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1.0 SUMMARY

Two hybrid inlets and a deflactor inlet were tested along with a bsseline
inlet in the NASA Ames Research Center 40-by-80 Poot Wind Tunnel (40 by 80)
with a small turbofan engine in a quiet nacelle to determine the forward-
velocity effects on fan noise and tine suppression characteristics of advanced
inlets. Data were obtained from outdoor static tests to determine the effects
of static-to~flight environment changes on the fan noise. The effects of
canting the baseline inlet to simulate wing-mounted engine inlets were also
determined for fan noise.

The static-to-flight effects are shown to be the reductions in blade-
passing tone levels due to reducing the rotor-turbulence interaction nonise in-
herent in outdoor static and wind tunnel quasi-static testing. DBecause these
tone levels have substantial variability and mask other sources at low fan
speeds, the static-to-flight effects are virtually unpredictable. Testing in
the 40 by 80 at forward velocities of 21 w/s (68 ft/s) and above reduced the
rotor-turbulence tone noise below all other fan noise sources so that the
forwvard-velocity effects on fan noise and the suppression characteristics of
advanced inlets could be determined.

At a forward velocity of 41 m/s (135 ft/s), the CTOL hybrid inlet suppres-
sed the high-tip-speed fan noise as much as 18 PNdB on a 61 m (200 ft) side-
line scaled to a CF6 size engine. This suppression level remained essentially
the same over a throat Mach number range of 0.62 { Myy < 0.77 due to the treat-
ment effects at low Mry and the flow-acceleration effects at high Mpy. At
a forward velocity of 41 m/s (135 ft/s), the STOL hybrid inlet suppressed
the low-tip-speed fan noise as much as 13 PNdB on a 61 = (200 ft) sideline
QCSEE size engine. This suppression level changed only slightly over a throat
Mach number range of 0.62 < My £ 0.77 due to treatment effects at low Mpy
and a combination of treatment and flow-acceleration effocts at high Mpy.

There were essentially no changes in the fan-noise suppression characteristics
of the hybrid inlets at forward velocities ranging from 21 m/s (68 ft/s) to 59
m/s (194 ft/s) at angles of attack up to 15°.

At a forward velocity of 41 m/s (135 ft/s), the deflector inlet suppressed
the fan noise over a tip-speed range of 311 w/s (1020 ft/s) to 405 m/s (1330
ft/s) by as much as 13 PNdb at 61 m (200 ft) overhead, scaled to a CF6 size
engine. The combination of noise redirection and treatment effects kept these
suppression levels relatively unchanged over the full range of tip speeds.
However, changes in both forward velocity and angle of attack caused unpredic-
table changes in these suppression levels.

Canting the baseline inlet centerline downward 4° relative to the engine
centerline caused as much as a 7 PNdB increase in noise level at 61 m (200 ft)
overhead, scaled to a CF6 size engine, at a forward velocity of 41 m/s (135
ft/s). The noise increase occurs at the critical noise-emission angles of
50" to 60° at fan speeds that are in the approach power setting range of large
turbofan engines. These noisz-level changes were found to be independent of
changes in forward velocity and angle of attack.




2.0 INTRODUCTION

Extensive research has been conducted to understand and suppress the
forwvard-radiated noise from the fan of a turbofan engine. However, most
of this research has been conducted under static test conditions with no
simulation of forward speed or angle of attack. Because the fan noise is
related to the inlet flow environment, the forward-radiated noise is expected
to be affected by forward speed. Flight effects on fan noise have been
observed by investigators who have compared turbofan flyover noise with
static noise, but the details are obscured by the mixture of aircraft-noise
and other engine-noise sources. Therefore, in order to properly understand
the fan-noise suppression characteristics of advanced inlets, the investiga-
tion should include actual or simulated flight testing.

The NASA Ames Research Center (ARC) 40-by-80-Foot Wind Tunnel (40 by 80)
offered a means of providing controlled, simulated-flight conditions for this
type testing. ARC also had a small, high-bypass turbofan available to pro-
vide the fan noise. The hybrid inlet and deflector inlet concepts were the
advanced inlets chosen to be evaluated for both aerodynamic and acoustic per~
formance. To achieve fan-noise suppression, the hybrid inlet combines the
usual acoustic treatment in the diffuser wall with flow acceleration at the
throat at moderate Mach numbers (0.6< Mty < 0.8) using a smaller throat
area and higher diffuser wall angles than conventional inlets. The deflector
inlet utilizes the conventional acoustic treatment in the diffuser walls to
achieve suppression and redirects or deflects the remaining sound upward with
an asymmetric length that has the lower portion of the lip extended forward
of the upper portion. The suppression characteristics of the advanced inlets
were to be determined by comparing the acoustic signatures with those from a
cylindrical baseline inlet that was designed as a standard reference for the
unsuppressed fan noise.

The objectives of the program were to determine the low-speed flight
effects as simulated by the 40 by 80 on the forward-radiated fan noise and
on the suppression characteristics of two hybrid inlets and a deflector inlet
relative to a baseline inlet. In addition, the change in forward-radiated
fan noise due to canting the baseline inlet to simulate a typical wing-mounted
turbofan inlet was evaluated. A corollary objective was to determine the effect
on the fan-noise signature of modifying the engine by increasing the number
of core inlet guide vanes to achieve a vane/blade ratio to assure that the
interaction mode would not propagate. To investigate the engine/inlet opera-
ting characteristics and to supplement the 40 by 80 noise data, outdoor
static tests were conducted at ARC.

This report contains & summary of the tests and data-reduction techniques
in Section 3.0 along with a description of the test facilities, turbofan
engine, inlets, instrumentation, and test setup. Section 4.0 contains a
description of the data-analysis tachniques and a discussion of the data-
analysis results. The conclusions and recommendations complete the report
and are contained in Section 5.0.

-




3.0 TEST DRSCRIPTION

3.1 TEST FACILITIES
3.1.1 NASA ARC Outdcor Test Stand

. Lutdoor static tests were conducted on the VIOL test stand located in
the northeast corner of ARC. Due to the remote location of the static test
stand, the ambient noise levels are low. There are no community noise limits

. on the operation of the turbofan sngine. A plan-view sketch of the VIOL test
stand is shown in Pigure 1. The operations trailer housed the engine opera-
tor's console as well as the acquisition systems for the noise data.

3.1.2 NASA ARC 40 by 80 Foot Wind Tunnel

The simulated-flight tests were conducted in the Large Scale Aerodynamics
Branch 40-by-80-Foot Wind Tunnel (40 by 80) at ARC. A plan-view skstch of the
40 by 80 is shown in Figure 2. This facility has the capability, with an
engine installed in the test section, to simulate flight speeds up to 91 m/s
(300 fc/s). However, due to the fact the wind tunnel is a closed-circuit
facility, operation of an engine with the wind off circulates airflow around
the circuit creating a minimum-forward-velocity range of 4 m/s (13.5 ft/s) to
8 m/s (26.3 ft/s), depending on the fan airflow. The wind-off operation pro-
vided quasi-static conditions of a very low-speed flow across the test sectionm.

The use of the 40 by 80 for previous acoustic testing was significantly
ennhanced by lining the floor and part of the walle of the test section with a
7.62 cm (3 inch) layer of polyurethane foam. The foam mat virtually removed
reverberant reflections from the noise data at all frequencies above 500 Hx.
To ensure conasistency in the noise measurements, the same foam was placed on
the ground between the microphone and the engine during the outdoor static
tests.,

3.2 TEST VEHICLE

3.2.1 JT15D Turbofan Eggjne

The test vehicle suppliad by ARC was a JT15D turbofan engine; a cross
section is shown in Figure 3. The physical and aerodynsmic parameters for
the production JT15D fan are listed in Table 1., The JTISD is a moderate-
bypass-ratio engine with a single-stage, supersonic-tip-speed fen, With
regard to forward-radiated fan noise, the JT15D has many of the design
features (Reference 1) that have been incorporated into the approximately
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Table 1. Production JT15D Parameters.

Fan Pressure Ratio

Bypass Ratio

Hub/Tip Ratio

Rotor Diameter, cm (inches)
Maximum Fan RPM

Rotor Blades

Bypass Stator Vanes

Core Stator Vanes

Bypass Vane/Blade Ratio
Core Vane/Blade Ratio
Bypass Rotor-Stator Spacing

Core Rotor-Stator Spacing

1.5
3.2
0.405
53 (21)
16,000
28

66

33
2.36
1.18
1.83

0.50




four~times-larger modern turbofan engines in commercial service. Features
such as the absence of inlet guide vanes, large spacing between the fan blades
and outlet guide vanes, and at least twice as many outlet guide vanes as fan
blades are common design features between the JT15D and the CF6, JTID, and
RB211 turbofan engines. However, during fan-noise research testing at ARC,
Hodder (Reference 2) determined that considerable noise was being generated
by the fan-tip interaction with the inlet temperature sensor wake and by the
fan hub wake interaction with the core inlet guide vanes (IGV's). NASA ARC
engineers have modified the inlet temperature sensor to eliminate the wake as
a noise source. While verifying that the core IGV's are a noise source, ARC
engineers have determined that the JT15D will operate at reduced fan speeds
with the core IGV's removed. As a result of these tests, NASA ARC had the
engine manufacturer redesign the core inlet guide vanes to increase the
number to more than twice the number of fan blades and to increase the axial
spacing between the vanes and blades without changing the engine aerodynamic
performance over the full operating range.

During the outdoor static and wind tunnel testing of the advanced inlets,
the same JT15D engine was used throughout but with three variations of the core
IGV's. The three variations of the JT15D fan are shown in Figure 4 and are
identified as

Standard JT15D = Production JT15D - Temperature Sensor
Modified JT15D = Standard JT15D - Core IGV's

Redesigned JT15D = Standard JT15D + Redesigned Core IGV's
The standard and modified JT15D were used during the first outdoor static

and wind tunnel tests. The redzsigned JT15D was used exclusively during the
second series of wind tunnel and outdoor static tests.

3.2.2 Nacelle, Nozzle, and Mount

The JT15D engine used during the advanced inlet testing was housed in a
special quiet nacelle that was designed by ARC engineers., The nacelle was
completely lined with sound-absorbant wacerial to minimize the radiation of
engine-casing noise to the forward quadrant. A now coannular nozzle system
for the JT15D was also designed by ARC engineers. The new, fan nozzle in-
cluded a larger exit area, to provide the additional flow required by the
hybrid irlets, and had both walls lined with zcoustic treatment to suppress
the aft-radiated fan noise. The JT1I5D with nacelle and nozzle system is shown
in cross section in Figure 5, and the complete assembly is shown on the mount
in Figure 6.

The mount is a leaned strut that supports the engine assembly 4.6 m
(15 ft) over the wind tunnel floor as shown in Figure 7. The strut carries
all the plumbing and instrumentation lines to the engine assembly and is
fastened to a turntable. The axis of rotation is through the fan face; this
allows angle of attack to be accomplished by rotating the engine assembly
about the vertical axis without changing the distances from the fan face to

e o i Wb 11
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the noise-measurement field. The engine assembly and mount were installed
on a nonrotating base at the VIOL test stand to duplicate the wind tunnel
setup during outdoor static testing.

3.3 INLET CONFICURATIONS

NASA ARC fabricated all the tested inlets based upon aerodynamic &nd
moachanical designs provided by the General Electric Co. The advanced inlets
were designed in both hard-wall and treated versions, and the baseline inlet
was designed to be only a hard-wall reference. The conventiona) takeoff and
landing (CTOL) hybrid inlet, the deflector inlet, and the baseline inlet were
all designed for high-fan-speed operation; the short takeoff and landing
(STOL) hybrid inlet was designed for low-fan-speed operation. The aerodynamic
design points for all the inlets are listed in Table 2. Details of the inlet
designs, including coordinates of the flow lines, can be found in Reference 3.
A flight lip was designed to match the aerodynamic requirement at the respec-
tive design point for each of the inlets. Aeroacoustic lips were designed for
each of the hybrid inlets and the baseline inlet. These lips provide the same
aerodynamic profiles entering the inlet throats at static conditions that
exist with the flight lips at the design-point forward velocity. The throat
Mach number listed for each inlet is the one-dimensional calculation based on
airflow and physical area. The acoustic design goals for the program were to
achieve maximum perceived noise level (PNL) suppression when scaled to larger
turbofan engines typical of those on modern commercial aircraft. From a prac-
tical standpoint, there was also a goal to design as much of the hardware as
possible to be common between the inlets,

3.3.1 Baseline Inlet

The baseline inlet is cylindrical and is the sasme length as the CTOL
hybrid inlet., The baseline inlet attaches to the JT15D fan casing with
four drag links which compress a rubber seal completely around the circum-
ference to ensure no leaks in the flow path at the interface. There is no
provision for total pressure rakes at the fan face in this inlet.

An aeroacoustic bellmouth lip and a flight lip were provided as shown in
the cross section sketches in Figure 8. The aeroacustic lip was used for
outdoor static testing and is shown with the baseline inlet attached to the
JT15D in the photo in Figure 9. The flight lip was designed to permit anglc-
of-attack operation up to 20° with minimal flow distortion. The flight lip
was mated to the JT15D nacelle with a fairing for the wind tunnel testing.
The JT15D engine assembly with the baseline inlet and flight lip attached is
shown in the photo in Figure 10,

3.3.2 CTOL Hybrid Inlet

The CTOL hybrid inlet was designed around current, turbofan-powered,
commercial-transport, aircraft requirements. The overall inlet is slightly

13




Table 2. Inlet Design Parameters.

Parameter Baseline CTOL STOL Daflector
Vo, w/s (1t/8) 82 (270) 82 (270) 41 (135) 82 (270)
a, Degrees 15 20 20 30
v, kg/s (1b/s) 34 (75) 28.5 (63) 34 (75) 34 (75)

Men 0.4 0.72 0.77 0.6
Vr, /s (£t/s) 405 (1330) 405 (1330) 344 (1129) 405 (1330)
Ne, tpm 14,500 14,520 12,320 14,520
L/D 1.01 1.01 1.45 0.5/1.01
L/D Treated - 0.79 0.79 0.79
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Figure 8. Sketch of Baseline Inlet.
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Figure 9. Photograph of JT15D/Baseline Inlet with Aero-
acoustic Lip.

Figure 10. Phetograph of JT150/Baseline Inlet with
Flight Lip and Fairings
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longer than desired due to the requirement to keep the diffuser flow attached
up to 20° inlet angle of attack with the higher than conventional diffuser
wall angles. The diffuser is divided into two sections; the aft diffuser is
common with the STOL hybrid inlet. The aft diffuser mates with the JT15D
engine and attaches with the same drag links as the baseline inlet. Both
diffuser sections were built in treated and hard-wall versions; the hard-
wall aft diffuser had provisions for total pressure rakes.

An seroacoustic lip or a flight lip attaches to the forward diffuser to
complete the throat of the inlet as shown in Figure 11. The aeroacoustic lip
was used for outdoor static testing and is shown, together with the inlet,
attached to the engine assembly in the photo in Figure 12. The flight lip was
designed to permit angle-of-attack operation up to 20° and mates to the JT1SD
with s fairing for wind tunnel testing. The JT15D engine assembly with the
CTOL hybrid inlet and flight lip attached is shown in the photo in Figure 13.

To satisfy the suppression requirements, particularly at low throat Mach
numbers vhere acceleration suppression is minimal, the acoustic treatment was
designed to attenuate noise over a wide range of frequencies. To accomplish
this broadband suppression, a bulk absorber material with two different cavity
depths was selected. The forward-diffuser treatment depth was selected to pro-
vide maximum suppression of the blade-passing frequency (BPF) noise, which
would be in thc 6300 He 1/3-octave band for most of the tan speeds to be
tested. The resulting design, shown in Figure 14, wes to compress 0.228 ca
(0.090 in.) thickness of bulk absorber into pockets that were 0.127 cm
(0.050 in.) deep and cover them with a 28X porosity facesheet.

The aft-diffuser treatment depth was chosen to provide maximum suppres-
sion of the supersonic rotor "buzz saw" noise. Based upon preliminary JT15D
noise data, this type of noisc was wost severe in the 2000 Hz 1/3-octave band
at the design fan speed for the CTOL hybrid inlet. A bulk absorber thickness
of 1.6 cm (0.63 in.) covered with the same 282 porosity facesheet wus the
treatment design chosen for the aft diffuser as shown in Figure 1l4. The two
treatment sections together provided a total treatment length to fan diameter
ratio, (L/D)pp, of 0.79 for the CTOL hybrid inmlet.

3.3.3 STOL Hybrid Inlet

The STOL hybrid inlet was designed to meet the stringent noise require-
ments proposed for powered-lift STOL aircraft. The requirement to operate the
JTISD at the low fan-tip speeds typical of STOL engines resulted in a low
inlet-flow rate. The low flow rate at the design point resulied in a small
throat area to achieve the design throat Mach number which, in tura, required
a long inlet to maintain diffuser wall angles consistent with the CTOL hybrid
inlet. As previously mentioned, the aft diffuser is common with the CTOL
hybrid inlet. The forwvard diffuser was divided into two pieces so that the
treated length, which is only about one-half the total length, could be re-
placed with a hard-wall section, '

4
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Figure 11. Sketch of Conventional Takeoff/Landing (CTOL)
Hybrid Inlet.
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Figure 12.

Figure 13.

Photograph of JT15D/CTOL Hybrid Irnlet wich
Aeroacoustic Lip.

Photograph of JT15D/CTOL Hybrid Inlet with
Flight Lip and Fairings.
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Figure 14. CTOL Hybrid Inlet Treatment Details.
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An aeroacoustic lip and a flight lip were built, These attach to the
forward diffuser as shown in Figure 15. The aeroacoustic lip was used for
outdoor static testing and is shown, together with the inlet, attached to the
engine assembly in the photo in Figure 16. The flight lip was designed to
permit angle-of-attack operation up to 30° and mates to the JT15D with the
same fairing as the CTOL hybrid inlet. The STOL hybrid inlet configuration
attached to the JT15D engine assembly in preparation for wind tunnel testing
is shown in the photo in Figure 17.

The acoustic treatment for the STOL hybrid inlet was designed using the
same criterion of suppression over a wide frequency range that was applied
to the CTOL hybrid inlet. The aft-diffuser treatment design that was chosen
based on the high-tip-speed noise signature should also provide broadband
suppression centered at 2000 Hz at the lower tip speeds associated with STOL
engines. The forward-diffuser treatment length was chosen to be the same as
the CTOL hybrid inlet for two reasons. The primary reason was to preserve
commonality for treatment effectiveness comparisons, and the other reason
was that a treatment length in excess of 0.79 fan diameters is impractical
for aircraft agplicationa.

The forward-diffuser treatment depth was chosen to provide maximum sup-
pression of the noise at BPF. For most of the fan speeds to be tested with
the STOL hybrid inlet, the BPF is in the 6300 Hz 1/3-octave band. Therefore,
the forward-diffuser acoustic design turned out to be the same for the STOL
hybrid inlet as for the CTOL hybrid inlet. A sketch of the STOL hybrid in-
let treatment design is shown in Figure 18,

3.3.4 Deflector Inlet

The deflector inlet was designed around the requirements for current,
turbofan-powered, commercial aircraft. Other considerations were to design
the inlet as short as possible while using the hybrid inlet aft diffuser.

To ensure that the inlet aerodynamic performance would be acceptable, par-
ticularly at angle of attack, the forward diffuser was cylindrical, and the
flight lip was sized for low forward speeds. Cross-sectional sketches of

the deflector inlet with a special fairing to attach it to the JT15D nacelle
are shown in Figure 19. The deflector inlet and JT15D engine assembly are
shown in two views in the photos in Figure 20. There was no aeroacoustic lip
built for the deflector inlet.

The deflector inlet treatment design was based upon the CTOL hybrid inlet;
in fact, the aft diffuser was the same hardware. The treatment in the forward
diffuser is the same pocket-type design but covers only 180° of the wall be-
cause the diffuser is so short. The treatment design for the deflector inlet
is shown in Figure 21 with the diffuser projected as a plane for clarity. A
hard-wall version of the diffuser was not built, but untreated testing was
accomplished by using the hard-wali aft diffuser and applying aluminum foil
tape in streamwise overlapping strips to the treated portion of the diffuser.
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Figurc 15. Sketch of Short Takeoff/Landing (STOL)
Hybrid Inlet.
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Figure 16. Photograph of JT15D/STOL Hybrid Inlet with
Aeroacoustic Lip.

Figure 17. Photograph of JT15D/STOL Hybrid Inlet with
Flight Lip and Fairings.
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Figure 18. STOL Hybrid Inlet Treatment Details.

24

—




OR'G'NAL PAG!.' e
D
OF POOR QuALITY

-l

B
2 IV

e Side View

o

Figure 19. Sketch of Deflector Inlet with
Flight Lip and Fairings.
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Figure 21. Deflector Inlet Treatment Details.
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3.3.5 Canted Baseline Inlet

An actual aircraft-inlet design feature that is rarely simulated during
inlet~noise testing is the downward cant of the inlet centerline relative to
the engine centerline. Canted inlets are prevalent on the wing-mounted engines
of modern commercial transports. To obtain an assessment of the potential
effect of a canted the inlet on forward-radiated fan noise, a wedge was
built to provide a 4° cant to the baseline inlet. The wedge was inserted be-
tween the cylindrical baseline inlet and the JT15D engine as shown in Figure 22,
The gap between the external fairing and the nacelle, caused by canting the
inlet, was covered with sheet metal for the wind tunnel testing. The canted
baseline inlet configuration is shown compared with the straight baseline in-
let in the photos in Figure 23. The canted baseline inlet was also tested
with the aeroacoustic bellmouth lip during the outdoor static tests.

3.4 TEST SETUP

3.4,1 Outdoor Static Tests

The test vehicle was mounted during the wind tunnel tests by bolting the
support strut to the ram facility located near the operations trailer at the
VIOL test stand (see Figure 1). The engine centerline was 4.6 m (15 ft) above
the ground and pointed in a northerly direction. The noise measurements were
made on a 3.7 m (12 ft) arc at the engine centerline height and along a side-
line that was 2.8 m (9 ft) below and 1.2 m (4 ft) to the left of the engine
referenced to the fan face. To minimize ground-reflection interference in the
noise measurements, large pieces of wind tunnel foam were used to cover the
ground under tke engine and the microphones.

During the first outdoor static test, fixed microphone locations were
used that covered angles from 10° to 90° on the arc and 30° to 90° on the
sideline as shown in Figure 24. During the second outdoor static test,
traversing microphones were used that covered angles from -59° to 82° on the
arc and 30° to 90° on the sideline as shown in Figure 25.

3.4.2 Wind Tunnel Tests

The test vehicle was mounted during the wind tunnel tests by bolting the
support strut a turntable located in the center of the 40 by 80 test section.
The engine centerline was 4.6 m (15 ft) above the wind tunnel floor with the
turntable capable of yawing the test vehicle up to 40° for angle-of-attack
operation. The floor and part of the walls were covered with the foam to
minimize reflection interference in the noise data. Noise measurements
were made at the same arc and sideline distances as in the outdoor ststic
tests.

The first wind tunnel test used fixed microphone locations that covered
10° to 90° on the arc and 30° to 90° on the sideline. The photo in Figure 26
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e Flight Lip ard Fairings (Top View)

Figure 22, Sketch of Canted Baselire Inlet.
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Figure 24. Test Setup for First Outdoor Static
and Wind Tunnel Tests.
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shown the first wind tunnel test setup. In order to obtain better definitiom -
of the inlet-noise directivity at all angles of attack, the second wind tunnel
test used traversing microphones that covered -59° to 82° on the arc and 30*
to 90° on the sideline. Two near-field microphones that were 0.6 m (2 ft)
from the engine centerline and 0.3 m (1 ft) forward of the inlet lip were used
for some configurations. The photo in Figure 27 shows the second wind tunnel
test setup.

3.5 INSTRUMENTATION

3.5.1 External Noise

All external noise measurements were made with B&K micrcphones. During
all tests the microphones used were the 0.64 cm (0.25 in.) B&K 4135 with B&K
UA0385 nose cones attached. By using the same microphone/nose-cone configura-
tion for both outdoor static and wind tunnel tests, direct comparisons of the
data can be made. However, B&K provides correction curves for noise srriving
at the microphone at incidence angles from 0° to 180° and for the presence of
nose cones. These curves were used to correct all the 1/3~octave-band data so
that absolute sound pressure levels could be determined.

During the first outdoor static and wind tunnel tests, the fixed micro-
phones were oriented pointing forward parallel to the engine centerline or
wind tunnel centerline. The near-field and sideline traversing :microphones
were similarly pointed forward during the second ocutdoor static and wind tun-
nel tests. The circular-traversing microphones used during the second tests
were attached to movable vanes that kept the microphones pointed upstream
during forward speed testing in the wind tunnel. However, during quasi-static
wind tunnel and outdoor static testing, the vanes were locked so that the
microphones pointed away from the engine at all angles.

3.5.2 Internal Noise

Internal noise measurements were made on the diffuser walls of each inlet
with Kulite (XTMS~1-199-25D) pressure transducers during all outdoor static
and wind tunnel testing. The transducers have a 0.32 cm (0.125 in.) pressure-
sensitive diaphragm mounted in the end of a 10-32 threaded bolt. Each inlet
was provided with threaded holes th:rough the diffuser walls; these enabled
the transducers to be installed with the diaphragms flush with the inner sur-
face. The locations of the transducers for each of the inlets are shown in
Figure 28. Since the transducers were removable, the same sensors were used
at the same relative location in each inlet to minimize data errors.

3.5.3 Aerodynamic Performance

Static pressure distributions along the surfaces of each inlet were an
essential part of the data acqu’red for each test condition., For the hybrid
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Figure 28, Internal-Noise Transducer Locations,




ORIGINAL PAGE IS
OF POOR QUALITY

80°,260° 0°,80°,260]

~
N

2850 0°,105°,180°,285°

(c) STOL Inlet

0°,280° 0°,280° 0°,260° 0°,80°,260° |

(d) Deflector Inlet

Figure 28. 1Internal-Noise Transducer Locations (Concluded).
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inlets, the static pressures were used along with precomputed graphs to deter-
mine the one-dimensional throat Mach number and the airflow through the inlet.
The static pressure tap locations for each of the inlets are shown in Figure
29. Selected wall static pressure data were monitored on-line to set throat
Mach numbers at zero angle of attack and to determine the onset of diffuser
wall separation vhile setting maximum angle-of-attack limits.

By using the inlet airflow data obtained from matching the General Elec-
tric computerized airflow predictions with the measured wall static pressures,
the JT15D fan-airflow/speed relationship was determined. However, since the
fan nozzle area was enlarged for these tests, there was no correlation of fan
airflow to fan pressure ratio available. A special outdoor test using the base-
lire inlet with aeroacoustic lip was run with two fan-discharge rakes installed
as shown in Figure 30. The JT15D fan pressure ratio was then measured at vari-
ous fan speeds with the production fan nozzle as well as with the hybrid~inlet
fan nozzle.

During the aerodynamic performance testing, the inlet total pressure loss
and distortion were measured for both hybrid inlets &and the deflector inlet
with six 5-element total pressure rakes. The rakes were installed in the hard-
wall aft diffuser section at six equally spaced angular locations as shown in
Figures 31 and 32. The total pressure rakes were originally designed for a
smaller duct and, as a result, do not have probe-element-immersion depths at
centers of equal annular areas. However, this was not a problem since the dis-
tortion profiles were not expected to extend inward of the inner elements of
the rakes, and the average total pressure calculations would be area-weighted
to provide more representative inlet-pressure-loss results.

The total pressure rakes also had transducers installed in each element
to measure dynamic total pressure distortion. The transducers indicated in
Figure 31 were monitored and recorded during aerodynamic performance testing
to aid in determining diffuser wall flow separation. During angle-of-attack
sweeps, the maximumm angle-of-attack limit was set just below the point a: which
the transducers indicated rapid changes in total pressure near the walls.

3.6 TEST SUMMARY

3.6.1 Outdoor Static Tests

The outdoor static tests were conducted at the VITOL test stand during the
pericds 22 July 1977 to 28 July 1977 and 2 November 1978 to 7 November 1978
using the same JT15D engine and inlet hardware. Both the standard JT15D and
the modified engine (core IGV's removed) were used during the first test series;
the redesigned version (new core IGV's) was used during the second test series.
Complete summaries of the tests are contained in Table 3 including the details
of each inlet configuration used with each engine. The objectives of the out-
door static tests were, first, to operationally check out the inlet/engine com-
bination and, then, to obtain a limited amount of noise data for subsequent
comparisons with the wind tunnel noise data. Since the primary objectives of
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Figure 29.

(b) Baseline Inlet with Flight Lip

Wall Static Pressure Tap Locations.
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(d) CTOL Inlet with Flight Lip

Figure 29. Wall Static Pressure Tap Locations (Continued).
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(f) STOL Inlet with Flight Lip

Figure 29. Wall Static Pressure Tap Locations (Continued).
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(1) Canted Baseline Inlet with Flight Lip

Figure 29. Wall Static Pressure Tap Locations (Concluded).
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Table 3. Run Logs for Outdoor Static Tests.

Pirst
Run JT15D Inlet Lip Treated Rakes Mics a Vo Points
1 Std STOL A/A Yes X 0 «0 9
2 Std CTOL A/A Yes X 0 «0 8
- 3 Mod STOL A/A Yes X 0 «0 8
4 Mod STOL A/A Yes X 0 | «0 4
5 Mod Base A/A No X 0 =0 9 |
6 Mod Base A/A No X 0 | 0 3 ;
7 Mod Base A/A No X 0 =0 4
Second
1 Red Defl FL Yes X 0 =0 12
Red Base A/A No X 0 «0 18
Red Cant A/A No X «0 15
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the program were to determine forward-velocity effects on fan noise and inlet
suppression, extensive outdoor static tests were not conducted.

The hybrid inlets were run first during the first outdoor static test,
which preceded the wind tunnel tests, to provide the wall static pressure
duta necessary to establish the inlet airflow and throat Mach number corre-
lations with fan speed. Subsequent tests with the baseline inlet were run
at the same corrected fan speeds that were run with the STOL hybrid inlet.
Thirty-six noise-data points were recorded covering a range of throat Mach
numbers from 0.6 < Mpy < 0.8 for each hybrid inlet and equivalent fan
speeds for the baseline inlet. The baseline inlet was only run at low cor-
rected fan speeds corresponding to the STOL hybrid inlet range because of the
speed limitation on operation of the JT15D without the core IGV's.

The second outdoor static test was conducted after both wind tunnel tests
were completed to provide baseline inlet data with the redesigned engine in
the outdoor environment. In addition, the treated deflector inlet and the
canted baseline inlet were run over the entire fan speed range to obtain data
from those configurations in the outdoor environment. A total of 45 noise-
data points were recorded for the three inlet configurations covering a range
of corrected fan speeds from 11,000 rpm to 15,000 rpm.

For each noise-data point the fan corrected speed was set based upon
throat Mach number, if applicable, and allowed to stabilize. All amplifier
gain settings were optimized for the internal and external noise measurements,
and then at least 30 seconds of data were tape-recorded. During traverse opera-
tion (second outdoor static test), the recorders ran continuously for the 3 to
4 minutes required to complete the traverse. To minimize errors in data reduc-
t.on the traverse-microphone amplifier gain settings, which were preestablished
based on peak overall noise levels, were not changed during data acquisition.

3.6.2 Wind Tuanel Tests

The wind tunnel tests were conducted in the 40 by 80 during the periods
of 23 August 1977 to 1 September 1977 and 12 September 1978 to 5 October 1978
using the same JT15D engine and inlet hardware as the outdoor static tests.
First the modified JT15D and then the standard JT15D were used in the first
wind tunnel tests. The redesigned version of the JT15D was used exclusively
during the second wind tunnel tests. Complete summaries of the wind tunnel
tests are containe’ in Table 4 (first entry) and Table 5 (second entry) which
include the details of each inlet configuration used with each engine. The
primary objectives of the first entry were to completely determine the aero-
dynamic performance and to obtain preliminary acoustic performance of the
hybrid inlets with the standard and mcdified JT15D engines. The objectives
of the second entry were tc determine the acoustic performance of the hybrid
inlets, the deflector inlet, and the canted baseline inlet as well as measure
the aerodynamic performance of the deflector inlet.

48

4
e e e s o Ol




Table 4. Run Log for First 40-by-80-Foot Wind Tunnel Test.

1
Runj JT15D| Inlet| Lip| Treated| o |Vo |Run} JT15D | Inlet| Lip Trentedl a |Vo §\
. H
1{ Md | stoL|a/al ves| o010 { 30| sta| sroL| rL No |0-30/40 i
2| Mod | STOL| FL Yes 10 | 31/ s8ta| sroL| FL No |0-40|80 i
. 3| Mod STOL| FL Yes 40 | 32 Std | STOL| FL No 0{10 i
4| Mod STOL| FL Yes 80 | 33 std| STOL| FL No |0-36/120 '
S| Mod STOL | FL Yes 120} 34 std [ STOL|{ FL No |0,15]/120 !
6| Mod STOL | FL Yes 80 | 35 Std| STOL| FL No |0,15/80 ;
7 Mod STOL | FL Yes 10 | 36 std | STOL| PL No 0/10 ‘
8| Mod STOL | FL No 10 | 37 std| STOL| FL No [0,15}40
9 Mod STOL| FL No 40 | 38 Std | CToL| FL No 160
10 Mod STOL | FL No 80 | 39 std | CTOL| FL No 120
11 Mod STOL | FL No 120} 40 std| CTOL| FL No 80
12 Mod Base | FL No 10 | 41 std | croL| PL No |0 10
13 Mod Base | FL No 40 | 42 std STOL| FL Yes | 0.15§120
14 Med Bage | FL No 80 | 43 Std STOL| FL Yes |0.15)120
15 Mod Base | FL No 120| 44 Std | STOL| FL Yes 80
16 Mod Base | FL No 80 | 45 std STOL| FL Yes 40
17 Mod Base | FL No 10 | 46 std|{ STOL| FL Yes {0 10
18 Std STOL | FL Yes 010 |} 47 std| CIOL| FL Yes |{0,15/160
19 std STOL| FL | Yes | 0-30{40 | 48 std| croL| FL Yes |0,15/80
20 std STOL | FL Yes | 0-40{80 | 49 std| CToL| FL Yes |0 10
21 Std STOL | FL Yes | 0-40(80 | 50 std | CToL{ FL Yes |0,15{120
22 std STOL| FL Yes 0-35,5|120] 51 Std| Base| FL No }0,15/80
23 Std STOL | FL Yes j 0-32{120] 52 std| Base| FL No |0 40
24 std CTOL| FL | Yes 010 | 53 Std | Base| FL No |0,15{120
25 Std CTOL| FL Yes | 0-25/80 | 54 Std| Base| FL No [0,15/160
26 Std CTOL | FL Yes | 0-25;120] 55 Std Base! FL No |0 10
27 std CTOL | FL Yes | 0-25|120| 56 Std | Base| FL No |O 10 _.
28 std CTOL | FL Yes | 0-25[160| 57 std | Base| A/A No |0 10 ;
29 std STOL | FL No 010 | 58 Std| CTOL| A/A| Yes |O 10 ‘

Note: Run 18-33 had total pressure rakes and no microphones.
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Table 5.

Run Log for Second 40-by-80-Foot Wind Tunnel Test.

50

Run | JT15D | Inlet| Lip | Treatedj a | Vo n| JT15D | Inlet] Lip ‘l'rected] a| Vo
1 Red STOL| A/A | Yes 0} 10 38 Red | CTOL| FL No 15| 80
2 Red STOL| A/A | Yes 0} 10 39 Red | CTOL| FL No 15} 115
3 Red STOL{ FL Yes 0f{ 10 40 Red CTOL| FL No 8 115
4 Red STOL| FL Yes 0] 40 41 Red | CTOL| FL No 15] 115
5 Red STOL| FL Yes 151 40 42 Red | CTOL| FL No 0 | 80,115
6 Red STOL| FL Yes 30( 40 43 Red| CTOL| FL No 8 | 80
7 Red STOL| FL Yes 0| 80 44 Red CTOL| FL No 15| 80
8 Red STOL| FL Yes 0| 80 45 Red | Base| A/A No oin
9 Red STOL| FL Yes 15| 80 46 Red Base | A/A No 0 13

10 Red STOL| FL Yes 30;{ 80 47 Red { Base| FL No 0|1l

11 Red STOL| FL Yes 0] 115 48 Red | Base| FL No 0 | 40

12 Red STOL!| FL Yes 15] 11° 49 Red | Base| FL No 15| 40

13 Red STOL| FL Yes 251 115 50 Red | Base| FL No 0| 80

14 Red STOL| FL Yes 0} 80,115 51 Red | Base] FL No 8 | 80

15 Red CTOL| FL Yes 0f O 52 Red | Base| FL No 15| 80

16 Red CTOL| FL Yes 0| 80 53 Red | Base| FL No 0 | 115

17 Red CTOL{ FL Yes 8] 80 54 Red Base| FL No 8 115

18 Red CTOL| FL Yes 15 80 55 Red | Base| FL No 15] 115

19 Red CTOL| FL Yes 0| 115 56 Red | Base| FL No 15] 115

20 Red CIOL| FL Yes 0| 115 57 Red Base | FL No 151 115

21 Red CTOL ] FL Yes 0] 115 58 Red Cant | FL No 0 14

22 Red CTOL| FL Yes 8| 115 59 Red Cant | FL No 0 11

23 Red CTOL| FL Yes 151 115 60 Red Cant | FL No 4 12

24 Red CTOL| A/A | Yes 0! 16 61 Red Cant|{ FL No 1 40

25 Red CTOL| A/A | Yes 0| 16 62 Red | Cant| FL No 0 | 8

26 Red STOL| FL No 0| 10 63 Red Cant | FL No 4 80

27 Red STOL| FL No 0 10 64 Red Defl{ FL No 0 11

28 Red STOL| FL No 0; 80 65 Red | Defl| FL No 0 | 8

29 Red STOL| FL No 15| 80 66 Red | Defl| FL No 0-30| 80

30 Red STOL | FL No 25| 80 67 Red Defl | FL No 0-30{ 115

31 Red STOL| FL No 0] 40 68 Red Defl | FL No 0 12

kY Red STOL | FL No 15} 40 69 Red | Defl| FL No 0 | 8

33 Red STOL | FL No 33} 40 70 Red Defl | FL Yes 0 10

34 Red CTOL| FL No 01 15 71 Red Defl | FL Yes 0 80

35 Red CTOL | FL No 0] 11 72 Red | Defl| FL Yes 0] 115

36 Red CTOL | FL No 0] 40 73 Red | Defl| FL Yes 15| 115

37 Red CTOL | FL No 15| 40 7% Red | Defl| FL Yes 15] 80

Note: Run 64-67 had total pressure rakes and no microphones.
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The modified JT15D engine was moved from the VIOL test stand to the 40
by 80 to be run during the initial wind tunnel noise testing. The STOL
hybrid and baseline inlets were tested at forward speeds up to 62 m/s (203
ft/s) over a corrected fan speed range of 11,000 rpm to 12,400 rpm; this is
a throat Mach number range of 0.6 < Mpy < 0.8 for the STOL hybrid inlet.

No angle-of-attack testing was done due to the use of the modified JT15D
engine.

The core IGV's were then reinstalled, and the aerodynamic performance
testing was conducted using the standard JT15D engine. Performance data were
acquired for the STOL mybrid inlet over the above throat Mach number and
forward-velocity range and at angle of attack up to the separation limit or
the 40° travel limit on the turntable. Performance data for the CTOL hybrid
inlet were acquired over the throat Mach number range of 0.6 < Mpy € 0.8 at
forward velocities up to 82 m/s (270 ft/s) and at angles of attack up to the
separation limit. No external-noise data were recorded during these tests
since the presence of the rakes would have significantly altered the fan-noise
levels., This permitted recording of the 16 rake pressure transducers in place
of 16 microphones without additional recorder channels.

The ncise testing of the hybrid and baseline inlets with the standard
JT15D engine was performed during the remainder of the first wind tunnel test.
The same throat Mach number and forward-speed ranges were tested for the hybrid
inlets but only up to 15° angle of attack. The baseline inlet was tested at
the same forward speed and angle-of-attack combinations as the hybrid inlets
and operated at corresponding corrected fan speeds of 11,000 rpm to 12,500 rpm
(STOL range) and 13,400 rpm to 15,000 rpm (CTOL range). A total of 602 data
points were acquired with 122 noise points for the modified JT15D engine test;
173 aerodynamic performance points and 307 noise points were acquired for the
standard JT15D engine.

The redesigned JT15D engine was installed in the 40 by 80 for the second
wind tunnel test. The hybrid and baseline inlets were tested at forward speeds
up to 59 m/s (194 ft/s) over the STOL and CTOL corrected-fan-speed ranges corre-
sponding to the throat Mach number range of 0.6 { Mry < 0.8. The STOL hybrid
inlet was tested at angles of attack up to 30°, and the CTOL hybrid and baseline
inlets were tested at angle of attack up to 15°.

The canted baseline inlet was then tested over the same corrected-fan-
speed ranges as the baseline inlet at forward speeds up to 41 m/s (135 ft/s).
The configuration was first tested with the engine axis aligned with the flow,
-4° angle of attack to the inlet, to simulate actual installed operation. The
engine axis was then rotated 4° to align the inlet axis with the flow to
acquire data at 0° inlet angle of attack for comparison.

The second wind tunnel test was concluded with the aerodynamic performance
and noise testing of the deflector inlet. Aerodynamic data were acquired at
forward speeds up to 59 m/s (194 ft/s) at angle of attack up to 30° over the
same corrected-fan-speed range as the baseline inlet. After removal of the
total pressure rakes and switching the recorder input to the microphones, the
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noise testing was conducted. Noise data for the deflector inlet were acquired
over the same forward speed and fan speed ranges at angle of attack up to 15°.
A total of 511 data points were acquired during the second wind tunnel test
including 50 aerodynamic performance points, 358 microphona-traverse noise
points, and 103 fixed-position-microphone noise points.

For all wind tunnel testing the same procedure for setting test condi-
tions and acquiring data was followed for all the noise-data points. The
forward velocity in the 40 by 80 was set, and then the JT15D was put on point. .
This was done by setting either throat mach number from monitored static pres-
sures or corrected fan speed based on fan-entrance temperature. The turntable
was then rotated until the desired angle of attach was obtained. The fan
speed was reset, if necessary, and then data was acquired. Steady-state data
were recorded on the digital system, and then noise-data were tape recorded.
For the first wind tunnel test the noise data were recorded for at least 30
seconds from the fixed-position microphones. For the second wind tunnel test
the noise data were recorded continuously until both microphone traverses
stopped. For selected conditions the traversing microphones were fixed at 30°,
50°, and 70° relative to the inlet axis, and 30 seconds of noise data were tape
recorded at each angle.

During the aerodynamic performance portion of the first wind turnel test,
a slightly different procedure was used to determine the angle-of-attack lim-
its for the hybrid inlets. After the wind tunnel conditions and the JT15D fan
speed were set, data were acquired at angles of attack up to 15°. The turn-
table rotation was then continued until either the wall static pressure or the
rake transducers indicated diffuser separation. The turntable rotation was
immediately reversed to reattach the flow; the fan corrected speed was reset,
and then steady-state data were taken at an angle cf attack close to the sepa-
ration value. In some cases diffuser separation did not occur before the
turntable limit of 40° angle of attack was reached or a predetermined value
of steady-state total pressure distortion at the fan entrance was exceeded.

3.7 DATA REDUCTION

The reduction and processing of the test data was shared between NASA and
GE. The steady-state aerodynamic performance data for the inlets and the test
facilities were calculated on-line by the NASA computers. Editing and correct-
ing the data was performed by GE and NASA engineers, and the final computed test
results were supplied by NASA to GE. The external and internal noise measure-
ments were monitored on-line during the tests by GE personnel to ensure signal
validity. The posttest noise-data reduction and processing were accomplished at
the GE facilities. During most of the second wind tunnel test, high signal
levels were observed on the downstream portion of the linear microphone trav-
erse. It was determined that the source of the pressure disturbance was wakes
shedding from the circular traverse rail. The fan-noise portion of the signal
was swamped by this background noise; as a result, data from the traverse-rail
microphone during the second wind tunnel test was unusable.
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3.7.1 Aerodynamic Performance Data

i As part of the pretest effort, GE engineers conducted an extensive axisym-

f metric compressible-flow analysis of the hybrid inlets. This analysis deter-~
mined the relationships between the airflow rate, the total pressure recovery,
the surface pressure distribution, and the throat Mach number for each hybrid
inlet at both outdoor static and wind tunnel test conditions. The results of
this analysis were incorporated into the on-line aerodynamic performance com=

. puter program used for all wind tunnel testing. This program computed throat
Mach number for all zero-angle-of-attack test points using three selected wall
static pressures from each hybrid inlet. During testing with the total pres-~

. sure rakes, the program also computed the average total pressure distortion
and area-weighted average total pressure for all hybrid-inlet and deflector-
inlet test points. The General Electric Distortion Analysis Program was run
off-line using the rake total pressures to compute more detailed total pres-

H sure distortion parameters as well as contour plots of the pressures. These

! computer programs were a valuable asset to the wind tunnel testing because

preliminary results were available on-line for each test point, and final

checked results were available at the completion of the tests.

3.7.2 Fixed-Microphone Data

The fixed-microphone data from the first outdoor static and wind tunnel
tests were reduced into 1/3-octave-band spectra from 100 Hz to 20 kHz using
a l6-second average time and corrected to standard day conditions by conven-
tional data-reduction techniques. Since these data were the preliminary noise
measurements, they were not corrected for wind tunnel background noise or
convection effects. Some of the data were reduced to 20 Hz narrowbands from
0 to 20 kHz for use in comparisons with the data from the second wind tunnel
test.

3.7.3 Traverse-Microphone Data

The 3.7 m (12 ft) arc microphone deta from the second wind tunnel and

outdoor static tests were reduced to 1/3-octave-band spectra from 400 Hz to
16 kHz by special techniques developed to process moving-microphone data.
While the traverse was moving, narrowband spectra were continuously computed

- with an angular spacing that depended upon the averaging time in the spectral
calculations. The averaging time used was 0.2 seconds; this provides the
smallest angular resolution between spectra on the 3.7 m (12 ft) arc and keeps

. the statistical errors below t1 dB in the sound pressure levels. For each
data point, the narrowband spectra are computed every 3.3° around the arc and
and are then converted to 1/3-octave-band spectra corrected to standard-day
conditinrns.

To verify the traverse-microphone data-reduction technique, the data ac-
quired when the traverse was stopped at 30°, 50°, and 70° for selected points
were compared to the traverse data at those angles at the same test conditions.
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Typical comparisons of the spectra computed from fixed-microphone data reduc-
tion to spectra computed form traverse-microphone data reduction are shown in
Figure 33. The baseline inlet was used because it changes more with frequency
and angle than data from the hybrid inlets does; therefore, it represents a
tougher test case for comparisons of the methods. These comparisons indicate
that the traverse-microphone data-reduction method provides spectrum levels
vithin 12 dB of those computed by conventional techniques. In addition, the
traverse-microphone data has an advantage over fixed-microphone data in that
no errors exist due to calibrating and recovering data from several micro-
phones.,

3.7.4 Internal Noise Data

Selected internal-noise data from the outdoor static and the wind tunnel
tests were reduced to 20 Hz narrowband spectra from O to 20 kHz using digital
fast Fourier transform techniques. The 2,0-second average time used resulted
in statistical errors less than 0.5 dB in the sound pressure level. The
narrowband spectra were then converted to 1/3-octave-band spectra from 100 Hz
to 16 kHz for comparison with the 3.7 m (12 ft) arc microphone data.
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4.0 DATA ANALYSIS

4,1 ANALYSIS TECHNIQUES

The techniques used to analyze noise data from the outdoor static and
wind tunnel tests use both narrowband and 1/3-octave~band spectra formats.
The narrowband format is used primarily for comparison of noise levels from
different configurations or test conditions at the blade-passing frequency.
These types of analyses provide detailed information about the relative tone
levels that are often obscured by the 1/3-octave-band format. However, the
bulk of the data anslyses utilize techniques that yield results in the 1/3-
octave~band format.

The analysis technique used for the wind tunnel data involves several
steps. The first step is to account for convection effects that transform
the angles and correct the levels of the traverse-microphone measured spectra
to equivalent static conditions. The next steps are to select spectra at
forward angles from 10° to 90° from the inlet axis, apply microphone angle-of-
incidence corrections, and substract the wind tunnel background noise from the
selected spectra, Finally, the sound-level spectra are corrected to standard-
day conditions, scaled to the large turbofan engine, and extrapolated to the
61 m (200 ft) sideline. The spectra are then weighted and summed to obtain
perceived noise levels (PNL) at the forward arc angles in 10° increments for
use in determining directivity p.tterns. Tables of 1/3-octave-band spectra
for the corrected an? scaled data along with plots of selected 1/3-octave~
band spectra, 1/3-octave-band directivity, and PNL directivity patterns from
the second wind tunnel tests are presented in Reference 3.

4.1.1 Wind Tunnel/Static Transformation |

As the noise from the fan propagates forward in the wind tunnel the waves
are convected downstream by the flow velocity as shown in Figure 34. This
convection has the effect of causing the angular location and propagation
distance of the wind-on data to change relative to the static data. To
properly assess the effects of forward velocity on the fan noise, the convec-
tion effects should be removed from the wind-on data to provide a consistent
basis for comparisons.

The static equivalent angle, ¢ (see Figure 34), for the 3.7 m (12 ft)
arc measurements relative to the wind tunnel axis is given in terms of the

measurement angle, g, by the expression ’
-1 sin g
¢ "ot W cos (
[V
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wvhere M, is the wind tunnel flow Mach number. The noise emission angle, o,
telative to the inlet axis is then given by

vhere g is the inlet angle of attack. Finally, the noise incidence angle,
¢, at the microphone to be used for corrections is given by

v =180 - g (3) .
which is applicable at all angles since the microphone always points upstream. ’

The noise propagation distance during wind-on conditions was effectively
lengthened by the convection effects. The ratio of the measured to the

static equivalent distance is given by

R+ pR _ sin %)

R sin ¢

where R is the actual distance to the traverse arc, 3.7 m (12 ft). Substitu- ;
tion of Equation (1) into Equation (4) provides the expression §

2 1/2
R+ aR _ . Mo + cos g
R sin g [( T + 1 (5)
which relates the distance ratio to the measurement angle and the wind tunnel -

flow Mach number. The distance ratio is then used to increase the measured
sound pressure levels at a specific angle; this corrects the wind-on data to
equivalent static conditions. The formula for this level correction is

2
ASPL = 10 log (E—RA—R) (6)

where ASPL is added to each 1/3-octave band in the spectra,

The application of the convection corrections and the microphone
incidence~angle corrections are facilitated by the use of a traversing- i
microphone system to acquire the fan-noise data. TFor each data point the
traverse-microphone data-reduction program computes l/3-octave-band spectra v
at each 3.3° around the arc from ~-59° to +82° relative to the wind tunnel i
ceaterline. The program then computes Equation (1) for each spectrum and j
selects spectra at 10° increments from ¢ = 10° to ¢ = 90° for further correc- .
tions. The spectra are then corrected for microphone incidence angle and
frequency response based on the microphone manufacturer's calibrations. The
spectra are then rz2ady for wind tunnel background noise and standard-day
temperature and humidity conditions. )
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A graphical solution to Equation (1) was used to determine the wmeasure-
ment angle to use for each 10° static equivalent angle for selection of narrow-
band spectra. These values appear in Table 6. Unfortunately, the convection
correction was not anticipated when the traverse rail was set up, and the last
value of traverse-microphone data usable for szero angle-of-attack data is 70°.
This is the reason all the directivity curves presented later end at a noise-
emission angle of 70°.

Table 6. Measurement Angles Required for Static
. Equivalent Angles at 10° Increments.

ws | Mo [ 10 [ 20 [ 30 [4 J5so [e [0 [se [ o

20.6 | 0.059| 10.6| 21.15] 31,7 | 42.2 | 52.6 | 62.9| 73.2| 83.3 | 93.4
41.2 10,18 11.2§ 22.3 33.4 1 4.3 55.2| 65.8| 76.3| 86.6 | 96.8
59.210.170| 11.7] 23.4 3.7 46.3| 57.5| 68.5]| 79.2 | 89.6 | 99.8

4.1.2 Wind Tunnel Background Noise

The wind tunnel background noise was determined by acquiring data with
, the traverse microphone with the engine off at each of the forward velocities
- used during the teat. Averaging several of these data points, the background
noise was found to bec essentially constant at all measurement points along
the traverse arc. The spectral shape remained basically the same with the
level increasing as the wind tunnel velocity was increased. The background-
noise spectra for the wind tunnel velocities tested are shown in Figure 35.
The background-noise spectra were then logarithmically subtracted from the
vind~on data measured along the 3.7 m (12 ft) arc.

i

The fingl corrections applied to the spectra were to a:count for the
nonstandard-day test environment. The temperaturc and humidity measured in
the flow at the engine inlet are used along with the tables in Reference 4 to ?
. determine corrections to the 3.7 m (12 ft) arc data. The corrections sdjust i

the sound level at each 1/3-octave band for the differences in atmospheric ;
attenuation between the actual test conditions and standara-day, reference é
conditions. P

4.1.3 Large-Scale Turbofan Noise

In order to compare the fan noigse and inlet suppression with large, high-
bypass-turbofan systems the JT15D noise must be scaled to the large size. The
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systems chosen for the comparisons were the CF6 for the CTOL hybrid-inlet,
canted-inlet, and deflector-inlet data and the QCSEE for the STOL hybrid-
inlet data. The CF6 fan has an entrance diameter of 219.5 cm (86.4 in.) and
38 blades; the QCSEE fan has an entvance diameter of 180.3 2m (71 in.) and 28
blades.

The scaling procedure involves first transferring the data back to the A
source at a reference diameter of 0.3 m (1 ft). This is done by removing the
standard-day atmospheric attenuation and adding the spherical-divergence fac-
tor for the distance from the measurement arc. The 1/3~octave-band sound
pressure levels are then increased by the airflow ratio between the engines;
this is proportional to the ratio of the square of the engine diameters. I’
The frequency scales are then reduced, by the diameter ratio between the '
engines, to ensure that the Strouhal number remains constant. In order to place
the blade-passing-frequency noise in the proper 1/3-octave band for the large
engine the frequency-shift factor is modified by the ratio of the blade number
between the engines.

Once the fan noise has been scaled at the source to the large engine,
the data is extrapolat=d to a distance of 61 m (200 ft) ,arallel to the
inlet c(enterline. This distance can be either to a sideline or overhead as
long as no angle of attack is involved. The distances to this line along the
rays at 10° increments are computed and used to determine the standard-day
atmospheric attenuation, from Reference 4, and the spherical-divergence values
to be substracted from the spectra. The scaled and extrapolated spectra are
then summed to obtain the overall sound pressure levels and weighted to obtain
the perceived noise levels at each 10° angle.

4,2 FAN/INLET AERODYNAMIC PERFORMANCE

Prior to discussion of the results of the acoustic-data analysis, a
detailed summary of the aerodynamic performance of the various inlets is pre-
sented. This summary serves not only to demonstrate the adequacy of the
aerodynamic prediction methods but also to verify that the low-noise-inlet
concepts tested provide good performance while suppressing fan noise. Also
presented are the limits of operation at angle of attack at each forward
velocity as determined by breakdowm of the fan/inlet aerodynamics or other
physical const:aints.

4,.2.1 Hybrid Inlet Throat Mach Number Determination

The General Electric Streamtube Curvature (STC) (Reference 5)
axisymmetric-flow-analysis computer program was used to generate the internal
contours for the CTOL and STOL hybrid inlets, The STC analyses also provided
local wall Mach number and wall static pressure versus axial distance along
the inlet for each combination of forward velocity and throat Mach number
tested. Typical plots of these data at the design point (see Table 2) for
each inlet are shown in Figures 36 and 37, These data were cross-plotted to
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obtain trends of the throat Mach number versus wall stall pressure at selected
points on the inlet wall where static pressure taps were located. These plots
were used to set throat Mach number during the tests and were programmed into
the on-line, steady-state, data-reduction program to compute throat Mach num-
ber from the test data. The plots for the design point for each inlet are
shown in Figure 38.

To demonstrate the adequacy of the STC predictions, the measured wall
Mach numbers and wall static pressures were compared with the predictions at
the design point for each inlet. These comparisons, shown in Figures 39 and
40, demonstrate that the STC predictions are very good from the inlet high-
light aft to the middle of the diffuser. Toward the aft end of the diffuser
the boundary layer growth and viscous effects become dominant factors causing
the inviscid predictions from the STC program to be slightly in error.

During the first wind tunnel tests the on-line throat Mach numbers were
computed by averaging the throat Mach number values determined from three of
the static pressure taps. The three taps used were in a line near the throat
of each hybrid inlet. For the posttest data analysis, the throat Mach number
was determined by ayeraging the values from 10 of the static pressure taps.
The 10 taps used were distributed circumferentially as well as axially to pro-
vide better coverage of the diffusers. The result was a much tighter corre-
lation of throat Mach number with corrected fan speed as shown in Figure 4l.
With the throat Mach number primarily dependent on corrected fan speed, the
operation of the second wind tunnel test could then be considerably simpli~
fied by setting corrected fan speed rather than static pressures. The speci-
fic values of corrected fan speed and the corresponding values of corrected
fan tip speed, inlet throat Mach number, inlet airflow, and fan pressure
ratio that were used are listed in Table 7.

4.2.2 Inlet Pressure Recovery and Distortion

During the aerodynamic performance portion of the wind tunnel tests, the
pressure recovery and distortion were measured for the hybrid and deflector
inlets. These data were acquired over the complete range of fan speeds,
forward velocities, and angles of attack for which acoustic data were to be
acquired. In addition, these data were acquired while the limits of angle-
of-attack operation were being determined at each combination of throat Mach
number and forward velocity.

4.2.2.1 Zero Angle of Attack

The hybrid-inlet pressure recovery and distortion at zero angle of attack
for various forward velocities zve plotted versus throat Mach number in Fig-
ure 42. The recovery and distortion characteristics for the hybrid inlets
at low throat Mach number are slightly worse than conventional inlets at com-
parsble throat Mach number due to the additional length of the diffusers. As
the throat Mach number increases, a gradual drop in recovery and rise in dis-
tortinn occur due to the increasing diffusion rates. Pressure distortion
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less than 5% is generally considered accaptable for an inlet. Note that there
are no abrupt changes in tliese trends as the throat Mach number increases
above the design values and that forward elocity has little or no effect on
these characteristics; this indicates good diffuser and flight lip design.

The deflector inlet pressure recovery and distortion are plotted versus
corrected fan speed in Pigure 43 for zero angle-of-attack operation at two
forward velocities. Since the deflector inlet has a short diffuser, the
pressure recovery and distortion characteristics are more similar to those
of conventional inlets. The diffuser is not omly short, it also has a
shallow diffusion angle that keeps the recovery and distortion relatively con- |
stant as fan speed is increased. As with the hybrid inlets, the lip was »
degigned for high-angle-of-attack operation, and there is no appreciable effect ’
of forward velocity on the deflector inlet recovery and distortion charac-
teristics.

4.2.2.2 Non-Zero Angle of Attack

The pressure recovery and distortion for the design and the lowest throat
Mach number are plotted versus angle of attack for the CTOL hybrid inlet in
Figure 44 and for the STOL hybrid inlet in Figure 45. The levels remain vir-
tually constant at all throat Mach numbers and forward velocities up to 15°
angle of attack due primarily to the efficacy of the lip design. At higher
angles of attack the flow around the lip begins to break down as either the
throat Mach number or the forward velocity is increased. As these parameters
are ‘ncreased, the Mach number around the lip increases on the windward side
of the inlet causing locally high pressure losses. The result is lower pres-
sure recovery and higher pressure distortion as the flow enters the engine.

At each combination of forward velocity and fan speed, data were acquired
at incrementally higher angles of attack until the objective angle for noise
testing was reached or until the diffuser flow separated. Based on these
data, the STOL hybrid inlet could be tested at angles of attack up to 30° at
forward velocities up to 41 m/s (135 ft/s), and the CTOL hybrid inlet could be
tested at angles of sttack up to 15° at forward velocities up to 82 m/s (270
ft/s). The STOL hybrid iniet encountered diffuser flow separation at 30°
angle of attack at the throat Mach number of 0.77 at a forward velocity of
62 m/s (203 ft/s). This was the only limit on angle-of-attack opersatior of
either hybrid inlet.

The pressure recovery and distortion for the def.ector inlet at two for-
ward velocities are plotted versus angle of attack in Figure 46. At both low
and high corrected fan speed the performance of the inlet is virtually con-
stant up to 20° angle of attack. There is a very slight effect of forward
velocity on the pressure distortion; however, the values are too low to place
any significance on the trend. As can be seen by these results, one of the
good teatures of a deflector inlet is excellent angle-of-attack capability.
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4.2.3 Fan Operating Characteristics

Another output of the STC program is the airflow for each hybrid inlet as
a function of throat Mach number. These calculations were combined with the
recovery data and the throat Mach number/corrected-fan-speed data to obtain the
plot of corrected airflow versus corrected fan speed shown in Figure 47. The
lower curve in Figure 47 is for the smaller, production, fan-exhaust nozzle and
was provided by NASA ARC.

To provide additional data on the JT15D fan operating characteristics,
NASA ARC conducted a test to measure the fan pressure ratio versus corrected
fan speed with both the hybrid-inlet fan nozzle and the production fan nozzle.
The cylindrical baseline inlet was used for the bellmouth, and the GE-supplied
rakes shown in Figure 30 were used to measure the fan discharge pressure. The
data were supplied to GE and are shown in Figure 48. These data, together with
the airflow data from the hybrid inlets, were then combined to provide a fan
map of pressure ratio versus corrected airflow with speed lines drawn between
the curves representing the two nozzle configurations. The fan map shown in
Figure 49 may be used when comparing noise data from other JT15D tests that
have used the production nozzle.

4.3 BASELINE INLET ACOUSTIC CONSIDERATIONS

In order to discuss the suppression characteristics of advanced inlets,
the reference levels of fan noise must first be established. Similarly, to
discuss the forward-velocity effects on the suppression, the static-to-flight
effects on the reference fan-noise levels must also be determined. The base-~
line cylindrical inlet was used with the redesigned JT15D to provide the data
for the reference noise levels and was tested both outdoors end in the wind
tunnel to provide the data for the static-to-flight effects on the reference
noise levels.

4.3.1 Static-to-Fligh} Effects

In earlier tests at NASA Ames (Reference 2), the modified JT1>D engine
was used to investigate static-to-flight effects on fan noise. Those results
linked atmospheric turbulence to the generation of fan tone noise by showing
a substantial reduction in noise levels at blade-passing frequencies when the
engine was static tested with a device that reduced inflow turbulence into the
inlet. These tests were restricted to low corrected fan speeds to assure no
other fan tone noise sources were present and demonstrated reduction of the
fan tone noise at blade-passing frequency down to the level of the broadband
noige at the surrounding frequencies. For this particular fan, the noise
from rotor interaction with the bypass stator vanes does not propagate
throughout the entire speed :range. However, this much static-to-flight effect
due to cleaning up the inlet will not necessarily be realized at higher cor-
rected fan speeds when the fan tip speed exceeds sonic velocity and the rotor-
generated tone noise begins to propagate. Since the corrected fan speeds run
during the baseline inlet tests covered the range from slightly below to well
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above sonic tip speed, the relative strength of the rotor-turbulence tone
noise to the rotor-alone tone noise wiil be determined for the JT15D along
with the complete spectrum of reference fan noise,

The direct comparison of the outdoor static and wind tunnel quasi-static
data with the wind tunnel data at a forward velocity of 41 m/s (135 ft/s) is
shown for three corrected fan speeds in Figure 50. Presentation of the 2 kHz
segments of the 20 Hz narrowband spectra that include the blade-passing fre-
quency at 10° increments in noise-emission angle shows the static-to-flight
effect on the tone levels and the tone directivity. These data confirm the
conclusion in Reference € that the rotor-turbulence noise only affects the
tone levels of the spectra. The largest static-to-flight effect occurs at
the lowest fan corrected speed because the rotor-alone noise has just begun
to propagate and only shows up in the far field above the broadband noise at
noise emission angles of 40° and larger. As the fan tip speed is increased
the rotor-alone noise increases and develops a directivity pattern for the
BPF tone that peaks sharply near 50°to 60° with as much as 20 dB difference
between the peak and the on-axis levels. Since the rotor-turbulence noise
is more uniformly distributed to all angles, it adds to the rotor-alone
noise at the off-peak angles and contributes to the static-to-flight effects
on fan noise even at high corrected fan speeds. To show how the rotor-
turbulence tone noise adds to the rotor-alone tone noise as the latter bve-
comes stronger, the narrowband blade-passing-frequency tone level variations
with fan tip speed for the baseline inlet in the outdoor static and 40 by
80 quasi-static and forward-velocity test environment are presented in
FPigure S1. The tone levels at the peak-noise-emission angle and at the 30°
and 70° noise-emission angles from the three test conditions are compared.
Note that :he peak-noise-emission angle changes considerably between the
outdoor static and the 40 by 80 data below the fan tip speed for which the
rotor-turbulence and rotor-alone tone noise levels are approximately equal.
Note also, that wvhile there is basically no change in the peak-angle noise
level above that fan tip speed, there is considerable change in the levels
at off-peak angles due to these static-to-flight effects.

Another conclusion from Reference 6 is that the rotor-turbulence tone
noise has considerable variability due to the random nature of the atmospheric
turbulence in outduvor static tests. The data from the second outdoor static
tests, where the wind varied only siightly in velocity and direction, con-
firmed this conclusion. The shaded regions in FPigure 51 represent the range
of tone level measured during the outdoor static tests at those angles. This
means that the static-to-flight effects will vary considerably and that the
outdoor static data cannot be used as reference noise levels unless, of
course, turbulence conditions are controlled. The wind tunnel quasi-static
data have less variation in tone levels, but these data are also influenced by
turbulence. According to Reference 6, the forward velocity in the 40 by 80
has to be at least 21 m/s (68 ft/s) for this size engine in order for the
rotor-turbulence interaction tone noise to He less than the broadband noise.
Therefore, for more reliable fan-noise suppression results, the baseline
inlet data from the wind tunnel tests at forward velocities of 21 w/s (68
ft/s) or higher will be used as reference noise levels. Specifically, the
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wind tunnel data at 41 m/s (135 ft/s) will be used since this forward velocity
is high enough to be near the design point for both hybrid inlets and is low
enough to have background noise levels well below the lowest levels of inlet
noise.

4.3.2 Fan Modification Effects

While investigating static-to-flight effects on fan noise using the
standard JT15D, Hodder (Reference 2) determined that the interaction between
the core inlet guide vanes and the fan-blade wakes was a source of considera-
ble noise in the far field at low corrected fan speed. As a result of this
work, NASA ARC contracted with the engine manufacturer to redesign the core
inlet guide vanes to reduce or eliminate this BPF tone noise source. This was
accomplished in the same way that large turbofan engines are designed: by
increasing the number of inlet guide vanes so that the vane/blade ratio
exceeds 2.0 so that the noise will not propagate at blade-passing frequency
within the fan operating range. An extra benefit was that the spacing between
the rotor blade trailing edges and the inlet guide vane leading edges in-
creased (see Figure 4); this reduces the level of the noise that propagates at
the harmonics of the blade-passing frequency. The timing of the redesign and
modification of the fan was such that the first wind tunnel test (which
provided the inlet aserodynamic data), was run with the standard JT15D, and the
second wind tunnel test (which provided the noise data) was run with the
redesigned JT15D. However, noise data were acquired during the first tests
and will be compared with the data from the second tests to demonstrate the
effect of the engine modification on the JT15D fan noise characteristics.

The lowest fan corrected speed run with the baseline inlet was just at
the lower edge of the speed range where the rotor~alone noise propagates, as
was shown in Figure 50. The comparison of the spectra at every 10° between
the standard and redesigned JT15D with the baseline inlet is shown in Figure
52 for a forward velocity of 41 m/s (135 ft/s). The format for presentation
of the spectra graphically displays the effect of the interaction on the tone
directivity pattern. The interaction noise causes high BPF tone levels near
the axis but also adds to the rotor-alone noise at the higher angles at this
particular corrected fan speed. These results confirm that the standard JT15D
has considerable noise, at blade-passing frequency, which is concentrated near
the axis of the fan due to the interaction of the fan rotor wakes with the
standard core inlet guide vanes.

4.4 HYBRID INLET ACOUSTIC PERFORMANCE

Based upon the acoustic characteristics of the baseline inlet, all the
hybrid-inlet acoustic performance results will be determined from the second
wind tunnel test data. The throat Mach number, treatment, and angle-of-attack
effects will be shown at the forward velocity of 41 m/s (135 ft/s). The for-
ward-velocity effects will Le shown at both low and design throat Mach numbers
for each inlet at zero angle of attack. A more complete p:esentation of the
data is contained in Reference 3.
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4,4.1 Comparisons with Baseline Inlet

The fan noise suppression or reduction results are presented as compari-
sons of absolute sound pressure levels from each inlet rather than as differ-
ences in levels from the baseline inlet. These absolute levels are derived
from 1/3-octave-band aralysis and are plotted as functions of both noise-
emission angle and frequency. Narrowband spect:a are presented when necessary
to provide more detailed explanations of the results. Particular attention is
given the frequency region containing the blade-passing tone during analysis
of the actual JT15D data. For application of the results to large turbofan
engine systems the emphasis is shitced to the extrapolated perceived noise
levels (PNL) and the overall sound pressure level (OASPL) at a distance of
61 m (200 ft) parallel to the inlet centerline. For the hybrid-inlet comperi-
sons at zero angle of attack, this distance is referred to as sideline.

Directivity patterns for the 1/3-octave-band containing the blade-passing
frequency for four throat Mach numbers and 1/3-~octave-band spectra for three
angles are shown in Figures 53 and 54, respectively, for the baseline and CTOL
inlets. The same type of data are shown in Figures 55 and 56 for the baseline
and STOL inlets. The presentation format was chosen to demonstrate the effect
of both inlet flow acceleration and acoustic treatment on the fan noise gener-
ated at both high and low corrected fan speeds. The same four throat Mach
numbers were used for both the CTOL and STOL directivity-pattern comparisons
while the lowest and the design throat Mach numbers are used to show the
spectral comparisons.

The baseline inlet BPF directivity pattern for the high corrected fan
speeds run for the CTOL inlet are all sharply peaked due to the strong pre-
sence of rotor-alone noise (Figure 53). The CTOL hard-wall inlet reduces the
baseline BPF directivity pattern to a nearly omnidirectional pattern at all
throat Mach numbers. The effect of increasing throat Mach number is to con-
tinue to reduce the BPF levels at all angles, thus, maintaining the same
directivity shape. The addition of treatment to the CTOL inlet reduces the
BPF levels at all angles at the lower throat Mach numbers so that the BPF
level reduction by the CIOL hybrid inlet is essentially the same at all
throat Mach numbers.

The baseline-inlet, 1/3-octave~band spectra exhibit very high levels at
frequencies below BPF; this is further verification of strong rotor-alone
noise (Figure 54). The CTOL hard-wall inlet substantially reduces the com-
plete noise spectrum at all throat Mach numbers. Because the rotor-alone
noise is concentrated at the outer wall of the inlet, which leads to a direc-
tivity pattern that peaks near 40°to 50°, the greatest noise reductions occur
at higher thrcat Mach numbers at these angles. The addition of acoustic
treatment further reduces the noise at other frequencies as well as at BPF so
that the absolute levels over the entire spectrum are essentially the same for
the CTOL hybrid inlet regardless of throat Mach number.

The baseline-inlet BPF 1/3-octave-band directivity patterns for the three
lowest corrected fan speeds run for the STOL inlet are relacively flat




LU

0.0002 pBar

BPF 1/3-Oc:ave-Band SPL, dB Re:

ORIGINAL PAGE IS
OF POOR QUALITY

0 - Baseline 4+ = Hard Wall % - Treated
120 V, = 376 u/s (1235 ft/s) V.= 390 m/s (1278 ft/s)
CTOL M, = 0.62 CTOL M, = 0.66
110 o> e
90 { \\-\\-‘ +
80 Il 2 1 | S § i { I 3 2 4 I VR | e

120 ]:;r = %05 mls (1350 ft/s)

oL M,m-o.nﬁ
1o | \\,,

2.

Vo = 416 m/s (1365 ft/s)
CTOL = 0.77

| ’<:’\.4§ |
90 1 1
80 { PN 1 | i I i A 4 Il N 3 s I
0 30 60 90 O 30 60 90

Noise Emission Angle, degrees

o 3.7 m (12 ft) Arc Corrected Data
e 41 m/s (135 ft/s) Forward Velocity

Figure 53. Blade-Passing Frequency, 1/3-Octave-Band Noise Directivity
for Baseline and CTOL Inlets at Forward Velocity.

93



96

0.0002 Bar

1/3-0Octave-Band SPL, dB Re:

ORIGINAL PAGE !S
OF POOR QUALITY

0 - Baseline + - Hard Wall * . Treated
120 r__v,r = 375 nls (1235 ft/s) | i = 405 u/s (1330 ft/s)
Jicml.um = 0.62 CTOL M, = 0.72
110 ¢ 1
100 § !
N Y,
90 t i
e = 30° e = 30°
120 [ SO SN 1NN U U AU N S N | ARV WO U WA U WD WA WO G WY |
110 § s
100 ¢ \%\9 :
0 1 W
8 = 50° 8 = 50°
120 | S N ST WA DTS N SN U S S | T T T T WO TN W WY S T S
110 1
8
100 ¢ 1
90 1 1
, 6 = 70° e = 70°
80 lAinLLJg_)LlAﬁ ) U U U S §

1 2 4 8 16 1 2 4
Frequency, kHz
® 3.7 m (12 £t) Arc Corrected Data

Figure 54. One-Third-Octave~Band Spectra for Baseline and CTOL
Inlets at 41 m/s (135 ft/s) TForward Velocity.




ORIQINAL PAGE IS
OF POOR QUALITY
0 = Baseline + - Hard Wall % « Treated
2
120 V, = 311 wis (1020 £t/s) V, = 322 n/s (1056 ft/a)
STOL M, = 0.62 STOL My, = 0.66

1104 +
E *\\\*“*
T 1004 \\ I
:
=
s 90¢ T
“ .
(-]
-}
é 80 i ¥ A A 3 A (! Il 4 } A 1 2 S 1
7]
T 120
g VT = 335 n/s (1098 ft/s) Vo = 364 m/s (1129 ft/s)
y .
5 - -
¢ 0% !
-
= |
- )
[
(-9
0

01 "4’\ | f—o\'

90 -* '\ - \\

80 . 3 | n 1 n | 1 Y " ) 2 1 3 3 4

0 30 60 9 0 30 60 90

Noise Emission Angle, degrees

® 3.7 m (12 ft) Arc Corrected Data
® 41 m/s (135 ft/s) Forward Velocity

Figure 55. Blade-Passing-Frequency, 1/3-Octave-Band Noise Directivity
for Baseline and STOL Inlet at Forward Velocity.

97

PR

e e e o e . e e e e



0.0002 uRar

1/3-0Octave-Band SPL, dB Re:

ORIGINAL PAGE 1§/
OF POOR QUALITY

0 - Baseline

+ = Hard Wall

* - Treated

110 Vp = 311 w/e (1020 ft/s) V., 346 u/s (1129 ft/s)
STOL "TH = 0,62 STOL MTH = 0,77
100 }
ol \k‘(*\\\
80 4 i
e = 30° e = 30°
110 &l | I W O T W U T I A N | N W Y I N I A NS SN A A 1
100 ¢
7l \\/(\\
80 ‘\&
@ = 50° e = 50°
11011!1111¢1L111 lJlllllll‘Ll_LL‘
106G +
90 ¢ ]
804
- -]
70 . - Okizoe. 41;A;?47°AAAA r
1 2 4 8 16 1 2 4 8 16
Frequency, kHz
® 3.7 m (12 ft) Arc Corrected Data
Figure 56. One-Third-Octave-Band Noise Spectra for Baseline and

STOL Inlete at 41 m/s (135 ft/s) Forward Velocity.




and characterized by slightly decreasing levels with increasing angle (Pigure

' 55). The pattern for the fan speed run at the STOL design throat Mach number

) has a quite different shape. The reason for these shapes has to do with the

'3 fact that the rotor-alore noise is just beginning to propayate, and the tone

levels do not contribute to the 1/3-octave band until highest fan speed. The [

z 20 Hz narrowband spectras shown in Figures 50a and 50b car b+ used to demon- o

5 strate this point. Obscrve that the broadband noise near the BPF has the A
same directivity shene as the lov-fan-speed points in Figure 55. However,

wvhen the BI'F tones are greater than 18 dB above the broadband noiss, as is the

= - case for Figure 50b, tha directively pattern is altered by the tore levels.
v The STOL hard-wall inlet BPF directivity patterns have the characteristic P
E . shape of broadband noise, at all throat Mach mwmbers, with the levals decroas-

ing as throst Mach number is increased. Nowever, comparison with the base-
line inlet data shows that the levels are increased at the lowvest throat Mach
number and are not actually reduced until the design throat Mach number. The
addition of acoustic treatment uniformly reduces the levels at all angles with
a greater effect at low throat Mach numbers. At the lowast thrcat Mach number
the STOL hybrid inlet appears to have little effect on the BPF 1/3-octave-band
noise levels (see Figure 56), but at the higheat throat Mach number the noise
reduction follows the same trends as the CTOL hybrid inlet. Ths 1/3-octave-
band ncise apectra from the STUL inlet at these two throat Mach numbers were
compared to those from the baseline inlet to determine if these conditions
exist at other frequencies.

gl oM i sl

The baseline-inlet 1/3-octave-band spectra exhibit a general treand of
higher levels at higher frequenciee with BPF and twice-BPF tone peaks at th2
higher fan speed. The STOL hard-wall inlet at the low throat Mach number
appears to cause the level increase only in the 1/3-octave bands at or near
BPF and twice BPF. The fact that this increase is spresd over more than ome i
1/3-octave band indicates that it is broadband rather than tone in nature.

The effect of adding acoustic treatment is to reduce the ieveis at all fre-
quencies at both throat Mach numbers. At the low throat Mach number the re~
duction increases as frequency increases; the reduction is relatively con-
stant with frequency at the design throat Mach number. The result is that the
STOL hybrid inlet reduces the baseline-inlet noise at all frequencies to about
the same levels regardless of the throat Mach anumber.

To provide more detsil about the effects of the hybrid inlets on the fan
noise at frequencies at or near BPF, as well as to help explain the broadbund
noise increase caused by the STOL hard-wall inlet, segments of the narrowband
spectra are presented in Figures 57 and 58 which correspond to the 1/3-octave
band spectra presented in Figures 54 and 56, The fan-noise rrduction is
achieved for the CTOL hard-wall inlet by virtually eliminating all the per
rev tones sssociated with the rotor-alone noise. At low throat Mach aumbers
additional reduction is achieved by the action of the acoustic treatment on
the broadband noise. However, upon closer inspection of the remaining broad-
band nois¢ spectra, a "hump" of noise has appeared that peaks approximately
1000 Hz below BPF for both CTOL hard-wall and hybrid inlets at all throat
Mach numbers. The hump of broadband noise generated by the CTOL inlet,
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rather than residual BPF tone, is the cause of the peaks in the 1/3-octave-
band spectra shown in Figure 54. There also is a peak in the 1/3-octave-band 3
noise spectra at twice BPF for the design throat Mach number that is caused by
another hump of broadband noise that peaks at twice the frequency of the noise
hump near BPY¥,

Each of the STOL hard-wall inlet narrowband spectra show a similar hump
of broadband noise just below BPF (Figure 58). These noise humps are the cause 3
of the BPF 1/3-octave-band noise level increases observed at the low throat .
Mach numbers in Figure 55. They and the related noise humps near twice BPF
are also the cause of the peaks at or near BPF and twice BPF in the 1/3-
octave-band noise spectra in Figure 56. The addition of acoustic treatment
reduces the noise levels, as previously discussed, but does not remove the
humps of broadband noise.

Both CTOL and STOL hybrid inlets cause humps of broadband noise that

- reduce the suppression levels in the 1/3-octave bands at frequencies at or

near BPF and twice BPF. This is shown in the 1/3-octave-band suppression
spectra plotted for the noise-emission angle of 50° in Figure 59 for the

CTOL hybrid inlet and in Figure 60 for the STOL hybrid inlet. Also plotted in
these figures are the suppression spectra as measured at the wall near the
throat of each inlet. These data demonstrate that a very good approximation
of the peak-angle suppression spectra in the far field can be obtained from
inlet wall measurements.

4.4.2 éﬂgle-of-Attack Effects

The effects of angle of attack up to 15° on the acoustic performance of
the hybrid inlets are so small they are within the data scatter. The compari-
sons of 1/3-octave-band spectra at the same three noise-emission angles rela-
tive to the inlet centerline for low and design throat Mach numbers at three
angles of attack are presented in Figure 61 for the CTOL inlets and in Fig-
ure 62 for the STOL inlets. The traverse-microphone data permit direct com-
parisons at all nnise-emission angles to determine if there are any changes
in the absolute noise due to angle of attack. The angle-of-attack effects on
sideline noise, which are due to rotating the directivity pattern along with
the inlet, were not explored. When the STOL inlets were operated at 30° angle
of attack the diffuser flow was on the verge of separation, as previously dis-
cussed. As a result the 1/3-octave-band noise levels are increased at all
angles. However, due to the nature of the flow into the fan at this angle of
attack, there are no consistent trends to the increased levels.

4,4.3 Forward Velocity Effects

The acoustic-performance effects of changing forward velocity in the 40
by 80 are shown in Figure 63 for the CTOL hybrid inlets and Figure 64 for
the STOL hybrid inlets. The 1/3-octave-band spectra are compared in these
figures at three emissions angles for low and design throat Mach numbers at
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various forward velocities including quasi-static conditions, <8 m/s (26.3
ft/s). The CTOL inlet spectra are somewhat scattered at the highest forward
velocity due to the high levels of wind tunnel background noise that have heen
subtracted from the data. However, these data indicate that the hybrid-inlet
noise in the 40 by 80 is basically the same at quasi-static and moderate-
forwvard-velocity conditions, even though that is not the case for the baseline-
inlet noise., There are two reasons for this apparant anomaly.

. First, the tone noise generated by the rotor-turbulence interaction at
quasi-static conditions is adequately suppressed by the hybrid inlets expect
for the STOL inlet at Myy = 0.62 and ¢ = 30°. Second, the remaining tome

. levels in the hybrid-inlet data are not high enough above the broadband lev-
els to affect the spectral levels in the 1/3-octave bands containing thc fun-
damental and harmonic BPF's. Therefore, comparisons between hybrid- and
baseline~inlet noise from 40 by 80 data to determine suppressiou results will
be affected by forward velocity if the quasi-static data are used. This is
due to the fact that the hybrid inlets suppress rotor-turbulence-interaction
noise at quasi-static conditions, but at moderate or higher forward velocities
the interaction noize is not there to suppress. The conclusion that there are
no forward-velocity effects on the hybrid-inlet acoustic characteristics is
only valid for forward velocities of 21 m/s (68 ft/s) or higher.

4.4.4 Effects on Large-Scale-Fan Noise

To compare the fan-noise suppression of the hybrid inlets with that from
cther inlets, the noise data had to be scaled up to the size of the large
turbofan engines and extrapolated to a sideline. The noise data for the CTOL
inlet and baseline inlet at the high corrected fan speeds were scaled up to a
CF6 size engine. In a similar manner, the noise data for the STOL inlet and
the baseline inlet at the low corrected fan speeds were scaled up to a QCSEE
gsize engine. The 61 m (200 ft) sideline perceived noise and overall noise
directivity patterns a2re shown in Figure 65 for the CTOL data and in Figure 66
for the STOL data.

The baseline-inlet noise-directivity patterns for all CTOL and STOL
corrected fan speeds have the same characteristic. The ncise is lowest near
the axis, peaks between 40° and 60°, and then drops off toward 90°. The
levels for the CTOL corrected fan speeds are much higher due to the contribu-

- tion of all the per rev tones below blade-passing frequency generated by the
rotor-alone noise. This is true for both the weighted perceived noise and the
overall noise. -

The CTOL hard~wall inlet significantly reduces the noise at the peak
angles and, as a result, shifts the noise directivity pattern peak to the 3
higher angles. The acoustic treatment provides additional reduction at the E
lover throat Mach numbers so that the resultant CTOL hybrid inlet perceived 3
noise levels are essentially the same over the throat Mach number range
tested.
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The STOL hard-wall inlet appears to have little effect on the baseline
inlet noise at the low throat Mach numbers. This is the combined effect of
summing the noise from 1/3-octave bands where the STOL hard-wall inlet noise
was less than the baseline inlet with those that contained the increased
levels due to the noise humps. At the higher throat Mach numbers the levels
of those noise humps were less, and the result is a reduction of the total
baseline inlet noise by the STOL hard-wall inlet.

The acoustic treatment seems to benefit the STOL inlet more than the CTOL
inlet at all angles and at all values of throat Mach number. This is an indi-
cation of the relative effectiveness of the two noise-reduction mechanisms of
the hybrid inlets. Flow acceleration is most effective against the rotor-alone
noise, which is characterized by tones, but the acoustic treatment is most
effective against the type of fan noise characterized by broadband noise.

4.5 DEFLECTOR INLET ACOUSTIC PERFORMANCE

The acoustic-performance characteristics of the deflector inlet were
determined during the second wind tunnel tests. Since throat Mach number
was not a test variable, all the data will be presented as a function of
corrected fan-tip speed. The fan speeds for the deflector inlet were the
same as those run with the baseline inlet; thus, fan-noise suppression could
be determined by comparing the results of the two inlets. This provided
deflector-inlet acoustic results at fan-tip speeds below as well as above
the point where the rotor-alone noise is dominant. The hard-wall and treated
deflector-inlet results are compared with those from the baseline inlet at a
forward velocity of 41 m/s (135 ft/s). The effects of angle of attack and
forward velocity on the treated-deflector-inlet noise characteristics are
then discussed.

4.5.1 Comparisons with [aseline Inlet

As with the hybrid inlets, the fan-noise suppression results are pre-
sented as absolute sound pressure levels derived from 1/3-octave-band analysis
and plotted versus noise emission angle or frequency. Emphasis in the anal-
ysis of the actual JT15D data will be on the frequency region containing the
blade-passing tone and on the 1/3-octave-band noise spectra at selected angles.
When the results are scaled up to large turbofan engine size for comparison
with those from other deflector inlets, the emphasis ic shifted to extrapo-
lated overhead perceived noise levels (PNL) and overall sound pressure levels
(0ASPL).

The BPF 1/3-octave-band directivity patterns for four corrected fan—-tip
speeds are presented in Figure 67 for the baseline and deflector inlets. The
shapes of the patterns for the baseline inlet at low tip speeds are typical of
broadband noise because, as previously discussed, it dominates the BPF 1/3-
octave band at all angles even though the rotor-alone tone is present at the
higher angles. However, as soon as the per rev tones from the rotor—alone
noise become dominant, the directivity pattern changes dramatically with a
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sharp peak forming near 50° and moving toward the axis as the tip speed
increases. The effect the hard-wall deflector inlet has on these patterns
is to translate them to the left so that the peaks appear at lower angles
due to redirecting the noise. This has the effect of considerable noise
reduction at the higher angles. The addition of acoustic treatment provides
further noise reduction at the high angles, particularly at the low fan-tip
speeds. To determine if these trends occcur at all frequencies, the 1/3-
octave-band spectra for three noise-emission angles at a low and a high
fan-tip speed are presented in Figure 68,

The baseline-inlet 1/3-octave-~band spectra at the low tip speed are re-
duced at all frequencies, for the angles shown, by the hard-wall deflector
inlet. This indicates that all the noise for each angle is redirected to
lower angles. The acoustic treatment then reduces the noise more or less
uniformly at all frequencies to increase the effective suppression at each
angle. At the high tip speed the effects of the deflector inlet on the base-
line noise are quite different, The frequencies below BPF that are dominated
by rotor-alone per rev tones do not show the same redirection characteristics
as the BPF. These levels appear to remain unchanged at the higher angles by
the redirection process. However, when acoustic treatment is added there is
substantial reduction of the per rev tone noise at all angles; this was not
the case with the BPF tone.

4.5.2 Angle-of-attack Effects

The effects of angle of attack on the 1/3-octave-band noise spectra for
the treated deflector inlet are shown in Figure 69 for four fan-tip speeds.
Unlike the hybrid inlets, the deflector inlet shows notable change in the
spectral levels at all forward angles, particularly at high fan speeds, when
the deflector inlet is operated at angle of attack. The noise levels are
generally increased with angle oi attack, but no consistent trend with fre-
quency or noise-emission angle are apparent. Considering that there were no
signficant changes in recovery or distortion of the inlet total pressures at
angle of attack (see Figure 46), there appears to be no reason for the changes
in noise. However, the deflector inlet does cause a signficant distortion in
static pressure at the fan entrance due to asymmetrv of the flow field into
the inlet. This static pressure distortion is shown in Figure 70 to be slight-
ly altered in level at all angels and in shape at the top or shortest part of
the inlet due to adjustment in the flow field at angle of attack. In the
following discussion on the canted baseline inlet, the presence of static
pressure distortion at the fan entrance is shown to alter the baseline-inlet
noise characteristics. If static pressure distortion is responsible for
noise, then changes in the distortion, such as with the deflector inlet at
angle of attack, can change that noise.
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4.5.3 Porward-Velocity Effects

S8ince the static pressure dis’.ortion from the deflector inlet is sensi-
tive to changes in inlet flow field caused by angle of attack, the changes in
forward velocity might have similar effects., The static pressure distortion at
the fan entrance is shown in Figure 71 to be slightly reduced in level as the
forward velocity is increased. As was expected, the fan-noise characteristics
of the treated deflector inlet ere also changed with forward velocity. The
1/3-octave-band spectra shown in Figure 72 for the three noise-emission angles
are notably changed at all fan speeds when the forward velocity is increased.
Again there are no particular trends with frequency or angle to the noise level
changes.

4.5.4 Effects on Large-Scale-Fan Noise

The noise data for tne baseline and deflectior inlets have been scaled up
to a CF6 size turbofan engine and extrapolated to a distance 61 m (200 ft)
parallel to the centerline and directly below the longest part of the de-
flector inlet. This distance is referred to as the overhead distance since
this extrapolation simulates the noise &an observer would hear from an aircraft,
vith deflector inlets, flying directly overhead. The perceived noise and
overall noise-directivity patterns resulting from this scaling and extrapola-
tion are shown in Figure 73 for four corrected fan speeds. The redirection
effect of the hard-wall deflector inlet in producing fan-noise reduction at the
higher angles is very evident. The noise reduction due to the addition of
treatment is fairly uniform at each fan speed.

To compare the fan-noise-suppression capability of gll the advanced
inlets, the hybrid-inlet results were plotted aslong with the deflector-inlet
results in Figure 74, The baseline-inlet data are the same for all three
inlets, as are the treated-aft-diffuser and the JT15D fan-noise-source datas.
As might be expected, the hybrid inlets provide more fan-noise suppression,
particularly at low noise-emission angles, The CTOL hybrid inlet is more
effective for suppressing the high—tip-speed faw. noise at all angles end
virtually all frequencies due to the effects of flow acceleration on thin
type of fan noise., However, the deflector inlet appears to provide as much
fan-noise suppression at low fan-tip speeds for the higher noise-emission
angles as the STOL hybrid inle:. This is true st all frequencies with the
deflector inlet providing more suppression in those frequency bands contgin-
ing the humps of broadband noise caused by the STOL inlet. These results
further indicate thst treatment is more effective than flow acceleration
for suppression of the broadband noive from low-tip-speed fans,.

4.6 CANTED-BASELINE-INLET ACOUSTIC CHARACTERISTICS

One feature of aciual aircraft inlets, rarely simulated in inlet/fan-
noise testing, is the forward cant of the inlet centerline relative to the
engine centerline prevalent in wing-mounted-engine inlet design. The inlet
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opening is canted downward 3° to 5° “y the aircraft manufacturer to minimize
the propulsion system installed performance losses due to the upward flow
component, ahead of the engine, imposed by the wing flow field. Although
there is no significant fan—entrance total pressure recovery or distortion
effects due to canting the inlet, there is a circumferential! distortion in
the inlet wall static pressure. The level of static pressure distortion

has been measured in-flight, on an actual aircraft inlet, to be as much as

5X with a circumferential shape as shown in Figure 75. Since this distortion
is at the discharge of the inlet and is due to flow turning, within the inlet
to the fan, the levels and shapes of the distortion are depeident upon the
inlet internal aerodynamics #nd not on forward velocity and angle of attack.

To determine if canting the inlet has potential for changing fan noise,
a simple wedge was built to cant the baseline inlet 4° downward (see Figure
22). The canted baseline inlet was installed on the JT15D on the 40 by 80
(see Figure 23) and run at a forward velocity of 41 m/s (135 ft/s). The
configuration with the aeroacoustic lip was also tested outdoors. Additional
pressure taps installed in the wedge (see Figure 29) measured the static
pressure distortion just ahead of the fan, and the data are presented in Figure
75. The canted-baseline-inlet static pressure distortion has the characteris-
tic one-per-rev shape and a slightly lower ievel than was measured in the
aircraft inlet. The effects of the static pressure distortion on fan noise
are best shown by comparing the canted-baseline-inlet results with those from
the baseline inlet.

4.6.1 Comparisons with Baseline Inlet

To compare the effects of canting the baseline inlet or. fan noise, the
baseline-inlet narrowband BPF tone peak level variation with fan tip speed
(Figure 5la) is compared with the same data from the canted baseline inlet in
Figure 76. The peak BPF tone levels for both inlets in the 40 by 80 are
virtually the same at the lowest and highest fan speeds and undergo a large
(20 dB) increase as fan speed is increased. However, the canted-baseline-
inlet BPF tone peak level starts ircreasing and reaches a maximum level at
lower fan speeds than the baseline inlet. These changes in noise level are
the same for both 0° and 4° angle-of-attack conditions. Note that the changes
in the baseline-inlet noise due to canting the inlet are completely obscured
by the variations in the rotor-turbulence noise in the outdoor static test
data. The explanation of the large increase in BPF tone level for the
baseline inlet is that the rotor-alone noise begins to dominate above sonic
fan-tip speed. The canted inlet causes a circumferential static pressure
distortion into the fan rotor, and this is another source of BPF tone noise,
Becauge this distortion is not purely sinusoidal, the various orders of
distortion components interact with the rotor to produce BPF tone noise at
subsonic fan-tip speeds. The BPF tone levels begin to increase for the canted
baseline inlet as this noise begins to propagate until the rotor-alone ncise
becomes dominant.
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To determine if canting the baseline inlet affects the noise at other
frequencies, the 0 to 10 kXHz narrowband spectra from both inlets at three noise~
emisgion angles are shown in Figure 77 for the fan speed where BPF tone level
separation was the greatest. The presence of tones in the spectra at other
than BPF along with the increased BPF tone levels are indications that the
static pressure distortion from the canted baseline inlet is indeed interact-
ing with the rotor to generate fan tone noise., This additional noise level is
more apparent vhere the comparisons are made with the 1/3-octave-band spectra.

The 1/3-octave-band spectra for the lowest fan speed and the fan speed
that has the greatest canted-inlet effects are presented in Figure 78 for
three noise-emission angles. Canting the baseline inlet appears to make no
significant difference in any of the 1/3-octave-band noise levels at the low
fan-tip speed where the distortion-interaction noise propagation hasn't yet
started. However, at the fan speed that showed the most increase in narrow-
band BPF tone level, the canted baseline inlet cauces considerable noise level
increases in the 1/3-octave bands below BPF and at twice BPF as well as at BPF
for angles of 50° and higher. The BPF 1/3-octave-band noise-level directivity
patterns in Figure 79 confirm that the noise levels at angles above 40° are
most affected at tip speeds where a downward cant of 4° changed the baseline-
inlet noise characteristics, 3

4.6.2 Effects on Large-Scale~Fan Noise

The question of how much change in large-scale-turbofan noise charac- f
teristics will be caused by canting the aircraft inlet still remains uman- 1
swered, A partial answer is provided in Figure 80 where the CF6 size turbofan
noise directivity for the canted baseline inlet and the baseline inlet sare
compared. There appear to be very minor changes in either perceived noise or
overall noise levels due to canting the inlet at low fan speeds where rotor-
distortion noise or the rotor-alone noise is propagating and at high fan speeds
where the rotor-alone noise dominates all other fan-noise sources, However,
in the range of fan speeds where the rotor-distortion noise is propagating with
more strength than the rotor-alone noise, the canted baseline inlet, with its
static pressure distortion into the fan, causes as much as 7 PNdB more noise i
at the critical sideline angles of 50° to 60°., This is a critical fan-speed
range in terms of fan noise because current turbofan engines operate at these
fan speeds during approach to landing. Whether canting an actual aircraft
inlet generates as much additional fan noise as canting the baseline inlet
remains to be detergined, but the presence of fan noise due to a circumferen-
tial distortion of the static pressures entering a fan has been clearly demon-
strated,

138




0.0002 yBar

40 Hz Narrowband SPL, dB Re:

ORIGINAL PAGE IS
OF POOR QUALITY

110, Baseline Inlet ~ Canted Baseline Inlet
90

s L SN R I LS
1104

9

ff WL LE S

11

04 _
9
7 g = 70°

Frequency, kHz

e 3.7 m(12ft) Arc Uncorrected Data
® 41 m/8(i35 ft/s) Forward Velocity

Figure 77. Narrowband $pectra for Baseline Inlet and Canted
Baseline Inlet at V. = 344 m/s (1129 ft/s).

139




ORIGINAL PAGE IS
CF POOR QUALITY

0 - Baseline s+ = Canted Baseline

120

¢ ™ 311 m/e (1020 ft/s) Vo = 344 m/s (1129 ft/e)
110}
1004 i .
904 -
g e = 30° o = 30°
a 1.20 PR T U B WO B SN S U B U N1 VJlJlllLlll.llL
N
[«
Q
<
e 1101 i

1001 i /\

904 /'9 + J
7 7

1/3-0Octave-Band SPL, dB Re:

= ° - °
120 lllllelL?oljll ILAJ_QIIQOIALIIK
1o 5
1004 1
90‘ L 4
e = 70°
808 IS N Y S U T N WO U Y VR U Y

1 2 4 8 16

Frequency, kHz
® 3.7 m (12 ft) Arc Corrected Data

Fipure 78, One-Third-Octave-Band Noise Spectra for Baseline and Canted i

140 Baseline Inlets at 41 m/s (135 ft/s Forward Velocity.




0.0002 uBar

BPF 1/3-Octave-Band SPL, dB Re

ORIGINAL PAGE I

OF POOR QuALITY .
120 0 - Baseline + = Canted Saseline
ﬁ,r'- 311 n/s (1020 ft/s) V. = 335 n/s (1098 ft/s) |
A
110 4 4+ é
100 ¢ + j
90 - L J
80 A H 3 ] Il i 1 L A A L e 2 i 1
120 [ = 34 ofs (1129 £t/s) Vo = 376 n/s (1235 ft/s)
110 ¢+ +
1™ 3 +
90 p L 3
80 1 [N U S 3 i | i 1 i3 I M 1 |
0 30 60 90 O 30 60 90
Noise Emission Angle, degrees
® 3.7 m (12 ft) Arc Corrected Data
® 41 m/s (135 ft/s) Forward Velocity
Figure 79. Blade-Passing-Frequency, 1/3-Cctave-Band Noise Directivity

for Baselis : and Canted Baseline Inlets at Forward Velocity.

141




BT T R R T T T R T R e e

ORIGINAL PAGE IS
OF POOR QUALITY
0 - Baseline + - Canted Baseline ;
. 120 =0T wls (1020 fe/e) V. = 335 u/s (1098 ft/e) 4
é
]
: 110 4 t . é
? ;
100 $ 1
3 )
90 4+ b
&
-
¢
E 80 | [l ] i 1 ] 1 | Il 5 R | 1 49
9
o
3 120 N =343 /s (1120 ft/s) v
= T T = 376 m/s (1235 ft/s)
?
>
i
v
8 110 -* 'T
]
A
100 4 T
3 90 -+ -~
5 80 L 1 1 i el TN | 1 [ N B | 1 i
0 30 60 90 0 30 60 90 *
Noise Emission Angle, degrees
® 61 m (200 ft) Overhead
e 41 m/s (135 ft/s) Forward Velocity
(a) Perceived Noise j
142 Fiyire 80. Canted-Baseline-Inlet Noise Directivity (CF6 Size)

at Forward Velocity.




ORIGINAL PACET IS
OF POCR QUALITY

0 - Baseline + - Canted Baseline
110 VT = 311 m/s (1020 ft/s) VT = 335 m/s (1098 ft/s)
- 100 1
! - 90 4 4
o
0
e §
[y ]
o
o
=4 80 4 i
(=]
a
o
% 70 1 i 1 A | 1 | AL i L ] 1 i [l § |
° 110
> V,r = 344 m/s (1129 ft/s) VT = 376 m/s (1235 ft/s)
3
]
n
o
2 100 L 3 -r
(]
-
.. ]
]
g
§ 90 ¢ /e—e\ 1
80 t 4
70 L i L | 1 1 L 1 I L | I S | 1 L
Bl 0 30 60 90 0 30 60 90

Noise Emission Angle, degrees

e 61 m (200 ft) Overhead
e 41 m/s (135 ft/s) Forward Velocity

(b} Overall Noise

Figure 80. Canted-Baseline-Inlet Noise Directivity (CF6 Size)
at Forward Velocity (Concluded). 143




5.0 CONCLUSIONS AND RECOMMENDATIONS

Many observations were made during the analysis of the data from the out-
door stat‘c and wind tunnel tests and the subsequent presentation of the re-
sults. Tae more significant of these have been grouped into specific areas
for discussion. These areas include the fan-noise testing and data acquisi-
tion in the simulated-flight environment as well as the suppression of fan
noise by advanced inlets.

5.1 FAN~NOISE TESTING TECHNIQUES

There has been recent emphasis placed on fan-noise testing because of
the need to further reduce engine noise to meet more rigid requirements.
Since recent measurements of fan noise in the actual flight environment have
produced results that are quite different than those obtained in static
tests, there has also been emphasis placed on the understanding and predic-
tion of static-to-flight effects on fan noise. The results of Hodder's
(Reference 2) work and this investigation have led to the main conclusion in
the area of fan-noise testing techniques:

e Removal of the noise caused by the interaction of atmospheric or
test chamber turbulence with the fan is essential in order to prop-
erly assess the sources of fan noise and suppression effects of ad-
vanced inlets that will occur in the flight environment.

With the variability of the fan tones gcnerated by the rotor-turbulence
interaction during static testing, there doesn't appear to be an accurate
method of predicting static-to-flight effects. 'Two very important noise-
source mechanisms would have gone completely undetected had testing the JT15D
in a simulated-flight environment not been performed. The tone noise caused
by the core inlet guide vanes is one, and the static pressure distortion in-
teraction with the fan is the other.

5.2 FORWARD-VELOCITY TESTING IN THE 4C BY 80

The results of the baseline-inlet and hybrid-inlet testing at forward
velocity in the 40 by 80 confirm the following conclusion of Gliebe (Refer-
ence 6):

° The NASA ARC 40 by 80 wind tunnel adequately simulates forward-
velocity effects on fan noise at velocities of 21 m/s (68 ft/s)
and higher by reducing the rotor-turbulence interaction tones
below the noise levels from other fan sources so that they make
no contribution to the noise spe<trum.
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There were no forward-velocity effects on the baseline-inlet and hybrid-
inlet fan noise as long as testing was conducted at velocities high enough to
remove noise due to rotor-turbulence interaction. However, there are two
other effects of forward-velocity testing in the 40 by 80 that wmust be dealt
with in the data acquisition and analysis.

The wind tunnel background noise in the 40 by 80 is sufficiently high at
low frequencies that fan-noise suppression results from advanced inlets can
be in error if the following test guidelines are not used for small fans.

' The forward velocities used during testing should be at least 21 m/s
(68 ft/s); this should be sufficient to reduce the rotor-turbulence
interaction tone levels below the broadband noise levels.

® The microphone measurements should be made as close to the fan/inlet
as possible using the criteria of 10 wavelengths at the lowest fre-
quency of interest. These measurements should be at the engine
centerline height, which should be set higher from the wind tunnel
floor than the distance to the measurements in order to minimize
reverberant reflections,.

The above guidelines can easily be satisfied for fans with less than 1 m
(3 ft) diameter and 1/3-octave-band data at 250 Hz and higher. The simplest
way to satisfy the measurement proximity requirement is to use a circular-arc
microphone array. Convection corrections must be made to the levels and loca-
tions of the measurements to transform the results to a static equivalent co-
ordinate system so that comparisons can be made between results from static
and forward-velocity conditions. This means that spectral comparisons at the
same noise-emission angle cannot, in general, be made with fixed-microphcne
data for different forward velocities or angles of attack. However, the mea-
surements-analysis techniques employed during the 40 by 80 wind tunnel tests
solved that problen.

® The circular—arc, traversing-microphone, data-acquisition and reduc-
tion system provided spectral results almost continuously around the
arc. This enables selection and correction of spectra at equivalent
static locations independent of forward velocity and angle of attack.
The use of one microphone for angular locations has the added advan-
tage of minimizing measurement errors in the data.

The traversing-ulcrophone system uzad in the 40 by 80 wind tunnel pro-
vided information about the rapidly chaauging directional characteristics of
fan noise on a consistent basis. The traverse data were repeatable because
of the stable test conditions provided by the relatively small engine oper-
ating in the large airflow enviromment of the 40 by 80.

145

T e D et

R NPT

Lol ot e 9 e

JT TR B




5.3 HRYBRID~INLET SUPPRESSION AT FORWARD VELOCITY

A primary objective of this investigation was to determine the low-speed-
flight effects on the fan-noise suppression characteristics of hybrid inlets
by testing them at forward velocity in the 40 by 80. The principal conclu-
sions pertaining to that objective are:

° Thare are no significant effects on the suppression of either a STOL
hybrid inlet on low-tip-speed—-fan noise or a CTOL hybrid inlet on
high-tip-speed-fan noise due to changes in forward velocity above
21 m/s (68 ft/s) or angle of attack up to 15°,

. When comparing the quasi-static reeults to those at forward veloc-
ity, there are differences in hybrid-inlet suppression due to rotor-
turbulence interaction noise that is suppressed at quasi-static
conditions.

There are also observations that were made about the basic characteris-
tics of hybrid-inlet fan-noise suppression at forward velocity. These pertain
to the various parameters that are important in fan-noise generation and sup-
pression and apply to the specific configurations tested, not necessarily to
the general case.

° Low~tip-speed-fan noise that is primarily broadband in nature was
suppressed more by the bulk absorber treatment than by flow acceler-
ation.

° High-tip-speed-fan noise that is dominated by tone noise was easily

suppressed by either flow acceleration or treatment.

° Suppression levels for the STOL hybrid inlet were 13 PNdB; as much
as 18 PIldB was measured for the CTOL hybrid inlet at the higher tip
speeds.

. The hybrid-inlet suppression levels were virtually the same at all
throat Mach numbers tested because the treatment provided suppres-
sion when the flow-acceleration effects were reduced.

* Aerodynamic performance of the hybrid inlets was comparable to low

Mach inlets in terms of both inlet pressure recovery and distortion
up to 15° angle of attack.

5.4 DEFLECTOR-INLET SUPPRESSION AT FORWARD VELOCITY

Another objective of the investigation was to determine the low-speed-
flight effects on the fan-noise suppression characteristics of a deflector
inlet by conducting tests at forward velocity in the 40 by 80. The conclu-
sions drawn for the deflector inlet are quite different than those for the
hybrid inlets.

146

s il 8 .




e There are considerable effects on the fan-noise suppression of the
deflector inlet tested when either forward velocity or angle of
attack are changed. The noise characteristics at the higher fan-tip
speeds change unpredictably with change in either forward velocity i
or angle of attack. This is due, in part, to changes in the distor- 4
tion of the fan »ntrance static pressures resulting from the asym=- !
metry of the deflector inlet.

- The conclusions drawn from the deflector-inlet fan-noise-suppression re- :
sults are based upon the conditions of 41 m/s (135 ft/s) forward velocity and :
: zero angle of attack. The suppression mechanism of redirecting the fan noise
Po. avay from the observer and suppressing what is left with treatment was very

effective. Comparison of the results with those from the hybrid inlete leads
to the following conclusions.

° At low fan-tip speeds the deflector inlet was as effective as the 3
3 STOL hybrid inlet in suppressing fan noise at noise-emission angles ]
E of 50° and higher.

' At high fan-tip speeds the deflector-inlet fan-noise suppression was .
3 PNdB to 7 PNdB less than the CTOL hybrid inlet at noise-emission 3
angles of 30° and higher. :

] The deflector-inlet fan-noise suppression remained relatively un-
changed over the fan-tip-speed range at noise-emission angles of 50°
or higher but was reduced at lower angles as fan speed was increased.

. The deflector-inlet aerodynamic performance was better than that of
the hybrid inlets in terms of inlet pressure recovery and distortion
at all test conditions.
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5.5 CANTED-INLET EFFECTS ON FAN NOISE

An important objective of the investigation was to determine whether fan
noise was affected by the downward cant of the inlet centerline, relative to
the engine centerline, which is typical of wing-mounted turbofan engines. A
partial answer to the question was provided by canting the baseline inlet and
comparing the results with the baseline inlet at the same test conditions.
The important conclusions were:

. The canted boseline inlet causes the same level of static pressure
distortion into the fan as actual aircraft inlets.

o St ks oS BNt it 1 2 VR A T M Tt i

) The interaction of this level of static pressure distortion with the
fan increases the noise levels up to 7 PNdB at the critical sideline
angles of 50° and 60° at fan~tip speeds that are consistent with
those at approach-power settings on large turbofan engines,
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These changes in fan-noise characteristics apply to the baseline inlet
(cylindrical, no acoustic treatment). Whether the canting of an actual,
treated, aircraft inlet will cause as much noise increase depends upon many
parameters. However, the static pressure distortion interaction with the fan
has been identified as a source of fan noise, and tests with straight and
canted low Mach inlets should be conducted at forward velocity to determine if

that source affects the fan-noise-suppression capability of aircraft-type
inlets,
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APPENDIX - ABBREVIATIONS AND SYMBOLS

= 1Inlet Angle of Attack

= Ames Research Center

- Blade-Passing Frequency

- Baseline Inlet

- Conventional Takeoff/Landing Inlet
- Deflector Inlet

- Sound Pressure Level Reduction

- Perceived Noise Level Reduction

- Inlet Guide Vanes

- Length to Diameter Ratio of Inlet
- Length to Diameter Ratio of Treatment
- Modified JT15D

- One-Dimensional Throat Mach Number
- Corrected Fan Speed

- Overall Sound Pressure Level

- Perceived Noise Level

- Inlet Static Pressure

- Wind Tunnel Total Pressure

- Fan Pressure Ratio

- Quiet, Clean, Short-Haul, Experimental Engine
- Redesigned JT15D

- Sound Pressure Level

- Standard JT15D

- Short Takeoff/Landing Inlet

- Corrected Fan Tip Speed

- Forward Velocity

- Corrected Inlet Airflow

N T I

eab

T T T T T T L T TE v T |




R T T SRR PR R

150

REFERENCES

Plucinsky, J.C., "Quiet Aspects of the Pratt and Whitney Aircraft JT15D
Turbofan," SAE Paper 730289 presented at the Business Aircraft Meeting,
Wichita, Kansas, April 3-6, 1973.

Hodder, B.K., "Further Studies of Static-to-Flight Effects on Fan Tone
Noise Using Inlet Distortion Control for Source Identification,” NASA
TMX-73, 183, NASA Ames Research Center, Moffett Field, California,
December 1976.

Moore, M.T., "Forward Velocity Effects on Fan Noise and the Suppression
Characteristics of Advanced Inlets as Measured in the NASA Ames 40 by 80
Foot Wind Tunnel, Acousti. Data Report," NASA CR-152329, General Electric
Co., Cincinnati, Ohio, December 1979.

Anon, "Standard Values of Atmospheric Absorption as a Function of Tempera-
ture and Humidity," Society of Autom>tive Engineers, ARP866A, March 1975.

Keith, J.S. et al., "Analytical Method for Predicting the Pressure Distri-
bution About a Nacelle at Transonic Speeds,'" NASA CR-2217, General Electric
Co., Cincinnati, Ohio, July 1973,

Gliebe, P.R. and Kerschen, E.J., "Analytical Study of the Effects of Wind
Tunnel Turbulence on Turbofan Rotor Noise,'' NASA CR-152359, General Electric
Co., Cincinnati, Ohio, November 1979.




	GeneralDisclaimer.pdf
	1982022154.pdf
	0023A01.pdf
	0023A02.pdf
	0023A03.pdf
	0023A04.pdf
	0023A05.pdf
	0023A06.pdf
	0023A07.pdf
	0023A08.pdf
	0023A09.pdf
	0023A10.pdf
	0023A11.pdf
	0023A12.pdf
	0023A13.pdf
	0023A14.pdf
	0023B01.pdf
	0023B02.pdf
	0023B03.pdf
	0023B04.pdf
	0023B05.pdf
	0023B06.pdf
	0023B07.pdf
	0023B08.pdf
	0023B09.pdf
	0023B10.pdf
	0023B11.pdf
	0023B12.pdf
	0023B13.pdf
	0023B14.pdf
	0023C01.pdf
	0023C02.pdf
	0023C03.pdf
	0023C04.pdf
	0023C05.pdf
	0023C06.pdf
	0023C07.pdf
	0023C08.pdf
	0023C09.pdf
	0023C10.pdf
	0023C11.pdf
	0023C12.pdf
	0023C13.pdf
	0023C14.pdf
	0023D01.pdf
	0023D02.pdf
	0023D03.pdf
	0023D04.pdf
	0023D05.pdf
	0023D06.pdf
	0023D07.pdf
	0023D08.pdf
	0023D09.pdf
	0023D10.pdf
	0023D11.pdf
	0023D12.pdf
	0023D13.pdf
	0023D14.pdf
	0023E01.pdf
	0023E02.pdf
	0023E03.pdf
	0023E04.pdf
	0023E05.pdf
	0023E06.pdf
	0023E07.pdf
	0023E08.pdf
	0023E09.pdf
	0023E10.pdf
	0023E11.pdf
	0023E12.pdf
	0023E13.pdf
	0023E14.pdf
	0023F01.pdf
	0023F02.pdf
	0023F03.pdf
	0023F04.pdf
	0023F05.pdf
	0023F06.pdf
	0023F07.pdf
	0023F08.pdf
	0023F09.pdf
	0023F10.pdf
	0023F11.pdf
	0023F12.pdf
	0023F13.pdf
	0023F14.pdf
	0023G01.pdf
	0023G02.pdf
	0023G03.pdf
	0023G04.pdf
	0023G05.pdf
	0023G06.pdf
	0023G07.pdf
	0023G08.pdf
	0023G09.pdf
	0023G10.pdf
	0023G11.pdf
	0023G12.pdf
	0023G13.pdf
	0023G14.pdf
	0024A02.pdf
	0024A03.pdf
	0024A04.pdf
	0024A05.pdf
	0024A06.pdf
	0024A07.pdf
	0024A08.pdf
	0024A09.pdf
	0024A10.pdf
	0024A11.pdf
	0024A12.pdf
	0024A13.pdf
	0024A14.pdf
	0024B01.pdf
	0024B02.pdf
	0024B03.pdf
	0024B04.pdf
	0024B05.pdf
	0024B06.pdf
	0024B07.pdf
	0024B08.pdf
	0024B09.pdf
	0024B10.pdf
	0024B11.pdf
	0024B12.pdf
	0024B13.pdf
	0024B14.pdf
	0024C01.pdf
	0024C02.pdf
	0024C03.pdf
	0024C04.pdf
	0024C05.pdf
	0024C06.pdf
	0024C07.pdf
	0024C08.pdf
	0024C09.pdf
	0024C10.pdf
	0024C11.pdf
	0024C12.pdf
	0024C13.pdf
	0024C14.pdf
	0024D01.pdf
	0024D02.pdf
	0024D03.pdf
	0024D04.pdf
	0024D05.pdf
	0024D06.pdf
	0024D07.pdf
	0024D08.pdf
	0024D09.pdf
	0024D10.pdf
	0024D11.pdf
	0024D12.pdf
	0024D13.pdf
	0024D14.pdf
	0024E01.pdf
	0024E02.pdf
	0024E03.pdf
	0024E04.pdf
	0024E05.pdf
	0024E06.pdf
	0024E07.pdf
	0024E08.pdf




