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Abstract

It is shown that a general n-step symmetry brenking‘pnttern of SO(4K+2)
down to SUC(3)xSUL(2)xUY(1), wvhich uses regular subgroups only, does not allow
low~energy left-right symmetry restoration. In these theories, the smallest
mass scale at which such restoration is possible is ~ 109 GeV as in the SO(10)
case.

We also find that the unification mass in SO(4K+2) GUTS must be at least
as large as that in SU(5). These results assume standard values of the

Weinberg angle and strong coupling constant.




I. Introduction

The unification group SU(5S) of Georgi and Glashow (1) is the smallest

simple group which contains the low-energy gauge group G, =

suc(a):sun(z)xuy(l). Although the SU(5) model has baen quite successful in
some areas, it leaves some questions unanswered. One of these questions
concerns the nature of parity violation. In the SU(S5) model, left-right
sytnctry(z) violation is intrinsic, that is, it is imposed at the outset.
This is aesthetically unappealing and leads us to consider theories with
spontaneously broken left-right svmmetry. The simplest grand unified theory
which is left-right symmetric 1is the S0(10) theory of Pritzsch and

Minkowski(3) and Georgi(‘). It contains the subgroup 80pp(4) = 8U;(2) x

SUR(2) under which the left-handed fermions transform as (2,1) and their
| charge conjugates transform as (1,2). Thus, as long as SOLR(b) remains
1 unbroken, left-right symmetry exists (for the phenomenology of SU; (2) x SUp(2)
x U(1l) theories, see ref.(5)). At what energy scale is soLR(a) a good
symmetry? Using the method of Georgi, Quinn and Heinberg(6) and known vaiues
of the Weinberg angle, O,, and of the strong fine structure constant, Qg
(both evaluated at M), it has been shown that SOLR(b) symmetry can be
vestored only at energies larger than 10?2 Gev(7). The question we ask (and
anawer) in this paper is the following: can SO(4K+2) (K)Z)(a) grand
unification groups be found which exhibit low-energy (O(M,)) l-fr-right
syametry restoration? If we assume standard charge, color and weak I-gpin
assignments for the feruionn(g). that only regular subgroupl(lo) are allowved
in the symmetry breaking pattern and that standard values of .1uze' and o, are
used, then we find that the answer is no. The lowest mass scale for left-

right symmetry restoration is 0(109 GeV) as in the S0(10) case. This result

is, in a sense, akin to that of Dawson and Georgi(ll) for SU(N) groups. They




show that under our assumptions, the unification mass in all cug§;§§§g§j!g§pli?
is the same as in the SU(S) case.

This paper is organised as follows: in Sec. II, we collect soma general
results on n-step symmetry breaking patterns. Ia Bec. III, we U!%:Qfdsun;$§§§§
most general symmetry breaking pattern of an SO(4K+2) group to G, through: - -
regular subgroups which could allow low-energy left-right symmetry:
restoration. Sec. IV uses the knowvn ranges of values. for sinlo w(M,) aod
;'(Hw) tn imposa cocns .rrints on the loft-right symmetry restoration mass scale
in the gymmetry breaking pattern of Sec. III. Sec. V summarizes our results

and lists possible ways to evade the conclusions of our analyais.

II. N-Step Symmetry Breaking in General

Let G be the unification group. As previously stated, we assume standard
charge. color and weak I-spin assignments for the fermions. As in ref. (12),

ve consider an N-step symmetry breaking pattern of G down to G, of the fopmi

h
1c1xc x 050 x Uj (1) - ... -ichc‘;xn
1=1
(S @) x o] ] ... % Gy (2.1)

In Eq (2.1), the superscript C (F) indicates that the non-abelian group

Gg (Gg) (j = 1...N) contains SUC(B) (SUL(Z)). We also have

6{7) 26! x Py, $2,-—N, recorr, (2.20)

with
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In Eq (2.2b), Y denotes the hypercharge operator of th.‘ﬁiinb.t"ﬁtlll theory.

Thus, in Eq (2.1), the unification mass (at which color and flavor are
first separated) is M; and the weak I-spin mass scale 1is M, ¥ Mg,

Next, we uce the renormalization group cquntionu(13) for ;he vnriogc
auge couplings to obtain equations for a.(uw), uI(H') (c. H ;%, a, & ;%,
where g, and gy are the gauge couplings of the groups SUp(3) and 50, (2)
respectively) in terms of the intermediate mass scales in Eq (2.1). Following

ref. (12), we define

A% = Tr(Y2), (2.32)
Trilgs
6!«"1 i
I =—3— {1 - (1 +4A2) sin?e ], (2.3b)
6va —1 a
- e e
AE:—3 [nin26' - ;:] . (2.3¢)
"1
X, £ tn o—— {wi ~==N (2.34)
1 K:l+1 ’

where LR is the electromagnetic fine structure constant, I is the diagonal

generator of SU;(2),

sin20 = %’ (2.4)
v o
I
and all coupling constants are evaluated at Q2» (ZH')z. For standard charge
assignments, Az is given by its value in the SU(5) mwodel, 1i.e.
AZ = 5/3. (2.5)

Using the results of ref. (12), wve may write:
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J=1
)

A b, x,, (2.60)
Lty

where
a, ¢} (a2 - (W2 - ¢ )2 (2.7a)
b, = cg - cﬁ. (2.7b)

Here, Cgr), [N (r)]z (r = C or F) are the eigenvalue of the second Casimir

h
operator acting on the adjoint representation of Ggr) and the embedding
coefficient of the hypercharge Y into Ggr), respectively. [Ngr)]z is a
(r) )

measure of the fraction of generactors of G which go into the makeup of Y.

h|
1f we write
Y = Yj(f) + Y, (2.8)

with Yj(r) (Y°) contained (not contained) in 01(r)’ then

{Nj(')]2 : Tr [(Y1<’))2]. (2.9)
thllé‘]

The formalism of Appendix B of ref. (12) gives a straight-forward way of

calculating [N (r)] 2 for any group {(for the SU(N) case, these may be found in

3
ref. (11) and ref. (14). We list the values of C1(r) and [Nj(r)lz below:

N 01(’) z SU(N)
c.(®) w {n-2 ¢.(F) = so(wy (2.10a)
Lo c1(r) : u(1),
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(2.10b) ]

Using Eqs (2.10a,b), we evaluate a,, b1 of Eqs (2.7a,b) for the
intermediate subgroups which will be relevant to later discussions. Let K1
denote the intermediate symmetry group which is unbroken at the jth-step of

symmetry breaking. Then we have:

2 =
’j =-x AJ, bj- Aj if K, = SOC(nj) x SO F(mj) (2.11a)

i

2 2 - c
a, =-3 A, + =, b, =45, +2 {f K, = SUC(nj) x SOF(mj) x Uj(l)

h) i3 7y i 3
(2.11b)
2 10 -
a = -glhy+3 b8, - 21f K, =50,(n,) x SUp(m) x Uﬁ(l)
(2.11c)
a, = -~ 2 A, + 4 b, = A, 1f XK, 2 SU.(n,) x SU_(m,) x UC(I) x UF(I)
L IR i ARG I i B vh ) A MRS A A
(2.11d)
where
61 z "j - mj. (2.12)

III. N-step Symmetry Breaking for SO(4k+2)

We now let G = SO(4K+2) and consider an N-step symmettr+v breaking pattein
of G down to G, subject to the contraint that only regular subgroups of G be
allowed to appear. Fronm Dynkin(ls), we see that the subgroups Gj(r) can only
be of the form S0(22), SU(L) (2 < 2K+1). This constraint also implies that
once an SO0(2&) group has broken down to an SU(m) subgroup, this SU(m) can only
break. down into subgroups of the form SU(n;) x SU(nz) x U(1) (ny+n, AR

We consider the following symmetry breaking pattern:
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33 50501,) % S0p(m;) +.e o™ SO (n )% SO (m ) +° SUc(n,) x S0, ) x US(L)

Mo B=1 ¢ .. M ¥ L
+. .t SUC(“S-I) x SOI, (IB_I) x I; Ui(l) + SUc(uB) x SUF(nB) x UB(I) x 1 Ui(l)
=g img
+ Lt G“ . (3.1)

For this nattern, Eqs (2.6a,b) become:

-2 ¥ 2 5‘1 'Z“l 10
[ = . Ax, + x, + 4 x, + x (3.2a)
LIS T I S fag 1 3N
N-1 g=~1
A ) Byx, + 2} x, + + x (3.2b)
i=] l=g

vhere 4, is defined as in Eq (2.12)(16). The relevant quantity in our

analysis will be Q, defined by:

Rz redal =——F(1-2em2, -32] (3.3)

vhere all couplings are evaluated at Q2 ~ (ZMv)z. Dawson and Georgi(u) have

shown that 1if MG denotes the unification mass in the G = SU(N) case, then

Q= tn HG. (3.4)

M
w

From Eqs (3.2a, b) we f£ind(17)

N 8-1
n=1 x +17 x, . (3.5)
i=8 i=q

xi = 0 { = 1. e o sy B-‘b' (306)
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then only groups of the form

SUg(ny) x SUg(my) x 1 [0,6(1) x U,F(1)] (3.7

can appear in Eq (3.1). The unification mass HB {s given by

Ha g
in — = x, = (3-8)
MV =g i ’

which is the SU(N) result stated above. That this should be the case can be
seen by realizing that all subgroups of the form in Eq(3.7) are contained
within the SU(2K+l) subgroup of SO(4K+2). Thus, the fact that they are also

embedded in SO(4K+2) becomes irrelevant.

IV. Constratrits on Miss Scales

We now proceed to find constraints on some of the intermediate mass
scales appearing in Eq(3.1). We are especially interested in constraints on
HB. the scale at which the flavor group changes from an orthogonal group to a
unitary one. This change signals the breakdown of left-right symmetry amongst
the fermions since SOF(n) treats both particles and their charge ronjugates in
an identical fashion. Thus, it is at Ha that the flavor interactions become

left-handed.

We shall use values of linzev(nv) and a.'l(Mw) in the rangel(18>

sinZ6 (M,) = 0.19 - 0.2 (4.1a)

a,7lM,) = 7.5 - 9.3 (4.1b)

We shall also take ue-l(Hv) to be(l®)
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ag 1 (M,) = 128.5. (4.2)

The quantity that we are interested in is

M, N
lnﬁ—-z x, = ¢ (4.3
W i=8

Since all the x; (i=1, ---, N) are non-negative, we may use Eq(3.5) to

find the crude bound:

¢ <Q, (4.4)

with equality if and only if all x; (4 = a, --, 8=1) vauish. In this case
only groups of the form SOC(n1) x Sop(mj) appear in Bq (3.1). Since we have

the bound

Q> 28 (4.5)

for sinzﬁw and as’l as in Eqs (4.la,b), this implies that when x; (i=a,..8~1)
vanish, left-right symmetry can only be restored for MB 2 1014 GeV. This would
also imply that the unification mass, M,, of Eq(3.1) could be iarger than
1014713 Gev. This result agrees with those found in ref. (19) where the two-
step case

M M,

SO(N) =+ S0.(n,) x SO_(a,) +° G (4.6)

w8

is treated.

We can find a better bound on ¢ as follows: from Eq(3.5), we have

-1
¢ +1/2§ x, = Q. (4.7)
i=a

M
Let us compute In “3:
8
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tne—= X, = X, +x, =2 (1 ~6¢) +x_. (4.8)
"8 {=mq i {img 1 8 8
Using Eq(4.3), we find
mf_g-zn“a+zn"s-za~o+x832n-o, (6.9)
L

since Xg > 0. If we now make the reasonable assumption that the unification

11

mass, M), must be less than the Planck mass M, - 1019 Gev ~ 1017 M, ve arrive

at the constraint:

M N N L
tn P339>] x, >] x =tng=>20-0, (4.10a)
M i=1 i=a w
w
or
¢>20-39)>17, (4.100)
or
Mg % 10° Gev, (4.10c)

vhere Bq (4.5) was used in BEq (4.10b). Thus we see that the psttern of ¥q
(3.1) does not allow low-energy left-right symmetry restoration. Since the
pattern of Eq (3.1) is the most general one (subject to our earlier
constraints) which could give rise to lov-energy left-right symmetry
restoration, we must conclude that this phenomenon is not compatib’e with our

assumptions.

We may extract one more piece of information from this analysis; using

Eqs (4.4,4.9), we find that

o Ma >0 (4.11)

o

This 1np11es"thct the unificaticn mass for the pattern of Eq (3.1) can in

general be no smaller than 1014-13 gev.

e OSSN s A

% v el Wi, - H

M LG AR st 0 g b e
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V. Coriclusions

Given our assumptions on the assignzant of fermion quantum numuars , the

form of the symmetry breaking pattermn of SO(4K+2) down to Gyg 8nd the values

of einzev and a.'l, the mass scale at which left-right symmetry restorstion
occurs msust be > 10° GeV. In this Tespect, the general SO(4K+2) case ard the
S0(10) case are identicel. If we want left-right symmetry to be restored at
energies of the order of M,, we must relax some of the assumptions made

here. The possibilities are as follows:

l. We may allow non-standard assignment of fermion quan:um numbers.
In ref. (12,20), an SO(14) based GUT, with non-standard charge
assiznments is examined. 1In this theory, renormalization

group arguments allow the appearance of SOLR(A) at mas3 scales

M such that 3Hw 5 M

2
; <102 m .

]
2. We can argue that sinza,(u,), a.'l(nv) do not have to lfe in the

ranges given in Eqs(4.la,b). Rizzo and Senjlnov16(21) have srgued that
.1n29v may be as large as 0.27-0.31, vhen right handed current effects

are taken into sccount. This would then allow KB to be O(M,).

3. Non-regular subgroups of SO(4K+2) could be allowed in the symmetry
breaking p‘ttern(zz). This possibility will be treated in ¢ later

work.

4 © .: include Higss boson effects in the renormalization group

aquations (see ref (23)).
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We also found that unification mass scale in the SO{4K+2) theories has to
be at least as large as that in SU(5). If proton decay is not seen in the

pear future, {t may be because Nature prefers an SO(4K+2) unification group.
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