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APPLICATIONS TO AERONAUTICS OF THE THEORY OF TRANSFORMATIONS OF NONLINEAR SYSTEMS

*

George Meyer,* Renjeng Su,* and L. R. Hunt?

NASA Ames Research Center, Moffett Field, California, U.S.A.

ABSTRACT )

We discuss the development of a theory, its application to the control design of nonlinear sys-
tems, and results concerning the use of this design technique for automatic flight control of air-
craft. The theory examines the transformation of nonlinear systems to linear systems. We show how
to apply this in practice, in particular, the tracking of linear models by nonlinear plants. Results
of manned simulation are also presented.

INTRODUCTION

Suppose we model a physical plant by a nonlinear system

m
2(0) = £lx(0] + ) u (g [x(©)] e

i=1

where f, g, , ..., g are C° vector fields on R" and f(0) = 0. If we are to have the output of
this plant follow a garticular path, then we have a difficult problem to consider. However, if there
are new state space coordinates and new controls under which equation (1) becomes a linear system,
then our task appears to be much easier because of the known results for controller design on linear
svstems.,

We feel that the following problems are thus of interest:
(a) Find necessary and sufficient conditions for the system (1) to be transformable to
a controllable linear systems. '

(b) Show how to use these transformations so that the controller design for nonlinear systems
can be reduced to that of linear systems.

(c) Apply the above theory to the field of aeronautics.

In the next three sections of this paper we discuss the solutions of these problems.

TRANSFORMATION THEORY

The classification of those nonlinear systems that can be transformed to linear systems is actu-
ally a subproblem of a much deeper result, the construction of canonical forms for nonlinear svstems.
We are presently developing a theory for such canonical forms, and in the case that a nonlinear sys-—
tem is transformable as in this paper, the canonical form is actually the Brunovsky (ref. 1) form for
a linear system.

Here we concentrate on the transformation theory developed in references 2, 3 and 4. Other
significant research in this area is due to Krener (ref. 5), Brockett (ref. 6), Jakubcyzk and
Respondek (ref. 7), and Hermann (The Theory of Equivalence of Pfaffian Systems and Input Systems
under Feedback). We also refer to the early work of the first author in references 8 and 9.

If we are to map our nonlinear system (1) to a controllable linear system, we may as
well assume that this linear system is in Brunovksy (ref. 1) canonical form with Kronecker indices
m

Kys Kys -« Kk satisfying E:Ki =n and k; >k

22...2x . Hence this system is
i=1 "

y = Ay + Bw (2)

where A is n xn, Bis nxm, w = (wl,w s seey wm) are the new controls, A is equal to
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The transformation results we present are actually local (in some open neighborhood of the
origin in (%1, X2, ..., X,) space), and global theorems are found in reference 3. We simplify nota-
tion by saying R when we actually mean an open neighborhood of (0, 0, ..., 0) in R". However,
R™ means (uy, ug, ..., up) space (or (W}, W2, «.., wm) space) and this is not local.
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We discuss the allowable transformations mapping system (1) to system (2). We want a ¢ map
Y = (Y1 Y25 eevy Yp» Wys Wos «+o, Wg) mapping R® x RP[(xy, Xp, e+-5 Xpy U], Uz -e«, Up) space]
to RN x R® [(yy, Yos -5 Yp» Wi> W25 eees Wp) space] that satisfies the following conditions:

b
1. Y maps the origin to the origin,

2. y1s Y25 +e+» Yn are functions of x;, X3, ..., X; only and have a nonsingular Jacobian
matrix,

3. wy, W2, ..., wy are functions of X3, X3, ...y X, Uy, U2 eee; Up and for fixed x), Xp,
«ess Xp, the m x m Jacobian matrix of w), wz, ..., wp with respect to u;, uz, «.., Up
is nonsingular,

4. Y maps system (1) to system (2),

n m n
Y 1is a one-to-one map of R x R onto R x R".

v

Next we introduce some basic definitions from differential geometry.

If f and g are C¢” wvector fields on Rn, the Lie bracket of f and g is

-8 _3f
(f2e) = 5% F - %x

3 )
where Sg-and A are Jacobian matrices. We let
X ax
(ad®f,g) = g
(ad'f,g) = [f,g]
(ad?f,g) = [f,(f,8)]
(ad®f,g) = [£(ad*'f,g)] .
A collection of C* wvector fields hy, hp, ..., hr is involutive if there exists C* func-
tions Yijk such that
T
[hi’hj](x) = E Yijk(x)hk(x) , l<i, jer,i#3 .
k=1

Let (.,.) denote the duality between one forms and vector fields. If w = wp dx; + wodxp +
oo + mndxn is a differentiable one form and f a vector field on Rn, then

) = +owpfy + ...
(w,f) = uyfy wyfa wnfn

To state the main result from reference 4 giving necessarv and sufficient conditions for trans-
forming svstem (1) to system (2) we need the following sets:

(@]
L}

c1-1 : Zn—
{e it a7 e e 1 fpe ), (T )

Cm— 1
gm’”’gm]""v(adkm f,gm)}

=2 c3-2
C. = {g]'[f’g1]9-°-,(ad‘J f,gl)'g:v[fng]:---v(ad‘J fvg?)y'--p

K3i=2
gm,[f,gm],...,(ad J f,gm)} for j=1,2,...,m .

Theorem 2.1 There exists a transformation Y = (y], ¥2, +ccs ¥po» Wis W2 ceey wm) satisfyving condi-
tions i) through v) above if and only if on R"

1) the set C spans an n dimensional space,

2) each set Cj is involutive for j =1,2,...,m, and,

3) the span of Cj equals the span of Cj nN¢ for j=1,2,...,m.

Let 0y = k1, G2 = K} + K2y «sey on = X1 +xp + .00 F Kp = D- Then the transformation is con-
structed in reference 4 by solving the partial differential equations

(dyl,(adjf,gi)}
(dy01+1;(3djfygi)>

0,j=0,1,...,» -2 and i=1,2,...,m,

0,j=0,1,...,2-2 and i=1,2,...,m,



(dy, . +10(addf,80) = 0,3=0,1,...,k -2 and i=1,2,...,m,
il

(3
m
(dycl.f) + E ui(dyol,gi) =w
i=1
m
(dyg o) + E ugddy, »8y) = w2
i=1 -
i .
(dy »£) + E uddy .80 = v o
i=}
where the matrix
p— -1 -1 -
(dyp, @d V7 E,81)) o . . (dyy, (ad®1T o, ))
-1 Ko~=1
(dy01+1,(ad‘2 f,21)) . . . (dycl+1,(ad 2 )
. . (4)

X “m—1 d K1
(d)Om_]+1’(ad f’g))> . . W yom-]+]’(ad m f,gm)>

is nonsingular.

It can be shown that matrix (4) being invertible means we can solve for u5, u eeey U

in terms of w), w2, ..., Wy in the last m equations in equation (3).

27 m

\

Equation (3) can be formally solved by considering a sequence of ordinary differential equations
as in reference 4, but we shall not mention details here.

If a nonlinear svstem is transformable to a linear svstem, we study the process of using the
transformation to construct a controller for the nonlinear system,

TRANSFORMATIONS IN CONTROLLER DESIGN

Let Y = (ylg Yos ey ¥ns Wls W2u eeey wm) be the transformation from system (1) to system (2)
as before. The structure of the control system using transformation theory is illustrated in
figure 1. The design scheme is implemented on the "linear part" of the diagram, and this system
is in Brunovsky form.

We ask that the output of the nonlinear svstem follow a particular path which corresponds to a
trajectory for the output of the linear model. If we know how to design for the linear system, then
we actually have a tracking of a linear model by a nonlinear plant.

Linear design is used to generate an open loop command L for the system (2), and we find
the corresponding y coordinates y. by plugging w. into equation (2). The transformation Y
maps the measured X space to y space and v is compared to y. and the difference is an
error e,. The regulator yields a control 6w which sends ey to zero, and variations in plant
dynamics” and disturbances are compensated for in this way.

The controls wc and 8w are added and transformed through the inverse map R (actually
w. + 8w 1is substituted into the last m equations in equation (3) and u = (u;, uz, ..., uy) is
generated) to obtain a control which is applied to the plant. Thus we have an exact model follower,
#nd the difficult problem of finding an open loop control and the regulator control are constrained to
the linear system.

The remainder of this paper contains the application of the transformation theory to aeronautics.

AUTOMATIC FLIGHT CONTROLLER DESIGN

The aircraft will be represented by a rigid body moving in 3-dimensional space in response to
gravity, aerodynamics and prepulsion.



The state

e xC R3 x R3 x s0(3) x R3 (5)

gen<d

where r and v are inertial coordinates of body center of mass position and velocity, respectively;
C is the direction cosine matrix of body fixed axes relative to the runway fixed axes (inertial),
and w 1is the angular velocity.

The controls,

M
u=<up)cUCR3X]R (6)

u

where uM is the 3-axis moment control such as ailerons, elevator and rudder in a conventional air-
craft or roll cyclic, pitch cyclic and tail rotor collective in a helicopter; and uP  controls
power - throttle in a conventional aircraft, and the main rotor collective in a helicopter. The
state equation consists of the translational and rotational kinematic and dynamic equations:

T=v
v = £F(x,u)
(7)
¢ = S(w)C
& = fi(x,u)

F by : . .
where f and f1 are the total force and moment generation processes and xeX. We wish tu transform
equation (7) into a lincar system.

In general, M is invertible with respect to the (vector) pair (&,u”), and, for the specific
c¢lass of helicopter maneuvers being considered (i.e., no 360° rolls), fF  is invertible with respect
to the (scalar) pair (Ga,uP). Thus, a function h:X X RY » U can be constructed such that if

M
(U ) = h(r,v.C,m,Gjo,'vw) (8)
oF
then
l:\ = (:)o
9)
V3 = V3o

for all admissible maneuvers. That is, angular and vertical accelerations can be chosen as the new
set of independent controls in which case the state equation may be written as follows

r=v
v = fO(T‘V,C,G3o) + ef1(r,v,C,V30,u,00)
. (10)
Cc = s(w)C
o= g
where ¢ = 1, and f(r,v,€,0,0,0) = 0 for all admissible maneuvers.

The function f£° is invertible with respect to ((¥1,%2,E3(¢)),C) where E3(y) is an elementary
rotation about the z-axis and represents the heading of the helicopter. Thus, a function hi:RE
x S0(2) > SO(3) can be constructed such that if
Co = hf(r,v,¥g,E3(¥p)) 11
then
v = Vp (12)

Equations (8) and (11) are the trim equations of the process equation (10) (with ¢ = 0). That is,

for a given path (r(t), E3(¥(t))), t 20 with Vv3(t) = 0, the corresponding state and control may be
constructed as follows



rg = r(t)
vy = r(t)

C() = hf(IO’VU".’(t)’E39 ('\b(t))
. (13)
wp = q(Cct)

wp = (wo).

ug = h(ro,Vo,Co,wo,éo,O)
where the function gq extracts w from éct = S(w) . The required time derivatives in equation (13)
can be computed provided that the path (r,E3) is generated by the system diagrammed in figure 2

where @ represents. a scalar integrator and Yo the control (w in the previous section is y5 here).

We construct an approximation to the linearizing transformation-as follows: Y;, R;, Q@ are con-
structed so that .

y = Y(x) = Yo(xg) + ¥Y18x = yg + Y 6x
14
u = R(x,y>) = ug + Rléys + Q8x

Here Y, _is the transformation when € = 0, and éx (and 8y%) is the perturbation about the nominal
%5 (and ya) given in equation (13) (and figure 2).

From equation (10) with € = 0, it follows that (C = (I + S(e)Cp)

(6r)" = &v
(] 0 0 f0
. of Jf af 3
($v)' =T &r + =— & + 5 € + =7 V3
r 3 aC V3 (15)
()" = 6w

(Sw) = dmb N
where ¢ is attitude perturbation.

The pattern of equation (15) after some rearrangement of coordinates is shown in equation (16).

1) ey
0 I 0 0 0
ro ra
V] Vi
0 Cy C, Cs 0 Cy 0 Cy
\'%) V2
£ [} [~ 7
w)
€2 £2
= 0 0 0 1 + 0 . (16)
ta €3 ©2
r3 r) vy
Wy u .
|3
w2 0 0 0 0 Wy 1 =
w3 w3
V3 V3d

Tn the present case of the helicopter, C;, C,, and Cy are negligible. Their effect will be con-
trolled by the regulator.



The transformations

oy - -
Gyl oy
) I 0 0 0
6y2 8ra
(5)7? 6!’1
0 I 0 0
8y2 6ty
3
8y, €1
3 i c C
5y2 2 3 €2 .
= 0 0 (17)
3
5)'3 0 . 1 €3
3
dyh Sra
M
éyl Suwy
N C2| Cs3
Gyz Swo
. 0 0
5y3 H Sw3
. ! 0|1
6yl. i .51'3_
"6. 9 r-é 5-
w) yl
-1 -c-1
. C, €2°Cs 5
sz éyﬁ
= : (18)
5&3 Sy;
0 1 .
. oy
L V3J L )“4
take the system in equation (16)(with C;, C4, Cs = 0) into the canonic system:
0 1 0 0 0
0 0 1 0 0 0
Gy =] 0| o 0 1 sy +]o0 sy’ (19)
_—
0 0 0 0 I -
L

Thus, the linearizing transformation (Y and R in figure 1) is constructed.

That the accuracy of the transformation is adequate may be seen from the results of the simula-
tion of the flight experiment to be briefly summarized next.

The test consists in automatically flying a trajectory which exercises the system over a wide
range of flight conditions as shown in figures 4 and 5.

Thus, the test takes the helicopter from hover (WP1l) to high speed (150 ft/sec) turning accelera-
tion, ascending flight.

Figure 6 shows the resulting tracking errors.
As can be secn, position tracking error e is quite small. The acceleration errors c¢., which

is due to the neglected terms in the construction of the linearizing transformation is also quite
small. In summary, the resulting performance of the system is good. -
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Figure 1. Structure of the Control System
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