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1. INTRODUCTION AND SUMMARY

1.1 INTRODUCTION

This report summarizes the work performed under the Contract No.

956157 entitled "Integrated Optics Technology Study." The report describes

and assesses the present status and near term potential of materials and

processes available for the fabrication of single mode integrated electro-

optical components, Issues included in the study are (1) host material and

orientation (2) waveguide formation (3) optical loss mechanisms (4) wave-

length selection (5) _polarization effects and control (6) laser to inte-

grated optics coupling (7), fiber optic waveguides to integrated optics

coupling (8) sources (9) detectors. These issues are addressed separately

in the following Sections 2 through 9. The goal of the study program is to

provide a recommendation of the best materials, technology and processes

for fabrication of integrated optical components for communications and

fiber gyro applications.

Integrated optics technology has been advanced tremendously since its

beginning in 1968. Until several years ago, most of the effort was con-

centrated on waveguide and device fabrication. Individual device; with

optimum performance have been demonstrated using various waveguide mate-

rials and device configurations, while little attention was given to the

device integration and coupling to the outside world. Recently, emphasis

of the research effort is switched to apply those already developed tech-

nologies and to identify new technologies to be developed in order to

satisfy system requirements. It is time for the researchers to examine the

technology from the system point of view. Until the system requirements

are clearly defined,, it is difficult and risky to predict the future direc-

tion of material and device technology. At the end of each section of this

report, we try to summarize the current status and technology trend. It is

hoped that based on this report, system experts and technologists can work

together to identify some most needed developmental programs.



1.2 SUMMARY AND RECOMMENDATIONS

In this section, we summarize the result of this study program. The

objective of the program is to provide recommendation on the best materials

technology and processes for the fabrication of integrated optical components

for communications and fiber gyro applications. Throughout the text of this
report, readers can find comments and conclusions drawn at the end of each

section where specific issues are addressed. Mere we will focus our attention

on the subjects such as (1) substrate materials and waveguide fabrication

techniques (2) reduction of waveguide losses (3) choices of single mode fibers

and the polarization control (4) short wavelength systems versus long

wavelength systems. We will try to point out the direction of future research

effort specifically for fiber gyro and single mode communication systems

applications.

1.2.1 Choice of Material System

In Section 2 and 3, we have discussed in great details on the materials

and fabrication processes demonstrated during the last decade. Depending on

the devices one may choose either active or passive substrate or waveguide

materials. Once the material system is chosen, one of the waveguide

fabrication techniques described in Section 3 can be adopted for the

realization of the integrated optical circuit.

For fiber gyro application, the integrated optic processing chip may

consist of optical switch, phase modulator, 3 dB beam splitter, and

polarizer. The optical switch and modulator are active devices while the beam

splitter and polarizer are passive devices. For active devices, LiNb03 is

still considered as the best waveguide material and the in-diffusion of Ti

metal forms a low lass optical waveguide. The total waveguide loss is

estimated to be about 0.5 dB/cm at % = 830 nm and 0.2 dB/cm at N = 1300 nm.

Until now, most researchers in the fiber ` gyro community are still using GaAlAs

laser as the light source. At this wavelength, Ti:LiNb0 3 waveguides suffer

the problem of optical damage. The effect of optical damage can be reduced to

an insignificant level, if the power density inside the waveguide is less than

104 W/cm2 and the active devices are operated at an AC mode. Optical damage

phenomenum is not observed at the operating wavelength of 1300 nm.

1=-2
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LiNbO3 can also be used as the substrate material for passive devices.sh	

However, there are other passive material systems that have waveguide losses

less than 0.1 dB/cm. If the fiber gyro processing chip does not require any

1
active components, one can choose low loss optical glass substrates and the

ion-exchange waveguide fabrication technique. Devices such as beam splitterr,

and polarizer have been demonstrated using this technique with waveguide

losses about 0.1 dB/cm.

Until now, fiber optical communication systems are primarily used as a

point-to-point link. Thus the demand for integrated optic devices is not as

critical as other applications. Again, LiNbO 3 and glass are the two prime

material candidates for active and passive devices in single mode fiber

optical systems.

For the next several years, LiNbO 3 and glass will continue to be the

popular material systems for integrated optics applications. The research

work on these two materials will be concentrated on the further reduction of

waveguide losses.	 The absorption loss of bulk LiNbO 3 is about 0.3 dB/cm

at ^, = 633 nm and it is not expected to total waveguide have losses less than

01 dB/cm even at h = 1300 nm. However, there is a good possibility of

having stable glass waveguides with losses less than 0.01 dB/cm.

Two other material systems that have drawn a tremendous attent.;on in

a integrated optics are laser annealed ZnO and III-V Semiconductors.

Polycrystalline as well as single crystalline ZnO films have been fabricated

on various substrate materials using various techniques. The most commonly

used technique	 waveguide isue is the RF biased sputtering.. The interest on ZnO waveS	 q	 p	 g	 g
k	 generated by the recent laboratory report of reduction of waveguide loss to

0.01 dB/cm using the laser annealing technique. As we conclude in Section 4,

S the effects of laser annealing on the electro-optic and pezo-electric

properties of ZnO films are not known. We have some doubt that laser

annealing would yield some adverse effects in this regard. More research work

is needed to understand the annealing process and its effect on waveguide

properties. It will be considered as a breakthrough in waveguide fabrication

technique, if one can fabricate 0.01 dB/cm, single crystal, single mode ZnO

r	 waveguide.

1-3
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One of the ultimate goals of integrated optics is to fabricate mono',

optical circuits on a single clip. To fulfill this technology challenge• one

has to use III-V semiconductor material systems, such as GaAs and InP. Only
this class of material provides the opportunity to fahPicate light source,

detector together along with other integrated optic devices on one chip.

Liquid phase epitaxy (LPE) is currently used in fabricating discrete as well

as limited integrated optoelectronic devices. LPE does not have precise

control of growth conditiela required for integrate.1 optic devices. To really

fabricate integrated optic circuits, one has to rely on the advanced molecular

beam epitaxial (MBE) growth technique. This would require a well coordinated

effort over several years at a sufficient funding level. For a laboratory

equipped with MBE machines and growth expertise, this is definitely a research

direction that promises a tremendous technology payoff. The payoff of MBE

technology will not be limited to integrated optics only, the impact may be

greater for certain electronic and optoelectronic devices. The problem facing

semiconductor waveguides is the high absorption and free-carrier scattering

losses. One has to operate these devices far away from the band gap.

1.2.2 Single Mode Optical Fiber

It is known thhat conventional circular core single mode optical fiber

does not preserve the state of polarization over a long distance, On the

other hand, most integrated optic devices do perform differently for different

polarization states. During the last several years, a great amount of effort
has been spent on the development of polarization preserving single mode

optical fibers. Now, commercial fibers with beat length on the order of a few

mm are available on a limited basis. These fibers have a built-in

birefringence as a result of combination of anistropic strain induced

birefringence and elliptical core waveguide birefringence. Research is still

going on in this area with the goals of larger birefringence and lower

attenuation loss. Polarization preserving property certainly is a desirable

feature for fiber gyro application. As to high speed communication link, one

does not have to worry about the output polarization state unless the homodyne

detection scheme is used at the receiver end. Optical homodyne detection for

optical fiber systems is still in its infancy. It is not yet clear if there

is a real advantage over the commonly used detection scheme, at least in the

wavelength region that glass fibers permit.

1-4
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1.2.4	 Choice of Op ratin2.Wavelength

Optical	 fiber	 communication	 systems	 are	 developed	 at	 a	 rapid	 rate.

Short wavelength	 systems	 using GaAIAs	 light	 sources	 and	 Si	 detectors	 are

already	 in	 field	 service	 all	 over tiro world. 	 With	 the achievement	 of fiber

loss of 0.4 dB/km, at 1300 nm and 0.2 d6/km at 1;550 nm, long wavelength systems

are becoming very attractive.	 Germanium doped silica glass fibers have zero

total	 dispersion	 at	 wavelengths	 ranging	 from	 1300	 nm	 to	 1550	 nm.	 A

theoretical	 analysis	 has	 shown	 that	 for	 optical	 wavelength	 close	 to	 the

minimum dispersion, single mode transmission system can be operated at 20-100

Gbps	 data	 rate	 over	 a	 distance	 greater	 than	 100	 km.	 Motivated	 by	 the

x improvement in fiber properties, there are tremendous on-going efforts on the

development	 of long wavelength	 sources and detectors.	 Some	 long wavelength

components are commerciallyavailable now with their performance comparable to

the short wavelength counterparts.

F Sections	 8	 and	 9	 give	 a	 detailed	 discussion	 on	 the	 state-of-the.-.art
technology on the sources and detectors.

At the present time A1GaAs 	 laser diodes and LED's have been used widely

for	 short	 range	 optical	 data	 links	 (intraurban	 or shorter).	 This	 choice	 is

aided by the commercial	 availability of low cost photo-detectors for the 800-

900 nm spectral	 region.	 For high-data-rate	 long-haul	 applications,	 however,

InGaAsP	 laser	 diodes,	 with	 their	 excellent	 match	 to	 the	 low-loss	 low-

dispersion	 spectral	 region 	 of	 fibers	 1100-1700	 l	 eve	 bp	 p	 g	 (	 rim)	 will	 ritually	 a	 the
,

+	 N . best choice of light source for optical fiber systems. 	 They also appear to be

less susceptible to degradation than GaAIAs diodes.

For optical	 gyro applications, where a short coherence length is required
' for	 freedom of	 interference of the optical	 beams with themselves due to the

backward	 Rayleigh	 scattering,	 a	 super-radiant	 laser	 diode	 offers	 the	 best

j
match.	 Super-radiant diodes can be obtained from most of the laser diodes by

' anti-reflection coating the mirror facets appropriately and by starting with a

t' not too narrow stripe laser geometry capable of multimode oscillation.

It appears that the main efforts in source research should be

concentrated in -ne areas of improving the mode stability of single-transverse

and single-longitudinal mode laser diodes. This is of particular importance

when lasers are modulated at several GHz frequencies. Other issues to be

i.
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addressed	 include	 higher	 output	 power	 and	 improved	 performance	 at	 higher

currents and higher temperatures.

For short wavelength	 (800 - 900 nm)	 fiber systems,	 silicon photodiodes

are used almost exclusively.	 The status of siliconp hotodiodes are very well-

developed	 and	 high	 quality	 diodes	 (both	 p-i-n	 and	 APD's)	 are	 commercially

available,

Most	 of	 the	 present	 ioestigation	 on	 photodetectors	 is	 concentrated

.F
toward	 long	 wavelength	 (1000	 -	 1600	 nm)	 devices.	 The	 principal	 materials

being	 used	 are	 germanium	 and	 several	 111-IV compounds	 (InGaAsP,	 GaAIAs$b).

The problem areas of long wavelength photodiodes are high dark current, high

p excess	 noise	 and	 low	 useful	 avalanche	 gain.	 Ge	 AP0	 performance	 has	 been

improved by new diode structure (n np and p n instead of the conventional n p

r structure).	 Effective	 ionization	 ratio	 of	 0.6	 -	 0.7	 over	 the	 633	 -	 1500

x nm	 wavelength	 was	 obtained.	 New structue	 has	 also been	 proposed	 for the

InGaAsP APD	 where	 the	 absorbing	 and	 avalanche	 region are	 separated.	 The

results obtained are very promising.
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2=	 HOST MATERIAL AND ORIENTATION

Currently	 the	 electro-optical	 and	 acousto-optical	 material	 most
commonly used in integrated optics applications is LiNbO3 .	 Other possible

materials that can be used for the fabrication of active components include

LiTaO3 ,	 ZnO,	 GaAIAs/GaAs,	 In6aAsP/InP,	 ZnS/ZnSe/CdTe,	 As2S3	and	 other
chalcogenide glasses.	 Magneto-optical materials have been used to fabri-

cate waveguide	 devices	 such	 as Faraday	 rotators	 and modulators.	 Photo

refractive materials	 have	 also	 been	 used	 to	 fabricate	 various	 passive

integrated optic devices. 	 However, these devices are less attractive for

integrated optical circuits in comparison with electro-optical and acousto-

optical devices. 	 In this section, we will describe the electro-optical and

cousto-optical effects of waveguide materials that cin be used for active

integrated optics devices.

2.1	 LINEAR ELECTRO-OPTICAL MATERIALS

A linear electro-optic effect or Pocket( 	 effect is referred to as a

change in the relative optical	 dielectric	 impermeability Bij proportional

to an applied electric 	 field f k .	 The refractive	 index of a crystal	 is

described by an index ellipsoid:

BijXiX1 = 1 ' B 11 A,	 + B22X22 + B33X32 + 2B 23X2X3 + 2B13X1X3 + 2B12X1X2

B ij = Bji

The electro-optic coefficient rij,k " rl,k is defined by

aB ij = rij,kEk

OB1
 = rlkEk

in which the indices 1 J ,k each are the rectangular coordinate axes 1,2,3
and 1 = 0j)	 refers to the six reduced combinations (11)=1,	 (22)=2, (33)=3,

(23)=4,	 (13)=5,	 (12)=6.	 The electro-optic tensor matrices for all crystal

symmetry classes are listed in Table 2-1.	 Table 2-2 lists most commonly

used electro-optic materials and their properties..

2-1
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Table 2-1.	 Electro-Optic Tensor Matrices

t

(Handbook of Lasers)

7 RIC'LINIC — I — C,

ABI i	 rl l	 r l s	 r13
A 82 2 	 r2,	 r22	 r23
A833 	 rsl	 r32	 r33	 El
AB23 	 °	 r4i	 ra.2	 rs3	 E3l
ABis	 rSl	 rs2	 rs3
^B ► 2	 r,l	 r62	 r6s	 (16) eternent,

MONOCLINIC

2 — C2	 m--C,

k
P 0	 r;l	 0	 (' X2)	 ►'r,	 0	 r13 (m1.X2)

0r32	 0	
r2l	

0	 r23E 0	 r23 0 	r3l	 0	 rss
r4i	 0	 r43	 0	 r, 2 	0
0	 {"s	 0	 rsl	 0	 rsa

^
r
° =	 r6	 ()	

0	 r63	 0
(10)

ORTHORHOMBIC

222 -- D 2 	mn0 -- C2,•

0	 0	 0	 0	 0	 r13
0	 0	 0	 0	 0	 r23
0	 0	 0	 0	 0	 63

r4 l	 0	 0	 0	 r4:	 0
' 0	 r92	 0	 rs,	 0	 0

It

t.,

0	 0	 rya	
(3)	 0	 0	 0 (s)

TETRAGONAL

4 — C4	 4 - S. 422 — Ds

0 0 r13	 0	 0	 r 13 0	 0 0
0
0

0
0

r13	 0	 0	 -'rl3 0	 0 0
r»	 0	 0	 0 0	 0 0

rah rs, 0	 r4l	 --r s,	 0 ra,	 0 0
! 7 rs, — r,,, 0	 rs,	 rat	 0 0	 — ra i 0

0 0 0	 (4)	 0	 0	 rn3	
(4) 0	 0 0	 (^)

# 4mm --C4 ,-	 42m — Dp;

0	 0	 r J3	 0	 0	 0
;(2j Xl)

0	 0	 :', s	 0	 0 	 0
0	 0	 rss	 0	 0	 0
0	 rsi	 0	 r4,	 0	 0

}.; rs,	 0 1	 0	 0	 r,,	 0
0	 0	 0	 (3)	 0	 0	 ►67 (2)

r'	 1 f
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Table 2-1. Electro-Optic Tensor Matrices `Continued)

5.
!(
r

(Handbook of Lasers)

a

{ ?'I^IC,QNAL

p

^	

f

3 — CS 32 — D3 3m -^ C,,.

rai ..- r23 r13 ra,	 0	 0' 0
._ril r22 r13 —r„	 0	 0 0	 r12 r13

0 0 r33 0	 0	 0 0	 0 ra a
r4 a r„ 0 r4,	 0	 0 0	 r„ 0
ro, — r4, 0 0	 — r4,	 0 r,l	 0 0

_rs, —ra t 0
(6)	

0	 ^--r,,	 0	 (2) ^-ra	 0 0	 (4)

"
HEXAGONAL z

6- C6 6	 C3A 622 -- D4
?k

n
0 0 r, 3 rs,	 — r::	 0 0	 0 0) j
0 0 r, 3 y- r, I	 r2:	 0 0	 0 0
0 0 r33 0	 0	 0 0	 0 0 II

N , 0 0	 0	 0 r4 1 	0 0
x^ —r, a 0 0	 0	 0 0	 —r4, 0 u
0 0 0 (4)	 ,--r::	 •—ra,	 0	 (2) 0	 0 0	 (1)

6mm -- C6u	 6m2 — D,,,

0 0	 r,y	 0	 —rz 2 	0 (m-^-X^)
0 0	 r,a	 4	 r::	 0 fI 0 0	 r33	 0	 0	 0 a
0	 ra,	 0	 0	 0	 0

r r3, 0	 0	 0	 0	 0
0 0	 0	 (3)	—r22	 0	 0 (1)

CUBIC

432-0	 23 and 43m -- T and T,
0 0	 0	 000,E
0 0 0	 0	 0	 0
0 0 0	 0	 0	 0

i 0	 0	 0	 r4a	 0	 0
0 0	 0	 0	 r4,	 0
0	 0	 01	(0)	 0	 0	 r4, (1)
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2.2 ACOUSTO -OPTICAL MATERIALS

For acousto-optical waveguide devices, performance* usually is charac-

terized by the figure of merit, M2

Mn6P21p^32

where n is the index of refraction, p the strain-optic tensor element, P

the density, and v the acoustic velocity. It is important to note that

parameters n, p, End v are all related to tensor quantities and vary with

crystal orientation. Table 2-3 lists selected acousto -optic materials and

their properties. This table includes figures of merit M 1 , M2 and M3 0 141

and M3 are defined in a slghtly different way.

M1 = n7p2/Pv

M3 _ n3p2/Pv2

In order to maximize the device performance, one may choose a special

crystal cut that gives the highest figure of merit. On the other hand, the

integrated optical devices thus fabricated should retain their low optical

and acoustic losses. Among all the materials listed in Table 2-3, LiNb03

has the lowest acoustic attenuation of <0.03 dB/,sec at 500 MHz.
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3. WAVEGUIDE FORMATION

Optical waveguides are structures that confine and direct the optical

signals	 in	 a	 region	 of higher	 index	 of	 refraction	 than	 its	 surrounding

medium.	 One good example of optical waveguide is the optical 	 fiber which j

has been widely	 sed for transmission of wideband optical	 information overY	 p

'
tens kilometers. 	 Most of the fibers developed have circular cross-sections

for both the fiber core and clad. 	 The optical	 confinement in the	 fiber

core is achieved by increasing the index of refraction in the core region.

On the other hand, the optical waveguides of interest to integrated optics

are	 usually	 asymmetric either in	 the planar or channel	 waveguide	 struc-

tures.	 Most waveguides considered here are single mode waveguides for TE
and TM polarizations.	 Figure 3-1 shows various structures of optical wave- s

guides	 that	 have been	 investigated	 in	 integrated optics.	 Figure 3-1(a)

depicts a planar waveguide which is the simplest and most basic waveguide

structure4	 The thin film sandwiched between the substrate and superstrate
n

has the highest index of refraction, thus providing the guiding region.	 In

the case of Figure 3-1(a), the superstrate is air with index of refraction

of I.	 The typical thickness of the waveguide is on the order of the wave-

glength of the optical 	 signal	 to be transmitted.	 The index of refraction
k

of the thin film optical waveguide can be homogeneous or graded with

certain profiles.	 The index profile	 is primarily determined by the wave-

guide fabrication process.	 The channel waveguides, Figure 3-1 (d)-(g), are
3

three dimensional	 waveguides with cross-sections of a few square um. 	 In

the channel waveguide case, the guided modes are not TE nor TM. 	 However,

the longitudinal	 component of the electrical 	 field (or magnetic field) is

much smaller than the transverse component. 	 One can therefore approximate

the mode structure by a TE (or TM) polarization.

Figure	 3-1	 (a),	 (b),	 and	 (c)	 illustrate	 various	 planar	 waveguide

structures:	 (a)	 asymmetric	 air-guide-substrate, 	 ng	>	 ns	 > no ;	 (b)	 sym- #	 '

metric optical waveguide, ng > n^; (c) composite waveguide structure, n g >

ns , and n9 > No ; (d), (e), (f) and (g) illustrate various channel waveguide

structures; (d) and (e) are ridge waveguides with ng > ns for (d), and na,

nb <	 no for	 (e);	 (f} embedded channel	 waveguide,	 n	 >	 n ;	 (g)	 inverted
9	 s

ridge waveguide n a , nb > n s
;	

a

H
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Since the name of "INTEGRATED OPTICS" was coined in 1968, many wave-
guide fabrication techniques N.Ave been proposed and used to form various

optical waveguides on different substrates. 	 Unfortunately, a large number

of waveguides fabricated are not suitable for any practical 	 applications

due to large waveguide propagation losses.g	 p	 p	 A good optical waveguide should 	 w

have propagation loss less than I dB/cm. 	 In this section we try to sum-

marize all the fabrication processes reported to date with Emphasis on the

ones that generate low loss waveguide. 	 We can classify all the fabrication

processes	 into	 three categories;	 (1)	 thin	 film deposition (2) 	 epitaxial

growth, and (3) modification.	 5

3.1	 THIN FILM DEPOSITION

Within this category, the optical waveguides are formed by deposition 	 k

of a layer of high	 index of refraction.	 This deposition can be done by

evaporation	 (thermal evaporation, electron-beam evaporation), 	 RF	 sputter-	 v

ing, spin and dip coating, and chemical vapor deposition.

u	 3.1.1	 Evaporationf 

Two standard methods of thin-film deposition by evaporation are

 thermal	 and electron-beam evaporation.	 Evaporation	 techniques	 have been

A known in the optical	 coating field for	 long	 time.	 Various	 dielectric

films, both high and low index, 	 have been used	 for protective coating as
K	 well	 as	 interference	 filters.	 These	 thin	 film	 coatings	 are more	 than

adequate for most optics	 applications.	 The	 requirements on	 the surface	 w

roughness scattering and absorption losses are much more stringent for the

integrated optics.	 This is simply because the optical 	 light is travelling

within the thin film waveguide rather than perpendicular to the thin film.

As a result evaporation is used only for electrode fabK,,.,ation, deposition
of masks or diffusion sources.

I_	 ZnS	 films	 have	 been	 deposited	 on	 glass	 substrate	 by	 E-beam

k	 evaporation . 1	The substrate was held at room temperature during evapora-

tion and the ZnS films were amorphous. 	 The films had a loss of snore than

5 dB/cm, attributed to the long tail of the absorption edge. 	 E-beam evap-

oration has also been used to fabricate low loss glass waveguides on fused

.	 quartz substrate. 2 	A special glass Planer CAS 10 was used as the evapora-

tion source.	 Results of two different. rugs were reported,	 the fi rst one

^	 t
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with a deposition rate of 3.8 nm/s and a thickness of 4! -05 pm, the second

one with 2.6 nm/s and 0.91 pm thickness. The 0.91 um thick waveguide can

support only one mode while the 2.05 om;-thick one supports two modes. The

refractive index of the glass film is estimated to be 1.469 at a = 632.8

nm, The measured waveguide losses were 1.2 ± 1 dB/cm at a - 676.4 nm and

4.3 dB/cm at X = 476.2 nm.

3.1.2 RF Sputtering,

RF sputtering is a popular technique of fabricating low loss dielec-

tric waveguides.	 The sputtering process is quite well understood  and

precise control of various sputtering parameters is obtainable with commer-

cial sputtering systems. Several sputtering modes can be obtained by

making appropriate electrical connections to the J-head (substrate table).

These sputtering modes include RF sputtering, RF bias sputtering, RF

sputtering with J-head grounded, and RF sputter-etch. Depending on the

sputtering gases, used, reactive sputtering can modify the chemical com-

position of the deposited films.

RF sputtering was first used to deposit 7059 glass on ordinary glass

slides. 4 Corning 7049 glass is a pyrex type of glass with bulk composition

SiO
2
 50.2%, BaO 25.1%, B 203 13.0%, Al 203 10.7% and As203 0.4%. The refrac-

tive index of bulk 7059 glass is about 1.53. Because of the change of com-

position during the sputtering process the refractive index of sputtered

film was determined to be 1.62 by `he Brewster angle measurement. Films

sputtered with 100% Ar gas were brown and lossy because of oxygen defi-

ciency. When 100% oxygen gas was used, the waveguide loss was reduced to

less than 1 dB/cm. The use of oxygen as sputtering ga ys reduces the depo-

sition rate. This is attributed to the formations of high concentration of

ti negative ions of 0 or 0 2 , which act as electron traps. 5 The electron

affinities of 0- and 02 - are 1.47 eV and 0.43 eV, respectively. These are

the'idditional energy required to support the discharge.

In the steady state of the sputtering, the ratio of the effective

sputtering rates of different constituents must be equal to the ratio of

their concentrations in the target. If this is not the case, then for the

b
faster sputtering constituents, the number of atoms on the surface avail-

able for sputtering becomes less and less. Consequently their sputtering
rates are reduced gradually until equilibrium is reached. For the lower

..	
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sputtering rate constituents the situatyon is just the opposite. The

sputtering rates are increased to reach' the equilibrium value. On the

deposition side, however, the ratio of deposition rates of different

constituents does not follow this rule since the sticking coefficients are

different for different constituents. Even for a single component target,

the sticking coefficient may change with the substrate material and sput-

tering conditions. This effect explains the fact that sputtered 7059 glass

films having their composition and refractive indices different from that

of the bulk material. It was observed that the sputtered 7059 glass films

have a different barium oxide content than the bulk. b It was also observed

that the refractive index of sputtered films varied a a function of the

power level at which the deposition was done. ? The fi ) m refractive index

at a = 632.8 nm could vary from 1.53 (the bulk refractive index) to 1.585

as the RF sputtering power density was changed from 0.5 W/cm
2
 to 4.0 W/cm2.

It was also observed that the film refractive index depended on substrate

material. finder similar sputtering conditions, the film index was 1.61 for

fused quartz substrate, 1.55 — 1.56 on micro glass slides, and 1.55 on

Nd-doped glass sub3trates. 8 7059 glass waveguide is most successful

material fabricated by RF reactive sputtering technique. It has been used

by many research groups to fabricate various passive waveguide devices.

This popularity is partially due to the commercial availability of 7059

glass as sputtering target: Another type of glass film reported by RF

(.	 reactive sputtering is barium-silicatC glass. 9 The sputtering target is

°° formed by hot-pressing of a mixture of barium carbonate and silica. The

sputtered films exhibited low waveguide loss and the refractive index of

the' film was controlled by varying the ratio of barium oxide to silicon

dioxide in the Sputtering target. The film index varied from 1.48 to 1.62

simply by varying the barium oxide content from 0 to 40 wt. percent.

Nd-glass thin film waveguide is an attractive active medium for Nd

thin film laser. Nd-glass films have been prepared by RF sputtering ofz

barium crown Nd-glass on a heated corning 7059 glass substrate. 
10 

Clear

films were obtained only when the target glass is sodium-free. When P,01

1838 Nd-glass target (the constituents are Si0 2 . Na20 9 K 0, BaO, Ait203,

Li20, and Sb20 3) was used, the sputtered film was brown. 
if 

The brownish

color was attributed to the oxygen deficiency of alkali-oxides. The heat

of dissociation of these alkali-oxides is much smaller than other oxides.

3-5



Another	 high	 index waveguide	 film material is	 Nb205 ,	 which	 can	 be

fabricated by RF reactive sputtering of either Nb metal or Nb 205 .	 An early

experiment with Nb205 film showed high waveguide loss,	 20 dB/cm at a	 =

632.8 nm. 
15
	 X-ray diffraction analysis indicated that the film contained

small, randomly oriented crystallites, which gave rise to a large scatter-

ing	 loss.	 By	 reducir)g the	 substrate temperature	 during	 the sputtering

process, one can obtain an amorphous film with low propagation loss.

3-6

The brownish color can be annealed away by heating the film ai l, 50001C for 15

hours in air. The propagation losses of these waveguides were measured to

be 0.5 dB/cm at A - 632.8 nm and 0.15 dB/cm at a = 1064 nm. An attractive

feature is that a gain of 1 cm -1 at a = 1064 nm was obtained when the

waveguide is pumped with dye laser coupled into the waveguide. With a 1

cm- 1 net gain (the waveguide loss has already been taken into account), one

should be able to use it as the active medium for Nd-thin film lasers of

either the distributed-feedback type or the Bragg-reflector type.	 The

laser threshold requires the round trip total loss less than the gain,

i.e., 1 cm-1	4.34 dB.

o
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Aluminum oxide films RF sputtered onto single crystal quartz substrate

have been used in thin film second harmonic generation experimenis.
12
 The

index of refraction at x = 546.1 nm, measured by ellipsometry technique,

was n 1.663, Waveguide Loss was estimated to be about 40 dB/cm.

Ta205 is a high index of refraction material, a desirable feature for

integrated optics applications, for example, Lunenberg Lenses. Film index

as high as 2.08 at a = 632.8 nm was obtained by RF reactive sputtering of

Ta metal target. 
13 

If a small amount of N2 is introduced in the sputtering

chamber, the resulting film index can be varied from 1.85 to 2.13 depending

on the N 2 /0 2 ratio. Optical waveguide loss < 1 dB/cm was reported.

Another way of changing the film index is to ado some low index oxides into

the Ta205 sputtering target. S'02-Ta2O5 composite waveguide films have

been deposited on Corning Vycor glass substrates from a target consisting

of Si02 and Ta205- 14 Five sputtering tai^gets containing 0, 25, 50, 75, and

100 mol% Ta205 were used to deposit films of refractive index ranging from

1.46 to 2.08 at a	 632.8 nm. Propagation loss of less, than 0.8 dB/cm was

obtained for films thicker than 1 um. Waveguide loss was reduced by

post-deposit annealing in air for 12 hours at 45001.



Waveguide loss can be further reduced by laser annealing. For a 100% 02

sputtering, a refractive index of 2.297 was measured. For both Ta205, and
Nb205 cases, the reactive sputtered films have their index of refraction

about 94% of the value for the anodic oxide films. This is probably due to
a lower film density. it is important to note that the film density
depends on many sputtering conditions. It is not a surprise that different

laboratories report different results on waveguide characteristics.

3.1.3 Spin and Dip Coating

Thin film optical waveguides have been deposited on glass substrates

from liquid solutions. Solid films were formed after a slow evaporation of

the solvents. Similar to the coating of photoresist in photolithographic

process, the liquid films are coated on solid substrates by spin or dip

coating. Final film thickness is primarily determined by the solid con-

tent, viscosity and spinning speed. Various materials were used, 16 includ-

ing polyurethane, polystyrene, epoxy, photoresist, and organo-metallic

solutions. This coating is usually done at room temperature and cured at

an elevated temperature varying from 50 00 to 100°C. Waveguide losses less

than 1 dB/cm at A = 632.8 nm can be easily obtained with all the materials

mentioned above except photoresist. Photoresists provide the advantage

that channel waveguide structure can be easily fabricated using well devel-

oped photolithographic technique. However, photuresists, such as Kodak

KPR, 16 Shipley AZ1350, 17 are too lossy W dB/cm) to be practical waveguide
materials. Waveguide loss can be reduced by removing the photo-sensitizer,

which also reduces the photosensitivity.

Films fabricated from liquid solutions are usually soft and suscepti-

ble to to chemical attack. The coating technique does not have the control

of film thickness and uniformity required for integrated optics devices.

Because of the ease of fabrication, some of these films are used as diffu-

sion source 
18 

or overlay coating to reduce the waveguide surface scatter-

ing. 19 ;A spin coating technique is also used to deposit organic films

followed by a polymerization process. This type of fabricated technique is
classified as "Modification" process and is discussed in Section 3.3.
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3.1.4 Chemical Vapor Deposition
N

Silicon oxyni tri de films deposited on fused silica by chemical vapor
deposition has at one time been considered as a potential integrated optics

medium. 20 SiON is a glassy, amorphous, stable silicon-oxygen-nitrogen

polymer of adjustable composition. The index of refraction can be varied

between those of deposited SiO2 (n = 1.455 at A = 546 nm) and deposited

Si3N4 (n = 1.98). SiON films were deposited at 850 0c in a conventional RF

— heated silica tube reactor from a one atmosphere ambient typically com-

prising 0.2 to 0.5% nitric oxide, 0.02 to 0.07% si l ane, and the remainder,

nitrogen. The SiON composition was o controlled by the NO/SiH 4 concentration

ratio. Deposition of 1200 to 8000 A thick waveguide film was achieved in 2

to 10 min. Films of n = 1.48 - 1.54 had very low loss, <4 dB/cm at a
632,8 nm. However, higher refractive index films were not so successful as

the surface cracked easily~ By using low vapor pressure CVD technique,

excellent quality films of S1 3N4 were reported. Silicon wafers were used

as substrates, and the Si N was4	 separated from the substrate by a steam-.

oxide SiO2 buffer layer.	 No evidence of cracks was observed for film

00thickness less than 4000A. For a film thickness of 3212A, two (TE) wave-

guide modes with propagation losses of <0.1 dB/cm (TE0 ) and 6 dB/cm (TE1)

were, observed. Extension of optical fields into the Si substrate was shown

to be the major loss mechanism. This explains the fact that the fors for

TE 1 mode is much higher than the loss of TEO mode.

3.2 EPITAXIAL: GROWTH

This technique allows ene to fabricate single crystalline films for

integrated optics, and in particular, active optical devices such as

switches, modulators and scanners. It has been and it will continue to be

a big challenge to material scientists to refine the growth technique such

that low loss waveguide devices can be constructed. A successful develop-

me -7,t of low loss waveguides on GaAs or InP material systems will certaintly

brighten the prospect of fabricating monolithic integrated optic circuits.

There are two methods available today for forming single crystal films,

namely epitaxial growth and modification by diffusion or ion-exchange. In

spite of the recent intensive research, neither method is satisfactory of a

monolithic circuit. Many more years of elaborate work is needed to under-

stand and improve the fabrication processes.
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3.2.1 Epitaxial Growth y RF Sputter ng,

ZnO films have been prepared by RF sputtering of a UO target in 02

Ar mixtures on various substrate materials. The technology was developed

originally for applications in the acoustic field, where 7-n0 served as a

good transducer medium. Sputtered ZnO film is a polycrystalline film with
O

columnar crystallite structure typically 100A in a dimater. For the films

to show electro-optic and electro-meLhanic properties, it is necessary that

all the crystallites be oriented in the same direction, so that the asso-

ciated effects of these crystallites can be accumulated coherently for

device application. ZnO film is known to have a strong tendency to grow

with C-axis normal to the substrate surface. A complete C-axis normal

orientation with small deviation requires special growth conditicr under a

certain temperature, vapor pressure, growth rate, etc.

ZnO thin films have been employed as optical waveguides for many

integrated optics experiments. 22,23 Early experiments yielded extremely

high optical propagation loss (20 to 50 dB/cm), 24 even after gentle polish-

ing of the film surface. This is believed to be due to the columnar struc-

ture which results in a rough surface proportional to a film thickness.

Optical losses also arise due to voids among crystallites. Although the

optical wuveguide properties depend strongly on the film deposition pro-

cess, it is generally recognized that high optical quality film (<5 dB/cm)

occurs only for nearly epitaxial films. Recently nearly epitaxial film

exhibiting low optical losses has been observed after annealing the RF
sputtered ZnO film with a CO 2 laser 25 Waveguide loss for the fundamental

mode of a three-mode waveguide was reduced to 0.01 dB/cm. A laser anneal-

ing process is believed to induce coalescence of neighboring crystallites,

thus improving the film density uniformity and orientation. Effects on the
electro-optic, acousto-optic, and nonlinear characteristics of laser

annealed ZnO films are yet to be determined.

3.2.2 Epitaxial Growth by Melting

Epitaxial growth by meling (EGM) has been used to grow 6Bi203;TiO2

waveguides on Bi 12GeO20 , and LiNb0 3 waveguides on LiTaO3 . This is one of

the simplest method of epitaxial single crystal film growth, achieved by
Gaither dipping the substrate into a bulk melt or melting a power or lacquer
suspension on the substrate. This technique is attractive for integrated

q	
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optics for two reasons: first, the waveguide material with index'-O f

refraction larger than that of the substrate often has a lower melting

° point. Secondly, the film grown by EGM always has a transition region

which minimizes the lattice mismatch problem, The refractive index profile

is somewhere between the expotiential function of some diffused waveguides

and the step unction of the uniform wav e guide.P	 g

In the 9rwoth of various sillenites on bismuth germanate (Bi12GeOgo)

substrate,	 substrates were dipped in a super-cooled melt (825 to 9300

at a growth rate of 1 to 2 jim per minute. Sillenites used were bismuth

,gallate (12Di 203 :Ga203 ) or bismuth titanate (W203:1702)'

For the growth of L NbO3 on LiTaO3 substrate, 27 the LiNbO3 powder was

first spread over the LiTaO 3 substrate and then heated up to 1300 00 to melt

the powder. The sample was cooled slowly at a rate of about 20 OC/h. The

top surface of the as-grown film was rough, and required special polishing
before the waveguiding phenomenum was ob;;evved. An eiectro-optic modulator

was fabricated using this technique. 28 The EGM method was improved by

first suspending LiNhO powder in a lacquer, and thon painting the LiNbO

lacquire on the LiTaO3 substrate. 29 As the sample temperature was raised

to 1270°C, the coating first turned black as the organic lacquer was

decomposed. It then became transparent and glossy indicating the melting

of LiNb43 . Within a few minutes, the glassy appearance disappeared, and

the solid solution was formed. An improvement in film uniformity was

obtained:

Despite the simplicity of forming high index single crystalline films,

the EGM does not produce any waveguides with good optical properties for

integrated optics applications.

3.2.3 Liquid Phase Epitaxy (LPE)

	

Liquid phase epitaxial growth of thin films has been successfully 	
y

developed in the semiconductor industry, and it seems reasonable to apply

it to optical waveguide fabrication. However, the LPE technique i^ still

limited to the growth of semiconductor films primarily for the fabrication

of opto-electronic devices.



The first growth of LiNbO3 films on LiTa03 by LPE technique was demo-

nstrated using a U 2
0-4205 flux.30 . A C-cnt LiTaO3 substrate was dipped

into a molten mixture containing 50 mol% Li 
2
0p 40 mot% V205 , and 10 'mol%

Nb205 0 This mixture was heated to about 11000c and cooled slowly to the

growth temperature of about 850oC. A transparent and colorless U00 3 film

with with thickness N3 um was grown epitaxially onto the substrate, the

waveguide supported seven TE and TM modes. Measuremen ts of the modal

indices indicated that the film was an uniform waveguide having constant

indices no = 2,288 and ne - 2.191 at A - 632.8 nm. Waveguide losses of 5

and 11 dB/cm were measured for TM,,o and TE modes, respectively. Different

flux systems were tried; 31 Li2B204-U0Nb206 and Li 2W04 -1.i 2Nb206 flux

systems produced films rich in Li K 2WOa-L1 20206 and W03 -Li 2Nb206 flux

system produced films rich in Nb.

Ridge channel waveguides were fabricated by liquid phase heteroepi-

taxial growth of GaAIAs on GaAs. 
32 

A channel was first etched into the

GaAs substrate, over which was grown as GaO.7A10.3As layer as a low index

confinement and smoothing layer, followed by a second high index GaAs layer

to fill the channel. The guides were reported to be low loss because the

smoothing layer removed most of the scattering losses. Electro-optic

modulation has been performed at 1.15 um in double heterostructures of

GaAs-GaAIAs channel guide of width only 0.15 to 0.2 pm.34

Another optical waveguide fabricated by LPE technique is that of

gallium-and iron-garnet films developed originally for magnetic bubble

memory devices. Optical wavetuide and ma meg;^,%,:-optical waveguide switches

have been successfully demonstrated. Because of the abrupt interface

between the film and substrate, good lattice matching is required for the

LPE growth. The garnet family has a good range of lattice parameters and

refractive indices to allow a "mix-and-match" set of waveguide structures.

Garnet films as-grown are smooth, uniform and pin -hole free, thus elimina-

ting the scattering losses. However, the absorption losses varied from 1

to 5 dB/cm, depending on the impurity content of the melt. 
34 

A magneto-

optic switch was fabricated on Eu3Ge5012 waveguide epitaxially grown on

Gd3Sc2A1 30 12 substrate.

9
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Other waveguide materials fabricated by LPE !method include Yttrium

aluminum garnet on sapphre , 36' and a KDP .ADP layer on KDP substrates-36

Unfortunately, these films are not suitable for integrated optics appl ica-

tions because of difficulty of obtaining good quality films or water attack

of ADP and KDP.

3.2.4 Vapor Phase Epitaxy (VPE) and Metal-Organic Chemical

The VPE and MOCVD are two alternative techniques of growing semicon-
ductor films primarily for the fabrication of optoelectronic devices.

u, Unlike the LPE method, the materials to be deposited are carried by a gas,

usually H 2 . The deposition is slower than that of LPE method. As a

result, one has the control of thickness and doping profile of each de osi- p g P	 P

tod layer. A strip-loaded waveguide was fabricated by first growing a

hAh-index lightly doped layer of GaAs on a heavily doped n+ layer followed

by etching to form a strip-line. 
37 

Waveguide loss at 1.16 um was 4.5

dB/cm. An electro-optic directional coupler switch was fabricated on a

planner VPE GaAs layer fabricated in a similar fashion. 
38 

Lateral confine-

ment was obtained by depositing an Au -Pt Schottky barrier film, which also

was used as electrodes.

3.2.5 Molecular Beam Epitaxy tNBE)

MBE is a powerful technique in growing single crystal films with

precise control of stoichiometry thickness, deposition rate, and dopant

concentration. Growth is performed in a high vacuum chamber where the

I
fl substrate is kept at an elevated growth temperature. Molecular species are

evaporated and directed toward the substrate by separate source chambers.

Slow growth rate allows one to control the process down to a few atomic

layers. This method was used to fabricate GaAs double heterostructure

lasers and other devices. MBE toas also used to fabricate GaAs CW-DH laser
i

taper coupled to a pa^.5ive Ga l-xAl xAs waveguide layer inside the cavity.39

s	
The taper coupler approached 100% coupling efficiency and the waveguide

P <

doss of the passive layer was about 4 dB/cm. MBE is one of the most pro-

mising technique for the monolithic integrated optic circuit, Currently,

	

t	 GaA1As laser- devices made by MBE are as good as other lasers made by LPE or

MOC VD. However, MBE is still having problems in growing InGaAsP layered

	

F	 structures.
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3.3 MODIFICATION

Optical waveguides can also be formed by increasing the index of

refraction of the substrate surface through diffusion, ion-exchange, ion-

implantation, polymerization, etc. It has been found that the most popular

waveguides used in integrated optics are fabricated using one of methods in

this category, for example, Ti diffused LiNbO 3 waveguide and ion-exchanged

glass waveguide.

3.3.1	 Out-Diffusion

LiNbO3 and LiTaO3 are among the best waveguide materials for active

integrated optic devices due to their unique electro-optic;, 	 acousto-optic

and nonlinear optic characteristics.	 The first waveguides on LiNbO 3 and

LiTaO3 were	 fabricated by out-diffusion 	 of	 lithium	 and	 oxygen	 atoms.40

LiNbO3 and LiTaO3 crystals can	 be	 grown	 in	 a	 slightly	 nonstoichiometric

form, (Li
20)v (M205)1-v' where M may be Nb or Ta and v ranges from 0.48 to

0.50.	 It is known experimentally that for a small 	 change of v	 in LiNbO3
and	 LiTa031 	the	 ordinary	 refractive	 index	 ramains	 unchanged	 while	 the

extraordinary refractive index (n e ) increases approximately linearly as v

decreases.	 For LiNbO31	dne/dv	 =	 -1.63	 and	 for LiTaO30	dne/dv	 =	 -0.85.

Reduction	 of Li 20 concenwration	 at	 the	 surface	 caused by	 out-diffusion 3

forms a high-index guiding layer.	 Li 20 out-diffusion waveguides have been
3

demonstrated when the crystals were heated at high temperature (850-1200 0C) 6

in	 vacuum or	 in air.	 If	 the	 out-diffusion	 process	 was	 carried	 out	 in

vacuum,	 the crystals became black after the process. 	 Dfiscoloration could

be removed by reheating the sample at high temperature in air or in oxygen

environment.	 Waveguide layers thus formed had a ane — 10'

3 and a thickness

of few to	 several	 hundred um.	 They usually	 support a	 large number of

guided modes and ure not practical 	 for most applications.	 As discussed in

next section,	 in-diffusion of Ti	 petal	 has	 been chosen as	 the	 preferred

approach of fabricating optical waveguides on LiNbO
3 substrate. f

As a matter of fact, the existence of out-diffusion of Li 20 at high

temperature crests a problem for integrated optic devices. 	 Planar out-

diffusion waveguide may cause optical	 leakage	 or cross-talk between the

useful optical waveguide channels.	 Several papaers have been published on

lithium out-diffusion suppression describing techniques suc'A as annealing

the sample in Li2CO3, 41 or LiNbO
3 
42

powders before or after the diffusion,
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placing a cruicible of Li 20 upstream in the gas flow,
43944

 and wetting the

incoming gas flow during diffusion.
45

r:
3.3.2 In-Diffusion	 F

Until now, the %-diffusion process is the most common technique of

fabricating waveguides on LiNbO3 and LiTaO3 . A metal film such as Ti, Nb,

Mn, Fe, Co, Cu, Zn, Mg, etc., is first deposited on the substrate, followed

by thermal diffusion at tempertures ranging from 850 to 1100 oC. A good
t:

number of papers have been published on the diffusion of various metals

into LiNbO3 and LiTaO3 under various diffusion conditions. 	 Of the two

ysubstrate materials, LiTaO3 is a less desirable material to work with

because its Curie temperature ( N6100C) is well below the diffusion tempera-

tures used. As a result, the crystal must be repoled after diffusion.

However, the optical damage threshold of LiTaO 3 waveguides is about two

i
orders of magnitude !higher than that of LiNb0 3 waveguides.

In i374, optical waveguides in LiTaO 3 were reported by in-diffusion of

Nb metal, 46 and optical waveguides in LiNb0 3 were demonstrated by in-

diffusion of various transition metals. 47 The majority of integrated

optical directional couplers, modulators, switches, and mode converters are
i,

fabricated based on the Ti in-diffusion LiNb0 3 waveguide technique. 
0 
Single

mode optical waveguides are easily obtained by diffusing 200 to 400 A of Ti

metal. The resulting waveguides have propagation losses less than 1 d0 /cm.

" X-ray photoelectron spectroscopy has been used to determine the

valence state of titanium atom in LiNbO3 . 48	Experimental results indicated

r that the in-diffused Ti metal 	 in LiNb0 3 was all	 tetravalent, i.e., Ti	 ions

are fully ionized. 	 There are no electrons in partially filled d-orbitals

to absorb the electromagnetic energy at visible wavelengths.	 This explains
I;	 9

the measurement	 of	 low	 optical	 losses	 fabricated by Ti	 diffusion	 into

l;
LiNb03 .	 The 	 spectrum of X-ray	 photoelectron	 spectroscopy	 did	 not	 show

r evidence of Ti	 ion distributed among various different sites. 	 Based on

"_ these measurements, one would conclude that Ti	 ions are bonded chemically
if

k in	 the lattice	 in the center of oxygen 	 octahedra.	 However,	 it	 is	 not

conclusive that	 the Ti	 ions	 are	 incorporated chemically	 into LiNbO3 	 as

substitutional	 impurities on Nb or equivalent sites.	 Absorption loss of
E	

Ỳ channel waveguide is measured to be less than 03 dB/cm at 632.8 nm and is

'; expected to decrease at longer wavelength. 49	The predominant loss meth--

r'
.

anism is attributed to scattering losses.
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X-ray microanalyzer has also been used to determine the refractive-

index change and profile of Ti diffused LiNb03 waveguides. 50	Several

conclusions are drawn from this study. (1) An and An are identical  ate
?	 0.75% Ti-concentration. For the Ti concentration smaller than 0.76%, An° >

i Ane, and for Ti concentration higher thdn 0.76%, Ane > Ano. (2) The

diffusion p rofiles were Gaussian .A stributions with diffusion depth less.
than a few microns. The maximum refractive index change of waveguide made

.	 at 970°C for 7 h are Ane = 3.05 x 10
-2
 and An	 7.7 x 10-3 for a Ti film0

of 800 A

i	 3.3.2 Ion Exchange

i

The ion exchange process is different from the diffusion in that

anions from an external source exchange with anions in the glass or crystal

lattice. The ion exchange technique has been used successfully for fabri-

cating low loss waveguides on various glass substrate. This technique is

also currently used by Nippon Sheet Glass Co. to fabricate commercial

SELFOC lenses. The first optical waveguide fabricated by this method was

by ion-exchange from a mixture of salts into a borosilicate glass plate-51

An external electrical field was used to enhance the ion migration rate. A

mixture of thallium, sodium and potassium salts were used, the ion-exchange

occured between the T1+ ions in the melt and Na + and K+ ions in the glass.

After a while, the mixture of salts was then replaced with a sodium and

potassium mixture to form a buried waveguide by reversing the ion-exchange

process. The resulting waveguide has a graded bell shaped refractive index

profile supporting many waveguide modes. Total waveguide propagation loss

was <0.1 dB/cm. The external electrical field effect allows one to control

the ion-exchange process for a desirable waveguide structure. At higher

temperatures, the ion-exchange process becomes faster following the thermo-

dynamics principles. However, darker films are formed from dissociated

metal, and the nitric acid formed by NO2 will etch the glass surface-52

Table 3-1 is a list of ions and their characteristics that have been used

in fabrication of glass waveguides. Table 3-2 is a comparison of various

ion-exchange process..

Iop-exchange of Ag into LiNbO 3 has demonstrated a three-mode waveguide

in an X-cut crystal. 
53 

There was no waveguide formed on Y-cut wafers even

after extended period of treatment. Optical losses on X-cut waveguides
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were higher than 6 dB/cm. Ion-exchange of lithium and thallium also
resulted in optical waveguides on both LiNbO 3 and LiTaO 3 crystals.54

Change in refractive index occurred for extraordinary index only, and for

X-cut crystals only.

Proton ion exchange has been introduced recently as a new method of

creating large increases in the extraordinary refractive index of LiNbO3.

Very large increases in n e (about 0.12) have been obtained in this method

by treating X-cut and Z-cut samples in benzoic acid at low temperatures

(110-2490C) for a few hours. Low loss waveguide (0.5 dB/cm) were reported
following this method in X-cut crystals. Treatment of Y -cut samples

resulted in surface deformations and no waveguides were reported in that

orientation.

3.3.4 Ion•-Implantation

Several different types of optical waveguides have been fabricated by

ion-implantation. One of the problems associated with ion-implantation is

that the high energy particles create defects which result in scattering

losses. Thermal annealing is usually used to reduce the damage effect.

Channel waveguides on fused quartz were formed by Li * implantation through

a PMMA electron resist mask. 55 Waveguide loss after annealing was about 3

dB/cm.

LiNb03 implanted with 60 KeV Ne or Ar ions showed up to 10% decrease in

refractive index, attributed to polarization effect of damanged lattice

structure. 56 No individual measurements were reported of effects on the

two refractive indices, or effects of possible annealing damage on the

index change. Later, the effect of ion-implantation on LiNbO3 was examined

in a greater detail. 
57 

Optical waveguides were formeu by generating a

subsurface low-index layer, 2 to 4 um below the surface by He implantation.
It was noted that the electro-optic coefficient, r 331 wa . ,educed by about
60%. In another attempt to maintain the crystalline structure, He ion-

implantation was used to delineate a channel waveguide structure on a

planar Ti diffused waveguide. 58 Even though the high a-o and a-o coeffi-

cients are retained, the process is more cumbersome than direct diffusion
of Ti channels,
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Light ions (proton, helium, boron) were also used to form waveguides

in ZnTe. 59 Waveguide formation is the result of macroscopic implantation

and the microscopic property changes due to induced damage effect. Low

optical losses, 1 to 4 dB /cm were measured. ZnTe material does not have

particular interest to integrated optics applications.

3.3.5 Others

There are many other modification techniques available to fabricate

reasonably good optical waveguides, including polymerization by photo-

locking, stress, metal cladding. It is almost impossible to exhaust all

the techniques published in literatures. Sone of the techniques are of

little interest, anyhow, for practical device applications.

3.4 RECOMMENDATIONS

There are all toge0er, close to 1000 publications on the fabrication
and: characterization of optical waveguides for integrated optics applica-

tions. They are only a few techniques are still used by researchers. The

most critical selection criterium is the ability of fabricating low los (<1

dB/cm) optical waveguides. Depending on the substrate and waveguide

materials used, one would choose different fabrication technique. Based on

this study, several conclusions on the waveguide fabrication can be drawn:

a) RF sputtering is good for 7059 glass, Ta 0 and Nb 055 films,
waveguide loss is usually about 1 d9/cm. 

2 
Nese wavegguides are

primarily used for passive integrated optic devices.

2) RF sputtering is also good for ZnO single crystal films. ZnO film
is potentially an attractive waveguide material. The biggest
concern is on the reduction of waveguide scattering losses. Laser
annealing provides a promising means to achieve this goal. More
work is needed in this area.

3) Ion-exchange is attractive for glass waveguides due to its simpli-
city and good results on optical losses. Single mode channel
waveguides with losses less than 0.1 dB/cm have already been
demonstrated, There is no reason that one cannot fabricate
waveguides with losses on the same order of magnitude as glass
fibers < dB/km. If it is realized, the glass waveguides certainly
can be used for passive laser gyroscope application.
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4) Ti diffusion into LiNbO is still considered as one of the best
techniques to fabricate Lveguide devices, in particular, electro-

M
ic and acousto•optic devices. Optical damage associated to
bO will no longer be a problem when the operating wavelength

is sA fted to beyond 1 um. For most high data rate long haul
system, the optical wavelength will be around 1.3 pm to fully
capitalize the advantages of optical fibers.

5) One of the ultimate goals of integrated optics is to fabricate
monolithic optical circuits on one chip, e.g. GaAs or InP. Liquid
phase epitaxy is currently used to fabricated discrete as well as
limited integrated optoelectronic devices. LPE does not have
precise control of growth condition required for integrated optic
devices. To really fabricate integrated optic circuits, one has
to rely on the advanced molecular beam epitaxial growth technique.
This would require a well coordinated effort over several years at
a sufficient funding level. The payoff of MBE technology will not
be limited to integrated optcs only, the impact may be greater for
electronic and optoelectronic devices. Another problem facing
semiconductor waveguides is the high absorption aa,:d free-carrier
scattering losses. One has to operate these devices far away from
the band gap.

3.5 FINE LINE PHOTOLITHOGRAPHY

ir.

The definition of optical guided wave circuitry is currently made

possible as a result of major advances inp j pattern generation of micro-

electronics circuitry in the last two decades. While tolerances in integrated

optical circuitry are more critical than those required in micro-electronics,

the state-of-the-art of pattern generation has become sufficient to meet the

high resolution needed in integrated optics.	 The common practice used in

integrated optic device fabrication is to generate the designed circuit on a
G

F	 photomask.	 Subsequently, the waveguide pattern is transferred to the

substrate material using contact photolithography technique. The contact

printing technique can fa4 hfully reproduce the waveguide pattern with minimum

or non-measurable distortions. Here we describe the state-of-art techniques

of fabricating photomasks.

Optical lithography is historically the first method used in micro-
electronics, and continues to be a popular technique in that field. The

method used for pattern definition by optical means (considered primitive in
today's standards) was the Rubylith cutting and exposure method. The pattern,

scaled up by a certain ratio is cut on a large Rubylith sheet taped on a

screen in front of a green light source. The exposure of green light through

i
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a reduction lens onto photo sensitive emulsion plate produces an image 'of the

Rubylith pattern on the emulsion plate. The procedure can also be repeated to

further down scale the image size through different reduction lenses. This

technique has two limitations. The first relates to the diffraction limits of
the lenses, and the second limitation is imposed by the resolution limits and

edge sharpness of emulsion films. The latter is the more serious of the two,

and because of that, good quality lines narrower than 5 µm are not obtained

by this method.

a A more advanced method of mask making uses an optical machine called
pattern generator. These machines primarily consist of a processor controlled

rectangular exposure opening through which UV light is exposed on a

photoresist coated mask plate through an intermediate lens system. The mask

plate coated with chromium or iron oxide is fixed on a precision stage

monitored by mechanical or interferometric means. 	 Due to the limitations

imposed by the image field of the lenses, typically 10 mm in diameter, large

area masks are generated by successive exposures. 	 Upon cornpletion of a

programmed exposure, the pattern is developed and etched through the metallic

film yielding high quality patterns. The use of photo-sensitive polymer

resists allows the formation of sharp and smooth edges. The line width and

line spacing are on the order of 0.8 - 1.0 µm, controlled within 0.25 µm, and

the edge smoothness of 40.1 pm is achieved.	 Off axial alignment shifts

between connecting exposure boxes (when image size is greater than 10 mm) is

typically 0.25	 0.5 µm.

Scanning_ E-beam lithography is another method of writing high resolution

patterns on radiation sensitive polymer films. Both negative and positive

electron resists are used. It employs a scanning electron microscope with the

electron beam focused down, to less than 0.1 µm in diameter. ThA image .field

of the E-beam is smaller than that of the optical pattern generator, it is

typical that 1x1 mm2 before electron lens aberrations become too large. For

large patterns, the substrate must therefore be moved from exposure to

exposure according to a digitized program processor. 	 In order to maintain

high accuracy between neighboring exposure rectangles, the substrate motion is

detected interferometrically and corrections are made to the beam position. 	
s

Typical oft' axis misalignment between boxes (also known as butting error) is

<0.154m.	 Line widths as small 0.25 W with edge roughness of no greater

than 0.10 µm are possible due to the large depth of focus of the E-beam.
a:	

Such parameters are typically quoted by commercial E-beam mask suppliers.
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4.	 OPTICAL LOSS MECHANISMS

Loss mechanisms in integrated optical waveguides can be classified in

two major categories, namely, absorption, or conversion of the light energy

into heat, and scattering, or light escaping the bound modes.	 Absorption

consists	 of	 three	 types;	 intrinsic,	 impurity,	 and	 atomic	 defect	 color

centers.	 Scattering also consists of three types:	 intrinsic volume

scattering,	 boundary scattering,	 and	 index	 inhomogeneity.	 Certain other

effects	 such	 as optical	 damage	 and	 fabrication	 irregularities may cause

additional losses as will be described later.
I

4.1	 ABSORPTION

F	 Intrinsic absorption originates due to charge transfer bands in the UV
F	

t	 region and vibration of multi-phonon bands in the near IR. 	 If these bands

are sufficiently strong, 	 their tails will	 extend into the, spectral	 region

of interest in optical communications (800-1600 nm). 	 In most cases, the IR

bands are located beyond 4 um, and are narrow.	 On the other hand, the UV

bands are stronger and potentially more troublesome in the wavelength range

of interest.

Impurity	 absorption	 arises	 predominantly from	 transition	 metal	 ions f
j

present in the bulk or diffused during the waveguide formation. 	 Absorption

of these ions varies for different materials as does their valence states.

In glassy materials, OH ions contribute to absorption around 725, 950, 1250

-	 and 1390 nm.

( The third type of absorption is atomic defects which include species

deliberately added to the material composition, such at Ti, whose plus

three valence state has strong absorption in the visible while titanium

plus-four does not.

4.2 SCATTERING

t	

-

All transparent materials scatter light due to frozen in thermal flue-

tuations of constituent atoms. This causes density and hence refractive

index fluctuations. This intrinsic effect is believed to represent the

w fundamental limit to attenuation in waveguides. A second, source of 'index

	

inhomogeneity scattering arises from aggregation of certain compositions	 k

after their reduction from ionic form into atomic form and their subsequent

I%
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nucleation and formation of colloidal scattering centers as in the case c
silver and titanium diffused waveguides.

In addition to these scattering loss mechanisms, one can have radia-
tion losses associated with the waveguide circuitry and boundaries. In the

context of thin film-substrate waveguides, the sources of such losses are

due to surface irregularities, two dimensional pattern definition, bends,

and curvature. These are engineering desigr problems and have no fundamen-

tal limitation on the total attenuation. Nevertheless, they contribute
significantly to the total losses unless they are properly minimized.

4.3 LOSS MEASUREMENTS

The measurement of losses in integrated optical circuitry continues to

be an issue of accuracy. While fiber losses can be measured with high

accuracy over long segments of fiber, such is not easily accommodated in
short thin film waveguides.	 The main difficulty is the uncertainty of

the input and output coupling efficiencies. This uncertainty clouds the
measurements of both absorption and scattering losses of short waveguides,

especially when the losses are low. Absorption is usually measured by

calorimetric methods, whereby the induced heat is detected by a thermo-

couple and correlated with the sample geometry, mass and propagating power.

Total loss is measured by making power-distance measurements. Excitation

of power is done through a prism coupling, end focusing, or fiber pigtail-

ing. In our opinion, none of these methods allows precise knowledge of the
amount of power coupled into the waveguide, and with the exception of end

focusing, none are accurately or easily reproducible.

In the prism coupling method, the wave is coupled 'into the out of the

waveguide with a ;pair of prisms clamped tightly on the surface of the
waveguide. In channel waveguides, a lens must be used to focus the beam to

a spot size comparable to the channel width. This method of excitation is
made possible primarily as a result of evanescent field coupling. As such

it is very sensitive to an air or liquid filled gap between the prism and

the substrate surface. For efficient coupling, this gap must be on the

order of the wavelength or less. In practice, 'the optical contact between

these two surfaces is very sensitive to the optical flatness of both

surfaces, and may vary from region to region. Such variations account for

considerable changes in the coupling efficiencies at different points.

4-2
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Therefore, when the prism separation is changed to measure the output power

as a function of distance, variations in the coupling efficiencies inevit-
ably lead to measurement inaccuracies, and often discrepancies. In our

opinion, even the most elaborate setups providing special pressure point

contacts are not accurate enough or reproducible, and all such measurements

cannot be seriously assumed reliable. A figure near ±0.5 dB/cm is often

quoted (questionably) to describe the resolution of this method when

measuring losses estimated at 1 dB/cm. (Numbers in general are amusingly

rounded around these figures).

The second method of loss measurement involves the detection aNd

monitoring of the scattered light along the travel length, usually with a

detector or a light carrying conduit positioned closely to the surface of

the waveguide. This method is more accurate and the limitations are

systematic arrising from the noise level of the' opto-electronic detection

system, and background. Over short distances (few mm), however, random

scattering centers within the guide or on its surface cause considerable

perturbations that affect the measurements in two ways; first causing

variable intensities of the scattered light which have to be averaged out

by statistical means, and second, it may change the directionality of the

radiating pattern and therefore the scattered power relayed to the detec-

tor. Nevertheless, if the various noise sources are minimized, and with

use of a sensitive linear detector, this method yields reasonably accurate

results.

The third method of estimating the losses is carried out by making

input-output measurements by the end focusing method. In this case, the

sample ends are polished, and the input power is excited with a lens, and

the output power is collected with a second lens. Bower at the output side

is then measured and the sample is removed and the power is remeasured. In

this situation, two co • rections to these measurements are made, the first
accounts for the Fresnel reflections at both ends, and the second for the

coupling efficiency at the input end. Coupling efficiency in this case

presents an uncertainty factor. It can be theoretically estimated from the

knowledge of the waveguide and focusing lens parameters. It can also be

measured, but in a tedious way. One way of measuring it is by cutting a
thin slice of the sample, and polishing both ends. If the slice is thin

}
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(short) enough, the propagation lasses can be neglected, and the input

output powers are different only by the amount of light not coupled into

r	 the guide. This method is in a way similar to fiber loss measurements, but5	 .;

it requires the additional cutting and polishing. 	 Otherwise, it is a

r	 fairly good method of loss r1easurement.

4.4 MATERIALS VERSUS LOSS: PROBLEMS AND OUTLOOK
f	 ,

In this section, we focus our attention to loss aspects related to

various material-waveguide combinations, outline major problem areas, and

project some expectations. In specific, we consider Ti:LiNbQ 3 , glasses,

Zn0 and polymers as potential building blocks in 'hybrid integrated optic
r	

circuitry.

4.4.1 Ti:Li NbO3

A major limitation to integrated optical devices built by Ti diffusion

or LiNb0 3 is the photorefractive effect, also known as optical damage. 	 It

9 is thought to be caused by charge transfer from opticplly excited impuri-

ties within	 the band	 gap	 4o metastable	 trapping	 sites. l ' Z .	 This	 effect

manifest itself in refractive index changes 	 in the material	 upon exposure

to	 visible	 light	 intensities	 in	 excess	 of	 1x10"4	mW/um	 Due	 to	 this

localized laser induced changes in the extraordinary index, the propagating

beam d v	 t b	 d i s to r ted  b. 	 i	 erges gradually as	 its wave Eton	 becomes_	 y index
inhomogeneities.	 Contribution	 of	 this	 effect	 to	 the	 total	 loss	 is	 not

A known,	 as other geometrical	 imperfections may scatter the light 	 in	 a

similar way..	 Typically,	 single mode	 Ti:LiNb03 channel waveguides exhibit
G

s 1 dB/cm total	 loss.	 Of this, about 0.3 dB/cm is attributed to bulk absorp-

tion at 6328 nm.	 The rest results from Ti	 impurity absorption scattering

N from intrinsic,	 geometric,	 and photorefractive effects. 	 It has	 been

pointed out that the diffused Ti	 impurities do not increase the absorption

or level of optical damage from that of the original 	 substrate. l,Z .	 With

the application of an electric field opp	 f few KV/cm, however, the sensitivity

A, to	 the	 photorefractive	 effect	 is	 greatly	 increased	 in	 the	 Ti	 diffused

layers	 in comparison to similar fields 	 applied to the bulk	 crystal. l	it

'	 n has also been observed that Ti indiffused waveguide are more susceptible to

s optical damage than outdiffused waveguides. 3 .	 Optical damage decreases for

longer wavelengths and becomes negligibly small beyond 1 0m. 2
 Recently, a

k

i}

C
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technique for suppressing the out-diffusion in Ti diffused waveguides by

carrying the diffusion in humid atmosphere has been found to improve the

susceptibility of Ti-diffused waveguides to optical damage as a result of

the presence of H ions. 4 In this case, the photorefractive sensitivity is

improved by a factor of 2-5 by introducing humidity in the diffusion

process. This phenomena is not very well understood at this point, but

work is in progress to gain greater understanding of this effect.4

a

I

t

fi

4.4.2 Glass Waveguides

Glass waveguides can be expected to yield lowest losses for integrated

optical patterns among the other materials commonly used in integrated

optics. At present, typical glass waveguide losses are in the range of

0.0:1 - several dB/cm, depending on the type of glass and process used in

the waveguide fabrication. It is our belief that very low glass waveguides

can be fabricated provided that certain important considerations are

recognized in the glass selection and process used. To elaborate on this,

we shall consider the problem areas associated with glass waveguides formed

in two different methods; namely ion exchange and film deposition.

In the ion exchange process, the selection of bulk glass and exchang-

ing ions greatly influences the loss. Bulk transmission is important for

obvious reasons. This issue has not unfortunately been of major convern to

researches of this field, when indeed it is a very important one, Consi-

der, for example, an optical quality glass bulk having 0.975 transmission

over 1 cm thickness. It follows that the bulk loss for this type of glass

is about 0.1 dB/cm which constitutes an absolute minimum achievable. Other

losses arising from impurity diffusion, scattering etc. will add to that

figure by certain amounts, some of which are still related to the bulk

composition. Remember that 0.1 dB/cm is 10,,000 dB/km, which is astound-

ingly high for fiber optics, and reflects loss in fiber optics prior to

1970. While the comparison here is not fair, it is justifiable fro-pi the
material point of view  where both ( bulk  gl ass and fiber preform) use S i 02
as a major constituent. Fiber raw material, however, is far more refined
from transition metal ions thus yielding much lower losses. 	 These ions

contribute not only to absorption of the basic substrate, but can be even

more harmful in the process of waveguide fabrication by ion exchange. An

excellent example of this situation is Ag } ion exchanged waveguides. The

l^f
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presence of metastable ions such as Fe, Sb and As even in few ppm act as

strong reducing agents whereby they donate electrons while Jumping through

the valence states. These electrons are attracted to the Ag + ions, and

upon combination, the Ag + ions are reduced to metallic atoms, which aggre-

gate and form submicroscopic cyrstals . in the form of coloidal color cen-

ters, repsonsible for the yellowish coloral -J on or staining often observed

in Ag+ ion exchanged waveguides. This type of chemical reaction is

described by !.he following;5

A9
20 + 2FeO (h N 2Q3 + 2Ag

2A920 + As
20 (heat)

As205 + 4Ag

Losses induced by this type of reaction are very high, typically several

dB/cm in Ag+ ion exchanged waveguides. This underlines the importance of

minor constituents in the glass materials and suggests that the selection

of both glass material and doping impurity have to be considered simul-

taneously in order to minimize the loss. While most transition metal ions

can be minimized by starting with high purity materials in glass produc-

tion, some constituents like As are intentionally introduced in the process

for certain purposes such as bubble and inclusion removal, a common pro-

cedure followed in optical glass manufacturing. Modern technological

Advances in glass manufacturing can be utilized to substitute that pro-

cedure without using As, which will understandably add to the cost of

material, as does the use of ultra pure raw materials.

Other examples of loss factors of ion exchanged waveguides are those

relating to structural ionic size disparity. For example, when Li ions are

used as the exchanging ions, the glass network in the surface Li diffused

layer collapses around the small size Li ions at temperatures below the

glass transition temperature resulting in surface. distortion evident by

microcracks. Glass structure and diffusion temperature become crucial

factors in producing low Tosses in this case.

"raking these considerations into account, general guidelines can be

  e production f 1	 theseestablished for th pro	 t^ n o	 ow loss ion exchanged waveguides, 	 ,

can be summarized as follows;

_._ ^ 	-	 -1-__ - - ,	
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1. The starting bulk materia

a. very low on transitioi

b. free of bubbles and oclusions

c, have high index homogeniety 	 \`\

d. stress and striae free

	

a	 e. compatible with the exchanging ions

	

,..	 f. :be of silicate base with 10-15% sodium oxide.

2. Preferred exchanging inns are K + and T1♦ for Na+

3. Glass structure should enable fast ion exchange at relatively low

	

e .	 temperature.

The second type of glass waveguides is formed by film deposition

(sputtering) of a higher index glass on a glass substrate or oxidized

silicon. In this case, the bulk loss or transmission is of secondary

importance, but the sputtered source purity is important. Generally, since

only small amounts of material is used, it is more economical to use in

high purity form than would be the case if the whole substrate were to be

of high purity. In such cases, however, the film surface quality is most

important. In general, sputtered glass films have relatively high surface

irregularity after sputtering, and exhibit fairly high loss at that point

(typically several dB/cm). It has been reported recently that laser

annealing of the film surface yields considerable reduction in the scat-

tering losses of such waveguides. 
6,7 

For example, sputtered high purity

7059 glass film  ( about 1 um thick) exhibited 7.2 dB/cm losses after depo-

sition. When annealed with a CO
2
 laser radiation, the loss was reduced to

0.2 dB/cm. This loss was further reduced to 0.01 dB/cm after coating the

film with an index matching liquid. ? This indicates the influence of

surface roughness on the total loss. It should be pointed out that these

experiments were conducted on planar films, and it As yet to be determined

if this procedure can be effective in channel waveguiding structures.

Nevertheless, these results are quite encouraging, suggesting that such a

technique might be useful with ion exchange waveguides where two dimen-

sional confinement is not a problem. This of course must be done such that	 P

the localized annealing does not purturb the original,waveguide parameters

that are sensitive to further heat treatment,

4-7
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4.4.3 ZnO Films

ZnO films are also sputtered or CVD deposited on various substrates

such as quartz, oxidized Si or sapphire. Films grown on sapphire by CVD or

rf sputtering yielded optical losses of 0.5-1 W cm,8,9+10,;11 and 1-2 d6 cm

resulted in ZnO films sputter deposited on amorphous oxidized silicon.12

The laser annealing method described earlier for reducing scattering losses

in glass yielded considerable reduction of losses in ZnO films sputter

deposited on amorphous Si substrates. 
13 

Losses in the range of 2.5-6.0

dB/cm after deposition were reduced by CO2 laser annealing to 0.01-0.03

dB/cm, 13 for the fundamental mode of waveguides supporting three modes.

Losses of the higher oiAer modes were also reduced by not substantially,

and this was explained on the bases of modal field confinement difference

between the various modes due to the large index difference between ZnO and

air. It is not clear yet how annealing may affect the electro-optic and

piezo-electric properites of the ZnO film, and no data has been reported on

the subject, although it is speculated that such annealing would yield
adverse effects in that regard.

4.4.4 Polymer Films

Polymer films are another class of waveguides that exhibit low loss.

In planar forms a loss of 0.4 dB/cm was reported for the early demonstra-
tion of such waveguides for organosilicon films 14 . These materials were

further incorporated with a photolocking technique in writing channel

waveguides upon UV exposure. Earlier experiments reported a loss of 0.2

dB/cm for 4 um wide channels. 15 More recently, further refinement of the

polymers yields lower losses (0.05 dB/cm) for channe-1 waveguides 10 um

Wide. r The usefulness of such waveguides is limited to the visible region

beyond which the absorption becomes prohitively high. Furthermore, these

films are usually soft and vulnerable to scratches and humidity. Neverthe-

less they are useful in special prototype demonstration cases such as the
integrated optical ring _gyro. 16

rt
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5.	 WAVELENGTH SELECTION

Since the first report of 20 dB/km optical fiber in 1970 1 , glprs

fiber manufacturing techniques have been advanced to produce fibers with

} attenuation loss close to its theoretical liinit. 	 A loss of 0.2 dB/km r

at a wavelength of 1550 nm was reported in 1979 2 .	 T!a fiber, consisting f

f
of Si02 cladding and 0e02 -doped silica core, wan fabricated by the mo-

 ^!t
deposition (CVD) techniquedified chemical vapour 	 using ultrapure start-

fing materials.	 The total fiber dispersion, the sum of waveguide disper- l
k

Sion and material dispersion, becarru, zero at wavelength around 1270 nm.

At this wavelength, the fiber loss was measured to be 0.6 dB/km.	 On the G

ether hand the fiber losses at GaAIAs laser wavelen,ths, X=000-900 nm,

were about 2 dB/km. 	 It becomes quite evident that long wavelength optical y

communications systems can be operated at higher data rate over a longer

distance without repeater than the short wavelength systems.	 In arecent
q

announcement, Bell Telephone Laboratories has demonstrated a repeaterless y

1a transmission system at 274 MBit/s over 101 km using single mode fiber,

1.3 um InGaAsP laser diodes and InGaAs PIN diodes. 	 the transmission nt

+a

2

rate was raised to 420 Mbit/s, the system length without a repeater became
4

84 km.	 A theoretical analysis	 has shown that for optical wavelength close

to the minimum dispersion, single mode fiber transmission system can be

operated at 20-100 Gbit/s data rate over a distance greater than 100 km.`

Motivated by the progress in fiber fabrication, sources and detectors for

ti long wavelength operations have been studied extensively for the last

., several years.	 Some long wavelength devices are available commercially

with performance comparable with short wavelength devices.

` The choice of operating wavelength for optical systems is determined

by many factors such as datarate, power budget, temperature sensitivity,

coupling to integrated optical devices, etc. 	 Table 5-1 is a list of system

i parameters that will be affected by the operating wavelength.
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6. POLARIZATION EFFECTS AND CONTROL

in various sensor applications, single mode fibers are attractive

principally because they have a single well defined phase velocity and

polarization state, small variations in which can be readily detected.

Whereas this is true in a circularly symmetric stress free straight fiber,

in practice, a degree of ellipticity invariably exists, accompanied by a

nonuniform stress induced birefringence associated with stress asymmetry

leading to birefringence. Such birefringence effects are caused by various

internal and external perturbations. Interna; effects include core devia-

tion form circular cross-section1,2,3,4 
and intrinsic lateral stress compo-

nents. 5 External effects include lateral force, 607 twisting,$ bending,9010

and temperature, As a result of such perturbations, the fiber supports two

orthogonally polarized nondegenerate HE 11 modes, generally of elliptical

polarization. Due to this slight difference between their phase velo-

cities, the fiber appears to be brefrinq-4,nt. Consequently, in the absence

of extraneous coupling mechanism, the output state of polarization varies

cyclically along the fiber length with a period L p = 27r /ep, where es is the

difference in propagation constants of the two orthogonal modes.11,12913

This distance L  has been conveniently called the beat length corresponding

the coupling length through which the energy alternates between the two

modes. Clearly, by increasing n6, the birefringence length is 'reduced.

Only mechanical perturbations with periods comparable to L  can couple the

energy from one polarization to the other. To avoid coupling, the value L 

should be made smaller than the perturbation periods that are introduced by

various effects Such as drawing, bends, twists etc. The state of polariza-

tion may also charge with time due to thermal fluctuations and inter-mode

coupling, a serious problem in interferometric applications.

The evolution of the state of polarization (SOP) in single mode fibers

as a results of the various above-mentioned effects can be traced by mathe-

matical methods, such as Jones matrix, time domain methods, or coherency

matricies. This complexity of such procedures makes it difficult to follow

the evolution of the state of polarization at various points of a bire-

fringent network. The Poincare sphere representation has been found most

useful in visualizing the evolution oV the state of polarization and the

computation of the output phase response of birefringent networks of both

6-1



coupled and uncoupled waves. 11 ^ 15 " 16 Since single mode fibers at rest are

fully determinate two mode systems, the degree of polarization is always

preserved due to the absence of depolarizing effects ( except time varying

thermal fluctuations). As a result, all birefringent effects on the state

of polarization can be described as a rotation of the Poincare sphere.16

Referring to the Poincare sphere geometry shown in Fi gure 6-1a, the states

of linear polarization lie on the equatorial plane at longitude 2^, and

states of left-right circular polarization lie on the upper-lower poles.

All other left- right elliptical polarizations lie on the upper-lower

hemisphere at latitude +2i,, respectively. The main sources of birefring-

encies and their effect on the state of polarization as visualized on the

Poincare sphere are described below:

1. Deviations of the refractive index distribution from circular
symmetry (core ellipticity, fiber bends) cause linear pirefrin-
gence. Their effect on the SOP is to rotate the Poincare sphere
with an angular velocity os^a-0	 where a1 afid j are the local
wavevectors of the two nondegAer^a

,
 te modes. The A s (ea) of this

rotation lies in the equatorial plane at longitude determined by
the azimuths of the principle axes of birefringence.

2. A twist of a birefringent index distribution causes the vector es
to rotate in the equatorial plane at a rate 2T about the polar
axis, where T is the twist rate.

3. Stresses of internal or external origin may i nduce optical acti-
vity in the fiber material. Its influence on the SOP 4s to rotate
tte Poica_re sphere about the polar axis at a rate (%=k - k - where
k and k are the wave vectors of the two circularly polarized
modes of the optically active, but otherwise ideal fiber.

These three effects cannot be treated separately,, since finite rota-

tions are not additive. Rather, the three effects must be added differen-

tially and then integrated. The vector addition-integration of these

effects yields a vector evolving along cycloidal trajectories
$,11,16 as

shown in Figure 6-1b.

Active control of the SOP of ordinary circular single mode fibers has

been reported . 17 This method employs a polarimeter and two electromagnetic

fiber squeezers which introduce variable amounts of stress birefringence

directly into the fiber, compensating for the effects of changing intrinsic

fiber birefringence. A second method of stabilizing the SOP of circular

x	 fibers is fiber twisting. 18 Since the shear strain associated with a twist
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T elasto-optically induces a circular birefringence, strong twists (a.ra>A$

and sb) modifies the eliptically birefringent fiber into a predcninantly
circularly birefringent medium. This technique has provided successful in

current sensing l$ and optical isolation 19 applications in conjunction with
Faraday rotation.

Attempts to modify the circular cross section of the fiber core into
an elliptical core resulted into a slight improvement in the polarization

performance of these fibers. 
20,21 This is because of the fact that chang-

ing the core geometry into elliptical or even rectangular does not signifi-

cantly alter the difference in the propagation constants of the two funda-

mental modes of orthogonal polarizations. This reasoning -is supported by

theoretical analysis of square-rectangular waveguides in which even a large

change in the geometrical factor does not appreciably separate tf;v first

two cross polarized modes. 22 It was therefore found that noncircular
geometry and the associate stress induced birefringence introduced during

drawing are not sufficient to improve the polarization performance, and the

enhancement of the anisotropic strain birefringence is necessary to achieve

polarization maintaining fibers-20

Enhancement of anisotrnpic strains in single mode polarization main-

4	 fib	 C  t d	 t t A4i t	 i 11	 t ai 'n a non-as	 emons ra e	 y an so rop ca	 y s r	 n^ gain "'d er s ws	 r

b circular cladding	 of	 a	 circular core	 preform.
1 ' 21 ' 23

	Two methods were

first used to accomplish this.	 In the first method, 21 flats are ground on
the substrate preform tube prior to deposition and formation of cladding.

The cladding and core are then deposited, and tube collapsed Fabsequently

yielding	 a	 circular	 core	 and	 an	 elliptical	 cladding.	 The	 cladding	 is

strained because of the difference in thermal expansion between the clad-

ding and the silica substrate tube, thus breaking the circular symmetry of

the	 strain and	 causing birefringence.	 An	 alternative technique	 to	 this

!! method	 (known(known	 as	 the exposed cladding technique), 	 is	 to expose two

opposite sides of the doped cladding of a circular preform after collapse.

The preform can be eithzr slot ground or etched after collapse yielding

? strain induced birefringence also resulting from thermal expansion gradient

between core-cladding and jacketing tube. 	 The index difference An between

the two orthogonal	 axis obtainers by these methods has been estimated atE
about 4-5 x 10-5 , yeild ng a beat length on the order of 10 mm at 0.5 um

6-4

{



I

-4
for	 borosilicate	 fibers,	 and	 about 3.2	 x 10	 in	 germanosilicate	 fibers

yielding a beat length of about 1.5 mm.	 Shorter beat lengths have been

obtained in more heavily doped core	 (Ge+P)	 having a	 core cladding	 index

difference an = 0.065, collapsed elliptically with approximate core dimen-

sions of 0,85 x 2.14t,m, 25 yielding a birefringeot index difference of 8 x
. -

10
4

and a beat length of 0.75 mm.	 The above mentionea,	 techniques yield

good polarization maintaining fibers, preserv i ng the polarization over few

hundred	 meters	 under	 practical	 conditions	 of	 random	 twists	 bends	 etc.

While	 it has	 been	 indicated	 that	 the	 losses	 appear	 to	 increase	 as	 the

birefringence increases, it is suggested that these losses are not intrin-

sic even at high doping levels. 12	Recent measurements indicate that

Rayleigh scattering can i ntroduce in excess of 2 dB/km of loss at 1.5 um

for heavily doped genmanium fibers.26

6.2	 POLARIZATION ASPECTS OF INTEGRATED OPTICAL DEVICES

integrated optical devices in general process different polarizations

with different efficiencies for several reasons, most notable of which are:

the inherent birefringencies and lack of electro-optic symmetry of wave-

guide materials; the near rectangular cross section of optical waveguides,

and the structural composition of integrated optical circuitry such as

overlays, corrugations, etc. Performance of these devices is further com-

plicated when they are linked to conventional singlemode fibers whose

output is elliptically polarized due to the reasons discussed in Section

6.1. This situation gives rise to both TE and TM polarizations to be

present in the guided structure. The first issue, that of performance

difference for TE and TM modes in optical waveguides can not be avoided

since it is dictated mainly by boundary conditions which are different for

the two orthogonal polarizations.	 The second issue, relating to fiber

output ellipticity can be resolved in three ways:

i

1. The use of a polarizes.

2. The use of a polarization preserving fiber.

3. The construction of thin film devices that are polarization
independent in their operation.

!

	

	 Several configurations are presently used to achieve switching and
modulation in integrated optical structures. The most common types agree
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I. Directional couplers (mode interference).

2. Mach-Zender interferometer,

3. Electro-optic Oragg switching (planar).

4. Electro-optic phase modulators.

Type ( 1) utilizes modal coupling between two closely spaced channels

and yields a modulated output when the modal dispersion of the guided modes

is altered by electro-optical	 effects.	 In this configuration, the output

' of only one channel can be controlled with high extinction ratio. 27 	While

this is well	 suited for modulation purposes,	 it cannot be expected to be

adequate	 for switching purposes since complete switching is not achieved

" due to the presence of unwanted power in the orthogonal polarization. 	 The

main reason for this is the fact that the electro-optically induced phase

shift	 cannot	 be	 made	 identical	 for both	 polarizations	 for	 any	 crystal

orientation.

In	 LiNbO3 ,	 regardless	 of	 the	 crystal	 orientation,	 it has	 been	 con-

cluded that low cross talk electro-optic couplers cannot be realized when

both polarizations are present,	 and an optimum situation is obtained

for X-cut crystals 	 with an X-directed applied field and propagation at 140

off the Z - axis.	 In GaAs, however,	 it has been indicated that the (T12)

4 cut appears to be the most promising in that regard whereby when the

electric	 field is applied parallel 	 to	 the Y-axis,	 the	 resulting electro-

optic phase shift and thereby the switching efficiency is the same for both

TE and TM modes. 27 	In this orientation, however, the electro -optic coeffi-

cient of GaAs is relatively small	 regM ring approximately three times the

switching voltage required for the optimized X-cut LiNb03 orientation at x

14°•

The	 second	 type	 of	 structures	 employing	 Y-branching	 Junctions	 and

electro -optically	 induced phase	 shifts	 appears	 to yield effectively 	 zero

x
crosstalk	 using	 either	 X or	 Y	 cut LiNbO

3
	crystals,	 assuming	 perfectly

fabricated patterns.	 Specially	 designed waveguides	 can	 yield	 very	 low
t
s` crosstalk between the two channels both in the OFF and ON states provided

' that the ratio of the induced phase difference between the two polariza-

tions is an odd integer.2 7	In this configuration, the cross talk is

,L
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Problems associated with integrated optical device performance limita-

tions due to polarization led to the exploration of device construction

which perform independent of polarization. An example of such devices are

the Mach-Zender structure with two sets of electrodes, each providing the

required phase shift for one of the two polarizations. 
28 

A polarization

6-7

limited only by fabrication imperfections. A minimum length of 1 cm is

nevertheless required for such geometry to achieve isolation levels greater

then 20 dB.

In the Bragg deflector switch/modulator (planar structures), the OFF

state (no applied voltage) emerges with high extinction raV o. Upon the

application on an electric field, both polarizations will be deflected if

present. I'r the electro-optic phase shifts of the TE and TM modes differ
by nonintegral multiples of n, one polarization will be deflected more

efficiently that the other. For efficient switching, only the wave that is

phase matched with the electrode periodicity will be deflected efficiently

when the two polarizations are non-degenerate as in the case of LiNb03.

This feature allows for greater difference in deflection efficiencies

between the TE and TM modes in LiNb03 . In certain crystal orientations,
such as Y-cuts, the electro-optic effect in TM modes is much smaller than

that of TE resulting in high crosstalk. Z-cuts and X-cuts, however, can be

optimized for very low crosstalk when the length is chosen to be the

coupling length for the TM waves and TE waves as well. Near zero crosstalk

can be obtained in X-cut crystals optimized for wave propagation at 140

from the optic axis. This happens tc^ be the appropriate orientation for

very low crosstalk in the OFF state also.27

For the single channel phase modulator, when both polarizations are

present, the phase modulation for the TE and TM modes will always be

different because of the difference in the electro-optic coefficients for

all possible orientations. Phases of the two modes can only be made equal

for a singular phase value at a particular length or integer multiples

thereof, but it cannot be expected that the voltage modulated phases of the

two polarizations to be the same otherwise. Crossialk in this case will be

depended on the ratio of power existing in the waveguides in, the two

polarizations.



l:	 independent optical filter has also been demonstrated by employing wave-

length selective mode conversion through a periodic electrode structure.Kc	 y
These examples suggest that it is possible to achieve low crosstalk by

'	 employing certain pattern circuitry that offers polarization independent 	 pY r

device operation.	
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LASER AND FIBER COUPLING TO INTEGRATED OPTICS

7.1 END-BUTT COUPLING'

End-butt coupling is a straightforward, practical technique for

couplings between laser diodes, optical fibers and integrated optical 9	 P chi p .

In the case of fiber -to-channel waveguide coupling, the large index differ-

ence between modes in glass fiber (neff N 1.50) and in the channel wave-
guide (neff — 2.20 for LiNbO 3 ) is not a serious problem for an efficient
coupling, except the Fresnel reflection loss due to index mismatch at the

fiber-Waveguide interface. Fresnel reflection at the glass-LiNbO 3 wave-

guide interface is estimated to be less than 4%. Reflection loss can be

further reduced by applying a proper index matching liquid or an anti-

reflection coating between the fiber and the waveguide. Theoretically, the

coupling efficiency can be determined by the overlap integral of the two

transverse mode fields at the interface. In this section, we shall inves-

tigate the coupling between a circular Gaussian field and an elliptical

Gaussian field. These results can be applied to the coupling cases such as

laser-to-fiber, fiber-to-channel waveguide and laser-to-channel waveguide.

_

	

	 Power coupling efficiency, n, between any two transverse optical

fields is determined by the normalized overlap integral,

I IV, 1^' 2* 
dxdy 12

n
(1)

( f,y l ^, l 	 dxdy f*2* 2 	dxdy
S

where '1 and *2 are the transverse optical	 field distributions of the two
modes at the interface.	 *1	 and ^2 are ifs general	 complex functions con-
taining both amplitude and phase information. 	 It has been shown that the

t coupling efficiency between a circular Gaussin beam with beam waist of "a"

and an elliptical Gaussian beam with beam waists of w x and w 	 is given by 1

w	 a	
4 

w	 a (2)
a_x4 +wx	 a +Wy
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Equation (2) is derived assuming the longitudinal separation between the

beam waists of the Gaussian field is zero. The coupling efficiency will be

reduced if the longitudinal separation is not zero, this is due to the

mismatch of the curved wavefronts.

By differentiating n with respect to the parameter "a," one can ersily

show that for a given set of elliptical Gaussian field parameters, w  and

wy, the optimum coupling efficiency occurs when

awXwy 	(3)

Figure 7-1 plots the optimum coupling efficiency versus the ratio of w x and

wy . In order to keep the coupling loss less than 1 dB, i.e. 80% optimum

coupling efficiency, the ellipticity of the Gaussin field must satisfy the
requirement of wx/wy > 0.4 or wx/wy > 0.4. In addition, the condition of

Equation (3) should also be satisfied. Equation (2) is a simple equation

that calculates the power coupling efficiency 'based on three Gaussian field

parameters.

Equation (2) has been used to estimate the coupling efficiency for

laser diode-to-fiber coupling2 and fiber-to-channel waveguide coupling.3

In both cases, the transverse field of the single mode fiber, i.e. HE11

mode, has been approximately by a circular Gaussian field. An numerical 	 Y
i

calculation indicates that a 99% power transfer can be achieved between a

circular Gaussin beam and the HE 11 mode of a fiber. In another calcula-

tion, 4 the results show the field overlap between, single mode fiber with V

0.9 to 2.4 and a circular Gaussian field can be better than 0.988. This

approximation turns out to be extremely close to the real situation.

Gaussian fit to the field distribution in a channel waveguide is a diffi-

cult task simply because there exists no close-form equations describing

the electrical field inside the waveguide. This situation becomes even

worse when the channel waveguide is formed by diffusion such as Ti diifi'used

LiNb03 waveguides.	 The general guideline is to fabricate the channel

waveguide close to a circular symmetry, as indicated in Figure 7-1. Thus,	
e

the discussion here will be limited to the geometric aspect ratio of an

isotropically diffused channel waveguides. Readers interested in the

Gaussian fit of diffused channel waveguides are referred to Reference 3 and

references therein.
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A 2-D isotropic diffusion model is used to describe the diffused

channel waveguides. We assume the diffusion time is long enough to diffuse

all the source material from the surface into the bulk substrate and assume

the index of refraction profile is linearly proportional to the dopant

r a concentration. The stripe of the diffusion source extends infinitely in

the Z-direction and has a width of W along the X-direction. The index

profile of the diffused channel waveguide is given by
R

n2
(x.y)	 not + (ns2 - not ) f(y/D) g(2x/W)	 (4)

	

w :
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where no is the index of refraction of the substrate and ns is the index of
refraction at the surface after diffusion. The diffusion profile along the

depth direction is described by a Gaussian function and the profile along

the X-direction is described by an error function.

f( y/D) - exp(-y2/D2 )	 (5)

and

g(2x/W) - 1/2 erf
W	 2x	 2x\j

 (1 + W—) + erf	 - ( 1 -	
(6)

1,

where D is the diffusion depth determined by the diffusion coefficient and

diffusion time. Because the diffusion process proceeds along with x and y

directions, the geometrical aspect ratio of the index profile is different

from the ratio of strip width to diffusion length W/D; the equality is true

only when W/D >> 1. In y direction, the index change is reduced by a

factor 2 at y = 0.83 D. rn x direction, the full width at half maximum can

be calculated from Equation (6) and is plotted in Figure 7-2. 	 If one

multiply 2X 1/2 /D by a factor of 1/0.83, the coordinate of Figure 7-2

becomes the geometrical aspect ratio of the diffused channel waveguide.

Ti:LiNb03 waveguides are used extensively to fabricate various inte-- a

grated optical devices such as modulators, switches, and filters. To make

those pratically useful for fiber system applications, it requires an

efficient coupling to single mode optical fibers. There are several papers

reporting the coupling measurement results for different conditions. In 	 j

Reference 5, He-Ne laser (A - 633 nm) is used as the light source. The
o

channel waveguides are formed by diffusing 3-4 um wide, 170-220 A Ti metal

into Z-cut, X-propagating LiNb0 3 substrates. Single mode fiber has NA

0.1 and the core diameter is 4.5 pm. When water is used as index matching

liquid, the throughput for a fiber-9 mm long channel-fiber configuration

are 52% for TE polarization and 51% for TM polarization. Assume the only

loss is due to interface coupling, one can translate the results to the

fiber-channel waveguide coupling'efficiencies of 72% (TE) and 71% (TM). If

other "tosses due to reflection- and waveguide attenuation are taken into
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Figure 7-2. Full Width at Half Maximum, 2X 1 of index profile

versus the ratio of the undiffG41d channel width W
to the diffusion length D.

account, the coupling efficiency as high as 87% has been obtained. Under

similar condition, coupling loss of 1 dB has also been measured at 0.83 um

by another reserach group-6

In Reference 7, He-Ne laser of X = 1150 nm is used to measure the

coupling of fiber to Ti diffused channel waveguides on Y-cut and Z-cut
O

LiNb03 substrates, 500 A of Ti metal -is diffused at different diffusion

temperatures, and the couplinglosses and propagation losses are measured.

Strip width varies between 6 um and 10 um, the fiber mode diameter at half

maximum is approximately 5.0 um.. Coupling losses in the Y-cut and Z-cut

waveguides are 2.5 dB and 1 dB respectively. - Measured coupling losses

agree well with the calculations based on the overlap of near field

patterns. The higher coupling loss for Y-cut substrates is attributed to

the mode mismatch in the lateral direction. This is caused by an unusual

large lateral diffusion constant for Y-cut LiNb0 3 wafers.

Recently, the coupling loss was further reduced by optimizing the
0

diffusion parameters to reduce the mode mismatch. 	 720A thick Ti metal

stripes of width ranging from 4 to 10 Nm are diffused at 1100T. Single
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mode optical	 H WY , has a mode diameter of 7.8 um.	 Measurements of wx and
wy of the near field mode pattern show that the optimum coupling condition

specified by Equation. (3) is satisfied for channel width from 7 to 10 um.

Total insertion losses for fiber-waveguide-fiber coupling configuration are

approximately 1 dB for TE polarization of a Nd:YAG laser of X = 1302 nm.8

Coupling loss for TM polarization wave is slightly higher.	 Index liquid is

used to reduce th° Fresnel reflection loss.

I"

Another way to improve the coupling efficiency is to modify the fiber

mode diameter to satisfy Equation (3). This can be done by forming a con-

ical taper at the end of the fiber. Since the mode diameter of the fiber

is a strong function of the core radius, one can easily obtain the optimum

fiber mode profile. This technique has been used to demonstrate a coupling

efficiency of 95%, an increase of 25% in coupling efficiency. 9 A more
elaborate coupling configuration demonstrated involves an optical microlens

between the waveguide and optical fiber. The microlens fabricated at the

end of the fiber improve the node mismatch, thus rodl-A ng the coupling

loss.

7.2 COUPLING TOLERAW ES

Because of the small dimensions of the waveguides involved, the end-

butt coupling between single mode optical waveguides is very critical to

the misalignment, both the angular misalignment and lateral misalignment.

Coupling, in general, is not sensitive to the longitudinal misalignment.

Equation (2) is the maximum coupling efficiency for a given set of param-

eters of circular and elliptical Gaussian fields. If there is a lateral

misalignment, 6x and ay along the x and y axes, then the coupling effici-
ency, normalized to its maximum value n o , becomes,

6 2	 62
--- = exp---^-- exp - -- Y	 (7)

o	 w  + az	 wyZ +a

Coupling efficiency will be reduced by 4.34 dB, i .e. 36.8% its maximum

value, when the lateral alignments are more than the characteristic modal
radii

sx= wx2+a2 or 6y= ;wy2+a2.
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If the Gaussian fields are misaligned angularly° by the amounts of ox

and oy , then the coupling efficiency for a perfect positional alignment is

given approximately by

-- = ex	
k 2 a 

2 wy
^:2sinex 

eX	 k22aa2,,
wy2 sin

,2n^,	
(8)

rZO 	p - 2( a^+ w,1) 	 p - 2 ( a2 + wX2)

^ I

where k = 2x/a is the wavenumber of the optical light.  Thi s equation is

exact only for small angular misalignments, o x and ey << 1. From Equation

(8), one concludes that for a given modal parameters, coupling efficiency

is less sensitive to the angular misalignment for a longer wavelength. In

the case of coupling a single mode optical fiber to a Ti:LiNbO 3 channel

waveguide , 10 the coupling tolerances for a 1 dB degradation of coupling are

2 um for lateral misalignment, 20 pm for longitudinal misalignment, and 10

for angular misalignment.

In the research laboratory, precise alignment between fiber and

channel waveguide can be achieved with the help of differential micrometer

or pizoelectrical controlled stages. It is also possible to obtain fairly

accurate alignment using the flip -chip approach, 11 as shown in Figure 7-3.

Fibers are positioned precisely in preferentially etched V-grooves in Si

wafer. Grooves are formed by etching through a S10 2 mask defined by

photolithographic technique. On the ( 100) Si wafer, the etching rate along

the depth direction < 100> is more than 60 tines faster than the etching

rate along < 111> direction, when etchant solution is used. 11 Thus etching
a channel in a <100 > silicon surface will result in a V=shaped channel, the

side walls of the channel are parallel to the <111 > planes. The angle of

the V-groove, as determined by crystalline structure, is 54.7 0 . Because of

the large difference in etching rates, there is little undercutting beneath

the S10 2 mask. Overetching merely results in a deeper, not wider channel

until the two <111 > planes intersects. This unique feature allows one to

fabricate fiber alignment channels with extremely high recision 	 From aP

simple trigometric calculation, one can derive the following relationship

between the original channel width and fiber diameter for a fiber centered

with respect to the wafer surface.

i

L"_
7-7



r

i
i y3

O"OiY9$i.	 ^`^`+3., IS
OF POOR QUALITY

ELECTRODES FOR
E,A. SWITCH	 3

f

Si DETECTOR

e

SINGLE MODE FIBERS IN s/`
ETCHED ALIGNMENT GROOVES	 /	 -''^	 LiNb 03

/ CHANNEL WAVEGUIDES
IN LiNb 03

COMMUNICATION Si
CHANNEL

LASER INk'd;IT

}

Figure 7-3.	 Flip-C hip Approach to End-Fire Coupling Between
y Single Made Optical Fibers and Channel Waveguides

m:
t W - D sing

k
4

};

where W is the width of SiO	 mask and D is the outside diameter (OD) of the
2fiber, and o is the V-groove angle,	 as shown in Figure 7-4.	 Experimental

results indicate that fiber alignment tolerance of +1 um can be achieved by

this etching technique.	 At this time, the biggest difficulties encountered

are	 the	 fiber	 dimensional	 variation	 and	 core	 eccentricity.	 Commercial

singl e mode fibers are specified with OD variation ±5 um and core eccentri-

city of tl pm.	 In order to obtain efficient couplings using prefabricatedr
alignment fixture, there is a lot of improvement to be done in controlling 	

^

re the fiber dimensions. 	 ±'
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8. SOURCES FOR OPTICAL COMMUNICATIONS
AND FIBER GYRO APPLICATIONS

8.1 INTRODUCTION

The main sources for optical communications systems available and

in research today can be divided into two main groups according to the

wavelength at which they operate.. In one group fall the GaAIAs light

emitting diodes (LED's) and lasers which operate in the spectral range

800-90U nm, and in the other group fall the InGaAsP quaternary laser diodes

which operate in the 1100-1700 nm spectral range.

Mainly for historical reasons the state of develo pment of GaAIAs

devices is ahead of that of InGaAsP devices. However, InGaAsP devices

are more attractive candidates in the regions of low loss and low signal

dispersion of current-technology silica-based optical fibers, namely the

1100-1350 nm and 1500-1700 nm spectral regions.

The main factors to be considered when choosing an optical source

for an optical communications system are: device reliability and aging

behavior, modulation bandwidth, coupling efficiency to glass fibers, power

output, wavelength matching to low loss optical fiber spectral windows,

and the potential of devices under research. These factors wil l be

addressed in the following sections.

Another issue of importance when choosing between the GaAIAs and

the InGaAsP systems is the question of threshold current temperature

stability. Temperature stability is measured approximately by the value

of To in the relationship

Jth 
"u e-T/To

where J th is the threshold current density, T the temperature, and To a

constant material dependent temperature. For GaAs and GaAiAs ternary

materials To has values between 120-150 °K. For quaternary GaInAsP materials

the value of To is '-120°K for V^ 260°K and it drops to T60-80°K for T`y260°K.

Thus quaternary materialsshow higher temperature threshold current sensi-

tivity than GaAiAs material systems and may need temperature stabilization.

8-1
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8.2 LIGHT EMITTING DIODE'S (LE

8.2.1 Light= 	 emitting diode ge

The two main LED geometries developed to date are the surface

emitter LED (of the burrus type), shown in Fig. 8.1, and the edge „a

emitter LED, -a double heterostructure type diode, shown in Fig. 8.2.

The radiation pattern of surface emitting diodes is of the LamberCian

type with a beamwidth of 120 0 .	 Light is coupled out of the diode into a

fiber by imbedding it into a well etched into the GaAs substrate. 	 The

matching of diode to fiber is aided by the use of an index matching epoxy

that also provides structural strength. j

In the case of edge emitters, the radiation is guided by the waveguide

produced by the A1GaAs hetero'layers.	 Radiation is thrs confined to nar-

rower beamwidths 1 .	 For example, for active layers of the order of 500A

the beamwidth in the plane perpendicular to the heterolayers is about 300 2

and the width of the emitting region in the junction plane is typically

504A um, depen -H-tg on the f i bey into which the light i s to be coupled. ?
i

8.2.2	 LED characteristics

Two major areas of concern when using LED's in optical communication

systems are their modulation characteristics (modulation bandwidth and

distortion properties) and their coupling to optical fibers.

Due to their relatively large emission spectra (one or two orders

of magnitude larger than that of laser diodes) and their poorer coupling

efficiencies to low NA fibers, LED's are second to laser diodes in high-

data-rate applications (•50 Mbit/sec). 	 However, in many law data rate

applications LED's are preferable to laser diodes due to their better

linearity, smaller temperature dependance of emitted power, and slower

degradation than laser diodes.

Both surface-emitters and edge emitters provide several milliwatts 3 #

of power output into air in the 800-900 nm (GaA1A,$) spectral range at

drive currents of 100-200 mA. x

A comparison 3 of s urface-emitting and edge-emitting LED's has

shown	 that for fiber	 with numerical apertures NA^0.3 edge emitters are

coupled more efficiently into fibers than surface emitters, whereas for

NA Z0.3 the opposite is true.	 Coupling can be aided by the use of coupling`

8-2
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lenses and matching fluids. For example, the coupling efficiency of a

35-um-dot contact diameter surface emittin g LED to a 0.14 NA 85 -um core

diameter step-index fiber was increased from 2.3 to 10 percent by form-

ing a sphere on the fiber end . 4	And by using self-aligned spherical

lenses, a monolithic array of surface LED's has been used to couple 600 PW

into a 0.39 NA ten-core flat fiber cable at a drive current level of 100 mA 7

Non-linear distortion has been reduced to very low levels (-60 to

-80 dB) by using compensation techniques  such as complementary distor-

tion, feedback and feedforward.

In the longer wavelength range (1100-1700 nm) of lower fiber loss

InGaAsP LED's have been shown to exhibit characteristics similar or better

to those of GaA1As LED's.

A main drawback of InGaAsP LED's is their relatively high spectral

bandwidth (oati 90 nm) with respect to that of GaAIAs LED's (AA"ti 30 nm).

In spite of this fact transmission bandwiths of up to 1 Gbit km/s could

be achieved by using a-optimized 6 graded-index fibers	 in the minimum

dispersion region 1300 nm <A< 1350 nm.

8.3 LASER DIODES

8.3.1 Laser diode geometries and properties

Laser diodes offer definite advantages over LED's 3 ' 8 . Their spectral

bandwidth is of the order of 2 nm, one order of magnitude narrower than

that of GaAIAs LED's (: 30 nm) and two orders of magnitude narrower than

that of InGaAsP LED's ( ;2 90 nm). They can be modulated at rates of several

GHz (several hundred MHZ for LED's), and offer larger coupling efficiencies

to low NA optical fibers (ti50 vs. 2-10 percent for LED's). One of the main

concerns in the development of laser diodes for high-data-rate long-haul

optical communications systems is the stabilization of their transverse

and longitudinal mode patterns to a single mode. Fig. 8,3 shows several

geometries used to achieve single mode transverse operation. All these

geometries accomplish transverse mode stability by confining the optical

radiation to a narrow region within a gain or refractive-index defined

waveguide. It has been found that in many cases, for yet unknown reasons,

stabilization of the transverse mode pattern leads to simultaneous

stabilization of the longitudinal mode pattern to a single mode.

a

1	
8-5
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Index-guided lasers have smaller emitting areas (1-3 um os opposed

to 3-8 um) than gain-guided devices. For this reason they operate at

lower threshold currents and have better single-transverse-mode stability.

Both index-guided and gain-guided lasers can be modulated at rates in

excess of a few GHz.

The main properties of each of the main laser geometries are

presented in the Tables 8.1 and 8.2. Table 8.1 shows data for GaAIAs

and Table 8.2 shows data for InGaAsP lasers. Commercially available

laser diodes and their properties are shown in Table 8.3.

Longitudinal mode control in laser diodes can be achieved also

intentionally9-11 by means of distributed-feedback (DFB) and distri-

buted-Bragg-Reflection (DBR). In these geometries the laser cavity itself

or the end mirrors are formed by periodic aVaveguides which show high

wavelength selectivity and improve temperature stability of the lasing

wavelength. The temperature sensitivity of the lasing wavelength is

reduced from '4/ °C to '1A/°c by this means. DFB and DBR lasers also have
the added advantage of easy integrability with other devices onto a single

chip.

8.4 DEVICE RELIABILITY

Extensive efforts have been made towards identifying and understanding

the causes of device degradation both in A1GaAs 
12-16 

and in InGdASP 17-20 .

Many of these causes have been eliminated but some failure mechanisms still

have not been fully understood.

The main known failure mechanisms fall within one of the following

categories:

1. Facet Damage

(a) catastrophic

(b) slow erosion

2. Dark Line Defect

3. Thermal Resistance and Ohmic Contact

4. Self Pulsation

5. Optical Nonlinearity

8-7
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Reliability and aging tests are reproduced on large numbers of devices

at elevated temperatures and the results are extrapolated to room

temperature by assuming an Arrhenius statistical relationship of the form

1

T (T) a exp (E
a
 /kT)

between lifetime T (time for a specific degree of degradation over a

specified temperature range) and absolute temperature T. k is Boltzman's

constant and Ea is an "activation energy" characteristic of each deg•ada-
tion mechanism. The criteria for failure are not yet standardized. The

most commonly used are:

1. 50% increase in threshold current

2. 50% decrease in output power

3. Power drop below 1 uW

4. No lasing at elevated temperature

5. No lasing at room temperature

6. Total collapse

7. Appearance of kinks in the PI characteristics

8• Inability to withstand large currents (N20x threshold) for
several minutes

In this way expected room-temperature lifetimes in excess of 10 6 hours

have been obtained by several authors for GaAIAs laser diodes.21-24

Real-time room temperature continuous laser operation of over two years

has also been reported. 24

InGaAsP devices are somewhat sturdier than their GaAIAs counterparts

and their facet degradation due to facet oxidation is slower. Facet

degradation has been barely observable in tests of up to 10 4 hours without

facet coatings.

LED's have been found to degrade slower than laser diodes and extra-

polated room-temperature lifetimes of =4x10 7 hours for A1GaAs LED's and

_5x109 hoursfor 17 • InGaAsP LED's have been reported.

8.5 CONCiUSION

At the present time GaAIAs laser diodes and !LED's offer the best

solution for short range optical data, links ( intraurban or shorter).

This choice is aided by the commercial availability of low cost phcto-

detectors for the 800-900 nm spectral regions

8 -11
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For high-data-rate long-havil applications, however, InGaAsP laser

diodes,., with their excellent match to the low-loss low-dispersion spec-

tral	 region of fibers (1100-1700nm), seen to offer the best alternative.

They also appear to be less susceptible to degradation than GaAIAS diodes°
,

ya

For optical gyroscope application^is, where a short coherence length is
q

required for freedom of interference of Oe optical beams with themselves
d'	 diodedue to	 backward Rayleigh scattering, a super-radiant laser 	 i da offers

C the best match..	 Super-radiant diodes can be obtained from most of the

laser diodes by anti-reflection coating the mirror facets appropriately

¢r and by starting with a not too narrow stripe laser geometry capable of J

multimode oscillation.

It appears that the main efforts in research should be concentrated

a in the areas of improving the mode stability of Single-transverse and
t
f single-longitudinal mode laser diodes. 	 This is of particular importance

^

when lasers are modualted at several CHz frequencies. 	 Other issues to be

lit addressed include higher- output power and improved performance at h i gher k

I! currents and higher temperatures.

P

f

^r

fill

`y
Y

>

f

r

+

j,

{ S-12



r -

r

k
ReferencesF

1. J.P. Witke, "Spontageous-Emission-Rate Alteration by Dielectric and other
Waveguiding Structures", RCA Rev., Vol,. 36, pp. 655-656, Dec. 19734

14 2. M. Ettenberg, H. Uressel, and J.P. Witke, "Very High Radiance Edge-Emitting
LED's", IEEE J. Quantum Electron,, vol. QE-12, pp. 360-364, June, - 1916.

3. D. Botez and U. Ettenberg, "Comparison of Surface-An Edge-Emitting LED's
{ for Use in Fiber-Optical Communications", IEEE Trans. Electron Devises,

vol. ER-26, pp. 1230-1238, Aug. 	 1979.

4. M. Abe, I. Umebu, 0. Hasenawa, S. Yamaroshi, T. Yamaoka, T. Rotani,
y H. Okada, and H. Takanashi	 "High Efficiency Long-Lived GaAIAs LED's	 sg	 y	 9	 ,

for Fiber Optical Communications", IEEE Trans. Electron Devices, vol. ED- 	 a
24, pp. 990-994, July, 1977.

5. J. Straus and O.I. Szentesi, "Linearized Transmitter for Optical Commu-
nications", Proc. 	 IEEE Int. Symp. Circuits and Systems", Phoenix, AZ,

I. pp. 288-292, April, 1977.

6. M. J. Adams, D. N. Payne, F. M. E. Sladen, and A. H. Hartog, "Optimum
Operating Wavelength for Chromatic Equalisation in	 Multimode Optical
Fibers", Electron. Lett., vol. 	 14, no. 3, pp. 64-66, Feb. 2,	 1978.

7. S. Huriuchi, T. Tanaka, K. 	 Ikeda, and W. Susaki, "A Monolithic Linear
Array of High-Radiance A1GaAs Double Heterostructure LEDs with Self-
Aligned Spherical Lenses", Proc. IEEE, vol. 66, pp. 42-43, Feb. 1978.

8a. H. Kressel and J. K. Butler, Semiconductors Lasers and Heterojunctions
LEDs. New York: Academic Press, 1977.

4
8b. T. P. Lee and A. G. Dentai, "Power and Modulation Bandwidthof GaAs-

A1GaAs High Radiance LEDs for Optical Communication Systems",, IEEE J.
pp.Quantum Electron., vol. QE-14,	 150-159, Mar. 1978..

t
mF

9. M. Nakamura, K. Aiki, J. Umeda, and A. Yariv, "CW Operation of Distributed
Feedback GaAs-GaAlAs Diode Lasers a t Temperatures up to 300°K", Appl.	 w
Phys. Lett.. vol.	 27, pp. 403-405, Sept. 	 19?5.	 -,

C	 9 }
PPA

10.
F

A. Doi, T. Fukuzawa, M. Nakamura, R. Ito, and K. Aiki, "InuaAs/InP Dis-
tributed Feedback Injection Lasers Fabricated by One-Step Liquid Phase
Epitaxy", Appl. Phys. Lett., vol., 35, pp. 441-443, Sept. 1979.

11. K. Utaka, k. Kobayashi, K. Uishino, and Y. Suematsu, 11 1.5-1.6 Jim GaInAsP/
InP Integrated.Twin-Guide Lasers with First-Order Distributed Bragg

h
Reflectors", Electron. Lett., vol. 16, pp. 455-456, June, 1980.

12. A. R. Goodwin, P. A.	 Kirkby, I. G. A. Davies, and R. S.. Baulcomb,
"The Effects of Processing Stresses oft Residual Degradation in Long-

Lived Gal-xAlxAs .Lasers", Appl. Phys. Lett., vol. 34, no.	 10, pp. 647-

649, May 15, 1979.

13. M. Ettenberg, "A Statistical Study% of the Reliability of Oxide-Defined
Stripe ,CW Lasers of (A1Ga)As," J. Appl. Phys. vol. 50, pp. 1195-12030
Mar.	 1979.

,. f
8-13	 '



n

a ,a^ ..... ,.	 Ohl qA 6^s r.

14.	 H. Imai, M. Morimoto	 Hori, and.M. Takusagawa, "Long-Lived High
Power QA1As DH Laser Diodes: at 70°C ", in Tech. Dig. Topical Meeting
on Optical Fiber Communication (Washington DC) Paper ThBI, pp, 90-91,
Mar, 1979.

15.. 1. Ladany, T. R. Furman, and D.P. Marinelli, "Internal Stress and

	

p	 Degradation in Short-Wavelength AlGaAs dt9uble-Heterojunction-Devices",

	

:.	 Electron. Lett., vol. 15, no. 12, pp. 342-343, June 7, 1979.

16, S. Yamakoshi, T. Sugahara, 0. Hasegawa, Y. Toyama, and H. Takanashi,
"Growth Mechanism of (100) Dark Line Defects in High Radiance GaAIAs
LEDs," in Proc, IEDM Conf. (Washington DC), pp. 642-645, Dec. 1978.

17, S. Yamakoshi, M. Abe, S. Komiya, and Y. Toyama, "Degradation of High
Radiance InGaAsP/InP LED's at 1.2-1.3 um Wavelength", in Tech. Dig.
Int. Electron Device Meet., Paper 5.6, pp. 122-126, Dec. 1979.

18• G. H. Olsen, M. Ettenberg, and C. J. Nuese, "Reliability of Vapor
Grown(In, Ga)/As and (In, Gaj(As, P) Heterojunction Laser Structures",
IEEE J. Quantum Electron., vol. QE-15, pp. 688.-694, Aug. 1979.

	

?	 19. T. Yamamoto, K. Sakai, and.S. Akiba, ' 1 10000-h Continuous CW Operation
(.%	 of Inl-xGaxAsyP1. /InP DH Lasers at Room Temperature", IEEE J. Quantum

Electron., vol. Q -15, pp. 684-688, Aug. 1979.

20. R. Yeats, Y. G. Chai, T. D. Gibbs, and G. A. Antypas, "Perpornance
Characteristics and Extended Lifetime Data for InGaAsP/InP LED's,
IEEE Electron Device Lett., vol. EDL-2, no. 9, Sept. 1981.

21- H. Kressel, M. Ettenberg, and I. Ladany, "Accelerated Step-Temperature
Aging of A1xGa 1_xAs Heterojunction Laser Diodes",, Appl. Phys. Lett.,
vol. 32, no. 5, pp. 305-308, Mar. 1978.

22. T. Kajimura, K. Saito, N. Shige, and R. Ito, "Stable Operation of Buried--
Heterostructure Gal1.-xAlxAs Lasers during Accelerated Aging", Appl.

n'
Phys. Lett., vol. 33, no . 7, pp. 626-628, Oct. 1978.

23. S. Nita, H. Numizaki, S. Takamiya, and W. Susaki, "Single-Mode Junction

	

f	 up US Lasers with Estimated Lifetime of 106 Hours", IEEE J. Quantum
Electron., vol. QE-15, uio. 11, pp. 1208-1210, Nov. 1979.

24. •R. L. Hartman, N. E. Schumaker, and R. W. Dixon, "Continuously Operated
(A1,Ga)As Double-Heterstructure Lasers with 70*C Lifetimes as long as
Two Years", Appl. Phys. Lett., vol. 31, no. 11, pp. 756-758, Dec. 1977.

25. M. Nakamura and S. Tsuji, "Single-Mode Semiconductor Injection Lasers
for Optical Fiber Communications",'IEEE, J. Quantum Electro., vol.

P

QE-17, no. 6, June, 195I:

f	 "

26 - T. Kobayashi, H. Kawaguchi and Y. Furukawa, "Lasing Characteristics
of Very Narrow Planar Stripe Lasers", Japan. J. Appl Phys,, vol. I6,
pp. 601-607, April 1977.

8-14



2 7. P. Marschall, E. Schlosser, and C. Wolk, "A New Type of Diffused
'

	

	 Stripe Geometry Injection Laser", in Proc. 4th European Conf. Opt.
Commun. pp. 94-97, Sept. 1976.

28. T. Tsukada, "GaAs-Ga l _ AlxAs Buried -Heterostructure Injection Lasers,"
J. Appl. Phys., vol. 49, pp. 4899-4909, Nov. 1974.

29. K. Saito and R. Ito, "buried-Heterostructure A1GaAs Lasers," IEEE
J. Quantum Electron., vol. QE-16, pp. 205-215, Feb. 1980.

f 	 a

30. P.A. Kirkby and G.H.B. Thompson, "Channeled Substrate Buried Meter-
structure GaAs-(GaA1)As Injection Lasers", J. Appl. Phys., vol. 47,
pp. 4578-4589, Oct. 1976.

31. R. D. Burnham and D. R. SIcifres, "Etched Buried Heterostructure
GaAs/GaAlAs Injection Lasers", Appl. Phys. Lett., vol. 27, pp. 510-511,
Nov. 1975.

t ^*	 32. H. Yonezu et al., "New Stripe Geometry Laser with High Quality Lasing
Characterist ics of Horizontal Transverse Mode Stabilization", Japan,
J. Appl. Phys.. vol. 16, pp..209-210., Jan. 1971.

33. H. Namizaki "Transverse-Junction-Stri pe Lasers with a GaAs p-n
Junction", IEEE J. Quantum Electron., vol QE-11, pp. 427-431, July,

1975.

34. K. Aiki, M. Nakamura, T. .Kuroda, and J. Umeda, "Channeled-Substrate-Planar
Structure (A1Ga)As Diode Lasers", Appl. Phys. Lett., vol. 48, pp. 649-
651, June 1977.

35. D. Botez and P. Zory, "Constricted Double-Heterostructure (AIGa)As
§§	 Diode Lasers", Appl. Phys. Lett., vol. 32, pp. 261-263, Feb. 1978.

n

36. T. Sugi, M. Wada, H. Shimizu, K. Ito, and I. Teramoto, "Terraces-
Substrate Gabs-(GaAl)As Injection Lasers." Appl. Phys. Lett., vol.
34, pp. 270-27, Feb. 1979.

..
37.. Y. Ide, T. Furuse, I. Sakuma, and K. Nishida, "Transverse MOdeT	

Stabilized A1GaAs/GaAs piano -convex waveguide Laser Made by a Single-
*?

	

	 Step Liquid Phase Epitaxy", Appl. Phys. Lett., vol 36, pp. 121-123,
Jan. 1980.

e

38. D. Botez; "CW High-Power Single -Mode Operation of Cousticted Double
Heterojunction A1GaAs Lasers with Large Optical Cavity" Appl. Phys.

..	 Lett., 36, 190 (1980).n

39. R. E. Nahory, M. A, Pollack, and J. C. DeWinter,"Temperature Dependence
of InGaAsP Double Heterostructure Laser Characteristics", Electron. Lett.,
Vol. 15, pp. 695 .696, Oct. 19it9.

f

40. H. Kano and K. Suglyama, "Operation Characteristics of Buried-Stripe
GadnAsP/InP DH Lasers Made by Melt-Bask Method", J. Appl. Phys. vol.

-7938 9 Dec.1979.50, pp. 7534 	 !

_ M	41. H. Nagai, Y. Noguchi, K. Takahei, Y. Toyoshima, and G. Iwane, "InP/
GaInAsP Buried Heterostructure Lasers of 1.5 um Region", Japan, J.
Appl. Phys. Vol. 1.9. pp. L218-L220, Apr. 1980.

8-15



F	 :

t

f

42• T. Murotani, E. Oomura, H. Higuchi , H. Namizaki, and W . Susaki, "InGaAsP/
InP Buried Crescent Laser with very Low Threshold Current (a=1.3 um),"
Electron. Lett., vol. 16, pp. 566-568, July 1980.

43. K. Kishino, Y Suematsu, and Y. Itaya, "Mesa -Substrate Buried Hetero-
structure GaInAsP/InP Injection , Lasers", Electron. Lett,, vol. 15, pp.
134-135, Feb. 1980.

44. M. Yano, H. Nishi, and M. Takusagawa, "Oscillation Characteristics
in InGaAsP/InP DH Lasers with Self-Aligned Structure", IEEE J. Quantum
Electron., vol. QE-15, pp. 1388-1394, Dec. 1979.

4

45. K. Moriki, K. Wakao, M. Kitamura, K. Iga, and Y.,Suematsu, "Singh
Transver=se Mode Operation of Terraced Substrate GaInAsP/InP Lasers at
1.3 um Wavelength," Japan, J. Appl. Phys., vol 19, pp. 2191-2196, Nov. 1980.

f

f

l'

Y

i!

r

^

t

{

E	

{

t
f	 1

xx

4

f 	 -

^

}s

a

8-16



9. DETECTORS

9.1 INTRODUCTION

Detectors for optical communications should have high sensitivity

and fast response to allow long-haul high-data-rate information transmission..

In the 800-900 nit, spectral region of GaAIAS laser diodes and LED's,

both PIN (without internal gain) and avalanche photodiodes (APD's, with

internal gain) have sufficiently high speed of response to :allow detection

of Gbit/sec signals l . Si APD's and PIN diodes with rise-times below 80ps

and 35 ps, respectively, are now commercially available. Quantum effi-

ciencies of commercially available Si r.' diodes are around 85%. In

this spectral region and at modulation Hates up to 1 Gbit/sec, dark cur-

rents are sufficiently low to introduce negligible.systern noise, and

the receiver sensitivity is primarily limited by the amplifier noise.

The basic geometries for PIN and APD's are shown in Fig. 9.1.

Various Si APD structures are commercially available. APD's increase

receiver sensitivity by internal avalanche multiplication of the signal

photocurrent. In the 800-900nm spectral region the best detectors have

been considered to be the Si APD's. However, new developments in the

GaAIAs/GaAs alloy system make that choice less clear in the near future.

The GaAIAs/GaAs alloy system provides excellent lattice matching and is

thus very useful in heterostructure devices. Double heterostructure

photodetectors in this material system have demonstrated high quantum

efficiencies.2 ,3	Others 
4 

have reported on GaAIAs/GaAs APD's of high

quantum efficiency: 65 percent without anti-reflection coating and 95

percent with anti-reflection coating; very short rise times: 35 ps or

less; avalanche gains of ',.100, and dank current densities of about

3.4x10-8 A/cm2 at one-half breakdown voltage., The G aAlAs/GaAs material

system is therefore superior to the Si system in both speed and quantum

efficiency, but it is inferior to it in noise properties. The larger noise

is believed to be due to direct bandgap tunneling as evidenced by

^N

the somewhat larger dark currents. As of yet, no diodes in this

material system are commercially available in this spectral range.

In the 1100-1700 nm range, however, the choices are broader.

Possible candidates are Ge, InGaAs, GaA1Sb, InGaAsP and GaAIAsSb devices.
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Figure 9-1. Silicon p-i-n and avalanche photodiode structures.



Mir

Ge is sensitive to wavelengths below 180Unm and its broadband
quantum efficiency is about 40 percent. 	 It suffers, however, from
an inherently high noise level.	 The dark current level at gain of 1	

}is about 0.1 uA.
z	 '

The III-V alloy direct-bandgap materials mainly, mainly under research,

can be tailored to the wavelengthr	 e of the alloy mixture. by grope.	 choice	 Y

This results in lowered dark currents by eliminating thermal noise

bandgapbelow the	 energy.	 Another added advantage of this alloys is

that they can be fabricated in heterojunction geometries,improving

the detector speed.

The ternary alloys (InGaAs, GaAlSb on GaSb) have been investigated

as photodiode materials for the 1000-1400 nm range.	 Their main drawback

is the appearance of lattice mismatch defects during crystal growth,

which are believed to cause increased dark current 	 and microplasma sites.
w

The existence of microplasma sites limits avalanche performance. 6

r ' I,n addition, lattice mismatch is generally associated with shorter life- ,;

times.	 Thus lattice-matched quaternary alloys appear to offer a better

chance for obtaining high performance avalanche photodiodes. 	 GaAlAsSb/

' GaSb heterojunction APD's show very fast rise-times 
4,	

TheThe response

time 8	 of InP based devices has also been drastically improved by

geometries that locate the heterojunction close to the p-n junction.

Rise-times for these systems are now in the <100 ps range.

A GaAIAsSb APD has been integrated 7	 with an FET for improved per-

formance by reducing the capacitance-between components.	 The integrated

receiver had a sensitivity 10-20 times higher than that of a Ge APD with

the same preamplifier over a bandwidth of 100 MHz.

However, unlike silicon,III-V allay material systems all	 suffer from	 }

a common fundamental problem: the ionization coefficients for electron

and holes are similar, thus both carriers are multiplied in the avalanche
1

and excess noise is generated (in silicon the ionization coefficient for

electrons can be 10 to 100 times larger than that of holes so only one
-carrier type is multiplied significantly). 	 Therefore low noise PIN

detector/amplifier combinations have been proposed as the choice for

long wavelength receivers, rather than avalanche photodiodes. 	 APR's
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offer a few dB better sensitivity than PIN diode/preamplifier combinations

and require high operation voltages and complicated control circuitry.

Another choice in this spectral range is the InGaAsP/InP alloy system.4

APD's in this material system have been found to offer lower dark current,
faster response time, and higher operating temperatures than Ge devices. 19

i

9.2 DETECTOR GEOMETRIES

9.2.1 PIN detectors geometries

The typical PIN detector geometry is shown in Fig 9-1a. It consists

of an n+ (or p+ ) thin layer separated by a thick 7r(or v) region from a

p+ (or n+ ) region. Contacts are attached to the n+ (p+ ) and p+ (n+ ) regions.

Due to the almost intrinsic characteristics of the w(v) region, the depletion

region reaches from the w(v) side of the n+ (p+ ) region clear, across the
7r(v) region, Into the p+ (n + ) region, increasing the collection efficiency

a	 of the photons.

This device can be operated in two modes: without a bias voltage

(the photovoltaic mode) or with a bias voltage (the photoamperic mode).

The frequency response of this device is limited by the transient time

j:	 across the ,r(v) region and the capacitance between p + (n+ ) and n+(p+)

regions.

Since the gain of this structures is usually low, PIN diodes have

been integrated with GaAs FET's in order to improve their gain. In integrated

configuration they have been operated 8 successfully at 274 Mbits/sec
with sensitivities comparable or better than those of Ge APD at 1.3 um..

9.2.2 APD geometries

The typical geometry of an avalanche photodiode is shown in Fig.

9-1b. In this geometry a thin p(n) layer is added between the n+(p+)

and the fr(v) regions. The APD is operated at an reverse bias thus the

p(n) region is a region of very high electric field in which the current

is multiplied by avalanche processes providing for internal gain before
r	

it goes to the next amplifier.

A slightly modified geometry is shown in Fig. 9-2. This struct«kre

has been used i`n the realization of GaAlks/GaAs APD's. It consists of an
n+ GaAs substrate onto which several layers are grown in succession:

ism
9-5
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An n+ Te doped GaAs buffer- layer, a 2 um Ge doped p GaAs active layer, a

Ge doped GaAIAs p window layer, and a very thin(:ti.2 pm)-Ge doped p* GaAs

contact layer. The external quantum efficiency of this device is 95
percent at a=530 nm when antireflection coatings are used , Response
times of less than 35 pA,were observed with this device.

Another detector structure4 used with the GaA1Sb alloy system is shown

shown in Fig. 9-3. With this structures internal quantum efficiencies
of 60 percent at 1061 nm dropping to 45 percent at 1270 nm have been
obtained without antireflexion coating.

The geometry shown on Fig. 9-4 has been used with the GaAIAsS.b

material system. This system offers the advantages of better surface.
morphology and lower dark current densities (up to three times lower).
The main limitation on this system appears to be surface breakdown at

the interface between the p Ga .84A1 .16Sb and the n+ Ga,57A1.43As.025Sb.975

layers caused by the incorporation of Sb. The solution of this problem

is undoutstedly possible and will make this system a much better candidate
at longer wavelengths.

Another structure of interest is the Be implanted InGaAsP of Fig. 9-5.

Be implantation! is used to form the p layer instead of Zn, avoiding the

problems generated by the high and concentration dependent diffusion

 tcoefficient of he latter, which makes control of the position of the

p-n ,function difficult. With this structure dark currents as low as
F	 4x10-6 A/cm2 at 10V and 1.9x10' 5 A/cm2 at IOV reverse bias have been

achieved. These devices also show very fast rise times of approximately

60 ps and FWTM times of approxiamtely 180 ps..

Another novel' geometry in InGaAsP/InP recently reported 9 is the

"buried" avalanche detector shown in Fig. 9:6. The structure is grown

in a two-step vapor phase epitaxy process whereby an undoped InGaAsP

layer is first covered with SiO2* 100 ,F;;; holes are then etched into the
SiO2 prior to vapor deposition of a Zn-doped p-type InP layer. Zinc

diffuses from the InP into the InGaAsP layer and encloses the p-n InGaAsP

homojunction. Avalanche gains as high as 20 were reported..

Another type of detector recently reported 
10 

and which might provide

an interface between digital logic circuits and input/output optical

fibers in the 1300 nm spectral range is the p- n-p-n optical switch shown

vh
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in Fig. 9-7. This device exhibits a nonlinear (negative-resistance) I-V

characteristic which can be useful in switching from low to high current,

triggered by small currents in the uA range. The signal current is

provided by light injected via a step-index multimode fiber. Switching

was reported with powers as low as 3 pW of light at 1060 arm. This device

has potential use as a light-signal repeater.

The device of Fig. 9-8 is a novel structure recently reported in the

literaturie1l . This is a device compatible with planar technology and lends

itself to integration with MESFETS and other microwave integrated circuits.

It has response times bet,;,reen 50 and 60 ps and operatingvoltages below
25V at a=830 nm.

Photoconductive devices made either of high-sensitivity semiconductors)

or ofconductive materials, have received attention recently 12 . The first

rely on the recombination of photogenerated carrier for their speed and the

second achieve fast sweep out of carriers by the applicationof a d.c. bias.

Response times below 100 ps have been reported with a 48x48 pm large device (fi

(Fig. 9-9) fabricated on an InP substrate.

a

A

A

r	 1

ie

9.3 CONCLJSION

In the 800-900 nm spectral range Si PIN and APD devices seem to

offer the best match, followed closely by the high quantum efficiency,

fast, lattice-matched GaAlAs/GaAs alloy devices, which have been improved

greatly in the last year and should mature more in the next few years

of research.

In the 1100-1700 nm spectral range the detector choices are less clear

and several systems should play a role in the -years'to come. The Contenders

are Ge-PIN detectors with integrated preamplifiers and noise improved

Ge-APD's	 and the III-V Ternary and quaternary systems, whose response

times and dark current l evels have been improved significantly over

the^past years and will probably undergo further development in the

future.

a
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