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ABSTRACT

THE NATURE OF LARGE-SCALE
TURBULENCE IN THE JOVIAN ATMOSPHERE

The energetics and spectral characteristics of quasi-geostrophic
turbulence in Jupiter's atmosphere are examined using sequences of
Voyager images and infrared temperature soundings. Using global wind
measurements we quantify momentum transports associated with zonally
symmetric stresses and turbulent stresses. Though a strong up-gradient
flux of momentum by eddies is observed, measurements do not preclude
the possibility that symmetric stresses play a critical role in
maintaining the mean zonal circulation. Strong correlation between the
observed meridional distribution of eddy-scale kinetic energy and
available potential energy suggests coupling between the observed
cloudtop turbulent motions and the upper tropospheric thermodynamics.
We formulate an Qort energy budget for Jupiter's upper troposphere,

Fourier analyses of turbulent motions within zonal jets suggest

that large-scale Jovian turbulence obeys a k3

power law, where k

is the zonal wavenumber, This implies that the observed turbulence is
two-dimensional with an up-gradient flow of kinetic energy frua smaller
scales (e.g., baroclinic scales). Turbulent kinetic energy generally
peaks at the scale for which Rossby wave propagation begins as

suggested by Rhines (1975).




The largest turbulent scales (e.g., the Great Red Spot (GRS) and
the White Qvals) occur at the order of or greater than the so-called
Rhines radius. Studies of the inertial transport of kinetic energy
within momentum control volumes around the GRS and White Oval BC indi-
cate that these eddies feed barotropically upon the meridional shear in
the mean zonal wind and are thus maintained as shear instabilities.

The solitary Rossby wav~ model of Maxworthy and Redekopp (1976) is
one of the few models capuvle of accommodatina such a barotropically
forced perturbation. Using the observed temperature profile in the
atmosphere ambient to the GRS, we compute a perturtation temperature
profile based upon numerical solution of the eigenvalue problem govern-
ing the vertical structure of a soliton. For choices of eigenvalue
appropriate for the observed meridional shear of the ambieant mean zonal
wind we obtain eigenfunctions which match the observed perturbation
temperature profile above the GRS. This suggests the validity of the
solitary wave model for describing the largest turbulent scales.

Refer to Chapter 6 for a brief summary,
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CHAPTER 1. AN INTROOUCTION

We investigate the nature of large-scale Jovian (m102-104 km)
turbulent eddies and the role they play in the global circulation of
the atmosphere of Jupiter. In Chapters 2 and 3 we use time sequences
of Voyager images and Voyager Infrared Radiometer and Imaging Spectrom-
eter (IRJS) data to obtain information relating to the dynamics and
energetics of the Jovian atmosphere. In Chapter 2 we examine the rcle
of various observable energy reservoirs and transport processes in
maintaining the mean zonal circulation. In Chapter 3 we examine the
large-scale turbulent spectrum. The second segment of our report
begins in Chapter 4 with a detailed examination of the role played by
stresses in maintaining the largest Jovian eddy, the Great Red Spot.

We then turn to an investigation of the validity of the solitary Rossby
wave model for the Great Red Spot as suggested by Maxworthy and
Redekopp (1976). Based upon observed IRIS vertical temperature pro-
files we examine the vertical structure of an atmospheric soliton in
Chapter 5 and compare our results to IRIS observations of the tempera-
ture structure of the Red Spot.

Chapter . is a rather detailed introduction to cur thesis. We
begin with a brief discussion of the role played by large-scale tur-
bulence in Earth's atmosphere. OQur dependence upon Voyager imaging and
IRIS data throughout this investigation dictates a very brief discus-

sicn of the hardware and methods used to obtain measurements of Jovian

1-1
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wind speeds and turbulence. Chapter 1 ends with a review of
theoretical models which have been developed to explain the Jovian
circulation.

The basic geometry used in our study will be that familiar to geo-
physical fluid dynamicists as the mid-latitude beta-plane. We generally *
follow notation much 1ike that of Holton (1972). We may establish a
spherical coordinate system with origin at Jupiter's center from which
we measure r radially outward. We measure longitude by a (positive
westward) and latitude by 6. (positive northward). For an oblate
spheroid like Jupiter we may define an oblate or planetographic

latitude by unsubscripted o as,

r.-\2
6= tan'][ FQ%> tan ec]
JP

where,
"I = equatorial radius of Jupiter
"ip = poler radius of Jupiter
6. = angle measured about Jupiter's center from equatorial

plane, i.e., the so-called planetocentric latitude.

Unless otherwise explicitly stated all latitudes referenced in our work
will pe planetographic.

On the large, so-called quasi-geostrophic, scale curvature terms
are generally neglected in the governing equations. Hence, we will
typically replace A, 8, and r by their local Cartesian equivalents
X, ¥, and z, where x is measured positive eastward, y is measured

positive northward, and z is measured positive upward. The velocity

1.2




components along these three Cartesian axes are given by the total time
derivatives of x, y, and z and are represented symbolically as u, v,
and w,

A1l other symbols will be explicitly defined as they initially
appear in the context of our investigation. Unless otherwise noted a
symbol will retain its meaning throughout the entire body of this
work. We have (with very few exceptions) avoided the redundant use of
a single symbol for two different parameters <ven though the parameters

may appear in very different contexts.

1.1 The Role of Large-Scale Eddies in Earth's Atmosphere

The global circulation of any planetary atmosphere is driven by
the atmosphere's attempt to minimize available potential energy. This
minimization generally involves the even redistribution of unevenly
distributed heat. In Earth's atmosphere incoming heat is unevenly dis-
tributed from equator to pole and subsequent attempts by the atmosphere
to move cold air equaiviward and warm air poleward drive the global
circulation. The redistribution of heat can take place over a wide
spectrum of spatial scales so that the definitive measurement of energy
transport rates associated with the redistribution is quite compli-
cated. The simplest approach to take regarding these spatial scales is
bimodal and is obtained by performing a decomposition of the global
circulation into zonally-averaged components and fluctuations from
these zonal averages or "eddy" components. Thus, the zonal wind

component (u) becomes,

1-3




where,

cl
"

zonally averaged component

deviation or eddy component.

[ =
"

This so-called Reynolds decomposition (after Reynolds, 1895)
raises the question: on which scale (mean or eddy) does the redistri-
bution of heat take place? Original attempts to explain the global
circulation of Earth's atmosphere (Halley, 1686; Hadley, 1735) were
based upon the notion that the redistribution took place on the zonal
mean scale. The so-called "Hadley cell" circulation, representing a
redistribution on the mean scale, formed the basis for most general
circulation models for the next 200 years or so (Ferrel, 1889; Thomson,
1857). Models based upon mean scale redistribution met with only
limited success, and understanding of the general circulation of
Earth's atmosphere seemed to stagnate.

Jeffreys (1926) instigated the modern era of general circulation
studies with his investigation of the angular-momentum balance of our
atmosphere. His work suggested that eddy-scale motions must play an
important role in any model of the global circulation. Starr and White
(1951) and Lorenz (1955) subsequently showed that at mid-latitudes
eddies with length scales of 103 km were responsible for the bulk of
the heat transport in the terrestial atmosphere. Hence, in Earth's
atmosphere eddies represent a critical link in the north-south redis-
tribution of potential energy.

A useful context in which to look at the global circulation is

that provided by the Qort Energy Budget Diagram (Oort, 1964; see




g

Lorenz, 1967 for a detailed treatment). The approach is to divide the

total energy contained in the atmospheric system into 4 reservoirs:

zonal mean and eddy available potential energy (P and P') and zonal

mean and eddy kinetic energy (K and K'). The dynamics of the global

circulation may be described in terms of the energy transport processes

which l1ink the four reservoirs. In Figure 1.1 we present an Qort dia-

gram for Earth's troposphere. Following Lorenz (1967) the magnitude of )
the energy contained in each reservoir may be expres.ad approximately

as, :

2=2 ?
= 1 RT E
P= ] ‘2‘2‘“" (1.1) !
? 'J[ H™N g
2.,2
1 R°T!
pt = P 35— av : (1.2)
2 .l: H™N
K=7 fp(uz + ¥9) v (1.3)
V
K =3 /”‘“'z cvh o (1.4)
v :
where, E
P = mass density
R = gas constant
H = pressure scale height
1-5




T AT T

S

Figure 1.1.

Oort Energy Budget Diagram for the terrestial tropo-
sphere. Zonally symmetric differential solar heating
establishes a reservoir of mean available potential
energy (P) in a process which is about 2% efficient.
Roughly 20%¥ of this mean available potential energy is
converted into zonal flow by direct Hadley cell
overturning mostly in the tropics. Nearly 80% of the
forcing for Earth's general circulation is provided by
mid-latitude baroclinic eddies which ultimately pump

the bulk of their momentum into the mean zonal flow.

1-6
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PRECEDING PAGE BLANK NOT FILMED

N = Brunt-Vaisala frequency
T = zonally averaged temperature deviation from global mean
T = eddy temperature deviation from global mean

U, Vv = zonal mean of zonal and meridional wind component

u'y v' = eddy zonal and meridional wind component
and '/r( ) dV indicates integration over a volume of atmosphere,
v
The redistribution of atmospheric energy involves transport processes

linking the four reservoirs, These transport processes may be written

as (Holton, 1975):

PRy = + [%wfdv (1.5)
v
- % o7 oT
{fPepP} = - p (v' TV — +w' T —) dv (1.6)
N ay Y3
v
{P' oK'} = = fp%w' T dv (1.7)
v
KoK o=+ [ o (T ¥ agw B2 ¥y WY
ay - 0z ay 2z
v
sTovRaLe 2 v-t-"il‘-"—) dv (1.8)
Y'J FJ
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where,

x|

, W' = zonal mean and eddy vertical velocity component

ry Jovian radius

H= RT . pressure scale height
g9

latitude,

<@
"

Note that the above expressions are geostrophic, as we have made the
substitution,

RT

¥ - geopotential thickness o 5

3z

Overbars represent zonal mean values, while the symbolism {A « B}
describes energy transport from reservoir A to reservoir B. In Earth's
atmosphere the processes responsible for maintaining a supply of energy
in the K' reservoir relate to the baroclinicity (see Section 1.3.2.2.2)
of our atmospheric system. Later in this chapter we will review those
processes which have been proposed as being responsible for maintaining
K and K' in Jupiter's atmosphere. In Chapter 2 we shall set up an Qort
diagram for Jupiter's atmosphere and comment on its powerful

implications.

1.2 (Qbservational Resources Provided by Voyager

The two Voyager flybys of Jupiter in March and July, 1979 provided
a wealth of information relating to the dynamics and energetics of

Jupiter's atmosphere. In our observational studies we are dependent

bl i e e

O T A TN

E
:

-




e oo

upon time sequences of Voyager images to obtain measurements of the
Jovian cloudtop motions. Thus, a brief description of the Voyager
imaging system and the methods used to deduce wind speeds from observed
¢loud motions is in order. The interested reader is referred to Smith
et al, (1977) and Snyder (1979) for a more detailed description of the

hardware.

1.2.1 The Voyager Imaging Experiment and the AMOS System

Each Voyager spacecraft is equipped with identical television
camera systems, consisting of boresighted narrow-angle and wide-angle
vidicon cameras with focal lengths of 1500 mm and 200 mm respectively.
The fields-of-view provided by the two camera systems are respectively
a square 07424 and 32209 on the side. The active imaging area on the
vidicon faceplate consists of a square array of 800 x 800 picture ele-
ments or pixels. Thus, the approximate angular resolutions of the
narrow-and wide-angle cameras are respectively 1.060 x 10'3 degrees/

3

pixel pair and 8.024 x 10~ degrees/pixel pair. This corresponds to

a spatial resolution of 150 km/pixel pair and 1050 km/pixel pair at a
range from Jupiter to the spacecraft of approximately 8.1 x 106 km.
This is roughly the range and resolution associated with the global
data sets used in Chapters 2 and 3.

Each camera is fitted with an eight position filterwheel which
allows for monochromatic imaging through a series of filters (which for
the narrow-angle camera range from an "orange" filter centered at 5700A
to an "ultraviolet" filter at 3250A). Though it is possible that

images through different filters might allow limited vertical discrimi-

nation of the data, we shall not concern ourselves with a possible




relation between color and altitude. Data comprising the Voyager 1|
global data set (or "world map") was obtained through a narrow-angle
orange filter, while the Voyager 2 world map utilized a series of
narrow-angle violet images (centered at 4000A).

Shading is encoded in an eight-bit format so that there are a
total of 256 gray levels which can be assigned to each pixel in the
frame. Subsequent ground-based "stretching" of the encoding can be
used to enhance detail which might otherwise be lost. Such enhancement
was performed on almost all of the frames used in this study.

The truly unique character of Voyager imaging data is realized in
a time series of frames in which motions of small cloud features are
used to deduce a measure of the wind speed at the cloudtop level. As
pointed out by Maxworthy (1973) it is risky to assume that cloudtop
motions represent the movement of atmospheric mass and not the phase

speeds of atmospheric waves. However, we note that over a wide range

-

of spatial scales (10] to 103 km) the observed wind speeds in any

one region of the planet do not appear to be a function of wavelength
(at least in the sense anticipated for motions representing phase velo-
cities). Based upon this observation and with some faith, we shall
assume that the observed cloud motions represent mass advection or
"wind".

At the image Processing Laboratory (IPL) of the Jet Propulsion
t.aboratory a special computer interactive facility has been set up to
convert measurements of cloud motions into data sets of wind veloci-
ties. The system makes use cf IPL's IBM 360/65 and POP-11 front end

processor with a set of scrtware known as Atmospheric Motion Study

E




(AMOS). It is probably inappropriate and certainly time consuming for
us to discuss the AMOS process in too much detail, hence, the inter.
ested reader is referred to Yagi et al, (1978), Positions in the
2-dimensional "image space* of a Voyager frame are converted into
planetographic coordinates on Jupiter's “surface* (i.e., latitude and
longitude). This conversion is based upon several navigational input
parameters taken from the spacecraft's Science and Engineering Data
Record (SEDR). The process is not, however, precisely deterministic as
it requires that the limb of a Jovian map grid be fit in a least
squares sense to the cp.ical limb of Jupiter. Following the conversion
from image space to map space a pair of frames separated by a known
interval of time are displayed side by side on a video monitor. Using
a trackball operated cursor the user cross-identities individual cloud
features in the two frames. The observed motion of these features
through map space is automatically converted into a measure of u and v,
the feature's 2onal and meridional speed. Under the assumption that
the observed velocity is advective the method provides measures of
ambient wind speed. The author and cihers (see Beebe et al., 1980;
Ingersoll et al., 1981) have estimated the total error in velocity mea-
surement due to the sum of 1imb fitting, navigational parameter, and
user identification errors to be approximately +i.5 m sec'] at a
spatia! resolution of roughly 150 km/pixel pair (i.e., “world map*"

resolution).
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1.2.2 Voyager Infrared Spectrometer and Imaging Radiometer (IRIS)

Reference to Equations 1.3, 1.4, and 1.8 indicates that wind mea-
surements with the AMOS system allows the computation of K, K', and
portions of {K' ¢ K } at the cloudtop level. The computation of
P asu ' and the energy conversions from potential to kinetic energy
requires a spatially resolved measure of zonal mean and eddy tempera-
ture deviations, represented by T and T' respectively. Measurements of
temperature as a function of both spatial location (x and y) and pres-
sure (p) are provided by the IRIS instrument (see Hanel et al., 1977,
for a complete description of the hardware and the method of data
analysis).

The IRIS instrument consists of a pair of Michelson interferom-
eters and a boresighted radiometer. The interferometers are used to
obtain measurements of radiance within absorption bands of minor atmo-
spheric constituents., Provided the mixing ratio (assumed constant with
depth) and the absorption coefficients of these constituents are known,
the optical depth as a function of pressure can be computed for each
frequency in the absorption band. Selection of a set of spectral
intervals with a range of opacities allows one to deduce T(p), the
temperature as a function of pressure (Gautier and Courtin, 1979).
Naturally, the presence of ¢lcuds will lead to error, and below the
cloud top level deduced vertical profiles are questionable. The
vertical resolution in the range from 1000 to 10 mb varies between 1
and 3 pressure scale heights. Horizontal spatial resolutions
obtainable with IRIS are roughly 2000 to 4000 km for the highest

resolution set of data used to compute P and P' globally.




1.3 A Review of the Theoretical Resources at Our Disposal

Having briefly examined the nature of the Voyager data set at our
disposal, it 1s also necessary that we provide our reader with a review
of past theoretical treatments and models of the Jovian circulation,
Such a background is no less a valuable resource than the rich Voyager
data set., We divide this review into two sections., The first provides
a brief qualitative description of what we shall later refer to as the
"classical® or Hess-Panofsky model for the mean zonal circulation. The
second section deals with several more detailed mechanisms which have

been suggested to explain both the mean and eddy circulation.

1.3.1 The Classical Model of the Jovian Circulation (Hess and Panofsky,
1951; Ingersoll and Cuzzi, 1969)

Based upon historical observations of mean zonal valocity as a
function of latitude (u(e)) Hess and Panofsky (1951), noting the
cyclonic relative vorticity associated with belts (darker bands) and
the anticyclonic vorticity of zones (lighter bands), first suggested
that the observed cloudtop vorticity was coupled to horizontal fields
of agivergence (zones) and convergence (belts) through the strong con-
straints of geostrophy. The basic notion was that rising moiion
beneath the cloudtops in the zones resulted not only in the observed
anticyclonic vorticity, but also in the freezing out of some atmo-
spheric constituent (probably ammonia). They presumed that this pro-
cess gave zones their brighter albedo. They suggested that sinking
motion in belts led not only to cloud leve! convergence, but to clear-

ing, rendering darker underlying clouds visible (see Figure 1.2).




Figure 1.2.

The Hess-Panofsky mechanism for driving Jovian zonal jets.
The jets arise from the Coriolis deflection of cloudtop
divergence in zones and convergence in belts, thus maximum

zonal velocities occur at the belt/zone interfaces.
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Ingersoll and Cuzzi (1969) extended this “"classical® concept of
Jovian circulation to arque that the thermal wind relation constrained
zones to be warmer regions beneath the cloudtops and belts to be colder
regions. Thus, in this classical concept of the Jovian circulation
zones were analogous to terrestrial anticyclones and belts to terres-
trial cyclones. The unavoidable connotation was that the zonal mean
circulation was driven by a zonally symmetric temperature distribu-
tion. This resulted in a zonally symmetric vertical motion field like
that of an equator to pole series of Hadley cells. We shall henceforth
refer to this classical or Hess-Panofsky model for Jupiter's .nean zonal
circulation as the HP model. Due to its simple eloquence, this basic
model has remained nearly unchallenged in popular explanations of the

Jovian circulation.

1.3.2 Possible Mechanisms Driving the Mearn and/or Eddy Flow

The simple or “"classical" HP model is dynamically limited only to
the extent that planetary rotation is required to produce Coriolis
deflections in a mean meridional wind. The mean meridional motions are
assumed to be driven by an associated zonally symmetric vertical motion
field. The classical model does not specify the mechanism energeti-
cally responsible for these vertical motions. More detailed
theoretical treatments are necessary if we are to appeal to specific
mechanisms capable of supplying energy to the mean and eddy motions.

In this section we wili provide a brief, yet hopefully complete, review
of more detailed treatments which have appeared in the literature. We
dicuss only those mechanisms which currently seem to be viable. At

this point we will intentionally neglect the solitary Rossby wave model




of Maxworthy and Redekopp (1976) as this model is not tied to any

specific energy mechanism. Chapter 5 is devoted to a detailed

investigation of the solitary wave model.
three mechanisms which seem viable as explanations for the Jovian mean

and/or eddy flow: the convective, baroclinic, and barotropic mechanisms.

In this section we examine

Stone (1976) in a highly recommended review article looks at the

mechanisms we call “convective"® and "baroclinic* as manifestations of

the same phenomenon:

light fluid so that available potential energy is reduced.

the sinking of dense fluid and the rising of

He

envisions this process as taking place over a wide spectrum of

Richardson number (Ri) where we choose to write Ri in a form given by,

where,

with,

He

planetary rotational frequency = 1.76 x 10'4 sec
Jupiter

gravitation acceleration

temperature

-R/c
T(p/p,) P = potential temperature

pressure

reference pressure

gas constant

specific heat at constant pressure

-1

for
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g; = typical meridional gradient temperature
® . jal t 1 i;
2 potential temperature lapse rate. |

Notice that the Richardson number represents in some sense a mea-
sure of the ratio of the non-adiabatic lapse rate to the horizontal
temperature gradient. Thus, the Richardson number can be used to 'y
classify an atmosphere as convective (at low or negative values of
Ri) or as baroclinic (at larger and positive values of Ri). At

negative values of Ri (i.e., a statically unstable fiuid) most of the

heat transport takes place vertically, and the flow is said to be con-
vective. As Ri increases the plane of heat transport reorients to the
horizontal and at a critical value of Ri =« 1/4 (at which even forced
convection ceases) the flow becomes baroclinic (Drazin and Howard,

1966). Thus, we might take the view that baroclinicity is little more

than "sideways" convection,

Both convective and baroclinic instabilities involve vertical
gradients of temperature, coupled in the latter case with horizontal
temperature gradients. Unfortunately, it remains likely that both the
vertical and the horizontal spatial resolution obtainable with the
Voyager (RIS instrument is inadequate for a definitive observational
treatment of either subject. We nevertheless, begin with a review of

Jovian circulation models which employ these mechanisms,

1.3.2.1 Convective Models

A logical extension of the classical HP model is one in which

vertical motions are driven by some form of convective instability
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associated with the belts and zones. Thus, convective models have
often been used to describe not only the nonaxisymmetric (eddy), but
the axisymmetric (mean) Jovian features as well. We designate as con-
vective those models which depend essentially upon unstable vertical
density (i.e., temperature) gradients and note that they may be divided
into three categories: those for which convective motions are shallow
relative to the planetary radius, those for which convective motions
are deep relative to this radius, and those which involve a convective
feedback mechanism driven by latent heat release or a Conditional
Instability of the Second Kind (CISK; note that this CISK mechanism is

convective rather than wave induced).

1.3.2.1.1 Shallow Convective Models (Williams and Robinson, 1973)

Williams and Robinson (1973) examine both the linear and nonlinear
problem of spherical, rotating Benard convection for a "semi-shallow"
atmosphere (one for which "deep" atmospheric effects due to curvature
terms in the equation of motion become active while remaining secon-
dary). From the linear theory of rotating Berard convection they point

out that with the assumption that the Prandt] number (o) is of order

unity,
K
= £
c = =~ 0(1)
where,
Ke = total eddy viscosity coefficient

eddy thermal diffusivity,

]

L9

the convective eddy geometrical aspect ratio (horizontal wavelength to

1/2 174

depth) is given by 2wy Ta; , where Ta = (Ta sin’ 8) is a local
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Taylor number at latitude e, and Ta = 402d4/K§v is the Taylor num-
ber (for atmospheric depth d and vertical eddy viscosity coefficient Kev)'
The dimensionless parameter u is just the ratic of horizontal (KeH) to

vertical (Kev) eddy viscosities where,

2 2 2

Ke = Key * Key
and

TR KeH/Kev .

Hence, if Lo/d represents a measure of the local planetary aspect
ratio (where Ly = local horizontal length scale) then,
1/2 2
i Tao Lo
H = 2 T .

4y
The Rayleigh number (Ra) measures the ratio of the buoyant force

to the product of the viscous drag and the rate of heat diffusion. For

the Jovian atmosphere Ra is given by,

a3

Key ®v

Ra = g B aT

where,

g = gravitational acceleration
B = af . gradient of planetary vorticity
dy ¥

AT = TL - TU with TL and TU

boundary temperatures

respectively the lower and upper
= vertical thermal diffusivity.

“v
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Williams and Robinson assume that Ra in the Jovian atmosphere is given
by the critical value for the onset of convection,

412uTa]/2

=
Rac o

in order to arrive at the relation,

2
. 4g8° 2 .2
daT = —§—-L0 sin® @.

Using the equatorial westerly jet to fix the value of Lo and ¢
they argue that the product daT is a constant, indicating t"at for a
given depth scale there is only one free parameter, KeV’ the vertical
eddy viscosity. For parametric inputs of d and Kev (i.e., Ra and Ta
respectively) they generate numerical solutions to the linear problem
(i.e., profiles of u, w, and T in the vertical-meridional plane, where
u is the zonal velocity, w is the vertical velocity, and T is the tem-
perature). They find that linear rotating Benard convection is capable
of maintaining an equatorial jet of the observed width, shape, and
magnitude if the active atmosphere is relatively shallow
(d < 500 km). Convective activity is a maximum at the equator. The
latitudinal range of convective activity seems determined by

Ra/Ta/?

» while Ra determines the amplitude of the convection.

An important dis.inction between the baroclinic and forced con-
vective instability mechanisms is that the former is independent of the
characteristics of the resulting turbulent field (and in that sense

linear to first order), whereas the latter depends upon the eddy
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viscosities associated with the turbulence (and is hence a nonlinear
mechanism). Thus, Williams and Robinson are compelled to parameterize
the eddy viscosities according to mixing-length theory for shear-driven
turbulence (Deardorff, 1971). The numerical solutions of the nonlinear
case have axisymmetric modes which yield a zonal wind profile remark-
ably like Jupiter's. The associated vertical velocity field yields a
pattern of increasingly narrow belts and zones progressing poleward.

As in the HP model, belts and zones are regions of cyclonic and anti-
cyclonic mean shear. Poleward of approximately 45% 1atitude con-
vective activity ceases. Williams and Robinson thus speculate that the
mean zonal wind profile and associated belts and zones can be repre-
sented as 2-dimensional (i.e., “flat") Benard convection cells with
fairly large aspect ratios (Lo/d > 15).

They conclude their investigation by performing a numerical
stability analysis in which the axisymmetric flow of both the linear
and nonlinear model is subjected to longitudinal perturbations, Thus,
they represent the observed cloudtop eddies as perturbations on the
zonally symmetric Benard cells. The resulting 3-dimensional cells in
the velocity and temperature fields grow at a slow rate, indicating
that the turbulence lies close to the transition point from 3- to

2-dimensional flow (i.e., from large to fairly small aspect ratios).

1.3.2.1.2 Deep Convective Models (Busse, 19/%; Ingersoll and Pollard,

1381)

Willlams and Robinson found that for Rayleigh numbers near Ra.

the dominant convective mode consists of 2-dimensional cells which are

symmetric in the vertical-meridional plane. However, for small values
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of Taylor number (i.e., small rotation effects) the convective cells
become deep in the sense that the depth scale (d) of the atmosphere is
constrained to values of order 1000 km or more. The linear theory for
such low Taylor number cases is examined by Busse (1970a) and there-
after extended to describe the motions within the solar (Busse, 1970b)
and Jovian (Busse, 1976) atmospheres.

Busse examines the case of 3-dimensional turbulence in a self-
gravitating, rotating spherical shell of inner radius (ri) and outer
radius (ro) with uniform heating on the inner sphere, For the case
where turbulent viscosity is important in the interior, non-boundary
layer flow (i.e., low Taylor numbers or high Ekman numbers) he is able
to obtain expressions for both the critical radius and critical
Rayleigh number for the onset of convection as both functions of Ekman
number (E s Ke/an, essentially an inverse Taylor number),

Prandt] number (¢ = Ke/x) and latitude (o). These expres-

sions, as well as the solutions to the governing Boussinesq equations,
are obtained on the basis of a perturbation expansion in the parameter
n, where n is the variation in the length of the fluid cylinder in

a direction parallel to the axis of rotation. The linear analysis
requires that n/é§ << 1, where & is a typical cylinder length in

the fluia shell (see Figure 1.3a). Busse found that in the Jovian
case, where r. = 50,000 km (for the metallic hydrogen core; see
Podolak and Cameron, 1974) and o * 70,000 km, the inviscid flow at
latitudes less than that defined by the intersection ¢f a tangent to
the core at the equator with the outer surface at "o is governed by

the Taylor-Proudman constraint to lowest order in n. Even 1n the




Figure 1.3.(a)

(b)

Schematic cross-sectional view of the deep convective
cylinders of Busse (1976). The Taylor-Proudman
cylinders extend through the fluid mantle with their
long axis parallel to the rotational axis of Jupiter.
The solid core casts a "shadow" at polar latitudes and

prevents the formation of cylinders.

3-dimensional sketch of Busse cylinders., Busse (1976)
suggests that eddy stresses, arising from the
vorticity associated with the cylinders, drive the
observed mean zonal circulation at the level of the

¢ loudtops.
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turbulently viscous case the instabilities in the temperate and tropi-
cal regions take the form of deep convective rolls oriented parallel to
the rotational axis (see Figure 1.3b). Busse (1970a) found close
careement between his results and the nonlinear numerical results for
the so-called "even" mode of Roberts (1968), which is remarkable in
that the linearity condition (n/é << 1) is clearly violated for

such deep cells. The flow at latitudes higher than the "critical®
value (i.e., about 45° 1atitude for Jupiter) corresponds to the
so-called "odd" mode and is characterized by convective cells like
those found in a plane layer, rotating about a vertical axis and heated
from below (Chandrasekhar, 1961). Busse (1976) uses the fact that
there are five observed zones in each hemisphere of Jupiter, and pre-
sumably five layers of convective coiumns, to deduce a turbulent Ekman
number and corresponding eddy viscosity coefficient of Ke ™ 1.2 x

2 sec'].

106 m
A key point to note regarding the shallow model of Williams and
Robinson and the deep model of Busse is the essential difference
between the mechanism giving rise to the mean zonal flow. In the model
of Williams and Robinson the mean zonal flow is the result of the
Coriolis deflection of mean meridional motions produced by
2-dimensional Beﬁard convection cells which are most active in the
equatorial regions. This mechanism is identical to that maintaining
the mean fliow in the classical HP model. In the mode! of Busse the
mean zonal flow is inertially driven through the nonlinear advection of
momentum by eddy stresses associated with the giant convective cells

which are presumably hidden beneath the Jovian cloudtops in the

temperate and tropical regions.
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Busse's Taylor-Proudman cylinders correspond to the so-called
"geostrophic mode* of Greenspan (1968) in which the inner flow between
two concentric cylinders remains constant in directions parallel to the
axis of rotation. Ingersoll and Pollard (1981) perform a linear
stability analysis of mean zonal flow in this geostrophic mode. The
driving mechanism for the flow itself is not specified; however, forced
convection in Busse-1ike cylinders would be one consistent mechanism.
Ingersol1l and Pollard describe the differential rctation of the coaxial
geostrophic cylinders with a zonal velocity profile given by U(R) where
U s the mean zonal velocity in the azimuthal direction (e), and R is
the radial direction in a cylindrical coordinate system with a Z-axis
correspuinding to the planet's rotational axis (see Figure 1,3). Note
that R = r;cose., where r is the Jov:ian radius and 0.
is the planetocentric latitude. Ingersoll and Pollard (1981) perform a
linear stability analysis of the radial profile U(R). They find that
for low azimuthal wavenumber disturbances (i.e., x, the distance
measured to the east on a spherical surface is scaled by Lo = Ty
cos o, whereas R, the radial distance toward the rotational axis
is scaled by a length L << Lo) differential rotation associated
with the geostrophic cylinders obeys a modified form of *:e barotropic

vorticity equation given by,
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where,

w = éz . WV = axial compenent of relative vorticity in

cylindrical coordinates
and,

B:.;"_.ﬂ dM
*M dr

with,

M(R)

+h
j p(R,Z) d Z,
-h

2 R2 = one-half the length of the geostrophic cylinder.

h = rJ

Note that in the above vorticity equation B takes the usual role of

-8, where 8 = df/dy is the gradient of planetary vorticity.

Ingersoll and Pollard find that the stability of the differential
azimuthal rotation u(R) with respect to a perturbation of the form y(R)
exp Lik(x-ct)] is gcverned by the equivalent of the barotropic stabil-

ity equation in which -B replaces g and is given by,

(u - C)wRR + (B - GRR) v=0

where,
¥ = Y(R) = amplitude of the disturbance streamfunction

disturbance phase speed in the azimuthal direction.

[g]
n
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The azimuthal index of the disturbance, which must be small, is
given by m = er cos ¢ and the growth rate by the product kci,

where c; is the imaginary part of the azimuthal phase speed. Numeri-

cally, Ingersoll and Pollard find that a sufficient condition for c to
be complex is that the quantity (B - Upp) must reverse sign somewhere
within the domain (note the similarity with the classical barotropic
stability criterion; see Section 1.3.2.4). One would expect violations
of their modified barotropic stability criterion to occur at the
latitudes of the eastward jets (i.e., where (B - ﬁﬁR) 2 0)) in

analogy with the classical barotropic stability criterion for which
violations are anticipated at the latitudes of the westward jets (i.e.,
where (8 - Uyy) < 0)).

They assume that u(R) manifests itself in the observed cloudtop
profile (U(y)), and examine the stability of the observed profile of
differential rotation U(R) on Jupiter. According to their modified
barotropic stability criterion the deduced profile of T(R) is stable to
low wavenumber, linear perturbations. There is the suggestion (see
their figure 2} that one eastward jet at +23° 1atitude might be
unstable, but they argue that the overall stability of tRe U(R) profile
favors a mean zonal wind which is driven by the differential rotation
of geostrophic cylinders. Their numerical results indicate that if the
modified barotropic stability criterion is violated, the disturbance

phase lines will slope eastward with increasing R away from the centers
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of the eastward jets. This implies that the disturbance is extracting
kinetic energy from the mean zonal £ low given by U(R), and they con-
clude that the ampiitude of the mean zonal wind profile on Jupiter is
limited by their modified stability criterion such that the mean flow
remains marginally stable.

On this basis they fail to explain why the amplitudes of the east-
ward jets are for the most part far below the stability limit. They
argue that the classical barotropic stability criterion, which holds
for a shallow atmosphere, is violated by the observed westward jets.
Hence, their reader is led to the conclusion that many of the observed
cloudtop eddies are manifestations of barotropic instability in a shal-
Tow, stratified upper layer of the atmosphere. On the other hand the
mean zonal flow of Ingersoll and Pollard is controlled by the differ-
ential rotation of the geostrophic mode cylinders and is thereby
decoupled from the observed cloudtop eddies. They point to fong term
constancy of the zonal flow (Chapman, 1969) and the hemispheric sym-
metry of U(y) as observations supporting their view.

If the model of Ingersoll and Pollard is accepted, we will be able
to deduce little from the cloudtop kinematics which is meaningful on
the level of the planetary scale energetics. That is, if the observed
mean and eddy flows are decoupled, we will not be able to represent the
atmosphere's energy budget by a closed Qort energy diagram, as the
observed reservoirs of eddy energy have little relevance to the
observed mean energy reservoirs (see our diagram in Section 2.5).
Ingersoll and Pollard do not address the ultimate question of what

mechanism drives the differential rotation.
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We shall later see that at le st at some latitudes the observa-
tions are at best marginal for deducing violations of the classical
barotropic stability criterion. More importantly, on the global mean
the deduced direction of kinetic energy transport associated with the
cloudtop eddy advection of momentum is opposed to that anticipated for

barotropic instability.

1.3.2.1.3 Latent Heat Dependent Convection and CISK (Barcilon and
Gierasch (|97U;; Glerasch, Ingersoll, and a1111ams [1973))

Barcilon and Gierasch (1970) p~.gosed that the mean zonal flow

observed at the cloudtop levei is driven by the latent heat of water
vapor which condenses in the Jovian zones. Thus, unlike the deep con-
vective cells of Busse their convective activity is shallow., Unlike
the shallow convection of Williams and Robinson, the mechanism driving
the convection is not tied to a uniformly heated lower boundary (pre-
sumably due to the presence of a deep internal heat source), but rather
to local thermodynamics at the level of the clouds. Their mean zonal
flow is driven by geostrophic constraints, in this case coupled to the
mean meridional motion via an induced meridional temperature gradient
and subsequent thermal wind field. Their treatment is valid only for
small Ekman numbers (where E = Kev/fH§ = Ekman number at the
tropopause, with vertical eddy viscosity Kev' Coriolis parameter f,
and a pressure scale height H0 at the tropopause level). The

2 2 sec']. For typical

condition that £ < 107" holds for Ky < 103 m
Jovian velocity scales the resulting Richardson number (Ri} is 3.7 x
10'3, clearly indicative of forced convection in which the turbulence
becomes 2-dimensional (i.e., the horizontal scales of motion become

much larger than the vertical scales; see Priestly, 1959).
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In the model of Barcilon and Gierasch the stress-free interface at
the tropopause gives rise to an Ekman layer of order E. Subsequent
Ekman pumping implies an O(E) mean meridional flow dependent upon the
vertical gradient of meridional temperature differences. Their meri-
dional temperature differences, characterized by a meridional gradient
aTolay (where TO = temperature at the tropopause level), are
maintained as a result of a net flux of condensate (i.e., water vapor)
into the zones. The subsequent release of latent heat increases the
temperature in cloudy regions (zones). Thus, their meridional tempera-
ture gradient applies not on the equator to pole scale, but rather on
the zone to adjacent belt scale.

The order E mean meridional motions advect entropy away from the
zones, They parameterize this loss of entropy with a linear function
in Tb(Y)’ which, if balanced by diminished radiation 'oss to space
due to the blocking effect of the clouds within the zone, leads to a
vertically integrated statement of energy conservation which takes the
form of a non-1inear, inhomogeneous second-order differential equation
in To(y). The inhomogenuity is related to the water vapor flux
entering the zones.

Their solutions indicate that higher temperatures can be main-
tained in the zones due to an increased water vapor concentration
there. Unfortunately, their model does little more than simply defer
the ultimate question which now becomes: how does water vapor become
concentraied in the zones in the first place? They speculate that per-
haps the zonally symmetric baroclinic instabilities of Stone (1966) are

ultimately responsible for this concentration.
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A more pleasing argument results if we explain the water vapor
concentration in zones on the basis of'lower level convergence in the
zones, In such a case the release of latent heat drives increased
vertical motions which through continuity of mass drive more vigorous
mean meridional motions. These meridional motions increase the influx
of water vapor, which, through the increased release of latent heat,
drives more vigorous vertical motions. Such an inherently unstable
mechanism is one example of a Conditional Instability of the Second
Kind (the CISK mechanism). In subsequent work Gierasch, Ingersoll, and
Williams (1973) suggest that a greenhouse effect associated with the
cloudy 2ones is responsible for local warming which leads to increased
vertical motion, more condensation, and subsequently more cloudiness;
the mechanism is of the CISK type. A major criticism is levelled
against a mean zonal flow ultimately maintained through the CISK mech-
anism by Williams and Robinson who point out that a direct analogy with
terrestrial CISK mechanisms requires that the downwelling regions
(belts) cover approximately five times the horizontal area of the
upwelling regions or zones (see Charney, 1970). Such a belt/zone

asymmetry is not observed on Jupiter.

1.3.2.2 Baroclinic Models

We have already remarked that in a sense baroclinic instabilities
represent horizontal or "sideways" convection (see Pe¢dlosky, 1979,
pg. 451 for a discussion of "Eady Angle convection") hence, a "baro-
clinic" atmosphere is characterized by horizontal heat transport rather
than large vertical heat transport as in a "ccnvective" atmosrhere, As

pointed out by Stone (1976}, the baroclinic mechanism tends to
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stabilize the vertical temperature gradient of an atmosphere leading to
higher values of temperature lapse rate (3T/az) and higher values

of Richardson number. Thus, in Stone's Richardson number spectrum
baroclinic instabilities occur in the Ri > 1/4 regime. The basic
instability mechanism can be of two types: a so-called inertial
instability (1/4 <Ri < 1) and the conventional baroclinic insta-
bility (Ri > 1). Both forms of instability are "baroclinic" in the
sense that they depend upon vertical shear induced by the thermal wind
relation in the mean zonal wind (as opposed to "barotropic" mechanisms
which depend upon the horizontal shear in the mean wind). The ultimate
source of this vertical shear is, of course, the available potential
energy stored in a field for which isopycnics (lines of constant den-
sity) and isobars (lines of constant pressure) do not coincide

(Vox Vp#o). We shall find that conventional baroclinic instabilities
draw their energy directly from the mean available potential energy,
whereas the inertial instability feeds upon the mean zonal kinetic
energy which is driven by the symmetric conversion of P into K.

1.3.2.2.1 |[Inertial Baroclinic Instabilities (Stone, 1966; Stone, 1967;
Stone, 1977)

Stone (1966) introduces the inertial instability mechanism by
considering the simplest baroclinic model, that of Eady (1949). The
reader is referred to Pedlosky (1979, pg. 456) for a discussion of this
basic model. The approach is to perturb a basic baroclinic state given

by
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where U, V, and W are the zonal, meridional, and vertical dimensionless
velocities of the basic state; x, y, and z are now respectively the

zonal, meridional, and vertical dimensionless coordinates; ©=@a(y,z)

is now the dimensionless potential temperature; and Ri is the Richard-

son number. The complete form of the perturbation, which is dependent

upon x, y, and z, is given by,

w=N(z) exp [i(ot + kx + ay)]

where,
w = dimensionless perturbation vertical velocity
N = dimensionless Brunt-Vaisiald frequency
o = dimensionless perturbation complex frequency
k = dimensionless perturbation zonal wavenumber

A» = dimensionless perturbation meridional wavenumber,

The linear problem reduces to a stability analysis of the characteris-

tic equation (as written by Stone, 1966),

2 .
2, d°w 2k . dw .12 2 2ika
(- Ao ke) ] — - [a vkz 2‘*} i - [R‘(“ ) TR

with rigid 1id ard flat buttom boundary conditions,

w=20 when z =0, 1
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The basic state is unstable to the linear perturbation if ¢ has
a negative complex component, a situation which is determined in the
characteristic equation entirely by the magnitude of Ri. Perturbations
for which A = Q are in general zonally asymmetric. The case for
» = 0 and Ri > 1 has been studied extensively (Eady, 1949; Arnason,
1963) and represents the conventional baroclinic instability., Taking
Ri as a free parameter, Stone (1966) examines perturbation growth rates
in the A, k domain (see his figure 5 for a good summary of the
results). The analysis near the zonally symmetric axis (k = 0) indi-
cates maximum perturbation growth rates for 1/4 <Ri < 1 and
A ==, These rapidly growing baroclinic instabilities take the
form of a series of long zonal rolls, a geometry clearly suggestive of
Jovian belts and zones.

For a strongly stratified atmosphere (Ri > 1) the perturbation
vertical velocities are of the order of the Rossby number and thus, in
a quasi-geostrophic (zeroth order in Rossby number) model vertical eddy
stresses of the form wWu may be neglected in the resulting perturbation
energy equation. Hence, in conventional (zonally asymmetric) baro-
clinic instabilities the only source of energy which the perturbation
can tap is the available potential energy of the mean state. On the
other hand, the relatively low values of Richardson number associated
with the zonally symmetric instabilities imply diminished static
stability and hence, an increase in the magnitude of w, the perturba-
tion vertical velocity. Subsequently, vertical eddy stresses may not
be neglected (hence, the instability is sometimes referred to as a

"nongeostrophic® baroclinic instability), and, in fact, represent the
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major energy transport mechanism available to the instability which is
able to feed inertially off of the kinetic energy of the mean state
(hence, the term "inertial instability").

The simple Eady model neglects the effects of curvature and treats
compressibility through Boussinesq equations, it is thus not readily
applicable to a deep atmosphere such as Jupiter's. In later work Stone
(1967) extends his analysis of inertial instabilities to a deep atmo-
sphere and finds that the results are nearly identical to those
obtained for a shallow atmosphere. Only the magnitude of the smallest
unstable wavelength (Lc. the "cutoff wavelength") shows a marked
change. Unlike the results for a shallow atmosphere, Lc seems to
depend strongly upon the meridional temperature gradient. A lack of
knowledge as to appropriate values for the meridional gradient thus
leas to increased uncertainties in Lc. If curvature terms are taken
into account, Stone (1971) finds that the meridional perturbation velo-
city (v) displays amplitude oscillations whose wavelength is a function
of latitude (e), decreasing as o increases. Thus, the meridional
widths of the inertial rolls decrease as one moves away from the equa-
tor in a way similar to Jovian belts and zones (see Figure 5 in Stone,
1976) .

A major weakness of Stone's inertial model is that it can give
solutions only in terms of the so-called Eady baroclinic modes (those
for which g = df/dy = 0 as in the original model of Eady). In the
next section we shall consider models which also allow for Green mode

solutions (for which g # 0; see Green, 1960).
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In closing, a key point to make regarding Stone's symmetric,
inertial instabilities is that the mean zonal wind is induced through
the thermal wind relation and hence rcpresents the effect of the
Coriolis deflection of mean meridional motions associated with Hadley-
like cells. This is quite in keeping with the classical HP-model for
Jupiter. It has also been suggested by Gierasch and Stone (1968) that
horizontal eddy stresses associated with the zonally symmetric cells
can induce zonal motions by means of a horizontal up-gradient momentum
transport only in eastward zonal jets (see our discussion in

Section 2.4).

1.3.2.2.2 Conventional Baroclinic Instabilities (Williams, i979;
erasch, naerso , and Pollard, y Lonrath, Gierasch,
and Nath, 1)

If the static stability is increased, vertical motions associated

with the linear perturbation of a baroclinic basic state are strongly
damped so that the perturbation itself becomes quasi-geostrophic. For
Ri > 1 we have already noted that the only energy source accessible
to the perturbation is then the available potential energy of the basic
state. Stone (1966) found that for values of Ri > 1 growth rates are
a maximum for instabilities lying on the asymmetric axis (i.e.,
A = 0; see Figure 4 in Stone, 1966). These instabilities are there-
fore zonally asymmetric and represent the conventional baroclinic
instabilities originally studied by Eady (1949) and Green (1960).

As applied to the Jovian atmosphere we may divide models of the
conventional baroclinic instability into two categories: shallow

models (Williams, 1979a) and deep models (Gierasch, Ingersoll, and
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Pollard, 1979; Conrath, Gierasch, and Nath, 1981). Unlike our classi-
fication of convective models, we do not define the "depth* of a model
by how deep the instability extends relatively to the planetary
radius. Rather, shallow baroclinic models are those for which the
lower boundary is rigid and can support stresses (giving rise to a
viscous drag in a surface Ekman layer). Deep baroclinic models are
those for which no rigid lower boundary exists. The major effect asso-
ciated with deep models is that the growth rates of the asymmetric
instabilities are greatly diminished due to the loss of energy to the
Tower layers of the atmosphere (McIntyre, 1972; Gierasch, Ingersoll,
and Pollard, 1979). Otherwise the results remain qualitatively much
the same in both deep and shallow models.

Following the suggestion of Stone (1972), Williams (1979a) applies
a shallow baroclinic model to Jupiter's atmosphere. Williams carries
out his parametric investigation using the 2-level quasi-geostrophic,
g-plane model of Phillips (1956). This model yields time-dependent
solutions for the 2-dimensional flow within each layer in the multi-
parameter space defined by Lx, Ly. f, 8, /92, H, o T and
Ke (where the parameters are respectively, the typical zonal length
scale for the motion, the corresponding meridional length scale,
Coriolis parameter, gradient of planetary vorticity, static stability,
diabatic heating rate function (generally specified as H = H(y)), time
constant for the lower boundary Ekman drag, time constant for the
interface drag, and eddy viscosity coefficient for horizontal diffusion
due to subgrid scale eddies). Williams points cut that the major
unknown parameters of dynamical significance are 36/3z, H, and
1

D
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In his case J1, Williams estimates the stratification (ae/s2)
by the minimum value required for the onset of linear instability
according to the analysis of Phillips (1954). Williams uses a latitudina)
heating function H(y) which is linear in y with an amplitude of
4 x 1078 watts kgm']. For the case J1 he neglects entirely the
effects of lower Ekman layer and interface drag., Williams describes in
detail the time evolution of the case J1 as it spins up from an
unstable zonally symmetric state for which the equator to pole tempera-
ture difference o7 = 2974 K, u = +2.3 m sec'] in the upper and

3 msec”! (where iw:

lower layers respectively, and w = 3x10°
is the magnitude of a zonal mean vertical velocity associated with a
weak equator to pole Hadley cell). ODuring the initial period (from C
to 316 terrestrial days) this zonally symmetric flow gives way to a
nonuniform momentum distribution due to the g vortex pairing process
of Kuo (1951). This leads to the motion of cyclonic eddies up the
planetary vorticity gradient (that is, poleward) and of anticyclonic

eddies equatorward. The redistribution of vorticity implies a change

in the zonal mean velocity given by,

au -

ol

where overbars indicate zonal averages and,

u = zonal velocity component

v = meridional velocity component

¢ = vertical component of relative vorticity = (av/ax) - (au/ay).
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Thus, mean eastward velocities (U > o) will increase due to the
upgradient momentum advection associated with the eddy stresses (see
Williams, 1979b). By the 178th day most of the momentum advection is
due to wave propagation rather than eddy stress related and §s sub-
sequently diminished in rate, At the end of this initial period only
about 20X of the total kinetic energy is eddy in nature and the mean,
zonal flow consists of five jet pairs (easterlies and westerlies) with
a typical velocity scale U = 25 m sec']. During the period from 316
to 1210 terrestrial days the flow remains almost stable with the first
of the so-called “gyres", long neutral baroclinic waves with warm,
high-pressure centers, becoming prominent, The period from 1200 to
1500 terrestrial days sees the onset of a second instability which
begins at high latitude and spreads equatorward. Not only do the baro-
¢linic eddies continue to pump momentum into the zonal jets, but
frontogenesis begins to occur with the subsequent release of vast
amounts of mean available potential energy. By the 1500th day the
typical mean velocity scale has risen to 77 m sec']. The second
major stable period sets in at about 1600 days. The mean circulation
then consists of four eastward and two westward jets. Superimposed on
this mean flow is a large permanent gyre (referred to by Williams as
the “Gyre"), which Williams compares with the Great Red Spot. The
results of the model are obviously intricate (Williams goes on to
examine the effects of changing the various input parameters) and, more
importantly, are quite unique among global circulation models for
Jupiter in that they allow evaluation of a time history of eddy-mean

f low energy reservoirs (K, k', P, and P') as well as the associated

transport mechanisms linking these reservoirs.
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Note that the baroclinic model of Williams differs substantially
from the classical HP model for Jupiter in several respects. The key
difference is, of course, that the conversion from zonal mean available
potential energy to zonal mean kinetic energy does not take place
directly in the symmetric or Hadley sense. Rather in Williams' model
(as in subsequent deep baroclinic models discussed below) zonal mean
available potential energy is first broken down into smaller eddy-sized
packets of available potential energy (P') in regions of baroclinic
instability. Eddy motions feed upon these smaller packets of potential
erergy, a process resulting in the conversion of P' into eddy kinetic
energy (K'). The roundabout path representing baroclinicity is com-
pleted by the upgradient transport of momentum by the eddies. The
reader is referred back tc Figure 1,1 for a better understanding of the
process.

Recall that in the HP model the mechanism is basically convective,
i.e., relating to rising motion in zones and sinking motion in belts.
Williams, however, maintains that the clouds are induced by horizontal
variations in mechanical pressure. Thus, in a region of higher pres-
sure (relative to the surroundings) clouds resembling terrestrial cir-
rostratus will form. The corresponding correlation between cloudiness
and anticyclonic vorticity is as observed on Jupiter.

As pointed out by Stone (1976), shalluw baroclinic models are
1ikely to give good results only if the decper atmosphere is as
statically stable (or more so) as the atmosphere at the cloudtop level,
for then instabilities will damp out quickly with depth. However, if

the stability of the cloudtop atmosphere is greater than that of the
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deep atmosphere (a situation which applies for an adiabatic, deep atmo-
sphere 1ike Jupiter's) d2ep models are likely to give more realistic
resuits. Gierasch, Ingersoll, and Pollard (1979) and Conrath,
Gierasch, and Nath (1981) describe such deep models.

Gierasch, Ingersoll, and Pollard (1979) formulate a 2-level model
consisting of an upper continunusly stratified layer (above 5 bars) in
which they apply the original Eady model (1949) and a massive, nearly
adiabatic lower layer {“elow 5 tdrs) with a quiescent basic state. In
agreement with McIntyre (1972) they find that growth rates of linear
instabilities are substantially reduced due to the energy sink repre-
sented by the lower layer. They examine both cases for lower layer
perturbations which are hydrostatic and nonhydrostatic and find that
though growth rates are greatly reduced in either case, only those
wavelengths much longer than the Rossby deformation radius (LD = NH/f;
see our discussion in Section 3.1) are unstable in the hydrostatic
case. Nonhydrostatic effects destabilize all wavelengths with a maxi-
mum growth rate for those wavelengths near LD‘ A fundamental problem
with their model is that it only allows for the existence of Eady modes
for which g = (.

Conrath, Gierasch, and Nath (1981) have recently extended the deep
baroclinic model to include "Green mode" solutions (for which
B8 #0). The first baroclinic stability analyses to include the
effects of g were the models of Charney (1947) and Kuo (1952). For
tarth's atmosphere they considered the realistic problem of a fluid
bounded below, but unbounded above. The results of their stability

analyses indicated that for (au/az) > 0 and g > 0 baroclinic
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instabilities were possible. Eady (1949) had considered the problem of
a fluid bounded by rigid flat surfaces at the top and the bottom for
which g = 0 and found that a different class of instabilities were
possible (the so-called "Eady modes"). As pointed out by Green (1960),
it is clear that the presence of g and rigid lids greatly affects the
results of the stability analysis, for if the rigid 1id in Eady's model
or the planetary vorticity gradient in Charney's model is removed, all
waves are rendered baroclinically neutral. In the Eady model computa-
tion of complex phase speed (c) as a function of zonal wavenumber (k)
yields a pair of solutions for single values of k. This pair corres-
ponds to amplifying or decaying perturbations traveling with the mean
zonal velocity of the basic state. The perturbations show amplitudes
which are vertically symmetric about two so-called “"steering levels" at
which u(z) =3 {c} and which are located at equal distances above
and below the mid-level of the fluid. As k + =, that is, for very
short waves, all the solutions are stable. On the other hand, if
g = 0, the stability analysis of Charney and Kuo yields monotonic
solutions for c(k). As well, there is no shortwave cutoff to instabil-
ity, and there exists only one steering level which is located below
the mid-level for all values of k.

A major difference between the g = 0 and g # 0 case is that in
the latter the absolute vorticity changes due to meridional motion

(vg) must be balanced by vortex stretching (f g) in the absence of

relative vorticity advection (which is negligible for a linear pertur-

bation). Thus, at the steering level,
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Green (1960) considers the case for 8 # 0 in a fluid bounded by flat
surfaces at the top and bottom boundaries (a hybrid of the model of
Eady and that of Charney). In Green's model, as in Charney's, there is
only one steering level and instabilities can exist only for

au/az > 0, If we apply the terrestrial lower Doundary condition

that w = 0 at 2 = 0 and if w is a slowly varying function of z, then at
a steering level located near the lower boundary we find that w > 0

and (aw/az) > 0. Application of equation 1.9 then requires that

v > 0, and hence, the vertical eddy stress VW must be positive at the
steering level. Positive values of Vw are consistent with perturbation
parcel trajectories which 1ie along an angie between isentropic and
horizontal surfaces for au/sz > 0, Thus if U=0at z =0, the

release of mean available potential energy through the "Green modes"
can occur only in the vicinity of eastward jets.

Conrath, Gierasch, and Nath aprly the basic Green model to Jupiter
by selecting the boundary condition most appropriate to the deep Jovian
atmosphere, namely, that w = 0 at the top of the atmosphere. Applying
Green's agreement they find that at an upper steering level
(aw/3z) < 0, and hence, by Equation 1.9, v < 0. Thus, vw is
now negative and the release of available potential energy can oiity

occur if au/az < 0, that is, in the vicinity of westward jets if

the lower boundary condition remains u = 0 at z = 0. Thus, Conrath,
Gierasch, and Nath's model predicts that baroclinicity and the subse-
quent upgradient momentum flux cue to eddy motions can occur only in

westward jets.
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As we shall see in the next section barotropic or shear instabili-
ties are likely to occur if dZU/dyz epxceeds g. This can only
occur in strong, narrow westward jets. Since the baroclinic modes
described by Conrath, Gierasch, and Nath are operative only in westward
jets, they are obliged to consider the hybrid baroclinic-barotropic
instability for which the basic state is sheared meridionally as well
as vertically. The results of their numerical model (designed to
explore the behavior of solutions as functions of jet width), indicate
that in the narrow jet ‘it the instabilities are basically baro-
tropic, while in the wide jet limit the instabilities are almost purely

baroclinic,

1.3.2.3 Wave Driven Jets (Maxworthy, 1975)

Mean flow in most baroclinic models of the Jovian circulation is
driven by the horizontal transport of momentum into the regions of
zonal jets. Maxworthy (1975) proposes that the equatorial jet can be
explained on the basis of the vertical transport of momentum by Kelvin
and gravity-Rossby waves. As the Kelvin wave mode can be excited only
near the equator, the mode! cannnt be specifically applied to the zonal
Jets observeu at temperate latitudes, but the model is nevertheless
important as it underscores the possibility that the vertical propaga-
tion of lower tropospheric waves may well be quite important. If such
is the case, the remarks made on the work of Ingersoll and Pollarg
again apply, and there is little hope that an analysis of cloudtop eddy
motions and upper tropospheric thermodynamics can be entirely relevant

to a study of the global energetics of the mean zonal flow.




Based upon the parameterization of Lindzen (1971), Maxworthy
models the observed equatorial jet as the steady state solution to a
momentum balance between vertical momentum diffusion (controlled
through Newtonian cooling) and vertical eddy stress dissipation (con-
trolled through a vertical eddy viscosity and vertical wind shear),
This balance is assumed to hold at each level of the atmosphere, hence
numerical integration of the balance equation gives profiles of u(z).
The vertical wind shear is assumed positive (au/az > 0) and the
resulting u(z)-profile gives high westerly jet speeds in the lower
stratosphere. The model might be criticized on the basis of the large
number of free parameters available; however, this cannot be avoided
based upon our limited knowledge of the Jovian atmosphere. The
specific value of the Brunt-Vadisdla frequency employed by Maxworthy is

4 sec'z; see

quite reasonable at the tropopause (namely, N2 « 3.3 x 107
our discussion of observed vertical structure in Chapter 5). Based

upon current observation two major criticisms arise:

a) As we shall later see meridional temperature profiles in the
upper troposphere indicate that the vertical wind shear is

negative (al/az < 0);

b) Estimates of cloudtop heights place them near the 500 mb

level for which N 1 x 1074 sec'], the diminished

stability allowing less vertical momentum transport by the

propagating wave.
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With regards to our second criticism we note that there is some
evidence that in the equatorial region clouds (and the inferred velo-
cities) lie higher in the atmosphere (West and Tomasko, 1979). The
first criticism remains, however, and indicates that a model based upon
a balance between vertical momentum diffusion and vertical eddy stress
dissipation alcne will not allow for an increase in momentum dissipa-
tion with increasing altitude if au/az < 0. The problem can be
resolved if, as suggested by Maxworthy, we include the effects of
horizontal eddy diffusion. However, we know little about the vertical
structure of horizontal diffusion so that the complete problem becomes
hopelessly entangled in a mass of undetermined parameters. Neverthe-
less, the possibility that momentum deposited by vertically propagating
waves, which are perhaps generated by the CISK mechanism (but in gen-
eral could be coupled to any mechanism in a stably stratified atmo-
sphere), plays an important role in the upper atmospheric energetics
remains and renders our attempt at a glcbal energy budget analysis a

preliminary one.

1.3.2.4 Barotropic Instabilities

The instability of a 2-dimensional flow with horizontal shear on a
g-plane was originally examined by Kuo (1949). His linear stability
analysis revealed that a necessary condition for the existence of an

instability within a zonal jet bounded at y

Y2
o=, 2
/;} (8 - d“U/dy”) dy =

Y ¥p is that,

y
o
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This condition can be met only if the above integrand changes
algebraic sign somewhere within the interval between Yy and 177
For a prograde rotating planet (1ike Jubiter) g8 > 0, thus this
integrand can change sign only if dz‘ii/dy2 > 8. As already
remarked (see previous section) this is possible only in strong, narrow
westward jets.

One might rightly conclude that evaluation of U(y) through the use
of Voyager image sequences should provide irrefutable evidence either
for or against the possibility of barotropic instability. There are
two approaches one can take to determine the algebraic sign of
(a-dzﬁldyz). Based upon measured profiles for u(y), the value of
dzﬁ/dyz_can be computed using finite differences and the result
compared to the magnitude of g; such an analysis indicates that many,
if not all, of the observed westward jets are barotropically unstable
(see Figure 4 in Ingersoll et al,, 1981). The second approach is to
compute the profile of u(y) which would result in neutral stability
(i.e, 8 = dzﬁ/dyz) and compare the width of the neutral profile
at a particular latitude (°o) to the actual observed jet width at

the same latitude. The equation for such a neutral profile is,

2
- . 2 /v
u(y) (a cos °o) rs (o - eo) (TED) +u (eo) (1.10)
where,
rJ = Jovian radius
u(eo) = maximum westward velocity in observed jet
8, -~ latitude of maximum westward velocity.
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Note that the neutral profile for u(y) strictly applies only at
e = 8,. We feel that the second method of analysis is the better
one because it does not depend upon finite differences computed over a
substantiai fraction of the actual jet width, The results of the
second analysis seem to suggest the possibility of barotropic instabil-
ities in the westward jets (see Figure 2 in Ingersoll et al., 1979),
though the interpretation is marginal at best. In Chapter 4 we are
concerned with the stability of the westward jet in which the Great Red
Spot is located. We shall see that while the results of a finite dif-

ference calculation of dzﬁ/dy2 indicate instability, the i2sults of

a stability profile analysis seems to indicate marginal stability. The -

energetics of barotropic instabilities require that the associated eddy
stresses allow the perturbation to feed upon the ambient mean zonal
kinetic energy. In our global analysis of the role played by eddy
stresses (see Section 2.3) we shall see that on average the stresses
tend to feed the mean zonal fiow. We can only conclude that barotropic
instability cannot be responsible for the bulk of the observed eddy
motions. This does not pr.clude the barotropic mechanism in the
vicinity of some of the westward jets, where one might anticipate a

reduction in the deduced eddy to mean energy transport rates.
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CHAPTER 2: GLOBAL ENERGETICS

2.1 Introduction

In this chapter we examine the global energetics of the Jovian
circulation using measured cloudtop motions and IRIS temperature
soundings to assemble thz first Oort energy budget for the general cir-
culation of the atmosphere of another planet. We will also attempt to
contrast the role played by zonally symmetric (mean) and asymmetric
(eduy) motions in the energy transport processes linking the Qort

energy reservoirs,

2.2 The 2-Dimensional Kinetic Energy Equation

The zonally symmetric conversion of available pctential to kinetic
energy involves a zonally symmetric vertical velocity field which can-
not be directly measured (see equation 1.5). In contrast the conversion
of K' into K involves the momentum transport associated with horizontal

*eddy stresses (6777) which can be deduced from measurements of cloudtop
motions (see equation 1.8). If we are to contrast the relative impor-

tance of the two processes given by {P « K} and {K' * K}, we must relate

the symmetric conversion process {P *+ K} tn the observed horizontal flow.

Fortunately, the relationship between horizontal motion and kinetic

energetics at a given level in the atmosphere is relatively straight-
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forward provided that on observable scales the kinetic energy associated
with vertical motions is small and may be neglected. We proceed to
derive an equation relating the observed 2-dimensional motions to the

atmospheric energetics.

2.2.1 Derivation of the 2-Dimensional !ean Zonal Kinetic Energy
kquation

In this section we derive an expression for the time rate of

change of the mean zonal kinetic energy in a motion field consisting of
a mean flow upon which are superimposed eddy or perturbation motions.
Earth-based (Peek, 1958) and Voyager observations (Ingersoll et al,,
1979) make it clear that most of the mean kinetic energy in the Jovian
atmosphere is associated with alternating eastward and westward zonal
jets. Hence, the mean kinetic energy associated with the mean meridi-
onal motions is small and we need only consider those energy transport
processes relating to changes in the mean zonal motions in order to
evaluate the relative importance of zonally symmetric and asymmetric
eénergy transports.

As noted, we must neglect the effects of vertical motion which we
are unable to cvaluate in time sequences of Voyager images. We treat
the fluw as incompressible, that is we will freely move o on either
side of any differentiation (the 2-dimensional, subsonic flow behaves
as if it were incompressible) to write the momentum flux form of the

zonal momentum equation as:

3pYU | 3puu . apuv
F14 X ay

-§§+ of v (2.1)

2-2




where,

x = zonal spatial coordinate, positive eastward

y = meridional spatial coordinate, positive northward

u = dx/dt = zonal wind component, positive eastward

v = dy/dt = meridional wind component, positive northward

p = pressure

p = mass density »
f = 2asin e = Coriolis parameter

a = Jovian rotational frequency = 1.75 x 1074 sec!

e = Jovian planetographic latitude

If we average (integrate) equation 2.1 over some interval in x we have:

r
j :udx+[puu]x+ fi?”lv-dx--[p]x*fpfvdx (2.2)
X X X

where the terms in square brackets represent perfect differentials
evaluated over the limits on x.

Our concept of mean and eddy motion fields is embodied in a
Reynolds-type decomposition where the assumption is made that each of
the observed zonal and meridional wind speeds consists of a zonally
averaged or mean component (represented by an overbar) and an eddy

component (represented by a prime) so that,

=
"

+uf (2.3)

u
v+
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where,

() = %f ( ) dx = longitudinal mean component
X

jfdx %

X

—
n

"

( ) =( )=-(") = eddy component.

Upon performing a Reynolds decomposition our zonal m_mentum equation

becomes:

[gg_(u_a%_u_) dx + [p(ud + 2 Uu' + u'u')]x
X

a0 (UV + TUv' + u'V + u'v') .
+[ 3y dx [-p_jx
X

+ [pf(v + v') dx. (2.4)
X

Noting that all longitudinal averages involving cross products of mean
and eddy components will by definition go to zero upon integration over

our averaging interval in x and similarly, that u' and v' vanish from
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the first and last terms of our equation, as does liﬁﬁ]x, we are

left with,

/ agg_u dx + [p(20u' + u'u')]x 4‘[“@” :y" v') dx
X ' X

= [-p]x +fpf\7dx.
X

Noting that our limits on x are time invariant, we pull the partial

12.5)

differentiation with respect to time out from under the x-integral and

multiply our equation by u to obtain:

_[Z]' oildx + [ [o(20u’ + u'u')l, +fﬁ 3p (U7 :yu'v') dx
X

X
(2.6)
- [_ Dp] + /.pfﬁ\.!dx.
X
X

We desire an expression for the total time rate of change of mean zonal

)
at

kinetic energy, thus we must also average over some meridional channel
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width in y and depth in z /this assumes the observed cloudtop

kinematics represent the mean in an atmospheric column) to obtain:

%f[ [ [2]- pﬁzdxdydz= -[ f [up(2uu’ + u'u')] X dydz
X z Jy

-/[ foﬁ-ﬂ!—:—yuildxdydz (2.7)
z 7y Y%

-[[[ﬁp]x dydz +ff[ pfuvdxdydz .
2z Jy zJy Jx

We integrate the second term on the right side of our equation by parts

as:

-/ff pu 3(—‘&:—){“—'!-'-)- dxdydz = - f// pu d(Uv + u'v') dxdz
zJy Jx 27y Jx
_ﬂ _— - di
= - (ff[ pU [uv]y dxdz - f[j UV 3y dxdydz (2.8)
vy JIx zvy Jx

/[ ol Lu'v'], dxdz-[[[ dxdydzf
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We make the assumption that our longitudinal averaging region is cyclic
in x for the quantity u' in order to gét rid of the first term on the

right side of our energy equation. Hence, we may write symbolically,

H = ReRb+ K oKI+ o+ K)o+ {fR « R) (2.9)

where,

g%:%fff_[ ,l,paz dxdydz (2.10)
ZJYyJIX

= time rate of change of mean zonal kinetic

energy inside an averaging volume or momentum

control volume.

gach of the energy "transport" terms on the right side of the equation

([

Mean Meridional Transport Term; change in mean zonal

is given by:

S

i 4
=
Py
-
]
+
N’\

[
dxdydz - p u [uv] dxdz (2.11)
y ] y
z Jx

kinetic energy due to transport of mean zonal momentum

across latitude circles by the mean meridional wind.
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:‘[ffou'v' %gdxdydz-ff[pﬁu'v']ydxdz (2.12)
y Vx 2 Jx

Eddy Transport Term; change in mean zonal kinetic

L]

energy due to transport of mean zonal momentum across

latitude circles by eddies.

- j[ﬁ (p] , dydz (2.13)
z Jy

Pressure Torque Term; change in mean zonal kinetic

Fall
———
]

{p*

energy due to east/west pressure difference (i.e.,

constant pressure gradient) across the region.

+ [f[ pfuv dxdydz (2.14)
Z %y “x

Hadley or Symmetric QOverturning Term; change in mean

—
-h
sl

L]
>t

——

"

1}

zonal kinetic energy due to conversion of mean
meridional motions into mean zonal motions through
Coriolis deflection.

For a more complete interpretation of these terms see Section 2.2.3.

2.2.2 The Qperational Scheme

From time sequences of Voyager images we have observations of both

the zonal (u) and the meridional (v) cloudtop wind speeds. We wish to

use this observed horizontal flow field at the cloudtop level in order




to evaluate the terms in equation 2.9. fhis observational data set is
easily linked to the terms in our mean.zonal kinetic energy equation if
we represent derivatives and integrals by finite differerces and
summations respectively. For conceptual ease and so that we may refer
to earlier work (Beebe et al., 1980; Ingersoll et al., !981) we may
express each of the terms in equation 2.9 in units of energy per time
per horizontal unit area (watts m'z). In order to do this we note
that the horizortal area of our control volume is 2YL (where the volume
extends from -Y to +Y in the meridional dimension, i.e., the channel
width is 2Y)., Dividing equation 2.9 by the quantity 2YL thus gives the
average time rate of change of mean zonal kinetic energy per unit
horizontal area inside our momentum control volume. With the
assumption that the observed cloudtop kinematics represent the mean in
a column of atmosphere we may pull the mass censity (p) outside our
integral in z by simply representing p dz as p*D where D is the
depth scale of the atmosphere c»105m; Sivine, 1971) and
o* =1/D pdz is the mass per horizontal area in a column of depth
D(x10% kgm m2; Divine, 1971).

In order to perform the summation and finite differencing
necessary for the evaluation of each of our kinetic energy transport
terms, we divide the observed horizontal flow field into zonal strips

of constant width (ay) in latitude. The zonal extent of each strip

or bin (as each shall hereafter be called) is just L. Thus, our
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moperational® expression for evaluating the time rate of change of mean,

zonal kinetic energy per unit horizontal area becomes:

:_§_={g.g}+{k-.g;+{p-k}+;fk-k} (2.15)

where in finite difference form,

g = =] (2.16)

Each of the transport terms becomes,

N

= du
EQ " Hy>'l [(O*UUV i=N "~ (D*W‘T).i:] ]

(2.17)

. = .‘=]
{k » Kk} N Nay

Mean Meridional Transport Term,

fk* e k)

"

[(DG‘-‘—'V’H:N' ("*‘-“"_—V')i:‘l] (2.18)
Nay

Eddy Transport Term,

N
Z (GAP)i

p + K| = -(%)*____"” . (2.19)

Pressure Torque Term,




where,

P = Peact - PypsT = Pressure difference in x across control
volume

and,

N
2'(9*1"37)1
{fR + K} -"—r— (2.20)

= Hadley or Symmetric Overturning Term.

Notice that we index the average value of a quantity in each zonal
averaging bin by i, where N is the total number of latitude bins and i
increases as one moves northward (i.e., with increasing values of y).
Since ay is the bin width in a constant latitude increment we must be
careful to perform the actual summation ii( )j as an area weighted
summat ion., -

The meridional shear of the mean zonal wind is approximated by its

centered finite difference equivalent given by,

- (W), = (U);
dul _ i+l i-1



2.2.3 Interpretation of the Terms in the Kinetic Energy Equation

Note that equation 2.9 contains only inertial terms with the excep-
tion of the horizontal pressure torque term. The three inertial terms
representing {K * K}, {K'* K}, and {fK « K} involve only the trans-
port of pre-existing kinetic energy within or into the control volume.
The pressure torque term is the only true kinetic energy generation
term in our energy equation and, of course depends upon a pressure dif-
ferential which cannot be directly observed in any Voyager data set.
Also, we have completely neglected any explicit vertical motions as
they are unobservable in Voyager imaging sequences. It is these verti-
cal motion terms which are in fact ultimately responsible for the con-
version of both eddy and mean available potential energy into eddy and
mean kinetic energy (see equations 1.5 and 1.7).

The four terms included in equation 2.9 do, however, allow us to
contrast the role of eddy motions and mean, zonally symmetric, meridi-
onal motion. The explicit effects of eddy motion can be analyzed
through the use of the {K' * K} term, whereas the effects of Hadley
overturning can be quantified through the evaluation of those terms
containing v, namely {K « K} and {fK « K}.

The argument for relating the energy transports associated with
mean meridional motions to mean vertical velocities is a simple one.
vertical temperature profiles of the Jovian atmosphere indicate a trop-
opause near the 140 mb level (Hanel et al., 1979). The sharp increase
1n static stability near the tropopause (see our Figure 5.1) effec-
tively acts as a rigid lid inhibiting any vertical motions near this

level. Zonal mean vertical motions are thereby converted into zonal

-




mean meridional motions through the divergence required by mass
continuity near the tropopause level. The resulting V can transport
kinetic energy only by means of the two processes {K « K} and {fK « K}.
Thus, the measured energy transports associated with {K + K} and {fR « X}
effectively amount to a measure of the {P ¢ K} transport which in a
strict sense involves the correlation between zonal mean vertical vel-
ocities and zonal mean temperature deviations as in equation 1.5. Since
the cloudtops (and inferred velocities) 1lie near the 500 mb level, while
the tropopause lies near the 140 mb level, estimates of transport rates
associated with {P + K} based upon observed values of {K + K} and {fK + K}
are likely to be low, i.e., the bulk of the divergence may be taking
place in the clear, uppermost troposphere. We proceed to give an intu-
itive and physical explanation of each of the terms in equation 2.9.

The "mean meridional transport term" (symbolically represented by
{K « K1) represents the transport of kinetic energy (momentum) by
zonally symmetric eddy stresses. A full physical interpretation of
this term is complicated by the nonlinearity in uU; however, as seen in
Figure 2.1 a positive correlation between the zonally symmetric stress
(uv) and the meridional shear of zonal wind (dd/dy) is one for which
the stresses lean with the ambient shear so as to enhance the mean
shear. On the other hand, in a negative correlation region the
stresses lean against the ambient shear so as to diminish it. Notice
that according to the Hess-Panofsky Model of diverging zones and

converging belts (see Figure 2.1b) the anticipated sign of the mean




Figure 2.1.

Zonally symmetric stresses at the cloudtop level according
to Hess and Panofsky (1951 (see Figure 2.1(b)). Figure

2.1(c) illustrates stresses for which the resulting energy
transport leads to the growth of the magnitude of the mean

Jovian zonal wind with a profile shown by the connected

points in Figure 2.1(a).
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stress shows a correlation with dii/dy resulting in {K < K) positive for
zones, but an anticorrelation in belts, such that {K » K} is negative.
Thus, in the HP model the shear in belts is diminished by the mean

stresses resulting from convergence, whereas the shear in zones is

enhanced by the mean stresses. As the total area of the belts 1.e.,
regions of convergence) and of the zones (i.e., regions of divergence) »
are approximately equal, we expect that the term given by {K « K} will

be very small when taken as a global average. On the other hand, Fig-

ure 2.1c illustrates symmetric stresses for which the net contribution to
{K » K} is a positive. Notice that the actual direction of the vel-
ocity associated with the stress is irrelevant (as represented by the
double-headed arrows), only the algebraic sign of the symmetric stress
uv is relevant in the correlation with the ambient shear gi. by du/dy.
On the other hand, Gierasch and Stone (1968) suggest that zonally sym-
metric stresses associated with inertial (zonally symmetric baroclinic)
instabilities will deposit momentum only into mean eastward jets (see
their Figure 1),

The “eddy transport term" (symbolically represented by {K' + K})
represents the kinetic energy transport due to zonally asymmetric eddy
stresses. Reference to Figure 2.2 illustrates that a series of eddies
whose major axes are aligned with the meridional shear in the mean zonal
wind will pump momentum (hence kinetic energy) into the mean zonal flow.
As with the symetric stresses, notice that the algebraic sign of the
vorticity associated with the eddies is irrelevant (compare Figure 2.2b
with Figure 2.2c), rather, only the algebraic sign of the eddy stress

u'v' is relevant in the correlation with the ambient shear. We have

2-17




Ry T VIR

RS S

Figure 2.2.

i 5 2ok D~ i - - . oot

Eddy stresses at the cloudtop level giving rise to net
energy transport into the observed mean flow illus-
trated in Figure 2.2(a). As can be seen by comparing
Figure 2.2(b) and 2.2(c) the algebraic sign of the eddy
relative vorticity (t) is irrelevant. OQOnly the aige-
braic sign of the net stresses, represented by the
direction of the eddy tilt, is relevant to the

associated energy transport process.
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chosen to represent a net eddy stress by a wholesale tilt of the
individual major axes of the eddies in Figure 2.2. See Section 4.3,3
for a more detailed discussion of the geometries associated with the
production of net eddy stress. It is this term which is responsible in
Earth's atmosphere for the bulk of the momentum transfer from equator
to pole., In the shallow baroclinic model of Williams (1979a) this eddy
momentum transport is responsible for maintaining the mean zonal flow.
Thus, quantification of the {K' * K} term is important for a consider-
ration of the global energetics of Jupiter's atmosphere. We shall turn
to a full discussion of past work involving measurements of {K' « K} in
the next section.

The “Hadley, symmetric overturning term" (symbolically represented
by {fK * K}) represents the deflection of mean meridional flow into mean
zonal flow by Coriolis forces. The process represented by this term
lies at the heart of the HP model of Jovian circulation, As seen in
Figure 2.3 the cloudtop divergence associated with zones gives rise to
mean meridional flow northward (southward) along the northern (south-
ern) portion of zones. We anticipate a mean meridional flow southward
(northward) along the northern (southern) portion of converging belts.
In the northern hemispnere the Coriolis deflection to the right will
convert this mean meridional flow into a westward mean zonal flow along
the northern (southern) edges of belts (zones) and into an eastward
mean zonal flow along the southern (northern) edges of belts (zones;.
In the southern hemisphere the Coriolis deflection to the left will
convert the mean meridional flow into a westward mean zonal flc.v along

the southern (northern) edges of belts (zones) and into an eastward
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Figure 2.3. Zonally symmetric stresses predicted by Hess and Panofsky

(1951) which led to the growth of the illustrated mean
zcnal flow. Coriolis deflection to the right in the 3
northern hemisphere (see Figure 2.3(a)) and to the left ]
in the southern hemisphere (see Figure 2.3(b)) provides

for a tadley cell overturning which maintains anti-

cyclonic zones and cyclonic belts.
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mean zonal flow along the northern (southern) edges of belts (zones).

Thus, anticyclonic zones (and cyclonic belts) yield positive correla-

tions between U and vV in the northern hemisphere and negative correla-
tions between U aii. 7 in the southern hemisphere, so that the term

{fK + K} remains positive.

The “pressure torque term" (symbolically represented by {p » K})
represents the generation of mean kinetic energy through the effects of
stresses arising from net pressure differences maintained across the
longitudinal extent of our averaging bin. Pressures are not directly
observable by the Voyager spacecraft. The form of the ierm is such
that if a higher net pressure exists on the eastern side of the bin
(ap>0) a mean acceleration to the west will be maintained such that
the total mean kinetic energy of an eastward (westward) flow will
diminish (increase) with time. The opposite will occur if ap<0.

If the averaging bin extends over 360° of longitude, the pressure
torque term will go to zero provided there are no discontinuities on
surfaces of constant pressure, as the term then becomes the integral of
a perfect differential over a cyclic region. Discontinuities can be
maintained in an atmosphere only if pressure surfaces intersect a solid
object such as a mountain, On tarth approximately half the total mass
of the atmosphere lies below the summits of the higher mountain ranges,
thus the effects of the pressure torque term, or the "mountain torque
term" as the terrestrial analogue is called, are considerable. In a
classical study of the mountain to.jue effect White (1949) fcund that
Earth's mountain ranges, oarticularly the Rockies and the Asiatic

ranges, do indeed rei.. .. angular momentum from the mid-latitude
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atmosphere at a rate comparable to that due to surface friction. In
the tropics the mountain torque effect plays a reverse role and is a
major source of atmospheric angular momentum. In our studies of the
global kinetic energetics of Jupiter's atmosphere we shall hereafter
make the reasonable assumption that mountains do not play a major role
in the atmospheric energy cycle. The pressure torque term is not eas-
ily laid to rest and will reappear in an unwelcome way in our study of

an isolated, closed momentum control volume (see Chapter 4).

2.3 Eddy Transports and Previous World Map Studies

Previous collaborative work by the author regarding the nature of
the eddy momentum transport term as deduced from global wind measure-
ments made from series of Voyager 1 images (Beebe et al., 1980) and
Voyager 2 images (Ingersoll et al., 1981) served as the stimulus for
the subsequent observational work reported in the remainder of Chap-
ter 2 as well as in Chapters 3 and 4. In both collaborative efforts a
series of narrow-angle camera frame pairs was used to cover the globe
of Jupiter during one 30-hour interval of time. This global set of
measurements will subsequently be referred to as a "world map". The
Voyager 1 and 2 world maps are shown on Figures 2.4 and 2.5.

The above referenced work proceeds with the longitudinal averaging
bin schame described in Section 2.2.2. The key procedural difference
between these efforts and the work described in Section 2.4 is that
though the zonal wind cumponent is assumed to consist of a mean and
eddy component (i.e., u=u + u'), the meridional vind component is

assumed to be entirely eddy in nature (v = v'). The reason for this
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Figure 2.4,

Plot of actual tiepoints comprising the Voyager 1 "world
map". Latitudes are planetographic, while longitudes are
measured in System III (1967.0), the conventional radio-
defined system of longitude. Lengths of vectors are
proportional to wind speed. Points lie at initial

observed positions of cloud tracers.
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;f; Figure 2.5. Plot of actual tiepoints comprising the Voyager 2 "world

1 f map". Latitudes are planetographic, while longitudes are

; ; measured in System III (1967.0), the conventional radio-
;,i defined system of longitude. Lengths of vectors are

; % proportional to wind speed. Points lie at initial

i % observed positions of cloud tracers. It is this data set
j % which is used for the remaining discussions in Chapter 2
i ; and the spectral analyses of Chapter 3.
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simplifying assumption is two-fold: first, if the mean meridional com-
ponent is by definition zero (V s 0) then both the mean meridional
transport term ({K « K}) and the Hadley overturning term ({fK « R})
will disappear from the mean zonal kinetic energy equation 2.9.
Secondly, relative errors in measured values of V are likely to be much
higher than similar relative errors associated with G, u', and v' sim-
ply because V is typically the smallest of the four wind components.

We shall find in Section 2.4 that neglect of V has very little impact
upon the geduced eddy momentum transport rate.

Treating the world maps as a fully global data set (actually the
world maps extend only to :§o° latitude and have some gaps in longi-
tude coverage) allows us to write a mean kinelic energy equation which
possesses only the eddy transport term on its right-hand side. Beebe
et al. and Ingersoll et al. make the assumption that the cloudtop kine-
matics extend over an atmospheric column containing 104 kgm m°2 to
write the observed global mean eddy kinematic transport rate as
+3.0 watts m2 for Voyager 1 (Beebe ot al., 1980) and +1.5 watts
m fe- Voyager 2 (Ingersol! et al., 1981). More s/erisely their
results may be written as +3.0 x 10'4 watts kgm'l for Voyager 1 and
#1.5 x 1074 watts kgm'] for Voyager 2. Such transport rates could
imply that eddy motions play a key role in maintaining the global cir-
culation of Jupiter (at least at the clouatop level). In fact, the
observed rates are capabie of resupplying the mean zonal kinetic energy
in only a few months (again based upon the assumption that the cloudtop
kinematics extend through an appreciable column of atmosphere). The

tignt linear correlation petween the eddy stresses (u'v'} and the




ambi.nt meridional shear of the zonal wind (du/dy) is typified by 1in-
ear correlation coefficients of approximately r = 0.5, which for over
100 degrees of freedom indicates a meaningful correlation at better
than the 99 percent level (see Figure 8 in Ingersoll et al.). The
Prandt1 mixing-length concept assumes that the transfer of momentum
between eddy and mean motions takes place linearly ov:r some mixing-

length (&') qiven by, »
TV s - Jutet] du/dy (2.4)

where,
L' = mixing-length or "mean free path" of momentum
u' = typical scale of eddy wind Speed.
Most often the product given by - |u's'| is referred to as the eddy

viscosity coefficient (Ke) and plays a rcle similar to the kinematic

viscosity coefficient (v) in laminar flow (the latter relates to the
effects of random molecular motions, while “he former relates to the
effects of much larger-scale turbulent motion.), Ingersoll et al.

give Zytimates of 200 km for &' based upon typicol values of u' of

Tum sec'] and an observed eady viscosity coefficient of approximately
22 x 1° n? sec!.

The work of Beebe et al. and Ingersoli et al., though admittedly
incomplete from the standpoint of contrasting the relative importance
of mean, symmetric overturning and eddy moticns in maintaining the glo-
bal circulation, indicates that eddies are capable of transporting mean
kinetic energy in the Jovian atmosphere at a rate of up to 10% of the

incoming infrared energy flux (Ingersoll et al., 1981; Hanel et al.,
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1981). Such a notion runs counter to the classical model of

the mean Jovian circulation provided by HP (see the discussion by the
author in Smith et al., 1981). It behooves us, therefore, to examine
the nature of the other kinematic transport terms in equation 2.9.

2.4 Observed Global Transport Processes

In this section we attempt to extend the global studies of Beebe
et al., 1980 and Ingersoll et al., 1981 to include an evaluation of all
the inertial transport terms in equation 2.9. We have seen that both
the symmetric stress transport {K ¢ K} and the Hadley overturning
transport {fK * K} depend upon a measure of zonally averaged or
mean meridional motions given by V. We have extended AMOS measurements
to acquire a new world map consisting of approximately 11,000 tiepoints
using pairs of Voyager 2 frames. The process was one of carefully
"filling in" the sparse and unevenly distributed data samples used by
Ingersol: et al., 1981. The improved data density and even
distribution allows a better determination of v which we anticipate to
be quite small. However, even with the vastly improved data sampling
the attempt to contrast zonally symmetric and asymmetric transport is
at best marginal.

The operational scheme was to divide the global data set into
zonal averaging strips of 19 width in latitude. Each of the
transport quantities was then computed and tabulcted as a function of
latitude by Dr. Reta Beebe at New Mexico State University according to
the algorithms provided by the author. The interpretations which

follow are entirely those of the author.
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The observed mean meridional velocities are typically of the same
magnitude as the error associated with AMOS measurements (+1.5m
sec’]). In an attempt to improve the statistical quality of V(y)
this quantity, as deduced from the extended Voyager 2 world map, was
correlated linearly with V(y) as deduced from the original more
sparsely sampled Voyager 1 world map. A similar correlation of u(y)
showed a tight linear relation indicating no substantial change in the
TU(y) profile in the 4 month interval between the two flybys. We
selectively disregard those latitude bins containing less than 10
tiepoints and those for which the correlation betwzen the Voyager 1 and
extended Voyager 2 world map are poor. This amounts to disregarding
approximately 30 latitude bins out of 120 in the extended Voyager 2
world map.

Bins neglected because of poor correlations between V in the
Voyager 1 and 2 world maps were at latitudes of -53°, -43°, -42°. -60,

45, 423%, +24°, +25°, +26°

, and +27°. Each of these bins is corre-
lated with an increase in eddy kinetic energy which probably leads to
increased errors in the determination of v. The equatorial region from
-5° to +4° latitude inclusive was neglected because of the small

number of data points in this region. Latitudes near +23° correspond to a

high speed anomalous eastward jet,

2.4.1 Results of the Extended Voyager 2 World Map

Table 2.1 summarizes the results of computing each of the inertial
. . . -4
terms in equation 2.9, Units on transport terms are 10  watts
kgm", Also tabulated are the mean and eddy kinetic energies in

units of IO°4 joules kgm". We choose not to confuse our analysis at

2-33




uorjniosaa jejjeds aaybiy
Y3LM pajeLI0Sse 3sSLou 03 A JO san|eA abue| ayy aqLaose Iy
YyjLM pa3eLoosse A pue n

| LSO

*papaau aJe 33[ pJUeMISE3 Y] UBA0 STUIWIANSLIW

*uotba4 S1y3 ut sjurodatry BuifyrLjuapt 30 A3 NOL44ip 4eindtiaed ay3
*(s@sayjuaded uL sanpea 3as) 33l siyy
30 sangea abue| 3yl jo asnesaq sjusodsued) d1433umds 3yjl JO UOLIRULWIIIBP

ay3 uodn 3oedwi SNOpuaWBA] © Sey apnjLie| .£2+ 3¢ 33C snojewoue ‘paads ybry ayi jo dduasaud ayj,

"|-W6 SI3eM Q| S4B SUOLSIIAUOD U0 s3Lun

._-me S3LNOL 4,-0L 348 SALOAUISAL ABa3ua uo s3tun

(22°2+) (22°9-) (§L°81+) s3af
£L°2+ L2 b+ L€ "0+ L*¥9 [ *SOLL 9|0l X O°€ paemise]
s330
vE" L+ L2°0- 90°0+ 0°65 £°6/2 910l X ¥°1 paeMIS3M
(v2°2+) (v1°¢-) (Li°21+)
p2° 2+ 99°2+ 22°0+ 6°29 2°0521 910l X 't [eqo|9
{(x - i MY A3 - A4 WA A (zw)
eaay
‘W PLAOM 2 496eA0p papu3aix3 ay3 40 sdt3abadul oLjauly ‘L2 Iqel

2-34




this point by multiplying through by the column density o* = 104 kgm m”~ ©,

2

Values listed for transports are based upon neglecting the previously

mentioned latitudes which gave poor correlations in V(y) between the

Voyager 1 and 2 world maps. If we include all latitudes, the

transports take on the alternate values given in parentheses. The vast

difference in the resulting global and eastward jet values for the

zonally symmetric transports is a reflection of the high noise level

associated with our measurement of V(y). We fear that the true value

of these zonally symmetric transports is lost in the noise associated

with v(y). Nevertheless, it is crucial to note that transports

associated with zonally symmetric stresses could well be several times

larger than those associated with eddy stresses.

The tabulations present global mean values as well as the mean

values observed in eastward and westward jets. This facilitates

comparison with the models reviewed in Section 1.3 on the following

basis:

(a) According to the classical barotropic stability criterion we

might anticipate an increase in K' in the vicinity of westward

Jets. The fact that K' = 0 in eastward jets indicates that the

turbulence there cannot be barotropic.

(b) The eddy stresses of the Green mode baroclinic instabilities

examined by Conrath, Gierasch, and Nath (1981) are capable of

transporting momentum up-gradient only in the vicinity of

westward jets,

We would thereby anticipate the quantity {K' - K}

to be positive only in westward jets. However, the eddy stress

transport is observed to be largest and positive in the
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vicinity of eastward jets. This asymmetry is statistically
significant with linear correlation coefficients of r = 0.5 for the
correlation between U'v' and du/dy in both eastward and westward jets.
Similar analysis of the Voyager 1 world map yields,

{K* « K} = +1.33 x 10-4 watts kgm'] in westward jets and

{K' «K} = +5.53 x 10'4 watts kgm'] in eastward jets. % "
The zonally symmetric instabilities of Stone (1966) are capable of

transporting kinetic energy into eastward jets through the resulting

zonally symmetric stresses. We have already remarked that this

mechanism has been suggested as that which maintains the equatorial jet

(Gierasch and Stone, 1968). Tabulated values of {K * K} do indeed
indicate an increase in mean eastward kinetic energy transport

in the region of eastward jets due to observed symmetric

stresses. Note that failure to neglect those latitudes

suspected of having very noisy values of V(y) leads to the
opposite result, so we must be extremely cautious in our
interpretation.

The classical HP model of a mean flow driven by diverging

zones and converging belts leads us to anticipate positive

values of the Hadley overturning term given by {fK « K}. The
results summarized in Table 2.1 seem to indicate that

symmetric overturning could be as important a process in
maintaining the mean zonal flow as is the up-gradient

transport due to eddies. The HP model would also anticipate

the symmetric stress term given by {K « K} to be positive in
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zones and negative in belts and hence nearly zero on the global
average. However, our observations do not yield K + K} « 0.

We noted above a meaningful difference in the magnitude of the

{K' + X} transport associated with eastward and westward jets.

The increased efficiency of the {K' * K} process in reqions of

mean eastward flow apparently runs counter to the mocel of Conrath,
Gierasch, and Nath which predicts feeding in westward jets. Their
analysis is based upon a mean zonal eastward wind which increases with
altitude (au/az > 0). This is consistent with a thermal wind
generated by warm, upwelling zones and cold, downwelling belts.
Allison (private communication, 1981),using IRIS observed temperatures
in the upper troposphere finds that zones appear colder, while belts
appear warmer at these upper levels. Such a thermal reversal is
typical in the terrestrial upper troposphere. Assuming that the
vertical shear of the observed mean zonal wind (u) is controlled by the
thermal wind relation, the implied shear is one which diminishes the
mean eastward flow with altitude (alU/3z < 0).

In discussion with Conrath and Gierasch the author has concluded
that reversing the algebraic sign of the thermal wind shear in the
model of Conrath, Gierasch, and Nath results in instabilities which are
capable of transporting momentum up-gradient only in regions of mean
eastward flow. OQur reader may convince himself of this by reference to
Section 1.3.2.2.2. The argument involving vortex tube stretching and
advection of planetary vorticity at the steering level remains the same

except that we replace the condition that U = 0 at z=0 by U = 0 at

z = “.
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2.4,2 Problems in Interpretation of the Results

The problem in making definitive statements as to the relative
importance of zonally symmetric and eddy processes based upon Table 2.1
remains the large rela*ive naise in v. This noise is reflected in the
relatively poor linear correlations of products used in the evaluation
of {K » K} and {fK * K}. The results of a simple, unweighted linear
correlation of the terms u /s ~ndependent variable) and fv (as depen-
dent variable), which comprise the Hadley transport {fK - K}, and of
du/dy (as independent variable) and uv (as depengent variable), which
comprise the symmetric stress transport {K * K}, are presented in
Table 2.2. Values of linear correlation coefficient (r) are all quite
small. The resulting confidence level in the correlation appears high
only under the assumption that values of quantities are statistically
independent from one latitude bin to the next so that the number of
bins truly represents the number of degrees of freedom. This
assumption is not likely to be entirely valid.

More disturbing than the low values of r in Table 2.2 is the fact
that attempts to compute the global mean value of {fK « K} and {K « K}
using the sparser Voyager 1 world map yield results that are substan-
tially different from those presented in Table 2.1. This, of course,
casts further doubt on the validity of our evaluation of {fK * K}
and {K - K}.

Finally we note that the ylobally averaged value of vV is approxi-
mately +1.0 m sec'] rather than identically zero. We believe this to
be due to a systematic error in our measured values of v rather than

indicative of any exotic dynamical process.
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In closing we note that the large relative noise in v prevents a

straightforward evaluation of the roles played by symmetric and asym- é

metric transport processes. We remain hopeful, however, that further

bl SRPUTIAN AU L L A

(&
T

attempts to eliminate sources of noise in v will allow the eloquent
simplicity of equation 2.9 to be applied to a global data set. At
present we only note that on the basis of Voyager global data sets we
may not safely conclude that eddy motions play the major role in driv-

ing the mean zonal flow.

R S S il

2,5 Comparisons with IRIS: Energy Budget of the Upper Troposphere

We have seen that the Voyager imaging experiment provides us with
measures at the cloudtop level of u(x,y) and v(x,y), which can be
decomposed into U{x,y)}, V(x,y), u'(x,y), and v'(x,y). The IRIS experi-
ment is capable of yielding measures of T(x,y,p), T'(x,y,p), and
N2(x,y,p). Ideally, only the lack of a measure of w and w' renders a
full evaluation of the Qort energy quantities (equations 1.1 - 1.8)
impossible.

] Realistically, any comparison of imaging and IRIS data is also

lTimited by the extent to which we are able to identify the level in the

R el it L

atmosphere at which a measurement applies. Ground-based photometry in
the 6190 to 8900 A bands of methane indicates that the clouatop fea-

g tures observed by Voyager lie very roughly at tne 500 mbp level (West

é and Tomasko, 1979; West, private communication, 1981). On the other

3 hand, inversions of the broad IRIS weighting functions allow temper-
ature measurements at several levels in the 200 to 300 mb region. We

will compare global measurements of velocity and those of temperature
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in the 200 to 300 mb region in order to compute K, K', P, and P* for
the upper troposphere of Jupiter,

Observed belt to zone temperature differences in the upper tropo-
sphere (500 to 140 mb) generate a mean zonal wind profile which is
remarkably consistent with that actually observed (Allison, private
communication, 1981). This suggests a coupling of the observed cloud-
top aynamics and the upper tropospheric thermodynamics with a mean
zonal wind which is either driven by the thermal wind or is at least
despun with increasing altitude by the thermal wind relation.

In collaboration with Allison, who provided the analysis of the
IRIS temperature inversions, we compare our observations of K', the
eddy kinetic energy, with P', the eddy available potential energy, as
functions of latitude in Figure 2.6 (see equations 1.2 and 1.4 for
definitions). Units on K' and P' are 1074 joules kgm']. The
excellent correlation between the eddy kinetic and eddy available
potential energies clearly indicates a coupling between our observed
cloudtop eddy motions and the temperature perturbations observed by
IRIS. The profiles of P' are based upon two separate IRIS data sets.
The so-called North/South Map data set is global in coverage with a
field-of-view roughly 12,000 km across. The High Resolution data set,
though not entirely global in coverage, has a greatly improved spatial
resolution given by a field-of-view roughly 2000 km across.

The profiles of P' shown in Figure 2.6 are based upon a static
stability and temperature perturbations observed for the 196 mb level.
Allison and the author find that the tight correlation between P' and

K' is maintained at both the 267 and 365 mb levels, though the
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Figure 2.6. Meridional profile of observed cloudtop eddy kinetic energy
(K*) from the Voyager 2 world map and observed IRIS
distributions of eddy available potential energy (P') at
the 196 mb level from the Voyager 1 north/south map and

so-called high resolution data sets.
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amplitudes on P' are considerable larger at the 267 mb level. [t may
be that this level represents a steering level; certainly it would be
interesting to compare the model of Conrath, Gierasch, and Nath with

the vertical structure observed in P',

The coupling between IRIS thermodynamics and imaging observation
of the dynamics allows us to construct an Qort energy budget diagram
which we consider appropriate for the upper troposphere (see Fig-
ure 2,7). Values associated with each of the energy reservoirs are
area weighted mean values for temperate and tropical latitudes (from
-56° to -6° and +5° to +55° latitude). Reference to both
Figure 2.7 and the schematic diagram illustrated in Figure 2.8 allows
several comments.

In the Jovian diagram we note that the energy stored in the P, P',
and K' reservoirs are roughly equal. In the terrestrial case a dimin-
ishing amount of energy is stored in each of these reservoirs
respectively (see Figure 1,1). In Earth's atmosphere the energy
storage in and flows through each of these reservoirs are associated
with the baroclinic process. The energy budget for Jupiter suggests an
extremely efficient baroclinic process. We might expect such an
increased efficiency simply on the basis of a diminished radiative
loss of F' due to long thermal relaxation times in the Jovian
atmosphere (Gierasch and Goody, 1969) and of diminished fricticnal loss
of K' due to the absence of a rigid lower boundary.

Reference to Figure 2.6 seems to suggest a diminished efficiency
in the baroclinic conversion of P' into K' in the southern hemisphere
relative to that observed in the north. Such an inefficiency may be

due to the presence of the Great Ked Spot at -22% 1atitude and the
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Fiaure 2.7.

Oort energy budget diagram of the Jovian upper troposphere.

Potential energies (P and P') are evaluated using IRIS
observed temperatures at the 196 mb level. Kinetic
energies (f and k') are evaluated using observed cloudtop
motions in the Voyager ¢ world map data set.
Uncertainties in measured values of v result in the
indicated uncertainties in the symmetric conversion of P

into K.
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Figure 2.8.

Schematic Qort Energy Budget Diagram tor Jupiter's
atmosphere. Comparison with Figure 2.7 indicates

processes observed in the Jovian upper troposphere.
Viscous dissipation acts as a dissipation of K and

K' and presumably arises due to unobservable vertical

eddy stresses.
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White Ovals at -34° latitude. Studies presented in Chapter 4
indicate that these features feed barotropically on the mean flow.
Exactly how this barotropic feeding relates to diminished efficiency
into the {P' « K'} process is not clear.

An examination of the distribution of P and K as functions of
latitude (see Figure 2.9) indicates little correlation between these
two quantities. Thus, there is little evidence for a symmetrically
driven mean zonal circulation even though the conversion {P * K}
can be large for very small values of V. The vast quantity of energy
stored in the K reservoir may be explained in one of three ways:

(a) Long radiative relaxation times and low dissipations (due to

greatly diminished vertical eddy stresses in the bottomless
Jovian atmosphere) allow the atmosphere to baroclinically
spin-up, energy being efficiently passed from P to P' to K’
and then transported up-gradient by the {K' * K} process

to be ultimately stored in the K reservoir. If vertical eddy
stress dissipation is weak, the K reservoir can then grow
proportionally very large before a steady state is reached.

(b) As suggested by Ingersoll and Poliard energy stored in K may

be deep-seated, the observed mean zonal velocity extending to
vast depths. This in turn would decouple the K reservoir from
the remainder of the Qort diagram.

(c) Upward propagating waves could deposit substantial amounts of

energy into K as suggested by Maxworthy (1975). Again, the K

reservoir might thereby be decoupled from the remainder of the

Oort diagram,
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Figure 2.9.

Meridional profile of observed cloudtop mean kinetic energy
(K) from the Voyager 2 world map and observed IRIS
distributions of mean zonal available potential energy (P)
at the 196 mb level from the Voyager 1 north/south map and
high-resolution data sets. Note the seeming lack of
correlation which could indicate a mean zonal flow driven
by processes other than those giving rise to observable

cloudtop stresses.
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In summary, our analysis of cloudtop stresses has produced the

following results:

(a)

(b)

We have verified the up-gradient momentum flux due to eddy

stresses as reported by Beebe et al. (1980) and Ingersoll et

al. (1981) using a data set with nearly twice the number of

samples as these earlier reports. As all the actual mea- | /’
suring on the AMOS system collected in our extended Voyager 2 |
world map was performed by only two individuals, we feel

that our results are more likely to be free from systematic
errors tnan these earlier reports. The Voyager 1 world map
used by Beebe et al. is a collection of measurements made by

a much larger team of investigators. We feel that systematic
errors give rise to the apparent differences in the global
average eddy stress transport between the three global anal-
yses. g
Very small values of V can give rise to high values of sym-

metric transports. Within the measurement error associated

with our determination of v it is entirely feasible that sym-

metric stress transport could entirely outweigh the observed

eddy stress transport.

In Chapter 3 we shall use the spectral characteristics of the

observed large-scale turbulence in an attempt to better assess the

nature of the large-scale turbulent eddies.
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CHAPTER 3. THE LARGE-SCALE TURBULENT SPECTRUM

3.1 Introduction

In the Jovian atmosphere large-scale turbulent motions occur over a
range of spatial scales from tens to tens of thousands of kilometers.
In Chapter 2 we performed a bimodal decomposition of the velocity field
and represénted the zonally asymmetric or eddy motions by the veloci-

2 to 103 km global mixing

ties u' and v'. The estimate of a 10
length (see Section 2.3) did little to improve our understanding of the
length scales associated with the large-scale turbulence. In t'iis
chapter we present a brief investigation of the spectral characteris-
tics associated with the large-scale Jovian turbulence, Such an inves-

tigation is important in at least two regards:

a) The nature of the coupling between thermodynamics and dynamics
in a fluid system depends upon the length scales associated

with the dynamics.

b) The shape of the turbulent kinetic energy spectrum provides a
method for probing the vertical structure associated with the

turbulence.

3.1.1 The Coupling of Thermodynamics and Dynamics

A major problem in attempting to formulate a consistent picture of
the global dynamics arises from the coupling of the atmospheric thermo-
dynamics to the dynamics through the stratification of the atmosphere.
This coupling is apparent in the dynamical governing equation, the

quasi-geostrophic potential vorticity equation, given by,
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-f,’;[vzv . %(KZ%)]+B ¥, (3.1)

where,
t =time
2 2 :
2 _ 3 L] :
v S —— o em—— H
N »
B = g; (f = 2a sin o) ;
2 22
K™ = W stratification parameter
N2
with,
aT (2)
2 _ ? 0

pe 4
]}

depth of atmosphere .

The static temperature profile (To(z)) and its gradient dTo(z)/dz
determine the value of the Brunt-Vaisala frequency (N(z)) and hence the
value of the stratification parameter (Kz(z)).

The stratification parameter can be written more simply as,

2
2 L
K™ ===

Lp

where LD = NH/f = Rossby radius of deformation.




Thus, for length scales (L) much greater than the deformation
radius (LD), and provided N2(z) does not vary rapidly in z, the
thermodynamics (i.e., the thickness or temperature field) couples
simply with the dynamics through vortex stretching (i.e., the second
term in Equation 3.1). Conversely, if L < LD’ the thermodynamics
is more intricately coupled to the dynamics (i.e., the coupling
involves vertical stresses) and the simplifications made in Equa-
tion 3.1 do not hold. Large-scale Jovian turbulence occurs in the ;
regime L 2 LD’ so that in general the dynamics and thermodynamics are E

coupled through vortex stretching.

3.1.2 Two-Dimensional and Three-Dimensional Turbulence

In Chapter 2 we attempted to use globai velocity measurements to
estimate the rates of various zonally symmetric and asymmetric kinetic
energy transport processes occurring in the Jovian atmosphere. In Sec-
tion 1.3 we hinted at a matrix scheme for classifying models of the
Jovian circulation based upon those transport process and the effective
depth of the observed circulation. We present such a classification
scheme as Table 3.1. Coupled with the results of Chapter 2 a measure
of the effective depth of the atmosphere could provide a means for dis-
criminating among the various models of the Jovian circulation,

Voyager can observe motions in essentially a single horizontal
plane (that of the cloudtops). Nevertheless, the shape of the kinetic

energy power spectrum over a wide range of observable wavelengths
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provides a method for probing the dimensionality of the turbulence and
hence, an effective depth over which the atmosphere extends. In the
next two sections we briefly review the nature of 3-dimensional and

Z2-dimensional turbulence.

3.2 3-Dimensional, Isotropic Turbulence

Notice that we wrote the dynamical governing Equation (3.1) in a
form which neglected the effects of vertical eddy stresses. This is
permissible only under the assumption that the length scales associated
with the vertical stresses are much smaller than those associated with
the horizontal dynamics (see Sectfon 3.3). Turbulence which gives rise
to non-negligible and equal stresses in all directions over all length
scales is said to be isotropic and 3-dimensional. In this section we
briefly review the well-known characteristics of isotropic turbulence.
The reader may refer to Tennekes and Lumley (1972; see Chapter 8) for a
more detailed treatment.

In this chapter we will examine the nature of the longitudinal tur-

bulent energy spectrum given by,

”f E(k;) dk,  for i =1,2,3 (3.2)
where,
k1 = longitudinal wavenumber
ko = meridional or transverse wavenumber
k3 = vertical wavenumber

3-5
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and,

Eky) =g (D o55 (kD) do (3.3)

where do is the surface element of a spherical shell of radius k.

The spectrum tensor ‘ij is just the 3-dimensional Fourier

transform of the correlation tensor Rij given by,
RiJ = uy(x, t) uJ(x + ax, t) (3.4)
where,
uy = u' = zonal turbulent velocity component
u, = v' = meridional turbulent velocity component
ug = w' = vertical turbulent velocity component

and the overbar signifies a time average in this case.

The longitudinal spectrum Fq, (k]) is defined by,

R]](AX) z d/. exp (ik]Ax) F‘](k]) dk] (3.5)

that is, Fij(kl) is the one-aimensional Fourier transform of ihc

correlation tensor.

The relationship between Y and F]] is generally quite
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complicated, Thus, it is difficult to relate F]](k‘). which can be
measured in a global data set, to E(k]), the 3-dimensional energy
spectrum, For isotropic turbulence, however, the relationship can be

given as (Batchelor, 1953),

E(k,) = k? 3]‘;’-1- 11;1 ?lel‘ . (3.6)

Our eneryy spectrum representation (Equations 3.2 and 3.3) is strictly
valid only for continuous waves not for isolated, hence, multi-
component, eddies. Nevertheless, this representation has been found
useful in predicting some of the characteristics of a truly turbulent
field consisting of isolated eddies (see Lumley, 1970 for more exact
representation).

In our analysis we shall not attempt a direct measure of the corre-
lation tensor but rather will perform a straightforward Fourier analy-
sis of the observed zonal eddy velocity cumponent u'(x) in severai
zonal strips at various latitudes in order to obtain u'(k), where k is
the dimensionless wave index which we shall henceforth refer to as the

zonal wavenumber. Thus, from world map measurements we obtain,

K'(k) = "{k « ju'z(k) dk .
K

Again, the method is strictly valid only for continuous waves though
the results are meaningful even tor a field of isolated eddies.
In isotropic, 3-dimensional turbulence the transfer of energy from

one scale to the next takes place by means of the vortex stretching
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mechanism, the smaller eddies spinning up in the strain rate field of
the larger eddies. Thus, contrary to the deduced directiun of

{K' + X} for Jovian eddies, the energy cascade is always direct

with energy flowing from large scales to small scales. The charac-

teristic strain rate of an eddy of wavenumber k1 is,

(k, E(k))"/?
stk = Tk, (3.7)

At the largest scale the turbulence is driven by the strain rate of the
mean flow (S) and loses energy to smaller scales at a rate ¢. Thus,
on the largest scales E = (ki' ¢, S), which has the nondimensional

form,

E(k;)

E* = '
3/2 ~5/2
€ S

(3.8)

Conversely, on the smallest scale (the so-called Kolmogorov microscale)
energy cascading down the spectrum at a rate equal to the dissipation
rate ¢ is finally "destroyed" by the viscosity v, and has the non-

dimensional form,

E(ki)

—-]/4 573 (3.9)
€ v

Note from Equation 3.7 that the strain rate s(ki) associated with the

turbulence increases as ki increases. The Kolmogorov spectrum, given in

-




L o L -

© wem

nondimensional form by Equation 3.9, is valid only in the limit as

s(ki)/S + », 0On the other hand, the large-scale spectrum (see
Equation 3.8) is valid only in the limit as s(ki)/k$ v + = The spectral

region intermediate to the Kolmogorov scale and the large-scale is

known as the inertial subrange and represents the region in which both

of the above limits apply simultaneously. It can be shown by similarity
argument (Tennekes and Lumley, 1972; see page 265) that within this

inertial subrange,
E(ky) = k7773 (3.10)

3.3 2-Dimensional or Geostrophic Turbulence

For 3-dimensional turbulence our analysis was restricted only by
considerations of energy conservation in the inertial subrange. If the
turbulence field is 2-dimensional potential vorticity, as well as
energy, is conserved (Fj¢rtoft, 1953). Conservation of poiential
vorticity or enstrophy, as mean-squared vorticity is often called, has
a pronounced effect on the shape of the kinetic energy power spectrum

which becomes by similarity argument (Kraichnan, 1967),
-3
E(k;) «k (3.11)

in a region of the inertial subrange over which enstrophy is being
transferred. Generally, in 2-dimensional turbulence there are two

inertial subranges in which potential vorticity is transferred and the

3-9




Figure 3.1,

T T Y T I e e

Turbulent transport regimes in a rotating planetary atmos-
phere, In the turbulent regime kinetic energy (K') input
at zonal wavenumber ke will cascade up to larger scales

5/3

resulting in a k~ power law. Enstrophy (mean squared

vorticity) will cascade down to smaller scales resulting

inak3 power law for k > ke. For scales larger
than k8 the propagation of Rossby waves interrupts the

up~-gradient turbulent transport.
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spectrum takes a profile governed by Equation 3.11 and another in which
energy is transferred and the spectrum is governed by Equation 3.10
(Kraichnan, 1967; Leith, 1968).

The energy cascade associated with 3-dimensional turbulence is
always direct in the sense that energy passes from low wavenumbers to
ever higher wavenumbers to be finally dissipated on the Kolmogorov
microscale, The energy cascade associated with 2-dimensional turbul-
ence is not as intuitively obvious (see Figure 3.1). If energy is fed
into a particular band of "excitation" wavenumbers near ki = kE’
then it can be shown (Kraichnan, 1967) that for ki < kE kinetic
energy is transferred up the spectrum to smaller and smaller wave-
numbers. In this region E(ki) takes the profile given by Equa-
tion 3.10 as in 3-dimensioral turbulence. For scales smaller than the
excitation wavelength (k; > kE) enstrophy is transported down the
spectrum to larger and larger wavenumbers where it is eventually
destroyed by viscosity at scales smaller than those in the inertial
subrange. In the enstrophy-transfer subrange E(ki) takes a profile
given by Lquation 3.11. The transfer of energy in this enstrophy-
transfer subrange and the transfer of enstrophy in the energy-transfer
subrange are both zero.

Charney (1971) demonstrates that in a quasi-geostrophic atmosphere
(i.e., one governed by Equation 3.1) the large-scale turbulence, which
is sometimes referred to as geostrophic turbulence, has an energy spec-

trum profile governed by enstrophy transfer for wavenumbers greater

than kp. In the terrestrial troposphere




baroclinicity pumps energy into the atmosphere at zonal wavenumbers
near kE = 7. Subsequent observational study of the kinetic energy
power spectrum of large-scale motions in Earth's atmosphere (Julian
et al., 1970) from k = 1 to 20, where k is the zonal wavenumber, indi-
cates that the inertial range from about k = 7 to 20 does indeed obey

the k'3

power law as in Equation 3.11 (see Figure 3.2). Thus, in
Earth's atmosphere motions on those large scales are basically
2-dimensional or quasi-barotropic due to the fact that enstrophy is
conserved. The observed shape of the spectrum for the energy-transfer
subrange (k < 7) does not, however, obey the k'S/3 power law (Equa-
tion 3.10). At least two mechanisms are responsible for halting the
reverse energy cascade at low wavenumbers in Earth's atmosphere:
planetary wave propagation and surface drag at the lower boundary.
Lilly (1971) studies the effects of linear surface drag in a numer-

ically simulated 2-dimensional turbulent field. The effects of surface

drag appear to be two-fold:

a) In the energy-transfer inertial subrange the spectral profile
peaks at a wavelength less than the scale of the mean flow and
with an amplitude somewhat diminished from that predicted by

unimpeded energy transfer,

b)  For large drag and small vorticity transfer rates the spectral

profile in the vorticity-transfer subrange exhibits a slope of

3.7

nearly k- as opposed to k™3,

[




Figure 3.2.

Turbulent kinetic energy power spectrum in Earth's mid-
latitude troposphere (from Julian et al., 1970). Values
of KE, the turbulent energy, are normalized to the
observed value at a zonal or "hemispheric" wavenumber
k = 6. The Rhines and Rossby deformation wavenumbers
are indicated by ke and kD respectively. For k > kD

3 power law as

the spectrum seems to obey a k™
anticipated for geostrophic turbulence. Note the
diminished slope for k < kp. Large-scale Jovian

turbulence occurs in the region k8 <k < kD'
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Rhines (1975) examines the transfer of energy in the large-scale,
energy-transfer portion of the subrange for 2-dimensional turbulence on

a g-plane. In the k=53

subrange the transfer of energy to smaller
wavenumbers continues unimpeded until the g-restoring force for the
increasing length scales begins to dominate even the nonlinear inter-
actions. The timescales for the nonlinear interactions and Rossby wave

propagation are equal at a wavenumber given by,

kB = s/ (3.12)

where,

transition number, or “"Rhines" wavenumber

>
o
]

<
"

typical zonal velocity scale.

Thus, at a wavelength equal to 2n/k8(sLB) a transition from a turbulent

regime (L < Le) to one of Rossby wave propagation (L > LB)
occurs. The length scale k;] is often referred to as the Rhines radius.

In the turbulent regime the dispersion relation is approximately,

w = kU, (3.13)
Thus, flow of energy to smaller wavenumber corresponds to an increase
in energy of the lower frequency components. Rossby waves are somewhat
unusual in that smaller wavenumbers are associated with higher fre-

quencies according to a dispersion reiation I1ike,




w = =6 3.14
k (1 + mzlkZS ( )

where,

k = dimensionless zonal wavenumber (or zonal wave index)

m = dimensionless meridional wavenumber (or meridional wave
index).

Thus, in an isotropic field the flow of energy to smaller wavenumbers
will be impeded by the wavenumber and frequency resonance requirements
for wave-wave interactions. Note that according to Equation 3.14 the
flow of energy to smaller wavenumbers in the Rossby wave regime is less
impeded for very small values of m/k. On the other hand, if m/k is
large kinetic energy will build up at scales near the Rhines radius.
Thus, we are apt to find situations in which the eddies, flattened by
the g-effect, lead to an end state for the cascade consisting of
alternating easterly and westerly jets with width scales given by

k;] and amplitudes constrained by the barotropic stability crit-

erion, Williams (1979b) suggests that such an end state manifests

itself on Jupiter.

3.4 Large-Scale Jovian Turbulence

In this section we describe the use of the extended Voyager 2 world
map to deduce the spectral profile of the large-scale turbulent motions
of the Jovian cloudtops. Conceptionally our analysis is simple and
based upon that for Earth's troposphere by Julian et al. (1970). In
some regards the actual analysis remains preliminary, and in closing we

are compelled to suggest further work.
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3.4.1 Measurement of the Turbulent Kinetic Energy Power Spectrum

The excellent data sampling of the Voyager 2 world map (see fig-
ure 2.5) suggests that use of a discrete Fourier Transform analysis,
which is certainly time-saving as compared to a more rigorous perio-
digram analysis, would be meaningful. The well-sampled, but neverthe-
less somewnhat uneven, distribution of data points necessitates inter-
polation to a uniformly spaced grid of points. Based upon typical tie-
point spacing and jet width in the world map, this interpolation was
performed within an influence raaius (r = ri) about each grid point
of r.= 2°5. Our analysis is longitudinal, that is we perform a
Fourier Transform on the zonal distribution of u', the eddy zonal velo-
city component. The value of u' at each grid point in the one dimen-
sional array is taken as the weighted mean of all the actual tiepoints
within one influence radius of the grid point. Tiepoints are weighted
as r-2,

In order to make use of a 6-bit Fast Fourier Transform (FFT)
routine (i.e., one capable of handling 128 samples) we select the
longitudinal spacing of grid points as ax = 2982, The resulting
Nyquist wavelength of the analysis is thus 5764 or k = 64, where k is
once again the zonal wavenumber. The FFT routine provides amplitudes
for u'(k) for each wavenumber component from k = 1 to k = 64. The mean
value (u, represented by k = Q) is removed prior to the actual analy-
sis. Squaring the u' amplitudes allows a proportional measure of

K'(k), the eady kinetic energy associated with each resolved wavenumber,
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The analysis described above was performed in 13 zonal bins cen-
tered on 6 westward and 7 eastward jets. Plots of u'z(k) in each of
these jets are provided as Figures 3.3 through 3.15. In order to
smooth-out noise in the analysis individual points plotted in each of
these figures represent the mean value of u'z(k) at four discrete,
adjacent wavenumbers. We do not notice any substantial differences
between the spectra observed in eastward jets and those observed in
westward jets as might be predicted for Green mode baroclinicity

(Conrath, Gierasch, and Nath, 1981).

3.4.2 Interpretation of the Jovian Turbulent Spectrum

If the observed cloudtop turbulence is driven by baroclinic forcing
we anticipate energy to be fed into the spectrum at kD, the wave-
number associated with the Rossby deformation radius. Based upon a
typical Brunt-Vaisala frequency of N = lo'zsec'] in the Jovian
upper troposphere and a depth scale of H = 104m (a scale height),

we may compute a deformation radius of approximately,
NH 3

thus,

k.~ 107,
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Figure 3.3. Smoothed Jovian turbulent kinetic energy power spectrum
(u'z(k)) of westward jet at +44°5 latitude. Units on

u'z(k) are e sec'z, whereas k is the

2onal
number of wavelengths fitting around the latitude
circle. As in Figures 3.4 through 3.15,k8 is
computed according to equation 3.12. In this case
somewhat artificially low values for U, the mean zonal
velocity within the 59 wide averaging channel were

obtained because of the narrowness and weakness of this

particular jet.
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Figure 3.4. Smoothed turbulent kinetic energy power spectrum

(u'z(k)) of westward jet at +3975 latitude.
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Figure 3.5. Smoothed turbulent kinetic energy power spectrum

(u'z(k)) of eastward jet at +3525 latitude.
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Figure 3.6. Smoothed turbulent kinetic energy power spectrum

(u'z(k)) of westward jet at +315 latitude.
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Figure 3.7.

- N

Smoothed turbulent kinetic energy power spectrum
(u'z(k)) of eastward jet at +23°5 latitude. It

is near this latitude (see also Figure 3.8 which
follows) that both P' and K' reach a maximum (see
Figure 2.6). It is interesting, but highly specu-
lative, to suggest that baroclinic effects are
important in this region and lead to an aliased

spectrum with an up-turn near the Nyquist wavenumber.
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Figure 3.8. Smoothed turbulent kinetic energy power spectrum

(u'2(k)) of westward jet at +17.5 latitude. It

is near this latitude that both P' and K' reach a

maximum (see Figure 2.6). It is interesting, but
highly speculative, to suggest that baroclinic

effects are important in this region and lead to

an aliased spectrum with an up-turn near the

Nyquist wavenumber.
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Figure 3.9.

Smoothed turbulent kinetic energy power spectrum

(u'z(k)) of the northern edge of the equatorial

Jet at +12°0 latitude.
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Figure 3.10. Smoothed turbulent kinetic energy power spectrum
(u"(k)) of the southern edge of the equatorial
jet at -1270 latitude.
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Figure 3.11.

Smoothed turbulent kinetic energy power spectrum
(u'z(k)) of the westward jet at -19°5 latitude.
It is this jet which runs over the northern edge

of the Great Red Spot.
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Figure 3.12. Smoothed turbulent kinetic energy power spectrum

(u'z(k)) of the eastward jet at -27°5 latitude.
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Figure 3.13. Smoothed turbulent kinetic energy power spectrum
(u'z(k)) of the westward jet at -32°5 latitude.
It is this jet which runs over the northern edge

of the White Ovals. | .
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Figure 3.14. Smoothed turbulent kinetic energy power spectrum
(u'z(k)) of the eastward jet at -37°5 latitude.

This jet displays one of the best examples of a

-5/3

k power law.
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Figure 3.15. Smoothed turbulent kinetic energy power spectrum
(u?(k)) of the eastward jet at -42°5 latitude.
Note the greatly diminished slope of the spectral

profile in the Rossby wave propagation region

(k < kB)'
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Hence, the wavelength of maximum baroclinic instability is shorter than
the resolution of our Fourier analysis. This is likely to have two

effects:

a) If tue turbulence is baroclinically driven (i.e., forced at
wavenumbers near kD) our spectral analysis lies in the
larger scale energy-transfer subrange for 2-dimensional tur-
bulence. On this basis we might anticipate a k's/3 power

law to hold with an up-gradient energy transport,

b) A peak in K'(k) near k. could lead to substantial aliasing

D
of our spectral profile leading to upturning of the high fre-

quency end of the spectra.

In Chapter 2 we have verified that the turbulent transfer of
kinetic energy proceeds toward increasingly longer wavelengths. As
such a reverse cascade does not occur in truly isotropic 3-dimensional
turbulence, we conclude that the observed large-scale turbulence must
be 2-dimensional (i.e., obeys a potential vorticity equation of the
form of Equation 3.1). In the terrestrial troposphere this
2-dimensional nature of large-scale turbulence leads to a k-3 power

law. This is because terrestrial geostrophic turbulence occurs in the

vorticity-transfer subrange (i.e., at wavenumbers higher than kD).

?
Jovian large-scale turbulence lies in a different regime (k < kE : kDL
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and we expect the spectrum to obey a k'5/3 power law down to wave-
numbers (k = ka) associated with the Rhines radius.

It is extremely difficult to discriminate between a k’3 and
k's/3 power law. However, we have plotted both slopes on each of
Figures 3.3 through 3.15. The left end of the 1inear slopes has been
made to coincide with the peak observed in most cases near the Rhines
wavenumber (ks). A careful examination of Figures 3.3 through 3.15

>/3 power law is

provides us with a fairly firm conviction that the k~
indeed being obeyed.

Based upon Equation 3.12 we compute the Rhines wavenumber (kB)
within each jet, where U is taken as the mean zonal velocity within the
5° width of the zonal strip centered on the jet, and mark k8 in
each of the spectra presented in Figures 3.3 through 3.15. In many
cases we do indeed observe a maximum in u'z(k) near kB as pre-
dicted by the so-called Rhines effect. In other cases, such as in the
eastward jet at +35°5 latitude (see Figure 3.5), u'z(k) increases
down to tne scale of the mean flow as anticipated for the baro-
tropically stable end state predicted by Williams (1979b).

In order to demonstrate a statistical significance to our siope
analysis we must first demonstrate that log (u'2) (taken as dependent
variable) and log (k) (taken as independent variable) possess any mean-

ingful linear correlation, Columns 3 through 6 of Table 3.2 presents

the results of linear least squares fits to the form,

logu'2 = A (logk) +8B . (3.15)
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Table 3.2.

Linear Least Squares Fits to Jet Spectra

Jet Latitude N A B ol r
-47%5 T3 <T1.3174 2.8378 0.0018 -0.88T1
-37%5 12 -1.6862 3.4841 0.0063 -0.7481
-32%% 12 -1.2609 2.8858 0.0065 -0.64006
-27% 13 -0.7289 2.2010 0.0078 -0.4440
=195 13 -1.0256 2.8059 0.0032 -0.7373
-12%0 13 -0.5182 1.9281 0.0055 -0.3874
+1220 13 -0.339 1.3093 0.0047 -0.2838
+17%5 12 -0.1536 1.2763 0.0039 -0.1293
+23% 14 -1.0069 3.3414 0.0024 -0.8189
+31%5 13 -0.8077 2.0107 0.0021 -0.7350
+35%5 13 -0.9603 2.0576 0.0052 -0.6242
+3975 12 -1.0874 2.0732 0.0062 -0.5908
+4475 6 -1.2840 2.3991 0.0094 -0.3638
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The four point smoothed data displayed in Figures 3.3 through 3,15
were used for this analysis, The number of degrees of freedom within
each jet spectrum is assumed to be N-2, where N is the number of
smoothed data points for wavenumbers greater than ks. Wavenumbers
less than k‘ were excluded from this analysis. The square of the

standard deviation is estimated according to,

N
ol e Tl-'? Z] (y; - A - Bx,)? (3.16)
i=

where, ‘

yi = ]Og (u.z) at k = k,i

x; = log (k) at k = k.

For 10 degrees of freedom a linear correlation (r) of 0.242 indicates a
meaningful linear correlation at the 50% probability level, while
r = 0.549 indicates a meaningful linear correlation at the 90X level.
For most of the jets in our analysis a linear relation between
log (u’z) and log (k) is meaningful at better than the 90X confidence
level.

The average slope (A) associated with the fits of Table 3.2 is
A = -0.9306. This corresponds to a power law which decays like

k'0'9366. There is no turbulent process which yields a power law

with decay slower than k'5/3. Hence, we might question whetner the

difference between A = -0.9366 and A = -5/3 is statistically meaningful

in our least squares analysis.
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Table 3.3 presents the results of constrained least squares fits to
the four point smoothed data for k > ka. For the first fit the
slope is constrained to be A = -5/3, while for the second fit A = -3,
In each case only the value of B is allowed to vary. Values of B in
Table 3.3 are those giving the best least squares fit with constrained
slopes. Again, the standard deviation of the fits is estimated using
Equation 3.16. As anticipated values of o° for the A = -5/3 fit
are substantially smaller than those for the A = -3 fit,

We can estimate the uncertainty on the value of A associated with
the unconstrained fits of Table 3.2 according to a standard deviation

for the slope given by,

2
o o S zxf (3.17)

where, o = standard deviation of unconstrained fits

2 2
6 = NzIx;- (z xi) .

The estimated value of ai is displayed as the second column of Table 3.3.

Note that the slope of the unconstrained linear fits seems to diminish
at latitudes near the equator. The constrained A = -5/3 fits nearly
duplicate the unconstrained fits at temperate latitudes. Actually, for
the jets at -37.5 and +44:5 there is no significant difference between

the unconstrained fit and the constrained A = -5/3 fit, i.e.,

-5/3 lies within the range A + We conclude that there is little

02
A L]
signiticant difference between the actual unconstrained fits and the

constrained fit for A = -5/3 at temperate latitudes. On the other

.
'



Table 3.3. Linear Least Squares Fits with Constrainted Siopes

Jet Latitude ai A B o A B o »
-4235 0.0035  -5/3 3.3728 0.0022 -3 5.4153 0.0120
-3735 0.0186 3.4535 0.0063 5.5406 0.0112
-3235 0.0192 3.5210 0.0069 5.6082 0.0150
2735 0.0152 3.6376 0.0109 5.6801 0.0263
-19.5 0.0062 3.7880 0.0047 5.8305 0.0172
-i2:0 £.407 3.6874 0.0102 5.7299 0.0276
+12:0 0.0091 3.3425 0.0111 5.3855 0.0302
+1705 0.0115 3.6448 0.0104 5.7319 0.0268
+2305 0.0030 4.3258 0.0045 6.3151 0.0214
+3175 0.0041 3.3266 0.0046 5.3691 0.0193
+35.5 0.0101 3.1397 0.0070 5.1822 0.0201
+3935 0.0183 2.9800 0.0072 5.0671 0.0166
+4435 0.4500 3.0524 0.0095 5.3288 0.0120
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hand, the slope A = -3 lies far outside the range of uncertainity in
the least squares slope.

The geostrophic constaints, which are responsible for the character-
istic 2-dimensional nature of the large-scale turbulence, breakdown
near the equator. We might use this tropical departure to explain the

5/3

breakdown of the k- power law near the equator; however, we have

already remarked that these are no turbulent processes which produce a
spectrum flatter than k'5/3. We suspect two causes for the flatness

of the observed spectra:
a) white noise associated with measurement errors in u'
b) aliasing from scales unresolved in our analysis.

The former tends to flatten the spectrum more or less uniformly, while
the latter would tend to flatten the spectrum near the Nyquist fre-
quency or even cause the high frequency end of the spectrum to turn
upward. A very preliminary analysis seems to indicate that in most
jets the spectrum is more or less uniformly flatter than a k'S/3 pro-
file. In a few cases, however, the overall linear fits worsen with
increasing wavenumber (see Figure 3.9 illustrating the spectrum at
+12.0 latitude) as we might expect for an aliased spectrum. Such
aliasing could be due not only to the presence of baroclinically driven
eddies but to wave induced CISK instabilities in Jupiter's tropics as
suggested by Maxworthy (1975).

This spectral analysis of the large-scale turbulent motions visible

in our world map data set is preliminary. Future work should be

carried out to:
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a) use a more strictly applicable periodigram analysis on the

unevenly sampled data

b) definitively establish a statistically more meaningful fit to

the k3 power law than to the K3 power law

c) examine the nature of the turbulent spectrum near LD by

using velocity measurements with higher spatial resolution l’

d) study the impact on the K'(k) profile of energy input by
upward propagating waves so that this forcing mechanism can be
contrasted with baroclinicity. Spectral analysis is capable
of detecting the signature of wave forcing as suggested by

Maxworthy (1975) (see Zangvil and Yanai, 1980).

Nevertheless, we feel that our spectral analysis probably demonstrates

the existence of the k's/3

, up-gradient energy-transfer subrange of
Kraichnan (1967) in a large-scale atmospheric system. As well, the
Rhines effect does indeed appear to manifest itself in Jupiter's
atmosphere.

We note that the results of the analysis are consistent with the
notion that the observed turbulence is baroclinically forced with
energy being transferred upgradient to smaller wavenumbers. We might
even speculate that the larger turbulent energy transports observed in
Jupiter's atmosphere as compared with Earth's may well be due to the
wide range of Jovian eddy scales available to carry out this transport
(kB < k < kD) contrasted with the very limit range of avail-
able scales in Earth's troposphere (where ksz kD). The vast
expanse of the energy-transfer band of wavenumbers could then effec-

tively isolate the mean zonal flow from variable activity on the baro-

3-54 i




clinic scale with short time constants (i.e., much shorter than the 100
day spin-up period for the mean flow). Produced might be a remark-
ably steady large-scale mean flow driven by highly variable processes
occuring on a much smaller scale.

In closing we point out, as suggested by Williams (1979b), the
spectral profile should be evident in the easily observed aibedo field
of the Jovian cloudtops. Indeed, a longitudinal Fourier analysis of
the digitized albedo field of a global mosaic of Jupiter (shown as Fig-

33 power law. Should

ure 3.16) is in accord with our suspected k-
baroclinicity play a dominant role in driving the cloudtop motions we
would expect the albedo field of the cloudtops to become much flatter
for scales less than the deformation radius. The fact that this is not
always the case (e.g., small reatures in the Scuth Tropical Zone) may

be indicativz of mesoscale ccnvection.
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Figure 3.16. Albedo power spectrum of the westward jet at +17°5
latitude. The ordinate axis plots a measure of
contrast or (ADN)2 where aDN is the change
from the mean in contrast Digital Number (DN) which
codes each of the gray levels in a Voyager image.

A global mosaic of 5 narrow-angle frames taken

through a green filter were used in the analysis.
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CHAPTER 4. KINEMATICS AND ENERGETICS OF THE GREAT RED SPOT

We turn our attention toward the largest single eddy in the Jovian
atmosphere (and for that matter the largest single known eddy in
nature) and pose many of the same questions as in the preceding chap-
ters; namely, what is the nature of the flow field of the Great Red
Spot (GRS) and what may we subsequently infer about the energetics of
this single, large-scale eddy? Both the Great Red Spot and the smaller
White Ovals represent eddies of a length scale comparable to the Rhines
radius. Therefore, it will be interesting to compare the results of an
energy analysis for these Rossby wave-scale eddies with the global
analysis which indicated mixing lengths for the up-gradient momentum

2 3

transport of 10° to 10° km.

4.1 Introduction
The earliest existing reference to the GRS may well be recorded in

Volume 1 (No. 1) of the Philosophical Transactions of the Royal Society

of London as a very brief note describing a telescopic observation made

by Robert Hooke who "with an excellent twelve-foot telescope observed
. . on the Yth of May, 1664 . . . a small spot in the biggest of the
three obscurer belts of Jupiter." There is no way of being certain
that this spot, which came to be known as "Hooke's Spot" was in fact
the Great Red Spot. Hooke's spot was observed over the next decade by
Cassini at the Paris Observatory, but by 1715 had faded from the

records and apparently from telescopic view., A feature, which in
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description resembles the GRS is mentioned in the literature rather
sporadically throughout the 19th Century, including one interesting
observation by the Reverend "Hawkeye" Dawes. More or less continuous
observational records of the Great Red Spot (or at least the so-called
Red Spot Hollow, as the embayment of the South Equatorial Belt causea
by the GRS is known) date from late 1878 at which time the GRS seems to
have achieved prominence. It has, however, been siuggested that the
coincidence of this date with the introduction of the first good all
reflective telescopes free from chromatic aberrations is more than
casual (Beebe, private communication, 1981)., In 1882 the GRS began to
fade, a waning which was arrested by 1891. However, it is noteworthy
that since the late 19th Century the longitudinal extent of the GRS has
shrunk monotonically from roughly 40,000 km to 25,000 km. Qver the
past century numerous records of the drift rate (i.e., phase speed),
color, shape, and size of the GRS have been collected by astronomers,
both amateur and professional. However, with the single exception of
an observation by Reese and Smith (1968), little was known observa-
tionally about the nature of the GRS flew field.

The use of temporal sequences of Voyager images allows a detailed
view of the flow field of the GRS. We shall base subsequent discussion
upon four independent data sets, two taken by each of the Voyager
spacecraft and summarized in Table 4.1. All except the data set
designatea as VGR 1 SET Il represent measurements made on frames for
which a simultaneously shuttered wide-angle frame was used to fit a map
grid to the observed 1imb of the planet (in all cases the entire planet

was visible in the wide-angle frame). The data set designated VGR |
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Table 4.1. Great Red Spot Data Sets

Frame Spatial
Pairs Resolution Time Velocity
(FDS (km/Line Separation Resolution
Data Set Counts) Pair) (Hours) (m/sec)
VGR 1 SET I 16268.03 95 9.80 3
16280.28
16268.03 95 9.84 3
16280.33
16265.58 96 11.76 2
16280.28
VGR 1 SET I1I 16341.37 43 9.64 1
16353.42
16341.45 41 9.51 1
16353.34
16341.49 42 9.45 1
16353.30
16341.49 42 9.54 1
16353.42
16366.12 23 0.29 22
16366.48
16366.12 23 0.70 9
16367.00
16367.12 23 0.32 20
16367.52
VGR 2 SET I 20480.09 110 9.64 3
20492.39
VGR ¢ SET Il  20505.06 96 9.81 3
20517.32
20517.32 90 9.67 3
20529.41
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SET II represents the superposition of measurements made on two sepa-
rate sets of frame pairs: one pair consisting of frames from a 3 x 3
and 3 x 4 narrow-angle frame mosaic of the GRS with a time separation
of 9.5 hours and the second pair consisting of frames taken during the
Jovian rotation following the 3 x 4 mosaic and having a time separation
of 0.5 hour. Only in the frames 16341.37, 16341.45, and 16341.49 was
the 1imb of the planet visible in simultaneously shuttered wide-angle
frames. In all later frames the Joi ian limb was not visible in the
associated wide-angle frame, hence these later narrow-angle frames were
essentially "blind." In such a case the AMOS program may be used in a
"tiepoint transfer" or "relative nevigation" mode, which in this case
worked as follows: a frame pair was set up consisting of one frame
from the 3 x 3 mosaic and a frame of the GRS taken one rotation

before. This pair had accompanying simultaneously shuttered wide-angle
frames, hence map grids could be fit to each frame. Several tiepoints
were measured in this pair. These tiepoints were then identified in
subsequent narrow-angle frames in the 3 x 4 mosaic and were assigned
the same velocity as measured in the earlier pair, i.e., the tiepoint
was "transferred" to the new frames. The underlying assumption is, of
course, that the transferred tiepoint is not undergoing an accelera-
tion, a rather unrealistic assumption for tiepoints in the GRS vortex.
Following the transfer of several tiepoints (roughly 20) scattered more
or less uniformly across the frame, the logic of the AMOS program is
reversed so that the transferred tiepoint coordinates and associated
velocities are used as input for the computation of the navigational

parameters necessary to fit a map grid to the "blind" frame(s). Fine
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tuning of the navigational parameters may be accomplished by removing
any unrealistic mean velocities or apparent "shifts" in the resulting
flow field. Thus, the data set VGR 1 SET II is likely to have the
greatest navigational error associated with it, offsetting the accuracy
obtainable with frames of such high spatial resolution. Nevertheless,
this data set is interesting as a comparison between present work and

earlier collaborative work involving the author and summarized below.

4.2 The Velocity and Vorticity Field of the GRS

Mitchell et al. (1981) present a report on the highest spatial
resolution kinematic data set obtained of the GRS and the White Oval BC
(see nomenclature of Peek, 1958), i.e., the same data set for the GRS
as that we designate VGR 1 SET II. Their approach is to sup ‘mpose
over both the GRS and White Oval BC a coordinate system of concentric,
equal eccentricity ellipses (see their Figure 3, reproduced here as
Figure 4.1). The eccentricity is determined by the visual shape of the
darker peripheral cloud collar surrounding both features. In the case
of the GRS, they take a semi-major axis length (a) of 12.08 x 106 m
and a semi-minor axis length (b) of 5.58 x !06 m, giving an eccen-
tricity (e¢) of 0.887. For the White Oval BC the corresponding dimen-

m, b=2.93x10%m, and ¢ = 0.801.

sions are a = 4.89 x 10
Thus, the position of each measured tiepoint is designated by the semi-
major axis length (a) of the ellipse upon which it lies and the azi-
muthal angle (e) measured counterclockwise from the eastern semi-

major axis (not to be confused with planetographic latitude which we

have previously represented by e). We shall reference locations
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Figure 4.1,

Geometry of concentric ellipses used to define a coordinate
system for specifying positions within the Great Red Spot
(from Mitchell et at., 1981). The position of point 1 is
specified by 81, the angle measured counterclockwise

from the eastern semi-major axis to the radius vector
associated with point 1, and by ay, the semi-major axis
length for that ellipse on which point 1 lies. There are
no net eddy stresses associated wiun Mitchell et al.'s

completely symmetric analysis.
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within the GRS in this same coordinate system in our discussions.
Their concentric ellipses are oriented with the major axis running
exactly east-west and the minor axis running exactly north-south., The
observed zonal (u) and meridional (v) velocity components of each tie-
point are transformed into a velocity component tangential to the
ellipse on which the tiepoint lies (VT) and a component in the
direction radially outward from the origin of the concentric ellipses

(VR), all related by the following expression:

Vy = - usine + v cose (4.1)
Vg = U cose + v sing (4.2)
where,
2
¢ = tan'] [(-% ) tan e] . (4.3)

Noting that VT does not seem to be strongly e-dependent they least-
squares fit the tangential velocity component to a polynomial function

of (a) of the form:

. 2 3 4 (
vT(a) = c,a + cza + C3a + c4a . (4.4)

In their discussion Mitchell et al. completely neglect the radiai velo-
City component V_, noting that it is quite small and possibly
p-dependent as well. Using their polynomial fit we plot VT(a) in

Figure 4.2 which illustrates the striking similarity of Vi for the
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Figure 4.2. Profiles of tangential velocity as a function of semi-

major axis length within the Great Red Spot (GRS) and %

-

White Oval BC. Note the similarity in profiles for

the outer portions of the GRS and for the White (val. é
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GRS from a = 4.2 x 10% m outward and the White Oval BC. If the inner
quiescent portion of the GRS were removed, the profiles of Vp(a)
would be nearly identical.

Under the assumption that VR z 0, the vertical component of
the relative .. i1 -ty (¢) of the flow along streamlines consisting

of concentric ellip.es is given by,

a dvT
t(a, o) = EQrg-V] S e (4.5)
n
where,
e 172
CoS 6 + (B sin o
n s ?
cos o + (% sine
where,

b2n3/a = radius of curvature of a streamline.

For a detailed derivation of Equation (4.5) see the appendix to

Mitchell et al. They plot (a) for fixed values of e (namely,

6 = Oo, 300, 900) and note quite similar vorticity profiles for

the GRS and Wnite Oval BC (see their Figures 6 and 7). As they neg-
lected the radial component VR’ they only mention that the divergence
associated with the flow field is 1" ely to be quite small and probably
hiddaen in the measurement noise. Their flow field consisting of VT

as a simple function =€ / = has no net divergence associated with it;
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the convergent flow along the minor axis merely compensates for the
divergent flow along the major axis.

We procede to compare the fields of streamfunction, vorticity, and
divergence for our four data sets. The computation of each of these
quantities requires that our data field be smoothed, i.e., fit to a
grid of evenly spaced points in x (zonal direction, positive eastward)
and y (meridional direction, positive northward). This is done using
the stanaard technique of an influence radius (ri), that is, the
value of any scalar quantity (e.g., the zonal and meridional wind com-
ponent) at each uniform grid point is taken to be the weighted average
of all measured values within a circular radius r = r; of the uniform
grid point. Al1l measured values within r = rare weighted as
1/r%. Figures 4.3, 4.4, 4.5, and 4.6 show the flow field as actually
measured for each of our data sets using the AMOS interactive system.
Figure 4.7 illustrates an interpolated field of vorticity (units are

-3 sec']) for the data set VGR2 Set I. Spacing of grid points

10
was taken to be 095 in latitude (ay = 0:5) and 320 in longitude

(ax = 370), in versions (a) of each data set and 05 in latitude

(ay = 0.5) with 195 in longitude (ax = 15) in vercions (b) of each
data set. Such a rectangular grid spacing was used so as to preserve
resoluticon in latitude, which is important in our later computations of
energy transports, and at the same time produce a field which is not
"over interpolated" (i.e., containing more grid points than actual data

points). Though grid point spacing is specified in terms of equal

intervals in degrees of latitude and longitude (which are not, of

course, equal intervals of spatial distance x and y), the actual compu-




Figure 4,3,

Plot of tiepoints comprising the GRS data set referred to
as VGR1 Set I. As in Figures 4.4 through 4.6, latitudes
are planetographic, while longitudes are measured in
System III (1967.0), the conventional radio-defined
system of longitude. Lengths of vectors are proportional
to wind speed. Circles lie at initial observed pnsitions
of cloud tracers. Velocities interpolated to an evenly-

spaced grid were used in our analysis of net eddy stress.
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Figure 4.4,

Plot cof tiepoints comprising the GRS data set referred

to as VGR1 Set II.
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Figure 4,5.

Plot of tiepoints comprising the GRS data set referred

to as VGR2 Set I.
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Figure 4.6. Plot of tiepoints comprising the GRS data set referred

to as VGR2 Set II. H
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Figure 4.7.

Relative vorticity contours computed from the inter-
polated GRS data set referred to as VGRZ Set 1
version (b). High level of noise results since

relative vorticity is computed as the difference of

two finite differenced shears.
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tation of all flow quantities is performed correctly, the curvature of
Jupiter having been taaen into account. The details of each of our
interpolation schemes are summarized in Table 4.2.

Note that the actual spacing of tiepoints (Figures 4.3 through
4.6) is quite uniform, as we would hope, though there is considerable
difficulty in identifying tiepoint features in the diffuse and strongly
sheared clouds in the outer-peripheral vortex at about a = 6 to 8 x 106 m.
It is in fact the presence of this peripheral vortex which is the most
obvious characteristic of the GRS flow field (see Figure 4.7), render-
ing a flow field quite unlike that of any terrestial atmospheric
vortex. Figure 4.8 shows the meridional profile of relative vorticity
along the minor axis of the GRS, symmetrically averaged about the mejor
axis at -22° latitude for comparison with Mitchell et al. Note that
three of the data sets display profiles quite similar to that computed
by Mitchell et al. as shown by the smooth curve. The fact that data
set VGR 2 SET I seems to show a very atypical profile is understandable
wnen we refer back to Figure 4.5 and notice that it was impossible to
identify tiepoints in the peripheral vortex in this data set. The
somewhat lower peak relative vorticities displayed in the profiles for
the remaining three data sets are probably due to the degraded spatial
resolution of our finite grid point spacing which would smooth (i.e.,
broaden and lower) an actual sharp vorticity peak.

In Figure 4.9 we gisplay the actual finite differenced relative
vorticity meridional profile along the minor axis of the GRS in order
to look for indications of any north-south asymmetry. Reference to

Figure 4.5 indicates that, as previously noted, the absence of data
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Table 4.2.

GRS Data Sets Interpolation Schemes

No. of  No. of Range Range
Actual Grid in in
Data Set Tiepoints* Points Latitude Longitude
VGR 1 SET la 461 243 -15.0 to -28.0 88.0 to 64:0
SET Ib 461 459  -1570 to -28:0 880 to 6470
VGR 1 SET Ila 898 243 150 to -280 88:0 to 64:0
SET 1Ib 898 459  -15J0 to -28.0 8820 to 64.0
VGR 2 SET Ia 384 243 -16.0 to -29.0 12130 to 9770
SET IIb 384 459  -160 to -29:0 12150 to 9770
VGR 2 SET Ila 402 243 -1620 to -29°0 12170 to 9700
SET IIb 402 459  -16.0 to -29.0 12170 to 9770

In versions (a):

In versions (b):

ax = 3.0 and ay = 035.

ax = 135 and ay = 0.5.

*Up to 10% of the actual tiepoints lie outside the range of the
interpolation scheme,
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Figure 4.8. Meridional profile of relative vorticity symmetrically
averaged along the minor axis of the Great Red Spot as
computed for each of the four data sets used in our

analyses and as computed by Mitchell et al. (1981).
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Figure 4.9. Meridional profile of relative vorticity along the minor
axis of the Great Red Spot as computed for each of the

four data sets used in our analyses.
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points in the peripheral vortex itself explains the lower peak vortici-
ties observed in data set VGR 2 SET I. Reference to Figure 4.4 indi-
cates that our neridional relative vorticity profile for the data set
VGR 1 SET II is not likely to be trustworthy at all, as the absence of
frame pair coverage along the minor axis of the GRS from about

a=4x 106 m outward makes the computed profile rather meaningless
for radii greater than this value. On the other hand, the rather
sparse yet uniform sampling of tiepoints evident in the data sets VGR 1
SET I and VGR 2 SET I] make them better candidates for uncovering any
north-south asymmetry. As seen in Figure 4,9 both of these data sets
do display relative vorticity profiles along the minor axis which are
markedly asymmetrical with a peak vorticity of about 6.5 x 10'5 sec']
at a = -9 x 106m (south side) and a lower peak relative vorticity of

d at a = +5x 106m (nortn side). vhe addi-

about 4.0 x 107° sec
tion of planetary vorticity (f = 2a sine, where g = 1.76 x 10'4
sec'] and ¢ = planetographic latitude) yields the absolute vorti-
city given by ¢ + f which appears to be more or less conserved at a

-1 by fluid parcels as they circulate

value of roughly -8 x 10°° sec
within the GRS.

Using approach movie sequences of Voyager images, the author
noticed that smaller, bright vortices produced in Jupiter's so-called
F-current, an easterly jet at about -260 latitude, displayed large
variations in albedo as they rotated within the GRS after being
entrained. The small vortices were observed to substantially brighten

as they rounded the northeastern side of the GRS and to dim as they

approach the southwestern side, The supposition was that the smaller
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vortices were either being vertically stretched or undergoing a whole-

sale increase in altitude as they moved northward along the eastern

edge of the GRS, either case leading to the condensation of more

ammonia crystals and hence, an increase in albedo. The opposite effect

was presumed to occur on the western side of the GRS. Allison (private

communication, 1981) suggests that the observed brightening of these

smaller vortices is, in fact, due to vortex-tube stretching governed by -"
the so-called Sverdrup Relation (see Pedlosky, 1979, page 400) which ‘

amounts to a restatement of conservation of potential vorticity, i.e.,
d [g+f < 0
‘af —D—'— 1

where,

D = depth scale of the atmosphere

for the appropriate scales of motion. The argument begins with the
potential vorticity equation for long waves on a g-plane and in a

statified atmosphere, where for the streamfunction vy,

¢ [v% 2 (KZ gg) R sy] -0 . (4.6)

This is the same as our previous Equation 3.1.

We have seen that this relation expresses a balance in the total
time derivative of three terms, which are respectively, the vertical
components of relative vorticity, vorticity induced via vortex-tube

stretching, and planetary vorticity on a g-plane.
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For those scales of motion for which the horizontal Laplacian term
may be n: lectes. ‘.e., those scales for which dimensionless s given

by,

where, .
L o= (U/so)]/z = stationary Rossby wavelength, is much ;

greater than 0(1) and for which,

2
s_;,.tg
2
K LR
where,

LD = ND/f = Rossby deformation radius

is of 0(1), we note that the potential vorticity equation reduces to a

balance between the second and third term in Equation 4.6. In other :

words, the balance is between the advection of planetary vorticity and

vorticity changes due to stretching. If we estimate the scales of

motion for the GRS to be,

8 = %ﬁ cos 8 ~ 4.6 x 10

0 J

-12 m'] sec']

where,

U~ ]Ozm sec']

L a~7x 106m (length scale across semi-minor axis)
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2 1

10€ sec”

D~10

=
l

4 5

to 10°m

fa1.3x 10 sec”!

thus,
Lg ~ 4.7 X 10%m
LD~7Jx1&to7Jx1&m
hence,
g* n 2 . 0(1)

gr/k2+ 30 to 3 = 0(10) to 0(1).

So, we see that for the smaller entrained F-current vortices the scales
of motion asociated with their circulation around the GRS do not defin-
itively indicate that the Sverdrup Relation applies. In other words,
tha advection of relative vorticity may well be of the same order of
magnitude as “he advection of planetary vorticity. Thus, Equation 4.6
in its complete form represents the appropriate balance. Our present
observation that the absolute vorticity appears to be preserved for

parcels circulating within the GRS implies that

%{ [vzw + ay] = 0

suggesting by Equation 4.6 that,

9’-'!1
—
R
~
7o
c—>
"
[}
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Hence, vortex-tube stretching may not be an important process for

parcels circulating within the GRS.

4.3 Energetics of the Great Red Spot

Our study of the global energy transport mechanisms operative in
the Jovian atmosphere indicated that the up-gradient transport of
momentum by eddies smaller than the Rhines radius might be important in
the upper troposphere, As pointed out in Chapter 3 we expect the
indirect cascade associated with turbulent eddies to be interrupted by
the onset of Rossby waves for scales larger than the Rhines radius. In
this section we perform an analysis similar to that used on the world-
map data sets in order to study the energetics of the Great Red Spot,
and White Oval BC, both very large-scale eddies with length scales com-

parable to or larger than the Rhines radius.

4.3.1 Deduced Energetics for a Closed Momentum Control Volume

Our approach will be to surround the GRS in a closed momentum con-
tro! volume. The leap of faith from measured inertial forces to ener-
getics is a larger one for a closed momentum control volume than for a
global data set. Not only must we contend with the dynamic pressure
torque term, but momentum flux terms along the control volume boun-
daries must be considered as well. Recall that our expression for the
time rate of change of mean zonal kinetic energy is given by Equa-
tion 2.9. We simplify our task considerably if we make the assumption
that the mean meridional velocity may be neglacted so that, v = o.

This is Justified by the very small values of observed divergence.

Neglecting all vertical motions we have,
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%%‘. « (k' « R}+p - R} (4.7)

where, again,

K' *» K} = +/ / fpu‘v'%gdxdydz- ] [p[ﬁu'v']ydxdz.
2 Jy Jx 2 Jx

We can at best only estimate limits on the pressure torque term;
however, the total time rate of change of mean zonal kinetic energy due
to eddy stresses is once more given by the familiar correlation between
the eddy stress and the ambient meridional shear of the mean zonal wind
with the addition of an energy flux convergence term due to momentum
transport across the northern and southern boundaries of the control
volume. We digress momentarily to discuss the eddy asymmetries which

might give rise to eddy-mean flow interactions.

4.3.2 Asymmetry and Eddy Stress

The two essential ingredients for eddy-mean flow interactions
are a horizontal shear in the mean flow and appropriate asymmetries in
the eddy flow. A symmetric ellipitical eddy lying with its major axis
oriented perfectly east-west and its minor axis perfectly north-south
will not interact energetically with a perfectly zonal mean flow. Ref-
erence to Figure 4,102 shows such a non-interacting eddy in an
unsheared mean flow. Note that the algebraic sign of the eddy stress
given by the product u'v' is negative in quadrants 1 and 3 and positive
in quadrants ¢ and 4. In the case of the GRS, which lies in a negative
ambient shear (i.e., du/dy < 0, with y increasing northward), this

means that if the stresses associated with the odd-numbered quadrants
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Figure 4,10. Geometries which lead to net eddy stresses:

(a)

(b)

A perfectly symmetric eddy has no
associated net stress, the negative
stresses of the odd quadrants compen-
sate for the positive stresses of the

even quadrants.

A counterclockwise tilt of the eddy's
major axis increases the effective area
of the positive stress producing regions
(the even quadrants), while diminishing
the effective area of the negative stress
producing regions (the odd quadrants),

leading to positive net eddy stress.
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Figure 4.10 continued.

(c) A geometrical distortion of the eddy

which increases the effective area of the

positive stress producing regions and
diminishes the effective area of the

negative stress producing regions.

(d) An asymmetrical velocity field with

e

higher velocities in the even quad-

rants leads to the production of net
positive eddy stress. Note the associ-
ated divergence along the minor axis

and convergence along the major axis.
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exceed in magnitude the stresses associated with the even-numbered
quadrants, the mean zonal wind increases in time due to the eddy
stresses, i.e,, the eddy flow feeds the mean flow. Should the reverse
situation occur and the stresses in the even quadrants outweigh the
stresses in the odd quadrants, the eddy will barotropically feed off of
the mean flow. Using cloudtop measured motions we wish to examine the
possibility that the GRS is such a barotropically fed eddy. Thus, we
may begin our examination by looking for large-scale asymmetries which
maximize the stress contributions from quadrants 2 and 4 while minimiz-
ing those from quadrants 1 and 3 and thereby lead to »ositive net eddy
stresses. There are three basic large-scale asymmetries which indivi-
dually or collectively may provide positive net eddy stresses. These
are: a wholesale tilt of the eddy, i.e., a2 major axis running from
southwest to northeast will produce positive net stresses as in Fig-
ure 4.10b; a distortion in streamlines such that the effective areas of
the even-numbered quadrants (those in which u'v' > 0) are increased

as in Figure 4,10c; and an asymmetry in velocity field with higher
velocities in quadrants 2 and 4 as in Figure 4,10d. We briefly discuss
a search for direct evidence of these asymmetries.

An asymmetrical velocity field which provides positive net
stress will produce a characteristic signature of convergence along the
major axis and divergence along the minor axis (see Figure 4.10d).
Using the version (a) smoothed velocity fields of our GRS data sets we

may compute horizontal divergence as,
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where derivatives are approximated by their centered finite difference
equivalents. The results of attempting to deduce divergence fields for
our GRS data sets are at best marginal. Typically, divergence is a
small quantity and well within the noise level of the finite differenc-
ing scheme. An attempt to evaluate the mean divergence (of all four
data sets) along the minor axis of the GRS yields ¥, - V =

+0.07 x 1075 sec™! with a standard deviation o = 0.53 x 10°> sec™'.
A similar evaluation along the major axis of the GRS jields ?h- V=

! > sec']. If these

+0.12 x 107> sec™! with o = 1.03 x 10°
results are at all meaningful, which they are probably not, they would
indirectly indicate a flow field with a negative net eddy stress con-
tribution. The most important revelation to come out of this analysis
is an apparent weak convergence of flow around the outer periphery of
the GRS(a > 12 x 106m) and a weak divergence of flow within the
interior (a < 12 x 106m). Noise in our finite difference computa-

tion of divergence prevents us from pursuing this matter any further at
present.

In an attempt to look for tilting, Mitchell et al. (1981) fit
symmetric ellipses to the observed GRS flow allowing the tilt angle
between the zonal direction and the major axis to vary as the free
parameter. Their results were inconclusive mainly due to problems in
identifying feature boundaries for delineation of the flow. However,
the plots of GRS tiepoints (Figures 4.3 through 4.6) show a slight, but

obvious, wholesale tilt in the orientation of the GRS such that the

major axis runs from southwest to northeast.

4-42

a0 o |t bl B

T T T T




4.3.3 Evaluation of the GRS-Mean Flow Interaction

while an attempt to look for large-scale asymmetries might be
intuitively instructive, it does not provide irrefutable evidence of
either the algebraic sign or the magnitude of the Red Spot-mean flow
interaction. In order to obtain such a measure our approach, as with
the "world map" data set, is to divide the data into zonal strips over
which averages in x may then be taken. Averaging in y is performed by
the summation of zonal strips, while averaging in z still amounts to
multiplication by a column density. Figure 4,11 shows a mosaic using
some of the frames from data set VGR 2 SET I, as well as an earlier,
sparser version of the data set's tiepoints with the zonal averaging
bins Superimposed.

As we have seen, asymmetries in the eddy field on a quadrant by
quadrant basis determine both the algebraic sign and the magnitude of
the eddy stress and hence the stress induced momentum transport. Sirce
the marked absence of tiepoints in any one quadrant relative to another
will be interpreted as erroneously low averaged velocities (and hence,
low eddy stresses) by our zonal averaging scheme, we perform the compu-
tation of all kinematic transport terms on the smoothed data sets as
earlier described. Using the smoothed flow field, each of the terms in

Equation 4.7 becomes in finite difference form:
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Figure 4,11,

Mosaic of frames used for the Great Red Spot data set
VGR2 Set I and latitude averaging bins superimposed
upon a measured field of tiepoints, The solid line
illustrates the computed profile of U(y). In our
energetics analysis we use a profile of u(y) as com-

puted from the world map data sets.
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M

N
du
9* utv?
di ;g; gg; ( Eﬁilj
+ []/pu‘v' -aydxdydz = + R
2 Jy Jx !

= eddy stress induced
energy transport

T (p*ﬁU'V')i'N - (p*iU'V'),"]
- [ /p[uu v ]ydxdz = - Noy
z Jx

= kinetic energy flux convergence

~ associated with flux through the
north (i=N) and south (i=l
boundaries of the control volume

N

- ff[ﬁp] xdydz = -.[[).lf.]__ﬂ____
z Jy

= energy generation
by pressure torque

where,

p* = 104 kgmﬂnz = mass column density of Jovian atmosphere
8P = Ppast - PWEST = pressure difference in x across the

control volume
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ay = width of zonal averaging bins

i = index on each zonal bin (y index), increases northward from )
i=] (southernmost bin) to i=N (northernmost bin)

J = index on longitude (x index), increases westward from j=1

(easternmest bin) to j=M (westernmost bin)

M E
() -; ( )J. = zonal mean of a quantity , '
uij = observed zonal velocity at grid point i, j %
u'ij = uij - Ui = zonal component of eddy velocity at grid
point i, J
Vij = v'ij = observed meridional component of eddy velocity
at grid point i,j
du/dy = (Ui+] - Ui_])/Zay = centered finite difference

approximation to the meridional shear of mean zonal wind

D = 105m = depth scale of Jovian atmosphere over which

cloudtop motions represent mean in column

bt i

—
"

length of control volume in x-direction,

Thus, with appropriate assumpticns on p* and D, and with the excep-

tion of the quantity ap, we now have a means of relating the observed :

e el e

cloudtop kinematics in an averaging area around the Red Spot to the

time rate of change of mean zonal kinetic energy within that area.

Our GRS data sets cover control volumes which are limited to the

e M i

GRS region in zonal extent (see Figure 4.11). One might, therefore,
question the validity of our deduced values of meridional shear and the

resulting values of energy transport rates on the basis that the com- s

AT ARD 1 7
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puted mean flow within the control volume and the actual mean flow upon

which the GRS is superimposed differ substantially. A comparison of

the computed profile of u(y) for each of our data sets with a global

mean profile through the same latitudes (hence, assumed to represent

the true mean flow) indicates fairly close agraement (see Figures 4,12

and 4,13). However, the deduced spin-up times for the GRS aiffer sub-

stantially depending upon which scheme is used. Motions associated '
with the GRS consist of three components superimposed upon the global

mean flow: a meridional flow symmetric about the Red Spot's major axis

(v'), zonal perturbations about the computationally determined

u(y)-profile (u'), and a modified U(y) profile with an ambient shear

somewhat larger than that determined as the global mean. In order to
gauge the effects of the observed stress transports (e.g., estimate
“spin-up" times) we must properly compute the total energy associated
with the GRS flow as superimposed upon the mean global flow in which
the GRS is located. Thus, values presented in Table 4.3 were computed

in a scheme using the globally determined values for u(y) taken from

the final versions of the VGR 1 and VGR 2 world maps.

4.3.4 A Preliminary and Cautious Error Analysis

The first two columns of data in Table 4.3 summarize the results
of computing both the eddy stress related kinetic energy transport and
the total time rate of change of mean zonal kinetic energy due to eddy
stresses in a closed momentum control volume (i.e., transport plus flux
convergence) where units are watts m'z. The impact of Table 4.3 is
potentially astounding, indicating a GRS which feeds at a rapid rate off

of the ambient mean flow. However, before fully embracing a baro-
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Figure 4.12. Profiles of u(y) as computed from the Voyager 1 world
map (connected dots) and as computed within the momen-

tum control volume around the Voyager 1 GRS data sets.

4-50




ﬂlUﬂm w
()0 qI3dS ANIM TYNOZ
0B+ 09+ O+ 02+ O 6- o 09 08
| T T [ T | f T o0C-

4-51

OF POOR QUALITY

ORIGINAL PAGE IS

3ANLIVT

- v (Q) I 13S T9A +
- v (Q)1 135 T9A +
- ® dVW TRIOM T39A +




Figure 4.13. Profiles of u(y) as computed from the Voyager 2 world

map (connected dots) and as computed within the momen-

tum control volume around the Voyager 2 GRS cata sets.
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tropically fed Red Spot (and all the ensuing theoretical repercussions)
we must resolve several potential problems relating to our method of
analysis: errors associated with uniform grid smoothing, potential
error in one of the more sensitive navigational parameters called the
"north-angle®, and our wholesale neglect of the pressure torque term.
The experiments performed as part of this error analysis were all
based upon data sets which use the computationally determined profile
of U(y) rather than that derived from the world map data sets. This

has little effect upon our conclusions.

4.3.4.1 The Effects of Our Smoothing Schemes

Comparison of version (a) and version (b) data sets in Table 4.4
allows a measure of the effects of our smoothing grid. Reference to
Table 4.2 indicates that none of the data sets are over-interpolated
(i.e., the actual number of tiepoints is always greater than the number
of uniform grid points). As seen in Table 4.4 the excellent agreement
in computed terms between version (a) and version (b) of our data sets
indicates that within reasonable limits changes in grid spacing do
not greatly affect our results. We note that VGR 1 SET Il is quite
under-interpolated in both versions (a) and (b) increasing the likeii-
hood of variance between the two versions. For data set VGR 1 SET II a
third interpolation was used with ax = 1.0 and ay = 0.5, giving a
total of 675 uniformly spaced grid points (actual number of tiepoints
is somewhat less than 800). The results for this third interpolation
are an eddy stress induced energy transport of -30.6 watts/m2 and a
total time rate of change of mean zonal kinetic energy due to eddy

stresses (transport plus flux convergence) of -41.8 watts/mz. The
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Table 4.4. Effects of Smoothing Scheme on Deduced Energetics P a

Eddy Stress Transport K + K}
Data Set (Watts m-¢) (Watts m=2) i

VGR 1 SET Ia -36.7 -52.1
SET Ib -37.4 -46.8

i N AL R 0 103

VGR 1 SET IIa -37.8 -56.9
SET 11b -27.5 -47.6

VGR 2 SET Ia -18.4 -26.1
SET Ib -15.5 -22.4 z

VGR 2 SET Ila -14.3 -23.5 :
SET I1b -16.3 -23.8

T ke o
ATINRE Ly

i
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results lie vetween those for versions (a) and (b) of the same data
set. Though we are immediately cautious when analyzing VGR 1 SET II,
since it contains frame pairs which are navigated in a "relative*
sense, there is no obvious reason why such relative navigation would
produce noise in our interpolation schemes. Actually, as is obvious in
Figure 4.4, the likely causes of such noise are the rather severe data
gaps in the peripheral vortex due to lack of frame pair coverage.

These data gaps are most pronounced in the northwest and southeast
quadrants of the GRS, quadrants for which the eddy stress is positive.
Since the ambient mean zonal wind shear is negative, we would
anticipate that the contributions made to the eddy stress energy
transport term by these two quadrants will be negative. The finer grid
interpolation schemes are more readily capable of resolving the peri-
pheral vortex data gaps in these two quadrants, hence the computed
energy transport, as well as the total {K' * K} will tend to be

less negative than will be the coarser grid interpolation scheme (i.e.,
version (a)). Comparisons between VGR 1 SET II version (a) and VGR 1
SET I versions (a) and (b) indicate that this explanation is feasible,
and we conclude that for the data set VGR 1 SET II only version (a)
(i.e., the coarser grid scheme) is free from the effects of uneven data
sampling.

Before leaving the subject of the effects of different inter-
polation schemes we refer to Table 4.5 which presents the results of
changing both ax and ay in the smoothing scheme for a somewhat
earlier version of data set VGR 2 SET I. In this earlier version there

were fewer tiepoints located in the peripheral vortex, leading to
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Table 4.5. Various Interpolation Schemes for VGR 2 SET I ;

w
e e R et

Eddy Stress -
AX Ay Transpors {K' * K}
(° Longitude) (O Latitude) (Watts m=¢) (Watts m=2)

0.5 0.5 1.7 -14.3

0.5 1.0 -11.9 -14.8

1.0 0.5 -11.9 -14.7 .
1.0 1.0 -12.0 -15.0
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energy transports which are somewhat smaller in magnitude. There is a
suggestion that, provided the field remains under-interpolated and the
grid spacing is large enough to smooth over data japs, the magnitude of
computed transport and {K' + K) will diminish slightly with
increasingly finer grid spacing (an effect also evident in much of
Table 4.4). Though it would be meaningless to conclude anything from
this slight effect, one might be tempted to use the trend to argue that
the larger scale asymmetries associated with the GRS are those raspon-
sible for its ability to feed upon the ambient meridional shear of the
zonal wind, It is our conclusion that within the minor limitations
discussed above, smoothing of our data introduces little noise into the
results and at the same time filters out misleading asymmetries in the

data sampling.

4.3.4.2 The Effects of Error in North-Angle

Since even the small tilt of an eddy can have very large effects
on the deduced energy transport rates, we must be very cautious that
each of the frames used in our GRS data sets is oriented properly,
i.e., that we know the direction in each frame to Jupiter's north rota-
tional pole to a high degree of accuracy. The angle measured clockwise
from the negative elevation axis to the northward direction in the
image plane is known as the north-angle. From Figure 4.14 we readily
see how errors in north-angle of only a fraction of a degree might
readily translate into drastic errors in deducec <nergy transport rates
(consider that we estimate the overall tilt of the GRS to be about one
degree or so). There are three identifiable sources of north-angle

error: error in our knowledge of the spacecraft to Jupiter distance,
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Figure 4,14, North angle (¢) is measured clockwise from the frame's
negative elevation axis (see directions of increasing
azimuth and elevation denoted at upper left). Small
changes in (¢) as tabulated beneath the figure result
in large changes in deduced energy transport rates in

the sense anticipated.
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of the amount of scan platform twist due to spacecraft limit cycle

motion, and of the actual Tocation of Jupiter's north rotational pole.
Error in our knowledge of the radius vector from the spacecraft to

Jupiter's center may be as great as +100 km. An error this large in

e et ey i

range translates into an error of roughly :pfl in north-angle. A
typical error in range is only +10 km which would translate into a much
smaller error in north-angle. The more or less random wobbling motion

of the spacecraft about its three axes is known as limit cycle motion.

Motion about the spacecraft's roll axis translates (as a function of
pointing elevation and azimuth) into an error in north-angle. For
cameras pointing directly along the scan platform elevation axis the
translation will be direct. Total limit cycle amplitude about the roll
axis is 10705; hence, in the worse case, limit cycle motion can lead to
an error in north-angle of +0.05. Finally, we note that error in our
current knowledge of the exact orientation of Jupiter's rotational pole f
is so small as to lead to a negligible error in north-angle. Thus, in
a worst case our knowledge of nortn-angle has an approximate error of
+0:1. But into what sort of error does this transiate when we consider
energy transport rates?

In order to answer this question we perform an experiment on an
earlier version of our data set VGR 2 SET I (the same data set used to
generate Table 4.5). The smoothing scheme in use was ax = 1.0 and
sy = 0.5. The value of north-angle used by the AMOS program was pur-
posely incremented by -1°0, -0.1, +0:1, and +1°0 so as to artificially
rotate the frame about its center by these amounts. This, of course,

has the effect of changing the defined meridional and zonal direc-
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tions. The total effect is not quite as conceptually simple as taking
a purely zonal flow and then rotating a “tiltable* eddy back and forth
about its center, The complicating factors are that the magnitude of
the ambient zonal wind shear changes in the tilting process, and that
the GRS is not actually located in the center of the frame as suggested
by Figure 4.14, The changes in the measured mean flow due to tilting
the frame pair are very small and have a negligible effect upon the
deduced energy transport rates. However, the change in energy trans-
port rates produced by changes in the eddy stresses are great, and as
the center of the GRS is reasonably near the center of both frames in
the pair, we may liken the effect to artificially inducing a wholesale
tilt of the eddy. Table 4.6 summarizes the results, which do much to

build confidence in our supposition that a slight tilt of the GRS plays

Table 4.6. North-Angle Error Analysis

Change in North-Angle {K' * K)
(Measured positive clockwise) (Watts m-¢)

+120 -6.2

+0°1 -15.4

0.0 -14.7

-0:1 -14.4

-1%0 -17.5
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a major role in allowing the eddy to feed upan the mean flow. We note
that just as anticipated, tilting the frame pair only one degree in &
counterclockwise (clockwise) sense greatly increases (decreases) the
rate at which the GRS feeds upon the mean flow. Within the limits of
our knowledge of north-angle (+0:1) the noise associated with our
interpolation grid seems to completely mask, and by chance, slightly
reverse anticipated changes in the energy transport rates, From these
results we may estimate the error on deduced energy transport to be
approximately +0.5 wattsﬁnz for a worst case error in north-angle of

+0:1,

4.3.4.3 The Pressure Torque Term

We have delayed a discussion of the largest source of a potential
misinterpretation of Table 4.3 for last. The pressure torque term, as
already noted, is dynamic and is the term initiating motion in our mean
zonal kinetic energy equation, the kinematic terms only acting upon the
motion once it is initiated. Horizontal pressure gradients, and hence
the pressure torque term, are of course unobservable by the Voyagcr
spacecraft. The effects of the torque might, however, be estimated by
applying a little dynamic intuition, We begin with a simple estimate

of the radial pressure gradient associated with flow around the GRS.

1.35.4.3.1 An Estimate of the Radial Pressure Gradient of the GRS

Noting that Mitchell et al. (1981) estimated the Rossby number
(Ro) for tangential flow on the Red Spot's major axis to be 0.36 at
a distance a = 10.5 x 106m from the spot's center (where Ro = VT'

6/b2n3/f = ratio of centrifugal to Coriolis acceleration), we
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shall assume the tangetial flow to be in gradient balance (i.e.,
balance between centrifugal, Coriolis, and radial pressure gradient

accelerations). Hence,

If the GRS does indeed represent a high pressure center, as seems
almost certain (Ingersoll, 1973), then the pressure gradient and cen-
trifugal accelerations acting to th~ right of a fluid parcel's tra-
jectory are balanced by the Coriolis acceleration to the left (in the
southern kemisphere). Thus, use of the appropriate values for our
parameters,

-1

fx-1.35x10Ysec™  at -2275 latitude

Vr = 110m sec”! at a = 10.5 x 106m (thus b = 4.85 x 106m)
o= 9.0 x 102 kgmm-3 at p = 500mb (Divine, 1971),

allows us to evaluate the radial pressure gradient as,

%E = - 8.5) «x 10'4 newtons m'3 = - 8,51 x lds mb m" .

6

This gradient implies a center to edge (i.e., 2 = 10.5 x 10°m) pres-

sure difference of,
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K

ap = p] N .
a =10.5x105 P],. ag " 89.3mb.
This is a fairly typical center to edge pressure difference at the

500 mb level by even terrestrial standards.

4.3.4,3.2 An Estimate of the Ageostrophic Pressure Gradient

An ageostrophic pressure difference maintained across our control
volume will give rise to a pressure torque. Thus, as seen before in

our computational scheme,

N
D @),
L N

where,
Ap = pressure at the east wall minus pressure at the west wall of

our control volume,

Hence, an excess ageostrophic pressure maintained on the west side of
the GRS relative to its east side will tend to cancel the :nergy trans-
port rates inferred from a consigeration of tne eddy stresses alone.
Use of the VGR 2 global map data set allows a measure of the rea-
sonableness of such a "negating" ageostrophic pressure difference, as
follows: Our world map yields a measure of &K/at in the zonal
“channel* containing the GRS (from roughly -16.5 to -28.5 latitude

in width), We may divide this channel into two segments, that
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containing the GRS and the remainder of the zonal channel, which we
designate as NONGRS. Noting that 3/at in this global channel is

given exactly by,

aK] . [ Area of GRS K' o R
._____1FTT_____] [{ }
[if CHANNEL Area of CHANNEL JGRS

Area of NONGRS e R
* EKFEE‘BT'CHANNEEJ Lek* = K IyongRs (4.8)

= [0.092] (iK' Ki]ggg + [0.908] [K* * K} yongas

where the pressure torque associated with [aK/at] grs and [aK/atInonGRS

cancel since,

and,

[25] = ﬁK'- R}] - 1o °K‘}] (4.10)
2t INONGRS NONGRS | @RS

We assume that,

[(K‘ : E]] > -25 watts m~°
GRS

and from our Voyager 2 world map data set that,

-1
[ﬂéj = +0.99 watts m'z.

3 CHANNEL
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Thus, we obtain from Equation (4.8),

[{K- . z:] ~ +3.6 watts @
NONGRS

which we note is near the global average energy transport rate.

2

Now, suppcse that the ageostrophic pressure difference (ap)
across the GRS exerts a torque which acts so as to exactly cancel the
effects of the GRS stresses, such that [aK/at] @S * 0. Equa-
tion (4.9) allows an evaluation of this "cancelling" pressure gradient

of ap = -13.5 x 10 Newtons m~2 (= -13.5 mb)

where,
D = 10°m
L = 3.84 x 107 m (the zonal extent of the GRS segment)
u=+10 m sec! (average over the channel width).

Thus, a pressure difference of 13.5 mb maintained across the GRS
segment of the channel with higher pressure on the west will negate the

effects of the observed GRS stresses.

4.3.4.3.3 The Asymmetry Associated with Ageostrophic Fiow

Under 'the assumption that the GRS represents a normal high pres-
sure center (i.e., one in which the pressure gradient acceleration is
larger than the centrifugal acceleration), we have seen that the

6 mbm™'. It initially

deduced pressure gradient is -8.51 x 10°
seems alarming to note that the asymmetric pressure gradient required
to cancel the effects of eddy stress in the energy equation is only

3.52x 107 mom! or only about 4% of the symmetric radial pres-
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sure gradient. It behooves us to determine how such a pressure differ-
ential across the GRS might manifest itself.

If we suppose that the pressure field around the GRS consists of
the superposition of the radial, symmetric field of a normal high and a
superimposed constant ageostrophic pressure difference maintained from
east to west across the GRS control volume so as to cancel the eddy
stress effects, we may evaluate the resulting pressure gradient on the

eastern half of the GRS as,

[3P] = (-8.51 x 1078 mbm!) + (-0.35 x 1070 mb m~1)
EAST

= -8.86 x 10'6 mb m']

and on the western half as,

%)

WEST

(-8.51 x 1078 mb m!) - (-0.35 x 1078 mb m™))

-8.16 x 10'6 mb m'].

Use of the gradient wind balance (though the flow might well be ageo-
strophic, it should still be gradient, unless unobservable longitudinal
asymmetries in the stresses play a major role in the resuiting flow)
allows us to compute the resulting asymmetry in the tangential velocity
field. Once again, assuming that the GRS flow is that of a normal high
pressure center, this yields a typical value for the tangential velo-

city on the eastern side of the Red Spot of,
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(%] = 123 m sec”! (at a = 10.5 x 10° m)
EAST

and on the western side of the Red Spot of,

[ = 100 m sec™! (at a = 10.5 x 10° m),
WEST

1ata=10.5x10°m

This may be compared with a value Vy = 110 m sec”
in Mitchell et al. (1981). Reference to Figures 4.3 through 4.6
clearly demonstrates that even if asymmetries of such a magnitude do
exist, observation seems to indicate that it is the tangential flow on
the eastern side of the GRS which is somewhat slower. We conclude that
there is very little evidence indeed for a pressure differential across
the GRS control volume of the magnitude or th2 algebraic sign necessary

to cancel the energetics deduced from our kinematic observations of

eddy stress.

4.4 [Eddy Stresses Associated with White Oval BC

Based upon a high resolution velocity field of White Oval BC (the
same data set used by Mitchell et al.; see their figure 2) we have per-
formed a stress analysis identical to that described in section 4.3.3.
One must be cautious with the results as all frames in this set can
only be relatively navigated (as in our GRS data set VGR1 SET II).
Also, we use the mean profile U(y) as defined by the zonal mean within
the control volume. This is necessary as the presence of elongated
cyclonic regions between each of the three White Ovals makes use of a

globally determined profile of U(y) risky. We have already remarked on
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the dynamic similarity between the flow fields of the GRS and White
Oval BC. It is most encouraging that our stress analysis yields
results remarkably similar to those for the GRS (in Table 4.3).

The area weighted mean correlation between observed stresses and
the computed meridional shear of U(y) has a value of -54 watts m'2
(where we have once again multiplied by a column density of
2

p* = 104kgm m “). Accounting for momentum fluxes along the

northern and southern boundaries of tne control volume yields,

K' .+ K} ~-15 watts me,

Thus, it appears that Oval BC (and by inference Ovals FA and DE) may
well be maintained by barotropically feeding upon the ambient anti-
cyclonic shear of the mean zonal wind. Hence, we suspect that the
White Ovals and the GRS may be generically, as well as dynamically,
similar. Studies of the flow fields of Ovals FA and DE would be useful

in a more complete investigation of our suspicions.

4.5 The Role of Eddy Stresses in Maintaining the GRS

Having discussed at length potential errors in our analysis we may
more confidently return to the results summarized in Table 4.3. Com-
parison of columns four and five in Table 4,3 seems to indicate that
the total kinetic energy associated with the GRS flow exceeds the
kinetic energy of the ambient mean flow within the enclosed momentum
control volume by a factor of two to three (summed over the entire

globe the kinetic energy of the mean ambient flow is five to seven
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times greater than that associated with the GRS). This excess kinetic
energy associated with the GRS is likely, however, to be an over-
estimate, since the presumption of Table 4.3 is that both the mean flow
and the GRS flow extend through a column of equal atmospheric mass
(namely, 104 kgm m'z). comparison of\the values for K in column

five indicates that there has been little change in the overall kinetic
energy content of the mean flow between the flyby of VGR 1 and that of
VGR 2. This could indicate that the observed role of the eddy stresses
1n maintaining the flow of the GRS represents a steady state situa-
tion. Spin-up times (in the e-folding sense) for the GRS flow may be
computed under the assumption that the ratio of {K' * K} to K'

remains constant over the spin-up interval., Values given in column 6
of table 4.3 clearly indicate that if the observed stresses apply

2

throughout an atmospheric column of 10% kgm m , the GRS would

spin-up with a time constant of order 10 terrestrial days.

4.5.1 Nature of the Observed Stresses

Figures 4.15 and 4.16 display the tight negative correlation
between the global ambient shear and the GRS stresses for VGR 1 and 2

respectively. The linear least-square fits in the form,

for each of the data sets are presented in the figures. The actual
values of the linear coefficient (A), the intercept (B), the linear

correlation coefficient (r), the probability (P) of exceeding r in a
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Figure 4,15. Piot of zonal mean eddy stresses (u'v') vs.ambient
meridional shear of the mean zonal wind (du/dy) for
the Voyager 1 GRS data sets. Solid lines represent
a linear least squares fit to the appropriate data.
The slope of such a lTinear fit is just the eddy '

viscosity coefficient (Ke)'
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Figure 4.16. Plot of zonal mean eddy stresses (u'v') vs.ambient
meriuional shear of the mean zonal wind (du/dy) for
the Voyager 2 GRS data sets. Solid lines represent
a linear least squares fit to the appropriate data.
As previously noted, the slope of such a linear

fit is just the eddy viscosity coefficient (Ke).
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random sample of 25 points, the eddy viscosity coefficient (Ke) as

determined by the mixing length concept, and the mixing-length (1')
1

are presented in Table 4.7,

where t' ~ K /u' for u' ~ 10 m sec”
The very tight 1inear correlation between the eddy stresses and the
ambient meridional shear of the zonal wind is striking and, as seen
from the values for (P), represents a meaningful correlation at the
99.5% level, or generally better, for a random sample of 25 data points
(the number of latitude bins in each case). The somewhat looser cor-
relation shown by the data set VGR 1 SET I is probably not noteworthy

and causes no concern,

The tabulated values of Ke are of interest and when coupled with
an estimate of the typical scale of the velocity perturbation (say
u' ~ 10 m sec']) these values give an estimate of the length scale
for the momentum exchange (a sort of mean free path for momentum)
provided in the last column. We note that the estimated length scales
are very roughly an order of magnitude larger than similarly estimated
scales for the globally averaged eddies. This does not confirm, but | é
certainly favors, our hypothesis that it is a slight wholesale tilt of
the GRS which allows it to feed barotropically off of the mean zonal

flow.

4.5.2 The Barotropic Stability of the Mean Shear

Figure 4.17 presents the observed meridional profiles of u(y) for

global averages from the Voyager 1 and 2 World Map data sets. Super-

imposed on the actual profiles is a stability parabola on which

u*(y) = 8 at -1975 latitude as computed using Equaticn 1.10. As

already noted in section 1.3.2.4 a shear with curvature greater than

;
A
E
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Table 4.7. Great Red Spot Stresses

Ke !

Data Set A* B* r P (m2 sec") (km)

VGR 1 SET Ib -73.88 52.11 -0.58  0.005 +7.39 x 106 740

VGR 1 SET IIb -105.90 172.66 -0.77  0.001 +1.06 x 107 1060 »
VGR 2 SET Ib  -89.46  66.80 -0.77  0.001 +8.95 x 106 895 |
VGR 2 SET IIb -155.607  24.32 -0.90  0.001 +1.56 x 107 1560

“¥Eor the linear least-squares fit of the form,
u'vl = A du/dy + B

2

where, u'v' is given inm sec? and au/dy is given in units of

X102 sec'].
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Figure 4,17,

Global mean profiles of u(y) through the westward jet
which runs over the northern edge of the GRS and the
region of mean anticyclonic shear in which the GRS is
embedded as computed from the world map data sets.
The solid parabola represents a locus for which the
gradient of the shear vorticity and the gradient of
the planetary vorticity are equal (e, = - 1925;

see equation 1.10).
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that of the stability parabola is likely to be barotropically

unstable. A shear with curvature less than that of the stability
parabola is likely to be stable. The fact that the profiles of u(y)
have a curvature almost identical with that of the stability parabola
might well be anticipated on the following basis: Suppose that the GRS
originated as a turbulent shear region of finite zonal extent (the g-
restoring force playing a role analogous to the Brunt-Vdisdld frequency
in a stratified shear layer). The collapsing mixing layer gives rise
to a perturbation (as suggested by Maxworthy, Redekopp and Weidman,
1978) which grows barotropically at the expense of the mean kinetic
energy. All the while the barotropic "available" energy represented by
the rate at which the actual shear exceeds the barotropically neutral
profile decreases. Eventually, the perturbation has attained a consid-
erable magnitude while the mean shear lies very close to a neutrally
stable profile. In the steady state the one large eddy feeds at just
that rate which maintains the mean shear near neutral stability. The
presence of the one large eddy then precludes the growth of any other
eddies of similar amplitude within the depleted mean shear. The situa-
tion is rather like that of a forest dominated by one huge oak whose
spreading branches deplete the forest floor of sunlight and doom those

seedings unfortunate enough to have taken root in the shade.

4.5.3 Theoretical Implication cf the Observed Stresses

The Great Red Spot has attracted much theoretical interest during
the past century of continuous observation. Some of the earliest ideas
were quite bizarre, often involving either volcanic activity beneath

the Jcvian cloudtops or asteroidal bombardment from above. The first
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suggestion that the GRS might be at least a quasi-atmospheric pheno-
menon was «<xpounded by G. W, Hough in the 1880's when he envisioned the
feature as a vast solid body floating raft-like in the 1iquid oceans
with which he believed Jupiter's surface was covered (Hough, 1903). By
supposing this liquid ocean tc be semi-incandescent Hough even, if only
by luck, deduced that the darker GRS was colder than its surroundings.
Wildt (1939) and 'ater Peek :1958, pg. 237) picked up the “floating
raft" theme. Even within the past decade the notion of a floating
solid body has been :ariously put forward (Streett, Ringermacher, and
Veronis, 1971).

Modern theories for the GRS are summarized in Table 4.8. We have
already reviewed several of these models in Section 1.3 and will not
repeat the details here. We pass over the Taylor column hypothesis
since it now seems unlikely that a true solid-fluid interface exists at
the "bottom" of the Jovian atmosphere. We briefly examine those models

not previously reviewed.

In a simplistic and qualitative way Kuiper (1972) extended the
CISK mechanism of Barcilon and Gierasch (1970) to describe the GRS as a
vast shield of cumulus columns towering above the South Tropical Zone
and thus rotating somewhat slower than the underlying easterly current,
which he likened to the Intertropical Convergence Zone (ITCZ) in
Earth's atmosphere. He argued that the divergence at the top of the
cumulus towers wouid result in the anticyclonic vorticity of the shield
as a whole. In such a scheme it is the lower level convergence of

water vapor and the subsequent release of latent heat which drives the
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Table 4.8. Modern Theories for the Great Red Spot

Theory Reference Driving Mechanism

F Taylor-Proudman Hide, 1961 Stagnant column above

: Column surface irregularity

F Hurricane Kuiper, 1972 Conditional Instability

4 of the Second Kind

: Free Barotropic Ingersoll, 1973 Mechanism not addressed
Vortex

, Convective Williams & Unstadle vertical

- Instability Robinson, 1973 temperature gradients
Solitary Rossby Maxworthy & Forcing not required for
Wave Redekopp, 1976 nonviscous solution*
Baroclinically Williams, 1979 Baroclinicity of
Neutral Gyre mean field
Green Mode Conrath, Gierasch, Baroclinicity of
Baroclinic Eddy & Nath, 1981 mean field
Internally Heated Hide and Read, 1981 Baroclinicity of
Baroclinic Vortex eddy field
Weakly Stratified Ingersoll & Forcing not required for
Rossby Wave Cuong, 1981 nonviscous solution

—

*Barotropic forcing has been suggested by Maxworthy, Redekopp,
and Weidman (]978? as a mechanism appropriate to the solitary
Rossby wave model.
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vortex. This vast hurricane model for the GRS has remained popular
throughout the past decade. Of particular relevance to our study is a
numerical experiment performed by Challa and Pfeffer (1980) in which
they examine the role of eddy stresses in the initial development of a
terrestrial hurricane. They parameterize eddy fluxes of momentum, as
well as water vapor, in a radially symmetric hurricane and find that
the stresses can play a significant role in the vortex spin-up process.
particularly in these cases where the eddy stresses are strongest near
the air-sea interface and resuit in rapid convergence of momentum (and
more importantly water vapor). Their study, coupled with observational
evidence of momentum convergence (Black and Anthes, 1971) seems to
indicate that the eddy stresses associated with the asymmetric waves in
the tropical easterlies play a major role in triggering and perhaps
maintaining terrestrial hurricanes. One could envision a situation for
the GRS which is not unlike that suggested by Challa and Pfeffer. We
note that the very slow divergence within the central portions of the
GRS (see Section 4.3.2), if meaning’ .1, could be indicative of interior
upwelling and lower level convergence. However, the problem of how one
sets up a convergent field in the lower troposphere in the absence of a
lower Ekman layer has yet to be fully addressed.

Hide and Read (1981) suggest that the GRS may represent a baro-
clinic eddy with its own interior heat source. Thus, the perturbation
field of temperature and stream function is baroclinic, as opposed to
the linear models discussed in Section 1.3.2.2.2 in which the baro-

clinicity is in the mean field. Voyager IRIS observations indicate
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that the GRS may well possess such an interior heat source (Flaser

et al,, 1981). Future comparison of very high resolution IR]S measured
temperature distribution near the GRS and observed distributions of
kinetic energy should help gauge the likely importance of the baro-
clinic mechanism,

It is clear that each of the models which are tied to a specific
energy generating mechanism involve transports associated with a verti-
cal velocity field (i.e., both the convective and baroclinic mechanism
rely upon vertical motions for the ultimate conversion of P' into K').
Our eddy stress analysis indicates that the GRS is probably maintained
as a barotropic instability. The modeis of Ingersoll (1973), Maxworthy
and Redekopp (1976), and Ingerscll and Cuong (1981) are capable of
accommodating the barotropic mechanism, though in their present form
each model is barotropically neutral. In each case free solutions are
obtained to a potential vorticity equation., The analysis of Ingersoll
(1973) is purely hydrodynamic in the sense that the effects of strati-
fication are ignored and subsequently the solutions are completely
barotropic. The models of Maxworthy and Redekopp (1976) and Ingersoll
and Cuong (1981) treat different scales of the stratification parameter

2
K™
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CAAPTER 5. THE VERTICAL STRUCTURE OF SOLITARY ROSSBY WAVES

5.1 Solutiuns to the Quasi-geostrophic Potential Vorticity Equation

Recall the discussion of section 3.1.1 in which we pointed out that
the potential vorticity equation is given by equation 3.1 for length
scales L 2 Ly j.e., for K2 & 1. To first order in Rossby number and
for incompressible flow, equation 3.1 becomes the quasi-geostrophic

potential vorticity equation given in its nondimensional form by,
) d ) 2 a3 (2% _
(at+’y ax - X 37) (v +_aE(K 'a'i)) Y+ey =0 (5.1)

where, ¥ is the total streamfunction specified by,

us=+ vy = nondimensionalized zonal wind speed
V= L nondimensionalized meridional wind speed
2 2
2
W)= () v ().
ax 3y

For the moment we simply note that the unforced, homogeneous form
of the potential vorticity equation given by equation 5.1 is strictly
valid only in some time-averaged sense. We require the forcing and
dissipation terms which would lie on the right-hand side of the equa-
tion to cancel each other such that a steady state flow results for

time scales longer than the averaging interval.
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Ingersoll and Cuscng (1981) set up a two layer numerical model in
order to compute " (x, y, t), the total streamfunction in an upper,
weakly stratified layer representing Jupiter's upper troposphere and
stratosphere. They assume that the lower layer is adiabatic with a
streamfunction v, =fU(y)dy, where u(y) is the observed mean zonal
wind speed, For large values of K2 they obtain numerical solutions
which are strongly nonlinear. They argue that the existence of soli-
tons in their model is impossible for large values of Kz. The vor-
tices of Ingersoll and Cuong tend to merge to form new stronger vor-
tices. They suggest that the merging of smaller vortices circulating
in the westward current at -12° latitude within the GRS represents
such strongly nonlinear interactions. Redekopp (private communication,
1981) has demonstrated that weakly nonlinear solutions are possible in
Ingersoll and Cuong's model even for cases where K2 is large. At
present the best test of this model is to examine the validity of its
more easily testable weakly nonlinear counterpart, the solitary Rossby
wave model of Maxworthy and Redekopp (1976).

The behavior of Ingersoll and Cuong's vortices is quite different
from the soliton interactions (i.e., phase shifts and preserved indi-
vidual identities) manifest by the weakly nonlinear solutions to equa-
tion 5.1 first proposed by Maxworthy and Redekopp (1976). Soliton sol-
utions are obtained by a perturbation expansion in e, where ¢ is

the disturbance streamfunction nondimensional amplitude specified by,

y
v(x,¥,2,t) = [ {U{y) - Co) dy + ev(x,y,z,t) (5.2)
o _Yc
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with, C, = linear long-wave phase speed for a Rossby Wave in the

observed shear U(y),
U(y) = nondimensional form of u(y), the mean zonal speed,
where, U = Co at yey. = “critical layer"
and, ¥ and y are respectively the total and the perturbation

streamfunction. The potential vorticity equation for y, the pertur-

bation streamfunction becomes,

G;J‘?o

2
3 e Iy 2 dy 2 9
[s{ + (U - co) a + ¢ (3‘3 ax - 'ajx'-a?) J [;2 +

(5.3)

3 2 ? " =
t 3 (K 3;> } v+ (8-U") v 0.

Introducing the multiple scales,
£ = c1/2x and 1 = €3/2t’

Maxworthy and Redekopp perform a perturbation expansion in e on ¥

of the form,

M ) IR )
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such that v(]) satisfies the linearized form of equation 5.3 given

by,

2 "
[‘” ol ""] [37”%(*2 -)] Wote-d) Va0 s

We previously noted that the homogeneous form of equation 5.1 is
strictly valid in some time-averaged sense. If we explicitly write out
the forcing terms on w(]), which we assume are present due tc the
strong barotropic forcing associated with the meridional shear in the
mean zonal flow and vertical stress dissipation associated with the

vertical shear in the mean flow, the right-hand side of equation 5.4

becomes,
2 2
* Key d 2 " Key ‘ g ’
dy dz

where we have explicitly written the algebraic sign of the horizontal
and vertical eddy viscosity coefficients. In order that we proceed
with the unforcea form of equation 5.4 we require that the above
forcing terms cancel in the steady state case, which presumably applies
for the GRS. Thus, in a time-a-eraged sense we are free to proceed
with equation 5.4 and in effect will ignore the strong barotropic

feeding of the GRS perturbation,
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Maxworthy and Redekopp find that for a continuously stratified
atmosphere (K2 = Kz(z)) the solution for v(]) may be obtained

in the separarable form given by,
(. 5.5
WR T A (6 1) e (y) Z,(2) (5.5)
n

where the amplitude An(c.r) is arbitrary to zeroth order, but
must satisfy a Korteweg de Vries equation at order ¢ (see Redekopp,

1977).
Substitution of equation 5.5 into equation 5.4 yields the necessary
constraints on both the meridional amplitude on(y), which to lowest

order in ¢ must satisfy the barotropic stability equation (see the

discussion in section 4.5.2) given by,

n 2 E - U" <
L N T Con =0 (5.6)

with boundary conditions,

on(¥y) = e (y,) =0

and the vertical amplitude Z(z) which obeys a vertical structure

equation with the Bossinesq form,
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(Kz(z) z,',(z))' sklz =0 (5.7)

subject to momentarily unspecified boundary conditions.

The intricate coupling of the three amplitudes in the separable
solution expressed by equation 5.5 is the eloguent essence of Maxworthy '
and Redekopp's theory. The meridional amplitude ¢,(y) couples to
the zonal, temporal amplitude An(c,r) either through explicit
integral constraints for propagating neutral modes or an explicit solv-
ability condition for regular and singular neutral modes (Redekopp,
1977). The meridional amplitude and the vertical amplitude Zn(z) are

coupled through the appropriate choice of eigenvalue kn.

5.2 Observed Stratification Profiles and Vertical Eigenfunctions

Temperature profiles obtained with Voyager's IRIS allows us to
deduce the Brunt-vaisala frequency (N(z)) in Jupiter's upper tropo-
sphere and stratosphere. Estimates of LD can then be obtained for ?
appropriate depth scales (H). Finally, an appropriate scale for K2 ;
can be selectod for a specified length scale (L). Thus, the IRIS

observations of the temperature structure above the GRS and in the

PrIN

ambient unperturbed atmosphere near the GRS (see Flaser et al., 1981

and Conrath et al., 1981) allow us to estimate appropriate forms of

Kz(z), enabling us to compute vertical eigenfunctions for equa-

tion 5.7 based upon the observed form of K2(z). The vertical eigen-
function for the lowest eigenvalue (k]) may be compared to the IRIS

measured temperature perturbation observed over the GRS (T(z))
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according to the geostrophic balance equation for a hydrostatic

atmosphere for which,

or,
2, (2)« - T(2). (5.8)

Use of the Bossinesq form of the vertical structure equation (i.e.,
equation 5.7) is not valid over a number of scale heights. Hence, if
we wish to compare eigenfunctions with the observed profile T(z) we
hust retain compressibility in the model of Maxworthy and Redekopp.
Compressibility is easily accommodated if we begin with the appropriate

form of equation 5.1 which becomes,

2 2
8 2 Va3 _, o a I v,
<at ¥ 'y ax - Yx ay) ax2 * qyz * 3z N2 Yd ] TR (5.9)
)

L
p
where z is henceforth given in a log-pressure system as,
= -H 1 .
z H 1n (p/po)
with, Po * 500 mb

H 5%9 ~21.4 km “or the observed cloudtop temperature.
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Subsequent nondimensionalization of equation 5.9, introduction of a

perturbation streamfunction as in equation 5.2, and a muitiple scale

expansion in ¢ leads again to a separable solution of the form given

by equatfon 5.5. Again, Ah(;,x) is arbitrary up to order ¢ at

which it satisfies a KdV equation, and on(y) satisfies the

barotropic stability equation given by equation 5.6. However, the »

associated vertical structure equation is now given by,

£2° '
L —7—5—% O p ()] +x%p (2)=0 (5.10)
o\ N°H n n'n '

where we have replaced the Bossinesq eigenfunction Z, by its

compressible counterpart Pn.

The ideal gas law allows us to write equation 5.10 in the form,

2 T 2, ..2
" (N (2) . ‘o (z2) ' N“(z)H 2
Pl (2) = + s 1P (2) - kS P (2) = 0 (5.11)
n N (2) T.(2) J n fee|n

0

where To(z) is the temperature distribution of the unperturbed
atmosphere ambient to the GRS. The Brunt-vaisala frequency (N(z)) is

given by,

2 2
v (2) =-g?2—To(z) +
po

0
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with,

2l L] 2 ] 2 g L]
N z --Lz" z - ‘gT ' -—‘7 ' Z .

In order to specify To(z) we use averaged temperatures at ten
pressure levels (ranging from 500 to 30 mb) over the South Equatorial
Belt (SEB) which were obtained as part of the IRIS North-South Map data
set (Flaser, 1981, private communication). This same data set defined
the ambient profile in the presentation hy Conrath et al,, 1981 of the
perturbation temperature profile over the GRS given by T(z), where T(z)
is defined as the temperature over the GRS minus the temperature over

the SEB. We use least squares fits to the data of the form:

To(l) = 22.8349 z + 68.9842 for z=21.75 (p s 86.9mb)
To(z) = 108.7 for 1.18<2<1.75 (86.9mb<p = 153.6mb)
To(z) = 132.9107 exp (-0.17062) for z<1.18 (p>153.6mb)

with To(z) in units of % in order to represent the ambient prefile.

Figure 5.1 displays the above fit to the IRIS profile for To(z).
Equivalent pressure levels at which the IRIS observations apply are
indicated. The linear increase in To(z) for 2>2.8 (p<30mb) may
seem somewhat unrealistic. Our knowledge of To(z) based on IRIS data
only goes as high as 30mb. Upper atmospheric temperature profiles
obtained using radio occultation data are model dependent upon assumed

temperatures at the model's upper boundary located at 10mb (see
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Figure 5.1. Profile of zonal mean brightness temperature over the
South Equatorial Belt/South Temperate Zone taken from
the Voyager 1 north/south map data set. C(Center of
TRIS weighting functions are indicated by open dots.
This profile is used to define the ambient stratifica-
tion of the atmosphere. It is not clear to what level

the stratosphere extends.
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Eshleman et al., 1979). If the temperature at 10mb is taken to be

160%, the resulting profile is basically linear above 90mb or so,

corresponding to an extended stratosphere. On the other hand, if thc

temperature at 10mb is assumed to be 130°K, the atmosphere is

basically isothermal from 30mb upward to at least 10mb, corresponding

to a mesosphere. Hence, we actually tested two profiles for To(z) in "

our numerical solution, one for which To(z) linearly increases above

Lm

30mb and another for which To(z) becomes isothermal with a value of

137% at approximately 28mb. There is no significant difference

between the resulting eigenfunctions Pn(z) up to at least the 10mb
level. Eigenfunctions shown in figure 5.2 were computed using the

linearly increasing profile above 30mb.

Choosing for the moment to take, i

-
-

P,'(2) =T(z) =0 atz=0 (5.12)

as a lowe. boundary condition appropriate at the cloudtop level allows
numerical solution of equation 5.11 for P](z). The lowest eigenvalue

k] is a free parameter. Use of a fourth order Runge-Kutta scheme to
integrate in the directicn of increasing z (upward) yields the set of
eigenfunctionsAdiSplayed in figure 5.2. The actual order of magnitude
of the eigenvalue ky is arbitrary to the extent that the eigenvalue

is scaled by the choice of the ratio LZ/LS. We use equation 5.8

to compare P](z) to T(z) over the GRS with P](z) normalized to the

lower stratospheric minimum observed in T(z).




e k- 4

Figure 5.2. Observed perturbation temperature profile above the Great
Red Spot as deduced from high resoluiion IRIS data sets
(see Conrath 2t al., 1981) and computed perturbation tem-
perature profiles based upon numerical solution of the
compressible vertical structure equation (see equa-
tion 5.11) for a range of eigenvalues (k;). Note that
k% + 0.45 yields the most realistic result. The com-
puted perturbation temperature profiles have been normal-
ized to the observed minimum in the IRIS profile occurring
in the lower stratosphere. Vertical propagation of the
solitary Rossby wave readily explains the observed temper-

ature excess above 10 mb.
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We estimate the magnitude of L2/L§ according to,

L~ 103 to 104 km
H ~ 10 to 102 km

N2 A ]0-4 sec -1
fg ~ 1077 sec -1

in order to arrive at a scaling of,

LZ/LS ~1to 10,

Selecting Lzng ~ 1 then gives the most 1ikely value for k% as 0.45

(k] ~ 0.7). Also shown in figure 5.2 is the eigenfunction associ-
ated with k] = 1.0. In Ingersoll and Cuong's strongly nonlinear

numerical model stable solutions exist only for k, > 1.0. The

1
unrealistic wavelength and nodal positions associated with this eigen-
value indicate that such stable nonlinear solutions suggest an unreal-
istic vertical structure. However, Ingersoll and Cuong's model can by
no means be dismissed on this basis. In the first place their model
has only two levels, whereas our eigenfunctions are computed for a con-
tinuously stratified atmosphere. Even less definitive is the arbitrary

order of magnitude associated with our choice for k% which scales

as L2/L%. Thus, the assumption that L2> Lg results in a correspond-
ing increase in the magnitude of kﬁ. For example, if L2 ~ lOLS then

the most likely value for k? becomes 4.5 instead of 0.45.
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Howard and Drazin (1964) and Lipps (1965) have obtained
solutions to equation 5.6 for mean zonal wind profiles given by
U(y) = tanh y and an eigenvalue given by,
. 2,1/2
Co’l -(]-k]) L]
Our eigenvalue k] = 0.7 corresponds to the value selected by
Maxworthy and Redekopp (1976; see their figure 3) to obtain a solution ,

streamfield bearing remarkable resemblance to the observed GRS flow

field.

5.3 Some Conclusions and Suggestions

The results of the previous section suggest that the vertical
structure associated with the GRS is remarkably consistent with the
solitary Rossby wave description of Maxworthy and Redekopp. Major
objections may nevertheless be raised regarding the validity of
equation 5.2 (i.e., for ¢ << 1.0) and our choice of L2/Lg-v 1. We
have already remarked that ongoing work by Redekopp indicates that
weakly nonlinear solutions to equation 5.1 may be obtained for
L2/L% > 1. As well, quasi-linear theory as applied by Maxworthy and
Redekopp is in general applicable for perturbations of the same order

as the mean field (i.e., for ¢ ~ 1).

The truly definitive test of Maxworthy and Redekopp's model

remains to be done. One part of this definitive test is the numerical

solution to equation 5.6 for the observed zonal winds u(y) = U(y),
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which notwithstanding the work of Beaumont (1981), has not been

carried out for singular neutral modes for which,

g - U" (yc) #0and U, <Cop<Up.. .

The second part of this definitive test involves a more realistic
modeling of the vertical structure associated with the soliton
solution. The eigenfunctions shown in figure 5.2 are unrealistic in at
Teast two respects. First, use of a lower boundary condition of the
form given by equation 5.12 amounts to the assumption that the ambient
and perturbation temperature are equal at the cloudtops. Hence,
equation 5.12 by fiat does not allow for a continuation of structure
beneath the cloudtops. Under the somewhat unrealistic assumption that
the atmosphere is adiabatic beneath the cloudtops (at 500mb) we may
treat the cloudtop level as a free interface between a deep adiabatic
layer in which the flow is just given by the observed mean zonal flow
(following Ingersn1l and Cuong, 1981) and a continuously stratified
layer above the cloudtops. For s::h a model the lower boundary

condition (applicable at the cloudtops) becomes,

Pn'(z) - 02 Pn(z) =0atz=0

where, (;2

(5.13)




It is interesting that we chose to normalize the eigenfunctions by

Py = -1.0 at z = 0 in order to obtain the algebraic sign on P
appropriate for comparison with the ooserved profile T(z). According
to equation 5.13, if Pn is negative, then P'n should be negative,
though perhaps sma'l, at z = 0, Equation 5.8 then suggests that

T(z) > 0 at the cloudtop level. This is consistent with the notion
that the GRS possess a warm core beneath the ¢loudtop level. The fact
that Conrath et al. present a T(z) which is very slightly negative at
the cloudtop level only suggests that a slight shift in their rather

arbitrary choice of the axis for T(z) = 0 is called for.

The choice of an appropriate lower boundary condition is dependent
upon how we model the ambient atmosphere beneath the cloudtops. Such
dependence leads us to consider a numerical scheme in which we begin
with an isotherral layer in the uppermost stratosphere (i.e., the
mesosphere) and integrate downward. Before setting up such a scheme we
must consider the growing evanescent behavior of Pn(z). One of the
strongest points in favor of the solitary Rosshy wave solution is its
ability to account for the observed upper stratospreric warming gver
the GRS as a simple manifestation of the evanescent nature of a
vertically propagating, zonally symmetric Rossby wave (notwithstanding
the arguments presented by lonrath et al., 1981 which would hoid for
shorter waves and result in an east-west asymmetry in the isotherms).
in fact each of the eigenfunctions in figure 5.1 overshoots the
observed warning by a considerable amount. In the Jovian atmosphere

inirared conling to space damps this evanescence so 25 to produce tha
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observed profile T(z). Thus, a definitive treatment must model the

effects of such cocling. A simple procecure for modeling the damping
effects of radiative cooling is to incluce in our energy equation a
diabatic term proportional to the perturbation temperature (Rodgers and

Walshaw, 1966) such that,

¥4
AL (5.14) |
p

where a. = a, (Te) ~ O (To) *a, (z) is the so-called Newtonian
cooling coefficient, and Te and T0 represent the radiative equilibrium
temperature and the static or ambient temperature. Note that Te = T0
for an atmosphere in radiative equilibrium. The appropriate quasi-

geostrophic vorticity equation now becomes (see Holton, 1975),
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Scaling as does Redekopp (1977) and choosing a nondimensional form for
the cooling coefficient scaled by U/L we may proceed to obtain a quasi-

linearized solution of the form given by equation 5.5, Again, we find

that An 1s arbitrary up to order ¢ at which it satisfies a KdV

equation. If we assume that ¢n satisfies equation 5,6 and that .

is 0(1), we require a resulting vertical structure equation of the form,
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The appearance of the factor An/aAn/ac in equation 5,16 indicates that the
presence of Newtonian cooling no longer allows for a truly separable
solution (i.e., equation 5.5 is no longer strictiy valid). This also
; means that if we choose to make use of the KdV theory as given by Redekopp

3/2

(1977) we require cooling at scales of 0(c”'“) or smaller, that is the

cooling must be "slow".

Gierasch and Goody (1969) estimate a slow cooling rate for the Jovian
atmosphere, but whether such a rate is "fast" enough to accou. for the
observed damping of the vertically propagating Rossby wave remains to
be seen, Moreover, whether soliton solutions to the KdV

3/2

equation can exist for cooling rates faster than order ¢ remains

to be demonstratea.

For a periodic wave of the form

An(c' ) ~ elh (¢ ~ct)

we might replace the ratio,

T T T e T AT T

B b
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by simply -ia, Subsequently, for complex eigenfunctions and
eigenvalues we could write equations 5.16 as a fourth order system of
equations. Obtaining an analytic solution to equations 5.16 within the
isothermal lower mesosphere would then allow us to set the
eigenfunction in our Runge-Kutta scheme on the proper solution path,

1 namely, that which decays upward. Continuation of the downward

| integration beneath the cloudtops would allow for reasonable estimates
on the depth to which the GRS actually extends. A lack of good

estimates for ar(Z) inhibits our further progress. Nevertheless,

it is always useful to speculate and suggest approaches to problems

whose solution depends upon data which does not yet exist.
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CHAPTER 6. SUMMARY

In our investigation we have uncovered the following
characteristics of large-scale turbulence in the Jovian atmosphere:

(a) Using a global data set with double the number of samples
used by Beebe et al. (1980) and Ingersoll et al. (1981) we
verify the relatively strong up-gradient flux of momentum by
eddies. We find that eddies with mixing-lengths of 102 to
103km pump kinetic energy into the mean zonal flow at a rate
of approximately 2.2 x10'4 watts kgm" on a global average.
Attempts to quantify transports by means of zonally sym-
metric stresses are not altogether successful because of the
large relative noise associated with mean meridional motions
(v). However, we find that within the measurement errors
associated with v, symmetric stress could easily be re-
sponsible for the bulk of the cloudtop momentum transport.
We find a good correlation between K'(y) and P'(y) sug-
gesting a coupling between the eddy-scale thermodynamics
and dynamics like that anticipated for a baroclinic atmo-

sphere. However, there seems to be little correlation be-

tween K(y) and P(y) which could be suggestive of a mean
zonal flow ultimately driven by processes different from

- those associated with the cloudtop stresses.




(b) An analysis of the kinetic energy power spectrum of the

(c)

cloudton turbulent motions suggests that the observed tur-
bulence occurs in a spectral regime ir which kinetic energy
is flowing up-gradient from much smaller scales. The

5/3. where k is

associated form of the power law is K'(k)«k’
the zonal wavenumber, as suggested by Kraichnan (1967).
Turbulent energy generally peaks at the scale for which

Rhines (1975) points out that Rossby wave propagation begins
to dominate the field of turbulence.

A momentum budget analysis of eddies with length scales
associated with the Rossby wave regime (e.g., the GRS and
White Oval BC) indicates that these eddies feed barotropically
upon the ambient meridional shear of the mean zonal wind.
Feeding rates associated with these instabilities suggest

very short spin-up times. though unobservable pressure

torques and vertical structure could easily modify out
estimate of a 10 day spin-up time constant. The observed
profile of the mean zonal wind (u(y)) ambient to the GRS
closely resembles a barotropically neutral profile sug-
gesting that this observed GRS feeding rate represents a
steady state situation in which all of the available
barotropic energy associated with the ambient shear has

been depleted. Such a barotropic mechanism has been s.g-

gested in order to balance viscous effects associé-ed with
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vertical eddy stresses in the solitary Rossby wavo model of
Maxworthy and Redekopp (1976).

(d) Finally, we use IRIS observations of temperature lapse ratec
in the atmosphere ambient to the GRS in order to compute
a nerturbation temperature profile above a solitary Rossby
wave. For scales appropriate to the observed stratification
and size of the GRS we find that realistic perturbation
temperature profiles are generated by a soliton appropriate
to the observed ambient shear. However, uncertainties
associated with the thermal structure beneath the cloudtops
prevent us from making a definitive statement.

In closing, we are lead to suggest that turbulence at scales of
102 to ]03km is driven by baroclinic effects. The up-gradiert trans-
port of turbulent energy results in a turbulent field which peaks at
length scales near that at which Rossby wave propagation begins to
dominate. The largest scale turbulent motions like the Great Red
Spot are maintained as barotropic instabilities with perturbation

velocity and temperature fields which can be described by solitary

wave theory.
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