Final Report

for

"The Analysis of the Statistical and Historical Information Gathered During the Development of the Shuttle Orbiter Primary Flight Software"

RF-82-17

Submitted by the
Texas A & M Research Foundation

to the
NASA Johnson Space Center
Mr. Robert K. Peck
Procurement Operations, Code BL
Houston, Texas 77058

Prepared by:

Dr. Dick B. Simmons
Dr. Miner P. Marchbanks, Jr.
Dr. Michael J. Quick

of the

Data Processing Center
Texas Engineering Experiment Station
College Station, Texas 77843

June 1982
Final Report

for

"The Analysis of the Statistical and Historical Information Gathered During the Development of the Shuttle Orbiter Primary Flight Software"

RF-82-17

Submitted by the
Texas A & M Research Foundation

to the
NASA Johnson Space Center
Mr. Robert K. Peck
Procurement Operations, Code BL
Houston, Texas 77058

Prepared by:

Dr. Dick B. Simmons
Dr. Minor P. Marchbanks, Jr.
Dr. Michael J. Quick

of the
Data Processing Center
Texas Engineering Experiment Station
College Station, Texas 77843

June 1982
FORWARD

This report presents the results of the project for "The Analysis of the Statistical and Historical Information Gathered During the Development of the Shuttle Orbiter Primary Flight Software". This work was performed by the Texas Engineering Experiment Station of Texas A&M University, College Station, Texas. This work was performed for the National Aeronautics and Space Administration, Johnson Space Flight Center, Houston, Texas, under Grant NCC9-2.

Principal investigators for the project were Drs. Dick B. Simmons, Miner P. Marchbanks, Jr. and Michael J. Quick. Major contributors to the project were Mr. Lee Boyajian, Mr. Blair Brenner, Ms. Karla Carroll, Mr. Richard Cox, Dr. Dan D. Drew, Ms. Janna Keel, Ms. Cuylaine M. Pollock, Dr. Larry J. Ringer, Dr. Sallie Sheppard, and Mr. Dennis Wilson.

Major points of interest are covered in the body of the report with supporting information being included in the appendices.
ACKNOWLEDGEMENTS

The authors wish to express their thanks to Mr. John R. Garman and Mr. Dave Sykes of the Johnson Space Flight Center for their efforts in making the project a success. Mr. Garman planted many of the seeds for thought presented in this report. Mr. Sykes represented NASA in providing the research team information necessary to conduct this research. He patiently explained the workings of NASA and arranged meetings with individuals from both NASA and IBM who could provide requested information.
ABSTRACT

Presented here are the results of an effort to thoroughly and objectively analyze the statistical and historical information gathered during the development of the Shuttle Orbiter Primary Flight Software. The particular areas of interest include cost of the software, reliability of the software, requirements for the software and how the requirements changed during development of the system. Data related to the current version of the software system produced some interesting results. Suggestions are made for the saving of additional data which will allow additional investigation.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORWARD</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Definition of Project</td>
<td>1</td>
</tr>
<tr>
<td>Areas of Research</td>
<td>2</td>
</tr>
<tr>
<td>Definition Area</td>
<td>2</td>
</tr>
<tr>
<td>Code Area</td>
<td>2</td>
</tr>
<tr>
<td>Changes Area</td>
<td>2</td>
</tr>
<tr>
<td>2. ACCOMPLISHMENTS</td>
<td>3</td>
</tr>
<tr>
<td>Literature Survey</td>
<td>3</td>
</tr>
<tr>
<td>Definition Area</td>
<td>6</td>
</tr>
<tr>
<td>List of Documentation</td>
<td>6</td>
</tr>
<tr>
<td>Cost Data</td>
<td>7</td>
</tr>
<tr>
<td>Cost Data Related to CR's and DR's</td>
<td>8</td>
</tr>
<tr>
<td>Code Area</td>
<td>10</td>
</tr>
<tr>
<td>Availability of Source Data</td>
<td>10</td>
</tr>
<tr>
<td>Documentation of HAL/S</td>
<td>11</td>
</tr>
<tr>
<td>Methodology of Analysis of Source Data</td>
<td>11</td>
</tr>
<tr>
<td>Size of Data</td>
<td>12</td>
</tr>
<tr>
<td>FSW Source Compilation</td>
<td>13</td>
</tr>
<tr>
<td>Overlay or Build Sequence</td>
<td>15</td>
</tr>
<tr>
<td>HALSTAT</td>
<td>15</td>
</tr>
<tr>
<td>Source Code Analyzer</td>
<td>16</td>
</tr>
<tr>
<td>Status of Scanner</td>
<td>16</td>
</tr>
<tr>
<td>Definition of Scanner Record</td>
<td>17</td>
</tr>
<tr>
<td>Changes Area</td>
<td>18</td>
</tr>
<tr>
<td>Availability of Change Data</td>
<td>18</td>
</tr>
<tr>
<td>Reliability Data</td>
<td>18</td>
</tr>
<tr>
<td>DR and CR Data</td>
<td>19</td>
</tr>
<tr>
<td>DR and CR Legends</td>
<td>19</td>
</tr>
<tr>
<td>Methodology of Analysis of Change Data</td>
<td>20</td>
</tr>
<tr>
<td>Results of Analysis of Change Data</td>
<td>20</td>
</tr>
<tr>
<td>Summary of Data Availability</td>
<td>23</td>
</tr>
</tbody>
</table>
3. FUTURE WORK .. 25

 Continued Analysis .. 25
 Continued Development of Cost Data 25
 Continued Work with Language Scanner 25
 Continued Analysis of CR and DR Data 27
 Concurrent Analysis and Monitoring 27
 Future Development ... 28
 Comparison with other Projects 28
 Complexity Analysis 29
 Cost Analysis .. 29
 Language Analysis 30

Appendix

<table>
<thead>
<tr>
<th>Appendix</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. DOCUMENTATION</td>
<td>31</td>
</tr>
<tr>
<td>B. HAL/S ANALYSIS SCANNER OUTPUT</td>
<td>45</td>
</tr>
<tr>
<td>C. COMPLEXITY MEASURES</td>
<td>55</td>
</tr>
<tr>
<td>D. HAL/S COMPLEXITY FACTORS</td>
<td>58</td>
</tr>
<tr>
<td>E. HAL/S SOURCE ANALYZER MODULE STRUCTURE</td>
<td>61</td>
</tr>
<tr>
<td>F. MEMBER LIST OF FSW APPLICATION SOURCE</td>
<td>62</td>
</tr>
<tr>
<td>G. MEMBER LIST OF INCLiE SOURCE</td>
<td>65</td>
</tr>
<tr>
<td>H. MEMBER LIST OF SYSTEM SOURCE</td>
<td>68</td>
</tr>
<tr>
<td>I. DR VARIABLE LIST</td>
<td>70</td>
</tr>
<tr>
<td>J. DR LEGEND</td>
<td>72</td>
</tr>
<tr>
<td>K. CR VARIABLE LIST</td>
<td>86</td>
</tr>
<tr>
<td>L. CR LEGEND</td>
<td>89</td>
</tr>
<tr>
<td>M. COST DATA CHARTS</td>
<td>100</td>
</tr>
<tr>
<td>N. CHANGE DATA CHARTS</td>
<td>106</td>
</tr>
</tbody>
</table>

BIBLIOGRAPHY .. 201
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Major Categories of Errors</td>
<td>5</td>
</tr>
<tr>
<td>2. Correlation of Cost Data with Selected Variables</td>
<td>9</td>
</tr>
<tr>
<td>3. Summary of Data Availability</td>
<td>24</td>
</tr>
<tr>
<td>4. Complexity Measure Correlation to Changes</td>
<td>57</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>Structure of HAL/S Analyzer</td>
</tr>
<tr>
<td>2</td>
<td>Total hours IBM billed NASA for development</td>
</tr>
<tr>
<td>3</td>
<td>Total hours IBM billed for verification</td>
</tr>
<tr>
<td>4</td>
<td>Cumulative total man-hours IBM billed NASA for development</td>
</tr>
<tr>
<td>5</td>
<td>Cumulative total man-hours IBM billed NASA for verification</td>
</tr>
<tr>
<td>6</td>
<td>Development and verification cost with scaled change and discrepancy reports frequency</td>
</tr>
<tr>
<td>7</td>
<td>Frequency of DR's logged in by year-month</td>
</tr>
<tr>
<td>8</td>
<td>Frequency of DR's for mission identifier (MISSN_ID)</td>
</tr>
<tr>
<td>9</td>
<td>DR frequency for reporting facility (FAC)</td>
</tr>
<tr>
<td>10</td>
<td>DR frequency for action department (AD)</td>
</tr>
<tr>
<td>11</td>
<td>DR frequency for priority (P)</td>
</tr>
<tr>
<td>12</td>
<td>DR frequency for status (ST)</td>
</tr>
<tr>
<td>13</td>
<td>DR frequency by year-month logged in (_ODYRMO) and priority (P)</td>
</tr>
<tr>
<td>14</td>
<td>Frequency of priority 1 DR's logged in by year-month (_ODYRMO)</td>
</tr>
<tr>
<td>15</td>
<td>Frequency of priority 2 DR's logged in by year-month (_ODYRMO)</td>
</tr>
<tr>
<td>16</td>
<td>Frequency of priority 3 DR's logged in by year-month (_ODYRMO)</td>
</tr>
<tr>
<td>17</td>
<td>Frequency of priority 4 DR's logged in by year-month (_ODYRMO)</td>
</tr>
<tr>
<td>Number</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>18.</td>
<td>Frequency of priority 5 DR's logged in by year-month (ODYRMO).</td>
</tr>
<tr>
<td>19.</td>
<td>Frequency of priority 9 DR's logged in by year-month (ODYRMO).</td>
</tr>
<tr>
<td>20.</td>
<td>Priority (P) of DR's for mission identifier (MISSN_ID).</td>
</tr>
<tr>
<td>21.</td>
<td>Priority (P) of DR's from a reporting facility (FAC).</td>
</tr>
<tr>
<td>22.</td>
<td>Frequency of priority 1 DR's from a reporting facility (FAC).</td>
</tr>
<tr>
<td>23.</td>
<td>Frequency of priority 2 DR's from a reporting facility (FAC).</td>
</tr>
<tr>
<td>24.</td>
<td>Frequency of priority 3 DR's from a reporting facility (FAC).</td>
</tr>
<tr>
<td>25.</td>
<td>Frequency of priority 4 DR's from a reporting facility (FAC).</td>
</tr>
<tr>
<td>26.</td>
<td>Frequency of priority 5 DR's from a reporting facility (FAC).</td>
</tr>
<tr>
<td>27.</td>
<td>Frequency of priority 9 DR's from a reporting facility (FAC).</td>
</tr>
<tr>
<td>28.</td>
<td>Number of DR's logged without a mission identifier (MISSN_ID).</td>
</tr>
<tr>
<td>29.</td>
<td>Number of DR's logged for site/test unique patch DR's (MISSN_ID=A).</td>
</tr>
<tr>
<td>30.</td>
<td>Number of DR's logged for PMD3 (MISSN_ID=B).</td>
</tr>
<tr>
<td>31.</td>
<td>Number of DR's logged for ECL (MISSN_ID=C).</td>
</tr>
<tr>
<td>32.</td>
<td>Number of DR's logged for SSW1 (MISSN_ID=D).</td>
</tr>
<tr>
<td>33.</td>
<td>Number of DR's logged for JSC form 1541 (MISSN_ID=E).</td>
</tr>
<tr>
<td>34.</td>
<td>Number of DR's logged for release 19, floor system STS-5 (MISSN_ID=F).</td>
</tr>
<tr>
<td>35.</td>
<td>Number of DR's logged for PMD2 (MISSN_ID=G).</td>
</tr>
<tr>
<td>36.</td>
<td>Number of DR's logged for AOA (MISSN_ID-H).</td>
</tr>
<tr>
<td>37.</td>
<td>Number of DR's logged for KSC (MISSN_ID-K).</td>
</tr>
<tr>
<td>38.</td>
<td>Number of DR's logged for STS-1, FUP5/FLT (MISSN_ID-L).</td>
</tr>
<tr>
<td>40.</td>
<td>Number of DR's logged for entry (MISSN_ID-N).</td>
</tr>
<tr>
<td>41.</td>
<td>Number of DR's logged for PMD1 (MISSN_ID-F).</td>
</tr>
<tr>
<td>Number</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>42.</td>
<td>Number of DR's logged for STS-2, R18V21 flight system (MISSN_ID=R)</td>
</tr>
<tr>
<td>43.</td>
<td>Number of DR's logged for STS-2, R18V11 field system (MISSN_ID-R1)</td>
</tr>
<tr>
<td>44.</td>
<td>Number of DR's logged for STS-2, R18V12 field system (MISSN_ID=R2)</td>
</tr>
<tr>
<td>45.</td>
<td>Number of DR's logged for STS-3, R18V30 flight system (MISSN_ID=R3)</td>
</tr>
<tr>
<td>46.</td>
<td>Number of DR's logged for STS-4, R18V45 flight system (MISSN_ID=R4)</td>
</tr>
<tr>
<td>47.</td>
<td>Number of DR's logged for OV-99, R18V90 field system (MISSN_ID=R9)</td>
</tr>
<tr>
<td>48.</td>
<td>Number of DR's logged for SSW2 (MISSN_ID=S)</td>
</tr>
<tr>
<td>49.</td>
<td>Number of DR's logged for SPF, release 1 (MISSN_ID=S1)</td>
</tr>
<tr>
<td>50.</td>
<td>Number of DR's logged for SDL, release 36 (MISSN_ID=S6)</td>
</tr>
<tr>
<td>51.</td>
<td>Number of DR's logged for SDL, release 37 (MISSN_ID=S7)</td>
</tr>
<tr>
<td>52.</td>
<td>Number of DR's logged for OPT1 (MISSN_ID=T)</td>
</tr>
<tr>
<td>53.</td>
<td>Number of DR's logged for entry update 1 (MISSN_ID=U)</td>
</tr>
<tr>
<td>54.</td>
<td>Number of DR's logged for STS-2, R17V5 (MISSN_ID=W)</td>
</tr>
<tr>
<td>55.</td>
<td>Number of DR's logged for STS-1, FUP1 (MISSN_ID=X)</td>
</tr>
<tr>
<td>56.</td>
<td>Number of DR's logged for STS-1, FUP2 (MISSN_ID=Y)</td>
</tr>
<tr>
<td>57.</td>
<td>Number of DR's logged for STS-1, FUP3 (MISSN_ID=Z)</td>
</tr>
<tr>
<td>58.</td>
<td>Total number of DR's logged for STS-1, FUP5/FLT (MISSN_ID=L) and STS-1, FUP4 (MISSN_ID=M)</td>
</tr>
<tr>
<td>59.</td>
<td>Total number of DR's logged for STS-2 (MISSN_ID=R), STS-2 (MISSN_ID=R1), STS-2 (MISSN_ID=R2), STS-3 (MISSN_ID=R3), and STS-4 (MISSN_ID=R4)</td>
</tr>
<tr>
<td>60.</td>
<td>Total number of DR's logged for SDL releases 36 and 37 (MISSN_ID=S6 and S7)</td>
</tr>
<tr>
<td>61.</td>
<td>Total number of DR's logged for STS-1; FUP1 (MISSN_ID=X), FUP2 (MISSN_ID=Y), and FUP3 (MISSN_ID=Z)</td>
</tr>
<tr>
<td>CR frequency for department 1 manpower impact, year</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>1 (D1IMPYR1)</td>
<td>162</td>
</tr>
<tr>
<td>2 (D1IMPYR2)</td>
<td>163</td>
</tr>
<tr>
<td>3 (D1IMPYR3)</td>
<td>164</td>
</tr>
<tr>
<td>4 (D1IMPYR4)</td>
<td>165</td>
</tr>
<tr>
<td>CR frequency for department 2 manpower impact, year</td>
<td></td>
</tr>
<tr>
<td>1 (D2IMPYR1)</td>
<td>166</td>
</tr>
<tr>
<td>2 (D2IMPYR2)</td>
<td>167</td>
</tr>
<tr>
<td>3 (D2IMPYR3)</td>
<td>168</td>
</tr>
<tr>
<td>4 (D2IMPYR4)</td>
<td>169</td>
</tr>
<tr>
<td>CR frequency for department 3 manpower impact, year</td>
<td></td>
</tr>
<tr>
<td>1 (D3IMPYR1)</td>
<td>170</td>
</tr>
<tr>
<td>2 (D3IMPYR2)</td>
<td>171</td>
</tr>
<tr>
<td>3 (D3IMPYR3)</td>
<td>172</td>
</tr>
<tr>
<td>4 (D3IMPYR4)</td>
<td>173</td>
</tr>
<tr>
<td>CR frequency for department 4 manpower impact, year</td>
<td></td>
</tr>
<tr>
<td>1 (D4IMPYR1)</td>
<td>174</td>
</tr>
<tr>
<td>2 (D4IMPYR2)</td>
<td>175</td>
</tr>
<tr>
<td>3 (D4IMPYR3)</td>
<td>176</td>
</tr>
<tr>
<td>4 (D4IMPYR4)</td>
<td>177</td>
</tr>
<tr>
<td>CR frequency for department 5 manpower impact, year</td>
<td></td>
</tr>
<tr>
<td>1 (D5IMPYR1)</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>CR frequency for department 5 manpower impact, year 2 (D5IMPYR2).</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CR frequency for department 5 manpower impact, year 3 (D5IMPYR3).</td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CR frequency for department 5 manpower impact, year 4 (D5IMPYR4).</td>
</tr>
<tr>
<td>81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CR frequency for department 6 manpower impact, year 1 (D6IMPYR1).</td>
</tr>
<tr>
<td>82</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CR frequency for department 6 manpower impact, year 2 (D6IMPYR2).</td>
</tr>
<tr>
<td>83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CR frequency for department 6 manpower impact, year 3 (D6IMPYR3).</td>
</tr>
<tr>
<td>84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CR frequency for department 6 manpower impact, year 4 (D6IMPYR4).</td>
</tr>
<tr>
<td>85</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CR frequency for department 7 manpower impact, year 1 (D7IMPYR1).</td>
</tr>
<tr>
<td>86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CR frequency for department 7 manpower impact, year 3 (D7IMPYR3).</td>
</tr>
<tr>
<td>87</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CR frequency for department 7 manpower impact, year 4 (D7IMPYR4).</td>
</tr>
<tr>
<td>88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CR frequency for department 1 total manpower impact (D1TOTIMP).</td>
</tr>
<tr>
<td>89</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CR frequency for department 2 total manpower impact (D2TOTIMP).</td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CR frequency for department 3 total manpower impact (D3TOTIMP).</td>
</tr>
<tr>
<td>91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CR frequency for department 4 total manpower impact (D4TOTIMP).</td>
</tr>
<tr>
<td>92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CR frequency for department 5 total manpower impact (D5TOTIMP).</td>
</tr>
<tr>
<td>93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CR frequency for department 6 total manpower impact (D6TOTIMP).</td>
</tr>
<tr>
<td>94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CR frequency for department 7 total manpower impact (D7TOTIMP).</td>
</tr>
<tr>
<td>95</td>
<td></td>
</tr>
</tbody>
</table>
96. DR frequency of number of months between date logged in (_OD) and development close date (BD). 196

97. DR frequency of number of months between date logged in (_OD) and verification date (VC). 197

98. CR frequency of number of months between date received (DTRECD) and RRB disposition date (RRBDT). 198

99. CR frequency of number of months between date received (DTRECD) and OASCB disposition date (OASCBDT). 199

100. CR frequency of number of months between RRB disposition date (RRBDT) and OASCB disposition date (OASCBDT). 200
INTRODUCTION

The Data Systems and Analysis Directorate (DSAD) of the Johnson Space Flight Center (JSC) has the responsibility for the implementation and maintenance of the Shuttle Orbiter Primary Flight Software. This software development project has involved a large number of software types, a large number of software management issues and a large number of software development methodology issues. During the course of the implementation of this project a great deal of statistical and historical information has been gathered and retained within JSC. A research group at Texas A&M University (TAMU) composed of members from the Advanced Technology Group of The Data Processing Center and members of the faculty of the Computing Science Department and the Institute of Statistics has undertaken the task of examining this information.

1.1 DEFINITION OF PROJECT

The object of this examination is to analyze the data gathered by JSC to determine what information can be used to provide NASA and the Software industry with additional metrics on the management and methodology issues surrounding large software implementation efforts. The software implementation data would hopefully produce data that could be of interest in areas such as cost, reliability, and requirements. With these areas of interest in mind, the task plan was organized into seven phases. The first phases involved key personnel visiting JSC to obtain information relating to the definition of the Orbiter Software Project, to determine what data is available for analysis, and to determine what analysis is to be done and products to be obtained. The latter phases will include putting data in machine readable form and producing results. The seven phases are as follows:

1. Produce a definition of the Orbiter Software Implementation
2. Define and catalog the available data.
3. Produce an estimation and prioritization of products, analyses and metrics.
4. Produce final work and product plan and schedule.
5. Conduct data gathering and integration with periodic status reports.

7. Analysis, results and final report encompassing the above phases.

In areas of research where data was readily available, all of the above phases were completed. TAMU suggest that a continuing effort be carried on in other areas.

1.2 AREAS OF RESEARCH

The project has been organized into three areas of interest with personnel assigned to information gathering task in each of three areas. These areas are the definition area, the code area and the changes area.

1.2.1 Definition Area

The definition area of analysis is primarily concerned with information about documentation, management, cost factors, and hardware constraints in the software development process.

1.2.2 Code Area

The code area of analysis is concerned with information about the source code. Statistics that can be gathered from HALSTAT, as well as statistics that can be gathered with the TAMU code analyzer, will be used to quantize source code characteristics.

1.2.3 Changes Area

The changes area of analysis is concerned with information related to changes made to the software during the development and testing processes. Statistics are gathered with respect to Change Request (CR), Program Change Proposal (PCP), and Discrepancy Reports (DR). Categories of change, with respect to the effect of the change and the priority of the change, will be analyzed. NASA's and IBM's characterization of the changes will be analyzed as well as a TAMU characterization of the changes.
The work completed in this project has been categorized into the three main interest areas described in Section 1: definition, code and changes. Accomplishments in each of these areas are presented following a brief literature survey which summarizes the conclusions of other work pertinent to this project.

2.1 LITERATURE SURVEY

During the last decade software engineering has become a major area of interest in computer science research. In attempts to attain the software engineering goals of increasing system reliability and predicting software costs, researchers have conducted various program complexity and error analysis studies. This work has suggested using numerous metrics such as program length, operator/operand counts, nesting characteristics, data-sharing, and level of modularization as a means of measuring the complexity of programs and in error estimation. The hypotheses formed in these studies have in general been tested using small data samples or student programs due to the difficulty in obtaining valid production data.

Zolnowski has developed a comprehensive scheme for assigning a figure of merit to a program based on an objective set of program characteristics known to be related to program complexity. She has incorporated the measures suggested by various other researchers on the assumption that the different opinions of these authors do in fact reflect many diverse aspects of program complexity. She then evaluated the effectiveness of the various measures using objective data collected from the development of production programs in FORTRAN and COBOL. The complexity characteristics are divided into four categories: instruction mix, data reference, interaction/interconnection and structure/control flow. Based on Zolnowski's results a list of factors in each of these areas was compiled for use in estimating the complexity of the NASA space shuttle software written in HAL/S. This list is presented in Appendix D.

Carver has extended the work of Zolnowski to determine the relationship between program changes and complexity characteristics for use in estimating program completeness based on changes. She defines the number of program changes to be the number of times the program code must be modi-
fied from the first version as written by the programmer to the final version at the end of the testing stage. In her model the program characteristics are measured in the first version of the program. In the study the number of changes were counted chronologically in the development of two large production software systems. Carver found that structure/control flow characteristics were the best predictors of program changes. She also identified system-related conditions such as quality of the specifications, volatility of the system, and the use of structured programming concepts to be critical for determining program changes.

The work of Henry and Kafura is typical of several recent research projects which define and validate a set of software metrics appropriate for evaluating the structure of large-scale systems. Their metrics are based on the measurement of information flow between system components; specifically, procedure complexity, module complexity and module coupling. In this study changes made to the source code of the UNIX operating system were used in the validation effort. A strong correlation was found between the complexity measures and the occurrence of changes. Because the major elements of information flow analysis can be determined at design time, this model can be used early in the developmental process to produce a qualitative evaluation useful in identifying various types of structural flaws in the design and implementation. An overview of their work and findings which are applicable to the HAL/S software analysis are presented in Appendix C.

Thayer, Lipow and Nelson report on a software reliability study performed by TRW Systems and Energy for the Rome Air Development Center. The data, principally error data collected from four software development projects, was analyzed to study various types of errors in software, the effectiveness of the development and test strategies in preventing errors and the reliability of the software itself. Their final report provides guidelines for data collection and analysis on other similar projects. Of particular interest in the HAL/S software study are the categorization schemes for software errors which were developed as a part of the TRW effort. Based on detailed study of error data from four large software projects they developed 164 error categories under 16 headings. These categories are highlighted in Table 1. They concluded from their research that errors must be categorized in considerable detail to be of practical use in developing or evaluating tools. While the main categories tend to be the same for different projects, they found that the appropriate detailed categories depend on the operating environment characteristics, the language being used and the development strategy.
TABLE 1

Major Categories of Errors

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational errors</td>
<td>result from errors in coded equations</td>
</tr>
<tr>
<td>Logic errors</td>
<td>errors in logical processing</td>
</tr>
<tr>
<td>Input/output errors</td>
<td>errors from i/o code rather than from interface</td>
</tr>
<tr>
<td>Data handling errors</td>
<td>errors in reading, writing, moving, storing and modifying data</td>
</tr>
<tr>
<td>Operating system/system support errors</td>
<td>errors in OS, compiler, assembler, system support software and system utilities</td>
</tr>
<tr>
<td>Configuration errors</td>
<td>catastrophic problems encountered when the software failed to be compatible with the system software</td>
</tr>
<tr>
<td>Interface errors</td>
<td>routine/routine interface errors</td>
</tr>
<tr>
<td></td>
<td>routine/system software interface errors</td>
</tr>
<tr>
<td></td>
<td>Tape processing interface errors</td>
</tr>
<tr>
<td></td>
<td>user interface errors</td>
</tr>
<tr>
<td></td>
<td>database interface errors</td>
</tr>
<tr>
<td>User requested changes</td>
<td>user category for enhancements and requested changes</td>
</tr>
<tr>
<td>Preset database errors</td>
<td>preset data primarily initialization data</td>
</tr>
<tr>
<td>Global variable/compool definition errors</td>
<td>errors in global variables or constants</td>
</tr>
<tr>
<td>Recurrent errors</td>
<td>reopened error previously categorized</td>
</tr>
<tr>
<td>Documentation errors</td>
<td></td>
</tr>
<tr>
<td>Requirements compliance errors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>software not compliant with specification</td>
</tr>
<tr>
<td>Unidentified errors</td>
<td>errors with insufficient information to classify</td>
</tr>
<tr>
<td>Operator errors</td>
<td>problem due to operator, developer or tester</td>
</tr>
<tr>
<td>Questions</td>
<td>error report to record a question needing to be answered</td>
</tr>
</tbody>
</table>
2.2 DEFINITION AREA

The first steps accomplished by TAMU in the analysis of the space shuttle software were of an investigative nature. Many areas needed to be defined and an inventory taken of what information and data was available in the areas to be studied.

The goal in the documentation area was to determine what documentation was available during the development of the Flight Software for the Shuttle. The Research team received several boxes of manuals and documents. Inventoring the manuals received was one of the first steps in the project. Though many of the manuals received were duplicates, the list in Appendix A provided the research group with an outline of what types of information was available. The next step in the documentation area was to determine the structure of the documents and manuals for both NASA and IBM as described in Section 2.2.1.

The cost area was also an area of study. Defining this area proved to be quite difficult. Though the document Space Shuttle Orbiter Software Management Plan, produced by IBM stated that the Cost and Scheduling information was kept in machine readable form, the project team was repeatedly pointed toward the NASA 533 monthly reports.

An investigation of the DR/CR procedures and how the DR/CRs affected the development of the software was also part of the definition area of this project. The primary source of this study was the Space Shuttle Orbiter Avionics Management Plan. From this document the different code and design inspection steps were defined to the project team. At this step the team could better understand the flow of the DRs and CRs. It also became evident that trying to relate the DR and CR information to cost would be an interesting task.

2.2.1 List of Documentation

Determining the overall picture of the documents on the NASA side of the picture was a relatively simple task. Many of the NASA documents contained a Preface stating the design philosophy and the structure of the specifications. Also, contained in the Preface was a list of Level A and Level B documents. However a list of Level C or detail design documents was not so readily found. After a little investigation, a list of the Level C documents was found in the NASA document entitled "Statement of Work" dated July 25, 1980.

Putting the IBM side of the documentation together was not as easily done as the NASA side. After searching all available documents, the structure was uncovered in a manual with the wrong cover page. The manual dated 2/25/77 had erroneously been labeled Vol III - Applications: Guidance, Navigation, and Control instead of Vol I - Software Systems Overview. However, this manual did relate the NASA requirements to the
detailed design specifications written by IBM and used by the programming teams.

2.2.2 Cost Data

The area of time management and development manpower control appeared to be an area of interest and one which some useful information could be gleaned. This area, however, proved to be relatively difficult because of the lack of detailed information and the changes of reporting policies which took place during shuttle software development.

The source of information for the cost of the project was the monthly reports which IBM prepared for NASA. Since these were provided to the TAMU research team as copies of the reports, the information had to be coded and re-entered into machine readable form. The major problem in analyzing information in these reports was the changes in NASA's reporting requirements. The reports changed in April of 1980 from man-equivalents as a measure to the use of hours. This necessitated the data being converted to a common format for man-time. At the same time, the categories of shuttle function reported in development also changed. In September of 1981, the report formats changed again both in categories reported and the measure of man-time reported.

The changes in categories of shuttle function was the major problem. These changes made it difficult to track the cost of the major functions of the Shuttle Software and made any sort of analysis in that area difficult.

The cost data were plotted over time. Examining the development and verification costs per month, Figure 2 (all figures will be found in Appendix M), notice that development costs show three phases: pre-May, 1980; May, 1980 through July, 1981; and post July, 1981. These may coincide with major missions. Verification costs, however, do not show this trend Figure (3). Verification costs increase to a level attained in late 1979 and then oscillate at this level thereafter.

Focusing on cumulative costs for development, Figure 4, and verification, Figure 5, the rate of expenditure has not changed significantly over the study period. The slopes of the cumulative curves have not decreased significantly, indicating that the rate of development and verification are the same throughout the study period and did not level off during the period under study.
2.2.3 **Cost Data Related to CR's and DR's**

Cost data were studied in relation to the number of DR's and CR's. Methods involved were graphical comparison and correlation analysis. The number of DR's and CR's were examined on the same axes as development and verification costs. Figure 6, Appendix H, shows the cost and change data (scaled by 20) together. Note that there appears to be no direct pattern across the variables.

The apparent lack of direct correlation between costs and number of changes per month was confirmed by subjecting the data to correlation analysis. Spearman nonparametric correlation coefficients, Table 2, show that development costs were related to the number of CR's, verification costs, and cumulative development and verification costs. Development costs were not related to the number of DR's for that month, but to the number of DR's 6 to 12 months prior. This would seem to indicate a mechanism of change data feedback into development, with a 6 to 12 month lag period.

Verification costs did not correlate with the number of DR's or CR's for that month. The number of DR's entered 7 to 12 months prior, and the number of CR's entered 8 to 12 months prior were significantly correlated with verification costs. Apparently there is about a one half year period required for the changes to work through the system.

Verification costs did correlate with development costs and cumulative development and verification costs.
TABLE 2
Correlation of Cost Data with Selected Variables.

<table>
<thead>
<tr>
<th>Main Variable*</th>
<th>Correlated Variable*</th>
<th>r</th>
<th>Significance Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>devel</td>
<td>cver</td>
<td>-.76</td>
<td><.001</td>
</tr>
<tr>
<td></td>
<td>cdevel</td>
<td>-.69</td>
<td><.001</td>
</tr>
<tr>
<td></td>
<td>crlag12</td>
<td>.44</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>crlag1</td>
<td>.43</td>
<td>.002</td>
</tr>
<tr>
<td></td>
<td>ver</td>
<td>-.40</td>
<td>.005</td>
</tr>
<tr>
<td></td>
<td>drlag12</td>
<td>-.40</td>
<td>.005</td>
</tr>
<tr>
<td></td>
<td>drlag11</td>
<td>-.39</td>
<td>.005</td>
</tr>
<tr>
<td></td>
<td>drlag10</td>
<td>-.34</td>
<td>.02</td>
</tr>
<tr>
<td></td>
<td>crlag10</td>
<td>-.32</td>
<td>.02</td>
</tr>
<tr>
<td></td>
<td>crlag11</td>
<td>-.31</td>
<td>.03</td>
</tr>
<tr>
<td></td>
<td>numcr</td>
<td>.30</td>
<td>.03</td>
</tr>
<tr>
<td></td>
<td>drlag9</td>
<td>-.28</td>
<td>.05</td>
</tr>
<tr>
<td></td>
<td>crlag2</td>
<td>.28</td>
<td>.05</td>
</tr>
<tr>
<td></td>
<td>crlag3</td>
<td>.28</td>
<td>.05</td>
</tr>
<tr>
<td></td>
<td>drlag6</td>
<td>-.28</td>
<td>.05</td>
</tr>
<tr>
<td>ver</td>
<td>cdevel</td>
<td>.61</td>
<td><.001</td>
</tr>
<tr>
<td></td>
<td>cver</td>
<td>.61</td>
<td><.001</td>
</tr>
<tr>
<td></td>
<td>crlag11</td>
<td>.58</td>
<td><.001</td>
</tr>
<tr>
<td></td>
<td>crlag12</td>
<td>.49</td>
<td><.001</td>
</tr>
<tr>
<td></td>
<td>drlag12</td>
<td>.44</td>
<td>.002</td>
</tr>
<tr>
<td></td>
<td>devel</td>
<td>-.40</td>
<td>.005</td>
</tr>
<tr>
<td></td>
<td>drlag7</td>
<td>.40</td>
<td>.005</td>
</tr>
<tr>
<td></td>
<td>drlag11</td>
<td>.36</td>
<td>.01</td>
</tr>
<tr>
<td></td>
<td>drlag9</td>
<td>.35</td>
<td>.02</td>
</tr>
<tr>
<td></td>
<td>drlag10</td>
<td>.35</td>
<td>.02</td>
</tr>
<tr>
<td></td>
<td>drlag8</td>
<td>.34</td>
<td>.02</td>
</tr>
<tr>
<td></td>
<td>crlag9</td>
<td>.33</td>
<td>.02</td>
</tr>
<tr>
<td></td>
<td>crlag10</td>
<td>.31</td>
<td>.03</td>
</tr>
<tr>
<td></td>
<td>crlag8</td>
<td>.30</td>
<td>.04</td>
</tr>
</tbody>
</table>

* devel = development costs
 cdevel = cumulative development costs
 ver = verification cost
 cver = cumulative verification costs
 numcr = number of CR's for a month
 numdr = number of DR's for a month
 crlagX = number of CR's for the Xth month previous
 drlagX = number of DR's for the Xth month previous
2.3 CODE AREA

The objective of the Code Area effort was to decompose the Space Shuttle Orbiter Software into a data format that facilitated statistical gathering procedures. This effort proceeded in two directions:

1. data generation from available HAL/S utilities.

2. data generation from proposed source code analyzer or scanner.

Installation of the HAL/S utilities required a familiarization with the HAL/S 360 System and then testing procedures with data that was provided. The development of the software analyzer required a working knowledge of the HAL/S language, a formulation of the complexity factors for the HAL/S language, and a design for a generalized statistical data format.

2.3.1 Availability of Source Data

In order to analyze the Space Shuttle Orbiter Software for the proposed statistical model, a collection of software releases from one time period to a later time period was required. For this particular project only one software build or release was studied. Initially, a version of Release 16 of the Flight Software was to be the subject of this study. After receiving the first group of tapes for Release 16 from NASA, it was found that most of the data for Release 16 could not be read from tape. The tape reading problems were caused by incorrect label information and bad or missing tape file marks. The earliest available complete release of software on tape from NASA that could be used for analysis was Release 19.2. This release was the final or deliverable software from IBM to NASA and was used to fly the Space Shuttle Orbiter. The data on the tapes from NASA for this release contained:

1. FSW 19.2
 a) Application source libraries
 b) System source libraries
 c) Include source libraries

2. Simulation Data Files (SDF's) for the AP-101

3. Load modules for OS/360

4. HAL/S 360 Compiler
 a) HALSTAT
b) Linkage Editor Utilities.

Data which were unavailable from IBM were the OS/360 SDF's and the build information for Release 19.2. In talking with IBM representatives, it was found that the OS/360 version of the SDF's were not kept up-to-date as the software release progressed into its final stages. Also, there was no documentation on how to reconstruct the build from the source members on tape. The unavailability of the OS/360 SDF's and the build information for Release 19.2 presented problems which will be discussed in later sections.

2.3.2 Documentation of HAL/S

In order to analyze a program for factors relating to complexity and reliability, a good understanding of the native language is necessary. For the purpose of learning about HAL/S, three particular references were found to be useful. They were: HAL/S Language Specification (IR-542), Programming in HAL/S (Intermetrics), and HAL/S Programmer's Guide (IR-63-5).

With the intention of using some of the statistics generated by the utility HALSTAT, the installation of the HAL/S language compiler as well as HALSTAT became necessary. The HAL/S 360 Compiler had to be installed to provide the OS/360 SDF's for input to HALSTAT. More detail will be given concerning the reason for installation of the compiler in subsequent sections. Most of the information required for installation was given in HAL/S-360 User's Manual (IR-360-2). Implementation of the HALSTAT utility was aided by use of the HALSTAT User's Manual (IR-349) which contained helpful program and JCL examples.

During the development of the source analyzer program, the HAL/S Language Specification manual was referenced frequently concerning details of the HAL/S syntax. The concepts of automated code analysis and subsequent reliability measurements were derived from a dissertation by Jean C. Zolnowski, entitled: "A System for Measuring Program Complexity" and are given in Appendix D.

2.3.3 Methodology of Analysis of Source Data

As mentioned previously, the methods of analyzing the Space Shuttle Orbiter Software involved the use of the HAL/S utilities and development of a source code analyzer. The HAL/S utilities used to gather statistics from the Flight Software were HALSTAT and the HAL/S 360 Compiler. The HAL/S 360 Compiler provided the SDF input to HALSTAT which generated formatted reports on load module statistics. The source analyzer was designed to use the uncompiled version of the source and produce output which could be analyzed in various formats through the Statistical Analysis System (SAS) or other statistical software systems.
The installation of HALSTAT and the HAL/S 360 Compiler was finished far ahead of the final design work for the source scanner. Therefore a complete review of what HALSTAT could provide in the way of program complexity statistics was available. This allowed a decision to be made whether to continue in the HALSTAT direction or the source analyzer direction for gathering complexity statistics. The decision was based on the ease of using each method as well as the detail of statistics generated by each method. After careful consideration, it was decided to put the major emphasis on developing the source analyzer for the following reasons:

1. The number of source members that had to be compiled in order to provide HALSTAT with SDF inputs was considerably less.

2. The problems encountered when compiling the FSW source members made the input preparation step to HALSTAT difficult.

3. HALSTAT was lacking in production of complexity statistics relating to imbeddedness, nesting levels of certain constructs, and connectivity information.

4. The frequency count information given by HALSTAT only applied to certain types of instructions. For frequency counts on other categories of complexity factors, such as the number of references for a particular variable or the number of I/O instructions, either a complex program had to be devised to gather and tabulate these statistics from the HALSTAT report or these statistics had to be hand-tabulated from the report.

More details for the decision to concentrate the effort toward the source code analyzer will be discussed in the following sections.

It was noted that the effort toward using HALSTAT was not wasted while attempting to locate or generate a tool to provide program complexity statistics. The complexity statistics which were missing from HALSTAT and the difficulty in using HALSTAT provided a set of design requirements for the source code analyzer. Two examples of the requirements were that the source code analyzer would have to provide an output record with a broad definition to cover all areas of complexity analysis and that only the uncompiled source code would be analyzed. SAS or special post-processing programs will be used to group, tabulate, and categorize the output source code analysis data from the individual FSW source members.

2.3.3.1 Size of Data

The Flight Software (Rel 19.2) is subdivided into three main libraries:

1. System source
a) Of the 350 modules that comprise the system source, approximately half are written in AP-101 assembler, and the remaining are written in HAL/S. There are about 100,000 lines of source code in the system library.

b) Many of the system modules 'include' other system source modules.

c) The list of modules in the System source library is contained in Appendix H.

2. Application source

a) The application source was written in HAL/S and consists of 985 modules. It contains a total of 385,000 lines of code.

b) The typical application module 'includes' other system and application source modules.

c) The list of modules in the Application source library is contained in Appendix F.

3. Include source

a) There are 673 Include modules which were written in HAL/S. They contain 200,000 lines of source code.

b) All Include modules are self-contained (no 'includer' of other modules).

c) The list of modules in the Include source library is contained in Appendix G.

2.3.3.2 FSW Source Compilation

Initially the HAL/S 360 Compiler was installed to expand the FSW source code. This source expansion meant that all external source code sections (SDF's or compiler templates) of the source member being analyzed would have their reference and interface sections listed in the compiler output; that is, an external COMPOOOL would have its header statement and data definition statements listed, an external PROCEDURE or FUNCTION would have its header statement and data definition statements for its formal parameters listed, and an external PROGRAM would have only its header statement listed. From this expanded source listing, the source code analyzer would have an input that provided external reference and interface information. This external information is necessary to give accurate statistics regarding for example the number of variables of a particular data type (ARRAY, VECTOR, MATRIX, STRUCTURE etc.,) which are encountered in a particular operation (addition, subtraction, division,
In the case of an external variable that is of VECTOR type, its use for a particular operation in the source member being analyzed could be that of a SCALAR or VECTOR variable. This multi-use attribute also applies to external variables of the ARRAY, MATRIX, and STRUCTURE types. Therefore the type of an external variable has to be known.

Another reason for the HAL/S 360 Compiler installation was to generate 360 SDF's as input to HALSTAT. In the data received from NASA, O/S 360 load modules were supplied along with AP-101 SDF's. The inputs required by HALSTAT have to be generated from the same machine types. Also the compiled versions of the SDF's must match the version of the load module they are being used with. Since IBM did not keep or deliver the up-to-date O/S 360 SDF's to NASA, it was again necessary to install the HAL/S 36C Compile to reproduce the SDF's.

The first compilation experiments performed by the Code Group uncovered the restriction that a specific compilation order for all of the FSW source members must be followed. The INCLUDE statement is the compiler directive used to bring in the SDF or template that is included in the source member. If one source member included several external code units (SDF's or compiler templates), then these external code units had to be precompiled with their SDF's or templates stored in appropriate libraries used by the HAL/S 360 Compiler. These INCLUDED external code units could also include other external code units within their units; and so on, with no limit for the nesting of INCLUDE statements. The only way to determine the compilation order was to bring each source member onto a screen editor and record its INCLUDE list. After the master list was produced, the compilation order could be determined by breaking the list into compilation passes consisting of those members having no external units, having only one external unit, having two external units, etc., the process repeating until all the FSW source members were compiled. This method was confirmed by IBM as being the only practical way of determining the compilation order. IBM could not provide TAMU with the compilation order.

The process of recording the master INCLUDE list of the FSW source members took approximately one month of work for three people. The first and second compilation passes could be easily derived from the master list, but the third and succeeding passes required considerably more effort. The first compilation pass consisted mainly of COMPOOL source members while the second compilation pass consisted mainly of interface routines to the COMPOOL source members. The more complex compilation units (PROGRAMS) could not be easily compiled, allowing only 75% of the FSW source code to be expanded and compiled for SDF's. Because of the time constraints involved with the project, it was determined that the best method of analysis would be one that did not involve any compiling. This decision placed the analysis effort using HALSTAT at a standstill until the O/S 360 SDF's for the O/S 360 load modules could be more easily obtained.
2.3.3.3 Overlay or Build Sequence

Concomitant to the compilation order problems, the documentation needed to build a phase of the Space Shuttle Orbiter Software was not provided. By examining the FSW source code only, a source code member could not be distinguished as an overlay or a root segment, nor could it be associated to any particular compilation phase. A load module consisting of a particular phase build was provided in the data from NASA. The load module was in AP-101 format which made the associated segment names and structure of the load module difficult to obtain. Information regarding the building of the many other phases was not provided. This missing documentation limits the source code analysis to a static mode. In other words, a system, comprising of all source members INCLUDING each other, is the largest unit of complexity analysis that can be done. If the build information were available, complexity analysis could be done in a dynamic mode (complexity analysis per phase).

2.3.3.4 HALSTAT

The documentation received about the utility HALSTAT suggested that it could provide much of the analytical information sought in the Code Area effort. Specifically, HALSTAT provides compilation statistics, a memory map of the output object module, and a Global Symbol Directory (GSD). The Code Group wanted to determine exactly how useful HALSTAT was in collecting factors of complexity and reliability of any particular HAL/S source member.

After examining the output from several HALSTAT runs, it was found that some complexity statistics were provided by HALSTAT but others were either not provided or could not be derived easily from the HALSTAT output. A compilation statistic that was useful to this project's source code analysis was the frequency count by instruction type (such as how many IF's, DO's, SCHEDULE's, etc.,). Questions concerning the frequency count of SCHEDULE statements with cyclic (REPEAT) clauses or the total number of real-time statements would have to be hand-tabulated or collected using a post-processor program on the HALSTAT output. The memory map produced by HALSTAT was useful only for purposes of determining the memory size required for a source member. The Global Symbol Directory did provide useful data on the external and internal symbol reference information, but statistics regarding how many times a particular variable was referenced and the scope of the variable were not listed. Some statistics that were not provided by HALSTAT were:

1. the nesting level of subprograms and arguments to subprograms
2. the number of parameters to a subprogram
3. the number of VECTOR, MATRIX, or ARRAY shaping operations
4. the length and nesting levels of IF and DO statements.

For a complete list of complexity factors to be used in the software analysis for this project refer to Appendix D.

As a result of HALSTAT's incompleteness in providing all of the complexity statistics and the previously mentioned compilation problems, it was decided that the effort towards using HALSTAT as a complexity tool should be delayed until more work on the source code analyzer had been done. If the source code analyzer could provide all the complexity statistics with less operating set-up than HALSTAT, then in all probability the incorporation of HALSTAT as a tool would be cancelled. Of course this decision cannot be made until the results from the source code analyzer are done and its operating procedures are compared with those of using HALSTAT.

2.3.4 Source Code Analyzer

The primary objective of the source code analyzer or scanner is to produce data from which measures of complexity and reliability can easily be made. The scanner is designed to output all language constructs of a source member to a dataset that will later be processed by SAS (Statistical Analysis System software) routines. These SAS routines will be able to generate all the complexity statistics listed in Appendix D. The output format of the scanner was designed to be as accommodating as possible for implementation as a SAS input dataset. This was done by including appropriate tag and tabulation fields in the scanner output record. By merging scanner output datasets together through SAS, complexity statistics at all levels of program structure (system, subsystem, module) can be analyzed. Complexity statistics can even be gathered at the programmer level by associating, through SAS, the scanner output datasets with the INVENTORY file provided by NASA. The INVENTORY file contains the programmer's name for each source member. An application example would be to analyze particular software production groups, with respect to reliability and complexity, and rank each of the groups according to the results. In general, the scanner program can provide a statistical data format that can be used as input for a wide range of software studies.

2.3.4.1 Status of Scanner

The HAL/S source scanner has been designed according to the structure shown in Appendix E (Figure 1). SNOBOL will be used in programming the scanner because of its pattern matching and string handling capabilities. Of the modules shown in Appendix E, only parts of the Variable Handler have not been written. The Expression Handler contains the logic that operates on any form of syntactical expression. This module is
the most complex and largest piece of code of the modules within the Variable Handler. All other modules are currently being tested in an isolated mode as well as a connected mode.

2.3.4.2 Definition of Scanner Record

The HAL/S source scanner record is comprised of record fields which provide information regarding a language construct's locality, type, embeddedness, connectivity, and identification. As shown in Appendix B, the BLOCK NAME and LINE NUMBER fields provide locality information. BLOCK NEST LEVEL, STATEMENT NEST LEVEL, EXPRESSION LEVEL, SUBSCRIPT LEVEL, and ARGUMENT LEVEL fields provide embeddedness information. The STATEMENT and DESCRIPTION fields provide identification information while the SUBDESCRIPTION and ATTRIBUTES fields provide connectivity and type information respectively.

As mentioned previously, the scanner output record was designed to provide a format in which all complexity statistics could be gathered. Every HAL/S language construct is classified according to either one of four record types:

1. comment
2. statement
3. operator
4. variable.

The RECORD TYPE field is a tag field that broadly classifies the language construct. The LINE NUMBER field enables reference data and variable scope information to be taken since it contains the location within the source member where the construct occurred. The FILE MEMBER NAME field will be used to obtain complexity statistics, through SAS dataset merging, at levels other than the source member level. The BLOCK NAME field provides locality data at the block level for a language construct. It also allows statistics to be taken at the subprogram level. The BLOCK NEST LEVEL, STATEMENT NEST LEVEL, SUBSCRIPT LEVEL, ARGUMENT LEVEL, and EXPRESSION LEVEL fields give embeddedness information. For instance, the depths of embedded subprograms, IF and DO statements, the number of subprograms that an argument is passed through on one subprogram invocation, and the depths of parenthesized expressions such as those used for subscript evaluation, will be recorded. These fields give data not obtainable through HALSTAT. The DESCRIPTION and SUBDESCRIPTION fields qualify the language construct by recording such items as symbol names and statement subtypes. A variable construct will have its name placed in the DESCRIPTION field and its STRUCTURE name in the SUBDESCRIPTION field if it is of STRUCTURE type. A statement construct will have any subphrase (the REPEAT phrase on the SCHEDULE
statement, the FOR and WHILE/UNTIL phrases on the DO statement, etc.,) information recorded. The ATTRIBUTES field identifies how a variable is defined and how it is used in a statement.

2.4 CHANGES AREA

The goal of the changes area was to analyze information concerning software changes. The first step toward achieving this goal was determining what information was available and documenting that information. The available data was then ready to analyze.

2.4.1 Availability of Change Data

Originally the TAMU research team was given five tapes which were supposed to contain data on change reports (CR), discrepancy reports (DR) and program change reports (PCR). While trying to access this data, it was determined that only two of the tapes contained valid information. The two good tapes contained the OFT DR data base and the OFT CR data base.

2.4.1.1 Reliability Data

Traditional hypothesis-testing techniques may be used as a management tool by software developers or software purchasers who wish to insure that their packages have some specified reliability level. The conditions that must be met are:

1. the existence of independent collections of test data
2. a way of determining the correctness of processing of these collections
3. a way of randomly selecting test data.

Two basic approaches are available. In a fixed sample size test, the user decides on the reliability desired. The number of test cases which must be examined based upon the acceptance/rejection criteria can then be determined. In a sequential test, the desired reliability level is again pre-determined, but samples are tested one at a time until an accept/reject decision can be made.

Experiments with a large amount of error data derived from several systems indicate that reliability results derived from these models are consistent with actual reliability figures.
Most current acceptance procedures are based upon a naive assumption that a large program can be exhaustively tested and delivered in an error-free condition. Because these expectations cannot be fulfilled, the manager of a software development project or the purchaser of a software product is provided with no quantitative information on which to base an acceptance decision and is thus forced to make these decisions based mostly on intuition and his own experience in similar situations. These models allow one to replace these intuition-based decisions with quantitatively-based decisions and thus constitute an important contribution to the science of management of software development efforts.

In determining what data was available to apply the models to the 'shuttle avionics software' it was determined that sufficient data was not available. The data saved during reliability testing consisted of only failures of the software to perform as expected. The application of the model requires that results from all test cases be available.

2.4.1.2 DR and CR Data

Data were supplied for discrepancy reports (DR) and change reports (CR). After overcoming initial problems with reading the data tapes, errors in data entry resulted in loss of some data, and made early analyses difficult.

Extensive analysis of the change data was difficult. This was due to no CR and incomplete DR variable documentation being supplied with the data tapes. Supplemental data was requested. Information returned pertaining to DR's was prompt and complete. However, our request for information on the CR data was long outstanding, and incompletely answered. This resulted in the DR data base being analyzed in greater depth.

2.4.1.3 DR and CR Legends

Initially, the documentation for the tape containing the DR data base consisted of a variable list and a legend. This DR legend was in the first file of the DR data base tape and was helpful, but incomplete. Many of the DR variables were not explained in the legend. These unexplained variables were: Verification Assignment for Special (GA), Pre-Build Assessment Data (PD), Pre-Build Assessment Reason (PR), T&O Closure Code (X), Verification Status Data (S), Verification Status Data (V), Future Closure Code (IMP), and Verification Baseline ID (BL). Supplemental information concerning these variables was requested and the information returned allowed a complete DR legend to be compiled. The DR legend appears in Appendix J.

The initial documentation for the tape containing the CR data base was a variable list. A legend for this tape was requested, but none was found
in existence. A list of the CR variables and database entries was then compiled, and information concerning these was requested. When this information was returned a CR legend was written. This CR legend appears in Appendix L.

2.4.2 Methodology of Analysis of Change Data

The first goal was to transfer the change data from the tapes supplied by NASA to the Amdahl located at TAMU. The data were eventually placed in a Statistical Analysis System (SAS) database.

Analyses were done in two phases. A descriptive analysis approach was first taken to examine what data were present and their usefulness. Examination of selected single variables was done to determine which values were predominant. This was followed by an indepth analysis examining the frequency of several variables concurrently.

All analyses were done using SAS. Plots and histograms were commonly used to display the results.

Due to the lack of a legend for the CR data, during most of the project, attention was focused primarily on the DR data.

2.4.3 Results of Analysis of Change Data

The change data base consisted of 29,219 entries, for 14,156 DR's, and 6,282 entries, for 5331 CR's. DR data began June, 1975 and extended through December, 1981, Appendix N, Figure 7 (all figures, unless otherwise noted, are in Appendix N).

1. The frequency of dates DR's were received was examined. Figure 7 shows the data are multimodal, with two prominent trends: October, 1978 through October, 1979, and January, 1981 through December, 1981. Data were further scrutinized to explain these trends, and will be discussed later.

2. Frequency for mission identifier (MISSN ID) is shown in Figure 8. By far, most DR's, 7040, pertained to STS-1 (L). The next most common mission identifiers, STS-2 R18V21 flight system (R) and S-2 R17V5 (W), each had almost 2000 DR's logged.

3. The most common reporting facility (FAC) was the IBM verification personnel (VER), Figure 9. This facility logged over 8,000 DR's. The orbital flight test (OFT) facility entered the next highest number, just under 3200.
4. The dominant area responsible for a fix (AD) was user interface (UI), Figure 10. Other important areas include FLT computer operating system (FCOS), requirements analysis (RA), and vehicle utility (VU).

5. Priority of the DR was examined, Figure 11. Of the six possible values, priority 2 and 5 were most common. Priority 2, desirable, was specified for almost 15,000 DR's. Priority 5, dispositioned for no mod or no DR closure, was found for about 7,100 DR's. Only 435 DR's were given critical priority (1).

6. Examination of DR status (ST) was done, Figure 12. A status of closed was found for over 26,000 DR entries (Status = C, CC, and VX). The remaining entries were either awaiting verification (V), or NASA/SSD (N) approval, or in system test (T).

After examining the frequencies of certain single variables, more specific information was extracted. This involved analyzing the frequencies of two variables concurrently. Priority was scrutinized first.

1. Priority (P) was examined in relation to date the DR was received (ODYRMO), mission identifier (MISSN ID), and reporting facility (FAC). Figure 13 shows that most of the priority 1 (critical), occurred before 1980. Priorities 2 and 5 showed a shift, over time, in the number reported each month. Priority 2 was dominant before November, 1979. Beginning January, 1981, priority 5 was the mode. 1980 appeared to be a period with equal numbers of levels 2 and 5 priority DR's. Greater resolution of the frequency of DR's logged in per month, by priority, is given in Figures 14-19.

Results of examination of priority for a mission identifier are shown in Figure 20. The dominance of priorities 2 and 5 is clearly evident. Closer examination, by mission identifier, shows that priorities 2 and 5 did not occur together in great numbers. Only for MISSN ID L and W did the two occur in abundance together. This would indicate that a particular mission was either relatively absent of real errors, or had many.

The priority of DR's originating from a reporting facility was analyzed. Figure 21 reveals which facilities generate the most DR's of a given priority and the relative abundance of priorities generated by that facility. Most priority 2 DR's originated from guidance, navigation, and control (GNC), orbital flight test (OFT), software development laboratory (SDL), and IBM verification personnel (VER). Most priority 5 DR's originated from requirements analysis (RA) and IBM verification personnel. Only for the IBM verification personnel facility did the number of priority 5 DR's approximate the number of priority 1 and 2 DR's. A closer view of the number of DR's from a facility, per priority, is given in Figures 22-27.
2. Results of examining the number of DR's generated per mission identifier, are given in Figures 28-57. These figures reflect two items, the lack of complete documentation and the length of time that mission was developed. Figure 28 displays the number of DR's with missing mission identifiers, 4408 in all.

Several patterns in the frequency per mission, over time, are evident. Most missions have DR's extending over a period of one year or less, for example C (Figure 31), G (Figure 35), and H (Figure 36). However, some missions had entries extending over several years; missions L, M, and W are examples. Each one of the latter displayed a different frequency pattern. Mission L, STS-1 FUP5 (Figure 38), shows a multimodal distribution, skewed towards the earlier dates. This is reasonable because the DR's should decline to acceptable levels before the shuttle flight. Mission M, STS-1 FUP4 (Figure 39), has a more unimodal trend. In contrast, mission W, STS-2 (Figure 54), has a distinct multimodal distribution over its 35 month span. This multimodality is probably due to multiple releases pertaining to it.

3. Four groups of similar releases were examined to determine if the number of DR's generated per release declined as the release order increased, Figures 58-61. Three of the groups displayed this trend. However, mission_id S7, SDL release 37, showed an increase of 13 percent over mission_id S6, SDL release 36, Figure 60.

Examination of CR variables was minimal due to the lack of information available about the variables.

1. Data pertaining to manpower impact were plotted: manpower impact by department and year (D1IMPYR1-D7IMPYR4), Figures 62-88 and total manpower impact by department (D1TOTIMP-D7TOTIMP), Figures 89-95. Manpower impacts by year and department all showed a similar pattern with modes of 15 units or less. Exceptions are department 6, year 3 (Figure 84) and department 7, year 3 (Figure 87); both had impacts which did not exceed one. Department 7, year 2 had no observations.

Maximum values for total manpower impact ranged from 18 for department 6 (Figure 94) to 42000 for department 5 (Figure 93). Midpoints of the modes for each department was zero, indicating that most CR's had small impact values.

The significance of these data is not understood because of the lack of information supplied by NASA and IBM.

2. The amount of time a DR or CR took to get to a particular stage in the change process was studied. The number of months needed for a DR's development close date (BD) and verification close date (VC) was determined. Figure 96 shows that DR development
close date was essentially the month it was entered. The verification close date, on the other hand, did take up to four years, with a majority of DR's closed in 18 months, Figure 97.

The amount of time a CR took to get dispositioned by the RR and OASC boards was examined. CR's were dispositioned by the RR board within 24 months, and most within 2 months after being received, Figure 98. CR's which required an OASC board disposition were processed within 20 months, with a majority within two months, Figure 99. A similar plot resulted when examining the amount of time a CR took to get from a RR board to a OASC board disposition, Figure 100.

2.5 SUMMARY OF DATA AVAILABILITY

Table 3 is a summary of the availability of data found by the research team in examining the shuttle software development. Data is coded as having been found in machine readable form or in hard copy form. The data found to be available is also coded as to whether the research team found the data beneficial in extracting useful information.
TABLE 3

Summary of Data Availability

<table>
<thead>
<tr>
<th>DATA</th>
<th>Hard Copy</th>
<th>Machine Readable</th>
<th>Available not useful</th>
<th>Available useful</th>
<th>Not Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>COST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Man-hours</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>by date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>by dept</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>by shuttle funct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOURCE CODE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source listings</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source code</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load Modules</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAL/S Compiler</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HALSTAT</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDF library</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inventory file</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Build JCL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CR'S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR file</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR legend</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR'S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR file</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR legend</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VERIFICATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Type of test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Cut come of test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
FUTURE WORK

The data which has been collected to date in the shuttle software development provides a wealth of information about the life cycle of large, real-time programs. This type of data is often not available to computer researchers, particularly data for the development of real-time software. Several studies have begun at Texas A&M using the available shuttle data and can be beneficially continued. These projects are outlined in section 3.1. As a result of our study of the available data we have identified certain analysis and data collection monitoring functions (presented in section 3.2) which could be performed at Texas A&M concurrent with on-going software development at JSC. Section 3.3 highlights additional projects which we have identified as appropriate for future work. Some of these future projects will necessitate the collection of additional data during future shuttle software development.

3.1 CONTINUED ANALYSIS

3.1.1 Continued Development of Cost Data

All the cost data from the monthly 533 reports which are prepared by IBM have been encoded and analyzed as described. The research team has been informed that more detailed documents below the 533 level exist and can be made available. These documents could provide some very interesting results once coded and analyzed.

3.1.2 Continued Work with Language Scanner

The continuation of work involving the HAL/S source analyzer will be comprised of three areas. First, the coding and initial testing of the source analyzer will be completed. Next, the SAS procedures to analyze the source scanner output will be developed. Finally, statistics will be grouped concerning subsystem and system levels of the Flight Software specifically regarding elements of the language used, programming style, and complexity ranking.

In the initial testing phase of the scanner project, each test run will contain the output for one source member. Since the scanner is designed to analyze the uncompiled source, several runs may have to be made for
the external members INCLUDED in the source member being processed. The raw scanner output data will be checked for correctness and frequency count statistics will be tabulated from it. It may be possible for some source members to be compiled and used as input to HALSTAT for a listing that can be used for verifying the results from the raw scanner output data.

After the scanner has been debugged and its results verified, the scanner will be run against each FSW HAL/S source member. Those source members that are composed of AP-101 Assembler code, will have HAL/S Compiler templates written to be analyzed. These source members are mainly located in the System Source Library. Instruction mix and variable reference data from the AP-101 modules will not be available from the compiler templates, but connectivity information will be preserved. Later work will be done to design a similar type scanner to analyze the AP-101 Assembler modules to provide the instruction mix and variable reference data temporarily unobtainable. All output from each source member will be stored on tape with the FILE MEMBER NAME field of the output scanner record identifying the particular source member.

When the scanner has been run against all the FSW source members, some simple SAS routines will be run against the scanner output for one source member. These initial SAS routines will report on the number of instructions occurring by type, variables occurring by common attributes, and other statistics that can be drawn from frequency count methods. Once again, HALSTAT may be used as a tool for verifying the SAS results. More complex SAS routines will be written later to output variable scope, IF and DO nesting level, and subprogram argument nesting level information at the source member level.

After all complexity statistics are generated from each source member, the SAS output datasets can be sorted and merged to provide complexity statistics at the subsystem/system level. For example, statistics can be produced for the set of modules comprising the Process Control section of the Process Management subsystem of the Flight Computer Operating System. It will be possible to generate complexity statistics at the programmer level by merging the previously mentioned INVENTORY file with the SAS output datasets. If it is known what source members were written by a particular programmer (information which the INVENTORY file provides), then these statistics are possible. If each software production group personnel roster was made available from IBM, then complexity statistics could be obtained at the software production group level.

Using the complexity results from SAS, it will be possible to determine which of the HAL/S complexity factors listed in Appendix C should be used as guides in ranking the FSW source modules in regard to complexity. The complexity factors that will be chosen as ranking guides will be the ones that show a variance within the source modules. Once the ranking factors are established, FSW source members, software subsystems/systems, as well as programmer software collections can be ranked with one another.
3.1.3 Continued Analysis of CR and DR Data

The analyses of CR and DR data described earlier in this report give some indication that a measure of the stage of development (either as percent code completed or as number of future changes to be required) may be related to characteristics of previous CRs and DRs (e.g., the number, mission identifier, reporting facility, priority mix, etc.). It is possible that these results may be used to model software quality in a manner similar to that proposed by Mendis (1982).14

To this stage, the analysis of CR and DR data has examined two-way relationships between date and a characteristic of the CRs and DRs or between two characteristics. Future analyses of CR and DR data should include further investigation of the relationship between the historical CR and DR data for software development and measures of the reliability, or level of completion, for the software. In particular, multivariate relationships for three or more characteristics should be examined. In addition to using CR and DR data, information gathered by the HAL/S source analyzer and other characteristics such as language used, programming style, etc. may improve the modeling of the stage of development for software.

3.2 CONCURRENT ANALYSIS AND MONITORING

In order to maintain a repository of information about the development of the space shuttle software system, TAMU suggests the following data be collected for each release of the space shuttle software.

1. A copy of all distribution material made to NASA test facilities.
2. A copy of all source code libraries.
 a) Application source
 b) System source
 c) Include source
3. A copy of the current version of the HAL/S compiler, HALSTAT, the linkage editor, and associated documentation.
4. A copy of the build information necessary to construct a build from the above libraries and execute all options on HALSTAT.
5. A copy of all cost information.
6. A copy of the cumulative DR and CR files.

All of these items should be in machine readable form whenever possible.
TAMU would like to serve as a repository of this information.

3.3 FUTURE DEVELOPMENT

Although many possibilities for future projects and analyses in the shuttle software development effort exist, the TAMU research team has identified four related areas for which future work seems particularly beneficial. These efforts in general involve the development and/or implementation of models which can provide input to decision-makers at NASA as well as in the computer research community at large. If these models are developed in conjunction with the continued and expanded collection of the shuttle software data as described in the previous sections, the model will also provide tools useful in tracking the evolution of the development effort.

3.3.1 Comparison with other Projects

Future research on the statistical and historical information gathered during the development of the shuttle orbiter primary flight software can be conducted in several directions. The available data from the flight software is from a unique environment, a substantial ongoing real-time software project, and thus provides an excellent groundwork for revalidation, comparison, modeling, and subsequent verification of metrics. Comparisons formed on a single large real-time software system will be more significant to the computer science community than comparisons formed on small samples of experimental software. For instance, most studies that have been made are performed on small data samples that are potentially biased, while the few studies performed on larger sample sizes differ greatly in the type of errors considered and in the data collection techniques utilized. In addition, although several complexity models have been proposed in the literature, they have not all been verified, and studies attempting to verify proposed mathematical models for software reliability models are scarce.

Several objectives will be obtained by researching the verification and revalidation of complexity measure and reliability predictor models on the space shuttle software. Since they will have a standard software basis for comparison, the various metrics can be ranked in regards to their effectiveness. After the models are "tuned" statements can be made concerning the various types of error predictors/analyzers, such as stating that models which measure control structure complexities are more effective than models which rely on length of code. A more effective complexity metric will be developed to pinpoint the areas of greatest complexity within a software system, thus providing management with a tool to use in allocating various resources such as personnel and time when evaluating and making changes to a software area of greater error potential.
3.3.2 Complexity Analysis

Complexity is the term generally used to describe the difficulty in developing software or in the software's resistance to modifications. Complexity metrics are designed to measure complexity related to a human process -- namely, programming -- as contrasted with computational complexity where the area of concern is a machine procedure or machine resource allocation. A number of metrics have already been discussed in the survey of literature section of this report (see section 2.1).

Complexity analysis of the HAL/S software could be expected to provide insight into the relative quality of the program as a whole and its individual components. Such measurements would be useful in estimating costs of maintenance and enhancements of existing components. Furthermore, the metrics could be used in decisions to replace or modify sections of code. Models based on the complexity metrics could be used in estimating the likelihood of errors within each program module. Since the space shuttle project is ongoing, the proposed research on complexity measures will provide continuous future error prediction to help in identifying the locations of potential errors within the project software and some indication of how soon a particular software build (or system) will be ready to be utilized. Accordingly, the results obtained can also be used for future projects and may help reduce costs by enabling management to allocate resources more optimally.

Although a number of models utilizing complexity metrics have been suggested in the literature, only limited validation of these models has been accomplished, often with data from small software projects. Appropriate models could be established and validated using the HAL/S developmental data. These models would then be available for use in decision-making in future HAL/S implementation efforts.

3.3.3 Cost Analysis

For future projects, all cost and hours information should be kept in machine readable form. Standard reporting categories should be established and adhered to throughout the project. Further subdivisions of categories could provide some flexibility and provide usable detailed information. While this data could be consolidated for managerial reporting purposes its detail could provide valuable information for future analysis. If new categories become needed they could be added to satisfy the current requirements.

The cost impact of DRs and CRs on the software is another area in which more information would be useful. The cost or time actually taken to dispose of each DR or CR should be kept in machine readable form.

Some valuable analysis could be done in this area. Statistics could be gathered in the total costs of DRs and CRs, the total cost of DRs and
CRs versus the total cost of development, the total cost of DRs and CRs in one subsystem or function of the shuttle versus another function, and perhaps the average time it takes to correct a DR.

3.3.4 Language Analysis

Software development at the present state-of-the-art cannot be evaluated independently of the programming language employed in its implementation. Although researchers note the need for the development of precisely defined universally accepted software evaluation parameters, a suitable number of metrics of this type simply do not exist at this time. Therefore an important area of concern in software evaluation is programming languages.

To facilitate this type of analysis certain language metrics are needed. These metrics tend to be more subjective and harder to define than program metrics which are used in evaluating the programs written in a language. The primary traditional uses for language metrics are in language selection and/or comparison and for language design.

The existing language metrics could beneficially be applied to HAL/S with several useful results. First, since HAL/S was specifically designed for spacecraft software development, some measure of its effectiveness could be obtained using language metrics. Since most of the existing metrics produce relative measures, the same measurements could be computed for other high level languages for the purpose of comparison with HAL/S. Of particular interest would be metrics which measure the applicability of a language to a specific application. Other metrics of interest might include comparison of the desirability of various language features, comparisons of the level of non-procedurality of languages (since non-procedural implies a lesser need for the programmer to specify implementation details), and comparisons of potential programmer productivity in each language.

The new Department of Defense language Ada is the most natural choice for a language with which to compare HAL/S. The results of such a comparison would be useful to NASA in making future language selections. In addition, since HAL/S has already been successfully used in large real-time software projects while Ada has not, HAL/S could be considered a standard against which Ada could be evaluated.

The language analysis of HAL/S would utilize existing program metrics as well as some designed specifically for this task. If a comparison with Ada is desired, a preliminary Ada compiler developed by New York University under contract with the U.S. Army is available and operational at Texas A&M University.
Appendix A

DOCUMENTATION

This Appendix consists of four lists of documents. These lists are as follows:

List 1 - Specifications prepared by NASA
List 2 - NASA documents received by the research team
List 3 - Programs specifications prepared by IBM
List 4 - IBM documents received by the research team

NASA Documents

The Computer Program Development Specification (CPDS) is composed of 4 volumes which consist of 18 books. The following is a breakdown of the volumes:

Vol 1 - Level A, Requirements not oriented to any particular end item, 7 books
Vol 2 - Shuttle Orbiter Software Requirements, Program Notes and Waivers
Vol 4&5 - Computer end item-oriented functional and detail requirements

The following lists the identifying numbers, volumes, and books that constitute the CPDS structure:

<table>
<thead>
<tr>
<th>DOCUMENT NO.</th>
<th>VOLUME/BOOK</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS-P-0002-120</td>
<td>1 2</td>
<td>System Level Requirements, Software</td>
</tr>
<tr>
<td>SS-P-0002-130</td>
<td>3</td>
<td>ALT Launch Data Bus Software Interface Requirements</td>
</tr>
<tr>
<td>SS-P-0002-140</td>
<td>4</td>
<td>Downlist/Uplink Software Requirements</td>
</tr>
<tr>
<td>* SS-P-0002-150F</td>
<td>5</td>
<td>OFT Launch Data Bus Software Interface Requirements</td>
</tr>
<tr>
<td>Document No.</td>
<td>Level</td>
<td>Number</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>SS-P-0002-170G</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>SS-P-0002-190</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>SS-P-0002-195</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>SS-P-0002-210</td>
<td>II</td>
<td>1</td>
</tr>
<tr>
<td>SS-P-0002-220</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>SS-P-0002-410</td>
<td>IV</td>
<td>1</td>
</tr>
<tr>
<td>SS-P-0002-420</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>SS-P-0002-430</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>SS-P-0002-440</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>SS-P-0002-450</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>* SS-P-0002-510N</td>
<td>V</td>
<td>1</td>
</tr>
<tr>
<td>SS-P-0002-515</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* SS-P-0002-530J</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>* SS-P-0002-550J</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>SS-P-0002-580</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>SS-P-0002-590</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

The Level C or Detailed requirements are contained in documents labelled Functional Sub-System Software Requirements (FSSR).

These documents are listed below:
<table>
<thead>
<tr>
<th>TITLE</th>
<th>NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>GN&C</td>
<td></td>
</tr>
<tr>
<td>Guidance FSSR</td>
<td>SD-74-SH-0273</td>
</tr>
<tr>
<td></td>
<td>SD-74-SH-0273A</td>
</tr>
<tr>
<td></td>
<td>SD-74-SH-0273B</td>
</tr>
<tr>
<td></td>
<td>PCN-1</td>
</tr>
<tr>
<td></td>
<td>SD-74-SH-0273C</td>
</tr>
<tr>
<td>Navigation FSSR</td>
<td>SD-74-SH-0272</td>
</tr>
<tr>
<td></td>
<td>SD-74-SH-0272A</td>
</tr>
<tr>
<td></td>
<td>SD-74-SH-0272B</td>
</tr>
<tr>
<td></td>
<td>PCN-1</td>
</tr>
<tr>
<td>SD-74-SH-0272C</td>
<td></td>
</tr>
<tr>
<td>Flight Control FSSR</td>
<td>SD-74-SH-0271</td>
</tr>
<tr>
<td></td>
<td>SD-74-SH-0271A</td>
</tr>
<tr>
<td></td>
<td>PCN-1</td>
</tr>
<tr>
<td></td>
<td>PCN-2</td>
</tr>
<tr>
<td>SD-74-SH-0271B</td>
<td></td>
</tr>
<tr>
<td>RM/MSC FSSR</td>
<td>SD-74-SH-0270</td>
</tr>
<tr>
<td></td>
<td>SD-74-SH-0270A</td>
</tr>
<tr>
<td></td>
<td>SD-74-SH-0270B</td>
</tr>
<tr>
<td></td>
<td>PCN-1</td>
</tr>
<tr>
<td></td>
<td>SD-74-0207C</td>
</tr>
<tr>
<td>SOP FSSR</td>
<td>SD-74-SH-0269</td>
</tr>
<tr>
<td>Preliminary</td>
<td>PCN-1</td>
</tr>
<tr>
<td>Air Data</td>
<td>PCN-2</td>
</tr>
<tr>
<td></td>
<td>PCN-3</td>
</tr>
<tr>
<td></td>
<td>PCN-4</td>
</tr>
<tr>
<td></td>
<td>PCN-5</td>
</tr>
<tr>
<td></td>
<td>PCN-6</td>
</tr>
<tr>
<td></td>
<td>SD-74-SH-0269A</td>
</tr>
<tr>
<td></td>
<td>SD-74-SH-0269B</td>
</tr>
<tr>
<td>Displays and Control FSSk</td>
<td>SD-74-SH-296</td>
</tr>
<tr>
<td></td>
<td>SD-74-SH-296A</td>
</tr>
<tr>
<td></td>
<td>SD-74-SH-296B</td>
</tr>
<tr>
<td></td>
<td>SD-74-SH-296C</td>
</tr>
<tr>
<td>SM CPDS</td>
<td>SS-P-0002-440</td>
</tr>
<tr>
<td></td>
<td>SS-P-0002-440A</td>
</tr>
<tr>
<td></td>
<td>SS-P-0002-440B</td>
</tr>
<tr>
<td></td>
<td>SS-P-0002-440C</td>
</tr>
<tr>
<td></td>
<td>SS-P-0002-440D</td>
</tr>
<tr>
<td></td>
<td>SS-P-0002-440E</td>
</tr>
<tr>
<td></td>
<td>SS-P-0002-440F</td>
</tr>
</tbody>
</table>
SM FSSR
SD-74-SH-0295
SD-74-SH-0295B
SD-74-SH-0295C
SD-74-SH-0295D
PCN-1

Vehicle Utility-01
CPDS
SS-P-0002-460

VU-01 FSSR
SD-75-SH-0077
SD-75-SH-0077A

GN&C, Part A Vol. 2
Guidance
SD76-SH-0001C
PCN-1
PCN-2
PCN-3
PCN-4

GN&C, Part A Vol. 2
Guidance-Ascent
SD76-SH-0002E
PCN-1
PCN-2
PCN-3
PCN-4

GN&C, Part A, Vol. 1
Guidance-On Orbit
SD76-SH-0003B
PCN-1
PCN-2

GN&C Part B, Nav-
Entry + APP A-H
SD76-SH-0004D
PCN-1
PCN-2
PCN-3
PCN-4

GN&C, Part B,
Nav-Ascent/RTLS
+ APP A-N
SD-76-SH-0005C
PCN-1
PCN-2
PCN-3
PCN-4

GN&C, Part C
Nav-on Orbit
SD76-SH-0006C
PCN-1

GN&C, Part C
FC-Entry
SD78-SH-0007B
PCN-1
PCN-2

- 34 -
GN&C, Part C
FC-Ascent
SD76-SH-0008
Vol 1C
PCN-1
PCN-2
Vol 2D
PCN-1
PCN-2
PCN-3

STS Baseline is in CR 19361A
Vol 3C
PCN-1
PCN-2

GN&C, Part C, Vol. 3
FC
On Orbit (1) SD-76-SH-009
REV A
PCN-1
PCN-2
On Orbit (2)

GN&C, Part C, Vol. 3
RM-Entry SD-76-SH-0010E
PCN-1
PCN-2

GN&C, Part D, Vol. 1
SOP-IMU SD76-SH-0013A
PCN-1
PCN-2
PCN-3
PCN-4

GN&C, Part E
SOP NAVAID SD76-SH70014
Vol 1A
PCN-1
PCN-2
PCN-3
Vol 2A
PCN-1
PCN-2
PCN-3

GN&C, Part E
SOP-Controller SD76-SH-0015B
PCN-1
PCN-2
PCN-3

- 35 -
<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Code</th>
<th>PCN</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOP-FC Effectors</td>
<td></td>
<td>SD76-SH-0016B</td>
<td>PCN-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PCN-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PCN-3</td>
</tr>
<tr>
<td>VU-02</td>
<td></td>
<td>SD76-SH-0019A</td>
<td></td>
</tr>
<tr>
<td>GN&C, Vol. 1</td>
<td>D&C-Display Formats</td>
<td>SD76-SH-0020C</td>
<td>PCN-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PCN-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PCN-3</td>
</tr>
<tr>
<td>GN&C Sequence Rgmts</td>
<td></td>
<td>SD76-SH-0026B</td>
<td>PCN-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PCN-2</td>
</tr>
<tr>
<td>SH</td>
<td></td>
<td>SD76-SH-0027E</td>
<td></td>
</tr>
<tr>
<td>RMS</td>
<td></td>
<td>SD77SH-0002B</td>
<td></td>
</tr>
<tr>
<td>PAYLOAD MANAGEMENT</td>
<td></td>
<td>SD78-SH-0044</td>
<td></td>
</tr>
<tr>
<td>GPC INTERFACES</td>
<td></td>
<td>SOD76-0002 BK 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOD79-0002 BK 2</td>
<td></td>
</tr>
</tbody>
</table>
NASA DOCUMENTS RECEIVED

FUNCTIONAL DESIGN REQUIREMENTS

OFT Launch Data Bus Software Interface Requirements -
(SS-0P-0002-170G)
OFT System Level Requirements, Software - (SS-P-0002-150F)
STS Functional Level Requirements, GN&C - (SS-P-0002-510N)
STS Functional Level Requirements, System Management -
(SS-P-0002-530J)
STS Functional Level Requirements, Vehicle Utility-02 -
(SS-P-0002-550J)

MANAGEMENT

Mass Memory Unit Software Integration Document and Revisions -
JSC 1674
Statement of Work Space Shuttle Avionics Orbiter Software -
Schedule II

JSC - 08338 - Mass Memory Unit Computer Program
Integration Plan
Vol. I Release Control
Vol. I, Book 1 SPF Level 1 Generic Requirements
Vol. II Release Authority and Schedule

- 37 -
Vol. III Deliverable Requirements and Tape Formats
Vol. IV, Book 2 Secure Operations Plan
 ADP Security Plan
Vol. IV, Book 4 Configuration Plan
Vol. IV, Book 5 Facility Management
Appendix C Test and Operations Plans

JSC 1673 - Software Production Facility Operations Document
Vol. I, Book 1 SPF Level Generic Requirements
Vol. IV, Book 4 Configuration Management Plan
Vol. V, Book 2 Hardware Configuration Plan and Equipment List
Vol. VI, Book 3 Facility Management

MISCELLANEOUS

OFTIS - 16 Program Notes and Waivers
OFTIS - 18 Program Notes and Waivers
Orbiter Flight Software DR Closures
IBM, in response to the requirements defined by the NASA and documented in the Level A and B Computer Program Development Specifications, developed the System Design Specifications. The System Design Specifications is a series of documents consisting of Functional Design Specs (FDS) and Detail Design Specs (DDS).

The list which appears below was taken from a manual dated February 25, 1977. Therefore, this list might not be as accurate as it could be had more recent information been made available.

Vol. I - Software System Overview

Forward

Table of Contents
1. Introduction
2. Design Considerations
3. Functional Description
4. Flight Software Control Structure
5. Flight Software Dynamic Structure
Appendix A - Acronyms and Abbreviations
Appendix B - Common COMPOOL

Vol. II - System Services

Part 1 - FCOS

Forward

Table of Contents
1. Introduction

2. Functional Description

3. Software Design
 3.1 Subsystem Design Overview (Include Control Flow Trees)
 3.2 Major Element 1 Overview (Includes Control Flow Trees)
 3.2.1 Module A
 Function
 a) Control Interface
 b) Input Data
 c) Process Description
 d) Output Data
 e) Module References
 f) Module Type and Attributes
 g) Template References
 h) Error Handling
 i) Constraints and Assumptions
 Data tables (Module Data List, I/O)
 SVC Table
 Control Flow (Preliminary Design)
 Control Flow(s) (Detailed Design)

3.2.2 Module B
 ...
 ...
 ...
3.2. Module N

3.3 Major Element 2 Overview (Includes Flow Trees)

...

...

...

3.4 Major Element n Overview (Includes Flow Trees)

Part 2 - User Interface

(Same format as Part 1)

Part 3 - System Control

(Same format as Part 1)

Vol. III - Applications

Part 1 - GN&C

(Same format as Vol. II, Part 1)

Part 2 - SM

(Same format as Vol. II, Part 1)

Part 3 - VCO

(Same format as Vol. II, Part 1)

Part 4 - Payload

(Same format as Vol. II, Part 1)

Vol. IV - Summary Integration Specification

1. Introduction

2. Process Interaction

3. Control Block Allocation
4. Mappings

5. Critical Parameter Addresses

6. Downlist Loading
FUNCTIONAL DESIGN SPECS

OFT - Functional Design Specifications

DETAIL DESIGN SPECS

SDS - Volume III, Part 3, OFT DDS, Vehicle Utility and Data Flow 02
OFT - System Software Design Specifications - User Interface
FCOS-UI-SC - Design Specifications
SDS Volume III, Part 2 - System Management Design Specifications

USER'S GUIDES

Test and Operations User's Guide (18)
Shuttle Flight Operations User's Guide (18)
System Analysis User's Guide - User Interface
UI/SC User's Guide STS-1
FSW Utilities User's Guide

MANAGEMENT

Programming Standards Analysis Procedures
Programming Standards Document and Updates
Complete Software Awareness Memos Update
Shuttle Avionics Software Avionics STS-1 Operating Plan
Shuttle Avionics Software Management Plan
Reliability and Quality Assurance Plan
Flight Software Memory Sizing and CPU Loading Estimates

MANUALS

AP 101, C/M Principles of Operation
SDL - User's Guide for HALSTAT
Linkage Editor for Flight Computer (partial)

MISCELLANEOUS

Space Shuttle Orbiter Avionics Software - STS-3 Flight Software Memory Data Base
Onboard Shuttle Software Design/Code Checklist
Appendix B

HAL/S ANALYSIS SCANNER OUTPUT

Overall Record Description

<table>
<thead>
<tr>
<th>Field Description</th>
<th># of Chars</th>
<th>Values</th>
</tr>
</thead>
</table>
| RECORD TYPE | 2 | CM - COMMENT
 | | SY - STATEMENT
 | | OP - OPERATOR
 | | VR - VARIABLE
| LINE NUMBER | 6 | /* LINE # OF HAL/S INPUT | | | | | | |
| RECORD NUMBER | 8 | /* SCANNER OUTPUT RECD # |
| FILE MEMBER NAME | 8 | /* FILE CONTAINING SRC |
| BLOCK NAME | 32 | /* PROCEDURE, FUNCTION, PROGRAM, ETC.. \n| | | SURROUNDING TOKEN */ |
| BLOCK NEST LEVEL | 2 | /* IMBEDDEDNESS OF BLOCK |
| STATEMENT NEST LEVEL | 2 | /* IMBEDDEDNESS OF IF \n| | | OR DO CONSTRUCTION |
| SUBSCRIPT LEVEL | 2 | /* LEVEL OF SUBSCRIPT \n| | | EXPRESSION: \n| | | AS(BS(C))) |
| ARGUMENT LEVEL | 2 | /* LEVEL OF ARGUMENT \n| | | WITHIN SUBPROGRAM \n| | | INVOCATION NAME(NAME(A)) |
| EXPRESSION LEVEL | 2 | /* LEVEL OF PARENS \n| | | (A+(B C(E-2))) |
| STMT REFERENCE NUMBER | 8 | /* COL. 73-80 OF INPUT |
| STATEMENT | 20 | /* INSTR. KEYWORD \n| | | CONTAINING TOKEN */ |
| DESCRIPTION | 40 | /* SEE PARSE EXAMPLES |

- 45 -
ATTRIBUTES
LETTER CODES */

/* SEQUENCE OF STORAGE

AC - ACCESS
AL - ALLIGNED
AR - ARRAY
AS - ASSIGN USAGE
AU - AUTOMATIC
BI - BIT
BO - BOOLEAN
CH - CHARACTER
CO - CONSTANT
DN - DENSE
DP - DEPENDENT
DO - DOUBLE
EQ - EQUATE
EV - EVENT
EC - EXCLUSIVE
EX - EXTERNAL
FX - FIXED
IN - INITIAL
IP - INPUT USAGE
IT - INTEGER
LB - LABEL
LT - LATCHED
LH - LEFT HAND =
LO - LOCK
MA - MATRIX
MF - MATRIX FIXED
NA - NAME
RA - RANGE
RE - REMOTE
RI - REINTRANT
RH - RIGHT HAND =
RG - RIGID
SC - SCALAR
ST - STRUCTURE
SB - SUBSCRIPT USE
TE - TEMPLATE
TP - TEMPORARY
VC - VECTOR
VF - VECTOR FIXED

Total Record length = 138 characters
PARSE EXAMPLES

HAL/S Source:

C THIS IS A COMMENT LINE
 /* WITH A CR99999 DESCRIPTION AS AN
 IMBEDDED COMMENT */

Scanner Output Recd #1

RECD TYPE = CM
LINE # = 000001
RECD # = 00000001
BLKNAME =
BLK NEST LVL = 00
STMT NEST LVL = 00
SRN =
STMT = COMMENT
DESCR =
ATTRIB =

Scanner Output Recd #2

RECD TYPE = CM
LINE # = 000002
RECD # = 00000002
BLKNAME =
BLK NEST LVL = 00
STMT NEST LVL = 00
SRN =
STMT = COMMENT
DESCR = CR99999
ATTRIB =

HAL/S Source:

D INCLUDE TEMPLATE APPLTEMP
D INCLUDE INCLTXT

Scanner Output Recd #3

RECD TYPE = ST
LINE # = 000003
RECD # = 00000003
BLKNAME =
BLK NEST LVL = 00
STMT NEST LVL = 00
SRN =
STMT = INCLUDE
DESCR = APPLTEMP
ATTRIB = TE

Scanner Output Recd #4

RECD TYPE = ST
LINE # = 000004
RECD # = 00000004
BLKNAME =
BLK NEST LVL = 00
STMT NEST LVL = 00
SRN =
STMT = INCLUDE
DESCR = INCLTXT
ATTRIB =
HAL/S Source:

HALSPGM: PROGRAM;

Scanner Output Recd #5

RECD TYPE = ST
LINE # = 000005
RECD # = 00000005
BLKNAME = HALSPGM
BLKNEST LVL = 01
STMT NEST LVL = 00
SRN =
STMT = PROGRAM
DESCR = HALSPGM
ATTRIB =
HAL/S Source:

DECLARE INTEGER, SENSOR1, SENSOR2 DOUBLE;

Scanner Output Recd #6

RECD TYPE = ST
LINE # = 000006
RECD # = 00000006
BLKNAME = HALSPGM
BLK NEST LVL = 01
STMT NEST LVL = 00
SRN =
STMT = DECLARE
DESCR =
ATTRIB =

Scanner Output Recd #7

RECD TYPE = VR
LINE # = 000006
RECD # = 00000007
BLKNAME = HALSPGM
BLK NEST LVL = 01
STMT NEST LVL = 00
SRN =
STMT = DECLARE
DESCR = SENSOR1
ATTRIB = IT

Scanner Output Recd #8

RECD TYPE = VR
LINE # = 000006
RECD # = 00000008
BLKNAME = HALSPGM
BLK NEST LVL = 01
STMT LVL = 00
SRN =
STMT = DECLARE
DESCR = SENSOR2
ATTRIB = ITDO
HAL/S Source:

CALL ADDSENSOR(SENSOR1) ASSIGN(SENSOR2);

Scanner Output Recd #9
RECD TYPE = ST
LINE # = 000007
RECD # = 00000009
BLKNAME = HALSPGM
BLK LVL = 01
STMT LVL = 00
SRN =
STMT = CALL
DESCR = ADDSENSOR
ATTRIB =

Scanner Output Recd #10
RECD TYPE = VR
LINE # = 000007
RECD # = 00000010
BLKNAME = HALSPGM
BLK LVL = 01
STMT LVL = 00
SRN =
STMT = CALL
DESCR = SENSOR1
ATTRIB = IP

Scanner Output Recd #11
RECD TYPE = VR
LINE # = 000007
RECD # = 00000011
BLKNAME = HALSPGM
BLK LVL = 01
STMT LVL = 00
SRN =
STMT = CALL
DESCR = SENSOR2
ATTRIB = AS
HAL/S Source:

ADDSensor: PROCEDURE(SENs1) ASSIGN(SENs2) EXCLUSIVE;

Scanner Output Recd #12
REC DTYPE = ST
LINE # = 000008
RECD # = 00000012
BLKNAME = HALSPGM
BLK LVL = 02
STMT LVL = 00
SRN =
STMT = PROCEDURE
DESCR = ADDSENSOR
ATTRIB = EC

Scanner Output Recd #13
REC DTYPE = VR
LINE # = 000008
RECD # = 00000013
BLKNAME = ADDSENSOR
BLK LVL = 02
STMT LVL = 00
SRN =
STMT = PROCEDURE
DESCR = SENs1
ATTRIB = IP

Scanner Output Recd #14
REC DTYPE = VR
LINE # = 000008
RECD # = 00000014
BLKNAME = ADDSENSOR
BLK LVL = 02
STMT LVL = 00
SRN =
STMT = PROCEDURE
DESCR = SENs2
ATTRIB = AS
HAL/S Source:

DECLARE INTEGER, SENS1, SENS2 DOUBLE;

SENS2 = SENS2 + SENS1;

CLOSE ADDSENSOR;

Scanner Output Recd #18
RECD TYPE = ST
LINE # = 000010
RECD # = 00000018
BLK NAME = ADDSENSOR
BLK LVL = 02
STMT LVL = 00
SRN = COL 73-80
STMT = ASSIGN
DESCR =
ATTRIB =

Scanner Output Recd #19
RECD TYPE = VR
LINE # = 000010
RECD # = 00000019
BLKNAME = ADDSENSOR
BLK LVL = 02
STMT LVL = 00
SRN = COL 73-80
STMT = ASSIGN
DESCR = SENS2
ATTRIB = LH

Scanner Output Recd #21
RECD TYPE = VR
LINE # = 000010
RECD # = 00000021
BLK NAME = ADDSENSOR
BLK LVL = 02
STMT LVL = 00
SRN = COL 73-80
STMT = ASSIGN
DESCR = SENS2

Scanner Output Recd #22
RECD TYPE = OP
LINE # = 000010
RECD # = 00000022
BLK NAME = ADDSENSOR
BLK LVL = 02
STMT LVL = 00
SRN = COL 73-80
STMT = ASSIGN
DESCR = ATTRIB = RH
ATTRIB =
HAL/S Source:

IF SENSOR2 = 0 THEN

IF SENSOR1 = 0 THEN DO;

DO FOR I = 1 TO 10;

SENSOR3.SHUTOFF = SENSOR4$(I) . SENSOR5$(I);

END;

END;

Scanner Output Recd For 1st IF

RECD TYPE = ST
LINE # = 000011
RECD # = 00000032
BLKNAME = HALSPGM
BLK LVL = 01
STMT LVL = 01
SRN =
STMT = IF
DESCR =
ATTRIB =

Scanner Recd For 2nd IF

RECD TYPE = ST
LINE # = 000012
RECD # = 00000042
BLKNAME = HALSPGM
BLK LVL = 01
STMT LVL = 02
SRN =
STMT = IF
DESCR =
ATTRIB =

Scanner Recd For 1st DO

RECD TYPE = ST
LINE # = 000012
RECD # = 00000044
BLKNAME = HALSPGM
BLK LVL = 01
STMT LVL = 02
SRN =
STMT = DO
DESCR = DISCRETE
ATTRIB =

- 53 -
Scanner Recd For 2nd DO

RECD TYPE = ST
LINE # = 000013
RECD # = 00000048
BLKNAME = HALSPGM
BLK LVL = 01
STMT LVL = 03
SRN =
STMT = DO
DESCR = FOR RANGE
ATTRIB =

Scanner Recd For STRUCTURED Variable

RECD TYPE = VR
LINE # = 000014
RECD # = 00000062
BLKNAME = HALSPGM
BLK LVL = 01
STMT LVL = 03
SRN =
STMT = ASSIGN
DESCR = SENSOR.SHUTOFF
ATTRIB = LH

Scanner Recd For Vector Dot Product

RECD TYPE = OP
LINE # = 000014
RECD # = 00000063
BLKNAME = HALSPGM
BLK LVL = 01
STMT LVL = 03
SRN =
STMT = ASSIGN
DESCR = .
ATTRIB =
Appendix C

COMPLEXITY MEASURES

"Software Structure Metrics Based on Information Flow"
-Sallie Henry and Dennis Kafura

1. Introduction.

a) Objectives.

i) To provide a practical technique for measuring large-scale systems that can serve as a design aid.

b) Characteristics.

i) The major elements in the information flow analysis can be directly determined at design time.

ii) The analysis reveals more of the system connections than are revealed by other ordering relations such as "calls".

iii) The analysis defines measurements for complexity, module coupling, level interactions, and stress points from the patterns of communications.

a) Types of Information Flows.

i) Global Flows - There is a global flow of information from module A to module B through a global data structure D if A deposits information into D and B retrieves information from D.

ii) Direct Local Flows - There is a local flow of information from module A to module B if A calls B.

iii) Indirect Local Flows - There is a local flow of information from module A to module B if:
• B calls A and A returns a value to B which B utilizes, or
• C calls both A and B passing an output value from A to B.

b) Representations of Information Flows (Destination <-- source1, source2, ..., sourceN).

i) \(X.n.I \) denotes the value of the \(n \)th parameter of proc \(X \) at invocation.

ii) \(X.n.0 \) denotes the value of the \(n \)th parameter of proc \(X \) at termination.

iii) If \(X \) is a function, \(X.0 \) denotes the value returned.

iv) \(X.D \) denotes an access by proc \(X \) to the global data object \(D \).

c) Advantages.

i) The syntax of a language would not affect the form of relations.

ii) No distinction is made between a flow of information established by a passed parameter and one established by a shared global data structure.

a) Procedures.

i) \(\text{Length} \times (\text{Fan-in} \times \text{Fan-out}) \times 2 \)

ii) Features identified by the measure.

• Lack of functionality.
• Stress points in the system.
• Inadequate refinement.

b) Module (All procedures that access a particular data structure).

i) Complete sum of the complexities of the procedures within the module.

ii) Features identified by the measure.
Poorly designed data structures.

Improper modularization.

Poor module design.

Poor functional decomposition.

c) Interfaces.

i) (The number of procedures exporting information from module A + THE number of procedures importing information into module B) * The number of information paths.

ii) Features identified by the measure.

- Strength of the coupling between modules.
- Measure of modifiability.

a) Considerations concerning the correlation results:

i) The Spearman's r test was used.

ii) Program changes were used as an estimate for errors.

iii) Eighty changes were considered.

TABLE 4

Complexity Measure Correlation to Changes

<table>
<thead>
<tr>
<th>Measure</th>
<th>Correlation to Changes</th>
<th>Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(fan-in*fan-out)**2</td>
<td>0.98</td>
<td>0.028</td>
</tr>
<tr>
<td>length*(fan-in*fan-out)**2</td>
<td>0.94</td>
<td>0.021</td>
</tr>
<tr>
<td>(fan-in*fan-out)</td>
<td>0.83</td>
<td>0.042</td>
</tr>
<tr>
<td>length**2</td>
<td>0.60</td>
<td>0.078</td>
</tr>
</tbody>
</table>
Appendix D

HAL/S COMPLEXITY FACTORS

Following is the preliminary list of factors to measure the complexity of Shuttle Orbiter Primary Flight Software. This list was derived from the dissertation by Jean C. Zolnowski: "A System For Measuring Program Complexity".

According to her work, there are four categories of measurements that can be made to programs written in FORTRAN or COBOL. We have tried to adapt the specific measurements in each of the categories to the constructs found in the HAL/S language. Most of the measurements are in terms of "counting the numbers of ..." within a given program complex.

1. PROGRAM INTERACTIONS

 a) Connection information

 i) the number of:

 • PROGRAM BLOCKS
 • PROCEDURE BLOCKS
 • FUNCTION BLOCKS
 • TASK BLOCKS
 • UPDATE BLOCKS
 • COMPOOL BLOCKS

 ii) the number of calls to each PROCEDURE and FUNCTION

 iii) the nesting level of subprograms

 b) Interface information

 i) the number of parameters for subprograms classified by:

 • data type (INTEGER, SCALAR ...)
 • call type (INPUT, ASSIGN)
ii) the nesting level of arguments and subprogram parameters

iii) the number of SCHEDULED real time processes

c) Macro usage

i) the number of \% macros

ii) the number of arguments for each \% macro

iii) the number of macro calls

iv) the number of REPLACE macros (text replacement)

2. INSTRUCTION MIX CHARACTERISTICS

a) the number of statements for each

i) PROGRAM

ii) PROCEDURE

iii) FUNCTION

iv) UPDATE

v) TASK

b) the number of statements by type:

i) Conditional

ii) Assignment/Computation

iii) I/O

iv) Comment

c) the number of FUNCTION references per statement

d) the number of real time process statements

e) the number of labels

3. DATA REFERENCE

a) the number of variables by type: SCALAR, INTEGER, BIT, BOOLEAN, CHARACTER, VECTOR, MATRIX, STRUCTURE, EVENT

b) for each variable
c) the number of references
d) the percent of program span (scope)
e) the average number of statements between each reference
f) the number of elements for STRUCTURED types
g) the number of CONSTANTS
h) the number of dimensioned variables (ARRAY)
i) the number of INITIALIZED variables by mode of initialization (STATIC or AUTOMATIC)
j) the number of variables with RANGE, scaling or precision conversion, NAME, RANGE, LOCK, ACCESS, EXCLUSIVE, FIXED, EXTERNAL, RIGID, DENSE, ALIGNED, attributes
k) the number of elements in each COMPOOL
l) the number of variables assigned through input
m) the number of times shaping is performed on variables

4. STRUCTURE AND FLOW CHARACTERISTICS

a) the number of conditionals by type (IF, DO)
b) the number of loops by type (DO ... END, DO WHILE/UNTIL, DO FOR)
c) the length of each DO loop
d) the nesting level of DO loops
e) the number of escapes from loops (REPEAT, EXIT, GO TO)
f) the number of conditions, computations, function references per IF statement
g) the nesting level of IF statements
h) the number of jumps up and down (sequential flow altered)
i) the number of unconditional branches
Appendix E

HAL/S SOURCE ANALYZER MODULE STRUCTURE

Figure 1: Structure of HAL/S Analyzer
Appendix F

MEMBER LIST OF FSW APPLICATION SOURCE

<table>
<thead>
<tr>
<th>Application Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDD032 CGE1H3 CGYMCG CNSSSTOR CSASMCM CS0760 CVAMMDIR</td>
<td></td>
</tr>
<tr>
<td>CDD092 CGE1H4 CGYMCG CPADGT CSBPBDCH CS0780 CVBBTU</td>
<td></td>
</tr>
<tr>
<td>CDD142 CGE1H1 CGYSTA CPADOW SCCCMS CS0790 CVCS9DL</td>
<td></td>
</tr>
<tr>
<td>CDD043 CGE1H2 CGZCOP CPAMSP CSCHMD CS0860 CS21X3</td>
<td></td>
</tr>
<tr>
<td>CDD053 CGE2H1 CGZFDL CPASCA CSPAPD CS0870 CS21X4</td>
<td></td>
</tr>
<tr>
<td>CDD063 CGE2H2 CGZFL2 CPASII CSCSCA CS0880 CS21X5</td>
<td></td>
</tr>
<tr>
<td>CDD073 CGE3H1 CGZFL3 CPACMI CSCTEX CS0890 CS21X6</td>
<td></td>
</tr>
<tr>
<td>CDD083 CGE3H2 CGZMC2 CPCCLT CSBHYD CS0900 CS21X7</td>
<td></td>
</tr>
<tr>
<td>CDD123 CGE3H3 CGZMC3 CPCCSS CSBNNI CS0910 CS22AP</td>
<td></td>
</tr>
<tr>
<td>CDD133 CGE3H4 CGZMSLT CPCDIT CSBMDT CS0920 CS22PT</td>
<td></td>
</tr>
<tr>
<td>CDF153 CGEC01 CGZRMCS CPCCXT CSBRTCCM CS0930 CS22PTC</td>
<td></td>
</tr>
<tr>
<td>CDHMMUT1 CGEC02 CGZ1DI CPCCPI CSIA06SC CS0940 CS22PTD</td>
<td></td>
</tr>
<tr>
<td>CDHMMUT1 CGEC03 CGZ123 CPCTCI CSIA11SC CS0960 CS22PTX</td>
<td></td>
</tr>
<tr>
<td>CDV9SC CGEC15 CGZ228 CPCRVD CSIA16SC CS0970 CS22PX2</td>
<td></td>
</tr>
<tr>
<td>CDWOWII CGEC01 CGZ28C CPDGNP CSIODA CS22DNRT CS22PX3</td>
<td></td>
</tr>
<tr>
<td>CGACTX CGEC01 CG0180 CPDGT CSIPLC CS01IF CS23ST</td>
<td></td>
</tr>
<tr>
<td>CGACM1 CGEC01 CG0190 CPSSSC CSISCM CS01NB CS2000</td>
<td></td>
</tr>
<tr>
<td>CGA1MC CGEC01 CG0200 CPGSSU CSIO6GSM CS02IF CS2010</td>
<td></td>
</tr>
<tr>
<td>CGA2MC CGEC01 CG0210 CP2GXT CS111SCM CS01XP CS2011</td>
<td></td>
</tr>
<tr>
<td>CGA3MC CGEC01 CG0220 CRATE CS116SCM CS21X2 CS2020</td>
<td></td>
</tr>
<tr>
<td>CGB1H1 CGEC01 CG0230 CRBMCI CSMAHCMCS CS21X3 CS2021</td>
<td></td>
</tr>
<tr>
<td>CGB1H2 CGEC01 CGNCOM CRCCOT CSMCCM CS21X4 CS2030</td>
<td></td>
</tr>
<tr>
<td>CGB1H1 CGEC01 CGNCOM CRCCOT CSMCCM CS21X5 CS2040</td>
<td></td>
</tr>
<tr>
<td>CGB1H3 CGEC01 CGNPP CPREMCG CSPTFC CS21X6 CS2050</td>
<td></td>
</tr>
<tr>
<td>CGB0BF CGEC01 CS2040 CRFASC CSSCOT CS21X7 CVAMMDIR</td>
<td></td>
</tr>
<tr>
<td>CGCCOM CGEC01 CG0400 CRILVC CSSDTC CS22PAR CVBDBT</td>
<td></td>
</tr>
<tr>
<td>CGCF1L CGEC01 CG0410 CRTDIS CSSSPA CS22PAT CVCS9DL</td>
<td></td>
</tr>
<tr>
<td>CGFC1L CGEC01 CG0420 CSABCT CSSPCT CS22PCT CVDDDCOC</td>
<td></td>
</tr>
<tr>
<td>CGFC3L CGEC01 CG0430 CSADARG CSSPINC CS22PD2 CVDDFDCO</td>
<td></td>
</tr>
<tr>
<td>CGGC1N CGEC01 CG0440 CSAERT CSSSPOB CS22PXT CVECMBMU</td>
<td></td>
</tr>
<tr>
<td>CGBFBS CGEC01 CG0500 CSAIFT CSSMTCOT CS2PX2 CVFRTCO</td>
<td></td>
</tr>
<tr>
<td>CGE4D1 CGEC01 CG0510 CSAINB CSM05SCH CS2PX3 CVGTSCO</td>
<td></td>
</tr>
<tr>
<td>CGBELT CGEC01 CG0520 CSAPT CSTCAT CS2SAT CVHMDA</td>
<td></td>
</tr>
<tr>
<td>CGE9LC CGEC01 CG0530 CSAPIP CSTMC CS2000 CVHPFD</td>
<td></td>
</tr>
<tr>
<td>CGEIPA CGEC01 CG0540 CSAPAR CSZICCMCS CS2000 CVIMMUT</td>
<td></td>
</tr>
<tr>
<td>CGETCT CGEC01 CG0600 CSAPAT CS0600 CS2011 CVJPDFCH</td>
<td></td>
</tr>
<tr>
<td>CGET1C CGEC01 CG0610 CSAPT CS0610 CS2020 CVKSCASC</td>
<td></td>
</tr>
<tr>
<td>CGET1D CGEC01 CG0620 CSAPT CS0620 CS2021 CVLONEISH</td>
<td></td>
</tr>
<tr>
<td>CGET1F CGEC01 CG0630 CSAPF CS0660 CS2030 CVLTFDCO</td>
<td></td>
</tr>
<tr>
<td>CGET1H1 CGEC01 CG0670 CSAPF CS0670 CS2040 CVBFMDCO</td>
<td></td>
</tr>
<tr>
<td>CGET1H2 CGEC01 CG0680 CSASAT CS0680 CS2050 CVHLOAD</td>
<td></td>
</tr>
<tr>
<td>CVMS8COM</td>
<td>GAGENT</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>CVNMMUTI</td>
<td>GAHRTE</td>
</tr>
<tr>
<td>CVAPPCTO</td>
<td>GAIORB</td>
</tr>
<tr>
<td>CVQMMUTI</td>
<td>GAERA</td>
</tr>
<tr>
<td>CVRDPFRR</td>
<td>GCBANE</td>
</tr>
<tr>
<td>CVSSSTCO</td>
<td>GCAEAR</td>
</tr>
<tr>
<td>CVTTCSSN</td>
<td>GCDARE</td>
</tr>
<tr>
<td>CVURBCCO</td>
<td>GCEAAR</td>
</tr>
<tr>
<td>CVVLDBCO</td>
<td>GSCFAER</td>
</tr>
<tr>
<td>CWLDBDBPO</td>
<td>GCXARFCO</td>
</tr>
<tr>
<td>CVWMULDC</td>
<td>GCXHCRT</td>
</tr>
<tr>
<td>CVXADNTDA</td>
<td>GCGXASC</td>
</tr>
<tr>
<td>CVMBFDSCO</td>
<td>GCGKCS</td>
</tr>
<tr>
<td>CVZMCDSD</td>
<td>GAIORB</td>
</tr>
<tr>
<td>CVILSRES</td>
<td>GCAER</td>
</tr>
<tr>
<td>CVI0000</td>
<td>GCBAR</td>
</tr>
<tr>
<td>CVI0100</td>
<td>GCCAEAR</td>
</tr>
<tr>
<td>CVI0200</td>
<td>GCDER</td>
</tr>
<tr>
<td>CVI0400</td>
<td>GCEAEAR</td>
</tr>
<tr>
<td>CVI0500</td>
<td>GCCFAER</td>
</tr>
<tr>
<td>CVI0600</td>
<td>GCNUM</td>
</tr>
<tr>
<td>CVI1000</td>
<td>GCHGRT</td>
</tr>
<tr>
<td>CVI1100</td>
<td>GCCIRRT</td>
</tr>
<tr>
<td>CVI1200</td>
<td>GCCJASC</td>
</tr>
<tr>
<td>CVILIN</td>
<td>GCDGCS</td>
</tr>
<tr>
<td>CVI2SN</td>
<td>GCGKCS</td>
</tr>
<tr>
<td>CVI3GMW</td>
<td>GCGLOP</td>
</tr>
<tr>
<td>CVI3LOT</td>
<td>GCPGSC</td>
</tr>
<tr>
<td>CVI35OT</td>
<td>GCSC</td>
</tr>
<tr>
<td>CVI08011</td>
<td>GCCTC</td>
</tr>
<tr>
<td>CVI0001</td>
<td>GCXASC</td>
</tr>
<tr>
<td>CDCDG1C</td>
<td>GCGR</td>
</tr>
<tr>
<td>CDCDGG2</td>
<td>GCUCS</td>
</tr>
<tr>
<td>CDCDG3</td>
<td>GCVDVA</td>
</tr>
<tr>
<td>CDCDG8</td>
<td>GCQQA</td>
</tr>
<tr>
<td>CDCDG9</td>
<td>GCPO</td>
</tr>
<tr>
<td>CDCDDO</td>
<td>GCQ40</td>
</tr>
<tr>
<td>CDCDDS</td>
<td>GC50RB</td>
</tr>
<tr>
<td>CDCDDS</td>
<td>GC70RB</td>
</tr>
<tr>
<td>CDCDS9</td>
<td>GC80RB</td>
</tr>
<tr>
<td>DGGSEF</td>
<td>GC90RB</td>
</tr>
<tr>
<td>DILDB10</td>
<td>GDAASC</td>
</tr>
<tr>
<td>DGOGSFCO</td>
<td>GDEENT</td>
</tr>
<tr>
<td>DGRGEO</td>
<td>GDFORB</td>
</tr>
<tr>
<td>DMPMMSG</td>
<td>GDCDEO</td>
</tr>
<tr>
<td>GAAALM</td>
<td>GDIAMD</td>
</tr>
<tr>
<td>GABDIR</td>
<td>GD4SP</td>
</tr>
<tr>
<td>GADHFE</td>
<td>GDNHSC</td>
</tr>
<tr>
<td>GAEASC</td>
<td>GDORL</td>
</tr>
<tr>
<td>GAFOB</td>
<td>GDP4SP</td>
</tr>
</tbody>
</table>
Appendix G

MEMBER LIST OF INCLUDE SOURCE

<table>
<thead>
<tr>
<th>Group</th>
<th>Member</th>
<th>Type</th>
<th>Source</th>
<th>Source</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIGDEULO</td>
<td>DAGRAM</td>
<td>DCD13225</td>
<td>VB17DECL</td>
<td>VS4X4</td>
<td>XREFSSW</td>
</tr>
<tr>
<td>AMTOO01</td>
<td>DAMTTEMP</td>
<td>DCD142HS</td>
<td>VB2LMCIU</td>
<td>VS5X5</td>
<td>XREFVSM</td>
</tr>
<tr>
<td>ANNUNTLB</td>
<td>DAPFPMT</td>
<td>DCD14201</td>
<td>VB21MDMS</td>
<td>VS6X6</td>
<td>ZMMAREAS</td>
</tr>
<tr>
<td>ANTACS</td>
<td>DAPFPFD</td>
<td>DCD14205</td>
<td>VB22BSRV</td>
<td>VS7X7</td>
<td>ZPF1OTIM</td>
</tr>
<tr>
<td>A01XTAB</td>
<td>DBG#RAM</td>
<td>DCD14212</td>
<td>VB23SCUM</td>
<td>VS8X8</td>
<td>DCD15305</td>
</tr>
<tr>
<td>A01YTAB</td>
<td>CDMMBEG</td>
<td>DCD14225</td>
<td>VB24PROM</td>
<td>VTLDMDIR</td>
<td>DCD15312</td>
</tr>
<tr>
<td>A01YTMCSC</td>
<td>CDHMDCL</td>
<td>DCD144HS</td>
<td>VB255CUP</td>
<td>VUCMDWDS</td>
<td>DCD15325</td>
</tr>
<tr>
<td>A02XTAB</td>
<td>CDMMNDM</td>
<td>DCD14401</td>
<td>VB26ADCV</td>
<td>VXAOMPA</td>
<td>DCD160HS</td>
</tr>
<tr>
<td>A02YTHSC</td>
<td>CDMMNBD</td>
<td>DCD14412</td>
<td>VB31DFI</td>
<td>V01YFL</td>
<td>DCD1600S</td>
</tr>
<tr>
<td>A03XTAB</td>
<td>CDMMNMP</td>
<td>DCD14425</td>
<td>VB32PD1</td>
<td>V02X</td>
<td>DCD16012</td>
</tr>
<tr>
<td>A03YTHSC</td>
<td>CDMMNEND</td>
<td>DCD146HS</td>
<td>VB33NRAM</td>
<td>V03XDFL</td>
<td>DCD16025</td>
</tr>
<tr>
<td>A03YTHSC</td>
<td>CD120HS</td>
<td>DCD14601</td>
<td>VB36NMOD</td>
<td>V03YDFL</td>
<td>DCG#RAM</td>
</tr>
<tr>
<td>A04XTAB</td>
<td>CD12001</td>
<td>DCD14605</td>
<td>VOANT08</td>
<td>V04XDFL</td>
<td>DCDG#RAM</td>
</tr>
<tr>
<td>A04YTHSC</td>
<td>CD12005</td>
<td>DCD14612</td>
<td>VOANT12</td>
<td>V1AXFCS</td>
<td>DDUMACS</td>
</tr>
<tr>
<td>A04YTHSC</td>
<td>CD12012</td>
<td>DCD14625</td>
<td>VOANT13</td>
<td>V1AYFCS</td>
<td>DDOO1ID</td>
</tr>
<tr>
<td>A05XTAB</td>
<td>CD12025</td>
<td>DCD14802</td>
<td>VB27BTE4</td>
<td>V01X</td>
<td>DCD16001</td>
</tr>
<tr>
<td>BDPMMACS</td>
<td>CD121HS</td>
<td>DCD14801</td>
<td>VC00400</td>
<td>V1CXFCS</td>
<td>DD0020D</td>
</tr>
<tr>
<td>BMODMACS</td>
<td>CD12101</td>
<td>DCD14805</td>
<td>VC00410</td>
<td>V1DXFCS</td>
<td>DD0060D</td>
</tr>
<tr>
<td>BRMACS</td>
<td>CD12105</td>
<td>DCD15001</td>
<td>VC01000</td>
<td>V1EXFCS</td>
<td>DD0990D</td>
</tr>
<tr>
<td>CAMENMACS</td>
<td>CD12112</td>
<td>DCD14825</td>
<td>VC01010</td>
<td>V1FXFCS</td>
<td>DEG#RAM</td>
</tr>
<tr>
<td>CAMIMACSC</td>
<td>CD12125</td>
<td>DCD152HS</td>
<td>VC01020</td>
<td>V1GXFCS</td>
<td>DEUMACS</td>
</tr>
<tr>
<td>CDVCOMPO</td>
<td>CD1220S</td>
<td>DCD15201</td>
<td>VC01050</td>
<td>V1HXFCS</td>
<td>DFGMDAS</td>
</tr>
<tr>
<td>CGBIM2</td>
<td>CD12201</td>
<td>DCD15205</td>
<td>VC01060</td>
<td>V1IXFCS</td>
<td>DFGMDAT</td>
</tr>
<tr>
<td>CMDMACS</td>
<td>CD12205</td>
<td>DCD15212</td>
<td>VC01100</td>
<td>V1JXFCS</td>
<td>DFGMDATZ</td>
</tr>
<tr>
<td>CMSMACS</td>
<td>CD12212</td>
<td>DCD15252</td>
<td>VC01120</td>
<td>V1KXFCS</td>
<td>DFGMDAX</td>
</tr>
<tr>
<td>CPAPIID</td>
<td>CD12225</td>
<td>DCD153HS</td>
<td>VC08011</td>
<td>V1LXFCS</td>
<td>DFGMDA2</td>
</tr>
<tr>
<td>CPDMINSP</td>
<td>CD12313</td>
<td>DCD15301</td>
<td>VC09011</td>
<td>V1MXFCS</td>
<td>DFGNULLN</td>
</tr>
<tr>
<td>CSACCA</td>
<td>CD12301</td>
<td>TCSMACS</td>
<td>VNX1</td>
<td>V1NXFCS</td>
<td>DFGPRMT</td>
</tr>
<tr>
<td>CSAPLCL</td>
<td>CD12305</td>
<td>TIMACCS</td>
<td>VNX1</td>
<td>V1NXFCS</td>
<td>DFGSPEC</td>
</tr>
<tr>
<td>CSAC06SC</td>
<td>CD12312</td>
<td>TMHMACS</td>
<td>VNX2</td>
<td>V1PXFCS</td>
<td>DFGSTIME</td>
</tr>
<tr>
<td>CSAC2SC</td>
<td>CD12325</td>
<td>TNYATBS</td>
<td>VNX3</td>
<td>V1QXFCS</td>
<td>DFG0600</td>
</tr>
<tr>
<td>CSAC16SC</td>
<td>CD124HS</td>
<td>TRMACS</td>
<td>VNX4</td>
<td>V1RXFCS</td>
<td>DFG0610</td>
</tr>
<tr>
<td>CSCOTSR</td>
<td>CD12401</td>
<td>VBO1ERCC</td>
<td>VNX5</td>
<td>V1RXFCS</td>
<td>DFG0620</td>
</tr>
<tr>
<td>CSCSCM</td>
<td>CD12405</td>
<td>VBO2ITEM</td>
<td>VNX6</td>
<td>V1TXFCS</td>
<td>DFG0660</td>
</tr>
<tr>
<td>CSCSCM</td>
<td>CD12412</td>
<td>VBO1MCIU</td>
<td>VNX7</td>
<td>V1UXFCS</td>
<td>DFG0670</td>
</tr>
<tr>
<td>CSC12SC</td>
<td>CD12425</td>
<td>VB11MDMS</td>
<td>VNX8</td>
<td>V1UXFCS</td>
<td>DFG0680</td>
</tr>
</tbody>
</table>
| CSC21SC | CD12425 | VB12PCMU | VS1X | V1UXFCS | DFG0760 | DGNCP
| CSSCOADD | CD13216 | VBO1MCIU | VNX7 | V1UXFCS | DFG0770 | DGC1EU |
| CSSXSTX | CD13205 | VBO1REPL | VNX8 | V1UXFCS | DFG0780 | DGC10D |
| CWWMACS | CD13212 | VBO1DELC | VNX9 | XREFDCI | DFG0790 | DGC020D |
| DG0500D | GNOGLD | G6D602 | MG0250M | MS0096M | PFFOMACS | S13XMDT |
| DG0510D | GNOGLE | GBAMTP07 | MG0330M | MS0600M | PFMHMACS | S13YMDT |
| DG0520D | GNOGLF | GB0420 | MG0340M | MS0610M | PF1HMACS | S14XMDT |
| DG1011D | GNOGLU | GB0430 | MG0400M | MS0620M | PF2MACS | S14YMDT |
| DG3011D | GNBSBT | GB0440 | MG0410M | MS0660M | PMODMACS | S15XMDT |
| DG3041D | G0EDAT | GB0801 | MG0420M | MS0670M | PMUMACS | S15YMDT |
| DG3051D | GE0SSP | G90SMACS | MG0430M | MS0680M | PPREMACS | S16XMDT |
| DIVOGNC | GOFTAN | HNHH | MG0440M | MS0760M | PROTMACS | S16YMDT |
| DIVOSSW | GOGSCM | IMUMAC | MG0500M | MS0780M | PSPIMACS | S17XMDT |
| DIVDYSM | GOIMFL | IONGC | MG0510M | MS0790M | PSP2MACS | S17YMDT |
| DMA#MACS | G0INPT | IOMACS | MG0520M | MS0860M | RDISHACS | S18XMDT |
| FCBTMACS | G0THID | IPINS9 | MG3041M | MS0960M | SMSTAT | S22YMDT |
| FFSMACS | GPMRCS | IPINV9 | MG3051M | MS0970M | SRBHMACS | S23XMDT |
| FLEXDATA | GRIATT | IPINXO | MG8011M | MS1000M | STBYMACS | S23YMDT |
| FLEXTLB | GRIHUL | IPXO | MMHMACS | MS1010M | STRFC | S24XMDT |
| FPMNMDIR | GSOVEN | LDMHMACS | MP0710M | MS1020M | STRPD | S24YMDT |
| FTBAMT11 | GJXCLR | MDA4TMS | MP0720M | MS1050M | STUB | S25XMDT |
| FTBDO710 | GXOTER | MDAYTMS | MP0721M | MS1060M | SUMMACS | S25YMDT |
| FTBDO721 | GXOCLR | MDPMAC | MP0730M | MS1100M | SYNMACS | S26XMDT |
| FTBDO731 | G1AMTP04 | MD0001M | MP0731M | MS1120M | SO1XMDT | S26YMDT |
| FTBDO741 | G1D101 | MD0002M | MP0740M | MS2000M | SO1YMDT | S27XMDT |
| FTBDO751 | G1D510 | MD0003M | MP0741M | MS2010M | SO2XMDT | S28XMDT |
| FTBDO762 | G1D520 | MD0009M | MP0750M | MS2011M | SO2YMDT | S29XMDT |
| FTBDO771 | G2AMTP05 | MD0011M | MP0751M | MS2020M | SO3XMDT | S30XMDT |
| DFG2040 | G2D200 | MD0020M | MP0752M | MS2021M | SO3YMDT | S31XMDT |
| DFG2050 | G2D201 | MD0030M | MP0760M | MS2030M | SO4XMDT | S32XMDT |
| FXFLMACS | G2D20101 | MD0031M | MP0762M | MS2040M | SO4YMDT | S33XMDT |
| GD11HS6 | G2D202 | MD0040M | MP0501M | MS2050M | SO5XMDT | S34XMDT |
| GD22HS13 | G2D210 | MD0041M | MP5002M | MS8011M | SO5Y.DT | S35XMDT |
| GD33HS13C | G2D220 | MD0060M | MP7011M | MS9011M | SO6XMDT | S36XMDT |
| GEDISP | G2D230 | MD9990M | MP9011M | MS9999M | S06YMDT | S37XMDT |
| GE1HIB | G2D250 | MD9999M | MS0043M | MTUMAC | S07XMDT | S38XMDT |
| GE2HIA | G2D330 | MECMACS | MS0044M | MTUMACS | S07YMDT | S39XMDT |
| GE3HII | G2D340 | METMACS | MS0045M | NHSECTS | S08XMDT | S40XMDT |
| GE43IB | G3AMTP06 | MG0042M | MS0061M | NHMANXRF | S08YMDT | S41XMDT |
| GE5MOB | G3D018 | MG0092M | MS0062M | OPSMC | S09XMDT | S42XMDT |
| GE6JA | G3D053 | MG0093M | MS0070M | OPSIMAC | S09YMDT | S43XMDT |
| GE7MOA | G3D190 | MG0180M | MS0081M | OPSTMAC | S10XMDT | S44XMDT |
| GE8MOB | G3D301 | MG0190M | MS0082M | OPSUPMAC | S10YMDT | S45XMDT |
| GFORCS | G3D304 | MG0200M | MS0083M | CVLYMAC | S11XMDT | S46XMDT |
| GKMMNV | G3D305 | MG0210M | MS0084M | PDMIAC | S11YMDT | S47XMDT |
| GM5TOR | G3D500 | MG0220M | MS0094M | PDSTEMPL | S12XMDT | S48XMDT |
| GNC91040 | G6D601 | MG0230M | MS0095M | PFBSMACS | S12YMDT | S49XMDT |
Appendix H

MEMBER LIST OF SYSTEM SOURCE

#CFIUCGR	CDO064	CDR04D	DMJNEW	FCMSFAIL	FIOGNIPG	FIONSPPG
#DFIONDX	CDO074	CDR05D	DMRESUM	FCMSFCAM	FIOG90PG	FIOPBYG9
#ZFIUCGR	CDO084	CDR06D	DMTERR	FCMSFINI	FIOHFEPG	FIOPBY2S
AIBGFCLO	CDO114	CDR07D	DMZLOG	FCMSMASK	FIOHFE02	FIOPBET8B
AIESIP	CDO124	CDR08D	DM1KEY	FCMSSSLPT	FIOHFE16	FIOPBY20
AIGDEUP	CDO134	CDR11D	DM2APP	FCMSSYNC	FIOHFE38	FIOPBY16
AMTP02	CDO154	CDR12D	DM3DIS	FCMSVC	FIOHFE89	FIOPBY38
AMTP04	CDO164	CDR13D	DXXCSE	FCMSVOTE	FIOHISAM	FIOPBYY9
AMTP05	CDO174	CDR15D	FCMBCEMD	FCMSWMON	FIOIICPG	FIOPDBG9
AMTP06	CDO185	CDSDIC	FCMBSTPG	FCMBTL9G	FIOIMUGP	FIOPDHF
AMTP07	CDO195	CDTANNUN	FCMBSIS2	FCMTBLPG	FIOLEDPG	FIOPDIPG
AMTP08	CHO754	CDULINK	FCMBNT02	FCMTBS2	FIOLEGR	FIOPVSP
AMTP11	CHO805	CDXDAT	FCMBNT16	FCMTBLO2	FIOMCIPG	FIODSAU
AMTP12	CDH115	CDYDIC	FCMBTM38	FCMBTL16	FIOMCNLT	FIOPD2M2
AMTP13	CDH125	CZANNUN	FCMBT89	FCMBTL38	FIOMDMPG	FIOPDSPG
AMTP15	CDH135	CDZANNUN	FCMBT89	FCMBTL38	FIOMDMPG	FIOPDSPG
ARAGPCSW	CDH155	CD0002	FCMBUSCM	FCMBTRAEE	FIOMDPFF	FIOPDVF
ARC#GPEC	CDJRWD	CD0003	FCMBUSPC	FCNTRCLG	FIOMFEG9	FIOPNUPG
ARDCBUS	CDK10C	CD0010	FCMBLKS	FCMSSYNC	FIOFEPFG	FIOPRMPG
ARDMFBUS	CDLANNUN	CD0020	FCMCKSUM	FCMUPLOD	FIOFEE02	FIOPSPPG
ARDRBUS	CDM#10M	CD0060	FCMCOM	FCMZCONS	FIOFEE16	FIOPURGE
ARFPDSPCO	CDND03	CD07XX	FCMCSYNC	FDDUMMY	FIOFEE38	FIORTBUF
ARG#REC	CDND04	CD0990	FCMSDCRM	FIOACTMD	FIOGMCMP	FIOSMSMP
ARK#DOW	CDND05	CD1#DFB1	FCNFLD1	FIOACT02	FIOGCV	FIOFSMPG
ASCTIMEM	CDND06	CD1#COM	FCMNBCE	FIOADCCCL	FIOGDSIP	FIOSBPKG
ASGCYCLI	CDND07	CD2COMMO	FCMNIOP	FIOADCNS	FIOMGERR	FIOSTMSC
ASHRVYCY	CDND08	CD23#CON	FCMNMSC	FIOCLKBS	FIOHGMTR	FIOVCSC
ASLTM	CDND09	DC1#CYC	FCMNSSL	FCMOSDAT	FIOGNSNG	FIOVSCP
ASK:UX	CDND10	DC1#DATA	FCMDSYNC	FCMOSDTS	FIOGSTR	FPMACNCL
ASNGEMOW	CDND11	DC1#PDE	FCNLMINIT	FCMSPLT	FIOGMTE	FPMCHPCT
CAASCN	CDND12	DC1#STK	FCMPGEOV	FIOCOUNT	FIOHMGTG	FPMCHTOE
CABCOMPO	CDND13	DFLDCU	FCMPGOV	FIOCTR	FIOHMSSC	FPA_LOSE
CDB021	CDND14	DGMWRT	FCNGMPT	FIOCYSIM	FIOHNMUP	FPMCTVFL
CDB022	CDND15	DGNLIGHT	FCMNINIT	FCNCYCTB	FIOHDSM	FPMCVTPX
CD022	CDO75	D9LIGHT	FCMPAT26	FIOHYC02	FIOHDTB	FPMDCU
CD102	CDM102	DIP#CIC	FCMPMOD	FIOHUPD	FIOHODT2	FPMNSPRO
CDPO23	CDR202	DIP#STR	FCMPROTD	FIODEUPG	FIOHSD2	FPMDSABL
CD5714	CDN302	DIS#PLAY	FCMPBSA	FIOERRBA	FIOHSIP	FPMENABL
CDG024	CDPD1C	DLALIGHT	FCMSRTER	FIOERRLB	FIOGUWP	FPMERLOG
CDG044	CDOANNUN	DMAMAC	FCMTIBLE	FIOERRLC	FIOHVUT	FPMHEV
CDG054	CDO202	DMCSUPR	FCMSA#E	FIOGNCDL	FIOHVUPG	FPMEVDFQ
FPMEVENQ FPMIHPC2 FPMRESET FPMSWITCH FPMZSYNC PCH04SRC PCH14SRC
FPFCLOS FPMIHPGM FPMRPCT FPMTERM IDLE#OPS PCH05SRC PCH15SRC
FPFRPCT FPMINHSP FPMISCHED FPMTMCVT LOADTABL PCH06SRC PCH26SRC
FPFMXMTU FPMITUPD FPMSDERR FPMTMDEQ MCDS#IN PCH07SRC TFLCDU
FPGMTIM FPMTMUX FPMSET FPMTMENQ MCDS#PRC PCH08SRC XD0001
FPKIDLE FPMTMURM FPMSSIGNL FPM1MHAL NDTXTABLE PCH09SRC XD0010
FPMIDTIM FPMOPSCN FPMSSIO FPMUPMTU PATCH PCH10SRC XD0020
FPMIHIM FPMREL FPMSSVC FPMUPTXT PCH02SRC PCH12SRC XD0060
FPMIHPC1 FPMRES FPMSSVCEP FPMWAIT PCH03SRC PCH13SRC XD0990
Appendix I
DR VARIABLE LIST

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILE_ID</td>
<td>File ID, always "F"</td>
</tr>
<tr>
<td>DR NUM</td>
<td>DR Number</td>
</tr>
<tr>
<td>MISSN ID</td>
<td>Suffix (Mission Identifier)</td>
</tr>
<tr>
<td>FAC</td>
<td>Reporting Facility</td>
</tr>
<tr>
<td>OD</td>
<td>Date Logged In (MM/DD/Y)</td>
</tr>
<tr>
<td>_ODYRMO</td>
<td>Year-Month Logged In (YMM)</td>
</tr>
<tr>
<td>DV</td>
<td>Document Version</td>
</tr>
<tr>
<td>ITR</td>
<td>IBM. Transmittal Number</td>
</tr>
<tr>
<td>NTR</td>
<td>NASA Transmittal Number</td>
</tr>
<tr>
<td>GA</td>
<td>Verification Assignment for "Special"</td>
</tr>
<tr>
<td>REF</td>
<td>Reference CR/DR, Other</td>
</tr>
<tr>
<td>P</td>
<td>Priority of DR</td>
</tr>
<tr>
<td>VER</td>
<td>Target Closure Code (Replaced by actual Build ID for 2A, 2B, 2C, 2D, 2E, 2F)</td>
</tr>
<tr>
<td>CP</td>
<td>Actual Closure Code (Meaning different for SP's DRs)</td>
</tr>
<tr>
<td>PB</td>
<td>Pre-Build Assessment Data</td>
</tr>
<tr>
<td>G0</td>
<td>Verification Assignment for Department HE3</td>
</tr>
<tr>
<td>PR</td>
<td>Pre-Build Assessment Reason</td>
</tr>
<tr>
<td>X</td>
<td>T&O Closure Code</td>
</tr>
<tr>
<td>BD</td>
<td>Development Close Date (MM/DD/Y)</td>
</tr>
<tr>
<td>BDYRMO</td>
<td>Year-Month of Development Close Date</td>
</tr>
<tr>
<td>S</td>
<td>Verification Status Data</td>
</tr>
<tr>
<td>G1</td>
<td>Verification Assignment for Department HF6</td>
</tr>
<tr>
<td>G2</td>
<td>Verification Assignment for Department HC9</td>
</tr>
<tr>
<td>G3</td>
<td>Verification Assignment for Department HG5</td>
</tr>
<tr>
<td>G4</td>
<td>Verification Assignment for Department HR7</td>
</tr>
<tr>
<td>G5</td>
<td>Verification Assignment for Department HF7</td>
</tr>
<tr>
<td>G6</td>
<td>Verification Assignment for Department HD4</td>
</tr>
<tr>
<td>G7</td>
<td>Verification Assignment for Department HF7</td>
</tr>
<tr>
<td>G8</td>
<td>Verification Assignment for Department HC8</td>
</tr>
<tr>
<td>F</td>
<td>Change/New Identifier</td>
</tr>
<tr>
<td>PD</td>
<td>SDL Build Date</td>
</tr>
<tr>
<td>G9</td>
<td>Verification Assignment for Department HD7</td>
</tr>
<tr>
<td>D</td>
<td>Title/Description</td>
</tr>
<tr>
<td>TN</td>
<td>IBM Transmittal Date (MM/DD/Y)</td>
</tr>
<tr>
<td>TNYRMO</td>
<td>Year-Month of IBM Transmittal Date (YMM)</td>
</tr>
<tr>
<td>FN</td>
<td>NASA Transmittal Received Date (MM/DD/Y)</td>
</tr>
<tr>
<td>FNYRMO</td>
<td>Year-Month of NASA Transmittal Received Date (YMM)</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>PF</td>
<td>Principle Function ID</td>
</tr>
<tr>
<td>TC</td>
<td>Verification Test Code ID</td>
</tr>
<tr>
<td>TD</td>
<td>Development Build Target ID</td>
</tr>
<tr>
<td>ST</td>
<td>Status of the DR</td>
</tr>
<tr>
<td>IMP</td>
<td>Future System Closure Code</td>
</tr>
<tr>
<td>BL</td>
<td>Verification Baseline ID</td>
</tr>
<tr>
<td>PN</td>
<td>Program Name (SDL Only)</td>
</tr>
<tr>
<td>VC</td>
<td>Verification Closure Date</td>
</tr>
<tr>
<td>AD</td>
<td>Action Department</td>
</tr>
</tbody>
</table>
Appendix J

DR LEGEND

FILE_ID -- File ID
Always "F"

DR_NUM -- DR Number; a unique number for tracking purposes.

MISSN_ID -- Suffix (Mission Identifier); indicates applicable FSW systems.
None=SDL
A=Site/Tst Unique Patch DRs
B=PMD3
C=ECL
D=SSW1
E=JSC Form 1541 (Rev Jun 75)
F=Release 19 (Floor System STS-5)
G=PMD2
H=AOA
J=Invalid Entry; there should be no entries of "J".
K=KSC
L=STS-1 FUP5/FLT (Flight System)
M=STS-1 FUP4 (07/30 System for Field Users)
N=Entry
P=PMD1
Q=Invalid Entry; there should be no entries of "Q".
R=STS-2 (R18V21 Flight System)
R1=STS-2 (R18V11 Field System)
R2=STS-2 (R18V12 Field System)
R3=STS-3 (R18V30 Flight System)
R4=STS-4 (R18V40 Flight System)
R5=Invalid Entry; there should be no entries of "R5".
R9=OV-99 (R18V90 Field System)
S=SSW2
S1=SPF Release 1
S2=SPF Release 2
S6=SDL Release 36
S7=SDL Release 37
T=OFT1
U=Entry "date 1"
V=Invalid Entry; there should be no entries of "V".
W=STS-2 (R17V5)
X=STS-1 FUP1 (12/11 System for Field Users)
Y=STS-1 FUP2 (03/19 System for Field Users)
Z=STS-1 FUP3 (05/21 System for Field Users)
FAC -- Reporting Facility; OFT area initiating the DR.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>Avionics Architecture</td>
</tr>
<tr>
<td>AASD</td>
<td>Avionics Application Software Development</td>
</tr>
<tr>
<td>ASD</td>
<td>Avionics Software Development</td>
</tr>
<tr>
<td>ASSD</td>
<td>Avionics System Software Development</td>
</tr>
<tr>
<td>B30</td>
<td>Configuration Inspection</td>
</tr>
<tr>
<td>CM</td>
<td>Control Monitor</td>
</tr>
<tr>
<td>CSC</td>
<td>Computer Sciences Corporation</td>
</tr>
<tr>
<td>CSDL</td>
<td>Charles Stark Draper Laboratory</td>
</tr>
<tr>
<td>CT</td>
<td>Communications and Tracking</td>
</tr>
<tr>
<td>C3</td>
<td>Downlist</td>
</tr>
<tr>
<td>DSL</td>
<td>FACC = Ford Aerospace Communications Corporation</td>
</tr>
<tr>
<td>FCO</td>
<td>Flight Computer Operating System</td>
</tr>
<tr>
<td>FCOS</td>
<td>Flight Computer Operating System</td>
</tr>
<tr>
<td>FIT</td>
<td>Flight Computer Interface Tester</td>
</tr>
<tr>
<td>FNC</td>
<td>FSL = Flight Systems Laboratory</td>
</tr>
<tr>
<td>FSW</td>
<td>Flight Software</td>
</tr>
<tr>
<td>GBS</td>
<td>Ground Based Shuttle</td>
</tr>
<tr>
<td>GNC</td>
<td>Guidance, Navigation & Control</td>
</tr>
<tr>
<td>GNCE</td>
<td>Guidance, Navigation & Control -- Ex/Seq/Guid</td>
</tr>
<tr>
<td>GNCD</td>
<td>Guidance, Navigation & Control -- Navy & Spec Proc</td>
</tr>
<tr>
<td>GNCO</td>
<td>Guidance, Navigation & Control -- Flt Control Rm</td>
</tr>
<tr>
<td>HC2</td>
<td>IBM Department</td>
</tr>
<tr>
<td>HC8</td>
<td>IBM Department</td>
</tr>
<tr>
<td>HE1</td>
<td>IBM Department</td>
</tr>
<tr>
<td>HE8</td>
<td>IBM Department</td>
</tr>
<tr>
<td>HF9</td>
<td>IBM Department</td>
</tr>
<tr>
<td>HG8</td>
<td>IBM Department</td>
</tr>
<tr>
<td>HHB</td>
<td>IBM Department</td>
</tr>
<tr>
<td>HHS</td>
<td>IBM Department</td>
</tr>
<tr>
<td>HH4</td>
<td>IBM Department</td>
</tr>
<tr>
<td>HH5</td>
<td>IBM Department</td>
</tr>
<tr>
<td>HH6</td>
<td>IBM Department</td>
</tr>
<tr>
<td>HH7</td>
<td>IBM Department</td>
</tr>
<tr>
<td>HH8</td>
<td>IBM Department</td>
</tr>
<tr>
<td>HR7</td>
<td>IBM Department</td>
</tr>
<tr>
<td>IBM</td>
<td>International Business Machines</td>
</tr>
<tr>
<td>IT</td>
<td>Intermetrics Inc. (HAL)</td>
</tr>
<tr>
<td>JAI</td>
<td>Jefferson Association Inc.</td>
</tr>
<tr>
<td>KSC</td>
<td>Kennedy Space Center</td>
</tr>
<tr>
<td>LEC</td>
<td>Lockheed</td>
</tr>
<tr>
<td>MDC</td>
<td>McDonnell Douglas Aircraft Co.</td>
</tr>
<tr>
<td>MDC</td>
<td>McDonnell Douglas Co.</td>
</tr>
</tbody>
</table>
MTS =
MOD =
MRI = MRI (Subcontractor)
NAS = National Aerospace System
NASA = National Aeronautics & Space Administration
OAS = Orbiter Avionics Software
OFT = Orbital Flight Test
OPE = IBM Operations
OPER = Operations
OPR = RTCC Operations
OWE = IBM (Owego, NY)
OWEG = IBM (Owego, NY)
PDAD =
PL = Payload
PO = Project Office
RA = Requirements Analysis
RI = Record ID
RMS = Remote Manipulator System
RTCC = Real Time Computer Complex
SAI = Shuttle Avionics Integration Laboratory
SAII = Shuttle Avionics Integration Laboratory
SC = System Control
SDL = Software Development Laboratory
SDR = Software Design Requirements
SDRD =
SDRO =
SFC = Selection Filter Control
SFO =
SFS = Shuttle Flight Support
SFSG = Shuttle Flight Support—GNC
SFSS = Shuttle Flight Support—SSW, VU, SM, DL, RMS
SI = System Integration
SID = System Integration Department
SM/P = Systems Management/Payload Management
SMD = Systems Management Development
SMP = SM Offline
SMPL = SM Payload
SMS = Shuttle Mission Simulator
SPF1 = Software Production Facility 1
SSD = Spacecraft Software Division
SSW = System Software
ST = State
STI =
T+O = Test & Operations
T&O = Test & Operations
T/O = Test & Operations
TRW = TRW
TSO =
UI = User Interface
VCO = Vehicle Checkout
VER=IBM Verification Personnel
VU=Vehicle Utility

_OD -- Date logged in (MM/DD/Y); date DR is entered into data base by Project Office.

ODYRMO -- Year-Month logged in (YMM)

DV -- Discrepant Version; floor version on which the discrepancy was observed.

ITR -- IBM Transmittal Number

NTR -- NASA Transmittal Number

GA -- Verification Assignment for "special"; used to identify DRs requiring signoff by Tony Macina (4A,4B) or Rich Cucco (3F).

REF -- Reference CR/DR other; reference area for a related DR, PCR, PCA, or PTR.

P -- Priority of DR (for scheduling purposes)
 1=Critical
 2=Desirable
 3=Proposed Disposition
 4=Dispositioned for Future Build
 5=Dispositioned for No Mod or No DR Closure
 9=User note; these are not discrepancies, but this variable was used to track them as if they were.

VER -- Target Closure Code (Replaced by actual Build ID for 2A, 2B, 2C, 2D, 2E, 2F). Implemented version; Build release/version number of DR fix or other closure. (No Mod, Dup DR, Etc.)
AWP=Old SDL Closure Code
CODE RVW=Code Review
COSTLY
CR=Change Request Required
CR REQ=Change Request Required
CR REQD=Change Request Required
DOC=Documentation Error
DOC ERR=Documentation Error
DUP DR=Duplicate DR
DUPEDR=Duplicate DR
DUPE=Duplicate DR
DUPE DR=Duplicate DR
H/D=Hardware Error
H/W=Hardware Error
H/W ERR=Hardware Error
HDW=Hardware Error
HRDWR=Hardware Error
HPWR=Hardware Error
I/O ERR=Input/Output Error
INS INFO=Insufficient Information
INVALID
JCL ERR=Job Control Language Error
KP ERR=Old SDL Closure Code
MOD=Old SDL Closure Code
MODE=Old SDL Closure Code
MODED=Old SDL Closure Code
N/A=Not Applicable
NO DATA
NO DR
NO H/W=Not Hardware
NO HW=Not Hardware
NO MOD=No Mod
NO MODE=No Mod
NO MODS=No Mod
NO REQ
NO MOD=No Mod
NOT H/W=Not Hardware
NOT HDW=Not Hardware
NOT OPER=Not Operator
OP ERR=Operator Error
OP NOTE=Operator Note
OPER=Operator Error
OPER ERR=Operator Error
OPERR=Operator Error
PATCH
PRCCHG=Old SDL Closure Code
PROC=Processing
REPAIR
RL NOTE=Old SDL Closure Code
S/W=Software
SSWI=System Software 1
SYS DL=Old SDL Closure Code
SYS DLT=Old SDL Closure Code
UNKNOWN
US ERR=User Error
US NOTE=User Note
USEERR=User Error
USER ER=User Error
USER ERR=User Error
USERR=User Error
USR ER=User Error
USR ERR=User Error

CP -- Actual Closure Code (meaning different for SDL DRs).
OFT CP - DR Categorization
1=Under Investigation
1A=Sufficient Data
1B=Insufficient Data
1C=Insufficient Data - Unable to Recreate
1D=Insufficient Data/Too Costly to Recreate
2=Fix Closure
2A=Source Mod
2B=Patch
2C=Patch and Release Note
2D=I-Load Patch
2E=PSF I-Load Corrections
2F=Build/GFE/MMU Mod
3=No DR Closure
3A=User Error or No Requirement or Not Applicable
3**=User Error; ** indicates NASA SSD concurrence
3B=Duplicate DR
3C=CR Required (New Requirement)
3D=CR Required (Make Req. Match Code)
3E=Hardware/Set Up/Support Software
3F=User note
3F**=User note; ** indicates NASA SSD concurrence
3F*P=User Note for Non-Flight System
3F-X=U=User Note (same as 3F, "X=U" is an error)
3G=User's Guide
3J=GFE Error/NASA Generated Opnote Required
3K=GFE Error/Source or Patch Req
4=No Mod Closure
4A=Waiver
4B=Waiver and Op Note
4B,X=W=Waiver and Op Note (same as 4B, "X=W" is an error)
4C=Program Standards or Philosophical Issue or Fix at Next Opportunity when Module Opened for other CR or DR Implementation.
4D=No Fix/Release Note
4F*=No Fix/Release Note (same as 4D, "*=" is an error)
4E=Insufficient Data
4F=Unexplained Anomaly
4G=Requirement Intentions Met
4H=Waiver and Users Guide
4I=Function No Longer Used
5=System No Longer Supported
5A=System Fixed
6=Unsupported Function
6A=Development Action Deferred to Next System
6B=Verification Action Deferred From Previous System

SDL CP - Computer Program End Item (CPEI) Name
ALL=
APAS=M=
APES=Advanced Processor Emulator System
ASC=Ascent
ASM=AP-101 Assembler
AUTO=Automatic
BLD=
CA=
CB=
CDC=
CF=
CF/UA=
COM=
COMM=
COMR=
COR=
CSC= Computer Sciences Corporation
CSECT
DASS=
DPS= Data Processing Subsystem
EOS= Enhanced Operating System
FC= Flight Computer
FDH=
FDSW=
FD4=
FEID= Flight Equipment Interface Development
FSW= Flight Software
FSW12= Flight Software Release 12
FSW13= Flight Software Release 13
FSW14= Flight Software Release 14
FSW15= Flight Software Release 15
FSW16= Flight Software Release 16
FSW17= Flight Software Release 17
GBS=
GEMINI
HAL= High-Order Aerospace Language
HAL/S= High-Order Aerospace Language/Shuttle
HALS= High-Order Aerospace Language/Shuttle
HDW= Hardware
HF2= IBM Department
HJ5= IBM Department
HJB= IBM Department
IBM= International Business Machines
ICS= Interpretive Computer Simulator
IR= Inner Roll
I2= Intermetrics Inc. (HAL)
LE= AP-101 Linkage Editor
LEC= Lockheed
MKB=
MMP=
MMU= Mass Memory Unit
MO=
MOD=
MVS= Middle Value Select
NAS= National Aerospace System
NASA= National Aeronautics & Space Administration
OBS= On Board Software
OFTI5= Orbital Flight Test Integrated System
OFTI5=
OS=
OSS=
OTH=
PMF=Program Management Facility
PP=Platform Positioning
REQ=Requirement
RF/IS=
SDL=Software Development Laboratory
SDL01
SDL5
SDL6
SDL7
SDL8
SDL9
SDL10
SDL11
SDL12
SDL13
SDL14
SDL15
SDL16
SPT=
SIM=Simulator
SIS=SAIL Interface System
SISO=Space Informations Systems Operations
SM2=
SODA=
SOLID=
SPMD=Software Performance Monitoring Device
TAPE
TEK=
TMS=
TSO=
UA=
VA=
101=HAL/AP-101 Compiler
11.7=
12=
12.4=
12.5=
12.7=
12.8=
12.9=
13=
35=
36.0=
360=HAL/360 Compiler

PB -- Pre-build Assessment Data; Code changes detected earlier than Build. Used to track DRs against pre-build process (design/code inspection and unit test).
***=Has not yet been assessed.
C=DR should have been found by code inspection.
D=DR should have been found by design inspection.
T=DR should have been found by unit test.
000=DR should not have been found before build.

GO -- Verification assignment for Dept. HE3
The first character is a status.
P=Primary
S=Secondary
C=Close
J=Joint
The second character indicates a specific test analyst.

PR -- Pre-Build Assessment Reason; reason found test.

X -- T&O Closure Code; Test & Operations applicability to pass areas 1, 2, and 3. The three positions represent the three mass memory areas.
For non-code change dispositions:
Blank=Not Applicable to Area
N=No Dr
W=Waiver
O=Open
P=Patch
R=Release Note
S=Source Mod
D=System Deleted
U=User note
For code fix:
A "P" in each position indicates that the DR was patched in that area of mass memory.

BD -- Development Close Date (MM/DD/Y); Release/Target date.
Target is projected date of fix (MM/DD)
Release is date of build or other type of closure (MM/DD/Y)

BDYRMO -- Year-Month of Development Close Date

V -- Verification Status Data
Used by Tony Macina & Verification for waiver correlation.

G1 -- Verification Assignment for Dept. HF6
Dept. HF6 is a department within the Avionics Software Verification Dept., which reviews GN&C DRs.
The first character is a status:
P=Primary
S=Secondary
C=Closed
J=Joint
The second character indicates a specific test analyst.

G2 -- Verification Assignment for Dept. HC9
Dept. HC9 is a department within the Avionics Software Verification Dept., which reviews GN&C DRs.
The first character is a status:
P=Primary
S=Secondary
C=Closed
J=Joint
The second character indicates a specific test analyst.

G3 -- Verification Assignment for Dept. HC5
Dept. HC5 is a department within the Avionics Software Verification Dept., which reviews GN&C DRs.
The first character is a status:
P=Primary
S=Secondary
C=Closed
J=Joint
The second character indicates a specific test analyst.

G4 -- Verification Assignment for Dept. HB7
Dept. HB7 is a department within the Avionics Software Verification Dept., which reviews GN&C DRs.
The first character is a status:
P=Primary
S=Secondary
C=Closed
J=Joint
The second character indicates a specific test analyst.

G5 -- Verification Assignment for Dept. HF5
Dept. HF5 is a department within the Avionics Software Verification Dept., which reviews System Service DRs.
The first character is a status:
P=Primary
S=Secondary
C=Closed
J=Joint
The second character indicates a specific test analyst.

G6 -- Verification Assignment for Dept. HD4
The first character is a status:
P=Primary
S=Secondary
C=Closed
J=Joint
The second character indicates a specific test analyst.

G7 -- Verification Assignment for Dept. HF7
Dept. HF7 is a department within the Avionics Software
Verification Dept., which reviews Performance DRs. The first character is a status:
P=Primary
S=Secondary
C=Closed
J=Joint
The second character indicates a specific test analyst.

G8 -- Verification Assignment for Dept. HC8
Dept. HC8 is a department within the Avionics Software Verification Dept., which reviews Performance DRs. The first character is a status:
P=Primary
S=Secondary
C=Closed
J=Joint
The second character indicates a specific test analyst.

F -- Change/New Identifier
*=indicates changes since previous run.
N=New

PD -- SDL Build Date

G9 -- Verification Assignment for Dept. HD7
The first character is a status:
P=Primary
S=Secondary
C=Closed
J=Joint
The second character indicates a specific test analyst.

D -- Title/Description; condensed description of problem.

TN -- IBM transmittal date (MM/DD/Y)

TNYRMO -- Year-Month of IBM transmittal date (YMM)

FN -- NASA transmittal received date (MM/DD/Y)

FNYRMO -- Year-Month of NASA transmittal received date (YMM)

PF -- Principle Function Id
Not Used

TC -- Verification Test Code ID

TD -- Development Build Target ID; Development target date (MM/DD)

ST -- Status of the DR.
C=Closed
CC=Closed by FSW and Verification
CP: Closed with a patch
D: Verification Action Deferred
F: Fixed (SDL only)
M: Composite Hower (SDL)
N: Awaiting NASA/SSD approval
O: Open
OI: Planned development work will close the DR or applicability
OF: OFT is uncertain.
ON: Open with an OP note written
OP: Open patched
T: In system test (SDL)
V: Awaiting verification approval
VO: Waiting Closure Description
VX: Closed by Development; Awaiting review by Macina or Cutco.
X: Dummy Status used on entries for page control.

IMP -- Future System Closure Code; Used by verification to indicate how
the DR is being closed on the next system.

BL -- Verification Baseline ID; Used by verification for budgeting.
When a DR has been included in a man-power estimate, this is set.
The "blank" DRs indicate costs over the "baseline".

PN -- Program Name (SDL only)
VC -- Verification Closure Date

AD -- Action Department; OFT area responsible for fix.
AASD=Avionics Application Software Development
ASA=Avionics Software Arch/Sys Analysis
ASD=
ASSD=Avionics System Software Development
C71=
DASS=
DDI=Discrete Digital Input
DL=Downlist
D/L=Disorbit/Landing
EK=
EOS=Enhanced Operating System
FCOS=FLT Computer Operating System
FDH=
FSW=Flight Software
GNC=Guidance, Navigation and Control
GNCC=Guidance, Navigation and Control - Display
GNCD=Guidance, Navigation and Control - Ex/Seq/Guid
GNCE=Guidance, Navigation and Control - Nav & Spec Prod
GNCF=Guidance, Navigation and Control - Flt Ctrl/RM
GNC=Guidance, Navigation and Control - Loads
GNCE=Guidance, Navigation and Control
GNCC=Guidance, Navigation and Control
GNC=Guidance, Navigation and Control
GNC=Guidance, Navigation and Control
GNC=Guidance, Navigation and Control
HDW=Hardware
HD=IBM Department
HE=IBM Department
HF1=IBM Department
HF2=IBM Department
HF7=IBM Department
HF9=IBM Department
HG7=IBM Department
HG8=IBM Department
HH4=IBM Department
HH5=IBM Department
HH6=IBM Department
HH7=IBM Department
HH8=IBM Department
HH9=IBM Department
HK9=IBM Department
HR2=IBM Department
H/W=Hardware (EOS)
I2=Intermetrics Inc. (HAL)
KSC=Kennedy Space Center
OPE=IBM Operations
OPER=Operations
OSS=
OTH=
OWEG=IBM (Owega, NY)
PRC=Procedures (EOS)
PROC=Procedures
PYLD=Payload
RA=Requirements Analysis
RMS=Remote Manipulator System
RQR=Requirements
SC=System Control
SDL=Software Development Laboratory
SFSG=Shuttle Flight Support - GNC
SFSS=Shuttle Flight Support - SSW,VU,SM,DL,RMS
SI=System Integration
SID=System Integration
SM=Systems Management
SMP=SM Offline
SMPL=SM Payload
SS=Systems Software
SSCT=Top Level Design Team
SSW=System Software
SW=Software
SYSA=Systems Analysis Group
S/W=Software (EOS)
Tape
T+O=Test & Operations
T&O=Test & Operations
UI=User Interface
VCO=Vehicle Checkout
VU-Vehicle Utility
Appendix K

CR VARIABLE LIST

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILE_ID</td>
<td>File ID, always "P"</td>
</tr>
<tr>
<td>PCR_NUM</td>
<td>PCR Number</td>
</tr>
<tr>
<td>CR_NUM</td>
<td>CR Number</td>
</tr>
<tr>
<td>CRREV_ID</td>
<td>CR Revision ID</td>
</tr>
<tr>
<td>OASCBEF</td>
<td>OASCB Effectivity</td>
</tr>
<tr>
<td>RRBDT</td>
<td>RRB Disposition Date (MM/DD/Y)</td>
</tr>
<tr>
<td>RRBYRMO</td>
<td>Year-Month of RRB Disposition (YMM)</td>
</tr>
<tr>
<td>CCBDDT</td>
<td>CCB Disposition Date (MM/DD/Y)</td>
</tr>
<tr>
<td>CCBYRMO</td>
<td>Year-Month of CCB Disposition (YMM)</td>
</tr>
<tr>
<td>OASCBDT</td>
<td>OASCB Disposition Date (MM/DD/Y)</td>
</tr>
<tr>
<td>OASCBYRM</td>
<td>Year-Month of OASCB Disposition (YMM)</td>
</tr>
<tr>
<td>RRBDIS</td>
<td>RRB Disposition</td>
</tr>
<tr>
<td>CCBDIS</td>
<td>CCB Disposition</td>
</tr>
<tr>
<td>OASCBDIS</td>
<td>OASCB Disposition</td>
</tr>
<tr>
<td>DEPT1_ID</td>
<td>Department 1 ID</td>
</tr>
<tr>
<td>DEPT2_ID</td>
<td>Department 2 ID</td>
</tr>
<tr>
<td>DEPT3_ID</td>
<td>Department 3 ID</td>
</tr>
<tr>
<td>DEPT4_ID</td>
<td>Department 4 ID</td>
</tr>
<tr>
<td>DEPT5_ID</td>
<td>Department 5 ID</td>
</tr>
<tr>
<td>DEPT6_ID</td>
<td>Department 6 ID</td>
</tr>
<tr>
<td>DEPT7_ID</td>
<td>Department 7 ID</td>
</tr>
<tr>
<td>DEPT1_VT</td>
<td>Department 1 Vote</td>
</tr>
<tr>
<td>DEPT2_VT</td>
<td>Department 2 Vote</td>
</tr>
<tr>
<td>DEPT3_VT</td>
<td>Department 3 Vote</td>
</tr>
<tr>
<td>DEPT4_VT</td>
<td>Department 4 Vote</td>
</tr>
<tr>
<td>DEPT5_VT</td>
<td>Department 5 Vote</td>
</tr>
<tr>
<td>DEPT6_VT</td>
<td>Department 6 Vote</td>
</tr>
<tr>
<td>DEPT7_VT</td>
<td>Department 7 Vote</td>
</tr>
<tr>
<td>BCB_EF</td>
<td>Baseline Control Board Effectivity</td>
</tr>
<tr>
<td>DTRCD</td>
<td>Date Received</td>
</tr>
<tr>
<td>YRMOREC</td>
<td>Year-Month Received (YMM)</td>
</tr>
<tr>
<td>FNLDIS</td>
<td>Final Disposition</td>
</tr>
<tr>
<td>PRCTL_ID</td>
<td>Print Control ID</td>
</tr>
<tr>
<td>CATCODE</td>
<td>Category Code</td>
</tr>
<tr>
<td>BCB16</td>
<td>BCB Indicator for Release 16</td>
</tr>
<tr>
<td>NNLSTS1</td>
<td>Never-Never List Indicator for STS-1</td>
</tr>
<tr>
<td>BCB17</td>
<td>BCB Indicator for Release 17</td>
</tr>
<tr>
<td>NNLRL17</td>
<td>Never-Never List Indicator for Release 17</td>
</tr>
<tr>
<td>BCBRK18</td>
<td>BCB Indicator for Release 18</td>
</tr>
<tr>
<td>NNLR18</td>
<td>Never-Never List Indicator for Release 18</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>BCBR19</td>
<td>BCB Indicator for Release 19</td>
</tr>
<tr>
<td>NNLR19</td>
<td>Never-Never List Indicator for Release 19</td>
</tr>
<tr>
<td>BCBR20</td>
<td>BCB Indicator for Release 20</td>
</tr>
<tr>
<td>NNLR20</td>
<td>Never-Never List Indicator for Release 20</td>
</tr>
<tr>
<td>BCBR18.3</td>
<td>BCB Indicator for Release 18.30 (STS-3)</td>
</tr>
<tr>
<td>BCBR18.4</td>
<td>BCB Indicator for Release 18.40 (STS-4)</td>
</tr>
<tr>
<td>OV99SYS</td>
<td>BCB Indicator for OV99 System</td>
</tr>
<tr>
<td>NAIN</td>
<td>Not Applicable to Pass Indicator</td>
</tr>
<tr>
<td>BFSIN</td>
<td>BFS Only Indicator</td>
</tr>
<tr>
<td>RELINVER</td>
<td>Release 16, 17, 18, 19, 20 Indicators,</td>
</tr>
<tr>
<td></td>
<td>Verification</td>
</tr>
<tr>
<td>TITLE</td>
<td>Title</td>
</tr>
<tr>
<td>D1IMPYR1</td>
<td>Dept. 1 Manpower Impact - Year 1</td>
</tr>
<tr>
<td>D1IMPYR2</td>
<td></td>
</tr>
<tr>
<td>D1IMPYR3</td>
<td></td>
</tr>
<tr>
<td>D1IMPYR4</td>
<td></td>
</tr>
<tr>
<td>D2IMPYR1</td>
<td>Dept. 2 Manpower Impact - Year 1</td>
</tr>
<tr>
<td>D2IMPYR2</td>
<td></td>
</tr>
<tr>
<td>D2IMPYR3</td>
<td></td>
</tr>
<tr>
<td>D2IMPYR4</td>
<td></td>
</tr>
<tr>
<td>D3IMPYR1</td>
<td>Dept. 3 Manpower Impact - Year 1</td>
</tr>
<tr>
<td>D3IMPYR2</td>
<td></td>
</tr>
<tr>
<td>D3IMPYR3</td>
<td></td>
</tr>
<tr>
<td>D3IMPYR4</td>
<td></td>
</tr>
<tr>
<td>D4IMPYR1</td>
<td>Dept. 4 Manpower Impact - Year 1</td>
</tr>
<tr>
<td>D4IMPYR2</td>
<td></td>
</tr>
<tr>
<td>D4IMPYR3</td>
<td></td>
</tr>
<tr>
<td>D4IMPYR4</td>
<td></td>
</tr>
<tr>
<td>D5IMPYR1</td>
<td>Dept. 5 Manpower Impact - Year 1</td>
</tr>
<tr>
<td>D5IMPYR2</td>
<td></td>
</tr>
<tr>
<td>D5IMPYR3</td>
<td></td>
</tr>
<tr>
<td>D5IMPYR4</td>
<td></td>
</tr>
<tr>
<td>D6IMPYR1</td>
<td>Dept. 6 Manpower Impact - Year 1</td>
</tr>
<tr>
<td>D6IMPYR2</td>
<td></td>
</tr>
<tr>
<td>D6IMPYR3</td>
<td></td>
</tr>
<tr>
<td>D6IMPYR4</td>
<td></td>
</tr>
<tr>
<td>D7IMPYR1</td>
<td>Dept. 7 Manpower Impact - Year 1</td>
</tr>
<tr>
<td>D7IMPYR2</td>
<td></td>
</tr>
<tr>
<td>D7IMPYR3</td>
<td></td>
</tr>
<tr>
<td>D7IMPYR4</td>
<td></td>
</tr>
<tr>
<td>D1TOTIMP</td>
<td>Dept. 1 Total Manpower Impact</td>
</tr>
<tr>
<td>D2TOTIMP</td>
<td>Dept. 2 Total Manpower Impact</td>
</tr>
<tr>
<td>D3TOTIMP</td>
<td>Dept. 3 Total Manpower Impact</td>
</tr>
<tr>
<td>D4TOTIMP</td>
<td>Dept. 4 Total Manpower Impact</td>
</tr>
<tr>
<td>D5TOTIMP</td>
<td>Dept. 5 Total Manpower Impact</td>
</tr>
<tr>
<td>D6TOTIMP</td>
<td>Dept. 6 Total Manpower Impact</td>
</tr>
<tr>
<td>D7TOTIMP</td>
<td>Dept. 7 Total Manpower Impact</td>
</tr>
<tr>
<td>COMMENT1</td>
<td>Comments (Part 1)</td>
</tr>
<tr>
<td>COMMENT2</td>
<td>Comments (Part 2, Continuation of Part 1)</td>
</tr>
<tr>
<td>VCOS1</td>
<td>Early Release Indicator for Vehicle Checkout System #1</td>
</tr>
</tbody>
</table>
Early Release Indicator for Vehicle Checkout System #2
Early Release Indicator for Vehicle Checkout System #3
Early Release Indicator for Palmdale System #1
Early Release Indicator for System Software #1
Early Release Indicator for Entry Closed Loop (10/03/77)
Early Release Indicator for Palmdale System #2 (12/05/77)
Early Release Indicator for System Software #2
Early Release Indicator for Abort Once Around (02/06/78)
Early Release Indicator for Palmdale System #3 (03/06/78)
Early Release Indicator for Entry System (05/01/78)
Early Release Indicator for KSC System (06/05/78)
Early Release Indicator for Entry Update #1 (07/03/78)
Early Release Indicator for OPT1 FACI System (09/04/78)
Early Release Indicator for Release 12 (12/11/78)
Early Release Indicator for Cycle 2 I-Loads (02/05/79)
Early Release Indicator for Release 13
Early Release Indicator for Release 14
Early Release Indicator for Release 15
Appendix L

CR LEGEND

FILE_ID -- File ID
Always "P"

PCR_NUM -- PCR Number; a unique number for tracking purposes.

CR_NUM -- CR Number; a unique number for tracking purposes.

CRREV_ID -- CR Revision ID; reflects re-issues of change requests due
to changes.
 A=First Reissue
 B=Second Reissue
 C=Third Reissue
 D=Fourth Reissue
 E=Fifth Reissue
 F=Sixth Reissue
 G=Seventh Reissue
 H= Eighth Reissue

OASCB_EF -- Orbiter Avionics Software Control Board Effectivity; the
Release ID of the mission the OASCB stated this CR was
approved for. This fell into disuse when a separate
board determined mission effectivity.

ALT=Approach and Landing Test
BLD=
BOTH=Both ALT and OFT Missions
DIT=Data ID Table
EOS=Extended Operating System
FEID=Flight Equipment Interface Development
FRF=STS-1 Flight Readiness Firing
IPL=Initial Program Load
MIP=
MMP=Mass Memory Procedures Document CR
N/A=Not Applicable
OFT=Orbital Flight Test
OFT1=Orbital Flight Test 1
OFT2=Orbital Flight Test 2
OFT3=Orbital Flight Test 3
OTHR=Non-Primary Avionics Software CR
OV99=Orbital Vehicle 99 Checkout System
POFT=Post-OFT (Operational Shuttle)
PRI=Primary Avionics Software CR
PS-1=Patch Set 1
PS-2 = Patch Set 2
R-21 = Release 21
ROM = Read Only Memory
SCL =
SDL = Software Development Laboratory
SPS = Shuttle Flight Support
SID = System Integration Department
SPF = Software Production Facility
SPF2 = Software Production Facility 2
SS-1 = STS-1 Mission
SS-2 = STS-2 Mission
SS-3 = STS-3 Mission
SS-6 = STS-6 Mission
SS-7 = STS-7 Mission
SS1 = STS-1 Mission
SS2 = STS-2 Mission
STS = STS Mission
STS1 = STS-1 Mission
STS2 = STS-2 Mission
STS3 = STS-3 Mission
STS4 = STS-4 Mission
STS5 = STS-5 Mission
STS6 = STS-6 Mission
V 19 = Software Release 19
V 21 = Software Release 21
V-05 = Software Release 5
V-11 = Software Release 11
V-12 = Software Release 12
V-16 = Software Release 16
V-17 = Software Release 17
V-18 = Software Release 18
V-19 = Software Release 19
V-20 = Software Release 20
V-21 = Software Release 21
VERF = Verification
V18 = Software Release 18
V19 = Software Release 19
18 = Software Release 18 (STS-3)
19 = Software Release 19 (STS-5, STS-6)
20 = Software Release 20 (STS-7, STS-8)

RRBDT -- RRB Disposition Date (MM/DD/Y)
RRBYRMO -- Year-Month of RRB Disposition (YMM)
CCBDT -- Change Control Board Disposition Date (MM/DD/Y)
CCBYRMO -- Year-Month of CCB Disposition (YMM)
OASCBDT -- OASCB Disposition Date (MM/DD/Y)
OASCBYRM -- Year-Month of OASCB Disposition (YMM)
RRBDIS -- RRB Disposition
A=Approved
D=Disapproved
N=Invalid Entry; There should be no entries of "N".
R=Invalid Entry; There should be no entries of "R".
W=Withdrawn
I=Invalid Entry; There should be no entries of "I".

CCBDIS -- CCB Disposition
A=Approved
D=Disapproved
W=Withdrawn
O=Invalid Entry; There should be no entries of "O".

OASCBDIS -- OASCB Disposition
A=Approved
D=Disapproved
W=Withdrawn

DEPT1_ID -- Department 1 ID
GNC=Guidance Navigation and Control
GNC/C=Guidance Navigation and Control--Ex/Seq/Gui

DEPT2_ID -- Department 2 ID
SM=Systems Management
SM/PL=Systems Management/Payload Management
SYS=Systems Analysis

DEPT3_ID -- Department 3 ID
FCOS/C=Flight Computer Operation System/Configuration Inspection
FCOS/UI=Flight Computer Operation System/User Interface

DEPT4_ID -- Department 4 ID
VERIF=Verification

DEPT5_ID -- Department 5 ID
SDL=Software Development Laboratory

DEPT6_ID -- Department 6 ID
SMP/DL=Systems Management Offline/Downlist
SYS ANAL=Systems Analysis
SYS ANAL=Systems Analysis

DEPT7_ID -- Department 7 ID
FEID=Flight Equipment Interface Development
PL=Payload
SM/PL=Systems Management/Payload

DEPT_VT -- Department 1 Vote
A=Approved by this Department
C=Invalid Entry; There should be no entries of "C".
N=Not Applicable to this Department
<table>
<thead>
<tr>
<th>DEPT2 VT -- Department 2 Vote</th>
<th>DEPT3 VT -- Department 3 Vote</th>
<th>DEPT4 VT -- Department 4 Vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>A=Approved by this Department</td>
<td>A=Approved by this Department</td>
<td>A=Approved by this Department</td>
</tr>
<tr>
<td>N=Not Applicable to this Department</td>
<td>N=Not Applicable to this Department</td>
<td>N=Not Applicable to this Department</td>
</tr>
<tr>
<td>R=Reject Current CR; Awaiting a Revision.</td>
<td>R=Reject Current CR; Awaiting a Revision.</td>
<td>R=Reject Current CR; Awaiting a Revision.</td>
</tr>
<tr>
<td>U=Vote Pending</td>
<td>U=Vote Pending</td>
<td>U=Vote Pending</td>
</tr>
<tr>
<td>W=Recommend Withdrawal</td>
<td>W=Recommend Withdrawal</td>
<td>W=Recommend Withdrawal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPT5 VT -- Department 5 Vote</th>
<th>DEPT6 VT -- Department 6 Vote</th>
<th>DEPT7 VT -- Department 7 Vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>A=Approved by this Department</td>
<td>A=Approved by this Department</td>
<td>A=Approved by this Department</td>
</tr>
<tr>
<td>N=Not Applicable to this Department</td>
<td>N=Not Applicable to this Department</td>
<td>N=Not Applicable to this Department</td>
</tr>
<tr>
<td>R=Reject Current CR; Awaiting a Revision.</td>
<td>R=Reject Current CR; Awaiting a Revision.</td>
<td>R=Reject Current CR; Awaiting a Revision.</td>
</tr>
<tr>
<td>U=Vote Pending</td>
<td>U=Vote Pending</td>
<td>U=Vote Pending</td>
</tr>
<tr>
<td>W=Recommend Withdrawal</td>
<td>W=Recommend Withdrawal</td>
<td>W=Recommend Withdrawal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BCB EF -- Baseline Control Board Effectivity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AC=Ascent 09/04/78 Drop</td>
<td>AOA=Abort Once Around</td>
</tr>
<tr>
<td>ASC=Ascent 09/04/78 Drop</td>
<td></td>
</tr>
</tbody>
</table>

0=Invalid Entry; There should be no entries of "0".
R=Reject Current CR; Awaiting a Revision.
U=Vote Pending
W=Recommend Withdrawal
<table>
<thead>
<tr>
<th>AU</th>
<th>Ascent Update 12/11/78</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td>Backup Flight System</td>
</tr>
<tr>
<td>CY-3</td>
<td>Cycle 3 I-Load Update</td>
</tr>
<tr>
<td>EC</td>
<td>Events Controller</td>
</tr>
<tr>
<td>ECL</td>
<td>Entry Closed Loop 10/03/77</td>
</tr>
<tr>
<td>ENT</td>
<td>Entry 05/01/78</td>
</tr>
<tr>
<td>EU1</td>
<td>Entry Update #1 07/03/78</td>
</tr>
<tr>
<td>EU2</td>
<td>Entry Update #2 09/04/78</td>
</tr>
<tr>
<td>EU3</td>
<td>Entry Update #3 12/11/78</td>
</tr>
<tr>
<td>GNC</td>
<td>Guidance, Navigation and Control</td>
</tr>
<tr>
<td>KSC</td>
<td>Kennedy Space Center</td>
</tr>
<tr>
<td>KCSU</td>
<td>VU/Downlist KSC Update 09/04/78</td>
</tr>
<tr>
<td>N/A</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>NA</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>NNL</td>
<td>Never-Never List (ALT); Approved CRs that were not implemented.</td>
</tr>
<tr>
<td>NNL1</td>
<td>Never-Never List (STS-1); Approved CRs that were not implemented.</td>
</tr>
<tr>
<td>NNL2</td>
<td>Never-Never List (STS-2); Approved CRs that were not implemented.</td>
</tr>
<tr>
<td>OC</td>
<td>Orbit Closed Loop 05/01/78</td>
</tr>
<tr>
<td>OCL</td>
<td>Orbit Closed Loop 05/01/78</td>
</tr>
<tr>
<td>OFTU</td>
<td>Orbital Flight Test Update</td>
</tr>
<tr>
<td>OFT1</td>
<td>Orbital Flight Test 1</td>
</tr>
<tr>
<td>ONLY</td>
<td></td>
</tr>
<tr>
<td>ORB</td>
<td>Orbit 09/04/78</td>
</tr>
<tr>
<td>OU</td>
<td>Orbit Update 12/11/78</td>
</tr>
<tr>
<td>OV99</td>
<td>Orbital Vehicle 99 Checkout System</td>
</tr>
<tr>
<td>PDP</td>
<td>Payload Bay Door System 05/01/78</td>
</tr>
<tr>
<td>PMD1</td>
<td>Palmdale #1</td>
</tr>
<tr>
<td>PMD2</td>
<td>Palmdale #2</td>
</tr>
<tr>
<td>PMD3</td>
<td>Palmdale #3</td>
</tr>
<tr>
<td>RMSC</td>
<td>Early RMS Drop</td>
</tr>
<tr>
<td>RMSD</td>
<td>Early RMS Drop</td>
</tr>
<tr>
<td>R17</td>
<td>Release 17</td>
</tr>
<tr>
<td>R18</td>
<td>Release 18</td>
</tr>
<tr>
<td>R19</td>
<td>Release 19</td>
</tr>
<tr>
<td>R21</td>
<td>Release 21</td>
</tr>
<tr>
<td>R36</td>
<td>Old SDL Release 36</td>
</tr>
<tr>
<td>SMC</td>
<td></td>
</tr>
<tr>
<td>SMC3</td>
<td></td>
</tr>
<tr>
<td>SM2</td>
<td></td>
</tr>
<tr>
<td>SS-1</td>
<td>STS-1 Mission</td>
</tr>
<tr>
<td>SS-2</td>
<td>STS-2 Mission</td>
</tr>
<tr>
<td>SSC</td>
<td></td>
</tr>
<tr>
<td>SSC3</td>
<td></td>
</tr>
<tr>
<td>SSW1</td>
<td></td>
</tr>
<tr>
<td>SSW2</td>
<td></td>
</tr>
<tr>
<td>SS1+</td>
<td></td>
</tr>
<tr>
<td>SS1C</td>
<td></td>
</tr>
<tr>
<td>SS2C</td>
<td></td>
</tr>
<tr>
<td>STS2</td>
<td>STS-2 Mission</td>
</tr>
</tbody>
</table>
STS3=STS-3 Mission
STS4=STS-4 Mission
STS5=STS-5 Mission
STS6=STS-6 Mission
STS9=STS-9 Mission
TBS=
V-18=Software Release 18
V-19=Software Release 19
V-20=Software Release 20
V-21=Software Release 21
VCAN=
VC1=Vehicle Checkout #1
VC2=Vehicle Checkout #2
VC3=Vehicle Checkout #3
OFTU=OFT (STS-1) Update 12/11/78
10.0=Software Release 10.0
10.1=Software Release 10.1

DTRECD -- Date Received
YRREC -- Year-Month Received (YMM)

FNLDIS -- Final Disposition
APPROVD=Approved
DISAPP=Disapproved
DISAPPV=Disapproved
WITHDRN=Withdrawn

PRCTL_ID -- Print Control ID
 90=Used to suppress printing of a record for "current record"
 reports.

CATCODE -- Category Code
 CONCE=
 FO/FS=Fail Operational/Fail Safe Study
 PCRC=
REQM-Requirements
REQM=Requirements
SCRUB=Scrub Library
02/26/1D=Invalid Entry; There should be no "02/26/1D" entries.
03/04/1A=Invalid Entry; There should be no "03/04/1A" entries.
03/04/1D=Invalid Entry; There should be no "03/04/1D" entries.
03/04/1W=Invalid Entry; There should be no "03/04/1W" entries.

BCBR16 -- Baseline Control Board Indicator for Release 16
 B=This CR Appears on BCB 5110 Listings.

NNLSTS1 -- Never-Never List Indicator for STS-1. Never-Never lists
 provide accounting for CRs that were approved, but never
 implemented.
 *=This CR appears in Never-Never list.
 N=This CR appears in Never-Never list.
BCBR17 -- Baseline Control Board Indicator for Release 17
B=This CR Appears on BCB 5110 Listings
V=Invalid Entry; There should be no "V" entries.

NNLR17 -- Never-Never List Indicator for Release 17. Never-Never lists provide accounting for CRs that were approved, but never implemented.
*=This CR appears in a Never-Never List.
N=This CR appears in a Never-Never List.

BCBR18 -- Baseline Control Board Indicator for Release 18
B=This CR Appears on BCB 5110 Listings.

NNLR18 -- Never-Never List Indicator for Release 18. Never-Never lists provide accounting for CRs that were approved, but never implemented.
*=This CR appears in a Never-Never List.
N=This CR appears in a Never-Never List.

BCBR19 -- Baseline Control Board Indicator for Release 19
B=This CR Appears on BCB 5110 Listings.

NNLR19 -- Never-Never List Indicator for Release 19. Never-Never lists provide accounting for CRs that were approved, but never implemented.
*=This CR appears in a Never-Never List.
N=This CR appears in a Never-Never List.

BCBR20 -- Baseline Control Board Indicator for Release 20.
B=This CR Appears on BCB 5110 Listings.

NNLR20 -- Never-Never List Indicator for Release 20. Never-Never lists provide accounting for CRs that were approved, but never implemented.
*=This CR appears in a Never-Never List.
N=This CR appears in a Never-Never List.

BCBR18_3 -- Baseline Control Board Indicator for Release 18.30 (STS-3)
B=This CR Appears on BCB 5110 Listings.

BCBR18_4 -- Baseline Control Board Indicator for Release 18.40 (STS-4)
B=This CR Appears on BCB 5110 Listings.

OV99SYS -- Baseline Control Board Indicator for Orbital Vehicle 99 Checkout System.
B=This CR Appears on BCB 5110 Listings.

NAIN -- Not Applicable to Pass Indicator
D=Invalid Entry; There should be no "D" entries.
M=Invalid Entry; There should be no "M" entries.
N=Invalid Entry; There should be no "N" entries.
P=Invalid Entry; There should be no "P" entries.
1=OTT
2=OTT
3=VEH ONLY
4=IPL
5=GHEH R/W
6=MIP
7=BFS
8=DLL
9=MISC

BFSIN -- Backup Flight System Only Indicator
*This CR is applicable to Backup Flight System only.

RELINVER -- Release 16,17,18,19,20 Indicators - Verification
B=This CR Appears in BCB 5110 Data Base.
V=This CR Appears in Verification CR Data Base.

TITLE -- Title
D1IMPYR1 -- Department 1 Manpower Impact - Year 1
D1IMPYR2 -- Department 1 Manpower Impact - Year 2
D1IMPYR3 -- Department 1 Manpower Impact - Year 3
D1IMPYR4 -- Department 1 Manpower Impact - Year 4
D2IMPYR1 -- Department 2 Manpower Impact - Year 1
D2IMPYR2 -- Department 2 Manpower Impact - Year 2
D2IMPYR3 -- Department 2 Manpower Impact - Year 3
D2IMPYR4 -- Department 2 Manpower Impact - Year 4
D3IMPYR1 -- Department 3 Manpower Impact - Year 1
D3IMPYR2 -- Department 3 Manpower Impact - Year 2
D3IMPYR3 -- Department 3 Manpower Impact - Year 3
D3IMPYR4 -- Department 3 Manpower Impact - Year 4
D4IMPYR1 -- Department 4 Manpower Impact - Year 1
D4IMPYR2 -- Department 4 Manpower Impact - Year 2
D4IMPYR3 -- Department 4 Manpower Impact - Year 3
D4IMPYR4 -- Department 4 Manpower Impact - Year 4
D5lMPYR1 -- Department 5 Manpower Impact -- Year 1
D5lMPYR2 -- Department 5 Manpower Impact -- Year 2
D5lMPYR3 -- Department 5 Manpower Impact -- Year 3
D5lMPYR4 -- Department 5 Manpower Impact -- Year 4
D6lMPYR1 -- Department 6 Manpower Impact -- Year 1
D6lMPYR2 -- Department 6 Manpower Impact -- Year 2
D6lMPYR3 -- Department 6 Manpower Impact -- Year 3
D6lMPYR4 -- Department 6 Manpower Impact -- Year 4
D7lMPYR1 -- Department 7 Manpower Impact -- Year 1
D7lMPYR2 -- Department 7 Manpower Impact -- Year 2
D7lMPYR3 -- Department 7 Manpower Impact -- Year 3
D7lMPYR4 -- Department 7 Manpower Impact -- Year 4
D1TOTIMP -- Department 1 Total Manpower Impact
D2TOTIMP -- Department 2 Total Manpower Impact
D3TOTIMP -- Department 3 Total Manpower Impact
D4TOTIMP -- Department 4 Total Manpower Impact
D5TOTIMP -- Department 5 Total Manpower Impact
D6TOTIMP -- Department 6 Total Manpower Impact
D7TOTIMP -- Department 7 Total Manpower Impact

COMMENT1 -- Comments (Part 1)
COMMENT2 -- Comments (Part 2, Continuation of Part 1)

VCOS1 -- Early Release Indicator for Vehicle Checkout System #1.
*This CR Appears in BCB 5110 Data Bases
C=This CR Appears in old BCB Charts
D=This CR Appears in Development Plans Only

VCOS2 -- Early Release Indicator for Vehicle Checkout System #2.
*This CR Appears in BCB 5110 Data Bases
C=This CR Appears in old BCB Charts
D=This CR Appears in Development Plans Only
VCOS3 -- Early Release Indicator for Vehicle Checkout System #3.
 *=This CR Appears in BCB 5110 Data Bases
 C=This CR Appears in old BCB Charts
 D=This CR Appears in Development Plans Only

PALMS1 -- Early Release Indicator for Palmdale System #1.
 *=This CR Appears in BCB 5110 Data Bases
 C=This CR Appears in old BCB Charts
 D=This CR Appears in Development Plans Only

SS1 -- Early Release Indicator for System Software #1.
 *=This CR Appears in BCB 5110 Data Bases
 C=This CR Appears in old BCB Charts
 D=This CR Appears in Development Plans Only

ENTRYCL -- Early Release Indicator for Entry Closed Loop (10/03/77)
 *=This CR Appears in BCB 5110 Data Bases
 C=This CR Appears in old BCB Charts
 D=This CR Appears in Development Plans Only

PALMS2 -- Early Release Indicator for Palmdale System #2 (12/05/77)
 *=This CR Appears in BCB 5110 Data Bases
 C=This CR Appears in old BCB Charts
 D=This CR Appears in Development Plans Only

SS2 -- Early Release Indicator for System Software #2
 *=This CR Appears in BCB 5110 Data Bases
 C=This CR Appears in old BCB Charts
 D=This CR Appears in Development Plans Only

AOA -- Early Release Indicator for Abort Once Around (02/05/78)
 *=This CR Appears in BCB 5110 Data Bases
 C=This CR Appears in old BCB Charts
 D=This CR Appears in Development Plans Only

PALMS3 -- Early Release Indicator for Palmdale System #3 (03/06/78)
 *=This CR Appears in BCB 5110 Data Bases
 C=This CR Appears in old BCB Charts
 D=This CR Appears in Development Plans Only

ENTRYS -- Early Release Indicator for Entry System (05/01/78)
 *=This CR Appears in BCB 5110 Data Bases
 C=This CR Appears in old BCB Charts
 D=This CR Appears in Development Plans Only

KSCS -- Early Release Indicator for KSC System (06/05/78)
 *=This CR Appears in BCB 5110 Data Bases
 C=This CR Appears in old BCB Charts
 D=This CR Appears in Development Plans Only

ENTRYUD1 -- Early Release Indicator for Entry Update #1 (07/03/78)
 *=This CR Appears in BCB 5110 Data Bases
C=This CR Appears in old BCB Charts
D=This CR Appears in Development Plans Only

OFT1FACI -- Early Release Indicator for OFT1 FACI System (09/04/78)
*=This CR Appears in BCB 5110 Data Bases
C=This CR Appears in old BCB Charts
D=This CR Appears in Development Plans Only

R12 -- Early Release Indicator for Release 12 (12/11/78)
*=This CR Appears in BCB 5110 Data Bases
C=This CR Appears in old BCB Charts
D=This CR Appears in Development Plans Only

CYC2ILD -- Early Release Indicator for Cycle 2 I-Loads (02/05/79)
*=This CR Appears in BCB 5110 Data Bases
C=This CR Appears in old BCB Charts
D=This CR Appears in Development Plans Only

R13 -- Early Release Indicator for Release 13
*=This CR Appears in BCB 5110 Data Bases
C=This CR Appears in old BCB Charts
D=This CR Appears in Development Plans Only

R14 -- Early Release Indicator for Release 14
*=This CR Appears in BCB 5110 Data Bases
C=This CR Appears in old BCB Charts
D=This CR Appears in Development Plans Only

R1 -- Early Release Indicator for Release 15
*=This CR Appears in BCB 5110 Data Bases
C=This CR Appears in old BCB Charts
D=This CR Appears in Development Plans Only
Appendix M

COST DATA CHARTS

Data, provided by IBM, pertaining to costs for development and verification were examined. Data were plotted over time using monthly and cumulative values to observe how the amount and rate of spending changed over time. Change data were also plotted in conjunction with cost data to visualize how they changed concurrently.
Figure 2: Total hours IBM billed NASA for development.
Figure 3: Total hours IBM billed for verification.
Figure 4: Cumulative total man-hours IBM billed NASA for development.
Figure 5. Cumulative total man-hours IBM billed NASA for verification.
Figure 6: Development and verification cost with scaled change and discrepancy reports frequency.
Appendix N

CHANGE DATA CHARTS

The change data base consisted of change and discrepancy reports. Fre-
quency of selected variables over time and values of variables were
plotted in an effort to determine what data were available and their
generic characteristics. Two or more variables were used in some plots
to get a better understanding of the data.
Figure 7: Frequency of DR's logged in by year-month.
Figure 8: Frequency of DR's for mission identifier (MISSN_ID).
Figure 9: DR frequency for reporting facility (FAC).
Figure 10: DR frequency for action department (AD).
Figure 11: DR frequency for priority (P).
Figure 12: DR frequency for status (ST).
Figure 13: DR frequency by year-month logged in (_ODYRMO) and priority (P).
Figure 14: Frequency of priority 1 DR's logged in by year-month (_ODYRMO)._
Figure 15: Frequency of priority 2 DR's logged in by year-month (ODYRMO).
Figure 16: Frequency of priority 3 DR's logged in by year-month (ODYRMO).
Figure 17: Frequency of priority 4 DR's logged in by year-month (ODYRMO).
Figure 18: Frequency of priority 5 DR's logged in by year-month (ODYRMO).
Figure 19: Frequency of priority 9 DR's logged in by year-month (ODYRHO).
Figure 20: Priority (P) of DR's for mission identifier (MISSN_ID).
Figure 21: Priority (P) of DR's from a reporting facility (FAC).
Figure 22: Frequency of priority 1 DR's from a reporting facility (FAC).
Figure 23: Frequency of priority 2 DR's from a reporting facility (FAC).
Figure 24: Frequency of priority 3 DR's from a reporting facility (FAC).
Figure 25: Frequency of Priority 4 DR's from a reporting facility (FAC).
Figure 26: Frequency of priority 5 DR's from a reporting facility (FAC).
Figure 27: Frequency of priority 9 DR's from a reporting facility (FAC).
Figure 28: Number of DR's logged without a mission identifier (MISSN_ID).
Figure 29: Number of DR's logged for site/test unique patch DR's (MISSN_ID=A).
Figure 30: Number of DR's logged for PHD3 (MISSN_ID=B).
Figure 31: Number of DR's logged for ECL (HISN_ID=C).
Figure 32: Number of DR's logged for SSWI (NISSN_ID-D).
Figure 33: Number of DR's logged for JSC form 1541 (Mission_ID=E).
Figure 34: Number of DR's logged for release 19, floor system STS-5 (MISSN_1D=F).
Figure 35: Number of DR's logged for PHD2 (MISSN_ID=G).
Figure 36: Number of DU's logged for AOA (WISTN_IDM).
Figure 37: Number of DR's logged for KSC (MISSN_ID=K).

- 137 -
Figure 38: Number of DR's logged for STS-1, FUP5/FLT (MISSN_ID=L).
Figure 39: Number of DR's logged for STS-1, FUP4 (MISSION_ID=M).
Figure 40: Number of DR's logged for entry (MISSN_ID=N).
Figure 4.1: Number of DR's logged for PHI (HISN-ID-P).
Figure 42: Number of DR's logged for STS-2, R18V21 flight system (MISSN_ID=R).
Figure 43: Number of DR's logged for STS-2, H18V11 field system (MISSN_ID=R1).
Figure 44: Number of DR's logged for STS-2, R18V12 field system (MISSN_ID=R2).
Figure 45: Number of DR's logged for STS-3, R18V30 flight system (MISSN_ID=R3).
Figure 46: Number of DR's logged for STS-4, R18V45 flight system (MISSN_ID=R4).
Figure 47: Number of DR's logged for OV-99, R18V90 field system (ISSN_ID=R9).
Figure 48: Number of DR's logged for SSN2 (MISSN_ID=5).
Figure 49: Number of DF's logged for SPF, release 1 (MISSN_ID=S1).
Figure 50: Number of DR's logged for SDL, release 36 (MISSN_ID=36).
Figure 51: Number of DR's logged for SDL, release 37 (MISSN_ID=S7).
Figure 52: Number of DR's logged for OPT1 (MISSN_ID=T).
Figure 53: Number of DR's logged for entry update 1 (ISSN_ID=U).
Figure 54: Number of ER's logged for STS-2, R17V5 (MISSN_ID-W).
Figure 55: Number of DR's logged for STS-1, FUPl (MISSN_ID=X).
Figure 56: Number of DR's logged for STS-1, FUF2 (MISSN_ID=1).
Figure 57: Number of DR's logged for STS-1, FUP3 (MISSN_ID-Z).
Figure 58: Total number of DR's logged for STS-1, FUP4 (MISSN_ID=H) and STS-1, FUP5/FLT (MISSN_ID=I).
Figure 59: Total number of DR's logged for STS-2 (MISSN_ID=R), STS-2 (MISSN_ID=R1), STS-2 (MISSN_ID=R2), STS-3 (MISSN_ID=R3), and STS-4 (MISSN_ID=R4).
Figure 60: Total number of DR's logged for SDL releases 36 and 37 (MISSN_ID=S6 and S7).
Figure 61: Total number of Dr's logged for STS-1: FUP1 (MISSN_ID=X), FUP2 (MISSN_ID=Y), and FUP3 (MISSN_ID=Z).
Figure 62: CR frequency for department 1 manpower impact, year 1 (D1IMPYR1).
Figure 63: CR frequency for department 1 manpower impact, year 2 (D11MPYR2).
Figure 64: CR frequency for department 1 manpower impact, year 3 (DIMF1YR3).
Figure 65: CR frequency for department 1 manpower impact, year 4 (D1M4).
Figure 66: CR frequency for department 2 manpower impact, year 1 (DIMPYR1).
Figure 67: Frequency for department 2 manpower impact, year 2 (D2MPYRZ).
Figure 68: CR frequency for department 2 manpower impact, year 3 (D2IMPYR3).
Figure 69: CR frequency for department 2 manpower impact, year 4 (D2IMPYR4).
Figure 70: CR frequency for department 3 manpower impact, year 1 (D31MPYR1).
Figure 71: CR frequency for department 3 manpower impact, year 2 (D3IMFYR2).
Figure 72: CR frequency for department 3 manpower impact, year 3 (D3IMPYR3).
Figure 73: CR frequency for department 3 manpower impact, year 4 (D3IMPYR4).
Figure 74: CR frequency for department 4 manpower impact, year 1 (D4Mpyr1).
Figure 75: CR frequency for department 4 manpower impact on car 2 (D4IMPYR2).
Figure 76: CR frequency for department 4 manpower impact, year 3 (D4IMPTK3).
Figure 77: CR frequency for department 4 manpower impact, year 4 (D4MPYR4).
Figure 78: CR frequency for department 5 manpower impact, year 1 (DSIMPYRI).
Figure 79: CR frequency for department 5 manpower impact, year 2 (D5IMPYR2).
Figure 80: CR frequency for department 5 manpower impact, year 3 (DSIMPYR3).
Figure 81: CR frequency for department 5 manpower impact, year 4 (D5IMPYR4).
Figure 82: CR frequency for department 6 manpower impact, year 1 (D6IMPYR1).
Figure 83: CR frequency for department 6 manpower impact, year 2 (D6IMFYR2).
Figure 84: CR frequency for department 6 manpower impact, year 3 (D6IMPYR3).
Figure 85: CR frequency for department 6 manpower impact, year 4 (D6IMPYR4).
Figure 86: CR frequency for department 7 manpower impact, year 1 (D7IMPYR1).
Figure 87: CR frequency for department 7 manpower impact, year 3 (D7IMPYR3).
Figure 88: CR frequency for department 7 manpower impact, year 4 (D7MPYR4).
Figure 89: CR frequency for department 1 total manpower impact (D1TOTIMP).
Figure 90: CR frequency for department 2 total manpower impact (D2TOTIMP).
Figure 91: CR frequency for department 3 total manpower impact (D310TIMP).
Figure 92: CR frequency for department 4 total manpower impact (D4TOTIMP).
Figure 93: CR frequency for department 5 total manpower impact (DSTOTIMP).
Figure 94: CR frequency for department 6 total manpower impact (D6TOTIMP).
Figure 95: CR frequency for department 7 total manpower impact (D7TOTIMP).
Figure 96: DR frequency of number of months between date logged in (OD) and development close date (BD).
Figure 97: DR frequency of number of months between date logged in (OD) and verification date (VC).
Figure 98: CR frequency of number of months between date received (DTRECD) and RRB disposition date (RRBDT).
Figure 99: CR frequency of number of months between date received (DTRECD) and OASCB disposition date (OASCBDT).
Figure 100: CR frequency of number of months between RRB disposition date (RRBDT) and OASCB disposition date (OASCBDT).
BIBLIOGRAPHY

