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AN ANALYTICAL APPROACH M THERMAL MODELING OF
BRIDGMAN-TYPE CRYSTAL GROWTH:

ONE-D I MEN S I ONAL ANALYS I S

Computer Program Users Manual

I	 INTRODUCTION

This report is a users guide for a computer program developed to simulate one-
dimensional heat flow in a rod inserted into a Bridgeman-type directional solidification
furnace. The thermal model was developed by R. J. Naumann of NASA's Space
Sciences Laboratory at Marshall Space Flight Center and is included in Appendix B.
Using this model, a small scientific computer has been applied to the study of several
situations of interest in the Bridgman-type crystal growth. The computer program
listing is in Appendix A.

THERMAL MODEL

The complete thermal model for the one-dimensional Bridgman-type crystal growth
is included in Appendix B. A brief description follows, but the complete report
should be referenced for ap plications and limitations befo7e attempting to utilize the
computer program.

A) The model is a one-dimensional analytical description of heat flow in a trans-
lating or motionless rod (sample) inside a directional solidification furnace with an
adiabatic zone separating the hot and cold zone.

13) An optional booster (tickler) heater is included in the hot Done just in
front of the adiabatic zone.

BOOSTER
HEATER ADIABATIC

HOT ZONE	 ZONE	 ZONE	 COLD ZONE

TH	 TB	 TC

LB--^+--LA__^

—X3	 —XJ b X1
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C) The model is applicable to systems whose Biot numbers in the hot and cold
zones are less than unity. The Biot number for the adiabatic zone is assumed equal
to zero.

D) Different thermophysical properties of the sample in the solid and liquid
state can be accommodated.

E) The space between the sample and furnace wall can be either vacuum or
filled with a stagnant or moving fluid. Different heat transfer coefficients in the hot
and cold zone can be accommodated.

F) The enclosure of the sample in an ampoule is handled by calculating effec-
tive conductivities, specific heat, and density as area weighted averages. These in
turn are used to calculate effective Peclet numbers, Treat transfer coefficients, and
Biot numbers.

	

2	 /	 2
K; (eff) = Kls C AO / +K a 1 - 1^O ) ]

	

/2	 rl_(Ain2Ks (eff) = Kss ! ADO+ Ka 	 ^
\	 /	 L

	

/	
2	 2

Cp (eff) = Rhos Cps (Ao / y + Rhoa • Cpa 1	 Ao^

Reference Tables A-2 and A-3 for term definitions.

G) Three main cases are treated

i) A translating infinite rod in a three-zone (hot, adiabatic, and cold)
furnace.

ii) A motionless rod with finite length inserted into the hot zone and
infinite length in the cold zone. An adiabatic zone is included.

iii) A motionless infinite rod in a four-zone [hot, booster (optional) ,
adiabatic, and cold] furnace.

COMPUTER PROGRAM

A now diagram and complete program listing are given in Appendix A. Key
program symbols are listed in Table A-1. The program is coded in BASIC language
for a Hewlett-Packard (H-P) 9835 computer with printerlplotter output and occupies
core storage of approximately 18 K.

Data are read in via the interactive erode on the keyboard with the required
units specified. The general input is listed in Table A-2.

.)



SELCAS contains an interactive case selection allowing for any one of the
following.

Case I: Calculates and plots temperature profiles in a translating infinite rod. Refer-
ence pages 5 to 8 of the Thermal Model (Appendix B). Additional required
input for this case is listed in Table A-3. The output consists of:

A) Input

B) Effective Conductivities

C) Peclet Numbers

D) Heat transfer coefficients and Biot numbers

E) Coefficients used in temperature calculations

F) Interface position and gradients in the liquid and solid at the interface

G) T abuiated temperature profiles in the sample.

NOTE: After the profiles are printed, the temperature at both ends of
the` adiabatic zone (x = ±1/2 zone length) should be checked as to the
accuracy of the input values of Tla and Tsa. An interactive option is
Oven to i) ctorrect these input temperatures to agree with the printed
profiles or ii) continue the program and plot the profiles. These tem-
peratures (Tla and Tsa) at the outer edges of the adiabatic zone are
used to calculate the radiative heat transfer coefficients. Page 14 of
the Thermal Model in Appendix 13 should be referenced as to their
importance.

11) Plot of temperature versus distance in the sample.

NOTE: In output G and H, x will be in the range Lim ` x Lim where
Lim is an input value. Fifty--one values are printed/plotted.

Cast, 11: Calculates anti plots the temperature profiles in a motionless rod with a
finite length inserted into the hot zone. This case can be used to investi-
gate the end effects which are not included in Case I or I11. Reference
pages 8 to 10 of the Thermal ;Model ;Appendix 13). Additional required input
is given in Table A-4. The output is the same ws for Case I except no
Peclet numbers are printed.

Cas. III: Calculates and plots temperature profiles in an infinite motionless rod where
-in optional booster (tickler) heater has been aaded to the hot end. This
vase can he used to investigate interface position and gradients in the steady
state mode with or %vithout the booster heater. Reference pages 11 and 12
of the Thermal Model (Appendix 11). Additional required input is listed in
T1 able A 5. Output has the same format as Case 11.

t': ► sv R': Calculates the optimum cold end temperature (Tc) which will center the
.11 

Melti=otluvrm within 10- 6 cm of the center of the adiabatic zone. The hot

anti temperature ('1'h) is input. The interface position 10 [equation (311)
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Is set equal 0 and equations (38) and (39) solved simultaneously for Tc.
Reference page 12 in Thermal Model (Appendix B) . Temperature profiles are
then calculated from Case III equations. This case is of interest to crystal
growers desiring the melt interface in the middle of the adiabatic zone. In
many cases this position is the optimum for the flattest possible interface.
Additional required input is the same as Case III (Table A-5).

NOTE: The solution for Te involves an iteration between that equation
and the Biot number calculation. If the solution cannot be found within
10 iteraVons an error message is printed and an option to select another
case is given. The output has the same format as Case III with the cal-
culated Te being printed also.

Case V: Calculates the optimum length for the adiabatic zone in order to achieve a
designated liquid gradient at the solid-liquid interface. The booster (tickler)
heater may be on or off. Equation (38) of the Thermal Model is solved for
the adiabatic zone length ha. Reference page 12 of the Thermal Model
(Appendix B) . Additional required input is listed in Table A o. The output
has t'+ie same format as Case I parts A, B, and D plus the calculated adiabatic
zone length.

NOTE: If the calculated adiabatic zone length is negative this implies the
designated liquid gradient cannot be achieved. An interactive option is
given to calculate Case III temperature profiles.

The subroutine BIOTCAL calculates the radiative and conductive heat transfer
coefficients. These plus the input convective heat transfer coefficients are used to
compute effective heat transfer coefficients for the `hot and cold zones of the furnace.

11  (eff) = 11H rad + H  conv + H11 cond

HC (eff) = HC rad + HC conv + HC cond

These effective values are in turn used to calculate the Blot numbers. Reference
pages 12 to 15 and page 24 of the Thermal Model (Appendix B). If the Biot numbers
are available as input they should be set in this section.

TXPLOT controls the plotting of temperature versus distance in the sample.
AXE and LABLER subroutines are called from here. These are H-P 9835 utility sub-
routines which draw and label the axes and would probably require changing if the
program is run on another computer. The "Plotter is" statement should be checked
for correct set-up even if running on the H-P 9835.

SAMPLE PROBLEMS

Each of the five cases was run for a 0.5 cm radius Mn-Bi/Bi eutectic sample.
The sample was enclosed in a 0.6-cm radius fused silica ampoule. Furnace configura-
tion was modeled with the Solidification Experiment System (SES) furnace developed

4



by TRW for use on the Space Shuttle. Forced convection with helium gas is used for
heat extraction in the cold end. stagnant helium gas is in the furnace cavity in the
hot end.

In Cases III and IV the booster heater was not turned on, and Tb = Th was
used to model this. Case V did utilize the booster heater. The general input for
each tease was the same and is listed in Table A-7. The specific case input is listed
in Table A-8. All output from the five eases follow the Concluding Remarks section.

CONCLUDING REMARKS

Current work is being devoted to:

A) Attempting to evaluate furnace performance by using this model along with
temperature data from it well characterized and instrumented sample l to solve for
effective heat transfer coefficients.

13) Compiling a users guide to accompany the computer program for R. J.
Naumann's "An Analytical Approach to Thermal Modeling of Bridgman-Type Crystal
Gruwth: Two Dimensional Analysis."

lioth tasks will be the subject of a further report.

1. Data from NASA's SPAR 9 flight. Mn-Ri/Ri Solidification Experiment.

5



I-D MUUEL OF CWYSIAL GROWTH

SAMPLE CASE 1

TEMPERATURE OF MOT ZUNE (L)
TEMPERATURE OF Ih IERFACE (C)
TEMPERATURE OF COLD ZONE (C)
CONDUCTIVITY OF L'OUID ( W/cm-C)

CONDUCTIVITY OF SOLID (W/cm-C)

CONVECTIVE HEAT TRANSFER COEFF.-HUT LMU (W/cwt-L)

CONVECTIVE HEAT TRANSFER LUEFF.-COLU LN0(W/cm2-C)

CONDUCTIVITY OF GAS - HOT EMU kW/cm-C)
CONDUCTIVITY OF GAS - COLD LND (W/cm-C)

CONDUCTIVITY OF AMPOULE (W/cm-C)

SAMPLE RADIUS (cm)

AMPOULE OUTER RADIUS (cm)

INSIDE RADIUS OF FURNACE MUFFLE IN HOT ZOME(cm)

INSIDE RADIUS OF FURNACE MUFFLE IN COLD ZOME(cmi

EFFECTIVE [MISSIVITY OF AMPOULE/SAMPLE-HOT END-

EFFECTIVE EMISSIVITY OF AMPOULL/SAMPLE-CULU END-

EMISSIVITY OF FURNACE -HUT END

EMISSIVITY OF FURNACE -COLD END

LENGTH OF ADIABATIC ZONE (cm)

TEMP. OF SAMPLE AT HOT END OF ADIABATIC ZONE (C)

TEMP. OF SAMPLE AT COLD END OF ADIABATIC ZUME (C1
CALCULATED EFFECTIVE CONDUCTIVITY OF LIQUID (W/cm-C)

CALCULATED EFFECTIVE CONDUCTIVITY OF SOLID (W/cm-C)

LASE I

AVERAGE SAMPLE DENSITY (g/cm3)

AVERAGE AMPOULE DENSITY (9/cw3)

AVERAGE SAMPIE SPECIFIC HEAT (W-sec/9-C)

AVERAGE AMPOULE SPECIFIC HLAT (W-sec/g-C)

AMPOULE VELOCITY (Cm/sec)
HEAT OF FUSION (W-see/g)

CALCULATED NECLEC NO. FOR THE LIQUID

CALCULATED PFCLEC NO. FOR THE SuLIL,

ORIGINAL PAGE IS
OF POOR QUALITY

450

271.5

40

.124

.072
0

.0312

.003
J

02
.5

.b

2.6

1. 7/
.7695

.9486

.3

.3

2.03
327

133

9.22222222223E-02

5.61111111112E-02

10.05

1.3

.14b3

.493

.0028

50.16

2.49119584337E-02
4. 0944400;9307E-02

1

CALCULATED EMISSIVITY FUNCFIuM	 (Feh)-HO T .544061658338
CALCULATED EMISSIVITY FUNCTION (Fec)-OULD .5419b2bb0161
CALCULATED RADIA71VF HEAT TRANS. COEFF.-NOT	 (W/cw2-0 4.33101340730E-03
CALCULATED RADIATIVE HEAT TkAMS. COEFF.-COLD	 (W/Lm2-C) 4.72bl9ts06225E-04
CALCULATED CONDUCTIVE HE4T TRANS. LOLF ► .-HUT	 (W/cwt-C) 3.40985119206E-03
CALCULATED CONDUCTIVE HLAT IkAMS. LUEFF.-COLU(W/cw2-C) 0
CALCULATED EFFECTIVE HLAI TRANS. C0LFF.-HOItW/cw2-C) 7.57187059936E-03
CAL r 'ILATFO EFFECTIVE HFAT TRANS. COEFF.-CULU(W/cm2-C) 3.1672b1988b2E-02
CALCULATED RIOT	 N0.	 -HOT LMU- 4.893/4113b93E-02
CALCULATED 810T N0.	 -COLD END- .338677519574

THE FOLLOWING COEFFICIENTS ARE USED IN LALCULATINI: TEMPERATURE

A- 1923.32846936 8--lb64.08424353 A5TAk • 1923.32tl4h;173 EIS1AR--16 7 2.01%7207 C.
91.3925254013 D- 122.0N38951/4

IHTEPFACE POSITION Xo (cm)	 17803tl124/y5
GRADIENT IN L IQUID Al )to	 (deg C/cm)	 -b9.5b380.(t•14
GRADIENT IN SOL IU AT Ko	 (deg C/cw)	 -I11. /?lt195074

►
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ORIGINAL PAGE 13
TEMPERATURE PROFILE

	
OF POOR QUALITY

X(CS) T(C)
-5 435.951856441
-4.e 434.341590609
-4.6 432.546748534
-4.4 430.546172943
-4.2 428.31628176
-4 425.83078973
-3.8 423.06039W53
-3.6 419.972452034
-3.4 416.530550126
-3.2 412.694120874
-3 408.417941658
-2.8 403.651606221
-2.6 398.338930504
-2.4 392.417290353
-2.2 385.81688334
-2 378.459905943
-1.8 370.259636433
-1.6 361.1194126
-1.4 350.931,;92371
-1.2 339.575783146
-1 326.92217423
-.8 313.6104447
-.6 300.1877146
-.4 286.65305931
-.2 273. 00554?33

0 251.30879766
.2 228.33241068
.4 205. 04028899
.6 181. 4280441 1
.8 151.4914277
1 133.225830/9
1.2 11 1. 3526334 73
1.4 94.6000530217
1.6 81.18013947b8
1.8 11.9712118167
2 64 . 4648.1200 74
2.2 58.7208384569
2.4 54. 32545?6522
2.6 50.9620407315
2.8 4e.3883099483
3 46.418854437
3.2 44.911/'489042
3.4 43.7585786526
3.6 42.8761180033
3.8 42.2008465258
4 41.684119158
4.2 41.ebS7120041
4.4 40.9861408103
4.6 40.7546090159
4.8 40.5 7 7 4 3 75614
5 40.4418634168

r

T
nput temperatures at hot and cold

edge of adiabatic zone were checked
and program continued.

7



TEMP (C)

458

408

350

308

250

i
TM

208

150

188

50

8
Lr,

i
unr	 en	 ev	 cu	 cn	 r

SAMPLE CASE I

OR1G1ivAL 
Fr^3^ fS

Of POOR QUALIV

8



ORIGINAL P:i%„j I;,

1-U MODAL OF CRYSTAL GROWTH	
OF POOR QUALITY

SAMPLE CASE 11

TEMPERATURE OF HOT ZONE (C) 450

TEMPERATURE OF INTERFACE (C) 271.5
TEMPERATURE OF COLD ZONE (C) 40
CONDUCTIVITY OF LIQUID (W/cw-C) .124
CONDUCTIVITY OF SOLID (W/cw-C) .072
CONVECTIVE HEAT TRANSFER COEFF.-MOT END (W/c&2-C) 0
CONVECTIVE HEAT TRANSFER COEFF.-COLD END(W/c*2-C) .0312
CONDUCTIVITY OF GAS - HOT END (W/cm-C) .003
CONDUCTIVITY OF GAS - COLD ENO (W/cw-C) 0
CONDUCTIVITY OF AMPOULE (W/c•-C) .02
SAMPLE RADIUS (cm) .5
AMPOULE CUTER RADIUS (cm) .6
INSIDE RADIUS OF FURNACE MUFFLE IN HOT ZONE(cm) 2.6
INSIDE RADIUS OF FURNACE MUFFLE IN COLD ZONE(cm) 1.77
EFFECTIVE EMISSIVITY OF AMPOULE/SAMPLE-HOT END- .7695

EFFECTIVE EMISSIVITY OF AMPOULE/SAMPLE-COLD END- .9486
EMISSIVITY OF FURNACE -HOT END .3
EMISSIVITY OF FURNACE -COLD END .3
LENGTH OF ADIABATIC ZONE (cm) 2.03
TEMP. OF SAMPLE AT HOT ENO OF ADIABATIC ZONE (C) 327
TEMP. OF SAMPLE AT COLD END OF ADIABATIC , ZONE (C) 133

CALCULATED EFFECTIVE CONDUCTIVITY OF LIQUID (W/cw-C) 9.22222222223E -02

CALCULATED EFFECTIVE CONDUCTIVITY OF SOLID (W/cw-C) 5.61111111112E-02

CASE I 

BIOT NO. AT END OF ROD IN NOT ZONE	 .0507

LENGTH OF AMPOULE INSERTED INTO HOT ZONE (cm)	 2.5

CALCULATED EMISSIVITY FUNCTION (Feh)-HOT .544067659338

CALCULATED EMISSIVITY FUNCTION (Fez) -COLD .541962660261
CALCULATED RADIATIVE NEAT TRANS. COEFF.-HOT (W/cm2-C) 4.11201340730E -03

CALCULATED RADIATIVE HFAT TRANS. COEFF.-COLD (W/Cm2-C) 4.72619886225E-04

CALCULATED CONDUCTIVE HEAT TRANS. COEFF.-MDT (W/cm2-0 3.40985719206E-03

CALCULATED CONDUCTIVE HEAT TRANS. COEFF.- COLD(W/cw2-0 0

CALCULATED EFFECTIVE HEAT TRANS. COEFF.- HOT(W/cw2 -C) 7.52187059936E-03

CALCULATED EFFECTIVE HFAT TRANS. COEFF.-COLD(W/cw2-'C) 3.16726198862E-02

rALr'J!ATED o uT NO.	 -HOT END- 4.89374713693E-02

CALCULATED BLOT HO.	 -COLD END- .338677519574

THE FOLLOWING COEFFICIENTS ARE USED IN CALCULATING TEMPERATURE
B-- 2.43982292246 C- 78.2141450111 D • 17.7.221897134

INTERFACE POSITION Xo (cm)	 -.41376185103
GRADIENT IN LIQUID AT Xo (deg C/cm)	 -65.2762986338
GRAS EMT IN SOLID AT Xo	 (deg C /cm)	 -107.235797755

9



pitKilNX PAGE 0
TEMPERATURE PROFILE	 OF POOR QUAU f

X(01) T(C)

-2 359.134587772
-1.92 356.244814424
-1.84 353.191883499
-1.76 349.970482111
-1.68 346.:.75004245
-1.6 342.999540885
-1.52 339.23786984
-1.44 335.283444853
-1.36 331.12938423
-1.28 -j26.766458"5

-1.E 322.193079b53
-1.12 317.39528428
-1-04 312.-M&727485

Input temperatures at hot and cold edge-.96 307.156404538
-.88 301.934300647 of adiabatic zone were checked.	 They

-.8 296.712196756 varied from the profile. 	 When the

-.72 291.490092865 interactive mode allowed for a correction

-.64 286.267988975 the following was Rude:

-.56 281.045885084 Tla n 3101

-.46 275.823781193 Tsa	 - 1130

-.4 270.023548834 The following run uses this new input.

-.32 261.440685014
-.24 152.857821193

-.16 244.274957313
-.08 23S.692093552

0 227.109229732
.08 218.526365912
.16 709.943502091
.24 r01.jbubjuz71

.32 192.71777445

.4 184. 19491 Obi

.4b 17S.612046bi

.56 167.029182989

.64 158.446319169

.72 141.u63455349

.8 141.Z80591`,1@

.88 13'1.697727%08

.96 124. 114863888
1.04 115.5174b1354

1.12 107.122789311
1.2 100.68443b/9b

1.28 94.3775758408
1.36 tlb. l2b1 / 18013
1.44 tf3.b6z127965
1.52 79.1243694444
1.6 15.OSa21433543

1.68 / 1 . 414bSS501
1.76 bb. 1497105155

1.84 b5.21419/1475

1.32 62.60261&2923
2 60.2536065042

1 U MUUtt OF LOYSIAL lYLM IA
SOWK E LASt t I

TEMPERATURE Of NOT ZONE IL
	

450
TEMPERATURE Of INTERIACE tt. 	 271.5

TEMPERATURE Of COLD ZONE t4. 	 40

it)
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OF P031-1 ^^Y
.CONDUCTIVITY OF LIQUID (W/co-C) .124
CONDUCTIVITY OF SOLID (W/cm-C) .072
CONVECTIVE HEAT TRANSFER COEFF.-HOT END (W/cm2-0 0
COHVECTIVL MEAT TRANSFER COEFF.-COLD END(W/c&2-C) .0312
CONDUCTIVITY OF GAS - NOT END (W/c n-C) .003
CONDUCTIVITY OF GAS - COLD END (W/cw-C) 0
CONDUCTIVITY OF AMPOULE (W/co-C) .02
SAMPLE RADIUS (cm) .5
AMPOULE OUTER RADIUS (cm) .6
INSIDE RADIUS OF FURNACE MUFFLE IN NOT ZONE(cm) 2.6
INSIDE RADIUS OF FURNACE MUFFLE IN COLD ZONE(cs) 1.77
EFFECTIVE :MISSIVITY OF AMPOULE/SAMPLE-HOT END- .7695
EFFECTIVE EMISSIVITY OF AMPOULE/SAMPLE-COLD END- .9486
EMISSIVITY OF FURNACE -HOT END .3

E EMISSIVITY OF FURNACE -COLD END .3
t LENGTH OF ADIABATIC ZONE (cm) 2.03
r TEMP. OF SAMPLE AT HOT END OF ADIABATIC ZONE (C) 310
f	

. TEMP. OF SAMPLE AT COLD END OF ADIABATIC ZONE (C) 119
CALCULATED EFFECTIVE CONDUCTIVITY OF LIQUID (W/cm-C) 9.22222122223E-02
CALCULATED EFFECTIVE CONDUCTIVITY OF SOLID (W/cn-C) 5.61111111112E-02

CASE II

RIOT NO. AT END OF ROD IN HOT ZONE 	 .0507
LENGTH OF AMPOULE INSERTED INTO HOT ZOMc (cm) 	 2.5

CALCULATED EMISSIVITY FUNCTION :Feh)-HOT .544067658338

CALCULATED EMISSIVITY FUNCTION (Fec) -COLD .541962660261
CALCULATED RADIATIVE HEAT TRANS. COEFF.-HOT (W/cm2-C) 4.042381328752E-03
CALCULATED RADIATIVE HEAT TRANS. COEFF.-COLD (W/Cm2-C) 4.56648445440E-04

CALCULATED CONDUCTIVE HEAT TRANS. COEFF.-HOT (W/cm2-0 3.40985719206E-03
CALCULATED CONDUCTIVE HEAT TRANS. COEFF.-CULD(W/cw2-C) 0
CALCULATED EFFECTIVE NEAT TRANS. COEFF.-HUT(W/ca2-C) 7.45224547958E-03

CALCULATED EFFECTIVE HEAT TRANS. COEFF.-COLD(W/cm2-C) 3.16566484454E-02

CALCULATED BIOT N0.	 -HOT END- 4.84844886623E-02
CALCULATED 810T NO.	 -COLD END- .3385067351351

THE FOLLOWINL• COEFFICIENTS ARE USED IN CALCULATING TEMPERATURE
8--2.48447502180 C- 78.0336904002 D- 132.577142304

INTERFACE POSITION Xo (cm)	 -.419113415946

GRADIENT IN LIQUID AT Xo (deg C/cm) 	 -65.109271623
GRADIENT IN SOLID AT X•-	 (deg u/cm)	 -107.011278113

TEMPERATURE PROFILE
X(cm) T(C)

-2 358.604688279
-1.92 355.716870b4
-1.84 352.66b495634
-1.76 349.448303983
-1.68 346.056747072

-1.6 342.485977374
-1.52 338.12983839
-1.44 334. 1811154

-1.36 330.635?17328

-1.28 326.28277899

-1.2 321.717034168
-1.12 316.930112676
-1.04 311.91375939

11



ORIGINAL PAGE IS
OF POOR QUALITY

-.96 306.716731518
-.88 301.507989788 Input Tla and Tsa were checked and
-.8 296.299248058 program allowed to continue.
-.72 291.090506329
-.64 285.881764599
-.56 280.673022869
-.48 275.464281139
-.4 269.45464893
-.32 260.893746681
-.24 252.332844432
-.16 243.771942183
-.08 235.211039934

0 226.650137685
.08 218.089235436
.16 209.528333187
.24 200.967430938
.32 192.406528689
.4 183.84562644
.48 175.284724191
.56 166.723821942
.64 158.162919692
.72 149.602017444
.8 141.041115195
.88 132.480212945
.96 123.919310697
1.04 115.403748088
1.12 107.56899419
1.2 100.54830286
1.28 94.2570897066
1.36 88.6195590011
1.44 83.5677905018
1.52 79.0409211469
1.6 74.984411797
1.68 71.3493901474
1.76 68.0920619269
1.84 65.1731832614
1.92 62.5575878739
2 60.2137634087
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ORIGINAL PAGE IS

OF POOR QUALITY
I-0 MODEL OF CRUSTAL GROWTH

SAMPLE CAbL III

TEMPERATURE OF MOT ZONE (C) 450

TEMPERATURE OF INTERFACE (C) 271.5

TEMPERATURE OF COLD ZONE (C) 40

CONDUCTIVITY OF LIQUID (W/ca-C) .124

CONDUCTIVITY OF SOLID (W/cn-C) .0/2

CONVECTIVE HEAT TRANSFER CUEFF.-HOT ENO (W/cR2-C) 0

CONVECTIVE HEAT TRANSFER COEFF.-COLD ENO(W/c&2-C) .0312

CONDUCTIVITY OF GAS - HOT END (W/cm-0 .003

CONDUCTIVITY OF GAS - COLD END (W/cw-C) 0

CONDUCTIVITY OF AMPOULE (W/cw-C) .02

SAMPLE RADIUS (cm) .5
AMPOULE OUTER RADIUS (cm) .6
INSIDE RADIUS OF FURNACE MUFFLE IN HUT 70ME(cm) 2.6
INSIDE RADIUS OF FURNACE MUFFLE IN COLD ZONE(cm) 1.77

EFFECTIVE EMISSIVITY OF AMPOULE/SAMPLE-HOT END- .7695

EFFECTIVE EMISSIVITY OF AMPOULE/SAMPLE-COLD ENO- .9486

EMISSIVITY OF FURNACE -HOT ENO .3

EMISSIVITY OF FURNACE -COLD ENO .3
LENGTH OF ADIABATIC. ZONE (cm) 2.03

TEMP. OF SAMPLE AT HOT ENO OF ADIABATIC ZONE (C) 327

TEMP. OF SAMPLE AT COLD FND OF ADIABATIC ZONE (C) 133

CALCULATED EFFECTIVE CONDUCTIVITY OF LIQUID (W/cw-C) 9.22222222223E -02

CALCULATED EFFECTIVE CONDUCTIVITY OF SOLID (W/cn-C) 5.61111111112E-02

CASE Ill

TEMPERATURE OF TICKLER HEATER (C) 	 450

LENGTH OF TICKLER HEATER (ca p )	 0

CALCULATED EMISSIVITY FUNCTION (Feh)-HUT .544067658338

CALCULATED EMISSIVITY FUNCTION (Fee) -COLD .541962b60261

CALCULATED RADIATIVE HEAT TkANS. COEFF.-HOT	 fir /crag -C) 4.11201340730E-03

CALCULATED RADIATIVE HEAT TRANS. CUEFF.-COLD (W/Cw2-C) 4.72619886225E-04

CALCULATED CONDUCTIVE HEAT TRANS. CUEFF.-HOT (W/cw2-C) 3.40985719206E -03

CALCULATED CONDUCTIVE HEAT TRANS. COFFF.-COLD(W/crag -C) 0

CALCULATED EFFECTIVE HEAT TkAHS. CUEFF.-HOT(W/cw2-C) 7.52187059936E-03

CALCULATED EFFECTIVE HEAT TRANS. COEFF.-COLD(W/cs2-C) 3.16726198862E -02

CALCULATED 8107 NO.	 -HOT ENO- 4.89.s/471,%93E-02

CALCULATED BLOT NO.	 -COLD END- .33UG77519574

THE FOLLOWING COEFFICIENTS ARE USED IN CALCULATING TEMPERATURE
A--130.957228179 8- 0 C • 81.8170404875 D- 130.951226179

INTERFACE POSITION Xo (cm) 	 -.318741494102

GRADIENT IN LIQUID AT Xo (deg C/cap )	 -68.283218687

GRADIENT IN SOLID AT Xo	 (deg C/cw)	 -112.227864377

TEMPERATURE PROFILE
X(cm)	 T(C)

5	 433.b04166315
-4.8	 431.802021db4
-4. 9)	 429.801795101
-4.4	 427.581713854
-4.2	 445.111612864
-4	 422.382b7C759

14



0c`,O- R QUi,+_iTY
-3.8 419.341118092
-3.6 • 415.977913321
-3.4 412.238383152

-3.2 408.087823344
-3 403.48105567

-2.8 398.367936141

-2.6 392.692809199
-2.4 386.393901934

-2.2 379.40265166

-2 371.642959655
-1.8 363.030362802

-1.6 353.471114[6/
-1.4 342.961163034

-1.2 331.085021341

-1 318.018523541

-.8 304.361879804 Input Tla and Tsa checked. 	 The
-.6 299.705236066 following corrections were Blade:
-.4 277.048592329

-.2 258.173895704 Tla	 = 3181

0 235.728322829 Tsa = 123°

.2 213.282749954 Next case uses these values.

.4 190.837177078

.6 168.391604203

.8 145.946031328

1 123.500458452

1.2 103.479837122

1.4 88.2494159627

1.6 76.6731586969

1.8 67.8743388284

2 61.1865787593

2.2 56.1033817634

2.4 52.2397725065

2.6 49.3031409932

2.8 47.0710817182

3 45.3745501169

3.2 44.0850593821

3.4 43.104950144

3.6 42.3599939413

3.8 41.7937716055

4 41.363400353

4,2 41.03628606/2
4.4 40.7876547858

4,6 40.5986764478

4.8 40.4550388008

5 40.3458634b43

1-0 MUUEL OF CRYSTAL GRUWTH

SAMPLE CAti4 I i 1

TEMPERATURE	 OF HOT ZONE	 (C) 450

TEMPERATURE OF INTERFACE	 (C) 271.5

TEMPERATURE OF COLD ZONE	 (C) 40

(.OHDUCTIVITY	 OF LIQUID	 (W/cw-C) .124

CONDUCTIVITY OF SOLID	 kW/cm-L) .07Y

CONVECTIVE HEAT TRANSFER COEFF.-HUT ENO (W/CO2-0 0

CONVECTIVE	 HEAT TRAHSFFR COEFF,-COLD END(Wicw2-C) .0312

CONDUCTIVITY OF GAS	 - HOT END (W/cw-C) .003

CONDUCTIVITY OF GAS	 CUtU tN0	 kW/cm-C) 0

CONDUCTIVITY OF AMPOULE	 (W/cw-C) .02

SAMPLE RADIUS	 (cm) .5

15
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ORIGINAL PAG 13

OF POOR QUALITY

AMPOULE OUTER RADIUS (cm)
INSIDE RADIUS OF FURNACE MUFFLE IN NOT ZOME(cw)
INSIDE RADIUS OF FURNACE MUFFLE IN COLD ZONE(cm)
EFFECTIVE EMISSIVITY OF AMPOULE/SAMPLE-HUT tMD-
EFFECTIVE EMISSIVITY OF AMPOULE/SAMPLE-COLD END-
EMISSIVITY OF FURNACE -HOT ENO
EMISSIVITY OF FURNACE -COLD END
LENGTH OF ADIABATIC ZONE (cm)
TEMP. OF SAMPLE AT HOT END OF ADIABATIC ZONE (C)
TEMP. OF SAMPLE AT COLD END OF ADIABATIC ?ONE (Z)
CALCULATED EFFECTIVE CONDUCTIVITY OF LIQUID (Wb:w-C)
CALCULATED EFFECTIVE CONDUCTIVITY OF SOLID (W/cm-C.)

CASE 111

TEMPERATURE OF TICKLER HEATER (C)
LENGTH OF TICKLER HEATER (cm)

CALCULATED EMISSIVITY FUNCTION (Feh)-HOT
CALCULATED EMISSIVITY FUNCTION (Fec)-COLD
CALCULATED RADIATIVE HEAT TRANS. COEFF.-HOT (W/cwt-C)
CALCULATED RADIATIVE HEAT TRAMS. COtFF.-COLD (W/Cw2-C)
CALCULATED CONDUCTIVE HEAT TRAH5. CULFf.-HUT (W/cw2-C)
CALCULATED CONDUCTIVE HEAT TRANS. COEFF.-COLD(W/cw2-C)
CALCULATED EFFECTIVE HEAT TRANS. CUEF ► . -HUT(W/cwt-C)
CALCULATED EFFECTIVE HEAT TRANS. COEFF.-COLD(W/cwt-C)
CALCULATED B10T N0. -H^T END-
CALCULATED BLOT NO. -COLD EMO-

.6
2.6

1.77
7695
y486
.3
.3
2.03
316
123
9.22222222223E-02
5.61111111112E-02

450

0

.544067658338

.541962660261
4.01496086894E-03
4.61152580853E-04
3.40985719206E-03
e
.007484818061
3.16611525809E-02
4.86964066619E-02
.338554898884

THE FOLLOWING COEFFICIENTS ARE USEU IN CALCULATING TEMPERATURE
Ate -131.14432183 8- 0 C- 81.7466779081 D- 131.14432183

IhTEWFACE POSITION Xo (cm)	 -.320/5tl831802
GRADIENT IN LIQUID AT Xo (deg C/cw)	 -68.2121434732
GRADIENT IN SOLID AT Xo	 (deg C/cm)	 -112.111047689

TEMPERATURE PROFILE
X(cm) T(C)

-5 433.496393694
-4.8 431.687113483
-4.6 429.67y4829%
-4.4 427.451757213
-4.2 424.91980/222
-4 422.2368588/4
-3.8 419.193202786
-3.6 415.815872551
-3.4 412.068287681
-3.2 407.909857386
-3 403.295540935
-2.8 398.175359809
-2.6 392.493856314
-2.4 386.18949321
-2.2 379.193986592
-2 371.431566887

362.818157877
. S 353. 26;0466137

-1.4 342.654970534
-1.2 330.88b8U0966
-1 317. 6.324960 18

-.8 304.190067323

Li 3'-

Ld



ORIGINAL PAGE' I't

OF POOR QUALITY
.6 290.547638629

-.4 276.905209934
-.2 257.961600849

0 235.539391311
.2 213.117181773
.4 190.694972235
.6 168.272762698
.8 145.85055316
1 123.428343622
1.2 103.428158508
1.4 88.2125309016
1.6 76.6469434178
1.8 67.8557967573
2 61.1735370149
2.2 56.0942684076

4 52.2334532674
2.6 49.2987997379
2.8 47.0681331486
3 45.3725757751
3.2 44.0837615609
3.4 43. 1041178725
3.6 42.3594785403
3.8 41. 7934689374
4 41.3632380097
4.2 41.0362141393
4.4 40.7876392345
4.6 40.5986943626
4.8 40.4550750193
5 40.3459081731

Input Tla and Tsa were checked
and program allowed to continue.

1
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OF POOR

1-D MODEL OF CkYSTAL (0901011'"
SAMPLE CASE IV

TEMPERATURE OF NOT ZONE (C) 450
TEMPERATURE OF INTERFACE tC) 271.5
TEMPERATURE OF COLD ZONE (C) 40
CONDUCTIVITY OF LIQUID (W/cw-C) .124
CONDUCTIVITY OF SOLID (W/cw-C) .0/2
CONVECTIVE NEAT	 TRANSFER COEFF..-H01 	 END tW/cwl -C) 0
CONVECTIVE HEAT TRANSFER COEFF.-GOLD ENOtW/c02-C) .0312
CONDUCTIVITY OF GAS - HOT END (W/cw-C) .003

CONDUCTIVITY OF GAS - COLD END (W/cw-C) 0

CONDUCTIVITY OF AMPOULE (W/cw-C) .02

SAMPLE RADIUS (cm) .5

AMPOULE OUTER RADIUS (cm) .6

INSIDE RADIUS OF FURNACE MUFFLE	 IN NUT ZU"Etcw) 2.6

INSIDE RADIUS OF FURNACE MUFFLE	 IN COLD ZUNE(cw) 1.77

EFFECTIVE EMISSIVITY OF AMPOULE/SAMPLE-HOT END- .1695

EFFECTIVE EMISSIVITY OF AMPOULE/SAMPLE-COLD END- .9486

EMISSIVITY OF FURNACE	 -HOT END .3
EMISSIVITY OF FURNACE -COLD END .3

LENGTH OF ADIABATIC ZONE	 (cm) 2.03

TEMP.	 OF SAMPLE AT HOT END OF ADIABATIC ZONE (C) 327

TEMP.	 OF SAMPLE AT COLD END OF ADIABATIC ZONE tC) 133

CALCULATED EFFECTIVE CONDUCTIVITY OF LIQUID	 (W/cw-C) 9.z2222222223E -02

CALCULATED EFFECTIVE CONDUCTIVITY OF hULID (W/cw-C) 5.61111111112E-02

CASE IV	 Tc CALCULATIUH

CALCULATED Tc(C) 97.270796601

TEMPERATURE: OF	 TICALER HEATER	 (C) 450

LENGTH OF	 IICkLER NEATER (cm) 1.8

CALCULATED EMISSIVITY FUNCTION	 (Feh)-HUT .544067658338

CALCULATED EMISSIVITY FUNCTION (Fec) -COLD .541962660261

CALCULATED RADIATIVE HEAT	 TRAMS. COEFf.-HOT	 tW/cw2-C) 4.11201340730E-03

CALCULATED RADIATIVE HEAT	 TRANS. COEFf.-COLD tW/Cw2-0 6.71110029012E-04

CALCULATED CONDUCTIVE HEAT	 TRANS. CULtf.-HOT	 (W/cw2 -C) 3.40985719206E-03

CALCULATED CONDUCTIVE NEAT	 TRANS. CULff.-COLD(W/cw2-C) 0

CALCULATED EFFECTIVE HEAT	 TRANS. COEFF.-HOT(W/cwt-C) 7.52187059936E-03

CALCULATED EFFECTIVE HEAT	 TRANS. C3Eff.-COLO(W/ewz-C) .031671110029

CALCULATED RIOT NO.	 -NOT END- 4.89374713693E-02

CALCULATED B10T	 NO.	 -COLD END- .340799986428

TWF_ FOLLOWING CUEFFICIENTS ARE USED IN CALCULATING TEMPERATURE
A--73.0062345341 B- 0 C- 12.b977544731 0- 4,.6b21749258

INTERFACE POSITION Xo (cm) 	 -2.85152250032E-08

GRADIENT IN LIQUID AT %o toeg C/cw)	 -60.8622235947

GRADIENT IN SOLID AT xo	 (deg C/cw)	 -100.030981353

TEMPERATURE PROFILE
X(cm)	 Tkc)

435.38605949
4. p	4.33. 1 797 11434

4.6	 431.996928581
4.4 	 4,s%, . 018124y4b

00

19
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ORIGINAL. PACE 19

OF POOR QUALITY-4.2 427.x21821`,41
-4 425.58411 1942
-3.8 422.678462024
-3.6 419.675421188
-3.4 416.34230178
-3.2 412.642823287
-3 k08.5367174Z9
-2.8 403.919289648
-2.6 $90.920933621
-2.4 393.306589278
-2.2 W 7. 0 7514551
-2 W0.158773977
-1.8 372.^a?T"^5o
-1.6 363.961838068
-1.4 354.504912427
-1.2 344.008657485
-1 332.362221859

-.8 320.18977714
-.6 308.017332411
-.4 295.844887702
-.2 283.672442903

0 271.499997149 
.2 251.493600817
.4 231.487604607
.6 211.481408336
.8 191.475212065
1 171.469015794

1.2 153.630440521
1.4 140.071582918
1.6 129.774680279
1.8 121 .9549791!81
2 116.016522809
2.2 111.506124406
2.4 108.OF1881658
2.6 105.480978732

2.8 103.50579431/
3 102.005/946b7
5.2 100.86666106
3.4 100.001577274
3.6 99.3446131116
3.8 98.8456596908
4 ".4b68135724
4.2 98.1790788912
4.4 9 7 . 4b 0566b864
4.6 97.794b23582
4.8 47.b68602639b
5 97.5/28994901

Input Tla and Tsa were checked. The
following corrections were made:

Tla - 332°
Tsa - 171°

Next run uses this input.

1-u MOW L OF CRYSTAL GRUWTH
SAMPLE CASE IV

TEMPERATURE OF HOT ZOHL (C)
TEMPERATURE OF INTERFACE (C)
TEMPERATURE OF COLD ZONE (C)
CONDUCTIVITY OF LIQUID (W/cw-C)
CONDUCTIVITY OF SOLID (W/cw-C)
CONVECTIVE HEAT TRANSFER COEFF.-HUT END (W/cmY-C)
CONVECTIVE HEAT TRANSFER COLff.-CULD END(W/c02-C)
CONDUCTIVITY OF GAS	 HOT END tW/cw-Ci
CONDUCTIVITY OF GAS 	 COLD END (W/em-C)

450
271.5
97.170796601
.124
.012
0
.0312
.003
0

20
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OF POOR QUA L,^

CONDUCTIVITY Of AMPOULE kW/cm-G) .02

SAMPLE RADIUS (cm)
AMPOULE OUTER RADIUS (cm) .6
INSIDE RADIUS OF FURNACF MUFFLE 	 IN "Of ZUNE(cw) 2.6
INSIDE RADIUS OF FURNACE MUFFLE	 IN (:ULV 20NE(cw) 1.77
EFFECTIVE EMISSIVITY OF AMPOULE/SAWLE-NOT END- .1695

EFFECTIVE EMISSIVITY OF AMPOULE/SAMPLE-COLD END- V496
EMISSIVITY OF FURNACE -NOT ENV .3
EMISSIVITY OF FURNACE -COLD END .3
LENGTH OF ADIABATIC ZONE (cm) 2.03
TEMP.	 OF SAMPLE AT HOT END OF ADIABATIC ZONE (C) 332

TEMP.	 OF SAMPLE AT CULD END OF ADIABATIC ZONE (C) 171
CALCULATED EFFECTIVE CONDUCTIVITY OF LIQUID (W/cw-C) 9.22222289223E-02
CALCULATED EFFECTIVE CONDUCTIVITY OF SOLID (W/ce-C) 5.61111111112E-02

CASE IV	 Tc CALCULATION

CALCULATED Tc(C)	 97.175483728

TEMPERATURE OF TICKLER HEATER (C) 	 450
LENGTH OF TICKLER HEATER (cm) 	 1.8

CALCULATED EMISSIVITY FUMLTIOM (Feh)-HOT .5440676583M

CALCULATED EMISSIVITY FUNCTION (Fee) -COLD .541962bb8261

CALCULATED RADIATIVE HEAT TRANS. COEFF.-MOT	 (W/ca2-C) 4.13278618099E-03

CALCULATED RADIATIVE HEAT TRANS. COEFF.-COLD (W/Cw2-C) 7.25332379524E-04

CALCULATED CONDUCTIVE MEAT TRANS. COEFF.-HOI	 (W/c02-C) 3.40985719206E-03

CALCULATED CONDUCTIVE NEAT TRANS. COEFF.-CULO(W/cwt-C) 0

CALCULATED EFFECTIVE HEAT TRAMS. CUEF ► .-NUT(W/c"-C) 7.54264337305E-03

CALCULATED EFFECTIVE HEAT TRANS. COEFF.-COLO(W/cw2-G) 3.Iy253323795E-02

CALCULATED RIOT NO.	 -HOT END- 4.90/26195355E-02

CALCULATED RIOT NO.	 -COLD END- .34137919178

THE FOLLOWING COEFFICIENTS ARE USED IN CALCULATING TE14PERAIURE
A--72.9241498065 8- 0 C- 72.7015020J13 V- 45.5813093083

INTERFACE POSITION Xo (cm)	 1.28280d63354E-08
GRADIENT IN LIQUID AT Xo (deg C/cm)	 -b0.1-4171141793

GRADIENT IN SOLID AT Xo	 tdeg C/cw)	 -100.121197562

TEMPFRATURE PROFILE
X(cm) Tkc)

5 435.43465571
4.B 433.b3lb04654
-4.6 432.0SIblb53
-4. 1+ 430.076245714
-4.2 421. "3148313

-4 415.44864b799

-3.8 422./46168734

3.6 419.74b116734

-3.4 416.416046499

-3.2 412.71y309425
3 4 08.6 1 565584 1

-2.8 404.060294622

2.6 399.003504268

?.4 393.3900°0216
2.2 38 7. 1%" /42306

2 380. 14.1'5 66429

1.8 312. 561 94134`1
1.b 364.039095407

21
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ORIGINAL
OF 

Prrtn-1.4 354.576991338
-1.2 344.073350843
-1 332.41 i 114961
-.9 2124
-.6 308.050269289
-.4 295.866846453
-.2 283.683423617

0 271.500000781
.2 251.475761772
.4 231.451522259
.6 211.421282747
.8 191.403043235
1 171.378803722
1.2 153.525834/88
1.4 139.959200417
1.6 129.658802454
1.8 121.838277827
2 115.900584382
2.2 111.392420913
2.4 107.96962 UW4
2.6 105.3708772'
2.8 10?.397794413i
3 101.899741426
3.2 100.162352294
3.4 99.898 7955961
3.6 99.2431442249
3.8 98.7453444165
4 98.3673924503
4.2 98. 0604343474
4.4 97.8625628711
4.6 97.6971450b37
4.8 97.571552437
5 97.4761968756

Input Tla and Tsa checked and program
allowed to continue.

22



SRftC CASE IV	 OF POOR QUALOY
TEMP (C)

458

488

358

380

258

280

150

180

58

8

1	 I	 1	 1	 1

M

TM

in
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1-U MOOLL OF DRYS I AML UR(04TM

SAMPLE CASE V

TEMPERATURE OF NOT ZONE (C)
TEMPERATURE OF INTERFACE (C)
TEM PERATURE OF COLD ZONE (C)
CONDUCTIVITY OF LIQUID (Mica-C)
CONDUCTIVITY OF SOLID (W/ca-C)
CONVECTIVE HEAT TRANSFER COEFF.-MOT END (W /cat -C)
CONVECTIVE MEAT TRANSFER CUEFF.-COLD ENO(ia/cat-C)
CONDUCii4lTY OF GAS	 NOT END W.'ea-C)
CONDUCTIVITY OF GAS - COLD END (YI/ca-C)
CONDUCTIVITY OF AMPOULE (W/ca-C)
SAMPLE RADIUS (ca)
AMPOULE OUTER RADIUS (ca)
INSIDE RADIUS OF FURNACE MUFFLE IN NOT ZONEIca)
INSIDE RADIUS OF FURNACE MUFFLE IN COLD Z0141(cm)
EFFECTIVE EMISSIVITY OF AMPOULE/SAWLE-HOT END-
EFFECTIVE EMISSIVITY OF AMPOULE/SAMPLE-COLD END-
EMISSIVITY OF FURNACE -HOT END
EMISSIVITY OF FURNACE -COLD END
LENGTH OF ADIABATIC ZONE (ca)
TEMP. OF SAMPLE AT NOT ENO OF ADIABATIC ZONE (C)
TEMP. OF SAMPLE AT COLD END Of ADIABATIC ZONE (C)

CALCULATED EFFECTIVE CONDUCTIVITY Of LIQUID (W/ca-C)
CALCULATED EFFECTIVE CONDUCTIVITY OF SOLID (W/ca-C)

i.6

1.77
.)6V5
.94106

.3

.3
2.03
327
133
l.22222222223E-02
5.61111111112E-02

CASE V	 CALCULATES OPTIMUM L• FUR UIVEN GRADIENT

TEMPERATURE OF TICKLER HEATER (C)
LENGTH OF TICKLER HEATER (ca)

CALCULATED EMISSIVITY FUNLTIUN (feh)-MOT
CALCULATED EMISSIVITY FUNLTI014 (Fec)-LULU
CALCULATED RADIATIVE HEAT TRANS. CUEFF.-MOT (W/ca2-C)
CALCULATED RADIATIVE NEAT TRANS. CUEFF.-COLD (W/Ca2-C)
CALCULATED CONDUCTIVE HEAT TRANS. COEFF.-HOI (W/cat-L)
CALCULATED CONDUCTIVE HEAT TRAMS. CUEFF.-COLO(W/ca2-C)
CALCULATED EFFECTIVE MEAT TRANS. COEFF.-HUT(W/cat-C)
CALCULATED EFFECTIVE NEAT TRAMS. CUEFF.-CULO(W/ca2-C)
CALCULATED RIOT MO. -ACT END-
CALCULATED 8107 NO. -COLD ENU-

X00
l.tl

.544067650338

.5419b2bb0261
4.11201340730E-03
4.)Y619W*225E-04
3.4OW5719206E-03
0
7.52187059935E-03
3.1b)2619086ZE-02
4. "314713b93E-02
.338677519574

FOR LIQUID (YkAD1EM7 • 85 (C/cm) AD. ZONE LLMUIH- 1.46832/`1313 lea)

NOTES

	

	 If AD. ZONE LENk.TH 15 ht" IIVE INPUT URADIENT CAF(NUT 01 ACHIEVED WITH
(,IVEN PAkAMETERy.

NOTES

	

	 iNE A0. ZONE IENUTH HAS NLEN LMAir(pET) IN PRUU, RUN CASL 111 FOR TEMP.
POOF ILES
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TABLES

TABLE A-l. FEY PROGRAM SYMBOLS

Computer Program Symbol Thermal Model Notation

A A

Af of

Ain inner radius of ampoule

Alfa a

Ao a0
Aprime A*

Astar a*

B B

Beta

Bh, Be Bi

Blistar aH

Bprime B

B star ?
C C

Cps, Cpa specific "heat

D D

Dhf H 
Efhot, Efcold furnace

Ehot, Ecold sample/ampoule

Feh, Fee Fe

Fl F(L)

GI
GL

Glxo GL(X0)

Gs Gs

Gsxo Gs(X0)

Hcondh, Hcondc Hcond
Hconvh , Hconvc Hconv
Hradh, Hradc

N°ad
Hstarli, Hstarc H*

Kgh, Kgc k 

?6

- -



TABLE A-1. (Concluded)

Computer Program Symbol Thermal Model Notation

Kl , Kls
k 

Ks, Kss ks

Ka conductivity of ampoule

L L

La LA

Lb, Lbt LB

I.f L 
P1, Ps Pe

Rhos, Rhoa p

T T

Tb TB

Te
T 

Th
T 

Tla TL(-X1)

Tm TM

To To

Tostar To

T sa Ts (X1)

U U

X X

Xo x 
X1 X1

X2 X2

X3 X3

27



TABLE A-2. GENERAL INPUT FOR ALL CASES

9. `

Variable Units Description

Id$ 18 Character Run Identification
Th OC Temperature of Furnace Muffle - Hot Zone
Tm OC Melt Temperature of Sample
Tc °C Temperature of Furnace Muffle - Cold Zone
Kls W/cm -OC Conductivity of Sample Liquid
Kss Wlcm -OC Conductivity of Sample Solid

Hconvh W /cm 2 - °C Heat Transfer Coefficient due to Convection - Hot Zone
Hconvc W1cm2 -OC Heat Transfer Coefficient due to Convection -Cold 'Lone
Kgh W /cm- °C Conductivity of Gas in Furnace Cavity - Hot Zone
Kgc Wlem- °C Conductivity of Gas in Furnace Cavity - Cold Zone
Ka W1cm -0C Conductivity of Ampoule
Ain cm Sample Radius
Ao cm Ampoule outer Radius
Afh cm Inside Radius of Furnace Muffle - Hot Zone
Afe cm Inside Radius of Furnace Muffle - Cold Zone
Ehot Effective Emissivity of Ampoule]Sample - Hot Zone
Ecold Effective Emissivity of Ampoule/Sample - Cold Zone
Efhot Emissivity of Furnace Muffle - Hot Zone
Efcold Emissivity of Furnace Muffle - Cold Zone
Lat em Total Length of the Adiabatic Zone
Tla °C Sample Temperature at Edge of Adiabatic Zone - Hot Side
Tsa °C Sample Temperature at Edge of Adiabatic Zone - Cols. Side
Lim cm -Lim - X <: Lim is range to Calculate Temperature

Profiles.	 Must be an integer (plotter requirement).

TABLE A-3. SPECIFIC INPUT FOR CASE I

Variable Units Description

Rhos g/cm3 Average Sample Density
Rhoa g/cm3 Average Ampoule Density

Cps W-sec/ Average Sample Specific Heat
g- oC

Cpa W-sec/ Average Ampoule Specific Heat
g- °C

U em /sec Ampoule Pull Rate
D hf W - sec /g Heat of Fusion

28



TABLE A-4. LPECIFIC INPUT FOR CASE II

Variable Units Description

Bhstar

Lc cm

Biot Number pt End of Sample - Hot Zone

Length of the Ampoule Inserted into the Hot Zone

TABLE A-5. SPECIFIC INPUT FOR CASE III AND IV

Variable Units Description

Tb

Lbt

°C

cm

Temperature of Booster (Tickler) Heater

Length of the Booster (Tickler) Heater

TABLE A-6. SPECIFIC INPUT FOR CASE V

Variable Units Description

Tb °C Temperature of Booster (Tickler) Heater

Lbt cm Length of Booster (Tickler) Heater

Git - °C /cm Gradient in Liquid at which to Optimize Adiabatic Zone
Length.	 Note:	 Must be negative.

29



TABLE A -7. GENERAL INPUT FOR CASES I-V

(Reference Table A-2 for definitions and units)

Id$ Sample Case I (see Note 1)

h 450

Tm 271.5

Te 40

Kls 0.124

Kss 0.072

Hconvh 0 (see Note 2)

Hconvc 0.0312 (see Note 3)

Kgh 0.003

Kgc 0 (see Note 4)

Ka 0.02 (see Note 5)

Ain 0.5

Ao 0.6 (see Note 6)

Afh 2.6

Afc 1.77

Ehot 0.7695

Ecold 0.9486

Efhot 0.3

E fco ld 0.3

Lat 2.03

Tla 327 (see Note 7)

Tsa 133 (see Note 8)

Lim 5 (see Note 9)

NOTES

1. I was replaced by II , III, IV, and V for the five cases respectively.

2. Heat transfer in the hot end was assumed to be dominated by conduction and
radiation since the space between the sample and furnace muffle contained stagnant
helium gas. A value of Hconvh = 0 was used here to model that assumption.

3. The convective heat transfer coefficient in the cold zone was estimated from the
formula in the Thermal Model (page 15, Appendix B).

4. The conductive heat transfer of the gas was included in the empirical formula
for forced convection, Thermal Model (page 15, Appendix B).

5. A fused silica ampoule was modeled and an average conductivity value used.
Pinter 0 here if no ampoule is included.

}
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TABLE A-7. (Continued)

NOTES (Continued)

6. Enter Ao = Ain if no ampoule is used.
7. If this value is not known, a good first guess is Tla = (Th + Tm)/2. The

interactive mode will allow for a correction, if necessary after the temperature
profiles are calculated.

8. See note 7 and use Tsa = (Tc + Tm)12 as the first guess.
9. Lim was set = 2 (integer required) in Case II because only 2.5 cm was inserted

into the hot zone.

TABLE A-8. SPECIFIC INPUT FOR CASES I-V

Case I Rhos = 10.05
R hoa = 2. 3
Cps = 0.1463
Cpa = 0.493
U = 0.0028
Dhf = 50. 16

Case 11 Bhstar = 0.0507 (see Note 1)
Le = 2. 5

Case III Tb = 450 (see Note 2)
Lbt = 0 (see Note 3)

Case IV Tb = 450 (see Note 2)

Lbt = 1.8 (see Note 3)

NOTE:: An input for Te = 40 was entered when general input was
called for. This case will calculate a new value for Tc and run the
temperature profiles with this new value.

Case V	 Tb = 500
Lbt = 1. 8
Glt = - 85 (see Note 4)

NOTES

1.	 Case III was run and the printed temperature profile was used to find T at
x	 Ix = - `?. 5.	 This T was then read in as input for Tla in Case III, and
the kalculated Biot number for the hot zone was used as Bhstar input for
Case	 II .

2,	 If the booster heater is not	 used, this value should be set equal T1'i,

3,	 it' the booster heater is not	 used (i.e., Tb = Th), Lbt s ;ay be any number > 0.

4.	 'Phis must be a negative number.
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CASE 1 i	 I CASE 2

INTERACTIVE	 INTERACTIVE

	

INPUT	 INPUT

	

PRINT	 PRINT

	

INPUT	 INPUT

	

GO SUB	 I	 I	 00 SUB

	

BIOTCAL	 BIOTCAL

	

PERFORM	 I	 i PERFORM
CASE 1	 I CASE 2
CALCULATIONS	 CALCULATIONS

PRINT	 PRINT

	

COEFFICIENTS	 COEFFI

	

COMPUTE	 COMPUTE
TEMPERATURE	 TEMPERATURE

	

PROFILES	 PROFILES

	

GO SUB	 GO SUB

	

PRT 2	 1	 1	 PRT 2

GO TOGO TO

	

BEGIN	 BEGIN
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CASE a ORIGINALPo('R OUALITY
Of 

Po('R

 a 4

NO

INTERACTIVE
INPUT

F
PRINT

UTINP

GO sue
BIOTCAL

PERFORM SOME
CASE a
CALCULATIONS

4 YES	 IxgI 6TgI

)FIVISH

YES

SE a
IONS PRINT

CASE 4

PRINT	 t
COEFFICIENTS

PASS i n e

CALCULATE
TEMPERATURE	

(i0 SUePROFILES
BIOTCA L

GO sue
PRT 2

GO TO
eEGiN

i

NO	 GO TO
CASE 4 p
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CASE 4 1	 1 CAN i

w .

PASS 1 ^ 1
INTERACTIVE

INTERACTIVE
INPUT

PRINT
CASE 4P INPUT

GO SUe
eIOTCAL

I
GO we i
eIOTCAI

COUNTER-
COUNTER + I

PERFORM
CASE S

ERROR

R <li	
CALCULATIONS

COUNTE	 NO	 MESSAGE

SELCAS	 OUI U'

GO TO
SE LCAS

PERFORM
CASE 4
CALCULATIONS

GO we
GIOTCAL

GO TO
CASE 3
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mAL PAG'E t5
ORi p^^^ 0i,pt-IV
Of

ADTEM

CALCULATE
	

INTERACTIVE
NEAT TRANSFER
	

NPUT OM
COEFFICIENTS
	

Tie AND To

CALCULATE
	

BO TO
BOOT NUMBERS
	

BE01112

PASS i - 1
	

VES 1-4 RETURN

00 TO
TX►LOT

NO

PRINT
7UTPUT

RETURN

2
tOUT

PRINT
OUTPUT

INTERACTIVE
PROGRAM
CONTROL

RETURN

40 TO
AOTEM
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TXPLOT	 $us-^

ROUTINE

CALL	
EAMS

W$
AXE 

CALL	 RETURN
LABLER

PI OT
T VS X

80  d
V

^
IN

LABELER
SU!—
ROUTiNE

I ABE LS
AYE$

RETURN

A
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COMPUTER PROGRAM LISTING

I(	 '	 AN ARALYIICA( nPPIWACH (0 TNLkMAL MUUELIMP

20	 "	 Oi OR1D(Af4AN-TYPt CRY W VROWTM
UNF-UIMENSIOMAL ANALYSIS

40

So	 NEGATIVE W IS IR HUT ZONE DF FURNACE

60	 '	 X-C 14 IN M10KE Of ADIABATIC ZONE
70	 '	 POSITIVE X 15 IN COLD ZONE Of FURNACE

so
30	 DiN `(errny0 01),lerrey(I01)

100 Be91o, Cauoter-0 'ITERATION COURIER

116 Cale-0 'CASE SELECIIOM CONTR41.

120 Pessi-0 t CASE4 CONTROL VARIABLE
130 INPUT ' RUN 101NTIFICATIOM (10 C.HARACTERS)'.1dil

140 INPUT 'TEMP. OF 40T 'ORE t DEG. C)',Th

150 INPUT 'TEMP. Of WL1	 1NTERFACt tUEG. t,)',(ee
i60 IHPUl 'TEMP OF COLD (OHC (01(r. C)',Tc

170	 IMPU7 *CONDUCTIVITY fit LIWUID tW/r. it ►-C)',Kls
1148 INPUT 'CONDUCTIVITY Of SM ID tW/e:tr-C)",ass
190 INPUT ' CONVEb_ Ivt HEAT TRANSFER CUEFF. - HOT END (W/co2-C)' , Hc9"vh
200 INPUT 'COMVECIiVt HEAT TRANbfEk CUtff. -CULT) ENO tW/cts2-C)',Hconvc

210 INPUT 'C0HDUCTIVIIV OF GAS -HUT END- ( W/ce-C)',K9h

2220 INPUT 'CONDUCTIVITY OF OAI, ­ LULU ENT) (W/cis-C)',Kyc
1.30 INPUT 'CONDUCTIVITY Of AMPOULE ( W/cite-C)',Ke

240 INPU T 'SAMPLE RADIUS ( co) ',Akit

250 INPUT 'ApWOULF OUTtR RADIUS (cm)',Ao
250 INPUT 'INSIDE RADIUS OF FURNA(;E MUFFLE IH NOT ZONE ttis)•,Afh

270 INPUT *INSIDE RADIUS Of fVkHACE NUfftE 104 THE COLD ZONE tcls)•,A1c

?FdO INPUT 'EfFECTIVE EMISSIVITY OF ANAIUUL€i54MPLL-HOT EMU-•,Shot

290 INPUT *EFFECTIVE ENIS%lVlTY Of AMPOULE/SAMPLL-LULD €ND',Lcold

300 IMFUT 'EMISSIVITY Of FURNACE WAIL. -HUT END",Efhol

310 INPUT • LMIr^,IVITV Of FURNACE WALL -COLD ENU'.Efcold

320 INPUT '( . FN(1TH OF ADIABATIC ZUNL tciie)'.Let

330 1MPVT "TLMP, Uf SAMPLE AI HUT IND Of ADIABATIC ZONE tOtG C)',Tle 'IF TEPID.

15 N01 KN(1WM-(AJ[%S A VFvLUE ,CHECK AF TLR PkOf Itl la CAL. AND LORkECT
340	 INPUT ' TI.MP. U1 1,ANlPt k AT LULU c . nl+ OF iOfAbAIIC ZUNE (CEO ()",Ise

350	 IMFU1 '51 PT. IIAP. PROf ILL WILL kit CAL. FUlf -LIM(ACLIPI. INPUT LIM ( cm)',Lim

z60 Brq;nT,	 Pf)INIEW IS ),5 1volNILR
370 PRIM;

30,. PRINT •	 1 U MODE1 Of CRYbIAL tr4lUW1H•
350 PV IHI	 'tld•

40'0 PRINT
410 PRINT

4:'0 PRINT '7F!4PE kAttfRt OF HUI (UNJ (L) 	 ° ih
430 PRINT 'TtMPIRATUkt Of INTEPFALt (L)	 •,1st
440 PRINT • TENPLRATUkt Uf CULU , U4t <c)	 •,Ic

4'^0 PRINT • tUNDUCTIVIIY OF LIUVIV (WICO-L)	 ',Ills
04 POIN7 • t'UHDUCTIVITY Of SURD tW/cm-L) 	 •,Rss
4tt; V^ 1 1141 'CONVECTIVE HIAI IRANSIEW CUtft.-HOT END (W/cmZ - C)',Hconvh

4 V P 9R iH'- • CUNVICIIVE HIAI IRAMSflk CUttf. - LULD LND(W / cmZ-L)',N..onvc
4'40 P RIHI 'CONDUCTIVITY Of GAS	 HUT t"D tW / c•-C)	 •,Kyh

00 Pf'1HT 'CONDUCTIVIT Y OF GAS - CULU IND tYt/cs-C)	 •,K9c
`,l FR 1-41 • CONDUCTIVITY Cf AMPOULE '.W/co-C)	 ',Ko

0 3'IiiMI • 5AWI LI WAVIUS 'ca)	 *,*in
;.:0 PRIMI "AMPOUtl OUTER WADIUS (co) 	 •,Ao
40 P s, IHI 'IN',IUF WAUIU', UT IURHACt NUffIE IN HOT ZURt(es) ',Ath
",e PWIHi • INSIDE WAUIU'., OF F UWHACt F"Jf f t t IN COLD ZUNI(cm) ,Afc

',C0 PRINT 'IfltCllvl EMISSIVITY Of ANPOULL/ 1SAMPLE-0101 END- *,Shot
fI PRIP,I 'IFFECTWE IMISSIVIIV UI AMPUUIE/SAMPLE-CULU LNU'',Ecold

•,H0 PRIN1 • EMISSIVITY OF fURHALt -HO1 END	 ',tthot

• •40	 vill"T 'f MI°,SIVIIY OF fUkNA((	 LULU tHD	 ',Efcold
6-1G0	 FI R iHI 'ttH,,1H Of AVIANATIL /UMt tca) 	 •,let
G1li PPINI 1 71MP. tit '.,AMPLI AT HUT tNV Of AUTAbAIIC :ONE ICJ *,It*

b R	 F"'WIHI • lfNP. OF ',APWII AT LULU IMO Of ADIABATIC 1 1JNt ( G)',ise
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630	 ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
640 !	 NORMALIZE BY AO AND CALCULATE EFFECTIVE CONDUCTIVITIES
650 Le- Let/Ao
660 X1-L&/2	 !HALF LENGTH OF AD. ZONE
670 Xinc-20Liw/50	 IX INCREMENT FOR .TEMP. PROFILES-SET FOR 51 POINTS
680 Xc--'. n	 !INITIAL X(cm) AT WHICH TO START TEMP. PROFILES
690 Ki-41s*Ain'2/Ao'2 •Ke*(1-Ain'2/Ao'2)	 !EFFECTIVE COMOUCTIVITV-LIQUID
700 Ks-Kss*A1n'2/Ao'2 •Ke0(1-Ain'2/Ao"2)	 !EFFECTIVE CONDUCTIVITY-SOLID
710 PRINT -CAL'1ULATEO EFFECTIVE CONDUCTIVITY OF LIQUID (W/cn-C) -,Kl
720 PRINT -CALCULATED EFFECTIVE CONDUCTIVITY OF SOLID (W/ce-C) -,Ks
730	 ! - - - - - -	 - - - - - - - - - - - - - - - - - - - - - - - - - - - -- -
740 !	 SELCAS
750 !	 FOLLOWING ALLOWS VARIOUS CASE SELECTIONS
760 !
770 StIcas g	PRIP	 IS 16	 !CRT
780 PRINT 'THE FOL,l ?% RdM OPTIONS ARE AVAILABLE'
790 PRINT
800 PRINT '1. CASE I-
810 PRINT -2. CASE Ii'
820 PRINT '3. CASE 111•
830 PRINT -4. CALCULATE (CASE 111) OPTIMUM Tc TO CENTER THE MELT ISOTHERM•
840 PRINT -5. CALCULATE (CASE Ill) OPTIMUM La FOR A GIVE" GkAD1ENT'
850 PRINT
860 INPUT -INPUT 1,2,3,4, OR 5-,Case
870 PRINTER IS 7,6	 !PRINTER
880 I F Cast-1 THEN Casei
890 IF Case-2 THEN Case2
900 IF Case-3 THEN Case3
910 IF Case-4 THEN Case4
920 IF Case-5 THEN Case5
930 PRINTER IS 16 !CRT
940 PRINT -ERROR IN LAST INPUT--RUN OPTION MUST - 1,2,3,4,OP 5-
950 PRINT 'PRESS; CONTINUE BAR FOR ANUTHER CHANCE TO INPUT RUH OPTION'
960 PAUSE
970 GOTO Selca-_
980
990
1000	 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1010	 0101CAL

1020 '	 CAL-ULATES CONDUCTIVE AND RADIATIVE HEAT TRANSFER CUEFF. AND BLOT NOS.
1030 !
1040 Biotcai: PRINTER IS 7,6 !PRIM ER
1050 Feh-1/(1/Ehot+Ao/Afh*(1/Efhot-1))
1060 Fec-1/(1/Ecold+Ao/Afe*(1/Efcold-1))
1070 Hradh-5.67E-12*Feh9(25/120(Th+2/3)'3+13/129(Th•273)'29(T1a+273)+7/1?9(Th+27
3)9(Tta*273 "2.1/4*(T1a+273)'3)
1080 Hradc-5.67E-129Fec*(25/129(Tc+273)'3+13/12*(Tc+2/3)'29(Tsa+273)+7/12*(Tc+27
3)*(Tsa+273)12+1/4*(Tsa•273)13)
1090 Hcondh-Kgh/Ao/LOG(Afh/Ao)
1100 Hcondc-Kgc/Ao/LO6(Afc/Ao)
1110 Hsterh-Hconvh+Hradh+Mcondh 	 !EFFECTIVE HEAT TRANSFER CUEFF.-HOT END
1120 Hstarc-Hconvc+Hradc+Hcondc 	 !EFFECTIVE HEAT TRAMSVER CGEFF. - COLD END
1130 8h-Hstarh9Ao/K1	 1810T NO. -HOT END
1140 Bc-Hstarc*Ao/Ks 	 !RIOT NO. -COLD END
1150 Alfa-SOR(2*8c)
1160 Beta-SQP(29Bh)
1110 Ir Pa551-1 THEN RETURN	 ALLOWS FOR TC ITERATION WITHOUT PRIMT-CASE4
1180 PRINT
1190 PRINT
1200 PRINT 'CALCULATED EMISSIVITY FUNCTION (Feh)-HOT 	 ',Feh
121 PRINT - r AtCULATED EMISSIVITY FUNCTION (fee)-COLD	 -,Fec
1220 PRINT 'CALCULATED RADIAIIVE HEAT TRANS. COEFF.-HOT (W/cw2-C)-,Hr6dh
1230 PRINT 'CALCULATED RADIATIVE HEAT TRAMS. CUEFF.-COLD (W/Cw2-C)',Hradc
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1240 PRINT *CALCULATED CONDUCTIVE HEAT TRANS. COEFF.-MOT ( W/c&2-C)•.Hcondh
1250 PRINT 'CALCULATED CONDUCTIVE NEAT TRANS. COEFF.-COLD(W/cw2- C)•,Hc9ndc
1260 PRINT *CALCULATED EFFECTIVE NEAT TRANS. COfFF.-HOT(W/cw2-C) •.Hsterh
1270 PRINT *CALCULATED EFFECTIVE HEAT TRANS. COFFF.-COLD(W/cw2-C) ',Hsterc
1280 PRINT *CALCULATED BIOT N0. -NOT END-	 •,Bh
1290 PRINT 'CALCULATED SLOT MO. -COLD END-	 ',bc
1300 RETURN
1310 1
1320 ' - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1330 !
1340 '	 CASE 1
1350	 FOLLOWING CALCULATES TEMP. PROFILES IN A SAMPLE AS IT IS BEING TRANSLATED
1360 '	 AT A VELOCITY U
1370
1380 Caselt	 PRINT
1390 PRINT
1400 PRINT	 CASE I•
1416 PRINT
1420 PRINT
1430 INPUT "AVERAGE SAMPLE DENSITY (g/cm3)',Rhos
1440 INPUT "AVERAGE AMPOULE DENSITY (g/cw3)',Rhoa
1450 INPUT *AVERAGE SAMPLE SPECIFIC HEAT (W-sec /g-C)•,Cps
1460 INPUT *AVERAGE A14POULE SPECIFIC HEAT (W-sec /g-C)',Cpa
1470 INPUT *AMPOULE VELOCITY (cm/sec)',U
1480 INPUT 'HEAT OF FUSION (W-sec/g)',Dhf
1490 PRINT 'AVERAGE SAt1PLE DENSITY (9/cw3) 	 ',Rhos
1500 PRINT "AVERAGE AMPOULE DENSITY (9/cm3)	 ',Rhoa
1510 PRINT "AVERAGE SAMPLE SPECIFIC HEAT (W-sec/g-C)	 ',Cps
1520 PRINT 'AVERAGE AMPOULE SPECIFIC: HEAT (w-see/g-C) 	 '.Cpa
1530 PRINT 'AMPOULE VELOCITY (Cm/sec) 	 ',U
1540 PRINT 'HEAT OF FUSION (W-sec/g) 	 ',Uhf
1550 Rceff-Rhos*Cps*Ain'2/Ao'2+Rhoa*Cpes(1-Ain'2/Ao'2)
1560 Dhfeff-Dhf*Ain'2/Ao'2
1570 Rhoeff-Rhos*Ain'2/Ao'2+Rhos*(1-Ain'2/Ao'2)
1580 PI-Rceff;Ao*U/K1
1590 Ps-K1*P1/Ks
1600 PRINT 'CALCULATED PECLEC NO. FOR THE LIQUID 	 ',P1
1610 PRINT 'CALCULATED PECLEC N0. FUR THE SOLID 	 ',Ps
1620 GOSUB 8iotcel
1630 Lf-Rhoeff*Ao*U*Dhfeff
1640 Aster-(SOR(4*Aifa'2+Ps'2)-Ps)/2
1650 8star-(SUR(4*Beta'2+P1'2)+P1)/2
1660 Laml-(Ps*KI*(Th-Tw)*(Xt'2/2 +Xt /Aster)+PlmKs*(Tm-Tc)*(X1'2/2+X1/9ster)+Lfe(X
1-1/Aster)a(X1*1/Oster))/(K1*(Th-Is)+Ks*(Tm-Tc))
1670 Lem2-Lf*tl/Bster-1/Aster)+Ps*Ks*(Tw-Tc)*( X1+ 1/Bster)-PIOKle(Th-Tm) *(X1 +1/As
ter)
1680 Lam2-Lew2/(K1*(Th-Tm)+K%R(Tm-Tc))
1690 Lam3-(Lf+Ps*(K1*(Th-Tm)/2+Ksa(Tm-Tc))+P1*( KS*(Tm-Tc)/2+K1*(Th-Tm)))/(K1*(Th
-Tm)+Ksm(Tw-Tc))
1700 Dx0-Laal-Lam2*X0-Lew3mX0'2
1710 XOp-XO+DrO
1720 GOSUS Residue
1730 ' - -	 - - - - - - - - -
1740 Rest-Res
1750 XOp-XOp+.01
1760 GOSUB Residue
1770 Rest-Res
1780 X0-X0p +.0I*Res2/(Resl-Res2)
1790 IF ARS(Resl)(.00001 THEN Pop NEST FOR CONVERGENCE
1800 XOp-XO
1810 GOSUB Residue
1820 GOTO 1740
1830 '	 - - - - - - -	 - - - -
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1840 Reslduet'-res-K1ePla(Fe- Th)NEXP(P1aXOp) /(EXP(-P1eX1)e(P1/Bstar- 1)•EXP(PleXOp
))-L1
1850 Rres-KsePse(Tc-Tm)eEXP(PseXOp)/(EXP( PsoXI)e(Ps/Astar•l)-EXP(PseXOp))
1860 Res- Rres-Lres
1870 RETURN
1880 1 --- - - - - - - - - - - - -

1890 Pop;	 I XO HAS CONVERGED
1900 8-(To-Th)/(EXP(-PIRX1)a(Pl/Bster- 1)•EXP(PIEXO))
1910 Bprlme-(Tc-Tm)/(EXP(PsaX3)e(Ps/Aster• l)-EXP(Ps>!XO))
1920 A-BeEXP(-PIaXl)a(PI/Bstar-1)•Th
1930 Aprlme--BprlmeaEXP(PseXl)e(Ps/Astar•1)•Tc
1940 C--PseBprimemEXP(PseXI)/Aster
1950 D--PIwBmEXP(-PImXI)/8star
1960 G1-P1e8eEXP(P1eX0)
1970 Gs-PseBprlmeeEXP(PseXO)
1980 PRINT
1990 PRINT *THE FOLLOWING COEFFICIENTS ARE USED IN CALCULATING TEMPERATURE'
2000 PRINT •A-'tAt'8-•tB;'ASTAR-•;Aprimel'OSTAR-•18prime;*C-';C%'D-•;D
2010 FOR 1-1 TO 51	 ' CALCULATE 51 PT. TEMP. PROFILE
2020 X-Xc/Ao 'NORMALIZE
2030 IF X<-XI THEN T-Th-DaEXP(Bsters(X•X1))
2040 IF (X>-XI) AND (X(XO) THEN T-A•ONEXP(PINX)
2050 IF (X>XO) AND (X<X1) THEN T-Aprime+BprimeAEXP(PseX)
2060 IF X)X1 THEN T-Tc•CNEXP(-Astarm(X-X1))
2070 Xarray(1)-Xc
2080 Tarray(I)-T
2090 Xc-Xc•Xinc
2100 NEXT 1
2110 GOSUB Prt2 'PRINT OUTPUT
2120 GOTO Begin	 'PROGRAM SHOULD NORMALLY NEVER EXECUTE THIS
2130 '
2140	 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2150	 CASE 11
2160 ' INVESTIGATION OF END EFFECTS-SAMPLE IS INSERTED A FINITE DISTANCE LC IN
2170 '	 THE HOT ZONE. SAMPLE IS M;,;IONLESS.
2180
2190 Case2z PRINT
2200 PRINT	 LASE II'
2210 PRINT
2220 PRINT
2230 INPUT 'RIOT NO. (8e) AT ENO OF ROD IN THE HUT ZONE	 ',Bhster
2240 INPUT 'LENGTH OF THE AMPOULE WHICH IS INSERTED !NTO NOT LONE (cssi)',Lc
2250 PRINT *RIOT NO. AT END OF ROD IN HOT ZONE 	 •,Bhster
2260 PRINT 'LENGTH OF AMPOULE INSERFEU INTO NOT ZONE (cm) 	 ',Lc
2270 GOSUB B;otcel
2280 L-Lc/Ao 'NORMALIZE
2290 Fl-((1•Bhster/Beta)REXP(BetaeL)+(1-Bhster/Seta)aEXP(-BetaeL))/((1.8hstar/Be
ta)aEXP(BeteaL)-(1-Bhster/Beta)NEXP(-BetaeL))
2300 GI--(Th-Tm•K%/Kla(Tm-Fc))/(La-1/Alts-Fl/Beta)
2310 Gs-KINGI/Ks
2320 XO-(KIN(Th-Tm)s(XI#I/Alts)-Kse(Tm-TC)a(XI-FI/Bete))/(Kle(Th-Tm)•Kse(Tttt-Tc))
2330 TO-Tm-G1aX0
2340 TOstar-Tm-GsmXO
2350 C- Gs/Alfa
2360 B-GINEXP(-BrtaaL)/Bete,/((1•Bhster/Seta)/(I-Bhster/Beta)eEXP(Betea(L+Le))-E1
P(-8etee(L-La)))
2370 D--GI/Pete/ll-(1-Bhster/Beta)/(1 • Bhstar/Beta)aEXP(-2a8etaeU  )
2380 PRINT
2390 PRINT 'THE FOLLOWING COEFFICIENTS ARE USED IN CALCULATING TEMPERATURE•
2400 PRINT
2410 FOR 1-1 TO 51	 'CAL. 51 PT. TEMP. PROFILL
2420 X - Xc.'An 'NORMALIZE
2430 IF X( X1 THEN T•Th-DNEXP(Beta n (X•xl))•BNEXP(-Betae(X-Xl))
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2440 IF (X>-X1) AND (X<XO) THEN T-T0+61aX 	 OF POOR QUALITY
2450 IF (X>XO) AND (X<X1) THEN T-TGstar+GsaX
2460 IF X>X1 THEN T-Tc+C=EXP(-Alfas(X-XI))
2470 Xarray(1)-Xc
2480 Torray(1)-T
2490 Xc-Xc+X ► nc
2500 NEXT 1
2510 GOSUB Prt2 !PRINT OUTPUT
2520 GOTO Begin !PROG. WILL NOT NORMALLY EXECUTE THIS STEP
2530 !
2540 !
2550 ! - - - - - - - - - - - - - - - - - - - - - - - - - -- 	 - - - - - - - -
2560 !	 CASE Ill
2570 ! STEADY STATE CALCULATION WITH AM OPTIONAL TICKLER HEATER
2580 !
2590 Cas-^3P IF Case-4 THEM 6010 2700	 !INPUT HAS ALREADY BEEN SUBMITTED
2600 X1-La/2	 112 OF AD. ZONE LEMVTH
2610 PRINT
2E20 PRINT	 CASE III*
2630 PRINT
2640 INPUT 'TEMP. OF TICKLER HEATER (DE(P. C)•,Tb
2650 INPUT 'LENGTH OF TICKLER HEATER tea)	 .,Lb.
2660 PRINT "TEMPERATURE OF TICKLER HEATER (C)	 ',Tb
2670 PRINT 'LENGTH OF TICKLER HEATER (cm) 	 -,Lbt
2680 GOSUB Siotcal
2690 1	 CALCULATES GRADIENT AND XO POSITION FROM CENTER LINE
2700 Lb-Lbt/Ao	 !NORMALIZE LEtHiTH TO AMPOULE OUTER RADIUS
2710 Lb2-LE/2
2720 X2-X1+Lb2
2730 X3-X2+Lb2
2740 Eolfs-EXP(Alfaftb2)
2750 Ebets-EXP(Betasl-b2)
2760 8--(Tb-Th)/2/Ebete
2770 Gl--(Tb-Tm*Ks/Kla(Ta-Tc)+(Th-Tb)sEXP(-BetaaLb))/(La+l/Bete+1/Alfa)
2780 XO--(Tb-Ta+(Th-Tb)sEXP(-Betas2slbZ)-Ks/Kla(to-Tc)+61s(1/Bete-1/Alfa))/2/61
2790 IF Case04 THEN GOTO Case3p 	 'SKIP FOLLOWING TEST IF NO T lA CASE4
2800 IF ABS(XO)>IE-6 THEM GOTO Case4p 'ALLOWS FOR TC ITERATION
2810 8
2820 ! XO IS WITHIN TOLERANCE FOR CENTER OF AD. ZONE ON CASE 4
2830 PRINT 'CALCULATED Tc(C) 	 •,Tc
2840 PRINT *TEMPERATURE OF TICKLER HEATER (C)	 ',Tb
2850 PRINT 'LENGTH OF TICKLER HEATER (ca)	 ',Lbt
2860 Passl-0	 $RESET CASE TO ALLOW FOR PRINT IN 810TCAL
2870 GOSUB 8iotcal
2880 1
2890 Case3pt Gs-KING)/Ks
2900 C--Gs/Alfa
2910 A-(8/Ebeta+G1/Bete)/Ebeta
2920 D -A/Ebeta•BsEbete
2930 TO-Tom-GIOXO
2940 TOs-Ts-GssXO
2950 PRINT
2960 PRINT -(HE FOLLOWING COEFFICIENTS ARE USED IN CALCULATING TEMPERATURE'
2970 PRINT •A--;At'B-'S8t'C-•iCi'D-';0
2980 FOR 1 . 1 TO 51
2990 X-Xc/Ao	 'CPL. 51 PT. TEMP. PROFILE
3000 IF X<--X3 THEN T-Th-DsEXP(8ete6(X+X3))
3010 IF (X>-X3) AMD (X<--X1) THEN T-Tb+AEEXPtOetaa(X+X2))+BNEXP(-8etas(X+X2))
3020 IF (X)-X1) AMD (X<-XO) THEN T-T0+G1sX
3030 IF (X>XO) AND (X^,-X?) THEM I-TOs+GsaX
3040 IF X>X1 THEN T-Tc•CmiXP(-Altaa(X-XI))
3050 Xarray(1)-Xc
3060 Torray(1)-T
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3070 Xe-Xc+Rine
3080 NEXT 1
3090 GOSUB Prt2
1100 GOTO Begin !PROGRAM WILL NOT NORMALLY EXECUTE THIS STEP
3i10! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3129 !	 CASE IV
3130 !	 CALCULATES Tc WHICH WILL CENTER THE Tmeit ISOTHERM
3140 '	 TEMPERATURE CALCULATIONS USES CASE III EQ.
3150 !
3160 Case4 t PRINT
3170 PF'INT
3180 PRINT	 CASE IV	 Tc CALCULATION'
3190 PRINT
3200 Passl -1 	! CONTROL FOR FIRST PASS IN BIOTCAL
3210 INPUT *TEMP. OF TICKLER HEATER (Deg C)',Tb
3220 INPUT 'LENGTH OF TICKLER HEATER (cm)',Lbt
3230 GOSUB Biotcal
3240 Lb-Lbt/Ao	 !NORMALIZE
3250 Case4p: ! ENTER CASE4 FOR ITERATION LOOP
3260 Counter-Counter • 1	 !ITERATION COUNTER
3270 IF Counter<10 THEN GOTO Case4pp
3280 PRINT	 TO CENTER To ISOTHERM IM MIDDLE OF AD. ZU.1 9: WAS NOT FOUND AFTE
R 10 TRYS'
3290 PRINT 'Tc-',Tc,•XO-',XO
3300 GOTO Selcas
3310 !
3320 Case4pp:
3330 Tc-Tma(La•1/Beta•1/Alfa)/(Le/2+1/Beta)-Kl/Ksm(Le/2.1/Alfa)a(Tb-Tm+(Th-Tb)aE
XP(-Beta>ELb)•Ks/KIaTm)/(La/2.1/Beta)
3340 GOSUB Biotcal	 'RECALCULATE ALFA AND BETA FOR NEXT ITERATION
3350 GOTO Case3

3360 ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3370 !
3380 '	 CASE V
3390 '	 CALCULATES OPTIMUM LENGTH OF ADIABATit, ZONE (LA) TO ACHIEVE
3400 '	 DESIGNATED LIQUlu GRADIENT
3410
3420 Case5: PRINT
3430 PRINT
3440 PRINT	 CASE V	 CALCULATES OPTIMUM La FOR GIVEN GRADIENT'
3450 PRINT
3460 INPUT 'TEMP. OF TICKLER HEATER (Deg C)',Tb
3470 INPUT 'LENGTH OF TICKLER HEATER (cm)',Lbt
3480 INPUT *GRADIENT IN LIQUID (MINUS C/Cm) AT WHICH TO OPTIMIZE AD. ZONE LENGTH
',Glt
3490 PRINT *TEMPERATURE OF TICKLER HEATER (C) 	 ',Tb
3500 PRINT 'LENGTH OF TICKLER HEAIEk (cm) 	 ',Lbt
3510 Lb-Lbt/Ao 'NORMALIZE
3520 GI-GltwAo 'NORMALIZE
3530 GOSUB Biotcal
3540 La-(-Tb•Tm+(Tb-Th)NEXP(-BetaaLb)-Ks/Kie(Tm-Tc)-Gla(1 /Alfa•l/Beta)) /Gl
3550 PRINT
3560 PRINT

3570 PRINT 'FOR LIQUID GRADIENT -'yGlts'(C/cm) AD. ZONE LENGTH-'FLeaAoF'(cm)'
3580 PRINT
3590 PRINT 'MUTE:	 IF AD. ZONE LENGTH 15 NEGATIVE--INPUT GRADIENT CANNOT BE AC
HIEVED WITH'
3600 PRINT	 GIVEN PARAMETERS.'
3610 PRINT
3620 PRINT
3630 PRINT 'NOTE:	 THE AD. ZONE LENGTH HAS BEEN CHANGED IN PROG. KUH CASE If
I FOR TEMP.'
3640 PRINT •	 PROFILES'
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3650 GOTO Selcae	 OF POOR QUALITY

3660 ! - - - - - - - - - - - - - - - - - -
3670 !	 eRT2
3680 Prt2:	 ! OUTPUT AND PROGRAM CONTROL
3690 PRINT
3700 PRINT
3710 PRINT *INTERFACE POSITION Xc (cm)	 ',XQmAo
3720 PRINT 'GRADIENT IN LIQUID AT Xo (deg C/cm) 	 ',Gl/Ao
3730 PRINT 'GRADIENT IN SOLID AT Xo 	 (deg C/cm)	 ',Gs/Ao
3740 PRINT
3750 PRINT
3760 PRINT '	 TEMPERATURE PROFILE'
3770 PRINT '	 X(cm)	 T(C)'
3780 FOR 1 . 1 TO 51	 !PRINT 51 Pf. TEMP. PROFILE
3790 PRINT Xerray(I).Tarray(i)
3800 NEXT 1
3810 PRINTER IS 16 !CRT
3820 PRINT •	 • 'CLEAR CRT SCREEN
3830 PRINT • CHECK. TEMP. AT HOT AMD COLD EDGE OF ADIABATIC ZONE (X ­ 1/2Lo)•
3840 PRINT • 1. IF TEMP. ARE O.K. TYPE: CUNT TXPLOT'
3850 PRINT '	 PRESSt EXECUTE KEY'
3860 PRINT 0 2. IF TEMP. NEED CORRECTING	 TYPE: CONT AOTEM
3870 PRINT •	 PRESS: EXECUTE KEY'
3880 PAUSE SEE ABOVE INSTRUCTIONS TO CONTINUE PROGRAM
3890 RETURN
3900 ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3910	 ALLOWS ONE TO CORRECT INPUT TLA AND TSA TEMPERATURES
3920 Adtemt INPUT 'TEMP. OF SAMPLE AT HOT END OF ADIABATIC ZOHE(C)',Tla
3930 INPUT 'TEMP. OF SAMPLE AT COLD END OF ADIABATIC ZONE(C)',Tea
3940 GOTO 360
3550	 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
39i0 !	 TXPLOF
3°70	 PLOTS X vs T FOR -Lim < X < Lim
3980
3990 T=plot: PLOTTER IS 7,5,•9872A'
4000 DIM Titlet$(3)
4010 Titletf(1)-ldt	 15ET PLOT 10. EQUAL TO PROGRAM ID.
4020 1 INPUT 'MAIN TITLE FOR X vs T PLOT --18 CHARALTERS',Titlett(1)
4030 Titletf(2)''X(cm)
4040 Tltletf(3)-'TEMP(C)'
4050 LIMIT 0,190,0,190
4060 CALL Axe(-Lim,Lim,O,Th,1,50,-Lim.0,t) 'IF LIM IS NOT AN INTEGER, AXE WILL A
SSU14E THE NEXT LARGER INTERGER
4070 CALL Labler(-Llm,Lim,O,Th,-Ltm,O,fitletf(a))
4080 MOVE -Lim,Th
4090 FOR 1 . 1 TO 51
4100 DRAW Xerray(1),Tarray(I) 	 DRAW X vs T	 -PLOT 51 PT. TEMP. PROFILE
4110 NEXT 1
4120 1	 DRAW Tmelt LINE
4130 MOVE -Lim,Tm
4140 DRAW Lim,Tm
4150 4	 DRAW LEFT SIDE OF ADIABATIC ZONE
4160 Lett--Tat/2
4170 MOVE Left,O
4180 DRAW Left,Th
4190 1	 DRAW MIDDLE OF ADIABATIC ZONE
4200 MOVE 0,0
5210 DRAW O,Th
4220 1	 DRAW RIGHT SIDE Uf ADIABATIC ZONE
4230 MOVE -Left,O
4240 DRAW -Left.Th
4250 GOTO Begin	 'START ALL OVER
4260 1
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4?70	 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --

4280	 AXE

47°1	 SCALES AND DRAWS AXES

4300

4310	 SUB Axe(Xein,Xwax,Ywin,Veax,Nint,Vint,Xorg,Vorg,Type)	 !--- Axe

Rev. A

4320	 DEF FNLow-(Yorg-Yelnc-.67aHe1ght)

4330	 DEF FNLeft-(Xorg-Xeinc-.67aWi6th)

4340	 CSIZE 2.5,.5

4350	 Height-Ywax-Ywln

4360	 Width-Xeax-Xwin

4370	 SCALE Xwin- ABS((.001 4 .19FNLeft)aWidth),Xwax • ABS((.05 • .laNOT FNLeft)mmidth

),Vein-ASS((.1 • .126FHLow)EHeight),Yaax • ABS((.1 • .12#MOT FNLow)aNeight)

4380	 CLIP Xwin,Xeax,Ywin,Ywax

4390	 AXES Xint,Yint,Xorg,Yorg

4400	 DEG

4410	 LDIR 0

4420	 LORG 2

4430	 IF FNLeft THEN LORG 8

4440	 Power-INT(LGT(Yint))

4450	 Logecl-INT((Type-1)/2)

4460	 Sign-1

4470	 Yend-Yeax

4480	 FOR 1 . 1 TO 2

4490	 FOR Yy-Vorg TO Vend STEP SignaABS(Vint)

4500	 IF (Sign--1) AND (Vy-Vorg) THEM Mxty

4510	 MOVE Xorg,Yy

4520	 IF (Yy-Vorg) AND (Xein<>Xorg) AHD (Xwaxk)Xorg) THEM MOVE Xor

g,Vy*(FNLow-NOT FHLow)6.02aHeight

4530	 Lab-Yy

4540	 IF Logecl THEN lab-DROUND(10'Yy,3)

4550	 GUSUB label

4560	 IF FNLeft THEM LABEL USING '•,'iFwt$&',X'lLnb

4570	 IF NOT FNLeft THEN LABEL USING '/,X,'&Fet$lLab

4580 Nxty, NEXT Yy

4590	 Sign--1

4600	 Vend-Vein

4610	 NEXT 1

4620	 LDIR 90

4630	 LORG 2

4640	 IF FMLow THEN LORG 8

4650	 Power-INT(LGT(Xint))

4660	 Logecl-MOT (Type MUD 2)

4670	 Sign-1

4680	 Xend-Xeax

4690	 FOR 1 . 1 TO 2

4700	 FOR Xx-Xorg TO Xend STEP SignaABS(Xint)

4710	 IF (Sign--I) AMD (Xx-Xorg) THEN Mxtx

4720	 MOVE Xx,Yorcg

47.30	 IF (Xx-Xorg) AND (Vein(>Yorg) AMD (Ywax<)Yoro) THEN PLOT Xx•

(FNLeft-NOT FNLeft)a.02rWidth,Yorg

4740	 Lab-Xx

4750	 IF Logecl THEM Lab-DROUND(10'XT,3)

4760	 GOSUB Label

4770	 IF FHLow THEN LABEL USING 'i,'&Fwt$ &*,X'iLab

4780	 IF NOT FNLow IHEM LABEL USI" 'AP,X,' &Fwt$%Lab

4790 Mitzi NEXT Xx

4800	 Sign--1

4810	 Xead-Xwin

4820	 NEXT 1

4630	 (r0T0 Done
4840 Label, If (ABS(Lob)>-100000) OR (ABS(Lob)(.001) OR (Power(--6) AND tLab00)

THIN Fetf-'MO.DE'
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4850	 IF Lab-0 THEN Fat$-•MD•
4860	 IF CABS(Lob)>-100000) OR (ABS(Lab)<,001) OR (Power<--6) OR (Lab • 0) THE
N Ret
4870	 Dig-INT(LGT(ABS(Lab)))
4880	 IF Logscl AND (019 4,0) THEN Fat$-•M.•&VAL$(A8S(Dl9)+1)6•D•
4890	 IF Dig>-0 THEM Fat$-•M•fVAlf(Dig+1)$•D•
4900	 IF Logscl THEN Ret
4910	 IF 0194,0) AND (019)Power) THEN Fat$-•14.•&VAL$(ABS(Power)•1)$106
4920	 IF (Di94,0) AND (Dig<-Power) INEN Fatf-•M.•IVAL$ICABStpi9)•1)f^CDf
g>-6)+6*(O1g<--6)W D-
4930	 IF (Power(0) AND (ABS(oower)(6-Dig) AND (Dig)-0) THEN Fat$-Fst$g
•.•fVAL$(A9S(Power)•1)f•0•
4940	 IF (Power<0) AND (ABS(Power)>-6-019) AND (Dig>-0) THEN Fat$-Fat$
41.•&VALf(6-OigW0•
4950 Rets RETURN
4960 Donee SUBEND
4970	 SUB Labler(Xaln,Xaaz,Yatn,Yaaz,Xorg,Yorg,Titief(*)) 	 --- Labler

Rev. A
4980	 DEF FNLow-(Yorg-Valn(.-.67*Height)
4990	 DEF FNLeft-(Xorg-Xain<-.67*Wldth)
5000	 Height-ABS(Yaaz-Yaln)
5010	 Width-ABS(Xaaz-Xa1n)
5020	 LDIR 0
5030 LORG 6
5040	 IF FNLow THEN LORG 4
5050	 MOVE Xain+Width/2,FHLow*(Yaaz+.07NHeight)+NOT FNLow*(Yaln-.07*Height)
5060	 LABEL USING •#,K•;Titlef(i>
5070 LORG 4
5080	 IF FNLow THEN LORG 6
5090	 MOVE FNLeft*Xaaz • NOT FNLeftoXain,Yor43+FNLow*t.05*Height)-I40T FNLowa(.05*H
eight)
5100	 LABEL USING •#,K•;Titie$(2)
5110	 LORG 4
5120	 IF FNLow THEN LORG 6
5130	 MOVE Xorg,FNLow*(Yaaz+.05aHeight)+NOT FNLow0(Yaln-.05*Neight)
5140	 LABEL USING •*,K•iTitlef(3)
5150	 SUBEND
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ABSTRACT

The analysis of heat flow in directional solidification and crystal

growth by Bridgman-type processes has received considerable attention in

recent years. Since the problem is complex. particularly when detailed

descriptions of furnace and sample properties are included, numerical

teclrciques are often employed. While such techniques are indispensable

for modeling of real systems, it is valuable to have available analytical

methods, albeit simplified, to check and to guide the numerical analysis,

to perform sensitivity analyses, and to perform trade studies on furnace

design.

This work develops a one-dimensional analvtical description of the

heat flow in a translating rod that is applicable for Biot numbers less

than unity. The model can accommodate different properties of thi. sam-

ple in the solid and molten state, different heat transfer coefficients

in the hot and cold zone, finite length effects in one zone, and approxi-

mates ampoule effects by adjusting the Biot numbers to account for heat

transfer in the ampoule. Also, the model contains an adiabatic zone and

a booster heater zone that can be used to increase the thermal gradient

near the solidification interface or to provide an independent control

over the position of the interface. Trade studies are performed on

optimizing the length of the booster heater zone to obtain the maximum

gradient in the sample without exceeding a specified maximum sample

temperature.



AN ANALYTICAL APPROACH TO THERMAL

MODELING OF BRIDGMAN-TYPE CRYSTAL GROWTH

I. ONE-DIMENSIONAL ANALYSIS

TNT%?()nlTrTTnM

In the design of vertical Bridgman-type directional solidification

experiments, it is important to be able to predict the thermal profiles

in the specimen. Of particular interest to the control of the process

•	 are the position and shape of the solidification interface and the axial

thermal gradients on each side of the interface. Generally, this problem

requires the use of numerical methods to obtain the required solu,:ions.

While such techniques are necessary to take into account the details of

real systems, the insight and ability to determine how variations in the

controllable parameters affect the conditions near the interface are

diminished. For this purpose, it is desirable to have an approximate

analytical solution to guide the numerical modeling and the experimental

procedures.

Chang and Wilcox [11 solved the two-dimensional heat flow equation

for a translating infinite cylinder with uniform physical properties in

a two-zone furnace. Equal heat transfer coefficients in the hot and cold

zone were assumed in order to obtain an analytical solution. A one-

dimensional analysis was used to investigate the shift in melt interface

position caused by the release of the latent heat of fusion and by finite

length effects. These effects were subsequently investigated by Riquet

and Durand [2], who obtained a restricted solution, and by Sukanek and Fu

13], who recently obtained a more general solution. Bartholomew and
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. ae

He ll.swe ll 14) used a saner-•dUarese ion. e l finite element math a,4 to obtaintain the

temperature. profi.lees 3sai a direicti.onsl.ly sol.idifiot4 Al samplfi, as a func-

tion  of its position in the furnace, aststsraing stedidy-nut* cond,it:9.an*.

Clyne (5 11 pie for ted bath tx rarltaental wid COMPUtC a;c&l,.yg l,a of tile

directional solidifi—c ation of Al at higher trana.laticna.l vtlbc:i.tA.ea and

demonstrated that fcr 	 terials wits high xherval czad,uc,ti,rit}- there may

be a significant: diff*r*nce botve en the sample ,mull rate and the actual

growth velocity.

)'u and Wilcox ;6j invesat;i&ttaad a t:hrete•-x.ane furnaces its ea}'aic.z; the

hot and cold zones were separated by a short, adiabatic torte, Computer

modeling using a fln.i a difference sscherw awas employed, ;which allowed

unequeal heat-trarsaftr coefficients to be coas6ider+e:d in the! hot and cold

zones. It was shoe that the use of an adiabatic zone sigaificantly

reduced the curvature of the itothe:rms !bet en the h=it and cold zones

and allowed =,ch better control over the Outpw,; af` the malt Interface.

This benefit, however, is at the enryersc, of some loss in gradient..

In many e'xperfinents involving, small s.ra plea diameters and fairly

conductive tant.erials, .a one-dimensicinal analysis iaa quite adequate for

describing the conditions at the melt. interface, particularly if an

ad.abatic rode is used. Although such &r, analysis obviously cannot pro-

vide infornatien -,s,bout. the planarity of the interface, it can yield

accurate predictions of the position of the interface and the x%ial

gradients ire the solidification region ag functions of the furnace and

sample parameters. This provides a useful model for furnai:e optimizat,,.on

and for selection of experimental conditions.
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The one-dimensional analysis of Chang and Wilcox is extended in

this work to include an adiabatic zone, different heat transfer coeffi-

cients in the hot and cold zones, chart &* in sample material properties

associated with phase change, and the inclusion of a rooster heater

adjacent to the adiabatic zone to provide additional control over the

gradient and position of the melt interface.

ANALYSIS

The heat-flow equation for a long. thin object with uniform cross-

sectional area A and perimeter p and which moves along its axis with

velocity u and transfers heat laterally with an external source or sink

at temperature T 1 is [7]

c -T uoc aT
-#2(T-T) -P	

.0	
(1)

IX2	
k aX Ak	 1	 k at

where H is the heat - transfer coefficient. k/pc is the thsrmal diffusivity.

and k it; the thermal conductivity. For a cylindrical rod, the heat-trans-

fer term becomes

HP • 2H

Ak a k
	

(2)
0

where a0 is the sample radius.

It is convenient to introduce dimensionless coordinates, x - X/a0.

The heat transfer can be characterized by a dimensionless Biot number.

Ha
Bi - ,̂ 0	 (3)

and the motion of the sample can be described by a dimensionless Peclet

number

F' - .ca u	 (4)
k
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The dimensionless heat-flow equation for steady state becomes

d2-Pe w-2Bi (T-T 1)-0	 (5)
dx

and the general solution is

T - T, + C exp (a* x) + D exp (-a* x) , 	 (6)

where

4a2 + P
e 2 +- Pe

a* a ^	
2

and

a-2B ; B i >0 .

If Bi - 0,

T - A + C exp (Pex)	 (7)

To isolate various aspects of the problem, several simplified cases

will be considered. First, the effect of the motion of the rod will

be investigated in a three -zone furnace for a rod sufficiently long that

end effects can be neglected. Next, the end effects will be investigated

for a motionless rod. Finally, the addition of a fourth zone, an

independently controlled booster heater between the main heater and the

adiabatic zone, will be evaluated for its ability to increase the gradient

in the sample at the melt interface and to control the position of the

interface.

Case I: Effect of Sample Translation

The general solutions for an infinite rod in a three-zone furnace are:

TL (x) - TH - D exp	 *(x + xl )]	 - CD < x < - xl

URIGMAL PAGE IS
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TL (x) = A + B exp (PLx) 	
xl < x < x 

TS (x) = A* + B*exp (Ps x)	 xo < x < x l	(8)

*
T
S 
(x)= TC + C exp (-a (x - xl ))	 xl < x < Co

where

r 4a2 + P 2 - P
a*=	

2 
S	 S	

a=

,/4R +PL 2 +PL	
(9)

•	 B* _	
2	

5 =

subscripts L and 5 ".mote liquid and solid regions, respectively, and

BB and BC are the Biot numbers in the hot and cold zones. Unless other-

wise noted in the following, all lengths will be expressed in terms of

sample radii. The length of the adiabatic ?ore, LA = 2x 1 . The position

of the melt interface is x 0 and is presumed to be in the adiabatic zone

since this tends to yield a planar interface.

The equations must be solved simultaneously for seven unknowns, A,

B, A*, B*, C, D and x 0 . Four constraints are provided by requiring TL

and Ti to be continuous at -x and sand T and TSt o be continuous at xl.

The remaining three conditions are provided by requiring TL (xo) TS(xo)

= TM and

	

a
Ts)	 (10)

X	 x0	 0

where L  is the latent heat offusion term

LfT ao u !H f	 PL "Z ^Hf tll)

L

and 'Hf is the heat of fusion.
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and TM is the melting temperature.

The position of the interface requires the solution of the tran-

scendental equation

kL PL (TH - TP) exp (PLxo)	
+ Lf	 k S 

P 
S (TM - pc) 

exp
p 	

(PSxo)

exp (-PLX 1 )[ S* - 1 + exp ( P
L x

o )	 exp (P
S x

l ) a* + 1 - exp (PSxo)

(12)

The remaining terms may be evaluated

B=-	 TH-TM
P

exp (-PLx1 ) ^* -T,+  exp (PLxo )	 (13)

B* -	
4 - Tc

P
exp (+PSxl) a*+ 	 1 - exp (PSxo)	 (14)

A T  + B exp (-PLx1) (PL - 1

S*	 (15)

PS
A*	 Tc-B* axp (PSx1)	 * + 1	

(I6)

PSB* exp (PSx1
C-	 *	 (17)

a

P L B exp (-PLx1)
D - *

S	 (18)

if P S and PL are small so that P Sxo 3 PLxo " 1, the gradients in

the sample at x
0 

may be found from
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(TU - T%d ( 1 + P T x - + 0 (P?) )
GL (x0 ) - PL B exp ( PLx 0 ) - -	

2	 2

+ 1 /,s* + x0 - PL 21 - 20 + a* + 0 (PL'

(19)

and

(TM - T
c ) (1 + P Sxo + OR 2

G s (x0 )	P S B* eXp (P Sxo 	 2	 2

x 1+ 1/a - x^ + PS	 2 1 	 ?0 + x1)+ 0(PS)

(20)

In the limit PL = PS = 0, the position of the melt interface can be

obtained by equating k SGS (x0 ) = kLGL (xo ), which yields

x = kL ( TH - TM ) (x l + 1 /a) - kS (TM - TG ) (xl + 1

o	 kL (TH - TM) + kS (TM - TIC)(21)

an d

T  - TM + kS /kL (TM - TC)

GL

	

	
(22)

LA + 1/a 
+ 1/5

Case II: Investigation of End Effects

To assess the importance of end effects, the complications intro-

duced by the motion of the rod will be suppressed by setting the Peclet

numbers to zero, and the rod will be inserted a finite distance L into

the hot zone (see Figure 1).

r
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The solution to the heat flow equation in the hot zone is

TL (x) - TH - D exp (R(x + x l )j + B exp ( -O(x - x l )j ; -x3 < x < -xl

(23)

In the adiabatic zone for P +0, the heat -flow equation reduces to

T" - 0 and the solution is

TL (x) - T o + GLx ; -xl < x < xo

(24)
i

and

TS (x) - To + G S x ; x 	 x < xl	
(25)

As before, it is tacitly assumed that the interface is located in the

adiabatic zone.

The fourth equation is as in Case I,

TS (x) - TC + C exp j-a(x - x l )j	 xl < x < oo

(26)

The interfacial conditions at -x i , x  and x  together with the

requirement that T(xo ) - TM provide seven of the eight equations needed

to specify the unknown coefficients. The final boundary condition is

imposed by the heat transfer to the end of the rod at -x3.

aT

axL	 - -BH 
(TH - T

L ( x3 ))	 (27)
-x 3

where B  - H a o /k and H is the heat-transfer coefficient between the

end of the rod and the furnace.

OF Paa^i QUALITY,
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T  - T M +k S /k L (T M - TC)

G L	 LA + 1/a +  1/8 F(L)

G S = k  GL/kS

k  (T H - T M )(x i + 1/a) - k  (TM - T C )(x 1 + 1/R F(L,

xo =	 kL (T H - T M ) +k S (T M - TC)

T o = T M - G L x 

'r ock = T M - G S x 

C - -G S /a

B =
	 GL exp ( - BL)

1 + B
H */R

1 - B * S	
exp [ 13(L + LA) ] -exp [-R(L - LA ) )

H

GL
D = -	 1 - B H */S

 )
6 1	 1+ B *1a exp (-26L)

(1 + BH * /6) exp (BL) + (1 - BH */^) exp ( -BL)

F (L) _ (1 + B  */-,E ) exp (-) - (1 - B  *	 exp ( - XT
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Case III. Effect of Booster Heater

The effects of an additional independently heated zone to sharpen

the gradient in the sample and to provide additional control of the

interface position will be investigated without the complications of

sample motion or end effects. The heat flow equations are:

T L (x) - T H - D exp $ (x + x3 )	 ; - - < x < -x3

TL (x) = TB + A exp [S(x + x2 )J + B exp [-s(x + x 2)] ; 
-x3 < x < -xl

T L	o(x) T + G L x	 ; -x l < x < xo

T S (x) = T o*+G S x 	; x  < x < xl

T (x) = T + C exp [-a (x- x )J
S	 C	 1	 , xl<<x<W.

where the length of the adiabatic zone is LA = 2x1 , as before, and the

booster heater is centered at -x2 and has length L B (see Figure 2).

This set of equations contains nine unknowns. Interfacial boundary

conditions at -x3 , -x l , xo , and x  supply eight of the necessary con-

straining relations, and the requirement that T(xo ) = TM supplies the

ninth equation. Again, it is assumed that the interface is located in

the adiabatic zone. The solution of this set yields the following rela-

tions:

(37)
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(TB - TH ) C1 -exp (-3LB )) + (TH - TM) + k S/kL (TM - TC)

G L 	 LA+1 8+1 a	
(38)

X	
(ks/kL) (TM - TC) + GL (x1 + 1

/a)	
(39j

o	 GL

G S - k  G 
L 
A 

S
	 (40)

C - -G S /a	 (41)

(T - T B )
B m-

H 
2	 exp (-SL

B
/2)	 (42)

B exp (-SLB /2) + GL /S
A

	

	 (43)
exp ( ALB /2)

D - B exp (51.B /2) - A exp ( - SLB/2)	 (44)

To = TM GL xo

To* = TM - GS xo	(45)

Estimation of Effective Heat Transfer Coefficients

To use the analytical model as a predictive tool, it is necessary

to estimate the effective heat transfer coefficients in the hot and cold

zones. Also, since the simplified analysis considers a homogeneous sample,

some provision must be made to account for the presence of the ampoule. If

the axial heat flow in the ampoule is very small compared with that conducted

by the sample, the presence of the ampoule can be included simply as an added

resistance in the heat transfer between the sample and the furnace wall. A

M .

40
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more general technique is to modify the thermal properties of the sample by

defining an effective conductivity as the area weighted average of the sample

and ampoule thermal conductivities. The effective Peclet numbers may be

found by dividing the area weighted average heat carried by the sample plus

ampoule by the effective conductivity. Since the ampoule does not contribute

to the heat of fusion, the effective latent heat is the sample latent heat

times the ratio of sample area to total area.

At high temperatures, the heat transfer in the hot zone is dominated by

radiation. The radiation heat transfer coefficient is given by

a 	 (T4-T4(?:))
H	 (x)	

^(x)	 e	 H	 L	 (46)
rad	 TH - TL (x)	 T  - TL(x)

where Q(x) is the heat flux transmitted at position x, F e is

1

Fe 	 1/E* + a  o
f 

(1/ E 
f =7 .	

(47)

e* is the effective emissivity of the ampoule/sample combination, Ef is

the emissivity of the furnace wall, and o f is the inside radius of the

furnace muffle [8].

The heat transfer coefficient given by equation (46) is a function

of position. The simplified one-dimensional analysis requires a constant

value of Hrad that represents some type of average. The method chosen

for computing this average is to require 
<Hrad> 

to give the same total inte-

grated heat transfer as Hrad (x), i.e.,
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-x l 	-xl	 -x1

f 4(x) dx 
	 f [ TH - TL (x)] dx o Fe r ( TH4 - TL (x) 4 ] dx.

(48)

Since

TL (x) - T  - D exp [B* (x + x1)],

<Hrad>^ 
o Fe 22 TH3 + f TH2 T L (-x l ) + 17 Tx TL2 ( -x l ) + 4 TL3(-x1) 1 .

(49)

where T L (-x l )	 T  - D and, is the temperature at the boundary between

the hot zone and the adiabatic zone. This is not known ab initio but may

be determined by an iterative process.1

In many cases the sample is enclosed in a quartz ampoule which has

near unity transmission to some cutoff wavelength, X c , and is nearly opaque

for X > 1 c . The effective emissivity of the ampoule/sample combination may

be estimated using the technique suggested by Holland [9],

E* - 0.95 [1 - f(ac )(1 - ES )]	 (50)

where the 0.95 accounts for the surface reflectivity, ca is the emissivity

of the sample material inside the quartz ampoule for wavelengths shorter

than a c , and f(X c) is the fraction of radiation emitted at T  which is

shorter than a c . For metal-like samples, ES is usually small and the long

wavelength absorption in the quartz ampoule is the dominant mode of heat

transfer into the sample. For such cases axial radiant heat transfer in

the quartz ampoule is negligible.

1 A a first estimate. TL (-x l ) z (TH + TV)/2.
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A similar treatment may be employed in the cold end by substituting

T  for T  and Ts (x1 ) for TL (-x 1 ). In this case f(ac) is computed for

Ts(x1).

If there is a fluid such as a low-pressure gas in the furnace, its

conductive heat transfer is given by

H	

kG

cond	 ao 1n (af/ao	
11

where k  is the conductivity of the f1L.Ld.

If flowing gas is used for heat extraction, the heat transfer coef-

ficient for forced convection is estimated from the work of Chen, Hawkins,

and Solberg (101,

(.)0.45	 0.33	 0.8	 0.4

H	 (x) - 1.02 
kG	 pdv
	

( cp,,	 8f	 d	 9	 (52)

conv	 d	 u	 kG	 ao	 x

where v is the velocity, p is the density, (_ p is the heat capacity, U is

the dynamic viscosity, and k  is the conductivity of the gas; d is the

equivalent diameter given by 2 (a f - a0), and x is the position along

the flow. Again, this heat transfer coefficient depends on position; and

an average value must be found for use in the simplified model. This

average is

L	 H	 (L)
<H
conv' L f Hconv(x) dx
	 C0n6	 (53)

0

where Hc onv (L) is equation (52) evaluated at x w L. where L is the length

of the sample in the furnace zone.

64

(51)

is



In the absence of forces convection, the heat transfer from natural

convection in a vertical furnace may be estimated by replacing v in equation

(52) by v	 [gS LT L] , where g is the acceleration of gravity, b is the

coefficient of thermal expansion, and dT is the average temperature dif-

ference between the ampoule and furnace wall.

RESULTS

The one-dimensional model described in this analysis was applied to a

case that had been computed by a sophisticated two-dimensional heat-transfer

analysis of a development furnace designed for use on the Space Shuttle as

;,art of the NASA Materials Processing in Space program. The two-dimensional

analysis was none with the System Improved Numerical Difference Analyzer code

(SINDA) [10] which represents the _urnace by 580 nodes and 1420 conductors,

and represents the sample plus ampoule by 5 nodes in the radial direction

and 40 nodes in the axial direction. View factors are computed for radi-

ation exchange between each element on the surface of the sample and all

elements in the furnace within the field of view.

The furnace consists of a 27.8 cm hot zc_:e, an indeptudently con-

trolled 1.96 cm booster heater zone, a 2.03 cri adiabatic zone, and a 24.5

cm cold tone. Heat extraction and thermal control in the cold zone are

accomplished by flowing temperature-controlled He gas along the sample.

The effective heat transfer coefficients and Biot numbers were esti-

mated by the method outlined in the previous section. See the appendix

for the numerical calculations. The thermal profiles of an infinite

Mn-Bi/Bi eutectic sample were computed for TH M 450°C. TC a 40°C ► and

T
B
	w50°C and 500°C. These are shown in Figure 3 together with similar

temperature profiles computed using the SINDA code. Reasonably good
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agreement is obtained in the hot and cold zones, and the gradients at the

solidification interface are in fairly close agreement. The major dis-

crepancy between the two computation methods is in the position of the

solidification interface. i-he interface locations predicted by SINDA are

shifted approximately 3 mm closer to the cold zone than are those predicted

by the one-dimensional model. There are several possible reasons for this.

First, the simplified one-dimensional model assumes a perfectly

adiabatic zone. The SINDA allows some heat transfer in the adiabatic zone

from radiation losses and conduction from the hot (or booster heater) zone.

Another possible reason for this shift is the fact that the simple model

uses a constant average heat transfer coefficient in the hot/booster

heater zone. The inside diameter of the booster heater in the furnace

in question is smaller than the diameter of the hot zone; hence, the

conductive heat transfer will be underestimated in this zone by the

simplified model.

Despite these shortcomings, the simplified model can be used to

investigate effects of varying sample and furnace parameters. For

example, the effect of sample insertion length into the hot zone m4y be

seen in Figure 4. As the sample is withdrawn from the hot zone, the

interface shifts toward the heater. This effectively increases the

solidification velocity above the pull rate. It may also be seen that

the heat transfer coefficient into the end of the sample makes only a

small difference in the thermal profile and that the thermal field in

the sample is almost fully developed after insertion lengths of a o 2_% .'

For finite samples whose "heat transfer length". 4, as defined by Sukanek
(:c in Riquet and Durand notation) is >> 1; this is equivalent to requiring

the fraction immersed in the hot zone to be > 1 / 0^.
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The effect of sample translation is shown in Figure 5. As velocity

is increased, the interface is shifted toward the cold zone. Note that

the gradient in the melt is less affected by translation than the gradi-

ent in the solid. Also note that for the case of Mn-Bi/Bi eutectic, the

release of latent heat of fusion is responsible for approximately half

of the interface shift.

0 tp iumum Length for Booster Heater Lone

It can be seen from equation (38) that the magnitude of the gradient

can be increased for a given TB by increasing LB . However, if LB is made

long, it has virtually the same effect as simply increasing TH . In many

cases, the upper limit of T  is fixed by other considerations, such as

melting point of the ampoule or vapor pressure of the sample, and tempera-

tures higher than T  in the sample cannot be tolerated. The function of

the booster heater is to reduce the roll-off in twmparature near the

adiabatic zone Without exceeding T  anywhere :n the sample. This require-

went places a limitation on the length LB that is a function of the maximum

TB that can be supplied by the booster heater.

The requirement that ?H not be exceeded anywhere in the sample can be

enforced by keeping D > 0. This implies from equation (44) that

B exp (EL B ) > A exp (-6LB /2)	 (54)

The highest TB that can be used for a given LB without overheating the sample

is obtained by setting D - 0 and using equatic.is (42) and (43).

t iB - TH)Max _- sinh ALB - -GL .	 (55)

E q uating this to (36).
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T  - TM + kS/kL (TM - TC)

(TB -TH)max = S(LA + 1/a) sinh N + cosh. aB - 1 	 (56)

Substituting this into equation (55), the maximum gradient that can be

achieved for a given LB with no restriction on TB is

G	
_ 

[TH - 
TM + kS/kL (TM - TC)JS sinh 

$LB

L i rtax	 MA + 1/a) sinh ALB + cosh BL  - 1	 (S7)

For $LB >> 1,

T  - TM + kS/kL (TM TC)

^ CL l max	 LA + 1/a + 11 B

which is the gradient given by eq. (22) for the three-zone configut "

-tion. This comes about because eq. (56) forces TB -+ T  as 8L  >> 1 to

avoid overheating the sample. On the other hand, for aLB << 1,

T  - TM + 1' S4 'iLL (TM - TC)

^ CL I max	 LA + 1/a + LB/2	
(59)

and the maximum gradient can be obtained by L r -► 0. This, however,

requires TB -+ Co. Since 
TB(max) 

is fixed by practical considerations,

there is an optimum length for the bocster heat that depends on TB(max)

and the sample to be processed. This L B (optimum) is the value of LB

for which the maximum gradient limited by heater temperature, eq. (33)

intersects the maximum gradient limited by sample overheating considera-

tions, eq. (56), This value is

LB(opt)	
11R Zn C1 + Cl2 + C 2	 (60)

URiGie VAL FACE. IS
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where

TB (max) -' TM + k S/kL (TM - TO)

O 1	 S(LA + 1/a + 1/$)(TB(max) - TH)
(61)

and

LA + 1/a

02 L A + 1/a + 1/R

The previous optimization assumed that the cold-end temperature TO

remained constant. As TB is increased, the solidification front x  is

driven toward the cold zone. If the cold-end performance permits, the

T  may be lowered to maintain the position of the interface near the

center of the adiabatic zone. This also increases the maximum achievable

gradient.

From eq. (39), the interface can be maintained at x - 0 by setting,

k S )'kL (TM - TG) - -GL (x l + 1/a) .	 (63)

Putting this 4Mto eq. (38) yields

s - (TB - TH) I1 - exp (- pLB)) + T  - TM

GL	 xi + 1/6	 (644

Employing eq. (55) to prevent sample overheating provides the

maximum value for TB - TH.

TH - TM

(TB - `H ) max - Bx 1 sinh BL B + cosh 6L  - 1	
(65)

(62)

i

r

69



Inserting this into equation (55) yields	
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	Binh 8L 	 (66)
IGLIMax 8(T

H - TM)	 x 1 sinh.BLB + cosh SL  - 1

If LB is less than the optimum length, the performance is limited by

booster heater performance and GL is given by sq. (64). As before,

the optimum length for LB is given by the intersection of eqs. (64) and

(66), which is

1+0+r1 	
1

+20+S2 x 42

L	
1

B(opt) i 8 loge	 (1 + x1 )	 (07)

where

0 ` (TB(max) - TM
) / (TM - To) .
	 (68)

The required cold-and temperature to position the interface at

x - 0 is obtained from equation (63) and becomes

TC(r`s,d) 
a GL (xl + 1 /a0 (kL /kS ) + TM .	 (69)

The effect of optimizing the booster-heater length is shown in

Figure 6. In this case, the sample is Pb . aSn ,2Te. It is

assumed that the booster heater cannot tolerate more than 1200°C and

that the booster heater cannot be operated above 1600°C. As may be

seen in Figure 6, the maximum allowable booster-heater temperature

and gradient increase as the booster-heater length is shortened until

i0



the maximum booster operating temperature is reached. Beyond this

point, further decrease in booster heater length results in lower

gradients as the booster heater loses its effectiveness. As would be

expected, lowering the cold-end temperature to compensate for the

booster heater in maintaining a stationary solidification interface

will give a higher gradient than operating with fixed TC . This can be

seen more clearly in Figure 7, which compares the axial thermal profiles

in a sample with no booster heater and T  set to position the interface

at x - 0, with profiles for an optimized booster heater operating a 1600°C

and fixed cold-end temperature and also with profiles for an optimized

booster heater and T  adjusted to position the melt interface in the

center of the adiabatic zone.

The booster heater provides another degree of freedom in position-

ing the solidification interface independently of the hot and cold

zone temperatures, which may be fixed by other considerations. Dif-

ferentiating eq. (39) with respect to TB yields

axo	 k S (TM - TC )(1 - exp (-6LB)]
_	 —	 --	 (70)

eTB	 k GL 2 
(LA + 1/a + 1/p)

Since the sign of the derivative is positive, an increase in TB will

shift the melt interface toward the cold zone. The booster heater

temperature may be selected to locate the solidification isotherm at

a position of optimum planarity, or this temperature may be programmed

to maintain the position of the isotherm as the sample is withdrawn

from the furnace and to compensate for T M changes as a result of com-

positional effects during solidification.
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SUMMARY

A relatively simple one-dimensional thermal model of the Bridgman

growth process has been developed which is applicable to the growth of
1

small diameter (< 1 cm) samples with conductivities similar to those of

metallic alloys. Although the model contains some idealized assumptions

that limit its ability to match actual thermal profiles exactly, it is

useful for predicting thermal gradients, estimating solidification inter-

face position, and analyzing effects of sample translation and sample

insertion length.

The fact that analytical results are available is particularly help-

ful in performing furnace design trade studies and for inverting measured

data to obtain furnace characteristics. Also, sensitivity analyses of

furnace performau _ in terms of furnace and sample parameters may be

accomplished by analytical techniques rather than by numerical analysis.

This was used to determine the optimum length of the booster heater to

produce a maximum thermal gradient in the sample for a given set of design

constraints.
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APPENDIX

In the case analyzed by SINDA, TH = 450°C, TC = 40% and

Tr1 = 271.5. The Mn Bi/Bi eutectic was approximated thermally by pure

Bi since this is a very low volume fraction eutectic. The thermal

conductivities were taken as kL = 0.124 watt/cm/K and k S = 0.072 watt/

cm/K. The quartz ampoule was 1.2 cm O.D. and 1.0 cm I.D. Thermal

conductivity of the quartz was assumed to be 0.020 watt/cm/K. Effective

conductivities are the area weighted average,

cs/K and kS (eff) = 0.0561 watt/cm/K. The eff,

given by (pc)eff a
0 
u/k(eff). Using p = 10.05

gm/cm3 for quartz, c = 0.1463 J/gm for Bi and

or Yeff) = 0.0922 watt/

ective Peclet numbers are

gm/cm2 for B1 and 2.3

0.493 J/gm for quartz,

PL (eff) = 8.90 u and P S (eff) = 14.63 u. Since the ampoule does not

contribute to the heat of fusion, AH (eff) = 50.16 (.5/.6) 2 = 34.83

Joules/gm.

Cutoff wavelength ac for the quartz was taken to be 3.7 mm. For

T  = 723K, f(ac) = 0.20, and for T  = 313K, f(X c) = 0.0015. The es

was taken to be 0.05. The effective sample/ampoule emissivity is there-

fore EH* s 0.7695 and c s* 0.9486. Taking the inside diameter of

tantalum muffle to be 5.2 cm with an E  = 0.3, the Fe term is 0.5441 for

the hot zone and 0.6279 for the cold zone. The average radiation heat

transfer coefficients become

<HH rad> = 0.00445 watt/cm 2/K

<H Crad> = 0.000557 watt/cm 2K
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the effective conductivity. The values are:

% = 0.00706 watt/cm 2 /K,	 B  = 0.04594

HC = 0.03176 watt/cm 2 /K,	 BC = 0.3396

A

FA

Heat extraction in the cols' zone is accomplished by flowing He.

Using a 4 ib/hr flow rate through the cold zone (a f . 1.77 cm, a 

0.6 cm), the heat transfer coefficient used in SINDA is 23.36 x(ft)-0.4

BTU/hr/ft 2 /°F. For a 25 cm long sample inserted half its length into

the cold zone, the average heat transfer coefficicnt is 58.9 BTU/hr/

ft 2 /°F or 0.0312 watt/cm 2 /K

A stagnant region of He will also be present in the hct end.

Since the furnace was designed for low-gravity operation, convective

heat transfer was not analyzed. The conductivity of He at 450°C is

taken as 0.0023 watts/cm/K, and the conductive heat transfer coefficient

is therefore 0.00261 watt/cm 2/K.

The total effective heat transfer coefficient is the sum of H(rad)

H(cond) and H(conv). The effective Biot number is the total effective

heat transfer coefficient multiplied by the ampoule radius divided by
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Figure Captions

Figure 1. Furnace/sample configuration showing coordinate system used to

investigate end effects.

Figure 2. Furnace/sample configuration showing coordinate system used to

investigate the effects of a booster heater.

Figure 3. Comparison of thermal profiles for a stationary Mn Bi/Bi eutectic

sample computed with the simplified one-dimensional model with

those computed by the SINDA code for TB = TB and TB = T  + 50°C.

Figure 4. Effect of sample insertion length on thermal profile for a

stationary Mn Bi/Bi sample in a furnace with T B = T  .

Figure 5. Effect of sample translation of thermal profiles for an infinite

sample moving at 0, 10, 20, 30 cm/hr in a furnace with TB = T  .

Figure 6. Effect of booster heater length on maximum gradient obtainable in

Pb .$Sn .?Te sample without exceeding sample temperature

of 1200°C. As heater length is shortened, the allowable booster

heater temperature is increased (with a concomitant increase in

thermal gradient) until the upper limit imposed by heater materi-

als is reached (assumed in this case to be 1600°C). At shorter

lengths, the sample gradient is limited by booster heater perform-

ance. The optimum length for the booster i •__ater is the intersection

of these two curves.

Figure 7. Thermal profiles in Pb gSn .2 Te with optimized booster

heater analyzed in Figure 3. T C1 was chosen to position the

solidification interface at xo - 0 for TB = TH . The effect of
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Figure Captions

Figure 1. Furnace/sample configuration showing coordinate system used to

investigate and effects.

Figure 2. Furnace/sample configuration showing coordinate system used to

investigate the effects of a booster heater.

Figure 3. Comparison of thermal profiles for a stationary Mn Bi/Bi eutectic

sample computed with the simplified one-dimensional model with

those computed by the SINDA code for TB a T  and TB W TH , + 50°C.

rigure 4. Effect of sample insertion length on thermal profile for a

stationary Mn B1/Bi sample in a furnace with TB 
0 T  '

Figure 5. Effect of sample translation of thermal profiles for an infinite

sample moving at 0, 10, 20, 30 cm/hr in a furnace with TB 
a T 

Figure 6. Effect of booster heater length on maximum gradient obtainable in

Pb . aSn .2Te sample without exceeding sample temperature

of 1200°C. As heater length is shortened, the allowable booster

heater temperature is increased (with a concomitant increase in

thermal gradient) until the upper limit imposed by heater materi-

als is reached (assumed in this case to be 1600 0C). At shorter

lengths, the sample gradient is limited by booster heater perform-

ance. The optimum length for the booster heater is the intersection

of these two curves.

Figure 7. Thermal profiles in Pb . BSr., Te with optimized booster

heater analyzed in Figure 3. TC1 was chosen to position the

solidification interface at x o - 0 for TB a TH . The effect of
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