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It is shorn that a general u-step symetry breaking pattern of SO(4K+2)

darn to SUC(3)xSUL(2)xUy(1), which uses regular subgroups only, does not'allow

low--energy left-right syooetry restoration. In these theories, the suallest

mass scale at which such restoration is possible is • 10 9 GeV as in the SO(10)

case.

We also find that the unification mass in SO(4K+2) GUTS must be at least

as large as that in SU(S). These results assume standard values of the

Weinberg angle and strong coupling constant.
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I. Introduction

The unification group SU(S) of Georgi and 6lashow (1) is the smallest

simple group which contains the low-energy gauge group Gds a

SUC(3)xSUL(2)xUy(1). Although the SU(S) model has been quite successful in

•	 some areas, it leaves sows questions unanswered. One of these questions

concerns the nature of parity violation. In the SU(S) model, left-right

sysaetry(2) violation is intrinsic, that is, it is imposed at the outset.

This is aesthetically unappealing and leads us to consider theories with

spontaneously broken left-right evssetry. The simplest grand unified theory

which is left-right symmetric is the SO(10) theory of Fritzsch and

Minkowski (3) and Georgi (4) . It contains the subgroup SO LR(4) a SUL(2) x

SUR(2) under which the left-handed fermions transform as (2,1) and their

charge conjugates transform as (1,2). Thus, as long as SOLR(4) remains

unbroken, left-right symmetry exists (for the phenomenology of SUL(2) x SUR(2)

x U(1) theories, see rO.(S)). At what energy scale is SOLR(4) a good

symmetry? Using the method of Georgi, Quinn and Weinberg (6) and known values

of the Weinberg angle, %, and of the strong fine structure constant, as,

(both evaluated at Mw), it has been shown that SOLR(4) symmetry can be

restored only at energies larger than 109 GeV (7) . The question we ask (and

answer) in this paper is the following: can SO(4R+2) (02) (8) grand

unification groups be found which exhibit low-energy (0(M w)) lift-right

symmetry restoration? If we assume standard charge, color and weak I-spin

assignments for the fersions (9) , that only regular subgroups (10) are allowed

in the symmetry breaking pattern and that standard values of sin 2Ow and as are

used, then we find that the answer is no. The lowest mass scale for left-

right symmetry restoration is 0(109 GeV) as in the SO(10) case. This result

is, in a sense, akin to that of Dawson and Georgi (11) for SU(N) groups. They



show that under our assumptions, the unification sass in all such; 	+14

is the same as in the SUM case.

This paper is organised as follows: in Sec. U, us colleet saes Viral

results on u-seep symmetry breaking patterns. Is See. III,,w etc Vie+ t

most general symmetry breaking pattern of se, 84(4i#1) group to t thr

regular subgroups which could allow lens -energy left-rigbt symmetry

restoration. Sec. IV uses the know ranges of roues for sis28(M.) end

Qs (KW) to imposes, cons'.rvinta on the tuft-right symmetry restoration mss oc&lw

in the symmetry breaking pattern of Sec. III. Sec. V summoriass our results

and lists possible ways to evade the conclusions of our analysis.

II. N-Stop * Rmsetry- Breaking in-General

Let G be the unification group. As previously stated, we assume standard

charge, color and weak I-spin assignments for the fersions. As in ref. (12),

we consider an N-step symmetry breaking pattern of G down to G ws of the lomi

G

MM

	

	 i
 

-1 
GCi x Gix Ui(1 ) x Ui(1) -+ ....	 GC x Gj x A

inl

[Ui (1) x Ui (1)) ... 51 Gws (2.1)

In 6q (2.1), the superscript C (F) indicates that the non-abelian group

Gj (G F) (^	 1...N) contains SUC(3) (SUL(2)). We also have

GJri	 G ( j ) x U( ' ) (1), j-2,---N, r - C or F,
	

(2.2a)

with



In Bq (2.2b), T denotes the hypercharge operator of the Voluberg-Salsm theory.

Thus, in Bq (2.1), the unification was (at which color and flavor hre

first separated) is Ml and the weak I-spin 'ass scale is Mw 2 MW+1•

Next, we uce the renormalization group equations (13) for 
S2 

various

gauge couplings to obtain equations for as(Mw), "I (Mw) (as ", a  2 

where go and gI are the gauge couplings of the groups SU C(3) and SUL(2)

respectively) in terms of the intermediate mass scales in Eq (2.1). Following

ref. (12), we define

A2 = Tr( y2 ),	 (2.3a)
Tr I3

6ir a --1
r s 11	 [1 - (1 + A2 ) sin2ew ],	 (2.3b)

6*a —1	 a

A - 
11 [sin2 ew - ae]	 (2.3c)

s

M
x =_ to -i	 1-1.---N,	 (2.3d)
i	 Mi+l

Where ae is the electromagnetic fine structure constant, I 3 is the diagonal

generator of SUL(2)9

sin2 ew = aat
	 (2.6)

a 

and all coupling constants are evaluated at Qtr (2Mw ) 2 . For standard charge

assignments, A2 is given by its value in the SU(5) model, i.e.

A2 . 5/3.	 (2.5)

Using the results of ref. (12), we may write:



6

ORIGIN^ PAGE
N	

0^ P^	
IO

r	 I	 aj xj 	(2.6a)
J.1

N

A 	 bj xj ,	 (2.6c)

where

a j =_ Ci (A2 - [N ) 2 ) - C1 [N 1] 2	(2.7a)

bj	 CC - C^.	 (2.7b)

Here, C (r) ,
 [N (r)]2 (r • C or F) are the eigenvalue of the second Casimir

operator acting on the adjoint representation of G
(

J
r) and the embedding

coefficient of the hypercharge Y into G (r) , respectively. [N (r)]2 is a

measure of the fraction of generators of G (r) which go into the makeup of Y.

If we write

Y = Yj (r) + Y',	 (2.8)

with Y j (r) (Y') contained (not contained) in G j (r) , then

INj ( r )J2 = Tr	 (r))2).
I N 	 (2.9)

Tr I3

The formalism of Appendix B of ref. (12) gives a straight-forward way of

calculating [ N j ( r )] 2 for any group (for the SU(N) case, these may be found in

ref. (11) and ref. (14). We list the values of C j (r) and [N i (r) ] 2 below:

N	 G 	 SU(N)

C 1 (r)	 N-2 G 	 SO(N)	 (2.10a)

0	 G 	 U(1),



^.. Ak-_
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2( 1 _ 1 ) G; = SUG (n)	 2(1
	 CF = SU (a)

(NJ C)2 	 (N.iF 
]2.

(	 G1 = SOG(n)	 1	 G  = SOF(a)

(2.10b)

Using Eqs (2.10a,b), we evaluate a i , b i of Eqs (2.7a,b) for the

intermediate subgroups which will be relevant to later discussions. Let K 

denote the intermediate symmetry group which is unbroken at the ith-step of

symmetry breaking. Then we have:

aj M - 
2 a

j , b j . a i if Ki 3 S00 (n i ) x SO F (m j )	 (2.11a)

aj- 
3 

a i + 3, b j - a i + 2 if K j = SUO (n i ) x SOF (m j ) x UC(1)

(2.11b)

aj- 
2 

a j + ^, b i	 aj - 2 if K i = S00 (n i ) x SUF (m i ) x Ui(1)

(2.11c)

a j	 - 
2

a i + 4, b j	 a j if K i = SUG (n j ) x SUF (m j ) x Ui(1)x 	 Ui(1),

(2.11d)

where

a i = n  - m j .	 (2.12)

III. p-step Symmetry Breaking for-SO(4k+2)

We now let G = SO(4K+2) and consider an N-step symmetr -.* breaking pdttein

of G down to Gws , subject to the contraint that only regular subgroups of G be

allowed to appear. From Dynkin (15) , we see that the subgroups CJ (r) can only

be of the form S0 ( 21), SU ( t) (t < 2K+1). This constraint also implies that

once an SO ( 2t) group has broken down to an SU (m) subgroup, this SU(m) can only

break down into subgroups of the form SU(n l ) x SU(n2 ) x U(1) (n l+n2 < m).

We consider the following symmetry breaking pattern:

7
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1.V t so  ( -, 1 j x SOF (a 1 ) ^+...^+a
-1 

SO
C(na-1

)x 
SOF(ma-1) Na SUC (na) x SOF (ma) x Ua(1)

M
+..+g-1	

0-1

SU {n	 ) x SO (m	 ) x 1I UC ( 1) ^g SU (m ) x SU (n ) x UF	
g

(1) x II UC(1)

MN
C 

0
	 0-1	

i-a 
i	 C g	 F g	 g	

i-a i
+ ...+(3.1)Gws	 i

For this pa!tern, Eqs (2.6a , b) become:
i^

-2 N	 21-1	
N-1	

10
T	 A 

i 
x i + -T
	

x1 + 4 1 xi + -3 xN	 (3.2a)
i-•1	 1-a	 1-6

N-1	 B-1
,1 -	 I	 A 

i 
x i + 2 1	 xi +	 + xN ,	 (3.2b)

in 	 i-a

where Ai is defined as in Eq ( 2.12) (16) . The relevant quantity in our

analysis will be A, defined by:

6na - 1

—

	 a
A = [T + T A] - —^ W [1 - 2 ain2 6w

 - 
a
e ),	 (3.3)
s

where all couplings are evaluated at Q2 - (2Mw ) 2 . Dawson and Georgi (11) have

shown that if MG denotes the unification mass in the G =_ SU(N) case, then

Q - Ln MG .	 (3.4)

MV

From Eqs (3.2a, b) we find(17)

N	 B-1n . I	 x1 +1/21	 xi.	 (3.5)
1 -e	 i -a

If we set

xi 0 0 1 - 1,	 S-1,	 (3.6)



9

ORIGINAL r4 r t p
00 POOR Qom..,

then only groups of the fors

SUO(n j ) x SUF(m 1 ) x R [U i0(1) x U 1"(1)1	 (3.7)

can appear in Eq (3.1). The unification mass MS is given by

M N
In 

M8 " 
I	 xi - A,	 (3.8)

w i-B

which is the SU(N) result stated above. That this should be the case can be

seen by realizing that all subgroups of tt:e form in Eq(3.7) are contained

within the SU(2K+1) subgroup of SO(4K+2). Thus, the fact that they are also

embedded in SO(4K+2) becomes irrelevant.

IV. Cons-tratnts - on Mass - Scales

We now proceed to find constraints on some of the intermediate mass

scales appearing in Eq(3.1). We are especially interested in constraints on

MS . the scale at which the flavor group changes from an orthogonal group to a

unitary one. This change signals the breakdown of left-right symetry asongst

the fermions since SOF (m) treats both particles and their charge r,onjugates in

an identical fashion. Thus, it is at Me that the flavor interactions become

left-handed.

We shall use values of sin2ew(Mv) and as-1 (Mv) in the ranges(18)

sin2 ew (Mv) - 0.19 - 0.24	 (4.1a)

as-1(Kw) - 7.5 - 9.3	 (4.1b)

We shall also take ae-1 (Mv) to be(18)
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ae-1(Mw) • 128.5.	 (4.2)

The quantity that we are interested in is

M	 N
In	 M I	 x	 •	 (4.3)
Mw 

i^6 
i

Since all the x i (i-1, ---, N) are non-negative, we may use F.q(3.5) to

find the crude bound:

m < n.	 (4.4)

with equality if and only if all x i (i - a, --, 0-1) vanish. In this case

only groups of the form S0 0 (n i) x SOF (m j ) appear in Eq (3.1). Since we have

the bound

R > 28	 (4.5)

for sin2 Aw and a s-1 as in Eqs (4.la,b), this implies that when x i (i^a,. . B-1)

vanish, left -right symmetry can only be restored for M B > 1014 GeV. This would

also imply that the unification mass, M 1 , of Eq(3.1) could be larger than

1014-15 Get'. This result agrees with those found in ref. (19) where the two-

step case

SO(N) +11 S00 (n 1 ) x SOF(ml) + CVs
	

(4.6)

is treated.

We can find a better bound on • as follows: from Eq(3.5), we have

1

• +1/2 !F 	 i2.	 (4.7)

H
Let us compute In

B
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M	 B	 B-1
In —a -	 x	 x + x	 2 (ft - 0) + x	 (4.8)MS 	 i	 9	 8

Using Eq(4.3), ve find

In Ma n in Ma+in M0-20-0 +x8 220-0,	 (4.9)
Mw	 8	 Av

since x 0 > 0. If we now make the reasonable assumption that the unification

muss, M1 , must be less than the Planck mass MP 1019 GeV - 10 17 Mw , we arrive

at the constraint;

N	 N	 M
in MP 39	 x >I x -tn c > 2n -m,

M	 i-1 i i-a i	
Mw —

w
or

0 > 2 n- 39 > 17,

or

(4.10a)

(4.10b)

MB > 109 GeV,	 (4.10c)

where Eq (4.5) was used in Eq (4.10b). Thus we see that the pattern of Eq

(3.1) does not allow low-energy le_`*-right symmetry restoration. Since the

pattern of Eq (3.1) is the most general one (subject to our earlier

constraints) which could give rise to low-energy left-right symmetry

restoration, we must conclude that this phenomenon is not compatib'.e with our

assumptions.

We may extract one more piece of information from this analysis; using

Eqs (4.4,4.9), we find that

In Ma > n	 (4.11)
!t

This implieswthat the unification mass for the pattern of Eq (3.1) can in

general be no smaller than 1014-15 GeV.



1.2

V. Coitcingiona

Given our assumptions on the assignment of fitrmion quantum numbers , the

form of the symmetry breaking pattern of SO(4K+2) down to Gws and the values

of a1n2 8w and ns-1 , the mass scale at which left-right symmetry restoration

occurs must be > 10 9 GeV. In this respect, the general SO(4K+2) case and the

SO(10) case are identical. If we want left-right symmetry to be restored at

energies of the order of Mw, we must relax some of the assumptions made

here. The possibilities are as follows:

1. We may allow non-standard assignment of fermion quantum numbers.

In ref. (12,20), an SO(14) based GUT, with non-standard charge

assignments is examined. In this theory, renormalization

group arguments allow the appearance of SOLR(4) at cotta scales

MS	w	 Bsuch that 3M < M < 102 Mw.

2. We can argue that sin 28„(M„), a, - 1 (M„) do not have to lie in the

ranges given in Pq s(4.la,b). Rizzo and Senjanovid (21) ha4e argued that

sin2 8w may be as large as 0.27-y0.31, when right hander: current effects

are taken into account. This would then allow M S to be O(Mw).

3. Non-regular subgroups of SO(4K+2) could be allowed in the symmetry

breaking pattern (22) . This possibility will be treated in a later

work.

S	 include Higgs boson effects in the renormalization Rroup

equatlors (see ref (Z3)).
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We also found that unification mass scale in the SO(4R+2) theories has to

be at least as large as that in SQ(5). If proton decay is not seen in the

near future, it may be because Nature prefers an SO(4K+2) unification group.
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