GLIDE SLOPE > 2 AND RANGE > 1000

IMPLIES

RANGE * GLIDE SLOPE * 3.14159/180.0 > 30

See Appendix C-28 for a complete JCL example.

Figure 4,31, AED Verification Condition Report

91

92

5 AVFS CONSTRAINTS

AVFS imposes certain restrictions on the size of the interface
file, the command language, and the source text to be analyzed. Most of
the limitations based on size are generous (e.g., the maximum number of
nested IF statements is one hundred). AVFS is capable of handling quite
large source text files. Unusually large programs may have to be
processed by several successive executions, each operating on a separate

file of modules.

5.1 UNIVERSAL CONSTRAINTS

° At most 250 modules may use the same common block

. Maximum of one card for any given command

. Maximum of 24 commas in any given command

° Maximum of 80 characters per source card image read

. The maximum number of DD-paths which can begin at a state-
ment is 50

° The maximum number of statements on a single DD-path is 100

° The sizes of the two random files UNIT 2 (LIBNEW) and UNIT

13 (LIBWSP) are established using a DEFINE FILE statement in

FAVS. The current sizes are 500 records (of 300 words each)

' Maximum of 250 tokens per statement

5.2 SYNTAX CONSTRAINTS
The following iImplementation counstraints are the current ones

which must be observed:

° Each module placed on the same interface library must have a

unique name

° If any errors are detected in the source, one or more

statements may be flagged as not parsed

93

Maximum nesting depth of 25 DOs in FORTRAN

DELETE, START EDIT, STOP EDIT are not recognized

Switch labels may appear only in assigned GO-TO statements
*% is the only valid exponentiation symbol

ASCII FORTRAN debug statements are not recognized

An initial comment statement will be recognized as the start

of a module

94

6 ANALYZER COMMANDS
A variety of coverage analysis reports can be generated from data

collected during execution of a FORTRAN program that was instrumented by
AVFS. (The INSTRUMENT option was discussed in Sec. 4.5.) Figure 6.1

shows the execution coverage sequence.

In order to proceed with instrumented software testing, the source
text (which has been instrumented by AVFS) is compiled and executed. At
program linkage time, any user externals necessary for execution of the
instrumented code must be supplied. During test execution the program
operates normally, reading its own data and writing its own outputs.
The instrumented modules call the data collection routine as their test
probes are encounted which records (on UNIT 12) the accumulated data on

module DD-path traversals.

Each test execution may consist of a number of test cases. The

program identifies the end of each test case by executing a special call

to the data collection routine. The identification calls are auto-

matically inserted at the end of main programs. Other are inserted by
direction of the user, via the TESTBOUND command, at instrumentation

time as discussed in Sec. 4.5.
The coverage reports are generated by a set of commands that

differ slightly from the AVFS commands (Sec. 3, 4, 5); for this reason

the ANALYZER commands are presented in this separate section.

95

€ AVFS
COMMANDS*
T <>
AVFS
SQURCE*
REPORTS
Y
INSTRUMENTED
SOQURCE CODE
]
COMPILE
—
USER'S
DATA
(- } w V EXTERNALS
EXECUTE
USER'S
QUTPUT

COVERAGE
REPORTS

l AN, | —a| ANALYZER

Figure 6.1l. Execution Coverage Sequence

96

AN-49089a

There are two ANALYZER commands, an option selection and a module

selection command. The type of report is specified by the command:
OPTION{S} = <list>

<list> may be one or more of the three options: SUMMARY, NOTHIT, or
DETAILED.

If the DETAILED option is specified, then the OPTION command must

be preceded by one or more module selection commands:
FOR MODULE{S} = (<name-1>, <name-2>, ... <name-n>)

<name> is the name of the module (subroutine, function or program). A
maximum of 100 modules may be specified at one time. More than one FOR
MODULE{S} command may be used to accommodate all specified modules. The
DETAILED reports will be generated only for the modules named in this

command which have been both instrumented and invoked.

Since the Coverage Analysis program records execution trace data
in internal tables, the amount of data recorded is limited by table

size. The limitations are given below:

Maximum number of modules to analyze 100
Maximum number of test cases 10
Maximum number of DD-paths to analyze 2000

Maximum number of DD-paths not traversed

in any test case 1000

97

6.1 SUMMARY
The SUMMARY option produces a report which summarizes testing
coverage for all instrumented and invoked modules. Figure 6.2 shows a

sample SUMMARY report, which lists the following information:

° Test case number
° Module names and numbers of DD-paths
. Number of module invocations, number of DD-paths traversed,

and percent coverage for this test case

° Cunulative number of module invocations, number of DD-paths

traversed, and percent coverage for all test cases

When multiple test cases are involved, the SUMMARY report shows data
from the current test case and the immediately preceding test case.
When the end of the trace data is encountered, a cumulative summary of

all test cases is produced (Fig. 6.3).

Command

OPTION = SUMMARY

Reports
DD-path Summary (Fig. 6.2)
Multiple Test Summary (Fig. 6.3)

98

233TI22IXLTIIIEISIII=z 23T $S2TTZTTTLIITITIII=S 2333y 22E2
L 1 1
1 I SLUPMPARTY oo TH LS TES T LuUupULATLIVE SuUMMARY
b4 I T
TEST 1 wCCull NumeLR CF I MUMEEHR CF p=C PaTHS FER CENT t M.MRER .
CASE T NAME Ceu FATnS 1 InveCATICNS TRAVERSFC COVERAGE t OF TESTS INVOCATICNS TRAVFPRSED CEvERAGE
azz sa3z3233:zs3 35332233 3ITFI=TES szssszs3zzsSIETS 23332232 TLITTIIITTITIT 3L
21 f
1 »aln b 80400 1 2 1 3 60.00
I CLASS 1 14 18,37 A\ 2 2 29 2%.99
1 ExamPl 3 [37,50 T 2 2 ? 3,78
1 CALLER i [0.08 1 2 1 2 66,67
1 I 1
1 ssaLlss 122 1 26 21.31 T 2 " 33,61
I 1]
233 23222 °ISISTITITTTITILr S2=22222 232 32232322 I=22TE323
3 1 H H
1 walm L 1 0 2 40,00 r 3 1 . 40,00
1 cLAsS % t 1 ELY 34,69 T 3 3 .2 2,86
1 Ex&mPL 16 b 3 ¥ 68.7% 1 3 3 18 03,78
1 CALLER 3 1 9 9 .08 14 3 1 2 66,67
1 1 1
1 ssaLllis 122 H 87 38.9%2 t 3 3 41,64
1 T H

Figure 6.2. DD-Path Summary (with the Immediately Preceding Test Case)

99

233=332 sI==z=2s3 2z2223TTX22TS 23=2x =23 3I=2ITTZ
4 1 t
1 I SLUMRARY e~ T Huis TES T CUNMNULATILIVE SUMRARTY
t z v
TEST I MGLULE BUMBER OF 1 MUMEER OF 0«0 Patws FER CERT T NUNBER
cas€ 1 NAWE 0«0 FATHY T INVCCATIONS TRAVERSED COVERAGE t CF TESTS INVOCATIONS TRAVERSED COVERAGE
2223 sxz3=23 $23z3323zTTTIITT3 Z23T2XTTS2ITTITTIIITILITITIITTTI=AT SSXTI=FTTTS3 2322233323333 232TT3
11 1 1
I ®AIN H L 1 3 60.00 1 1 1 3 40.00
I Ccuass 9 I 1 8 26.33 1 1 1 26 26,933
I ExAwP\ 16 b4 1 [37.%0 1 1 1 6 37,50
1 CALLER 3 1 } 2 66ea?] 1 1 2 66,67
} I 4 .
1 sSALLSS 122 I 37 30.33 T 1 37 30.33
4 1 T
z=z = = 3 IEIZT
21 1 v
I maAlx 3 1 [] 2 408,00 T 2 1 3 «0.00
1 CLASS 9 I 1 1 18,37 1 2 2 9 29.39
I ExawPL 1 b 1 e 37.50 T 2 2 7 43,78
1 CALLER 3 I [9 0.3 T 2 1 2 66,67
b3 I 1
1 $SALLSS 122 i W6 21.31 4 2 “u 33.6%
b4 1 b
3 1 1 T
1 waln < b4 0 2 40.00 1 3 1 . A0 0L
1 CuAss k1] I 1 s 36,69 1 3 3 82 42.86
L ExamPL 1s 1 1 11 68.73 4 3 3 15 93,78
I CALLER 3 I 0 9 0.00 T 3) 2 66,67
I 4 1
T syALLls 122 1 7 38,32 T 3 63 13,64
b4 1 T
% = L 3 E3TS2ITTTT==;TIII= =32z
s 1 1 1
I MaAlN H 1 [2 80.00 t . 1 [} 80.04
I CLASS %a 1 1 34 34,69 1 “ . .2 2,86
I ExawPL 1 4 1 L] 37.50] . L} i3 4,18
1 CALLER 3 L [} 0 V.40 T L} 1 2 L6087
1 1 1
1 ssaLiss 122 b 2 38,03 T L) 63 s1.68
1 b t

z32T 2x 2z T2323 TITIF23

Figure 6.3. Multiple Test DD-Path Summary

100

6.2 NOTHIT
The NOTHIT option requests a report which 1lists DD-paths not

executed for all instrumented and invoked modules. Figure 6.4 shows a
sample NOTHIT report, which lists the following information:

° Module names
. Test case number
° Number of DD-paths not traversed, for this test case and for

all test cases

° DD-path numbers not traversed for this test case and for all

test cases.

Command

OPTION = NOTHIT

Report

DD-paths Not Executed (Fig. 6.4)

101

TFT=IZT=TT=IITT a
MeOULE I TEST I
NANE I NUFBER |
g==zs3s23I=z=III3 s S=z3szszssazssszsSsIssssaTI=zsIITI=ITS==ST EE L EE] ==s3zss=232 I===sT3TTI=TII=IIIIT==SSI2
<HALIN >1 31 3 L 1 2 L]
I CuMuL | 1 i 2
<CLASS > I LI 4 [4 3 3 3 ? 10 13 17 19 20 21 26 28 30 32 3% 16 37 38 39 wuu
N1 %2 %3 48 48 S8 S1 %2 %3 %S4 87 S8 %9 60 2 6% &6 o7 €3 76
722 73 76« 15 % 17 7Aa 79 83 Su 8% 8¢ 87 688 39 90 91 92 93 9
9% % 97 92
I cumuL 1 %6 ! 3 % & T 10 13 17 19 20 21 20 30 32 34 36 37 38 9 g 2
43 43 97 %2 Sz S« 58 %9 62 o5 66 67 65 70 74 7S 76 77 78 79
83 8y &8s 85 87 83 89 90 91 92 93 %4 Ss %% 97 98
<ExXanMPL > I 31 S 1 2 % 6 13 1%
I CurdiL [1 L L]
CCALLER > 1 3 1 3 1 T 2 13
I cuMuL I 1 1 2

Figure 6.4.

DD-Paths Not Executed

102

6.3 DETAILED
The DETAILED option command selects a report which shows a

breakdown of individual DD-path coverage. A single testcase report like

the one in Fig. 6.5 is generated for each specified module which was

instrumented and invoked. Figure 6.6 shows the cumulative report, which

is generated after the individual testcase reports. Both provide the

following information:

®
®
®
e
Command
ReEorts
Rule
1.
2.
3.

Module name
Test case number

List of DD-path numbers, with an indication of those which
were not executed, a graphical representation of the number
of executions, and an itemized 1listing of the number of

executions

Overall module coverage data

FOR MODULES = (<{name-1)>,<{name-2),...<{name-n)

Single Test DD-path Execution (Fig. 6.5)
Cumulative DD-path Executions (Fig. 6.6)

Maximum of 100 modules names specified.

Repeat the module selection command as necessary; e.g.,
FOR MODULES = (<name-1>,...,<{name-i)>)
FOR MODULES = (<name-i+l1>,...,<{name-n>)

The module selection command wmust precede the DETAILED
option.

103

RECORD CF CECISION TC CECISION (CC PATH) FXECUTICAN

RCOULE sCLASS

] TEST CASE AU 3

CC PATh I NQ.
NUMIER

e

NOT EXECUTED

b

NUPBER OF EXZCLTICNS o= NORMALIZFC TC mAXIPUS

Joommavenil, vamaaaylo-mre==abl,vocmaccdy,oea==s100,

XY

NUMBER CF

! ExECUTIONS

1 1
1 1 I xxx b4 1 1 1
2 [4 I xxx 1 2 1 b3
3 1 3 00000 I 1 1
. 1 I xxx 1 . 1 b
S 4 00000 I 1 b
see T eve GOBUG I eoe ovee oo 1 1
7 1 7 ¢uguo I 1 1
s 3 1 XXXXXXAXXXX 1 8 t 3
9 t I RXXXAXAXZXRXAXXRAXAALAXAAAXXXXXXXXXLXXAAXRX } ’ t ‘1
18 T 10 Q0000 1 1 b
11 1 I XXXXARAXXAXXAXXRANAXXAXXLAXXXXAXXXAXAXXK 1 11 1 10
12 I I xax 1 12 1 1
3 T 13 [LLI1 1 1
PUIN { 1 XEXXXXRXAXXXXXXXEXXXXXXXXXXXXXXARXAXXX 1 18 1 13
s b I xxx 1 18 1 1
16 4 3 XXXEXXAXXXXAXXEXXXXAXANXXXXXXXXXARX I 16 1 9
17 T 17 60000 I 1 14
18 1 T xxX 1 18 1 1
19 T 19 00000 I b3 b4
eoe 1 see 00000 T see ves eeo b b4
21 3 06000 I 1 b4
2 1 1 xxx g 2 1t 1
23 1 I XXXXXAXXXXXAAXXXAAAXAAXXXXAAXXAXARK XXX R 1 23 1 10
2% 1 1 xax 1 LI 1
28 1 T XXXXXXEXXAXAXXXXAXXXAXXXXRAXXXXXXXX 1 as !)
26 T 26 Q0000 1 b4
a7 4 T XAXXAAXXXXXXXAXXXAXRXXXAXXXXXXXX XXX R 1 27 b4 L]
28 T as 200090 1 I
29 1 I AXXZXXAXXRXAXXXXAANXXXXAXAAXXXXXXX t 29 1 L]
40 Tt 36 00000 I 1 4
n 13 1 XXXXXXAXXAEXAXEXAXEIXXAXXXXXAXXXXXX 1 3t % Y
32 T 22 80900 3 b I
a3 1 T ANXEAXAXNNRXAXRAXAXAXRXAXXAXXXXXXLX 4 a3 3 L)
3¢ 1 3e 80000 1 4 1
3 t 1 xax I 35 1 1
i I 3 00000 3 1
eee 1 eee 00030 I oo ses ooe I 1
.3 1 3 00000 I 4 1
4 1 T ARXXXAXXXAXAXLXXRXAAAXXAXXXXKAXXXXXX 1 “ 1 L]
L1] I 1 fax t 3 b4 1
46 1 46 goco0 I b4 1
“r 1 I OXXXXAAXREXAXXARXXAAAXAXXXXXXXAXXAXXXXEXZAXXIR XX XXX X 1 8?7 I 13
LTI S Y] 90000 I b b
49 b I xxx 1 .9 t 1
30 - 90000 I b4 1
e 1 eee QUJO0 I oo see ses 1) 4
S T Se 90000 I 3 1
58 1 T RAXARXX 1 LI | 2
L1 4 1 XXXYXXR 1 56 1 2
57 1 %7 80000 I I 1
e T see 00030 1 cos soe ese 1 1
(1] 1 60 09080 I 1 1
[33 1 1 xxx 1 [3) 1 1
62 HE 2 00030 I b3 I
[2- T 4 1 xax 1 3 1 1
o4 1 1 xxx 1 1) 1 1
&S 1 63 00000 I 1 4
see 1 ese G0CU0 I coe see oee 1 1
68 T 68 00G0d I 1 t
& 1 T xxx 1 ¢ I 1
70 T 170 00ogo 1 b3 {
7 t 1 xxx 1 7 I 1
s T 1n 90009 1 1 1
oo T eee G000G I eee soe sae . b4 t
% 107 000us I b b4
an 1 I XEXRXXAXEEXLXXRXXXAXAXXXXAXAXXXNXXIAXX 1 a0 1 10
3 S { 1 xxx b4 a1 1
4 t P RATKXZAXEAAXXXAXANIAXXXAXAXXXXXNUXX 1 FY I ; .
43 1 a3 0000¢ I t t
cee 1 sco 00000 & see sae cas 1 3
8 1 38 00000 I 1 T
TUTab NUBRER OF CD PATH LafCutlonhy s lég
TOTAL QF 6% AQT ExbCLTRD EXECUTRE 30/ %9 PERLENT LaEguity a 34,09

Figure 6.5.

104

Single Test DD-Path Execution

RECCAC CF CECISION TC CECISION (CC PATW) FXEcullon

MQOULE sCLASS 8 CumuLATTvE “ESuLTs CF & TEST CASES

U0 PaTh T nO. NUT EXECLTEDL | NUPRLR 0F F2LCLITONS =« NORMALLIZSO Tu sastmux

1 1 wURBER CF
NuPGER T 1. -2y, w0 e Hu. 100, 1 3 ExECUTICLAS
1 3
1 1 1 1 1 1 [}
a 1 1 1 2 I .
3 1 3 98000 I b4 1
s 1 b3 1 L) 1 L)
] 1 L] 00000 ¢ b4 t
e T sse 00000 I eoe o0s eus I b4
7 b 7 Q0000 3 1 1
s 1 T OOOXAAXXAXLXRAXXXAXAXXLXXAAXANXXXLXAAXXXR 1 s 1 17¢
’ 1 I XxXxXxax 1 s 1 36
10 T 10 Q0000 b4 b4
11 1 I XXXXAXAX 4 1t 1 38
12 T t b4 12 b4 2
13 1 13 guo9o I 1 b
14 1 I xxwx 1 1 b 26
PET { b b4 15 1 2
16 4 I xxx3 4 16 1 18
17 T 17 0000 I 1 14
18 1 1 1 18 t 2
19 T 19 30000 I 1 4
eee T ese 00000 I see o0e soe 1 T
a3 1 4 30000 1 1 1
2 1 1 1 22 I 2
23 1t I RXXXXXXX 1 F1 I 38
2% b4 1 1 as I 2
23 t 1 XXXXXXX I as 1 32
s 1 26 000400 I 4 t
27 1 1 xXxxXxx 1 27 1 32
28 I b 1 28 1 1
29 1 I XXXXXXX b4 a? 1 3
30 1 30 00000 1 1
31 b4 T XXXXXXX 4 kB3 b4 3
12 1 32 90000 I b 1
33 T I XxXxXxXxxx b4 33 1 3
3% 1 3 608030 b1 b4
LI 1 1 38 1 2
36 I 36 Q¢go0 ¢ 1 2
eve 1 eee 00000 I eoe ose sos b b4
L1 I 0 89033 1 1 b4
(29 1 1 3 a1 I 1
KY3 I e 00000 I b4 b1
.3 T 3 Q00a0 I 1 b4
L 13 1 1 XXXXXXX b (1] I 33
[11 1 b4 1 [1} 4 1
% 1 1 b . 1 3
(% 2 T XXXXXXXXZAXXXAXAAXXXXXXXXXXAXXXXAXXXXKXAXXXXRAAX XXX 1 7 1 208
“8]] 00000 I b b4
49 4 1 } 4 (3] b4 3
LU z b4 1 s0 1 1
S8 1 82 00000 3 b b
vee 1 eee 30000 1 eee veo sas b4 b
Se T s 60600 I b 1
(11 t Ix 1 59 1 3
% 1 T 1 6 I 3
7 b T xx l 57 1 9
10 1 S8 00000 1 1 1
39 T 39 00000 1 1
60 1 1 xx b (1 T s
33 1 1 1 (33 4 3
Y3 I 62 08000 I 1 b4
63 1 1 1 &3 t 3
al 1 1 1 [14 1 3
(1] T 63 ¢ogao 1 1
Iy 1 eee Q0000 I cee ves osos 1 1
e 1 &2 0dou0 1 I
0 1 b 1 9 I 3
70 T 10 00600 I b 1
12} 1 1 1 " T 1
2 b 1 1 12 1 2
3 1 1 1 13 1 2
T T Te o008 1 1
ase T eoe Q00QU 1 ses vee sae 1 4
o119 C3Guy § 1 1
(1] 1 1 xx 1 a0 1 19
'Y t 1 b al b 1
a2 1 I xx b4 a2 b v
1 e 000u0 I] 3
oo T eee 00000 I cee ooe sase t b4
9 1 N [TITT IR T 1
TOTAL NLERLR OF 0O PATM EaECUTIONS » 1y
TOTAL QF 86 NOT ERECLTES EXECLTEC w27 %2 PERCEAT CxCculln s “2.86 »

Figure 6.6. Cumulative DD—-path Execution

105

The AVFS options are specified by a command file. For FORTRAN the
command file contains the OPTIONS command as described in Section 3.3 or
a UNIVAC executes statement. For AED the command file contains a UNIVAC

execute statement. Sample command files are given in Appendix C.

106

APPENDIX A

AVFS COMMAND SUMMARY AND CHECKLIST

FORTRAN Commands
Either an OPTION or REPORT command is required; the other commands

are used when it is appropriate. They must appear in the order shown.
Where an abbreviation is allowed, it appears to the right of the

command; the appropriate UNIVAC run stream command is at the far right.

RESTART REST @XQT,R

RESTART instructs AVFS to use a saved restart file from a

previous rune.

EXPAND EXPA @XQT,E

EXPAND allows additional source to be added to a restart
file.

FILE,PUNCH = <file number> FILE,PUNC=<file number>

Instructs AVFS to reassign PUNCH; the default is UNIT 9.

INSTRUMENT, PUNCH, PROBE, (<file number>)

Instructs AVFS to reassign the data collection file. The
default is UNIT 1l2.

FIRSTLINE = (<run stream command>)

Instructs AVFS to insert the given run stream command as the

first line of each element.

OPTIONS=<1list> OPTI = <list>

<list> may contain one or more of the following optioms,

separated by commas:

LIST LIST @XQT,L
DOCUMENT DOCU @XQT,D
SUMMARY SUMM @XQT,B
STATIC STAT- @XQT, S
INSTRUMENT INST @XQT, I
INPUT/OUTPUT INPY @XQT,T
REACHING SET REAC none

REPORT = <list> REPO = <list>

<list> may contain one or more of the following reports,

separated by commas:

REPORT MINIMUM REPORT

NAME ABBREVIATION GENERATED

COMMONS Cco Commons Summary

PROFILE PR Statement Profile

INVQOCATIONS L Entrys and invocation
summary

COMMONS /ENHANCED CO/E Common Matrices

BANDS /n B or B/n Invocation Bands where n is

the number of levels

SPACE SP Invocation Space

SYMBOLS SY Symbol Report

READS R 1/0 Statements

CROSS CR Symbol Cross Reference
PICTURE PI Picture of module structure

A-2

FOR MODULE = (<namel>,<name2>,.¢es)

module selection command.

TESTBOUND ,MODULE = (<name>),STATEMENT = <number>

Used with instrumentation command for setting test case

boundaries.

REACHING SET,MODULE = (<name>),T0 = <DD-path number>,
FROM = <DD-path number>{, ITERATIVE}

When the option, REACHING SET, is used, it is necessary
to specify one or more reaching sets with the above
command. The use of ITERATIVE is optional; if present,

an iterative reaching set is generated.

A-3

ANALYZER COMMANDS

Selection of ANALYZER reports desired must be made by the user.
The type or report is specified in the command ,

OPTION(S) = <list>

<1list> may contain one or more of the following options, separated by

commas

DETAILED DETA
NOTHIT NOTH
SUMMARY SUMM

When the DETAILED option is listed, reports will be generated only for

those modules that are listed in a command,

FOR MODULE(S) = (<name-l1>,<name=2>, «..,<name-n>).

<name> is the name of the subroutine, function or program. This module

selection command must precede the OPTION = DETAILED command.

A-4

@xqr

@xqr

@xqQr

@XqQT

@xqr

@xqQr

@xqr

@xQr

@xqQT

@xQT

AED COMMANDS

GRC*LIST.LIST
enhanced listing

GRC*STATIC.STATIC

static analysis

GRC*CROSS .CROSS

local cross reference

GRC*SYMBOL . SYMBOL
symbols report

GRC*DEPEND . DEPEND

module dependencies

GRC*GLOBAL . GLOBAL

global cross reference

GRC*PROFILE.PROFILE

statement profile

GRC*UNITS. UNITS

dimensional analysis

GRC*TRACE.TRACE

trace instrumentation

GRC*ASSERT .ASSERT

assertion instrumentation

A=5

@XQT GRC*INST.INST

path instrumentation

@XQT GRC*REACH.REACH

reaching set generation

@XQT GRC*VCG.VCG

symbolic execution and verification condition gemeration

@XQT GRC*TREE.TREE

invocation hierarcy (calling tree)

@XQT GRC*FLOW.FLOW
flowgraph

@XQT GRC*INTER.INTER

interface report

A-6

APPENDIX B

FILE DESCRIPTIONS

FILE DATA MODE STORAGE RECCRD RECOMMENDED USAGE
NUMBER _ STRUCTLURE 1) (2) FORMAT ALLOCAT:ON {3)
2 library 8 R system standard (4) scrateh flle R/M
13 workspace B R system standard (4) scratch file R/
4 user commands H S card image scratch file R/
H commands [nput H S card Image system card reader R
permanent file
[reports H H 128 characters/ system printer W
ling max lmum
9 lastrumented/ H 1 card Image scratch file RN
restructured
source
3 source H s card Imzge systom card reader R
parmanant fila
8 new restart] s system standard peraanent tile]
tile
1" old restart 8 S system standard pormment file R
tile
12 probe test B S system standard permaent file R
data trace flle
Notes: (1) B = binary; H = character

(2) R = rangom;

S = saquentiai

(3) R = read only; R/W = read and/or write; W = write only
(4) Installiztion dependent

FILE
NUMBER

20

25

30

AED FILE DESCRIPTIONS

DATA
STRUCTURE MODE

SCURCE H

REPORTS H

TOKEN FILE H

MULTI-MODULE H
INFO.

INSTRUMENTED H
CODE

STORAGE

FORMAT

CARD IMAGE

TEXT LINES

TEXT LINES

TEXT LINES

CARD IMAGE

RECOMMENDED
ALLOCATION

STANDARD INPUT

STANDARD QUTPUT

TEMPORARY

TEMPORARY

TEMPORARY

APPENDIX C

JOB STREAMS FOR AVFS AT UNIVAC INSTALLATIONS

AVFS INITIAL RUN - CREATES AN INTERFACE FILE

@HDG

@ASG,A YOURSOURCE.

@USE Y.,YOURSOURCE.
@ASG,CP YOURFILE.,F///400
@USE 8.,YOURFILE.

@ASG,A GRC*AVFS.

@USE R.,GRC*AVFS.
@AsG,T 2.,F///1500
@AsG,T 13.,F///1500

@XQT R.AVFS

FOR MODULES=(LIST OF MODULES).

OPTION=STATIC.

@EOF

@ADD,P Y.PROCS
@ADD,P Y.ELEMENTS

@FIN

*k

AVFS INITIAL RUN **

YOUR FORTRAN OR SOURCE

(OPTIONAL) CATALOG INTERFACE FILE

ASG AVFS TRAN, ANALYZER

EXECUTE AVFS
(OPTIONAL) DEFAULT IS ALL MODULES

ANY LIST OF VALID OPTIONS (SEC. 4)

SEPARATES AVFS COMMANDS FROM YOUR
SOURCE
(OPTIONAL) ADD PROCS HERE

ADD SOURCE ELEMENTS HERE

@HDG
@ASG,A
@USE

@ASG,A

@USE
@ASG,A
@QUSE
@ASG,CP
@USE
@ASG,T
@ASG,T
@xQT

EXPAND.

FOR MODULES=(LIST OF MODULES).

AVFS EXPAND RUN - EXPANDS AN INTERFACE FILE

YOURSOURCE.
Y.,YOURSOURCE.

YOURFILE.

11.,YOURFILE.
GRC*AVFS.
R.,GRC*AVFS.
NEWFILE.
8.,NEWFILE.
2.,F///1500
13.,F///1500

R.AVFS

OPTION=STATIC.

@EOF

@ADD,P
@ADD,P

@FIN

Y.PROCS

Y.ELEMENTS

%

AVFS EXPAND RUN **

YOUR FORTRAN OR SOURCE

ASG AVFS INTERFACE FILE (FROM
PREVIOUS RUN)

ASG AVFS, TRAN, ANALYZER

NEW INTERFACE FILE

EXECUTE AVFS (EXPAND PLUS OPTIONS)
EXPAND INTERFACE FILE
(OPTIONAL) DEFAULT IS ALL MODULES

ANY LIST OF VALID OPTIONS (SEC.
4,)

SEPARATES AVFS COMMANDS FROM YOUR
SOURCE

(OPTIONAL) ADD PROCS HERE

ADD SOURCE ELEMENTS HERE

AVFS RESTART RUN -~ USES AN INTERFACE FILE

@HDG

@ASG,A YOURFILE.

@USE 11.,YOURFILE.
@ASG,A GRC*AVFS.
@USE R.,GRC*AVFS.
@sG,T 2.,F///1500
@Ase,T 13.,F///1500
@XQT R.AVFS
RESTART.
OPTION=STATIC.

@FIN

*%

AVFS RESTART RUN **

AVFS INTERFACE FILE (FROM PREVIOUS
RUN)

ASG AVFS, TRAN, ANALYZER

EXECUTE AVFS USING A RESTART FILE

ANY LIST OF VALID OPTIONS (SEC 4.)

AVFS INSTRUMENT, EXECUTE AND ANALYZE RUN

@HDG

@ASG,A YOURSOURCE.

@USE Y., YOURSOURCE.
@ASG,A GRC*AVFS.
@USE R. ,GRC*AVFS.
@ASG,T 2.,F///1500
@ASG,T 13.,F///1500
@XQT R.AVFS

FILE,PUNCH=10.

INSTRUMENT , PUNCH,PROBE, (20).
FIRSTLINE = (@QFIN,S TPFS$.+).
OPTION = INSTRUMENT,LIST.

TESTBOUND ,MODULE=(MAIN),
STATEMENT=10.

@ADD,P Y.PROCS

@ADD,P Y.ELEMENTS

@EOF
@ADD,P 10.
@MAP
@xQT
(YOUR DATA)
@xQT R.ANALYZER

*%

AVFS INSTRUMENT, EXECUTE, AND
ANALYZE RUN *%*

YOUR FORTRAN SOURCE

ASG AVFS, TRAN, ANALYZER

EXECUTE AVFS (INSTRUMENT AND LIST)

PLACE INSTRUMENTED SOURCE ON UNIT
10

COLLECT DATA ON UNIT 20
PREPARE SOURCE FOR ASCII COMPILER
INSTRUMENT AND LIST

TEST CASE BOUNDARY

(OPTIONAL) ADD PROCS HERE

ADD SOURCE ELEMENTS HERE

YOUR INSTRUMENTED SOURCE IS ON 10.
MAP FOR YOUR PROGRAM

EXECUTE YOUR INSTRUMENTED PROGRAM

EXECUTE COVERAGE ANALYZER

FOR MODULES=(LIST OF INSTRUMENTED ELEMENTS).

OPTION=SUMMARY ,NOTHIT ,DETAILED.

@FIN

ANY LIST OF VALID OPTIONS (SEC. 6)

AVFS FLOWGRAPH ANALYSIS

@HDG %% AVFS FLOWGRAPH ANALYSIS #%
@ASG,A GRC*AVFS.
@ASG,A YOURSOURCE.
@ASG,T TEMP.

@ASG,T 2.,F40///1500
@ASG,T 13.,F40///1500
@USE 8.,TEMP.

@XQT GRC*AVFS.AVFS
OPTION = DOCUMENT
REPORT = PICTURE

@EQF

@ADD,P YOURSOURCE.
@EOF

@FIN

C-5

AVFS STATIC ANALYSIS

@HDG *% AVFS STATIC ANALYSIS **
@ASG,A GRC*AVFS.

@ASG,A YOURSOURCE.

@ASG,T TEMP.

@ASG,T 2.,F40///1500

@ASG,T 13.,F40///1500

@USE 8.,TEMP.

@XQT GRC*AVFS.AVFS

OPTION = STATIC

FOR MODULES = (MAIN,SORT,CALC)
@EOF

@ADD,P YOURSOURCE.

@EOF

@FIN

AVFS REACHING SET ANALYSIS

@HDG *% AVFS REACHING SET ANALYSIS **
@ASG,A GRC*AVFS.

@ASG,A YOURSOURCE.

@ASG,T TEMP.

@ASG,T 2.,F40///1500

@ASG,T 13.,F40///1500

QUSE 8.,TEMP.

@XQT GRC*AVFS.AVFS

OPTION = REACH

REACHING SET, MODULE = (SORT), TO = 7, FROM =3.
@EOF

@ADD,P YOURSOURCE.

@EOF

@FIN

AVFS INDENTED LISTING

@HDG ** AVFS INDENTED LISTING **
@ASG,A GRC*AVFS.
@ASG,A YOURSOURCE.
@ASG,T TEMP.

@ASG,T 2.,F40///1500
@ASG,T 13.,F40///1500
QUSE 8.,TEMP.

@XQT GRC*AVFS.AVFS
OPTION = LIST

@EOF

@ADD,P YOURSOURCE.
@EOF

@FIN

AVFS DOCUMENTATION

@HDG ** AVFS DOCUMENTATION **
@ASG,A GRC*AVFS.
@ASG,A YOURSOURCE.
@ASG,T TEMP.

@ASG,T 2.,F40///1500
@ASG,T 13.,F40///1500
@USE 8.,TEMP.

@XQT GRC*AVFS.AVFS
OPTION = DOCUMENT
@EOF

@ADD,P YOURSOURCE.
@EOF

@FIN

c-9

AVFS SUMMARY

@HDG *% AVFS SUMMARY **
@ASG,A GRC*AVFS.
@ASG,A YOURSOURCE.
@ASG,T TEMP.

@ASG,T 2.,F40///1500
@ASG,T 13.,F40///1500
@USE 8.,TEMP.

@XQT GRC*AVFS.AVFS
OPTION = SUMMARY

@EOF

@ADD,P YOURSOURCE.
@EOF

@FIN

Cc-10

AVFS INDENTED LISTING

@HDG . *% AVFS INDENTED LISTING **
@ASG,A GRC*LIST.

@ASG,A YOURSOURCE.

@ASG,AX INSERTS.

@XQT GRC*LIST.LIST

@ADD,P YOURSOURCE.

@FIN

c-11

AVFS SYMBOLS

@HDG %% AVFS SYMBOLS #%
@ASG,AX GRC*SYMBOL.SYMBOL

@ASG,A YOURSOURCE.

@ASG,T TKFIL.

@USE 21.,TKFIL.

@ASG,AX INSERTS.

@ASG,T LKFIL.

@USE 22.,LKFIL.

@XQT GRC*SYMBOL.SYMBOL

@ADD,P YOURSOURCE.

@FIN

c-12

AVFS UNITS ANALYSIS

@HDG %% AVFS UNITS ANALYSIS #*
@ASG,A GRC*UNITS.

@ASG,A YOURSOURCE.

@ASG,AX INSERTS.

@XQT GRC*UNITS.UNITS

@ADD,P YOURSOURCE.

@FIN

Cc-13

AVFS INTERFACE

@HDG *% AVFS
@ASG,AX GRC*INTER.
@ASG,A YOURSOURCE.
@ASG,T TKFIL.

@USE 21.,TKFIL.
@ASG,AX INSERTS.
@ASG,T LKFIL.

@USE 22.,LKFIL.
@ASG,AX LIBOLD.
@USE 11.,LIBOLD.
@CAT LIBNEW.

@ASG,AX LIBNEW.

@QUSE 8.,LIBNEW.

@XQT GRC*INTER.INTER
@ADD,P YOURSOURCE.

@FIN

INTERFACE **

Cc-14

AVFS CROSS REFERENCE

@HDG *% AVFS CROSS REFERENCE #*%
@ASG,AX GRC*CROSS.

@ASG,A YOURSOURCE.

@ASG,T TKFIL.

@USE 21.,TKFIL.

@ASG,AX INSERTS.

@ASG,T LKFIL.

@QUSE 22.,LKFIL.

@XQT GRC*CROSS.CROSS

@ADD,P YOURSOURCE.

@FIN

C-15

AVFS INVOCATIONS

@HDG ** AVFS
@ASG,AX GRC*INVOKE.

@ASG,A YOURSOURCE.

@ASG,T TKFIL.

@USE 21.,TKFIL.

@ASG,AX INSERTS.

@ASG,T LKFIL.

@QUSE 22.,LKFIL.

@XQT GRC*INVOKE.INVOKE
@ADD,P YOURSOURCE.

@FIN

INVOCATIONS #**

c-16

AVFS DEPEND

@HDG *%* AVFS DEPEND
@ASG,AX GRC*DEPEND.

@ASG,A YOURSOURCE.

@ASG,T TKFIL.

@QUSE 21.,TKFIL.

@ASG,AX INSERIS.

@ASG,T LKFIL.

@USE 22.,LKFIL.

@XQT GRC*DEPEND.DEPEND

@ADD,P YOURSOURCE.

@FIN

c-17

k%

AVFS TREE

@HDG ** AVFS TREE **
@ASG,AX GRC*TREE.

'@ASG,A YOURSOURCE.

@ASG,T TKFIL.

@USE 21.,TKFIL:

@ASG,AX INSERTS.

@ASG,T LKFIL.

@USE 22.,LKFIL.

@XQT GRC*TREE.TREE

@ADD,P YOURSOURCE.

@FIN

C-18

AVFS GLOBAL CROSS REFERENCE

@HDG *%* AVFS CROSS REFERENCE #%*
@ASG,AX GRC*INTER.
@ASG,A YOURSOURCE.
@ASG,T TKFIL.

@USE 21.,TKFIL.

@ASG,AX INSERTS.

@ASG,T LKFIL.

@USE 22.,LKFIL.

@ASG,T FINO28.

@QUSE 28.,FTN0O28.

@XQT GRC*GLOBAL.GLOBAL
@ADD,P YOURSOURCE.FIRST
@XQT GRC*GLOBAL.GLOBAL
@ADD,P YOURSOURCE.SECOND
@XQT GRC*GLOBAL.PRINT

@FIN

c-19

AVFS STATEMENT PROFILE

@HDG *% AVFS STATEMENT PROFILE *%*

@ASG,A GRC*PROFILE.

@ASG,A YOURSOURCE.
@ASG,AX INSERTS.

@XQT GRC*PROFILE.PROFILE
@ADD,P YOURSOURCE.

@FIN

Cc-20

AVFS INSTRUMENTATION

@uDG *% AVFS INSTRUMENTATION ##

@ASG,A GRCAINST.

@ASG,A INSERTS.

@ASG,T INSTFL.

QUSE 30.,INSTFL.

@ASG,T TABFIL.

@USE 25.,TABFIL.

@ASG,A YOURSOURCE.

@XQT GRCXINST.INST

@ADD,P YOURSOURCE.

@ASG,T PROBE.

@ASG,A AUTO.

@ASG,A ALTLIBAFIN.

@ALTLIB*FIN.FIN,F AUTO.MAIN

@PACK AUTO.

@TPF AUTO.

@PACK

@PREP

@USE 3.,PROBE.

@XQT AUTO.MAP

@COPY,I INSTFL.,YOURSOURCE.INSTFL

@COPY,I PROBE.,YOURSOURCE.PROBE

@CAPS*CROSS .AEDCAPS ,SC YOURSOURCE.INSTFL, YOURSOURCE. INSTFL
@CAPS*CROSS .AEDCAPS ,SC YOURSOURCE.PROBE, YOUR.SOURCE.PROBE
@CAPS*CROSS.CASM2,S YOURSOURCE.INSTFL,YOURSOURCE.OBJNAM
@CAPS*CROSS.CASM2,S YOURSOURCE.PROBE,YOURSOURCE.DDPATH
@CAPS*CROSS.LINK,LRSI ,YOURSOURCE.INSTFL

ORIGIN OF PROGRAM
INCLUDE FOR PROGRAM

END
@XQT CAPS*CROSS.HPLDTAPE
YOURSOURCE « INSTFL

QFIN

c-21

AVFS TRACE INSTRUMENTATION

@HDG *% AVFS TRACE *=*

@ASG,A GRC*TRACE.

@ASG,A INSERTS.

@ASG,T INSTFL.

@USE 30.,INSTFL.

@ASG,T TABFIL.

@USE 25.,TABFIL.

@ASG,A YOURSOURCE.

@XQT GRC*TRACE.TRACE

@ADD,P YOURSOURCE.

@COPY,I INSTFL.,YOURSOURCE.INSTFL
@CAPS*CROSS . AEDCAPS, SC YOURSOURCE. INSTFL, YOURSOURCE . INSTFL
@CAPS*CROSS.CASM2,S YOURSOURCE.INSTFL,YOURSOURCE.OBJINAM
@CAPS*CROSS.LINK,LRSI ,YOURSOURCE.INSTFL

ORIGIN OF PROGRAM
INCLUDE FOR PROGRAM

END
@XQT CAPS*CROSS.HPLDTAPE
YOURSOURCE « INSTFL

@FIN

c-22

AVFS ASSERTION INSTRUMENTATION

@HDG %% AVFS ASSERTION INSTRUMENTATION *=*
@ASG,A GRC*ASSERT.

@ASG,A INSERTS.

@ASG,T INSTFL.

@QUSE 30.,INSTFL.

@ASG,T TABFIL.

@USE 25.,TABFIL.

@ASG,A YOURSOURCE.

@XQT GRC*ASSERT.ASSERT

@ADD,P YOURSOURCE.

@COPY,I INSTFL.,YOURSOURCE.INSTFL

@CAPS*CROSS .AEDCAPS,SC YOURSOURCE.INSTFL,YOURSOURCE.INSTFL
@CAPS*CROSS.CASM2,S YOURSOURCE.INSTFL,YOURSQURCE.OBJNAM
@CAPS*CROSS.LINK,LRSI ,YOURSOURCE.INSTFL

ORIGIN OF PROGRAM
INCLUDE FOR PROGRAM

END
@XQT CAPS*CROSS.HPLDTAPE
YOURSOURCE « INSTFL

@FIN

c-23

AVFS REACHING SET LISTING

@HDG *%k
@ASG,A GRC*REACH.
@ASG,A YOURSOURCE.
@ASG,AX INSERTS.
@XQT GRC*REACH.REACH
@ADD,P YOURSOURCE.
@EOF

1 5
@FIN

AVFS REACHING SET LISTING *=*

C-24

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.
NASA CR-166346
4. Title and Subtitle 5,

Report Date
April 1982

Automated Verification of Flight Software -

6. Performing Organization Code
User's Manual

7. Author(s) 8. Performing Organization Report No.

S. H. Saib
10. Work Unit No.

9, Performing Organization Name and Address T3236Y

General Research Corp.
P.0. Box 6770

11. Contract or Grant No.

NAS 2-10550
Santa Barbara’ CA 93111 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address Contractor Report
National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, D.C. 20546 512-54-11

15. Supplementary Notes
Technical Monitor: Pio de Feo, Mail Stop 210-9, NASA-Ames Research Center,

Moffett Field, CA 94035
FTS 448-5048 Com'l: 415-965-5048

16. Abstract

AVFS (Automated Verification of Flight Software) is a collection of
tools for analyzing source programs written in FORTRAN and AED. AVFS aids
in improving the quality and the reliability of flight software by providing:

o Indented listings of source programs

Static analysis to detect inconsistencies in the use of variables
and parameters

Automated documentation

Instrumentation of source code

Retesting guidance

Analysis of assertions

Symbolic execution

Generation of verification conditions

Simplification of verification conditions

o

OO0 O0O0O0OO0O0O0

This manual describes how to use AVFS in the verification of flight software.

AVFS has been installed at NASA-Ames Research Center, Moffett Field,

California. The AVFS tools interface with a PDP 11{60 computer and a CAPS 6
based digital flight control systems to form a comp ete flight software V&V

environment. —
17. Key Words (Suggested by Author(s}) 18. Distribution Statement
Flight Software Test Tools, Software Unlimited
Verification STAR Category 61
19. Security Classif. {of this report) 20. Security Classif. (of this page) 21. No. of Pages 22, Price”
Unclassified Unclassified 109

*For sale by the National Technical Information Service, Springfield, Virginia 22161

End of Document

