
NASA CONTRACTOR REPORT 166346

Automated Verification of Flight Software -
User's Manual

S. H. Saib

CONTRACT NAS2- 10550
April 1982

NI\5I\
1111111111111 11111111111111111111111111111111

NF02616

NASA-CR-166346
19820022082

]> ::!(:~~
.:J:J '" T' :r} .;~~

:n :n

~~) .:C> ~::
<:;, c .-~
;0 ._, · .. ·1 C' ..
'n I:

:T1
:~:
·_·f
;T1
:0

:r.> ·1;:1 "" :-) "" :[> :~) I> :[> ::~ ...• :):)
:::;0 ::) ::~: :~) 'I:' "" :::: ::;,. '\.J

:n:n ...
'r, '1'1

..... "") T" :::> T' '. J -'; . n '-', '\'1 .:'" .,., .,.,

.i~:: ~l3 ~~~~ ~~ :~~ ~~(:f,: ~~~ ~i~; ~§~ ;l:~' ~~~ .-,. :=~ :=~
"i; :[> ::) ::;. '1'1:lI :1.J:I.I .,.,~) :::J

::l~ ... ~.... ~ .. - :::[~_...", ~ ~::~ ~r"t 01
r n ''') ". T" T' ,[., ·_·1 .'1'" rn r n
.: .. ;. ![" .,;. ;~:I ;,:; 'l'J . n ,.:, : ,.J •. :~. ~l'j

:'::1 ;r.j " .. ~ ;:~:r:: ; . ·....:1:'. :it; .. "~
: ,., ''') 'n ,." 'T', '[')0 ;0 'f)
~:)~[:I :r: "r:; ~ ~{::: ;::: ;~:
:~= 'n :1.1 . .,: ;0 "" ""
:1') ;[;)< _ , ":!; .. _ :.:~ .~~) ~~: ~~~ ~~:

).J ._, : :' '~" '.) .• J J .[., ", J". .D·
'0 ...• :~) ::i ;~= 'J) "" ;:;::n :n
:0 :J:: :'';0 , ::: .:n :C> :[). :r.>
r .. ·, ,-. . .. ~ '''', 'u :f:t. 'n ". . nil .:;:) ... ~ :::; :.... ~ :6 :-) : ..)
;u -< : ..) . .,; '\..1, ;0 ;~J

~~i~ "1'1 ~~~ i:i g: ~f.~ '~D ~;'j ... ~~ .~.~
'n ::'" ·· .. 1 'J') I 'j') :'j')
. . :;:; :r.J :::,:\J :n ':n
"". ::;. :n ··h I'U :n :,.) ;,.)
;::? i::: : .. - :~! ;:~ ;P' ;l'~, ;;I~ :n
...... 1 11 \'" ... 1 .. ·h .. .:.) .1) , J '"J.J -... :..
::!~.,., :,): , .. ", :TI TI .~>
'0 ;U '0 ':LI :)"1 .:n
~::: .. -... ;r.J J:, <;:) .",J
... ~ ;::: ::;, ,:l:J :::;)::1
'1'1 :;.) :;') :1.I...... :)::'
'n '0 '1' .'\',

~~~:~ ~~r ~t ~~::~~ .. 
~"" .~; 

~~: :L' 
TI 'q 
~:) ;0 
;1:) :"') 
... ~ 'r, :1.1 ;u 
:r.> :-) 
;::~ :I> .~, 

""" ,-~ ,-. 
::) 

.~, ..... 
i::: 
:l:i 
."J; 

'I:' , 

,,,.-

.:0 
"[:' 

<I) '.') 
.~. '[" 
"" :.:~ ::::) .,., 
~;:> ~;') 

<:) 
;0 

:j~: -<.: 
;,.) ·:n ._. 

:n :0 
'1'1 ',., .... ~ .... ~. 
~;:;I ::) 
,~:, .1:. 

· .. ·f· .. ·1 
"1'1 'r, 
;0 :u 
::1' :;11: 

:f) ;:;~ 
Tf 
;f,J :D· 

..... J; 

:0 

~ 
£ Zz 
~ 88 : .. ) c::: 

::i~ ::) :(l' :::1 
:[> ::i~ ,-. :u 
~~~ :!~ ;~~ 
:f.; ::~ ;;~: :L:i ._- TI .-~

:n :f,J ._of

:n :n ... ,
:.')
~:) ::):
:~r ~;~ :n
'0 :[> , i; 'U
::~
'1'1
;0 .-~ :r:

we::: : ..)

~~ ~~
~~

~ -# Zz

:==~: :::!:
:-) :t} ._- :n
'r.> T> :h "
:n : ..)
.-. :n ',., ,"
...... :h

"rl ~j"l ... , 'n
... ' :, . .1

.~>
:n
::::0-

:f.>
:n I ..

\
\

::) ::J
....... ··001

, , 1-,)

: .. ~ :-~
....... _ ...
~:) ~:)

ii:~ ~F
;(~ ;r.~
-<. ... <. ...

;

/

NASA CONTRACTOR REPORT 166346

Automated Verification of Flight Software -
User's Manual

S. H. Saib
General Research Corp.

Prepared for
Ames Research Center
under Contract NAS2-l0550

NI\SI\
Ndtlol1al AeroniiutlCS ilnd
Space Administration

Ames Research Center
t\1ofl{)tt Field. CalifornlCl 94035

ABSTRACT

AFVS (Automated Verifiction of Flight Software) is a collection of

tools for analyzing source programs written in FORTRAN and AED. AVFS

aids in improving the quality and the reliability of flight software by

providing:

• Indented listings of source programs

• Static analysis to detect inconsistencies in the use

of variables and parameters

• Automated documentation

• Instrumentation of source code

• Retesting guidance

• Analysis of assertions

• Symbolic execution

• Generation of verification conditions

• Simplification of verification conditions

This manual describes how to use AVFS in the verification of

flight software.

AVFS is one important component of a Digital Flight Control System

Verification Laboratory (DFCSVL) which has been established at NASA Ames

Research Center, Moffett Field, California. The DFCSVL includes a PDP

11/60 processor and a pa11etized CAPS 6 based digital flight control

system. Most of the AVFS files have been hosted in the Univac 1100

computer system in Santa Clara, California. Access to these files from

the DFCSVL is provided via a direct link connecting the PDP 11/60 and

the Univac 1100.

i

ii

CONTENTS

Section PAGE

ABSTRACT i

1 INTRODUCTION 1

1.1 Testing and Verification Sequence 3
1.2 User's Manual Organization 7

2 AVFS OVERVIEW 9

3 USING AVFS 15

3.1 Interface File 21
3.2 Instrument File 22
3.3 Firstline 22
3.4 Processing Opt~ons 23
3.5 Report 24
3.6 For Modules 25

4 OPTION DESCRIPTIONS 27

4.1 List 27
4.2 Static 31
4.3 Document 39
4.4 Summary 61
4.5 Instrument 67
4.6 Reaching Set 82
4.7 Formal Verification 86

5 AVFS CONSTRAINTS 93

5.1 Universal Constraints 93
5.2 Syntax Constraints 93

6 ANALYZER COMMANDS 95

6.1 Summary 98
6.2 Nothit 101
6.3 Detailed 103

APPENDIX
A AVFS COMMAND SUMMARY AND CHECKLIST

B FILE DESCRIPTIONS

C JOB STREAMS FOR AVFS AI UNIVAC INSTALLATIONS

iii

NO.

1.

1.1

1.2

1.3

2.1

2.2

2.3

3.1

4.la

4.lb

4.2

4.3

4.4

4.5

4.6a

4.6b

4.7a

4.7b

4.8a

4.8b

4.9a

4.9b

4.l0a

4.l0b

4.11

4.12

4.13

4.l4a

4.l4b

4.15

FIGURES

Digital Flight Control System Verification Library

DFCS Verification Laboratory Block Diagram

AVFS Capabilities

Steps in Validating a Program with AVFS

Software Verification Augmented by AVFS

Sequence of Source Program Analysis, Test, and Formal

Verification

Report Index

AVFS Processing

FORTRAN Listing

AED Listing

Static Analysis - FORTRAN

Static Analysis - AED

Units Analysis - AED

Interface Analysis - AED

FORTRAN Symbols Report

AED Symbols Report

FORTRAN Cross Reference Report

AED Cross Reference

FORTRAN Invocation Space Report

AED Invocation Space Report

FORTRAN Invocation Summary Report

AED Invocation Summary Report

FORTRAN Invocations Band

AED Invocations Band

FORTRAN Common Matrices

FORTRAN I/O Statements

FORTRAN Commons Cross Reference

FORTRAN Externals Cross Reference

AED Global Cross Reference

FORTRAN Picture of Module Structure

iv

PAGE

vi

1

3

4

10

11

14

15

29

30

35

36

37

38

41

42

44

45

47

48

49

50

51

52

53

54

55

56

57

59

NO.

4.16

4.17a

4.17b

4.18

4.19

4.20

4.21

4.22

4.23

4.24

FIGURES (Continued)

AED Picture of Module Structure

FORTRAN Statement Profile

AED Statement Profile

FORTRAN Common Summary

AVFS Instrumentation of Source Code

Loading and Test Execution

DD-Path Definition

Input/Output Listing

FORTRAN Assert Instrumentation

AED Path Definition

4.25 Trace Assertion Report

4.26 AED Assert Listing

4.27a FORTRAN Reaching Set

4. 27b AED Reaching SET

4.28 DD-Path Definition for Verification

4.29

4.30

4.31

6.1

6.2

6.3

6.4

6.5

6.6

Verification Condition Generation

AED Symbolic Execution Report

AED Verification Condition Report

Execution Coverage Sequence

DD-Path Summary (with the Immediately Preceding Test Case)

Multiple Test DD-Path Summary

DD-Paths Not Executed

Single Test DD-Path Execution

Cumulative DD-Path Execution

v

PAGE

60

64

65

66

68

70

72

75

77

79

80

81

84

85

87

88

90

91

96

99

100

102

104

105

\ / / ,.

.\ \ - / I
I

"

. ~' .
. .. ,/

//

.. ~ ... ,

/1"''''-

//
Figure 1. Digital Flight Control System Verification Laboratory

1 INTRODUCTION

AVFS (Automated Verification of Flight Software) is a collection

of tools for analyzing flight software. AVFS is one important component

of a Digital Flight Control System Verification Laboratory (DFCSVL),

pictured in Figure 1 (DFCSVL block diagram shown in Figure 1.1), which

has been established at NASA Ames Research Center, Moffett Field,

California.

/-......,
SOFTWARE I'.... ./ PILOT -

TOOLS TOOLS INFORMATION
COMPUTER DATA PANEL

BASE
,~

ENVIRONMENT FUGHT
~ COMPUTER COMPUTERS

SENSORI
ACTUATOR

MODELS

---~

~
~

USER

[§J
DATA

"-"""

'--
~--~ -y'=--"':-":--

Figure 1.1 DFCS Verification Laboratory Block Diagram

1

The DFCSVL includes a PDP 11/60 proces sor (the environment

computer) and a palletized CAPS 6 based digital flight control system

(flight computers, pilot information panel, and sensor/acutator models).

Most of the AVFS tools have been hosted in a Univac 1100 computer system

(the software tools computer). Access to the AVFS tools from the

environment computer is via a high speed data link over a telephone

line.

AVFS analyzes source programs written in FORTRAN or AED (Automated

Engineering Design). AED is an Algol-like programming language origin

ally developed at MIT for the U.S. Air Force.

AVFS aids in improving the quality and reliability of flight

software by providing:

• Indented listings of source programs

• Static analysis to detect inconsistencies in the use of

variables and parameters

• Automated documentation

• Instrumentation of source code

• Retesting guidance

• Analysis of assertions

• Symbolic execution

• Generation of verification conditions

• Simplification of verification conditions

AVFS allows the addition of assertions to a program. These asser

tions make it possible for AVFS to include (1) a more comprehensive

static analysis than is possible without the use of assertions, (2) more

useful results from execution testing, and (3) formal verification by

the generation and simplification of verification conditions.

1.2 shows the various AVFS capabilities.

2

Figure

VERIFICATION
CONDITION
GENERATION
AND
SIMPLIFICATION

SYMBOLIC
EXECUTION

ASSERTION
ANALYSIS

INDENTED
LISTINGS

AVFS

RETESTING
GUIDANCE

Figure 1.2. AVFS Capabilities

1.1 TESTING AND VERIFICATION SEQUENCE

11\
11\

STATIC " ON

ANALYSIS -0
I :z

-<

AUTOMATED
DOCUMENTATION

INSTRUMENTATION

The traditional method of detecting errors is limited to those

errors which surface at compilation and during execution. AVFS, how

ever, provides assistance to the user through system integration,

testing, documentation, program verification, and maintenance.

As flight software is being written, the programmer can submit one

or more modules for analysis by AVFS so that errors will be detected

before they propagate through the entire system. Assertions should be

included in the source text, as a valuable part of the analysis relies

on information about the variables that are supplied in the assertions.

Figure 1.3 illustrates the steps to be taken in validating a program

with AVFS.

3

CORRECT CORRECT CORRECT .. • - •
SYNTAX ERRORS SEMANTIC ERRORS EXECUTION ERRORS

"-....
PROGRAM "-

EXECUTION ~
-0

+ TEST I

ASSERTIONS ~

PROGRAM
LISTING

VARIABLE SET/USE TEST RESULTS

+ ASSERTED/ACTUAL USE EXECUTION ERRORS

DIAGNOSTICS EXTERNAL REFERENCES ASSERTION EXCEPTIONS

PHYSICAL UNITS INPUT/OUTPUT TRACE

UNREACHABLE CODE PATH COVERAGE

PERFORM FORMAL
,- C TION VERIFI A -

TESTED ANNOTATED
PROGRAMS PROGRAM SOURCE

+ VERIFIER +
DIRECTIVES SYMBOLIC

-- - EXECUTION OF
EXPRESSIONS

+
VERIFICATION
CONDITIONS

+
SIMPLIFIED
VERIFICATION
CONDITIONS

."./

Figure 1.3. Steps in Validating a Program with AVFS

1.1.1 Syntax Errors

The first step in verifying a program is the elimination of syntax

errors. If the source is written in FORTRAN, the FORTRAN compiler

should be used to provide a listing and a diagnostic report. If the

source is written in AED, the AED compiler should be used in a similar

manner.

1.1.2 Static Analysis

Once syntax errors found by the compiler have been corrected, the

source code is ready for the second step in verification (Fig. 1.2),

which is static analysis to detect consistency errors. It is not

necessary to wait for integration of the entire software system to begin

using AVFS; one module at a time can be submitted for static analysis.

By doing this errors will be detected as early as possible. The static

analysis (which will be described in detail in Sec. 4) examines the

source code for the following inconsistencies:

•

•

Physical-units errors:

asserted physical units

correspond to actual use.

operations on variables whose

(feet, kilograms, etc.) do not

Set/use errors: variables which are used before they are

set to a value, or set to a value and then not used.

• Asserted/ actual use errors: parameters which are used as

output variables when they have been restricted, by

assertions, to being input variables, or vice-versa.

• Graph errors: unreachable statements which cannot be

executed because they are structurally disconnected from the

main program.

• Loop errors: uninitialized loop variables.

5

• Poor practice errors: unused parameters, constant parame

ters, double parameters, expression parameters, function

parameters.

1.1.3 Execution Testing

When a software system is fully integrated and the inconsistencies

found by static analysis have been corrected, the next step is execution

testing. When a program is ready for this step, AVFS offers assistance

before, during, and after execution.

In preparation for testing, AVFS analyzes the program to determine

the paths through the program. AVFS instruments the program by auto

matically inserting probes at appropriate points in the program to

measure testing coverage, to check on assertion violations, or to trace

variables in the code. During an execution test, these probes record

information which can be used to report on execution coverage, assertion

violations, execution time, and the value of important variables. When

parts of a program have been found to be untested, another AVFS tool can

provide help in selecting test cases to exercise these untested paths of

the program by delineating the unreached portions of code. During the

entire testing process, AVFS can be thought of as a partner, supplying a

wide variety of automated aids to comprehensive testing.

1.1.4 Formal Verification

Following the correction of any errors found during static

analysis and execution testing, the tested program is ready for formal

verification, which is the final step in verifying a program (Fig. 1.2).

When a program. is executed, numerical data is supplied as input. The

procedure for formal verification is to execute the program. "symbolic

ally," that is, using symbols as input data rather than specific

numbers. The program is then verified or "proved" correct for a wider

range of its variables then it is practical to assign to them during

execution.

6

AVFS allows the symbolic execution of variables, expressions, or

assertions. The symbolic execution of variables or expressions can be

used to verify that a module's output is the same as the formula it has

been specified to compute. The symbolic execution of assertion results

in what has been termed verification conditions. By showing that the

verification conditions for a module are true, it is said that the

module has been formally verified with its assertions.

1.2 USER'S MANUAL ORGANIZATION

This manual describes how to use AVFS as an aid from the beginning

to the end of the software development cycle. Information is presented

in the order that the user is expected to need it. Section 2 is an

overview of the type of aid AVFS provides. Section 3 explains how to

use AVFS (commands, files, etc.). Section 4 describes.each of the AVFS

capabilities. Section 5 lists AVFS constraints. When the user's program

has been instrumnted by AVFS and is ready for testing, special commands

are needed to generate execution coverage analysis reports. These

commands are described in Sec. 6.

Appendix A contains a summary of the AVFS commands. Tables

listing the files used in AVFS processing are in Appendix B., Job

streams for the Univac 1110 in Appendix C.

7

8

2 AVFS OVERVIEW

This section contains an ovreview of the way in which AVFS can aid

the user not only in creating the code but during testing and documen

tation. The information presented here about what AVFS does is very

general; the following sections contain more complete details of the

full power of AVFS and how to use it.

Figure 2.1 shows how AVFS fits into the software development cycle

to augment software analysis and testing. The additional features are

indicated by diagonal lines. The user's source code can be analyzed by

AVFS and the results will be presented in reports which help the user

decide if acceptance criteria are met. AVFS can also instrument source

code prior to execution to provide a measure of test coverage, to

provide automatic checks on the behavior of a program and to trace

module variables. AVFS can be used to perform formal verification of

formulas and assertions via symbolic execution.

The usual program analysis and testing sequence is shown in Fig.

2.2. AVFS analyzes either FORTRAN or AED code and generates the

following information:

• An enhanced listing of each module

• A static analysis of each module

• Interface data and module relationships

• Information about each module in brief form

• Structural information about each module

• Trace information about variables

• Assertion violations

• Assistance in retesting

• Symbolically executed formulas

• Verification conditions

9

SPECIFICATION f-------------I ACCEPTANCE
CRITERIA

TEST
DATA

SOURCE
PROGRAM

TEST TEST
EXECUTION RESULTS

Figure 2.1. Software Verification Augmented by AVFS

10

REACHING
SETS

NO

9
UST

STATIC

INTERFACE

DOCUMENT

SUMMARY

UNITS

TRACE

ASSERT

INSTRUMENT

YES r-----.-.

NO

SYMBOUC
EXECUTION

VERIFICATION
CONDITION

END

...
'"

I

~

Figure 2.2. Sequence of Source Program Analysis,
Test, and Formal Verification

11

The TRACE, ASSERT, and INSTRUMENr functions prepare the user's program

for execution testing. Utilizing the knowledge it obtains about the

structure of the program, AVFS can instrument the user's program by

inserting software probes in each path. In addition, INPUT and OUTPUT

assertion statements which list selected variables can be added to a

module and AVFS will automatically generate code to output the values of

these variables during execution of the modules. ASSERT statements

which place conditions on selected variables will cause AVFS to auto

matically generate code to report on assertion violations during module

execution.

When an instrumented module is executed, data is recorded each

time a path is traversed. For FORTRAN programs, the path data is stored

on a file for later analysis by a coverage analyzer on the Univac. For

AED programs, the path data is stored in the CAPS memory for later

analysis by a coverage analyzer on the PDP 11/60. In either case, these

reports show the user where to focus retesting. AVFS can make further

tests easier by furnishing a Reaching Set Report to list the source code

on paths which were not executed. The user can then determine the

values that must be assigned to the variables on these paths in order to

reach the set of untested statements. The program is executed again and

the procedure is repeated until the user is satisfied that testing is

complete.

After execution testing, the user can formally verify the program

by symbolically executing expressions or assertions. This process will

result in formulas which can be checked against a specification or in

verification conditions which can be proved to be valid. During the

formal verification process, the user will often alter the program or

assertions to validate the program until verification is complete.

During analysis of a program by AVFS, an interface file can be

generated and stored. The interface file is the key to multiple module

12

interface checks. The interface report lists each module name which has

been anlayzed and indicates changes in interface properties, such as

parameters added or deleted, changes in type or use of parameters,

changes to common, and changes to invocations.

FORTRAN and AED programs can be made up of single or multiple

modules. In the analysis of a FORTRAN program, the modules are placed

in a single data file and analyzed together with a single execution of

the tool. In the analysis of an AED program, the modules are placed in

elements of a program file and analyzed with separate executions of the

tool for each module. Information for multiple module. reports is

gathered during the analysis of the separate modules and printed after

all the modules have been analyzed. The analysis of a large FORTRAN

program often results in a large listing for which a report index has

been provided. An example of a report index is shown in Fig. 2.3.

13

REPORT INDEX •••

I1IL TI-I1OW.E REPORTS

I~ACE OWIG£S
INVOCATION SUt1MRV
CI»1PICN I1A TR I CES

I/O STATE11ENTS
CROSS REFERENCE:

SUBROUTINE PTRSTR (HOtU...E. ISTHT. IRETRN)

!M1BO..S
CROSS REFERENCE
INVOCATION SPACE
INVOCATION BAHDS

SUBROUTINE SD8ASA (HOtU...E. ISTJ1T. tRETRN)

SVMaa.S
CROSS IW"ERENCE
INVOCATION SPACE
INVOCATION BAHDS
CROSS REFERENCE

••. URITING INTERFACE LIBRARY

40~ UORDS URITTDf

Figure 2.3. Report Index

14

PAGE I10DULE NAf1E

1
16- t7
18- :!6

~
29

=
3 ..
:s

6- 8
9- 1;!

13- 1 ..
1:5

:!9- 31

PTRSTR

SDBASA

3 USING AVFS

AVFS is a software system which reads as input a user's source

program in order to perform a number of functions on the source program

(Fig. 3.1). The source program may be written in FORTRAN or AED and may

be read into AVFS directly from a standard input device (card reader,

terminal, or tape) or from a previously prepared source text file.

The user tells AVFS which functions to perform through a series of

commands. These command can be sent to AVFS via a standard input device

or from a previously prepared command text file.

For FORTRAN, the analysis of several modules can be accomplished

if they are part of a single data file. For AED, modules are stored as

elements of a program file.

t.....
.....

r:::. - OLD
INTERFACE

COMMAND FILE
[5] (11)

.......

.....
.....

NEW
AVFS f-- INTERFACE

FILE
(8)

.......
~ -
~ SOURCE

[6]

(5)

-
Figure 3.1. AVFS Processing

15

During an interface run, the source code is analyzed and stored in

a data base known as the interface file. The interface file stores the

module name and information on its interface to other modules such as

information on invoked subprograms and comnons.

During an instrumentation run, the structure of the source code is

analyzed for the paths between the decision points. Each module's first

path always starts at program entry and includes all the statements

until a decision or the end of the routine is reached. These paths form

the basis for instrumentation and subsequent execution coverage anal

ysis. AVFS uses the path information to produce reports.

AVFS can operate on the source code which it reads during its run

and produce reports. AVFS can also produce reports using information

(from previously processed programs) that is in the data base called the

interface file. The interface file contains the external characteris

tics of previously analyzed programs and allows reports to be generated

for only the modules under anlaysis. This allows re-analysis of a

changed system at a far lower cost than if the complete system were re

analyzed. It is a good practice to use separate interface files for

separate software projects.

The logical unit numbers for the files are shown in brackets in

Fig. 3.1. Appendix B has a list of all the file names and numbers used

by AVFS.

Before submitting source text for analysis, the user should take

certain preliminary steps:

1. The source text should be compiled by a FORTRAN or AED

compiler to confirm it is free of syntax errors.

2. The program should be executed if it will be dynamically

tested.

16

AVFS processing is specified by commands- For FORTRAN, either an

OPTION or REPORT command is required for each run. For AED, a separate

XQT command is required for each function. Other commands are used to

assign appropriate files, to change default values, or to make certain

specifications. The order of commands is· important to AVFS. When

mUltiple commands are given to the FORTRAN AVFS, the following order

must be observed:

RESTART.

EXPAND.

FILE, PUNCH - <file number>.

INSTRUMENT, PUNCH, PROBE, «file number».

FIRSTLINE - «run stream command».

OPTION - <option list>.

REPORT - <report 1ist>_

FOR MOUDLES - «name l>,<name 2>, •••).

TESTBOUND,MODULE :or «name» ,STATEMENT - <number>.

REACHING SET,MODULE - «name»,TO - <DO-path number>,

FROM - <OD-path number>{,ITERATIVE}.

Each command consists of a sequence of terms separated by a comma or an

equal sign. These commands--one to a card, or input record--are free

form; blanks are ignored. The commands may be abbreviated by using the

first four letters of the first word in the command. The names of the

options also may be abbreviated in the same way.

Table 3.1 sho~ the conditions under ~ich the RESTART or EXPAND

commands should be used. The first line gives the case where it is

desired to analyze new source without using an existing interface file.

This case covers the situation of a first run of the tool and the

situation r..hen it is desired to analyze a module in isolation without

using an interface file. In this case, neither comnand is used. Page

C-1 contains a sample job control for this case.

17

TABLE 3.1

EXPAND - RESTART COMMAND CONDITIONS

New Source? Existing Interface File? Command to Use

Yes No

Yes Yes EXPAND

No No Do Nothing

No Yes RESTART

The second line gives the case when there is an existing interface

file and there is new source code to be analyzed by the tool. In this

case, the EXPAND command is used.

control for this case.

Page C-2 contains a sample job

The third line gives a case that should not occur. If there is

neither source nor an interface file to process, then no commands should

be given.

The fourth lines gives the case where there is no new source, but

it is desired to reanalyze an existing interface file which was created

from a previous execution of the tool. Page C-3 contains a sample job

control for this case.

The FILE, INSTRUMENT, and FIRSTLINE commands are used wi th the

INSTRUMENT or INPUT/OUTPUT options. Table 3.2 shows the conditions

under which these commands should be used. Normally, neither the FILE

command nor the INSTRUMENT command is used. The FIRSTLINE command is

usually used.

18

The FILE command is used to change the default file number for

where the tool sends the instrumented code. If unit 9 is suitable for

the instrumented code, the FILE command need not be specified. The job

control sequence shown on page C-4 instruments a source program and

places the instrumented source one unit 10.

The INSTRUMENT conmand is used to change the default file number

for were the tool collects data during execution of the instrumented

code. If unit 12 is suitable for the data collection file, the INSTRU

MENT command need not be used. The job control control sequence shown

on page C-4 'instruments a source program to collect data on unit 20.

The FIRSTLINE command is used to insert the FORTRAN compilation

Univac job control between modules. Each module on the file must have a

job control card to cause compilation and storage of the relocatable

element in a program file. In the example shown on page C-4, the ASCII

compiler, FTN, is invoked to store the relocatable element in the

temporary program file, TPF$.

The OPTION command is used to select from one of many possible

processing options for the tool. Examples of the use of the STATIC

option are shown in C-1, C-2, and C-3. Examples of the use of the

INSTRUMENT and LIST options are shown in C-4. The various options are

discussed in detail in Sec. 4.

The REPORT command is used to obtain the flowgraph or picture

report under the DOCUMENT option. An example of the use of this command

is given in C-S.

19

TABLE 3.2

FILE - INSTRUMENT - FIRSTLINE

COMMAND CONDITIONS

Is unit 9 suitable for the

instrumented code output

by the tool?

Is unit 12 suitable for the

data collected during an

execution of instrumented

code?

Do Univac job control cards

need to be inserted between

modules?

Yes

No

Yes

No

Yes

No

do not use FILE command

use FILE conmand

do not use INSTRUMENT command

use INSTRUMENT conmand

use FIRSTLINE command

do not use FIRSTLINE command

The FOR MODULES command is used to instrument or report on

selected modules from among a group of modules that have been read into

the tool. Page C-6 shows an example where three modules named MAIN SORT

and CALC are statically analyzed from among the modules input to the

tool.

The TESTBOUND command is used in the instrumentation of a program

when it is desired to specify a statement at which a test case to be

counted. When the TESTBOUND command is omitted, the test boundary is

taken to be the first statement in the main program. Page C-4 shows an

20

example where the TESTBOUND command was used to specify that line 10 of

the main program is defined as a test case boundary.

The REACHING SET command is used after an instrumentation run has

found that some or several paths were not executed. The REACHING SET

command is used together with the REACHING SET option to cause a set of

paths to be printed between the two specified paths., A user can then

concentrate on causing these paths to be executed. Page C-7 shows the

use of the REACHING SET command to list the paths between path 3 and

path 7 in Module SORT.

3.1 INTERFACE FILE

3.1.1 FORTRAN

The FORTRAN AVFS differentiates between When source code is being

read into the tool and when the interface file is being used by itself

to produce intermodule reports.

• On the first run of a FORTRAN AVFS, save the interface file

that is created on unit 8. Do not use the RESTART or EXPAND

command on the first run.

• On the second and subsequent runs of a FORTRAN AVFS, assign

the saved file to unit 11. If there is just to be a re

analysis of the file, use the RESTART command. If there is

new or changed source to be read in, use the EXPAND command

instead. A new interface file will be created on unit 8.

This file may be saved.

3.1.2 AED

The AED AVFS interface analysis tool will read an old interface

file from unit 8 and new source from unit 5. If there is new source,

the interface file will be generated on unit 11. The invocation of the

AED interface analysis requires no additional commands.

21

3.2 INSTRUMENT FILE

The primary function of several AVFS tools is to produce source

output on unit 9 (FORTRAN) or unit 30 (AED). This source normally goes

to a temporary file (which may be saved after the AVFS run). If unit 9,

the default assignment for the source output file is not appropriate for

a FORTRAN program (usually because the program uses that unit for its

own purposes); it may be reassigned with the command

FILE,PUNCH - <file-number>.

where <file-number> is the desired file number.

assigned file numbers)".

(See Appendix B for

In AED, it is never necessary to change the file number, because

the AED program will not be executing on a Univac.

3. 3 FIRSTLINE

When a FORTRAN program is to be INSTRUMENTED, the user's instru

mented source program will be written to unit 9. The user may use the

command,

FIRSTLINE ~ «run stream command»

to specify a Univac run stream command that will be added as the first

line of every element of the source program.

For example, when a FORTRAN source program will be instrumented,

then compiled and executed, the user could use the command

FIRSTLlNE - (@FOR<I TPF$.+).

AVFS will insert the Univac command,

@FOR,I TPF$.<element name>

as the first line of each element with the appropriate element name

following TPF$. If the Univac FTN canpiler is being used, the cotllDand

could be

FIRSTLINE .. (@FTN,I TPF$.+).

22

If the source code is written in AED, the FIRSTLINE command is not

needed. Each AED element is in its own program element and is processed

separately.

3.4 PROCESSING OPTIONS

The processing functions for FORTRAN are handled by the OPTION

cOlIlD.and. The processing functions for AED are handled by different

execute commands. The possible options are as follows:

FORTRAN AED

LIST GRC*LIST.LIST

STATIC GRC*STATIC.STATIC

DOCUMENT

SUMMARY

UNITS

INPUT/OUTPUT

ASSERT

INSTRUMENT

REACHING SET

VCG

GRC*CROSS.CROSS

GRC*SYMBOL.SYMBOL

GRC*INVOKE.INVOKE

GRC*TREE.TREE

GRC*DEPEND.DEPEND

GRC*GLOBAL.GLOBAL

GRC*PROFILE.PROFILE

GRC*UNITS.UNITS

GRC*TRACE.TRACE

GRC*ASSERT.ASSERT

GRC*INST.INST

GRC*REACH.REACH

GRC*VCG. VCG

• LIST - Produces an enhanced listing of each module

• STATIC - Produces a static analysis of each module

• DOCUMENT - Produces six reports for each module; the cross

reference, symbol tables, dependence matrix, calling

tree, invocations report, and global cross reference

reports (for AED, the reports are requested separ

ately)

23

• SUMMARY - Provides an analysis of statements

• UNITS - Checks for consistency of tmits that have been

defined in a UNITS assertion

• INPUT/OUTPUT - Translates INPUT/OUTPUT assertions

• ASSERT - Translates logical assertions

• INSTRUMENT - Instruments the source code

• REACHING SET - Provides assistance in path identification

• VCG - Symbolic execution and verifictaion condition gener

ation

In the FORTRAN tools, the command form is

OPTION{S} ~ <option list>

where more than one option may be specified. There must be at least one

option. Multiple options may be separated by coumas on a single 80-

character line. More than one OPTION line may be submitted. Detailed

descriptions of each option with examples of the reports that the option

produces may be fotmd in Sec. 4.

In the AED tools, the Univac coumand is

@XQT option

Separate commands may be given to obtain multiple reports in a single

job. The examples of each AED option may be found in Sec. 4.

3.5 REPORT

Selection of individual reports to be produced can be accomplished

by the REPORT coumand for FORTRAN programs. The separate reports for

AED are handled by different execute commands. The possible reports are

as follows:

24

REPORT FORTRAN AED

NAME COMMAND COMMAND

COMMONS CO

PROFILE PR GRC*PROFILE.PROFILE

INVOCATIONS L GRC*INVOKE. INVOKE

COMMON MATRICES COlE

CALLING TREE B GRC*TREE.TREE

SPACE SP GRC*DEPEND.DEPEND

SYMBOLS SY GRC*SYMBOL.SYMBOL

I/O STATEMENTS R

CROSS CR GRC*CROSS.CROSS

FLOWGRAPH PI GRC*FLOW.FLOW

In the FORTRAN tools, the command form is

REPORT - <report list>

where more than one report may be specified. Blanks within the list are

ignored. This comnand may appear within the comnand stream in any

location that is valid for the OPTION command. The REPORT command must

fit in 80 characters or separate comnands can be given.

AED does not have common reports or I/O statement reports. AED

has no I/O statements and only blank cOtmllon. The blank cOtmllon is saved

on the interface library.

Normally the OPTION command is used. The REPORT command is only

used to restrict reports. If the same report is requested via an OPTION

and a REPORT command, the report will not be duplicated.

3.6 FOR MODULES

AVFS will normally analyze all modules. In AED, each module is

individually analyzed via a separate comnand. In FORTRAN, a data file

25

may contain several modules which are not all to' be analyzed. The FOR

MODULES command allows the selection of individual FORTRAN modules.

This command has the form

FOR MODULES m «name l>,<name 2>, •••).

where <name 1> and <name 2> are FORTRAN names for modules which have

been input to AVFS. Main programs which do not have a program card are

given the name MAIN. Only one FOR MODULES comnand per AVFS run is

allowed.

26

4 OPTION DESCRIPTIONS

This section contains descriptions of each option which may be

selected by the user to instruct AVFS as to whiCh type of processing to

perform on the modules being input. An example of each type of report

generated by an option follows each description. Table 4.1 shows the

AVFS options and suggested uses for each.

4.1 LIST

The LIST option produces a source listing which shows the state

ment line number and the automatically indented source code. All refer

ences to statements in reports developed by AVFS are keyed to statement

line numbers and module name.

The indented listing clearly indicates the control structures and

makes the program much more readable, not only to the original pro

grammer, but especially to someone unfamiliar with the code who is

trying to understand it. The indented source listing on the output file

is the sole report from the LIST option. Figure 4.1 illustrates a

sample listing for a FORTRAN program and for an AED program.

Some of the other options also provide listings in a different

format. Examples of those listings are presented in the section

describing those options.

FORTRAN Command

OPTION=LIST or

@XQT,L GRC*AVFS.AVFS

Report

FORTRAN Listing (Fig. 4.1a)

See Appendix C-8 for complete JCL example

AED Command Report

@XQT GRC*LIST.LIST AED Listing (Fig. 4.1b)

See Appendix C-11 for complete JCL example

27

TABLE 4.1

AVFS PROCESSING OPTIONS WITH SUGGESTED USES FOR EACH OPTION

Options

Suygested Uses LIST STATIC oa;UMENT SUfOt4IRY UNITS ItI'UT/OUTPUT ASStRT I NS1RlJM~NT Ru.ul I tG SET 'It;G

Software X X X X X X X
Doc:u_tatlon

Ma I ntenance X X X X X X X X X

Imp I.entetlon X X X X X X X X X

Obtain I nt.,.face X X X
Data

Trace Ranges X
of variables

Chck Variables X X X

Execution Test X X X X

Incaoplete Test X X X

eoveraye

Sys'hlno Test X X X X X
Infomatlon

Sinyle Module X X X X X X X
Information

Code Changes X X X X X X X

Unknown Elehav lor X X X X X X X

I ntagrat Ion X X X X X

Acceptance X X X X X X X

Ulmens lonal X X
Anal ys Is

Symbolic X
Execution

Famal X X
Varlf Icatlon

28

STATEMENT LISTING SUBROUTINE EXAt1P\. <INFO.LENGTH)

STKT NEST LINE ~ ... ••• SOtJRa:: T AS

1 SUl!ROUTINE EXAt1P\. CINFO.LDlGTln
2 C ~
3 C ILLUSTRATION aF DliATRAN SYNTAX EXAI1PL3 .. C EXAIfl.. ..

2 :s IF <INFO.LE.l0 • AND. LENGTH.OT.OHl·£H EXAI1PI..5
3 1 6 CALL CALLER (INFO) ElW'I'I.6 .. 7 ELSE EXAI'fl.7
:s 1 8 LENGTH-50 EXAI1PU
6 , END IF EXAI1I'\.9
7 10 CASe: aF <INF0+6) El' .AMP\.1 0
8 11 CASE U") EXAIfl..ll , 1 12 LENGTH-LENGT1+-INFO EXAtfl.12

10 13 CASE U7> EXAI1PI..13
11 1 14 DO UHILE (INFO.LT.20) EXAI'fl.1"
12 2 15 DO UNTIL (LENGTH.LE.INF'O) EXAt1PL15
13 3 16 INVOKE (COI1PI1TE LENGTH) EXAIfl..16
14 3 17 IF (LENGTH. GE. 30 I THEN EXAt1PL17
15 4 18 INVOKE (PRINT-R£SULTS) EXAi'l'L18
16 3 19 END IF EXAIfl..19
17 2 20 END UHTIL EXAi'I'L2O
18 2 21 INF'OaINFO+1 ElW1PU1
19 1 22 END UHlLE ElWIP\.22
20 23 CASE ELSE EXAI1PL23
21 1 2 .. DO UHILE (LENGTH.GT .0) EXAtfl.24
22 2 2:5 INIIOKE (COI't'\JTE L£NGTH) EXN1F\..2:S
23 1 26 E!Q UH1LE EXAI1PI.24
2 .. 27 END CASe: EXMPL27
25 2B BLOCK (PRINT-RESULTS) £XAI'I'\..."'8
26 1 29 "UTE (lI.1 >INFO. LENGTH EXAI1F'L."'9
27 1 30 1 • FORKAT (10)(.15.20)(,15) EXAt1PL3O
2B 31 END BLOCK EXAt1Pt.31
Z9 32 I!LOCIC (COMPUTE LENGTH) EXA/1PL32
30 1 33 ~TH • LENGTH -10 EXAI1PL33
31 34 END BLOCIC EXAI1PI.34
32 35 ~ EXAt1Ft.35
33 341 END ElWIPL36

This report contains the indented module listing with statement numbers,
source line numbers, and nesting levels.

Figure 4.la. FORTRAN Listing

29

14 DEFINE PROCEDURE B.LONG.COM TOBE

15

16 COMMENT ITERATION RATE - 10 I SEC

17 BEGIN

18 NORM.ACC - VOTER(NORM.ACC.PTR) ••• VOTE NORMAL ACCELERATION;

19 NORM.ACC.LP - DLIMIT(NORM.ACC.LP+(NORM.ACC-NORM.ACC.LP)*.5D-2 •

20 • 442550D-l) NORM.ACC.LP IS SUBTRACTED FROM

21 NORM.ACC BY OTHER PROCEDURES FOR A 20

22 SEC WASHOUT ON NORM.ACC ;

23 TAS - TAS.MA BUFFER TAS FOR GAIN PROGRAMERS

24 KVTAS - GAIN PROGRAMER II

25 IF TAS < .146484 150 KTS II

26 THEN .5

27 ELSE IF TAS < .341797 ••• 350 KTS II

28 THEN .75-TAS/.585936

29 ELSE .166667:

This report contains the indented module listing with statement
line numbers.

Figure 4.1b. AED Listing

30

4.2 STATIC

The static analysis available in AVFS is designed to uncover

inconsistencies in the use of variables and inconsistencies in the

structure of a program. When an inconsistency is found, it indicates

the existence of an error or the possibility of an error.

Static analysis is divided into single module analysis, units

analysis, and interface analysis. Assertions are not required for

static analysis, but a more comprehensive analysis is possible when

assertions have been added to the user's source program. A complete

static analysis checks for the following types of errors:

Set and Use Checking

Variables used before being set to a value or set and not

used.

Loop Checking

Uninitialized loop variables.

Type Checking

Possible misuse of variables in assignments.

Graph Checking

Unreachable statements.

Interface Checking

Checking of actual invocations against formal declarations;

checking for consistency in number of parameters and type.

Input/Output Checking

Check that asserted use of a variable is the same as its

actual value

31

Units assertions can be inserted into a program so that consis

tency checks can be made on the use of units. Each variable for which

units are to be specified has its units declared in the form:

COMMENT UNITS <variable> = <units expression>;

For example, to state that the variable named SPEED has the units of

FEET / SEC, write

COMMENT UNITS SPEED .. FEET/SEC;

To state that the variable named DIST has the units of FEET, write

COMMENT DIST - FEET;

The units analyzer will check that operations on variables which have

specified units is done in a consistent manner. That is, if an assign

ment was made such as

SPEED .. DIST;

the units analyzer would report on a units error stating that

FEET - FEET/SEC;

was attempted.

Units are combined symbolically across multiplication and division

to form new units. Checks are made across addition, subtraction and

assignment operations to ensure units consistency.

After the analysis is complete, the units for each variable is

listed in the units table.

The example in Fig. 4.4 shows units specified for speed, distance,

time, work and force. The first assignment to speed specifies that it

will have the units of SAMPLE. Since SAMPLE does not have its units

specified, no checking is done. The second assignment statement shows

what is printed when there is an error detected in the units. The. units

32

of DIST*TIME are FEET*SEC which is printed on the right of the equals

sign. The units of SPEED are FEET/SEC which is printed on the left hand

side of the equals sign. Since the units on the left do not match the

units on the right, an error is declared. The other two assignments

have the correct units.

Input /Output

Input/Output assertions are used in a static analysis to check for

consistency between the intended use of a variable and the actual use of

a variable.

Variables which provide input data to a module should be asserted

with an input assertion.

An input assertion has the form

COMMENT INPUT <type> <variable>;

For example, the assertion

COMMENT INPUT REAL HEIGHT;

states that the vraiable named HEIGHT is an input to the module.

Variables which provide output data from a module should be

asserted with an output assertion. An output assertion has the form

COMMENT OUTPUT <type> <variable>.

Variables which are used both as input and output are asserted in

both assertions.

33

FORTRAN Command Report

OPTION =STATIC ,LIST. Static Analysis (Fig. 4.2)

or @XQT,LS GRC*AVFS.AVFS

See Appendix C-6 for complete JCL example

AED Command Report

@XQT GRC*SYMBOL.SYMBOL Static Analysis (Fig. 4.3)

See Appendix C-12 for complete JCL example

AED Command Report

@XQT GRC*UNITS.UNITS Units Analysis (Fig. 4.4)

See Appendix C-13 for complete JCL example

AED Command Report

@XQT GRC*INTER.INTER Interface Analysis (Fig. 4.5)

See Appendix C-14 for complete JCL example

34

STATIC ANALYSIS SUBROUTINE CIRCLE (AREA)

sntT Nl:ST LINE sa.JRa ..•

1
2
3 ..
:5

7
8

9
10
11
12

13

1

1
2
3
:5
6

SU8ROUTINE CIRCLE (AREA)
INTEGER AREA
DATA PI / 3.1416 /
INPUT (/R/ RADIUS)
RADIUS • DIAMTR / 2

- VARIABLE DIAMTR
:5

SET/USE ~
USED BUT NEVER SET ~ TO STATEt1EHTCS)-

7 AREA • PI • RADIUS"2

8
9

10
11
13
14

1:5

I'DDE UARNING
- L..El"T HAND SIDE HAS 1100£ IH'Tl:CER RIGHT HAND SlIIE HAS I10DE REAL

IF (AREA .GT. ~) n£N
CALL PRIKT (AREA)

-PARMETER 1 OF PRINT
ttODE UARHING

ACTUAl. PARAt!ETER HAS I10DE INTEGER
FORI'IAL. PARAMETER HAS MODE ~

CALL ERROR
PRINT CALLED IIITH 1 ACTUAL!.. Y HAS 2 ARGUI'tEHTS

END IF
OUTPUT (/R/ AREA)
~
CALL STACI< (RADIUS. AREA)

GAAPH lIMNING
STATEt£HT 12 IS lMEACHABLE OR IS IN AN INFINITE LOCI'

STATIC ANALYSIS SUMMARY ~S UARHINGS

ORAPH CHECKING 0 1
CALL CHECKING 1 0
1100£ CHECK INO 0 2
SET /USE CHECKING 1 0

CALL CHECKING lIAS NOT F'ERFORHED FOR Tl£ FOlLOIIING I.H<NCx.tf EXT'ERNALS
STACI<

••• SOUlCE TAB

The FORTRAN Static Analysis Summary contains the warning and error
messages interspersed in the code. Unknown subprograms are listed at
the bottom of the report. A tabulation of errors and warnings is listed
at the bottom. The STMT column lists the line numbers for each input
source statement. The NEST column lists the nesting level for each
statement in a control structure. The LINE column lists the line
numbers for each generated source statement. Since input and output
assertions require two generated lines, the LINE column differs from the
STMT column.

Figure 4.2 Static Analysis - FORTRAN

35

FIRST TOTAL LAST ASSERTED ACTUAL
NAl1E CLASS MODE STMT. USES STMT. USE USE ---
A

~I

ANS

o

SUM

PARAMETER

PARAI1ETER

PARAMETER'

LOCAL

LOCAL

LOCAL

REAL

INTEGER

REAL

INTEGER

INTEGER

REAL

2

VARIABLE I

2

3

vARIABLE SUM

3

4

3

5

2

4

6

9

9

7

4

9

INPUT

BOTH

OUTPUT

SET/USE ERROR
USED BEFORE BEING
ASSIGNED A VALUE

SET/USE ERROR
USED BEFORE BEING
ASSIGN~D A VALUE

Set use checking and input! output analysis is reported after the
listing is presented for AED.

Figure 4.3. Static Analysis - AED

36

59

60 COMMENT UNITS SPEED - FEET/SEC;

61 COMMENT UNITS DIST - FEET;

62 COMMENT UNITS TIME - SEC;

63 COMMENT UNITS WORK - POUND*FEET;

64 COMMENT UNITS FORCE - POUND;

65

66 SPEED - SAMPLE;

67 SPEED - DIST * TIME;

*****units error*****
FEET/SEC-FEET*SEC

68 DIST - SPEED * TIME;

69 WORK - FORCE * DIST;

70

71

UNITS TABLE
SPEED

DIST

TIME

WORK

FORCE

FEET/SEC

FEET

SEC

POUND*FEET

POUND

Inconsistent units are reported during units analysis.

Figure 4.4. Units Analysis - AED

37

INTERFACE REPORT

MODULE

A.FORE.EXEC

A.BA.K.EXEC

A. YAW. END

INTERFACE ANALYSIS

MODULE

A.MAKE. IT

1 INTERFACE ERRORS

TYPE OF CHANGE

NEW MODULE

UPDATED MODULE
**** PARAMETER LENGTH CHANGE

UPDATED MODULE
**** COMMON TYPE CHANGE

TYPE OF ERROR

PARAMETER LENGTHS INCONSISTENT
ACTUAL - 2 PARAMETERS

A.BAK.EXEC (C,D)
FORMAL - 3 PARAMETERS

A.BAK.EXEC (A,B,C)

Checking between modules on a library is performed to produce an
interface analysis along with changes to the interface.

Figure 4.5. Interface Analysis - AED

38

4.3 DOCUMENT

The DOCUMENT option generates a set of reports for individual

modules and mUltiple modules. Figures 4.6 - 4.16 contain examples and a

description of each report.

The set of reports are useful for maintenance and testing.

Together with the execution coverage reports, they help to identify

which modules require retesting when changes are made to the source

code. The cross reference reports are particularly useful in finding

where variables are set in order to alter test cases, and also where a

variable is being used that is affected by a change in a module. The

flowgraph or picture report is useful for breaking up large FORTRAN

programs.

AED programs have no I/O statements and only one common block.

There is no AED I/O Statements Report or commons matrices. The AED

commons and externals cross references are combined in a single global

cross ref erence.

FORTRAN AED
Report Command Command

Symbols OPTION =DOCUMENT GRC*SYMBOL.SYMBOL
(Fig. 4.6a) (Fig. 4.6b)

Appendix C-12

Cross Reference OPTION .. DOCUMENT GRC*CROSS.CROSS
(Fig. 4.7a) (Fig. 4.7b)

Appendix C-1S

Invocation Space o PTION =DOCUMENT GRC*INVOKE.INVOKE
(Fig. 4. Sa) (Fig. 4.Sb)

Appendix C-16

Invocation Summary OPTION=DOCUMENT GRC*DEPEND.DEPEND
(Fig. 4.9a) (Fig. 4.9b)

Appendix C-17

Invocation Bands OPTION=DOCUMENT GRC*TREE.TREE
(Fig. 4. lOa) (Fig. 4.10b)

Appendix C-1S

39

Common Matrices o PTION ""DOCUMENT
(Fig. 4.11)

I/O Statements o PTION=DOCUMENT
(Fig. 4.12)

Commons Cross OPTION .. DOCUMENT GRC*GLOBAL.GLOBAL
Reference (Fig. 4.13) (Fig. 4. 14b)

Appendix C-19

Externals Cross OPTION -DOCUMENT GRC*GLOBAL.GLOBAL
Reference (Fig. 4. 14a) (Fig. 4.14b)

Appendix C-19

Flowgraph OPTION -DOCUMENT GRC.FLOW.FLOW
REPORT =P ICTURE I

(Fig. 4.15) (Fig. 4.16)

The FORTRAN command

OPTION=DOCUMENT

maybe replaced with the UNIVAC command

@XQT,D GRC*AVFS.AVFS.

The complete JCL for the document command is shown on page C-9. This

command will produce the nine reports shown in Figs. 4.6-4.14. The

flowgraph report (Fig. 4.15) will also be generated if the command

REPORT"PICTURE

is added after the OPTION command or the XQT command.

The corresponding AED commands are listed beside the FORTRAN

commands. In most cases a single AED command produces a single report

which corresponds to a FORTRAN report. The exceptions are: the command

which causes AED invocation analysis to produce two reports (Figs. 4.8b,

4.9b) and the command which presents a multiple module cross reference

to incorporate two reports (Fig. 4.14b)

40

SYMBOLS

NAH£

KXPAR
KXPAAI'I
KXTF'LS
LIST
HARGS
MBLOKS
MBRCHN
/'tCALl.
MCIO
~C/'tI1NS
MDUH26
MENfR
MENTRS
I1ENTR2
MEGLS
/1ECl\NS
MEXEC
MEXIT
tlGOTO
I'IIF
/'\.JUNeT
/'\/'lODE
/\NAME
/'INONX
1'I0DULE
/1F'f\SET
I'IREAD
/'\REArIS
tlTYF'E
I1URITS
NONEXS
NUMEXS
NUMNON

SCOPE TYPE ,--------
KDELtlS
RPTCOI'I
RPTCOH
HTHSTO
1'1[18
11011
MTHTYP
I1THTYP
tlTHTYP
110B
(LOCAL)
I1THTYP
tlDB
I1THTVP
(LOCAL)
1109
tlTHTYP
tlTHTYP
I1THTYP
I'ITHTYP
I'ITHTYP
/'lOB
HOB
I'ITHTYP
PARAHETER
HTHTYP
HTHTYP
/'lOB
HDB
I'iIlB
(LOCAL)
(LOCAL)
(LOCAl..)

VARIABLE
VARIABLE
VARIABLE
ARRAY
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VAAIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIAEoLE
VARIAE<LE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIAE<LE
VARIAf.<LE
VARIABLE
VARIABLE
VARIAE<LE
VARIABLE
VARIAE<LE
VARIABLE
VARIABLE
VARIA8LE
AFoRAY
VARIA8LE
VAlUABLE

SUBROUTINE SDBASA (HODULE. ISTHT. IRETRN)

HODE

INTEGER
INTEGER
INTEGER
INTEGER
ItilEGER
INTEGER
INTEGER
INfEGEF:
INTEGER
INTEGER
INTEGER
INfEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
HaEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

USE

USED
USED
U5C:D
SET/US£D
SET
EClUIV
USED
USED
USED
SET/USED
EOUIV
USED
SET/US£D
USED
SET/USE:D
SET/USED
USED
USED
USED
USED
USED
SET/USED
EQlJIV
USED

USED
USED
SET/USED
SC:T
SET/USED
SET/USED
SET,'USED
SET/USED

OTHER INFORHATIOtI."

THE FOLLCUING LOCAL VARIABLES UERE DEFINED BUT NOT lISED ..•
TOKAD:l

THE FCLLOUING ,,"'ONLOCAL VARIABLES /IRE SET .••
ll<ETRN HTYF'E HHOOE I1CMI1NS /'tENTRS I1AFo'GS I1EClIJVS /'\READS MURITS ISTYF'E ISCO:oE
ISIMFO LIST

This report is generated for each module analyzed during an AVFS
run. The symbols are ordered alphabetically, and symbols which are only
defined and never referenced are not included. Symbols which have the
scope (LOCAL) are known only within the module being reported on.
Symbols with the scope parameter are formal parameters for the module.
All other scope classifications indicate the name of the common block
the common variables are defined in. Each symbol is either of type
variable or array, and of mode integer, real, logical, character,
complex, or double precision. The use column provides a summary of how
the symbol is used in the module. Local symbols which were defined but
not referenced and all non-local variables (parameters and common
variables) which are set within the module are noted at the end of the
report.

Figure 4.6a. FORTRAN Symbols Report

41

SET/USE ANALYSIS AND PARAMETER REPORT MODULE VOTER

1ST LAST TOTL ASSERTED ACTUAL
NAME SCOPE CLASS STMT STMT USES USE USE
------------- ------------------------------------
K3 LOCAL VARIABLE 74 74 1
K4 LOCAL VARIABLE 74 74 1
K5 LOCAL VARIABLE 74 74 1
K6 LOCAL VARIABLE 74 74 1
K7 LOCAL VARIABLE 74 74 1
K8 LOCAL VARIABLE 74 74 1
K9 LOCAL VARIABLE 74 74 1
LIMIT EXTERNAL PROCEDURE 20 23 4
LXI LOCAL VARIABLE 17 18 2
LX2 LOCAL VARIABLE 17 18 2
LX3 LOCAL VARIABLE 17 17 1
LX4 LOCAL VARIABLE 17 17 1
MONDAY EXTERNAL PROCEDURE 104 104 1
HPS1 47 65 4
HPS2 51 68 4
HPS3 55 69 5
NEWPROC EXTERNAL PROCEDURE 85 117 3
NEWPROC2 119 119 1

SET/USE ERROR

VARIABLE NEWPROC2 USED BEFORE BEING ASSIGNED A VALUE ----
NO CALL FROM EXTERNAL PROCEDURE 88 94 2
OWN.PTR 15 62 11
PARI PARAMETER VARIABLE 5 26 4 INPUT
PAR2 PARAMETER VARIABLE 5 28 5 OUTPUT
PAR3 PARAMETER VARIABLE 5 28 3 NONE
PROC1 EXTERNAL PROCEDURE 10 46 2
PROC2 EXTERNAL PROCEDURE 13 46 2
PROCCALLO 37 37 1
PROCCALL1 EXTERNAL PROCEDURE 39 115 10

PARAMETER ERROR
- PROCEDURE PROCCALL1 MULTIPLE USE OF SAME ACTUAL

PARAMETER IN LINE 39

INPUT
OUTPUT
OUTPUT

--------,--- --------------------------

- PROCEDURE PROCCALLI
PARAMETER ERROR
CONSTANT USED AS ACTUAL
PARAMETER IN LINE 40

------------------------------PARAMETER ERROR
-PROCEDURE PROCCALLI FUNCTION/PROCEDURE USED AS ACTUAL

PARAMETER IN LINE 41

Figure 4.6b. AED Symbols Report

42

Figure 4.6(b) continued

This report is generated for each module analyzed by AVFS. The
symbols are ordered alphabetically. Symbols which have the scope LOCAL
are known only within the module being reported on. Other symbols with
the EXTERNAL classification or COMMON classification are known outside
the module. Each symbol is classified as to its class: variable,
array, procedure, and to its type. The use column provides a summary of
how the symbol is used in the module.

43

CROSS REFERENCE SUBROUTINE SIIBASA (MODULE. ISTMT, IRETRN)

NAME SCOF'E MODULE USED/SET/EOUIVALENCED (* INDICATES SET)

ADI'EPT EXTERNAL SDBASA 65 84 250
CALLED (LOCAL> SDBASA 24* 274 275*
ERROR EXTERNAL SDBASA 151
I (LOCAL) SOBASA 48* 49 50 51* 51 75* 76 77 713* 79 120* 121

145 146 161* 162 171* 172 172 173* 173 175 177 191*
227 228 342* 343 343 344* 344 346 3:53;« 354 354 355*

IAGT ANSI SDBASA 149
lEAF'AR EXTERNAL SDBASA 115 170 210
ICGT ANSI S['BASA 147
ICOMAS (LOCAL) SDBASA 119* 123* 123 127
IDUI1 (LOCAL> SIIBASA 37 54 139 169
lOX (LOCAL) SI'BASA 32* 33 33 33 34* 34 36 41 41 43 49 :56

76 80* 80 82* 82 84
lEND ANSI SIIBASA 307
lENT ANSI SI'BASA 246 316
IEXECS (LOCAL) SDBASA 307* 308* 309* 310* 311* 312* 313* 314* 315* 316* J17* 318*

327* 328* 329* 330* 331* 332* 333* 334* 335* 336* 337* 354
1FT ANSI SDBASA 113 308
IF2 ANSI SDBASA 128
IF3 ANSI SDBASA 131
IGT ANSI SDBASA 136 311
IGTIOK EXTERNAL SDBASA 137
11109 (LOCAL) S['BASA 10E
IPM (LOCAL> SDBASA 115:k 116 117 120 170* 172 175 180* 182 182 184
IREADC FTNEXT SDEIASA 235
IRET ANSI SDBASA 188 315
IRETRN PAR.~METE SDBASA 2~* 269*
ISCLAS EXTERNAL SI'BASA 138
ISCODE SDS SDBASA 29* 67* 891:t 97* 112* 114* 118* 140* 155* 159* 167*'176*
ISDB (LOCAL> SDBASA 16E
ISEXEC (LOCAL> SDBASA 111 3:58* 360*
ISINFO SDB SOFASA 31* 129* 132* 139* 169* 199* 204* 210* 212 215 ::28* 249*
ISLABL SOB SIIBASA 10E
ISLONG SOB SDBASA 33 36 37 41 59 70 73 11:5 116 121 139 142

192 206* 206 210 2:!4 227
ISNONX (LOCAL) SDBASA 88 347* 349*
ISPTR SIIB SDBASA 117* 145* 177* 184* 185 216* 234 240
ISTI1T F'ARAMETE SIIBASA 65 64 103 250
ISTOP ANSI SDBASA 188 190 318
ISTYPE SDB SOBASA 27 27 27 42* 59 64 74* 90 93 96 99 100*

166 188 188 190 198 203 208 208 208 208 208 208
2S2 255 2::.iS ~SS 343 354

ITEM (LOCAL) SDE<ASA 137* 138
IVMODE EXTERNAL SDFASA 54
IURTEC FTNEXT SI'BASA 241
IXABNL FTNEXT S['FASA 302
IXASS ANSI SDFASA ~S2 317 ----------- --------------------------------

This report provides a symbol cross reference for each module
analyzed during an AVFS run. All local symbols, external symbols, and
common symbols referenced in the module are included. Symbol names are
ordered alphabetically in the first column. The scope column indicates
symbols known only within this module (LOCAL), external symbols, and
symbols which are defined in common blocks included in the module (all
others). Statements (AVFS statement numbers) which use a symbol are
followed by a blank, statements which set a symbol are followed by a
'*', and equivalence statements containing the symbol are followed by an
'E' •

Figure 4.7a. FORTRAN Cross Reference Report

44

CROSS REFERENCE MODULE VOTER

NAME SCOPE CLASS TYPE USED OR REFERENCE
D /SF:r (S) /D EP'INED (D)

K6 LOCAL VARIABLE INTEGER 74D
K7 LOCAL VARIABLE INTEGER 74D
K8 LOCAL VARIABLE INTEGER 74D
K9 LOCAL VARIABLE INTEGER 74D
LIMIT EXTERNAL PROCEDURE REAL 20 21 22

23
LXI LOCAL VARIABLE LABEL 17D 18D
LX2 LOCAL VARIABLE LABEL 170 18D
LX3 LOCAL VARIABLE LABEL 17D
LX4 LOCAL VARIABLE LABEL 17D
MONDAY EXTERNAL PROCEDURE 104D
MPSI 47S 63 64

MPS2 51S 63 67

MPS3 55S 64 66

NEWPROC EXTERNAL PROCEDURE 85 97 117D
NEWPROC2 119
NOCALLFROM EXTERNAL PROCEDURE 88D 94
OWN.PTR ISS 20 20

35 62
PARI PARAMETER VARIABLE INTEGER 5 6D 24

26
PAR2 PARAMETER VARIABLE INTEGER 5 6D 25

27S 28
PAR3 PARAMETER VARIABLE INTEGER 5 6D 28S
PROCI EXTERNAL PROCEDURE 10D 46
PROC2 EXTERNAL PROCEDURE INTEGER 13D 46
PROCCALLO 37
PROCCALLI EXTERNAL PROCEDURE 39 40 41

115
PROCCALL2 EXTERNAL PROCEDURE 46 110 113D
PROCCALL3 45
PTR PARAMETER VARIABLE INPUT. POINTE 5 6D 15
Rl EXTERNAL VARIABLE INTEGER lID 12
ROBERT LOCAL SWITCH LABEL 18D
ROBERTI EXTERNAL PROCEDURE 820 98
ROBERT2 EXTERNAL PROCEDURE 100D
ROBERTG 38
SIGNAL 20 21 22

SIGNAL.MA 20S 48 49

SIGNAL.MB 21S 48 50
SIGNAL.OA 22S 52 54

SIGNAL.OB 23S 56 58
SYNI LOCAL SYNONYM 16D
SYNIA LOCAL SYNONYM 16D 36
SYNIB LOCAL SYNONYM 16D

Figure 4. lb. AED Cross Reference

45

Figure 4.7(b) continued

This report provides a symbol cross reference for each module
analyzed by AVFS. All local symbols, external symbols, common symbols,
and parameters referenced in the module are included. Symbol names are
ordered alphabetically in the first column. The scope column indicates
symbols known only in this module (LOCAL), external symbols (EXTERNAL),
and common symbols (COMMON), and parameters (PARAMETER). Statements are
identified by line number as to whether the symbol was defined, set, or
used in a particular line.

46

INVOCATION SPACE SUBROUTINE CRDOUT(CARD.KEY)

INVOCATIONS FROM WITHIN THIS MODULE

HODULE AlIO
STHT = 117
STI1T = 173
STMT = 174

HODULE BUFOUT
STI1T = 132
STHT = 148
STHT = 153

HODULE CVD
STMT = SO
STHT = 67
STMT'" 172

HODULE lABS
STHT'" 48

MODULE ICMT5T

CALL AlIa (2 , lOUT , LINEX , LLINEX
CALL AlIa (2 • lOUT • HEADX , 120)
CALL AlIa (2 , lOUT , SKIP , 10)

CALL BUFOUT
CALL BUFOUT
CALL BUFOUT

CALL CVD (NCARD , NCARDS)
CALL CVD (NEST , NESTS)
CALL CVD (NPAGE , HEADX (111))

lABS (INDENT

ST!1T co 57 lCHTST (CARD (2))
STHT'" 88 ICI1TST (CARD (I))
STI1T = 121 ICI1TST (CARD (2))

INVOCATIONS TO THIS MODULE FROH WITHIN LIBRARY

HODULE CI1TOPT
STI1T'" 112

HODULE IFTRA
STI1T = 69
5THT ,.. 80
5THT III 88
5THT ,.. 97
5TI1T ... 108
5TI1T = 176
5TI1T - 181
5TI1T = 188
5TI1T = 233
5TI1T = 238
5TI1T = 248

CALL CRDOUT (CARD • ICO!1

CALL CRDOUT (CARD • 4)

CALL CRDOUT (CARD , 4)

CALL CRDOUT (CARD • 4)

CALL CRDOUT (CARD , 1)
CALL CRDOUT (CARD • 1)
CALL CR[IOUT (CARD , 1)
CALL CRllOUT (o • - 101)
CALL CRDOUT (CARD, 1)
CALL CRDOUT (CARD • 1)
CALL CRDOUT (CARD o)
CALL CRDOUT (CARD • 0)

This module report shows all invocations, along with the AVFS
statement numbers, to and from the specified module. It is useful in
examining actual parameter usage. The text printed is reformatted and
may contain more or fewer blanks than the original text line. A summary
of this report is provided by the externals cross reference report.
This report is produced for modules analyzed during an AVFS run.

Figure 4.8a. FORTRAN Invocation Space Report

47

DIVOCATIONS TO THIS MODULE

F!tOCEDlJltE NEYPROC
STHl' 97 XPROC

STHl' 85 ROBERTI

PROCEDlJltE PROCCALL2
STHl' 110 PROCCALLl

STHl' 46 VOTER

?ROCEDlJltE PROCCALL1
STHl' 115 PROCCALL2

STHl' 111 noCCALLl

STHl' 106 KONDAY

STHl' 44 VOTU

STHl' 43 VO'IEll

INVOCATIONS REPOU

!IlVOCATIONS FROK WITHIN THIS KODDLE

noCEDlIRE NEYPROC
STHl' 119 NEYPROC2;

PROCEDlJltE PROCCALL2
STHl' 115 PROCCALL1 ;

PROCEDlJltE PROCCALL 1
STHl' 111 PROCCALL1;

STHl' 110

PP'!)CEDlJltE MONDAY
STHl' 106

fROCEDlJltE ROBEllT2

noCCALL2;

noCCALL1;

ItJDDLE VOTER
PACE 1

-CONTAINS NO PROCEDlJltE CALLS

This module report shows all invocations, along with the AVFS
statement numbers, to and from the specified module. It is useful in
examining actual parameter usage.

Figure 4.8b. AED Invocation Space Report

48

INVOCATION SUMMARY

ENTR'r' LISTS OF C"LLS

PUTLST UHICH IS DEFINED IN GETBLK

IS CALLED BY - -NONE-

AND CALLS - GETFRG MAKFRG XHIT

F'UTURD UHICH IS DEFINED IN GETBLK

IS CALLED BY - PUTBEF PUTBOT

AND CALLS - GETFRG HAI<FRG XHIT

XHIT UHICH IS UNDEFINED

IS CALLED BY - GETBLK NEXT PREV

THE FOLLOUING ENTRIES ARE NOT CALLED

PUTAT PUTBEF PUTBOT

GETBLK GETLST GETURD ISRTAB NEXT PREV PUTAT

This report shows the dependencies of the modules on the library
by listing all modules which call an entry point and all calls from that
entry point. If an entry is defined as an entry point within a module,
the name of the module is indicated. This report includes all modules
and entrys on the restart file. An updated version of the report may be
obtained by reanalyzing all changed modules and using the EXPAND option.
The actual statements where invocations to a given entry point occur can
be found in the externals cross reference report.

Figure 4.9a. FORTRAN Invocation Summary Report

49

MODULE DEPENDENCE REPORT MODULE VOTER
PAGE I

PROCEDURE DEPENDENCY

NEWPROC IS INVOKED BY ROBERT! XPROC

AND INVOKES NEWPROC2

PROCCALL2 IS INVOKED BY PROCCALLI VOTER

AND INVOKES PROCCALLI

PROCCALLI IS INVOKED BY MONDAY PROCCALLI
PROCCALL2 VOTER

AND INVOKES PROCCALLI PROCCALL2

MONDAY IS INVOKED BY -NONE

AND INVOKES PROCCALLI

ROBERT2 IS INVOKED BY -NONE

AND INVOKES -NONE

XPROC IS INVOKED BY ROBERT!

AND INVOKES NEWPROC NOCALLFROM
ROBERT! XPROCI

XPROC2

NO CALL FROM IS INVOKED BY XPROC

AND INVOKES -NONE

ROBERTI IS INVOKED BY XPROC

AND INVOKES NEWPROC XPROC

VOTER IS INVOKED BY -NONE

AND INVOKES PROCCALLO PROCCALLI
PROCCALL2 PROCCALL3

ROBERTG

This report shows the dependencies of the modules on the interface
library. It lists all modules which invoke a module and all invocations
in a module. The actual statements where invocations to a given module
occur can be found in the invocation space report or the global cross
reference report.

Figure 4.9b. AED Invocation Summary Report

50

INVOCATION BANDS ..

TO LEVEL 2

LEVEL -5 -4 -3

SUBROUTINE BLDSDB (MODULE. ISTHT. IACT. IASE~T)

-2 -1 0 2 3 4 ----BLDSDB
PASTlJO ISASGN

SDBASA
AD[lEPT
E"''''O~
IBAPAR
IGTTOK
ISCLAS
IVMODE
JGET
NMBA~
RSTMPL
101lT

SODAST
SDBIFT
SD8"-UN
SDBST~
TOKAOD

This report shows the selected module within the invocation
hierarchy. At the center is the specified module. Each successive band
of modules from the center to the left shows the calling modules; each
successive band to the right shows the called entry points. The left
(calling) modules reside on the library; the right (called) modules can
include modules external to the AVFS library. A summary of this report
is provided by the invocation summary report. More detailed information
about modules and statement numbers containing invocations can be found
in the externals cross reference. This report is produced for modules
analyzed during an AVFS run. The default level of two may be changed by
using the command: REPORT = BIn where n may be any integer from 1 to
5.

Figure 4.10a. FORTRAN Invocations Band

51

:;

CALLING TREE

LEVEL

PAGE
MODULE VOTER
1

-9 -8 -7 -6 -5 -4 -3 -2 -1

ROBERTI

XPRoe

ROBERTI

XPRoe

ROBERTl

XPRoe

ROBERTI

XPRoe

ROBERTI

o

NEWPRoe

+1 +2

NEWPRO
(C2)

This report shows the selected module in a calling tree. At the
center is the specified module. The left hand modules are the calling
modules. The right hand modules are the called modules. A summary of
this report is found in the invocation summary report. The statement
numbers containing invocations can be found in the global cross refer
ence.

Figure 4.10b. AED Invocations Band

52

COMMON MATRICES

LEGEND (C=-FIRST USED IN A CALL.E=EGUIVALENCED,S=SET ,U=USEII,X==SET AND USED)

------------------------,--- ------------------

** * It. :J* * * * * MODULE * N P P P P.G I * * * MQ[IULE lie B P P S *
* * * E R U U U.E S * * * * L A T D *
* * * X E T T T.T R * * *)I: o S R B * * * * T V A D B.B T * * * * S T S A *
* * * T E O.L A * * * * 0 IJ T S *
* * * F T.K B * * * * B 0 R A *
* ~ * * * * '" * COMf10N * SYMBOL * * * COMMON '" SYMBOL * *)\(

* ** * * ** * -------------. --- ------------------------
AISTO * FLCXXX * U U U U U.U U * SOB * ISCODE * X X U S * * FNUXXX * U U U U U.U U * * ISCONT * U X * * FRGY.XY. * U U U U U.U U * * ISINDT * S * * FSZXXX * .U C * * ISINFO * S S X * * ICHXXX * S S S.S * * ISLABL * E E E E * * IXXXXX * X X X X X.X X * * ISLONG * X X X * * LNGXXY. * U U U U U.U U * * ISF'TR * X S X * * MAXXXX * .X * * ISTYF'E ~ S X U X)\(

The common matrices report lists symbols which are used by at
least one of the modules on the restart file. The symbol usage is
explained in the legend at the top of the report; a blank space indi
cates that the symbol is not used in any way in that particular module.
The symbols within each common are listed alphabetically in this report.
Only modules which use at least one variable of a common block will
occur in the matrix for that common. This report includes all commons
and modules on the restart file. An updated version of this report may
be produced by reanalyzing all changed modules and using the EXPAND
option. When all modules in a software system have been entered onto a
RESTART file, this report can be used to check for global set/use
inconsistencies. A row of one or more U I S indicates that a common
variable is used but not set. A row of one or more S's indicates a
common variable which is set but not used. A common variable which is
not included in the matrix is never referenced in an executable state
ment. The statement numbers where common variables are referenced can
be found in the common variable cross reference report.

Figure 4.11. FORTRAN Commons Matrices

53

1)£ FOLL.OUlNO I10DlLES COHTAIN I/O STATD1ENTS

AlID
IFTRAX

I/O STATEHEHTS AND ASSOCIATED FORMATS

- AlID

S'01T NEST 1.INE SOURCE: •••

:I 16
:I 17

18
12 29

JO
23 48

- IFTRAX

STl1T NEST 1.INE

17 2:1
17 26
18 27
~4 :51
,,:I :12
,,:5 :3
4:5 ~
,,:I :1:1

REAII< UNIT ,901
1) CTEXTCI),I-1.LEH)

C END-FI1.E TEST
URlTECUNIT.901) CTEXTCI),I-1.LEH)

C
901 FORI1ATC 13"..A1I

~ ...
READ C IN. 900) KNDENT. KCONV. KOCOtl, KFORIN. KIN. KOUT, KOUTC * t<£NCRD. KNL.lNE. KSAVE

900 FORMAT C 12,311.613)
URITECIOUT.901) NCARD. I€RR

901 FORMAT C I 2:iH STRUCTRAN-l STATISTICS
1 I lX,I6.20H CARDS READ
2 I lX.I6,20H ERRDRCS) FOUND .)

••• SOUlCE: TAB

AlIO 17
AlIO 18
AlIO 19
AUD JO
AlIO 31
AlID 49

••• SOlJRCE: TAl

IFTRAX26
IFTRAX27
IFTRAX28
IFTAAX::i2
IFTRAXS3
IFl1<Ax:i4
IFTRAX::;:;
IFTRAX:S6

This report provides a list of all the program modules in which
any type of READ or WRITE statement appears. The source statements are
reproduced along with the defining FORMAT. This report may be used to
locate all the points where variables are being input or output from the
system. This report is produced only for source text which is analyzed
during an AVFS run.

Figure 4.12. FORTRAN I/O Statements

54

c:.'OSS REFERENCE

NAME SCOPE MODULE USED/SET IEOUIVALENC£D (* INDICATES SET)
--------------------_. ----------------

AIDBG DBGCDI1 ISRTAB 82
~ GETDLK 26E

ISRTAB :!5E
NEXT 18E
~V leE
PUTAT 18E
PUTElEI' 18E
PUTSOT leE

FLCXXX AISTO GETBLK 146 190 231 266
AISTO ISRTAB 67
AISTO NEXT 39
AISTO PREV 39
AISTO PUTAT 33
AISTO PUTDEF 43
AISTO PUTEIOT 43

FNUXXX AISTO GETDLK 14:! 187 :!:!7 :!61
AISTO ISRTAB 62
AISTO t/EXT 36
AISTO PREV 36
AISTO PUTAT 30
AISTO PUTS<:F 40
AISTO PUTBOT 40

FRGDIR POOLCI'1 GET"ElLK 149* 193* 240* 268*
POOLCI1 ISRTAB 79*
POOLCI1 NEXT 43*
POOLCI'1 PREV 43*
POOLCI1 PUTAT 38*
POOLCI1 PUTr<EI' ~*
POOLCI'1 PUTSOT SO*

FRGXXX AISTO GETSLK 148 19:! 240 268
AISTO ISRTAB 79
AISTO NEXT 43
AISTO PREV 43
AISTO F'UTAT 38
AISTO PuTSEI' :SO
AISTO PUTOOT SO

FSZXXX AISTO GETBLK 140 141 19:5 186 216 219 220 248 249
AISTO rSRTAB 66

10000< AISTO GETBLK 56* 81* 118* 168* 235*
AISTO F1JTAT 3S*
AISTO PUTFEF 47.
AISTO F1JTBOT 47*

IXXXXX AISTO GETBLK H7* 147 149 191* 191 193 Z3'7* 239 :!40 267* 267 :U.8
AISTO ISRTAB 78* 78 79
AISTO NEXT 42* 42 43
AISTO F'REV 4:!* 42 43
AISTO PUTAT 37* 37 38

This multi-module report shows where variables in common blocks
are used, set or equivalenced. The report is alphabetically ordered by
the name of the common variable. The common" block which contains the
variable is indicated in the scope column. Modules which reference the
common variable are alphabetically ordered in the module column.
Statements (AVFS statement numbers) within each module are shown next.
A blank following the statement number indicates the variable is used
there, a '*' indicates the variable is set, and an 'E' indicates the
variable is equivalenced. This report is produced for all modules and
all commons on the restart file. An updated version may be obtained by
reanalyzing all changed modules and using the EXPAND option. A summary
of the information in this report is provided in the common matrices
report.

Figure 4.13. FORTRAN Commons Cross Reference

55

CROSS REFERENCE

NAME SCOPE MODULE USED/SET/EOUIVALENCED (* IN[lICI~TES SET)

--_.-
EROR EXTERNAL ISRTAB 87
FREL.NI' EXTERNAL F'lJTBEF ~1

EXTEF",NAL PunOT 29 31
GETFRG EXTEf':NAL GETBLK 262

EXTERNAL ISRTAB 63
EXTERNAL NEXT 37
EXTERNAL PREV 37
EXTERNAL F'UTAT 31
EXTERNAL PUTBEF 41
EXTER~!AL PUTflOT 41

lGTWRD EXTERNAL NEXT 31 33
E:<TERNAL PREV 31 33
EXTERNAL F'UTBEF 32
EXTERNAL PUnOT 35

ITSFRG EXTERNAL ISHTAB 60
EXTERNAL NEXT 35
EXTERNAL F'REV 35
EXTERNAL PUTfH 29
EXTERNAL F'UTBEF 39
EXTERNAL PUTrIOT 39

LGTMLT EXTERNAL ISRTAB S2 53
MAKFRG EXTERNAL GETDLK 224
MINO EXTERNAL ISHTAB 66
PUTWRD EXTEF",NAL F'UTDEF 33 35 37

EXTERNAL F'UTBOT 32 36 38
XMIT EXTERNAL GETBLK 45 55 234 237

EXTERNAL NEXT 40 46
EXTERNAL PREV 40 46
EXTERNAL PUTAT 34
EXTERNAL F'UTrIEF 44
EXTERNAL PUTBOT 44

-------------------------- -----------

This multi-module report shows the AVFS statement number where
each external is referenced. The report is alphabetically ordered by
the name of the external. Modules which reference the external are
alphabetically ordered in the module column. Statements (AVFS statement
numbers) within each module are shown in the next column. This report
is produced for all modules on the restart file. An updated version may
be obtained be reanalyzing all changed modules and using the EXPAND
option. A summary of information contained in this report is provided
by the Invocation Summary Report. The text of each invocation can be
found by referring the AVFS statement listing or Invocation Report for
each module. Note that these reports are not generated from the restart
file but rather from source analyzed during an AVFS run.

Figure 4.14a. FORTRAN Externals Cross Reference

56

CROSS REFERENCE MULTI-MODULE REPORT PAGE 1

NAME CLASS MODULE USED/SET (- INDICATES SET)

C1
C2
C3
C4
CC1
CC2
E1
E2
E3
E4
E5
E6
EEl
EE2
NEWPROC

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
COMMON
COMMON
EXTERNAL
EXTERNAL
EXTERNAL

NOCALLFROM EXTERNAL
PROC1
PROC2
PROCCALL1
PROCCALL2
R1
ROBERTI
ROBERT2
VOTER
XPROC

EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL

VOTER
VOTER
VOTER
VOTER
VOTER
VOTER
VOTER
VOTER
VOTER
VOTER
VOTER
VOTER
VOTER
VOTER
ROBERTI
NO CALL FROM
VOTER
VOTER
VOTER
VOTER
VOTER
ROBERTI
ROBERT2
VOTER
ROBERTI

71
71
71
76
9
9

72
72
72
73
78
78
14
14
85 97 117
88 94
10 46
13 46
39 40 41 42 43 44 106 108 III 115
46 110 113
11 12
82 98

100
5 41 43 44 45 45 -61

86 92

Figure 4.14b. AED Global Cross Reference

Figure 4.14b continued

This multi module report shows the AVFS statement number where
each global variable is referenced. The report is alphabetically
ordered by the name of the global variable in the first column. The
class column denotes whether the variable is EXTERNAL or in COMMON.
The moudles which reference the global variable are alphabetically
ordered in the module column. The remaining columns contains the line
numbers within each module where the variable is referenced.

58

...urUC SlJllTcA.JI • .JJ'

8AlfUJTtfC .,.,.,A.U •. .I.n
Dlr£)6ZCII AU,.IUU6J.llU.)
tH'T'UlElt A.T.TT

"- I E. n
oJ -.J.J

I: , IFII .GIE. oJl GIl 111 70

• : 10 IC • I

1:::
1::::
.:::
1::::
i::: ...

C::

.•. ..

.m ...

J.J • C.J • UI'2
T - AU,JJ
IFC AliI .LE. TI QIITO 20

f'U.J' • AU'
ACU - T
T. "eLI'

20 1 • ..1
IF (AC.J, .GIE. T) ., TO 40

ItCJ,J) • AC,J'
AC,J, - T
T • AU,J,
lFe AU' .LE. T) GO TO 40

AU,J'. AeU
11'(1) • T
T. AU.J'
.. 11140

30 A(L' • Ann
Aun - TT

• &... L - 1
lP'eACL' .aT. T) GO TU 40

". AeL'
!IOIC-tc+l

IFe ACK' .LT. T , GO TO ~

IFC " .LE. I.' GIl 111 30

IFC I.-I .LE. ~.u 1m TIl 60

aun • I
runt) • L
I - ..
"." • 1 GIl 111_

60 IL,C", • K
JUCN, -,J
oJ-L
N ." • 1
GIl TIl..,

1OM-"-1
IFC If .ED. 0' JIIEnI8I

1- !LUU
..1- Nnn

_ !Fe;1 .".IU GO TO 10

IFC' .m. III GIl 1111

I • I -1
tol-I.'

IFC I .m. oJl GIl TIl '"

T. AU+U
lFe ACU .LI.. ,) 00 TO 90

:1: 100 ".;'!II - A'KI
K - I
un .LT. ACIC" au TO 100 ..

,...,.." rJCI"N,WItD....... (lCHI,
MCZ:I[JrQHt~lUNrn1234"'''''

•

De
K . ..
:0. .•.
.IX ...
• D.

:.:0
.C •••

:.::i:•
.EEED
.11 C
.1:. :.
.011
.1:. ..E. ...
• D.

:.:i:
.. D

..•
C •••
' •• D
C ••••

_.0
C ••
... E
1: ••

.:
DI •

1: •• .. :
C ••

K.

De •
I ••

i:
I:

The PICTURE report can only be obtained by using the REPORT=PIC
TURE command; it is not included in any of the options because the
PICTURE report has limited use for structured source programs. The
primary function of this report is to delineate the control flow of
FORTRAN programs. The downward flows are shown on the right of the
report. The upward flows are shown on the left. The B stands for the
start of a path and the E stands for the end of a path. This report is
especially helpful in breaking down large FORTRAN programs into smaller
parts that are more manageable to restructure. Since the PICTURE report
shows the beginning and ending of paths, it helps the user determine
which are logically cohesive sections of code.

Figure 4.15. FORTRAN Picture of Module Structure

59

FLOW GRAPH

UPWARD JUMPS

ABCDEFGHIJK

PROCEDURE YAW. ENG

STATEMENT TEX! DOWNWARD JUMPS

ABCDEFGHIJK

DEFINE PROCEDURE YAW.ENG TO BE

BEGIN

Y.FAIL.MON=PGM.V AND NOT YAW.SAS.2FAIL;

B

IF Y.TEST. COMPL EB

B

THEN BEGIN

IF IN.CH.A .EB

THEN BEGIN

ASNBIT (Y .FAIL.MON, 8,DO.BUFF. 3);

END •• E

ELSE .E

ASNBIT(Y.FAIL.MON,5,DO.BUFF.3);

END;

GSP.V .. REFBIT(l3,CD.15.MA); E

Figure 4.16. AED Picture of Module Structure

60

4.4 SUMMARY

The SUMMARY option is intended to be used when a brief introduc

tion to a module or a set of modules is desired. For FORTRAN it

provides an analysis of source statements, common blocks, and entry

points. For AED it provides an analysis of source statements on a

module basis.

The statements of individual modules are classified according to

categories which are appropriate to that language. Under each classi

fication a tabulated account of the various statement types are listed.

An individual Statement Profile report with this information is gener

ated for each module. This report is shown in Fig. 4.17.

For FORTRAN, the COMMONS report lists the common blocks in each

module and a report index for multiple module analysis as was shown in

Fig. 2.4. For AED, there is a single COMMON which is analyzed dUring

interface analysis and reported on in the interface report (see Fig.

4.5) •

An Invocation Summary Report is also generated for this option and

for the document option as shown in Fig. 4.9b.

PROFILE

The AED statement profile report (Fig. 4.17b) lists the name of

the module and the number of lines at the top of the report. The modu;e

name is the name of the procedure contained in the module. The number

of lines includes the lines from any inserts and includes blank lines.

AED statements are classified into declarations and statements.

While there can be more than one declaration or statement per line.

Typically there is less than one of each per line. Hence the number of

declarations plus the number of statements will be less than the number

of lines in most cases.

61

Under declarations, there are declarations for arrays, beads,

commons, components, defines, externals, packs, presets, procedures,

switches, synonyms, and variables. Each of these is counted separately.

Inserts are listed under declarations but are not included in the count

for declarations. In AED, the inserts normally contain declarations.

The line percentage is computed on the basis of the total number of

lines printed on the top of the profile.

Under statements, there are assignment, compond, if, for, goto,

procedure and while categories. A line can contain several categories.

For example, a compound statement is made up a BEGIN •• END construct.

Thus the module is counted as a compound statement. Then an IF state

ment often contains a BEGIN ••• END compound statement as well as a

procedure invocation.

Comments and asserts are listed under statements but are counted

separately.

Report

Statement Profile

Invocation Summary

Common Summary

FORTRAN
Command

OPTION=SUMMARY
(Fig. 4.17a)

OPTION"SUMMARY
(Fig. 4.9a)

o PTION=SUMMARY
(Fig. 4.18)

62

AED
Command

GRC*PROFILE.PROFILE
(Fig. 4.17b)
Appendix C-20

GRC*DEPEND.DEPEND
(Fig. 4.9b)
Appendix C-17

GRC*INTER*INTER
(Fig. 4.5)
Appendix C-14

The FORTRAN command

OPTION=SUMMARY

may be replaced by the UNIVAC command

@XQT,B GRC*AVFS.AVFS

The complete UNIVAC JCL is shown on page C-IO.

to produce the three reports at one time. The AED commands to produce

the three corresponding reports are separate XQT commands.

63

STATEMENT PROFILE SUBROUTINE EXAHPL (INFO. LENGTH)

INTERFACE CHARACTERISTICS ----
ARGUMENTS 2
ENTRY 1
EXIT 1
URITE 1

STATEMENT STATEMENT
CLASSIFICATION TYPE NUMBER PERCENT

DEClARATION •••

FORMAT 1 2.8

TOTAl. 1 2.8

EXECUTABLE •••

ASSIGNMENT .. 11.1
BLOCK 2 5.6
CALL 1 2.B
CASEELSE 1 2.B
DOUNTIL 1 2.8
ELSE 1 2.8
END 1 2.B
ENDBLOCK 2 5.6
ENDCASE 1 2.8
ENDIF 2 5.6
ENDUHlLE 2 5.6
INVOKE 3 8.3
RETURN 1 2.B
SUBROUTINE 1 2.B
URITE 1 2.B

TOTAL 24 60.7

«CISION •••

CASEOF' 1 2.8
CASE 2 5.6
DOUHILE 2 5.6
ENDUNTIL 1 2.8
IF-TI£N 2 5.6

TOTAL B 22.2

DOCUHENTATION •••

COMMENT 3 B.3

TOTAL 3 B.~

This report classifies each statement of a module as either a
declaration, executable, decision, or documentation statement. Under
these classifications, a tabulation of the statement types are listed.

Figure 4.l7a. FORTRAN Statement Profile

64

STATEMENT PROFILE
module YAW. ENG
number of lines 156

number percentage of lines
declarations 83 53.2

array 0 0.0
bead 1 0.6
common 0 0.0
component 1 0.6
define 1 0.6
external 25 16.0
insert 3 1.9
pack 0 0.0
preset 0 0.0
procedure 1 0.6
switch 0 0.0
synonym 2 1.3
variable 52 33.3

statements 45 28.8
assignment 24 15.4
comment 19 12.2
compound 5 3.2
if 6 3.8
for 0 0.0
goto 0 0.0
procedure 11 7.1
while 1 0.6
assert 5 3.2

AED statements are classified into declarations and statements.
Under each classification, the type of statement is listed along with
its number and frequency in terms of liens. The number of lines
(including blank ilnes) in the module is listed.

Figure 4.17b. AED Statement Profile

65

CO HMON SUI1I1ARY

co liMO,.,

AI 510 HAleTAB

t.LPHA CHATRX

ANSI CHATRX REFVAR

Bl. KSTO OEPVOIC

DaGCOH I1AICTAB

DEPCOH DEPBND DEPVOIC

EPT DEPGRP DEPVOIC AEFVA"

FILES CHATRX DEPBND DEPGRF OEPVOK XREFER

GLOBAl. DEPBND

HALPHA XREFER

HCHARS OEPGAP lCREFE~

HaIGIT CHATRX

lCMHOS STEP15

KOELMS OEPVOIC

MACHNE OEPVOK

HOB OEPVOIC REFVAR

""RY15 STEP1S

I'ITHSTO OEPGRP OEPVOIC

HTHSTl OEI'VOK XREFH

This report lists all modules and all common blocks encountered.

Figure 4.18. FORTRAN Common Summary

66

4.5 INSTRUMENT

Figure 4.19 illustrates AVFS instrumentation of a FORTRAN or AED

program to prepare it for an execution coverage test. There are three

forms of instrumentation:

• path instrumentation

• trace instrumentation

• assertion instrumentation

In each case the instrumented modules will be written to a sequential

file which must be compiled, loaded, and executed in the normal test

environment. During execution, data is collected in a file (FORTRAN) or

in memory (AED) for later analysis. Section 4.5.1 describes FORTRAN

instrumentation and Sec. 4.5.2 describes AED instrumentation.

4.5.1 FORTRAN Instrumentation

Path Instrumentation

During FORTRAN instrumentation, the instrumented modules will be

written to UNIT 9 (LPUNCH). A DO path definitions report will be

generated to aid in the interpretation of test results. The user should

use the FIRSTLINE command (see Section 3.3) to specify the name of a

FORTRAN compiler in a UNIVAC run stream command. and AVFS will auto

matically insert this specification as the first line of every sub

program. For example, if the FTN compiler will be used. the command

should be:

FIRSTLINE III (@FTN,I TPF$.+).

67

f"" -r--. -
~ --......... OLD

INTERFACE

COMMAND FILE

[5] [11]
r--.

"- .-' ,
~ -::

NEW
AVFS INTERFACE

FILE
[8]

'- --
K- -....

REPORTS

SOURCE
[6]

[5J -

Figure 4.19. AVFS Instrumentation of Source Code

68

A DD-path is a sequence of executable statements emanating from a

decision statement and continuing to the next decision statement. Since

complete DD-path testing means exercising all possible outways of

decision statements, this is a more rigorous testing measure than

exercising all program statements. All AVFS execution coverage reports

are presented in terms of DD-paths, not statements.

INSTRUMENT inserts a set of probe statements into each module.

The probe statements are inserted into the source text at each entry and

each exit of the modules and at each statement which begins aDD-path.

Each probe includes a call to a data collection routine which records

information concerning the flow of control in the executing module(s).

A special probe is inserted at the end of the main program to signal the

end of test execution. The user can also have this special probe

inserted at other points in his code, which has the effect of breaking

one test execution into multiple test cases.

The instrumented source text along with an automatically supplied

data collection routine is written to UNIT 9 (LPUNCH) in FORTRAN. The

file is then compiled by a FORTRAN compiler. The instrumented obj ect

code is then ready for loading and test execution (Fig. 4.20).

During execution of the instrumented program, the probes record

execution data, which results from processing the set of test cases for

this run, on UNIT 12 (LTEST). If UNIT 12 is already assigned to a user

file, the command,

INSTRUMENT,PUNCH,PROBE,«file number».

will cause the data collected during execution to be written to the unit

number specified.

There is a special instrumentation command which allows the user

to insert special probes into his instrumented code which delineate test

cases within the test execution. The user specifies a statement within

69

COMPILATION

INSTRUMENTED
SOURCE
[9] ,

FORTRAN
COMPILER

+
INSTRUMENTED
OBJECT
[TPF $] ,

MAPPER ,
INSTRUMENTED
ABSOLUTE
[TPF $]

EXECUTION

NORMAL
INPUTS

INSTRUMENTED
ABSOLUTE

NORMAL
OUTPUTS

DATA
COLLECTION
FILE
[12]

Figure 4.20. Loading and Test Execution

70

a given module. Before each execution of this statement, the last test

case is terminated and a new test case is begun. The form of the

command for identifying a test execution boundary is:

TESTBOUND,MODULE = «name»,STATEMENT a <number>

where <number> is the AVFS statement number in module <name> where the

test-case probe is to be put. The probe is inserted before the number

specified; therefore, the number should be that of the first statement

not to be included in the test case. Up to ten TESTBOUNDS may be

specified during anyone instrumented run. All must tmme4iately follow

the OPTIONS command (preceding all REACHING SET comnands). The output

of this option when the LIST option is also specified is aDD-path

Definitions report, as shown in Fig. 4.21. It is an indented source

listing of an individual module with additional DD-path information. At

each decision point, the DD-path generated is described in terms of its

decision outways. When measuring testing coverage, the user can refer

to this report to associate the DD-path definitions with his original

source text.

Commands,

INSTRUMENT,PUNCH,PROBE,«file number».

FIRSTLINE = «run stream command».

OPTION = INSTRUMENT,LIST. @XQT,IL GRC.AVFS.AVFS

TESTBOUND,MODULE=«name»,STATEMENT=<number>.

See Appendix C-4 for a complete JCL example.

Report

DD-path Definitions (Fig. 4.21)

71

(optional)

(optional)

(optional)

~114 1'I7INInCNI ~ ~ CIIFO.I.£NGlMI

S1lf1' lEST LIIC SD.IICE ••• ... SIlI.IICE T

1 1 SUBRalTnE ~ CIIFO.LDGnfI
2 C DNA.2
:I C IU1JSl1IATIOH aF IlftATIWI S'NTAX EXMf'U
4 C DNA.4

a DiPl'114 1 IS~DmtY
2 5 II" (~.LE.l0 ._. LDGnf.ln"OlncH ElCNI'\.S

.. 1llPA114 2 IS TRLE 8RNCH

.. IllPATH :I IS FALSE 8RNCH
:I 1 , CAIJ. CIIU£R (IN"O I EXNPUo
4 7 IEUE £XAIP\.7
5 8 L.DIfmtooSO EXNtP!..8 , 9 END II" EXNtP!..9
7 10 CAllE aF (INF004) ElCNt'Ll0

a _114 4 IS 1IRAH04 111T\IA'I' 1
.. DDP"'TH 5 IS &RANCH OUT',JA'I' 2
a IllPATH 6 IS BRANCH OUTl..Wl'l' :I • 11 CMC (14) ~l
a DtJIOATH 7 IS TlIUE BIWIOt
.. DDPATH 8 IS FH.SE 8RNCH

9 1 12 ~IIFO EXNtP!..12
10 13 CMC (17) ~

a DDPATH , IS TRLE BIWIOf
a IllPATH 10 IS FAL.S£ 8RNCH

11 1 14 DO Y4D.E (IIFO.LT .20) ~4
.. _TH 11 IS LOa" AGA IN
a_TH 12 IS UlCI' ESCN'I:

12 2 15 DO LtITtI. (UMJTM.U:. INFO) EXNtP!..15
13 :I 16 IIMlKE (COPAtT'E UMJTMI EXNtP!..16
14 :I 17 II (UMJTM.GE.lOI n£N £XNof'U7

a DtIPOIITH 13 IS TlIUE BIWIOt
a DtIPOIITH 14 IS FoI&..S£ BIWIOt

15 4 lit IJMlICI: (',UNT-R£SU..TS) ElINPU8
16 3 19 END II EXNtP!..19
17 2 20 END I.M'IL ~

a~TH 15 IS LDCP ESCAP!:
.. DiPl'TH 16 IS LOa" AGAIN

18 2 21 INFO-IlFa.l ~1
19 1 22 END I.tlILE ~
20 23 ~~ ~
21 1 24 DO I.tlILE (UMJTM.GT.OI EXNA...24

a DtIPOII114 17 IS LDCP AGAIN
"_114 18 IS LOa" ESCAP!:

22 2 Z5 IIMlKE (CDI'VT'E UMJTMI ~
23 1 24 DID tLE VCArlPL24
24 27 END CASE ~7
Z5 28 BLQCI((PIIIIfT-MSU. TS) ElCAIft.23

a DiPl'114 19 IS PIIOCElUII: ENTRY
:u 1 ~ WItTE C6.lIIIFO.UMJTM ~
27 1 30 1 • ~T ClOX.I'.2OX.I5) ~
28 31 END a.oac EXNtP!..31
29 32 BLQCI((COI1I'UTE LDIGlMI EJIAI'I'U2

.. _TH 20 IS I'!IOCEIlIR!: ENTRY
30 33 LENGTH • LDGTH -10 ~
11 34 END a.oac EXNtP!..3~
32 3:s RETURN EXNtP!..3:s
33 36 END ElINft.16

This report is useful for testing purposes because it defines the
decision paths.

Figure 4.21. DD-Path Definitions

72

TRACE Instrumentation

Additional information may be gathered during execution test by

inserting INPUT and OUTPUT statements into each source module. The

INPUT statements are used to list global variables (either parameters or

in COMMON) that will have a value whenever the routine is entered; the

OUTPUT statements are used to list variables that will be assigned a

value in the ,routine. An INPUT variable may also be an OUTPUT variable.

The INPUT/OUTPUT option provides a dynamic tracing of the values of the

program variables.

A type specification must be provided for each variable so the

value will be printed the correct format. Omitted types will result in

variables being printed according to the most recent previous type, and

if there wasn't a previous type the variable(s) will not be printed.

The syntax to provide type information is:

INPUT (/<type)/<variable list>,/<type>/<variable list>, •••)

OUTPUT (/<type>l<variable list>,/<type>l<variable list>, •••)

<type> may be REAL, INTEGER, HOLLERITH, or LOGICAL or the respective

abbreviations for each, R, I, H, or L. <variable list> may contain

non-subscripted variable names, array names, individual elements of an

array, or an array subrange, such as (LIMIT(I), I = M,N) where LIMIT is

an array with a dimension of at least N. I is a variable whose value

will be undefined after the INPUT or OUTPUT statement is executed.

Some examples are:

INPUT (/I/NUMBER,(LIMIT(I),I=M,N),/R/AREA,RANGE,

* /L/DEBUG,/H/TEST)

OUTPUT (/REAL/AREA,/LOGICAL/DEBUG)

The INPUT and OUTPUT statements are turned into comments by AVFS

so they may be left in the code when the instrumented code is compiled.

73

The INPUT/OUTPUT option also performs the same functions as the

INSTRUMENT option so the instrumented code on UNIT 9 may be used in the

same way as described in Sec. 4.5.1.

The output of this option is the inclusion of a FORTRAN trans

lation of the INPUT and OUTPUT statements in the code written on UNIT 9

(LPUNCH). When the program is executed, the names and values of the

variables with type specifications listed in INPUT and OUTPUT state

ments, will be reported. In addition, a DD-path Definitions report

identical to the one from the INSTRUMENT option will be generated, if

the LIST option is also specified. Figure 4.22 shows this report for a

subroutine with INPUT and OUTPUT statements.

Command

OPTION ~ INPUT/OUTPUT,LIST. @XQT;TL GRC*AVFS.AVFS

Report

Input/Output Listing (Fig. 4.22)

74

DD-PAnt DJllIlTIDHS SU1lRQJTIIE nl£S (_. RE5U..T. SUI)

tmn' NEST LINE 5O.I'lCl: ••• • •• SCtRCE TAB

1 1 5U!IRQJTD£ TIllES (_. RE5U..T. SUI I
2
3

1 4
:s l: USING ADDITION TO IU.. TIPL Y

.. DDPAnt 1 IS ~ ENTRY
2 7 INTEGER RE5U.. T, SUI. Y
3 • I...uT (/1/ 1AlH. R£5U.T I
4 9
:s 10 SUI -0 • 11 y. -7 12 DO ~1U: (Y .GT. 0)

.. DDPAnt 2 IS LOOP AGAIN

.. DDPAnt J IS LOOP tSCAPE
8 1 13 SUI • SUI • RE5U.. T
9 1 14 Y • Y - 1

10 1 1:S
11 16 DID WHILE
12 17 OUTPUT (/1/ SUI)
13 18
14 19 ~
1:S ~ DID

This example shows INPUT and OUTPUT statements in the code.

Figure 4.22. Input/Output Listing

75

ASSERT Instrumentation

Checks on variables during execution test can be obtained by

inserting ASSERT statements into each source module. The ASSERT

statements present logical conditions which are assumed to be true. If

an assertion goes false, a report giving the module and line number of

the false assertion will be printed.

The syntax to provide assertions is:

ASSERT (boolean expression)

Some examples are:

ASSERT (HEIGHT .GT. MIN)

ASSERT (DEIAY .LT. MAX .AND. DEIAY .GT. MIN)

The ASSERT statements are turned into comments by AVFS so they may

be left in the code when the instrumented code is compiled.

The ASSERT option performs the same functions as the INSTRUMENT

option so the instrumented code on Unit 9 may be used in the same way as

described in Sec. 4.5.1.

The output of this option is the inclusion of a FORTRAN trans

lation of the INPUT and OUTPUT statements in the code written on UNIT 9

(LPUNCH). When the program is executed, assertion violations will be

recorded along with their location. Figure 4.23 shows a listing of a

subroutine with ASSERT statements.

Command Report

OPTION=ASSERT,LIST. Assert Listing (Fig. 4.22)

76

SLQ N(ST SOURCE PROGRAM XPON(H (INPUT. OLTPUT. TAPE6 = OuT~UT)

1
i!

" It
S
6
7
&
9

Ie.
11
12
lj

11+ 1
15 1
16 1
17 1
18 1
1~ 1
2C 2

21 2
22 2
c:~ ~
~It 1
2:a 1
<:.. 1
27 1
2&
i!9
3e.
:51

CASON
CUNIT
CMOON
C
C
C
C

PROGkAM XPON£H I INPUT. OUTPUT. TApE6 = OUTPUT)

6
)(PONE.N

E.xPONE~TIATIOn BY MULTIPLICATIoN USING
Su~RCUTIhE Tl~ES

lNT£GEH ANSWER, RESULT. SUN
INIT1AL I,TRUE.)
PRINT 1

1 FORNAT '-1 -HUM lEXPCN AhSk£R .)
00 I M = 1, It)

hEAD 2. NUM. IEXPON
2. FoR~AT I 21IS1)

AS~EHl I N~M .GE. 0 .AhO. IEXPON .GE. 0 ,
RESULT = 1

• 1 = 1
WHILE' I .LT. IE.XPON)

ASSEHT I RESULT .£~. HUM •• I .ANa. NU~ .GE. 0
*. _ .AhO. IEXPON .GE. 0 -ANa. 1 .LT. JEXPON ,

• • CALL TIM~S I ~u~. RESULT. SUM'
• • RESULT = SUM · .1= 1 + 1

E.tlO WH.LLE
AflSWER = RESULT
FRINT 3. NU~. IEXPON. ANSWER

3. FOR~AT (3(16))
END 00
FIN~L I ANSWER .Ea. hUM •• IEXPoN ,
STOP
END

Figure 4.23. FORTRAN Assert Instrumentation

77

4.5.2 AED Instrumentation

Path Instrumentation

During AED instrumentation, the instrumented module is written to

UNIT 30 (INSTFL). A DD path definitions report is generated to aid in

interpreting test results. The instrumented code is ready for compiling

by an AED compiler. The instrumented object code is then ready for

loading and test execution.

Also during instrumentation,

generated on the file named PROBE.

a special AED problem routine is

This routine must be compiled and

loaded with the instrumented modules. During executiton of the instru

mented program, the AED probe progam records the test history in the

memory of the CAPS computer. After execution halts, this information is

sent to the PDP 11/60 for analysis.

Command Report

@XQT GRC*INST.INST DD path definitions (Fig. 4.24)

See Appendix C-21 for a complete JCL example.

78

1 DEFINE PROCEDURE YAW.ENG TO BE

PATH 1

2 BEGIN

3 Y.FAIL.MON = PGM.V AND NOT YAW.SAS.2FAIL;

4 IF Y. TEST .COMP

5 THEN BEGIN

PATH 2

6 IF IN.CH.A

7 THEN BEGIN

8

9

10

11

12

PATH 3

PATH 4

PATH 5

PATH 6

PATH 7

ASNBIT(Y.FAIL.MON,8,DO.BUFF.3);

END

ELSE

ASNBIT(Y.FAIL.MON,5,DO.BUFF.3);

END;

GSP.V=REFBIT(13,CD.15.MA);

Figure 4.24. AED Path Definitions

79

Trace Instrumentation

Additional information may be gathered during execution test by

inserting INPUT and OUTPUT assertions in each source module as was

discussed for FORTRAN. In AED these assertions are written as COMMENTS

in the following syntax:

COMMENT INPUT <type><variable>;

<type> may be one of the AED data types

<variable> is one of the AED data names.

During execution the value of the variable will be stored along

with the execution time, the module name, and the statement number. All

this information is sent to the PDP 11/60 for later analysis during

execution test.

Figure 4.25 shows a listing of some source with AED INPUT/OUTPUT

assertions.

Command Report

@XQT GRC*TRACE.TRACE Trace assertion report (Fig. 4.25)

See Appendix C-22 for a complete JCL example.

1 BEGIN
2 BOOLEAN ALIGN;
3 BOOLEAN ROLL. OUT;
4 COMMENT INPUT BOOLEAN ALIGN;
5 COMMENT OUTPUT BOOLEAN ROLL. OUT;
6
7 ROLL.OUT = ALIGN OR ROLL.OUT;
8 END FINI

Figure 4.25. Trace Assertion Report

80

Assert Instrumentation

Checks on AED variables during execution can be obtained by

inserting ASSERT statements into each source module. In AED these

assertions are written as COMMENTS in the following syntax:

COMMENT ASSERT boolean-expression;

Some examples of assertions are:

COMMENT ASSERT HEIGHT> MIN;

COMMENT ASSERT TIME < MAX;

The output of the assertion command is instrumented code on UNIT

30 which may be compiled, loaded, and executed.

During execution false assertions will be saved in the CAPS and

sent to the PDP 11/60 when some maximum number (presently 30) of false

assertions have been detected.

Command Report

@XQT GRC*ASSERT.ASSERT Assert Listing (Fig. 4.26)

See Appendix C-23 for a complete JCL example.

1 BEGIN
2 BOOLEAN ALIGN; EXTERNAL ALIGN;
3 BOOLEAN ROLL. OUT; EXTERNAL ROLL. OUT;
4 COMMENT ASSERT ROLL. OUT;
5 COMMENT ASSERT ALIGN AND ROLL. OUT;
6 ALIGN ~ FALSE;
7 END FINI

Figure 4.26. AED Assert Listing

81

4.6 REACHING SET

The analysis specified by the REACHING SET option executes the

module retesting assistance capability of AVFS. Presuming that a set of

untested DD-paths has been isolated, AVFS helps the user identify

sections of code to exercise. The user specifies the desired DD-path

number to be "reached," and AVFS generates the reaching set of paths

fran module entry or from a designated DD-path up to the second DD-path

number which has been specified. The user may specify either iterative

(explained below) or non-iterative reaching sets to be generated. AVFS

prints a list of DD-paths on the reaching set. With this output, the

user is able to identify which parts of the program need to be executed

(and therefore which program values need to be modified) in order for

the selected DD-path to be executed (or reached). Once this determi

nation is made, new test cases can be constructed, and the program can

be roo again to execute the DD-paths which were not traversed in the

previous tests.

The FORTRAN command

OPTION = REACHING SET

or the AED command

@XQT GRC*REACH.REACH

enables reaching set analysis to be performed. However, ~ analysis is

performed unless one or more reaching sets are specified. The command

for specifying a reaching set is:

REACHING SET,MODULE= «name»,TO= <OD-path number>,

FROM- <DD-pathnumber> {,ITERATIVE}.

The reaching set which includes all possible iterative paths may be

generated by appending ITERATIVE (preceded by a coma) to this command,

otherwise the command generates a non-iterative reaching set.

82

A Reaching Set report is in Fig. 4.27; it lists the set of

DD-paths within the reaching set, followed by the source statements

which make up that set of paths.

FORTRAN Command Report

OPTION D REACHING SET Reaching Set (Fig. 4.27a)

See Appendix C-27 for a complete JCL example

AED Command Report

@XQT GRC*REACH.REACH Reaching Set (Fig. 4.27b)

See Appendix C-24 for a complete JCL example

83

REA01ING SET AHALYSIS ~INE EXAMFt. (UFO.LDlGTH)

2

4
:5
6
7
8

10
11
12
13
1<;

16
17

1

1
2
3
:3

:3
2

NON-ITERATIVE REACHING SET F"ROt1 DD-PATH :3 TO DD-PATH 14

DDPATHS IN REACHING SET
3 4 :s 8 9 11 14

SOURCE CODE IN REACHING SET

:s
7
8
9

10
11

13
14
15
16
17

19
20

IF" (INFO.LE.10 .AND. LE~1l1.GT.O)THEN

ELSE
• LENGTH-SO
END IF"
CASE OF' <INF0+6)
CASE (14)

CASE (17)
DO UHILE (IhFO.LT.=O)

DO UNTIL (LENGTH.LE.INFO)
INVOKE (COMPUTE LENGTH)
IF (LENGTH.~.:30) THEM

• END IF
EHD UNTIL

UTK<GET DII-f'ATH BEGINPIING**

This report shows which DO-paths must be traversed, beginning with
a specified DO-path to reach the target DO-path. Both the beginning and
the ending DO-path numbers are designated by the user in the REACHING
SET specification command. Coordination of this report with DO-Path
Definitions report allows the user to determine what values must be
supplied to the variables to affect the decision predicates so the
appropriate path will be taken.

Figure 4.27a. FORTRAN Reaching Set

84

BRSET.LOG; 1 17-MAY-1982 16:49::58.76 Page 3

REACHING SETS FOR MODULE YAW. ENG

1. REACHING SET FROM STATEMENT o TO STATEMENT 0

********** REACHING SET ERROR **********

ILLEGAL INPUT STATEMENT NUMBERS ... NO COMPUTATION PERFORMED.

HERE ARE THE STARTING AND ENDING STMT NUMBERS
FOR PROCEDURES IN THIS MODULE:

1. PROCEDURE YAW. ENG FROM STMT 14 TO STMT 83

2. REACHING SET FROM STATEMENT 14 TO STATEMENT :50

STI'ITS IN REACHING SET NO. 1 : 14 1:5 16 17 18 19 20
33 34 3:5 36 37 38 39
40 41 42 44 45 46 47
48 49 :50

STMTS IN REACHING SET NO. 2: 14 15 16 17 18 19 20
33 34 3:5 36 37 38 39
40 41 43 44 45 46 47
48 49 50

STMTS IN REACHING SET NO. 3: 14 15 16 17 18 19 20
21 22 23 24 25 26 27
33 34 35 36 37 38 39
40 41 42 44 45 46 47
48 49 50

STMTS IN REACHING SET NO. 4: 14 15 16 17 18 19 20
21 22 23 24 25 26 27
33 34 35 36 37 38 39
40 41 43 44 45 46 47
48 49 SO

STMTS IN REACHING SET NO. 5: 14 15 16 17 18 19 20
21 22 28 29 30 31 3;;<
33 34 35 36 37 38 39
40 41 42 44 45 46 47
48 49 50

STMTS IN REACHING SET NO. 6: 14 15 16 17 18 19 20
21 22 28 29 30 31 32
33 34 35 36 37 38 39
40 41 43 44 45 46 47

Figure 4.27b. AED Reaching Set

85

4.7 FORMAL VERIFICATION

Two steps are required to perform symbolic execution or veri

fication condition generation. The first is a preliminary step to

obtain necessary data, the second is the actual generation.

The formal program verifier uses the program paths of a module to

perform symbolic execution or verification condition generation of

FORTRAN programs. In AED programs, line numbers are used instead.

4.7.1 FORTRAN Verification

For a preliminary analysis of a FORTRAN program, the command is

OPTION = VCG.

This option generates a DD path definitions report as was shown in Fig.

4.21.

The command to generate a verification condition is

VCG,PATH=<number of paths>.<path list>

where the path list consists of a set of DD path numbers. For example,

the command to cover the path from program entry to the first decision

statement would be

VCG,PATH=1,1

To cover DD paths 2,4 in a loop construct, the command would be

/ VCG,PATH=2,2,4

Usually several paths are processed at once.

The DD-Path Definitions Report for the subroutine CIRCLE, Fig.

4.28, shows three DD-path numbers. The IF statement provides two

alternative paths, DD-path 2 when the IF expression is evaluated as

"true" and DD-path 3 when it is "false".

86

---.-.--------------------------.--------------------.----------
c
~

•
~
~
7

• 11 , 11
lUI 11
11
U
U
l'

S~~MO~TI~t tl~CLC I ~A~IUS. ~(I~~T. AAL~. VCL~~t I

~A'A PI I 3.1~1. I

l~lTIAL I "AUI~~ .~,. 0 I
VOLU"(~ a
AM,A • PI 0 RACI~S 00 2
IF I AhtA .Gr. RAelLS I

• V~LU~t a H[16HT 0 AREA
• Fhl •• 1 1, t H.:luS. WOL~WL ,
• FO.-atl IX. 2 I F'.2 I I
Ud,lF
F 1""L I vCLu"£ .LI.. a .OR. vCL,," .L... 1'£ IG"T • AhEA I
ilL lI.R '"

00 r·t-PATH 1 IS PRuctC .. At ('HRT

•• r.t~AfH 2 IS TAut BMANtH o. C~~ATH 3 IS FALSE aPaNCH

Figure 4.28. DD Path Definitions for Verification

For each of these two paths, it is necessary to provide a VCG,PATH

command. The commands for generating the verification cO,nditions for

CIRCLE would be:

OPTION = VCG.

MODULE = (CIRCLE).

VCG,PATH ~ 2,1,2

VCG,PATH = 2,1,3

As a result of these commands, a verification path and a verifi

cation condition will be generated as shown in Fig. 4.29.

87

-~ ,
7

SUhROUTI~E CIRCLE I RACIUS. h£IGHT. AREA. vOLU~E)

PAT~ SuLRCE TEXT

SUOROUTl~E Cl"CLE I H'CrUS. HErGHT. AREA. VOLUME.

INITIAL I RADIUS .GT. 0
VOLU~~ = 0
AREA = PI • RADIUS •• 2
IF I AREA .GT. hADILS I

• 1.
, 1.

VOLu~E = HEIGhT. AHEA
• FRINT 1. ~ RADIUS. vCLU~E
E~DIF 11

12 FI~AL I VCLUME .EO. 0 .OR. VO~~(.EO. HEIGHT. AREA •

Verification Path

ST~eOLICALLT ExECLTtC vERIFICATION COUDITICh
------------------.---------------.---------

LINE VERIFICATICN CONDITICh

_ RACIUS .GT. 0

Ahe

7 PI. I RADIUS •• 2 •• GT. RADIUS

----------- I~PLl£s --------------.--.-------.-.-.-.-._---------------

12 hEIGHT. PI • I HAC IuS •• 2 , .E~. u .~~. HEIGhT • PI • I RAorUS •• 2
•• Eg. ~EIGHr • PI • I RADIUS •• 2 I

Verification Condition

Figure 4.29. Verification Condition Generation

88

The VCG EXPRESSION command together with the previous path command

allows the symbolic execution of a given expression over a specified

path.

Command

VCG,EXPRESSION

<expression) $

VCG,PATH <number of paths>,<path list>

Some samples of commands are:

OPTION=VCG

MODULEa(EXAMPL) •

VCG ,EXPRESSION

VOLUME

VCG,PATH-3,l,2,3

VCG,EXPRESSION

DIAMTR .GT. HEIGHT $

VCG,PATHa 3,2,5,3

4.7.2 AED Verification

AED Verification is similar to FORTRAN

lines are specified instead of paths.

verification except that

To symbolically execute an expression C.F .LCH over lines 10, 11,

12 one specifies during the execution of GRC*VCG.VCG:

FOR LINES'" 10, II, 12 DO

C.FO.LCH

END FOR

This would result in the report shown in Fig. 4.30 which lists the

original expression, the specified lines, and the executed expression.

A range of lines is specified by

first line •• last line

89

so the previous command could be

FOR LINES = 10 •• 12 DO

C.FO.LCH

END FOR

SYMBOLIC EXECUTION REPORT

ORIGINAL EXPRESSION

C.FD.LCH

SOURCE CODE

10 ALIGN = TRUE;

11 RUN.WAY = FALSE;

12 C.FD.LCH = ALIGN OR C.FD.LCH;

FINAL EXPRESSION

TRUE OR C.FD.LCH

Figure 4.30. AED Symbolic Execution Report

90

To generate a verification condition, it is necessary to specify

assertions at each end of the path to be verified. By specifying VCG as

the expression to be symbolically executed, a verification condition
I

will be generated using assertions previously placed in the text.

Figure 4.31 illustrates an AED verification condition report listing the

source and verification condition. The com:nand to generate the figure

would be

FOR LINES 9 •• 12 DO

VCG

END FOR.

SOURCE CODE

9 COMMENT" ASSERT GLIDE SLOPE > 2 AND RANGE > 1000;

10

11 ALTITUDE a RANGE * GLIDE SLOPE * 3.14159/180.0;

12 COMMENT ASSERT ALTITUDE> 30;

VERIFICATION CONDITION

GLIDE SLOPE > 2 AND RANGE > 1000

IMPLIES

RANGE * GLIDE SLOPE * 3.14159/180.0 > 30

See Appendix C-28 for a complete JCL example.

Figure 4.31. AED Verification Condition Report

91

92

5 AVFS CONSTRAINTS

AVFS imposes certain restrictions on the size of the interface

file, the command language, and the source text to be analyzed. Most of

the limitations based on size are generous (e.g., the maximum number of

nested IF statements is one hundred). AVFS is capable of handling quite

large source text files. Unusually large programs may have to be

processed by several successive executions, each operating on a separate

file of modules.

5.1 UNIVERSAL CONSTRAINTS

• At most 250 modules may use the same common block

• Maximum of one card for any given command

• Maximum of 24 commas in any given command

• Maximum of 80 characters per source card image read

• The maximum number of DD-paths which can begin at a state

ment is 50

• The maximum number of statements on a single DD-path is 100

• The sizes of the two random files UNIT 2 (LIBNEW) and UNIT

13 (LIBWSP) are established using a DEFINE FILE statement in

FAVS. The current sizes are 500 records (of 300 words each)

• Maximum of 250 tokens per statement

5.2 SYNTAX CONSTRAINTS

The follOwing implementation constraints are the current ones

which must be observed:

• Each module placed on the same interface library must have a

unique name

• If any errors are detected in the source, one or more

statements may be flagged as not parsed

93

• Maximum nesting depth of 25 DOs in FORTRAN

• DELETE, START EDIT, STOP EDIT are not recognized

• Switch labels may appear only in assigned GO-TO statements

• ** is the only valid exponentiation symbol

• ASCII FORTRAN debug statements are not recognized

• An initial comment statement will be recognized as the start

of a module

94

6 ANALYZER COMMANDS

A variety of coverage analysis reports can be generated from data

collected during execution of a FORTRAN program that was instrumented by

AVFS. (The INSTRUMENT option was discussed in Sec. 4.5.) Figure 6.1

shows the execution coverage sequence.

In order to proceed with instrumented software testing, the source

text (which has been instrumented by AVFS) is compiled and executed. At

program linkage time, any user externals necessary for execution of the

instrumented code must be supplied. During test execution the program

operates normally, reading its own data and writing its own outputs.

The instrumented modules call the data collection routine as their test

probes are encounted which records (on UNIT 12) the accumulated data on

module DD-path traversals.

Each test execution may consist of a number of test cases. The

program identifies the end of each test case by executing a special call

to the data collection routine. The identification calls are auto

matically inserted at the end of main programs. Other are inserted by

direction of the user, via the TESTBOUND command, at instrumentation

time as discussed in Sec. 4.5.

The coverage reports are generated by a set of commands that

differ slightly from the AVFS commands (Sec. 3, 4, 5); for this reason

the ANALYZER commands are presented in this separate section.

95

I

I
I
I
I
I
I
I
L

AVFS
COMMANDS*

" I ~

AVFS RESTART
FILE

I "
SOURCE'"

~ REPORTS

...... -

DATA

COVERAGE
COMMANDS*'"

INSTRUMENTED
SOURCE CODE

COMPILE

EXECUTE

AU~
FILE -~

t

ANALYZER

USER'S
EXTERNALS

USER'S
OUTPUT

...... -

COVERAGE
REPORTS

Figure 6.1. Execution Coverage Sequence

96

I
I
I
I
I
I
I
I

..-J

~
0-....
0
0-
.".

I
:;:
-<

There are two ANALYZER commands, an option selection and a module

selection command. The type of report is specified by the command:

OPTION{S} - <list>

<list> may be one or more of the three options: SUMMARY, NOTHIT, or

DETAILED.

If the DETAILED option is specified, then the OPTION command must

be preceded by one or more module selection commands:

FOR MODULE{S} - «name-l>, <name-2>, ••• <name-n»

<name> is the name of the module (subroutine, function or program). A

maximum of 100 modules may be specified at one time. More than one FOR

MODULE{S} command may be used to accommodate all specified modules. The

DETAILED reports will be generated only for the modules named in this

command which have been both instrumented and invoked.

Since the Coverage Analysis program records execution trace data

in internal tables, the amount of data recorded is limited by table

size. The limitations are given below:

Maximum number of modules to analyze

Maximum number of test cases

Maximum number of DD-paths to analyze

Maximum number of DD-paths not traversed

in any test case

97

100

10

2000

1000

6.1 SUMMARY

The SUMMARY option produces a report which summarizes testing

coverage for all instrumented and invoked modules. Figure 6.2 shows a

sample SUMMARY report, which lists the following information:

• Test case number

• Module names and numbers of DD-paths

• Number of module invocations, number of DD-paths traversed,

and percent coverage for this test case

• Cumulative number of module invocations, number of DD-paths

traversed, and percent coverage for all test cases

When multiple test cases are involved, the SUMMARY report shows data

from the current test case and the immediately preceding test case.

When the end of the trace data is encountered, a cumulative summary of

all test cases is produced (Fig. 6.3).

Command

OPTION = SUMMARY

Reports

DD-path Summary

Multiple Test Summary

98

(Fig. 6.2)

(Fig. 6.3)

aaaaa:. ::.:s&:s :;:.:a as::::. = =::: 2:::' =::.:. z::. =s::_:: 11 as: Z 1::' aa:. :.::::: a: '::. :I, •• :s:. &.:.:1::2&& :1 •• :_: ••• :' :.a8.&S a :.a:::: •••• =s ••
1 1 I
I 1 $.. ~~aMI __ '1"5 TESI' '""'''L&TIVE SU".A.,
1 1 t

TEST t ~CCuU N~'el~ CF I 1.I;.c£N Of D-C PIT,,! PER ctr" , h"r.EA
CASt t U.C C-.. FAr~S 1 I/.VCCATtr..S ,PAVERS'C ':C,UAGt' OF trsTS l~VOcaTtCNS . ,AAYrRsro ceVERar.E
a:: ass aa:== ==:.=== =::1 a =:. === == ==:s:.:.:.:.::.: ::.::::.::::a: =:. '2 a =: ==. 2::=: = ==:::. ==:.:.: =:.:.::: =a:,,: ==: = :a.: = as: =:1 a z:.=. aa •• a a:l:. z.a

2
'U~ 2 '0.00 2 1 S 60.UO
cvss sa Id 18.37 2 2 2' 2'.~'
EIA.PL 16 , !7.~0 2 2 1 4.1.75
CALLt~ , 0 0.00 2 1 2,
SU .. Ll, li2 2' 21.~, 2 .1 n.il

••• a:a •• ==.: ••••• = ••• :a:.aa=:======:===s: •• :=.:.sz ••• := • .:s=~==.===.==:.2==.=.=.a====a=a=a=:2.22.1t===:I=.aa222 •• :22 ••• 22.
1 t

1
1
1
t
1

UIN
CL_SS
r.a£_PL.
C_LlER

I StALL ..
I

Figure 6.2.

122

.0.00
3 ... 69
U.1~

0.00

10.h
-z.e,
.l.1! ".67

DO-Path Summary (with the Immediately Preceding Test Case)

99

•• s.S~=a.a=aa:laa:===::s==sa.==s=::==:::==:&==aS=ss.=.:a::a:=.==:.a.::1==:=:2==:=2=:=.===_=====_==_==:=.:a=a2.a2as=.:a: •••
1 I
1 $~"~.R'_- ,It'S TESTI t~"UL'TlvL Su .. ~aa,
I ---------------.--------------------- --. -. -----.... --------------------- .. -.---.... ------.---------------... --------. -------

TEST I MCCuLt h~"e£~ iJF 1 ~L.eEk uF OeD P'I~S F[R CthT , NL"SU
"$[I ~"E D-C FATH~ (lhv".TIo.>S rUv[ft!ED tQ~[A"E' CF TESTs Ih~QtATIQNS TRAVERSED CO~[~'G[

•• a: a.a= .,.:& = = =a = a:2 a .. = ===:& =: = 2:=:: a = = ': ': ': = ': = = aa = = ==S:I:I = = :.:1:= a:&:1= ::::1: aa = = = = =a 2 == a = ::::2 = = ==: ':: S:I: 2 ::::.s. _ ss::& a:l:&: sa:.=
1 I (

(~AIN , 1 3 60.00 1 3 ,a.Du
I CLASS ,. I U U.53 1 2, H.'l
I [lA.PL l6 I , U.SO 1 , 31.S ..
I CALLER 3 I 2 , ••• 7 1 2 .'.67
I I
I "'LLIS 122 I H 30.33 51 30.33
I (

.a.=a=.a==.a=:=.:===aa=.=.:=::====:=SSS~:Z;===:Z;ass=:la=== ::==:a::: •• 211=:::=:=Z2:2:222&2:2:2==.SZ2a2=:.:l:22:2:;211:a2.=::2:12:1::=
2 I ,

"U~ , 1 a " .0.00 r
CLAsS ,. (1 11 11.31 I
tU~PL " 1 1 , 37.,g,
CALLER 3 I 0 0 0 •••

122
I
I
1

2

" 2
2

2

1

" " 1

3
U .,

2

",a.oo
2'."
_3."~

' •• n

.= •• a::lz::s:2:=:.=::===.== ••• ==:;======.===:I.:2: ••••• :I.==:&&Za .. a=.=.:I==.::=.==Z==2==.=a=a=:I.aa=~====s:aa22==.z2.2:saS2zza
~ I

I ~.,~ , 0 2 .0.00 3 1 - AG.OU
I t .. ASS ,. 1 J" 5".'~ 3 3 -2 02 •• 6
I (JA.PL 100 1 11 ".7' 3 l 1~ '~.1S
I CALL(R 3 0 a 0.00 3 1 2 66.67
I
I SULlo." 1C2 .., 38.52 '3 51.'_
I

" ... S2aa:::S:*222:==2=:*======_==:====:-:===:2211:=._====:_==2::1:1:===:I=2===:I:==::22=:I._.==2======::::=a:::=:;2: •• _:=02=.==:2::*

~AlN . 2 '0.00 .. 4 'O.OU
CLASS '. 3. 3 ' .. • '2 .~,'"
UA.PL " • 37.50 4 • l~ 'l.H
tALLER 3 0 I).UO .. 1 2 " •• 7

$ULLIS 12Z 42 3 3 • U 51.14

lIa:=a::;:a.=aa:l=a:la:===z==a2sZ====:=====lIa=_=~Z2=o2SIl=:=22=::=:2=======2211===2===2=====:==_==========S:l:l========.==a==~s

Figure 6.3. Multiple Test DO-Path Summary

100

6.2 NOTHIT

The NOTHIT option requests a report which lists DD-paths not

executed for all ins trumented and invoked modules. Figure 6.4 shows a

sample NOTHIT report, which lists the following information:

• Module names

• Test case number

• Number of DD-paths not traversed, for this test case and for

all test cases

• DD-path numbers not traversed for this test case and for all

test cases.

Command

OPTION .. NOTHIT

Report

DD-paths Not Executed (Fig. 6.4)

101

za:==============:~===================.=============== ========================::======:==================z:====
M~DULL I TEST I PATHS I
hA~E I N~~8~R I ~OT hIT •

LIST OF DE~ISION T~ CECIS:~N PAT~S N~T £AlCUTln

• ==========:==========:=================2=================================2==================================:=
<~AIN) 1 l 1 3 1 1 2 5

1 C~.~L 1 1 2
--.--<CLIoSS) I ~ ,It J ,

" 7 10 13 17 19 20 21 2' 28 30 :2 J .. :, J7 38 39 .. u
'tl .2 "lI .. Ii "8 ~o 51 '2 S3 S .. 57 55 S9 60 102 6' .., 107 ta n
72 73 7" H 76 77 711 7'1 U &It 8~ 86 87 88 e, 90 '1 '2 '3 , ..
" '6 97 ge

I CUMUL " 1 5 to 7 10 13 11 19 20 21 2" 30 32 3 .. ~, 37 38 H '0 "2
'I: .. a '1 S2 ': s .. SII S., 62 "S &6 67 6& 70 7 .. 7S 76 17 78 7~

8l h e~ e .. 87 8! 89 '0 '1 ,z 9~ '" S, '6 97 ,e
---<[XAIIPL) I ! ~ 2 .. 4 13 lit

I CUI'UL 1 'I

-----------------------------------.---------------------------------------.-----------------------------------<CALLtR) I 3 ! 1 2 3
I C~"UL 1 2

-----------------------------------.-----.----------------------------------_._------------------------_._-----

Figure 6.4. DD-paths Not Executed

102

6.3 DETAILED

The DETAILED option command selects a report which shows a

breakdown of individual DD-path coverage. A single testcase report like

the one in Fig. 6.5 is generated for each specified module which was

instrumented and invoked. Figure 6.6 shows the cumulative report, which

is generated after the individual testcase reports. Both provide the

following information:

• Module name

• Test case number

• List of DD-path numbers, with an indication of those which

were not executed, a graphical representation of the number

of executions, and an itemized listing of the number of

executions

• Overall module coverage data

Command

FOR MODULES = «name-1>,<name-2>, ••• <name-n)

Reports

Rule

Single Test DD-path Execution

Cumulative DD-path Executions

(Fig. 6.5)

(Fig. 6.6)

1. Maximum of 100 modules names specified.

2. Repeat the module selection command as necessary; e.g.,

FOR MODULES - «name-1>, ••• ,<name-i»

FOR MODULES = «name-i+1>, ••• ,<name-n»

3. The module selection command must precede the DETAILED

option.

103

REtCKa gF C[ClSIOh TO C[ClsIO" ICC PATIO "[CuTlg~

---.----.. --------------------------.-----.-.----------------------.--------.. --------------------.--------- .. ---
RCDuL(seL.\SS Tts T eAst .. ~.

--------.---------------------------------- .. ---------.------------.-------- .. -------------------- .. ------ -.-
DC PATh I PtC. OOT txtc~TtO I .u>etA n' EX[C~ TIOU -- ~CA.'LlzrC TC ... tOUo I .u>au 0' "'!.Ifllla'" t 1. ___ ._ .. _20. __ .. _ .. __ .. 0. _______ 60. _______ a". ______ 100. 1 [.l[c:uTlnN$
--------.. -- .. ---------------------_ -----_ .. ----. -_ .. ----_.- ---_ -...... -------------.--. -.. -.. -_

I 1
1 I I UI 1 1 1
2 r I In 1 2 I

J I 3 00000 1 I I

- I 1 III 1 ~ 1 , I 5 00000 1 1 1
I GOOUO I I I

7 1 0Il0~0 I I I

• I 1 XIX.XIAXIII I • I 3
'I 1 1 1IIIJXAI.lXI1lIXaxxxx .. JIIII11XX'XXXXlf.IXlllll , , I ·11

10 r 10 00000 1 I I
11 I I I XIIIIIIIIIIIIIIII II J.J XXXIX),X XI lAX J XXX I 11 I 10
12 1 1 ... I 12 I 1

1J I 13 00000 I I I
14 I I XIX'X IXIIII X IIIX II X 11:11 II 1IIIII111111 XX I I- I H
l~ I 1 .11 1 I~ I 1
16 1 1 X IIIXIIIIII IllaxxlllJ.llClllXIXXXIII I 16 1 .,
17 I 17 00000 I 1 I
18 1 1 UI I is I

" I " 00000 1 1 I

I oocoo I 1 I
21 1 21 00000 I I 1
22 I 1 III I 22 I 1
U I 1 XXXIII),IIIJ 1111111111)(IIIIIIIXX IXXIIXX I 21 I 10

2" I 1 .u I 2" 1 1
25 I I J X IIIIIIIIIIIIXI II 1IIIIl.lXI X 111lt: I X 1 a5 1 .,
2' I 26 oaooo 1 I I

a7 I 1 IX XliX XIII XI xx X II I X I" J XI IIIIII I IIX 1 27 I •
21 I as 00000 % I I

2' I 1 IIX JIXIXX&J I III XIX III X IIIXXII.lIIII I 2' I .,
lO t lO 00000 I 1 I
U 1 I IIIIJ I aXIl J X .XI I XIII J.IXIXIXXXX),IIX 1 !1 I •
!2 1 l2 oa~oo I 1 1
H I I IJXI1IXIXIIX1IXIIIIX1IAIJ.IXXIIIX'X I 33 1 'I
30 I !- oouao 1 I I
~5 I I UI % 3S I
3'; % 36 ooouO I I I

I 00000 I 1 1
_l I "3 ooaoo I I I o. X I J 11),1111 J 11,,:&111111111.1 xX I11I111I , 0- I .,
05 I 1 ,,1 I .5 I 1

" I ., 00000 1 I I
07 I 1 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII:&IIIIIIIIIIIIIXII I 07 I 13 o. I _8 00000 1 1 I

•• I I .. I 1 ., I
50 I 50 00000 1 I 1

I OU.JOO I 1 I

" I ~, 00000 1 I 1

" I 1 lll);111 1 55 I ,
5' I 1 XII.JIII I 5' 1 2
57 1 57 00000 1 1 I

I oCC~O I I I
'0 I 60 OCOOO I 1 1
61 I I IU I U I
U '.i oooao I I r
.J 1 na 1 61 I , .. 1 au I , . I
• 5 65 00000 1 1 I

ooc~O 1 I I

" .. a.' •• I I I
n I .. I I •• I
70 70 00000 1 1 ,
71 1 III I 71 I
7: 72 00000 I I r

ooo~. r I r
n 79 ououe I I I
eo I 111.lIIAIIIJ 11111111 XIX 111111.1: III xl'& I X I I 80 I 1.
dl I U. , U I 1
U .loll ").1,1.11: &1I1,U:IIII 1'111 IX I II III)' III I U 1 1
U 8l 00000 I I

00000 '0' 1 I

" " ooo~o 1 1 _-------.-... -.----.-._-_ ... _.--.-.--_ .. ------.-.-_._---.-----_._--_ -._-----_.
TuT ... ~," ... (" OF CD PATH [.£, ... ,10''4'3 • '&"u

Figure 6.5. Single Test DO-Path Execution

104

RtCCRD CF CtCISIO" Ie CECISIO" ICC PAT'" .. [[!.Uoo

---.--------------.--_ ... --............. --- -......... _ ... ------------.. --------.-------.. ------- .. --------------.---
1I0DUU ICLASS C~~~LATht 'UuLT! tF • TUT CASts

-.. ------.-----------------------.. -- .. --- .. -.- .. ---------._ .. _---------.-------- .. ----------.. ---------.-._------.-.-
UU ~ATh t "0. ~UT [.tt~ltu NU~"LR nF ... CLITO_s -- NaRO~LIl'D Tu O"IOU. I NU~BER OF
h"'''~l" I J .---.-"-2u. • --·"0 .. -------liu. -_ .. -·--tlU .-.. ----100. : Ea['u r Jt;~S

...
f

• ,
10
11
12
U

•• n
70
71
12
n
7_

J

7

10

17

2'

30

3'

-.
5_

••
70

7'

1
1 1 1 I
I I 2 I

00000 I I r

00000
00000
00000

I I 0 I
I I I
1 ••• I t
I I I
1 1IIIIx.r.XIIXaIXlXllrIXXIIIXXXXXIIXXX'llXXXXXXI I' 1
I "'UlAl I , I

00000 I 1 r
I U I 11 I
I r 12 I

O~OOO I I 1
I un I 10 I
I 1 " I
I JIll I 16 I

00000 I 1 I

~DODO
00000
~oooo

I I 11 I
I I I
J ••• ••• ••• I r
I I I
I I 2Z I
I II."", I 2J I
I I 2" I
I U I 25 I

00000 I I I
I UII'" I 27 I
I I 21 I
I U..... I 2' I

00000 I I I
I UXI'" I 31 I

00000 1 I I
I •• IXI.1 I J' I

00000 I I I

00000
ooeuo
o~o~~

I I J' I
I I I
J ••• ••• I I
I I I
1 1 01 I

00000 1 J J
00000 I I I

1 "'Ull 1 .. I
J I oS I
I I o. I
I XXXJllalallxlx~IIXIXl.XXIIXXIXXXIIIIXIJIJXX'.XXIXX I .7 I

00000 I I I

00000
~OOQO
eDGOO

I I _, I
1 I 50 I
I I I
1 I I
1 I I
1. I " I
I • I 56 I
lU I 51 I

00000 I I I
00000 I 1 I

I II I 60 I
1 I .1 1

00000 I 1 I
I 1 U I

00000
00000
ooouo

1 I 6- I
I 1 I
I ••• ••• ••• I I
1 I I
, I 6' I

00000 1 I I

00000
OOOQ~
e~e~u

1 I 71 I
1 1 l2 I
I I n I
I I I
I I I
1 I I
1 II I 80 I
1 1 81 I
I .. I 62 I

OOOUO I I I
eeuee I I I

n I" auooo 1 I I

o

-

2G
~

16

32
1

31

31

31

JJ
1
3

201

J
1

6

• ,
,
)

J
3

1
2
1

10
1

•

...... --.. -... _---_ ... -....... _- .. _--_._---_ ... ---.---------------_._---_ .. _-------------------------._---_.-.-_.
TQhL NveER a' DO PATM hHUTIOHS • .n

TOTAL 0' 5. MIf E'EC~1[c [l(C~TtC .11 ,. .a •••

Figure 6.6. Cumulative DD-path Execution

105

The AVFS options are specified by a command file. For FORTRAN the

command file contains the OPTIONS command as described in Section 3.3 or

a UNIVAC executes statement. For AED the command file contains a UNIVAC

execute statement. Sample command files are given in Appendix C.

106

APPENDIX A

AVFS COMMAND SUMMARY AND CHECKLIST

FORTRAN Commands

Either an OPTION or REPORT command is required; the other commands

are used when it is appropriate. They must appear in the order shown.

Where an abbreviation is allowed, it appears to the right of the

command; the appropriate UNIVAC run stream command is at the far right.

RESTART

EXPAND

REST @XQT,R

RESTART instructs AVFS to use a saved restart file from a

previous run.

EXPA @XQT,E

EXPAND allows additional source to be added to a restart

file.

FILE, PUNCH - <file number> FILE,PUNC=<file number>

Instructs AVFS to reassign PUNCH; the default is UNIT 9.

INSTRUMENT, PUNCH, PROBE, «file number»

Instructs AVFS to reassign the 4ata collection file. The

default is UNIT 12.

FIRSTLINE = «run stream command»

Instructs AVFS to insert the given run stream command as the

first line of each element.

A-l

OPTIONS=<list> OPT! = <list>

<list> may contain one or more of the following options,

separated by commas:

LIST LIST @XQT,L

DOCUMENT DOCU @XQT,D

SUMMARY SUMM @XQT,B

STATIC STAT· @XQT,S

INSTRUMENT INST @XQT,I

INPUT/OUTPUT INPU @XQT,T

REACHING SET REAC none

REPORT" <list> REPO .. <list>

<list> may contain one or more of the following reports,

separated by commas:

REPORT MINIMUM REPORT
NAME ABBREVIATION GENERATED

COMMONS CO Commons Summary

PROFILE PR Statement Profile

INVOCATIONS L Entrys and invocation
sunmary

COMMONS/ENHANCED COlE Common Matrices

BANDS/n B or B/n Invocation Bands where n is
the number of levels

SPACE SP Invocation Space

SYMBOLS SY Symbol Report

READS R I/O Statements

CROSS CR Symbol Cross Reference

PICTURE PI Picture of module structure

A-2

FOR MODULE = «namel>,<name2>, ••••)

module selection command.

TESTBOUND,MODULE - «name»,STATEMENT = <number>

Used with instrumentation command for setting test case

boundaries.

REACHING SET,MODULE = «name»,TO - <DO-path number>,

FROM = <DO-path number>{,ITERATIVE}

When the option, REACHING SET, is used, it is necessary

to specify one or more reaching sets with the above

command. The use of ITERATIVE is optional; if present,

an iterative reaching set is generated.

A-3

ANALYZER COMMANDS

Selection of ANALYZER reports desired must be made by the user.

The type or report is specified in the command,

OPTION(S) ~ <list> ,

<list> may contain one or more of the following options, separated by

commas:

DETAILED

NOTRIT

SUMMARY

DETA

NOTH

SUMM

When the DETAILED option is listed, reports will be generated only for

those modules that are listed in a command,

FOR MODULE(S) ~ «name-l>,<name-2>, ••• ,<name-n».

<name> is the name of the subroutine, function or program. This module

selection command must precede the OPTION a DETAILED command.

A-4

AED COMMANDS

@XQT GRC*LIST.LIST

enhanced listing

@XQT GRC*STATIC.STATIC

static analysis

@XQT GRC*CROSS.CROSS

local cross reference

@XQT GRC*SYMBOL.SYMBOL

symbols report

@XQT GRC*DEPEND.DEPEND

module dependencies

@XQT GRC*GLOBAL.GLOBAL

global cross reference

@XQT GRC*PROFILE.PROFILE

statement profile

@XQT GRC*UNITS.UNITS

dimensional analysis

@XQT GRC*TRACE.TRACE

trace instrumentation

@XQT GRC*ASSERT.ASSERT

assertion instrumentation

A-5

@XQT GRC*INST.INST

path instrumentation

@XQT GRC*REACH.REACH

reaching set generation

@XQT GRC*VCG.VCG

symbolic execution and verification condition generation

@XQT GRC*TREE.TREE

invocation hierarcy (calling tree)

@XQT GRC*FLOW.FLOW

flowgraph

@XQT GRC*INTER.INTER

interface report

A-6

APPENDIX B

FILE DESCRIPTIONS

FILE OATA M(]JE
NUt-IlER smUCTURE (1)

2 Ilbnlry 8

13 workspace 8

4 us... CCIIIII ands H

, _nds Input H

6 ,..ports H

9 I nstrumented/ H
r.structu,.ed
source

, sourc. H

8 new restart !I
fli.

II old restart 8
file

12 probe test 8
data tr~c:e file

Notas: (1) 8 • bi~ ... y; H • character
(2) R • ranaom; S • sequential

ST~GE RECCRO
(2) FORMAT

R syst ... standard

R system standard

S c3rd I mag.

S card Image

S 128 cha,.actersl
111M .. axlmum

S .:ard I"age

S ce,.a Imeg.

S syst ... stanaard

S syst.m standard

S syst.m standard

(3) R • r.ad only; R/"I • read and/or write; W • wrlta only
(4) I nst" II at I on dependent

B-1

(4)

(4)

RECOI+4ENlEO USAGE
AllOCAT:ON (3)

scratch filII R/W

scratch fli. RIW

scratch fll. R/W

lyst811 card reader R
per.,anent fI I.

system p,.1 nta,. W

scratch fll • R/lf

syst ... card reader R
panDanent f i I'.

pe""an.nt fll. W

permanent fI I. R

p.r ent fli. R

AED FILE DESCRIPTIONS

FILE DATA RECOIIMENDED
NUtJBER STRUCTLRE MODE STORAGE FORMAT ALLOCATION

5 SOURCE H S CARD IMAGE STANDARD INPUT

6 REPORTS H S TEXT LINES STANDARD OUTPUT

20 TOKEN FILE H S TEXT LINES TEMPORAAY

25 MULTI4oIOOULE H S TEXT LINES TEMPORARY
INFO.

30 INSTRUMENTED H S CARD IMAGE TEMPORARY
CODE

B-2

APPENDIX C

JOB STREAMS FOR AVFS AT UNIVAC INSTALLATIONS

AVFS INITIAL RUN - CREATES AN INTERFACE FILE

@HDG

@ASG,A YOURSOURCE.

@USE Y.,YOURSOURCE.

@ASG,CP YOURFILE.,F///400

@USE 8.,YOURFILE.

@ASG,A GRC*AVFS.

@USE R.,GRC*AVFS.

@ASG,T 2.,F///1500

@ASG,T 13.,F///1500

@XQT R.AVFS

FOR MODULES=(LIST OF MODULES).

OPTION=STATIC.

@EOF

@ADD,P Y.PROCS

@ADD,P Y.ELEMENTS

@FIN

** AVFS INITIAL RUN **

• YOUR FORTRAN OR SOURCE

(OPTIONAL) CATALOG INTERFACE FILE

• ASG AVFS TRAN, ANALYZER

• EXECUTE AVFS

(OPTIONAL) DEFAULT IS ALL MODULES

• ANY LIST OF VALID OPTIONS (SEC. 4)

SEPARATES AVFS COMMANDS FROM YOUR
SOURCE

(OPTIONAL) ADD PROCS HERE

• ADD SOURCE ELEMENTS HERE

C-l

AVFS EXPAND RUN - EXPANDS AN INTERFACE FILE

@HDG ** AVFS EXPAND RUN **
@ASG,A YOURSOURCE. • YOUR FORTRAN OR SOURCE

@USE Y.,YOURSOURCE.

@ASG,A YOURFILE.

@USE 11.,YOURFILE.

@ASG,A GRC*AVFS.

@USE R. ,GRC*AVFS.

@ASG,CP NEWFILE.

@USE 8. ,NEWFILE.

@ASG,T 2.,F///1500

@ASG,T 13.,F///1500

@XQT R.AVFS

EXPAND •

FOR MODULES=(LIST OF MODULES).

OPTION=STATIC.

@EOF

@ADD,P Y.PROCS

@ADD,P Y.ELEMENTS

@FIN

• ASG AVFS INTERFACE FILE (FROM
PREVIOUS RUN)

• ASG AVFS, TRAN, ANALYZER

NEW INTERFACE FILE

EXECUTE AVFS (EXPAND PLUS OPTIONS)

• EXPAND INTERFACE FILE

• (OPTIONAL) DEFAULT IS ALL MODULES

C-2

ANY LIST OF VALID OPTIONS (SEC.
4.)

SEPARATES AVFS COMMANDS FROM YOUR
SOURCE

(OPTIONAL) ADD PROCS HERE

ADD SOURCE ELEMENTS HERE

AVFS RESTART RUN - USES AN INTERFACE FILE

@HDG

@ASG,A YOURFILE.

@USE 11.,YOURFILE.

@ASG,A GRC*AVFS.

@USE R. ,GRC*AVFS.

@ASG,T 2.,F///1500

@ASG,T 13.,F///1500

@XQT R.AVFS

RESTART.

OPTION=STATIC.

@FIN

** AVFS RESTART RUN **

• AVFS INTERFACE FILE (FROM PREVIOUS
RUN)

• ASG AVFS, !RAN, ANALYZER

• EXECUTE AVFS USING A RESTART FILE

• ANY LIST OF VALID OPTIONS (SEC 4.)

C-3

AVFS INSTRUMENT, EXECUTE AND ANALYZE RUN

@HDG

@ASG,A YOURSOURCE.

@USE Y. , YOURSOURCE.

@ASG,A GRC*AVFS.

@USE R. ,GRC*AVFS.

@ASG,T 2.,FIII1500

@ASG,T 13. ,FI I 11500

@XQT R.AVFS

FILE,PUNCH=10.

INSTRUMENT, PUNCH ,PROBE , (20).

FIRSTLINE = (@FTN,S TPF$.+).

OPTION = INSTRUMENT,LIST.

TESTBOUND,MODULE=(MAIN),
STATEMENT=lO.

@ADD,P Y.PROCS

@ADD,P Y.ELEMENTS

@EOF

@ADD,P 10.

@MAP

@XQT

(YOUR DATA)

@XQT R.ANALYZER

** AVFS INSTRUMENT, EXECUTE, AND
ANALYZE RUN **

YOUR FORTRAN SOURCE

• ASG AVFS, TRAN, ANALYZER

EXECUTE AVFS (INSTRUMENT AND LIST)

PLACE INSTRUMENTED SOURCE ON UNIT
10

COLLECT DATA ON UNIT 20

PREPARE SOURCE FOR ASCII COMPILER

INSTRUMENT AND LIST

TEST CASE BOUNDARY

(OPTIONAL) ADD PROCS HERE

• ADD SOURCE ELEMENTS HERE

• YOUR INSTRUMENTED SOURCE IS ON 10.

MAP FOR YOUR PROGRAM

EXECUTE YOUR INSTRUMENTED PROGRAM

EXECUTE COVERAGE ANALYZER

FOR MODULES=(LIST OF INSTRUMENTED ELEMENTS).

OPTION=SUMMARY ,NOTHIT ,DETAILED. ANY LIST OF VALID OPTIONS .(SEC. 6)

@FIN

C-4

AVFS FLOWGRAPH ANALYSIS

@HDG ** AVFS FLOWGRAPH ANALYSIS **

@ASG,A GRC*AVFS.

@ASG,A YOURSOURCE.

@ASG,T TEMP.

@ASG,T 2.,F40///1S00

@ASG,T 13.,F40///1S00

@USE 8.,TEMP.

@XQT GRC*AVFS.AVFS

OPTION ~ DOCUMENT

REPORT .. PICTURE

@EOF

@ADD,P YOURSOURCE.

@EOF

@FIN

C-s

AVFS STATIC ANALYSIS

@HDG ** AVFS STATIC ANALYSIS **

@ASG,A GRC*AVFS.

@ASG,A YOURSOURCE.

@ASG,T TEMP.

@ASG,T 2.,F40///1500

@ASG,T 13.,F40///1500

@USE 8.,TEMP.

@XQT GRC*AVFS.AVFS

OPTION = STATIC

FOR MODULES = (MAIN,SORT,CALC)

@EOF

@ADD,P YOURSOURCE.

@EOF

@FIN

C-6

AVFS REACHING SET ANALYSIS

@HDG ** AVFS REACHING SET ANALYSIS **

@ASG,A GRC*AVFS.

@ASG,A YOURSOURCE.

@ASG,T TEMP.

@ASG,T 2.,F40///1500

@ASG,T. 13.,F40///1500

@USE 8.,TEMP.

@XQT GRC*AVFS.AVFS

OPTION ::z REACH

REACHING SET, MODULE = (SORT), TO ::z 7, FROM =3.

@EOF

@ADD,P YOURSOURCE.

@EOF

@FIN

C-7

AVFS INDENTED LISTING

@HDG ** AVFS INDENTED LISTING **

@ASG,A GRC*AVFS.

@ASG,A YOURSOURCE.

@ASG,T TEMP.

@ASG,T 2.,F40///1500

@ASG,T 13.,F40///1500

@USE 8.,TEMP.

@XQT GRC*AVFS.AVFS

OPTION = LIST

@EOF

@ADD,P YOURSOURCE.

@EOF

@FIN

C-8

AVFS DOCUMENTATION

@HDG ** AVFS DOCUMENTATION **

@ASG,A GRC*AVFS.

@ASG,A YOURSOURCE.

@ASG, T TEMP.

@ASG,T 2.,F40///1500

@ASG,T 13.,F40///1500

@USE 8.,TEMP.

@XQT GRC*AVFS.AVFS

OPTION - DOCUMENT

@EOF

@ADD,P YOURSOURCE.

@EOF

@FIN

C-9

AVFS SUMMARY

@HDG ** AVFS SUMMARY **

@ASG,A GRC*AVFS.

@ASG,A YOURSOURCE.

@ASG,T TEMP.

@ASG,T 2.,F40///1500

@ASG,T 13.,F40///1500

@USE 8.,TEMP.

@XQT GRC*AVFS.AVFS

OPTION ~ SUMMARY

@EOF

@ADD,P YOURSOURCE.

@EOF

@FIN

C-10

AVFS INDENTED LISTING

@HDG

@ASG,A GRC*LIST.

@ASG,A YOURSOURCE.

@ASG,AX INSERTS.

@XQT GRC*LIST.LIST

@ADD,P YOURSOURCE.

@FIN

** AVFS INDENTED LISTING **

C-ll

AVFS SYMBOLS

@HDG ** AVFS SYMBOLS **

@ASG,AX GRC*SYMBOL.SYMBOL

@ASG,A YOURSOURCE.

@ASG,T TKFIL.

@USE 21., TKFIL.

@ASG,AX INSERTS.

@ASG,T LKFIL.

@USE 22., LKFIL.

@XQT GRC*SYMBOL.SYMBOL

@ADD,P YOURSOURCE.

@FIN

C-12

AVFS UNITS ANALYSIS

@HDG ** AVFS UNITS ANALYSIS **

@ASG,A GRC*UNITS.

@ASG,A YOURSOURCE.

@ASG,AX INSERTS.

@XQT GRC*UNITS.UNITS

@ADD,P YOURSOURCE.

@FIN

c-13

AVFS INTERFACE

@HDG ** AVFS INTERFACE **

@ASG,AX GRC*INTER.

@ASG,A YOURSOURCE.

@ASG,T TKFIL.

@USE 21., TKFIL.

@ASG,AX INSERTS.

@ASG,T LKFIL.

@USE 22.,LKFIL.

@ASG,AX LIBOLD.

@USE 1l.,LIBOLD.

@CAT LIBNEW.

@ASG,AX LIBNEW.

@USE 8.,LIBNEW.

@XQT GRC*INTER.INTER

@ADD,P YOURSOURCE.

@FIN

C-14

AVFS CROSS REFERENCE

@HDG

@ASG,AX GRC*CROSS.

@ASG,A YOURSOURCE.

@ASG,T TKFIL.

@USE 21. ,TKFIL.

@ASG,AX INSERTS.

@ASG,T LKFIL.

@USE 22.,LKFIL.

@XQT GRC*CROSS.CROSS

@ADD,P YOURSOURCE.

@FIN

** AVFS CROSS REFERENCE **

C-lS

AVFS INVOCATIONS

@HDG ** AVFS INVOCATIONS **

@ASG,AX GRC*INVOKE.

@ASG,A YOURSOURCE.

@ASG,T TKFIL.

@USE 21.,TKFIL.

@ASG,AX INSERTS.

@ASG,T LKFIL.

@USE 22.,LKFIL.

@XQT GRC*INVOKE.INVOKE

@ADD,P YOURSOURCE.

@FIN

C-16

AVFS DEPEND

@HDG ** AVFS DEPEND **

@ASG,AX GRC*DEPEND.

@ASG,A YOURSOURCE.

@ASG,T TKFIL.

@USE 21.,TKFIL.

@ASG,AX INSERTS.

@ASG,T LKFIL.

@USE 22.,LKFIL.

@XQT GRC*DEPEND.DEPEND

@ADD,P YOURSOURCE.

@FIN

C-17

AVFS TREE

@HDG

@ASG,AX GRC*TREE.

@ASG,A YOURSOURCE.

@ASG,T TKFlL.

@USE 21.,TKFlL;

@ASG,AX INSERTS.

@ASG,T LKFIL.

@USE 22.,LKFIL.

@XQT GRC*TREE.TREE

@ADD,P YOURSOURCE.

@FlN

** AVFS TREE **

C-18

AVFS GLOBAL CROSS REFERENCE

@HDG ** AVFS CROSS REFERENCE **

@ASG,AX GRC*INTER.

@ASG,A YOURSOURCE.

@ASG,T TKFIL.

@USE 21.,TKFIL.

@ASG,AX INSERTS.

@ASG,T LKFIL.

@USE 22.,LKFIL.

@ASG,T FTN028.

@USE 28.,FTN028.

@XQT GRC*GLOBAL.GLOBAL

@ADD,P YOURSOURCE.FIRST

@XQT GRC*GLOBAL.GLOBAL

@ADD,P YOURSOURCE.SECOND

@XQT GRC*GLOBAL.PRINT

@FIN

C-19

AVFS STATEMENT PROFILE

@HDG ** AVFS STATEMENT PROFILE **

@ASG,A GRC*PROFILE.

@ASG,A YOURSOURCE.

@ASG,AX INSERTS.

@XQT GRC*PROFILE.PROFILE

@ADD,P YOURSOURCE.

@FIN

C-20

AVFS INSTRUMENTATION

@HOO ** AVFS INSTRUMENTATION **

@ASG,A GRC*INST.

@ASG,A INSERTS.

@ASG,T INSTFL.

@USE 30.,INSTFL.

@ASG,T TABFIL.

@USE 25.,TABFIL.

@ASG,A YOURSOURCE.

@XQT GRC*INST.INST

@ADD,P YOURSOURCE.

@ASG,T PROBE.

@ASG,A AUTO.

@ASG,A ALTLIB*FTN.

@ALTLIB*FTN.FTN,F AUTO.MAIN

@PACK AUTO.

@TPF AUTO.

@PACK

@PREP

@USE 3.,PROBE.

@XQT AUTO.MAP

@COPY,I INSTFL.,YOURSOURCE.INSTFL

@COPY,I PROBE.,YOURSOURCE.PROBE

@CAPS*CROSS.AEDCAPS,SC YOURSOURCE.INSTFL,YOURSOURCE.INSTFL

@CAPS*CROSS.AEDCAPS,SC YOURSOURCE.PROBE,YOURSOURCE.PROBE

@CAPS*CROSS.CASM2,S YOURSOURCE.INSTFL,YOURSOURCE.OBJNAM

@CAPS*CROSS.CASM2,S YOURSOURCE.PROBE,YOURSOURCE.DDPATH

@CAPS*CROSS.LINK,LRSI ,YOURSOURCE.INSTFL

ORIGIN OF PROGRAM
INCLUDE FOR PROGRAM

END

@XQT CAPS*CROSS.HPLDTAPE

YOURSOURCE .INSTFL

@FIN

C-21

AVFS TRACE INSTRUMENTATION

@HDG ** AVFS TRACE **

@ASG,A GRC*TRACE.

@ASG,A INSERTS.

@ASG,T INSTFL.

@USE 30.,INSTFL.

@ASG, T TABFIL.

@USE 25.,TABFIL.

@ASG,A YOURSOURCE.

@XQT GRC*TRACE.TRACE

@ADD,P YOURSOURCE.

@COPY,I INSTFL.,YOURSOURCE.INSTFL

@CAPS*CROSS.AEDCAPS,SC YOURSOURCE.INSTFL,YOURSOURCE.INSTFL

@CAPS*CROSS.CASM2,S YOURSOURCE.INSTFL,YOURSOURCE.OBJNAM

@CAPS*CROSS.LINK,LRSI ,YOURSOURCE.INSTFL

ORIGIN OF PROGRAM
INCLUDE FOR PROGRAM

END

@XQT CAPS*CROSS.HPLDTAPE

YOURSOURCE .INSTFL

@FIN

C-22

AVFS ASSERTION INSTRUMENTATION

@HDG ** AVFS ASSERTION INSTRUMENTATION **

@ASG,A GRC*ASSERT.

@ASG,A INSERTS.

@ASG,T INSTFL.

@USE 30.,INSTFL.

@ASG,T TABFIL.

@USE 25.,TABFIL.

@ASG,A YOURSOURCE.

@XQT GRC*ASSERT.ASSERT

@ADD,P YOURSOURCE.

@COPY,I INSTFL.,YOURSOURCE.INSTFL

@CAPS*CROSS.AEDCAPS,SC YOURSOURCE.INSTFL,YOURSOURCE.INSTFL

@CAPS*CROSS.CASM2,S YOURSOURCE.INSTFL,YOURSOURCE.OBJNAM

@CAPS*CROSS.LINK,LRSI ,YOURSOURCE.INSTFL

ORIGIN OF PROGRAM
INCLUDE FOR PROGRAM

END

@XQT CAPS*CROSS.HPLDTAPE

YOURSOURCE .INSTFL

@FIN

C-23

AVFS REACHING SET LISTING

@HDG ** AVFS REACHING SET LISTING **

@ASG,A GRC*REACH.

@ASG,A YOURSOURCE.

@ASG,AX INSERTS.

@XQT GRC*REACH.REACH

@ADD,P YOURSOURCE.

@EOF
1 5

@FIN

C-24

1. Report No. I 2. Government Accession No. 3. Recipient's Catalog No.

NASA CR-166346
4. Title and Subtitle 5. Report Date

Automated Verification of Flight Software - April 1982
6. Performing Organization Code User's Manual

7. Author(s) 8. Performing Organization Report No.

S. H. Saib
10. Work Unit No.

9. Performing Organization Name and Address T3236Y General Research Corp.
11. Contract or Grant No. P.O. Box 6770

Santa Barbara, CA 93111 NAS 2-10550
13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Contractor Report
National Aeronautics and Space Administration 14. Sponsoring Agency Code

Washington, D.C. 20546 512-54-11
15. Supplementary Notes

Technical Monitor: Pio de Feo, Mail Stop 210-9, NASA-Ames Research Center,
Moffett Field, CA 94035
FTS 448-5048 Com'l: 415-965-5048

16. Abstract

AVFS (Automated Verification of Flight Software) is a collection of
tools for analyzing source programs written in FORTRAN and AED. AVFS aids
in improving the quality and the reliability of flight software by providing:

0 Indented listings of source programs
0 Static analysis

and parameters
to detect inconsistencies in the use of variables

0 Automated documentation
0 Instrumentation of source code
0 Retesting guidance
0 Analysis of assertions
0 Symbolic execution
0 Generation of verification conditions
0 Simplification of verification conditions

This manual describes how to use AVFS in the verification of flight software.

AVFS has been installed at NASA-Ames Research Center, Moffett Field,
California. The AVFS tools interface with a PDP 11{60 computer and a CAPS 6
based digital flight control systems to form a comp ete.flight software V&V a,.. .. .;,,.. 0,.. +- . .

17. Key Words (Suggested by Author(s)) 1 a Distribution Statement

Flight Software Test Tools, Software Unlimited
Verification STAR Category 61

19. Security aassif. (of this r~port) J 20. Security Classif. (of this page)
[21. No~~~pages 122. Price'

Unclassified Unclassified

'For sale by the National Technical Information Service, Springfield, Virginia 22161

End of Document

