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INFLUENCE OF THE REYNOLDS NUMBER ON THE 
NORMAL FORCES OF SLENDER BODIES OF REVOLUTION 

Klaus Hartmann* DFVLR!AVA Goettingen** 

Vbersicht: Die Striimung um schlanke FlugkorperrumPfe bei gro{5en Anstellwinkeln wird stark beeinflu{5t durch dreidimensio 
nale Wirbelabli:isungen. Infolgedessen hiingen die aerodYllamischen Krdfte nichtlinear vom Anstellwinkel abo Von entscheidell 
dem Einflu/I auf die aerodynamischen Kri;ifte ist der Zustand der Gren"schicht an den Abli:isestellen (laminar oder turbulent). Dol 
durch ist eine erhebliche Abh,;ingigkeit der Stromung vall der Reynolds"ahl bedingt. Die Lage der Abli:iselinien ergibt sich aus d .. 
Wechselwirkung zwischell der Grenzschicht und der iiu{5erell abgelosten Stromung. Das fuhrt dazu, datI die Berechnung de 
aerodynamischen Kriifte von Flugkorperrumpfm bei gro{5en Anstellwinkeln auf rein theoretischem Wege zur Zeit nicht mog 
lich ist. Deshalb ist es auch heute noch notwendig, durch gezielte systematische Windkanaluntersuchungen die bisherigen Kennt 
nisse uber die komplizierte Rumpfumstromung zu erweitern und zu vertiefen. Ausgehend davon sind bestehende Berechnung! 
verfahren verbessert und neue Verfahren ausgearbeitet worden. Zur Untersuchung des Einflusses der Reynoldszahl auf di. 
Normalkrarte wurden an Flugkorperrumpfell bei Anstellwinkeln bis zu 90" im Machzahlbereich Ma~ = 0,5 bis 2,2 bei variable 
Reynoldszahl im Transsonischen Windkanal und im Hochgeschwindigkeitswindkanal der DFVLRIA VA umfangreiche Kra/i 
ulld Momentenmessungen, Druckverteilungsmessungen sowie Experimente zur Stromungssichtbarmachung durchgefuhrt. Di 
experimentellen Ergebnisse wurden einer theoretischell Allalyse unterzogen. Dabei konnte eine halbempirische Theorie em 
wickelt werden, welche die Versuchsergebnisse befriedigend beschreibt. 

Influence of the Reynolds number on the normal forces of slender bodies of revolution 

Summary: The flow over slender bodies of revolution at high angles of attack is strongly influenced by three·dimensional vorle. 
separation. As a result of separation the aemdynamic forces increase in a nonlinear way with the angle of attack. The state of th, 
boundary layer at the separation lines has a striking influence on the aerodynamic forces which therefore depend considerabl:. 
Oil the Reynolds number. The position of the separation lines is not knoum a priori but evolves from the interaction between th, 
boundary layer and the outer separated flow. Due to the complexity of this flou·, the theoretical calculation of aerodynamh 
forces for bodies of revoilltion at high angles of attack is 1I0t yet possible. It is therefore still necessary to extend the presem 
knowledge about the complicated flow over bodies of revolution by systematic wind-tunnel investigations. On the basis 0i 
these investigations existing computatiollal methods huvc been improved and new methods hat)e been worked alit. In this papel 
the influence of the Reynolds number on nonlillear normal forces of slender bodies of revolution is investigated. For this purposl 
comprehensive force-, moment- and pressure·distribution measurements as well as flow visualization experiments were carrieu 
out ill the TrallSonic Willd TUllnel and in the High-Speed Willd Tunnel of the DFVLRI A VA for bodies of revolution at angles 0/ 
attack up to 90° il/ the Mach number runge Ma~ = 0.5 to 2.2 at variable Reynolds number. The experimelltal results weT( 
.1IIulvsed theoretically and all empirical theory could be del·eloped which describes the test results satisfactorily. 

***/22 

*) Shortened version of the dissertation of the author [lJ approved 
by the faculty for Mechanical Engineering and Electrical Techno-' 
logy of the University of Braunschweig (referant H. Schlichting 
and Prof. H. Ludwieg). 

**) Dr. Klaus Hartmann, Institute for Fluid Mechanics of the German 
Research and T~st Facility for Aerodynamics and Space Flight 
DFVLR!AVA, Bunsenstr. 10, 3400 Goettingen. 

***) Numbers in margin indicate pagination of foreign text. 
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Figure 1. Schematic representation of vortex formation for flow 
around slender bodies. 
a) symmetric vortex separation for small angles of attack 
b) asymmetric vortex separation for large angles of attack 

Pressure measurements and experiments for flow visualization of 

body models were performed. An attempt was made to analyze the 

experimental results using a semi-empirical theory*. 

2. Notation 

D 

LB 

LR 
LZ 
rw(x) 

2.1 Geometric variables (see Figures 1-4). 

body diameter = reference length (= 2R) 

nose length (Ogive) =(3D or 1.5 D) 

total body length (= 19 D and 21.5 D) 

body length without Ogive 

distance of the body vortex centers from the body 
longitudinal axis (see Figure 4) 

* The suggestion for this work evolved from a collaboration with the 
Royal Aircraft Establishment, Farnborough, England, over many years 
and the German aviation industry, especially the firm Messerschmitt­
Boelkow-Blohm, Ottobrunn near Munich. 
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~ 1. Ab1. 
~ 2. Ab1. 

Cp 

Cw 
(CW)nl. 

Cz (xID) 

-C Z 
fCz)n!. 

N 

2.2 

base area of body = reference area (= ;"[D2/4) 

rectangular coordinate system of a body--fixed axis system 
with origin at the body tip (see Figure 1) 

nose length (= LB) 

polar angle (see Figure 3) 
polar angle of primary separation (see Figure 3) 

polar angle of secondary separation (see Figure 3) 

Aerodynamic variables 

coefficient of static pressure along the body surface 
[= (p-p",)/q",] 

drag coefficient of an infinitely long circular cylinder 
in a transverse flow (= W'lq", D) 

drag coefficient of the nonlinear normal force part 

local normal force coefficient 
normal force coefficient (= CN = Nlqx S) 

nonlinear normal force coefficient 

normal force 

WI drag per length unit of an infinitely long circular 
cylinder in transverse flow 

a angle of attack (see Figure 1) 

astr.,(astr.lth experimental and theoretical streamline angle 

2.3 Flow variables 

- \L.lx Mach number of flow 
\IUQ Mach number of transverse flow 
1\ 1010\"" 

(= Ma" sinal 

critical transverse flow Mach number 

P 

Pro 

qro 

ReD 

Red! 

Uro 

UQ 
VX 

Q" 

4 

static pressure on body surface 

static pressure of incident flow 

stagnation pressure of incident flow [= (g!2) u}l 

Reynolds number referred to b (= u" D/v'x) 

effecti ve Reynolds number (= Reo/sin a) 

incident flow speed 

trans verse flow speed ~= U.,sin a) 

kinematic viscosity of incident flow 

density of incident air 
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Fi~ure 2. Geometric data for models, body 1 and body 2 

TABLE 1. Range of experimental investigations 

Model type of 
. inVestiqation 

Ma~ 10- 5 ReD a [oJ 

1.1; 1.3; 1.4; 2: 3; 
0.5,0.7,0.8 0~a~90 

4; 5.4; 6.4; 7.9; 8.4 

body 2 force and m:m:mt 3 O~a;;DO 
3 D-Ogive neasurerrents 1 

1.9; 2.2; 3.9; 5.1; 6.4 10,20,30 

1.79 2.9 0~a~30 

2.2; 3.7; 4.3 10,20,30 

0.7 5.2 5,10,15,20,25,30 

body 1 pressure distribu- 0.8 5.6 20 
1.5 D-Ogive tion rreasurerrents 

1 6.1 10,20,30 

1, l.4§, 1.79,2.21 3 5,10,15,20,25,30 

bodY'2 pressure distribu-
1 1.6; 2.2; 3; 3.9; 10,20,30 3 D-Ogive tion neasurements 5.3; 6.4; 7 

1.79 2.2; 3.0; 3.7; 4.6 10,20,30 

smoke photographs 0.6 5.5 20 . paint images 5.5 5,10,15 0.8 

l:xXly 1 paint images 0.7 5.7 20,25,30,45 
1.5 D·Ogive 

,.' 
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3. Results of experimental investigations 

3.1 Models, test facilities and range of investigations 

The experimental results were obtained from two different models 

called body 1 and body 2 over several test programs extending over 

some time [2,3,4J. Both body models differ in term~ of the degree 

of slenderness LBID (= 1,5 and 3) and the contour of their nose shapes 

(ogives). They also differ slightly ~n terms of total length 

LR(=19D and 21.5 D). The geometric details of both bodies are 

shown in Figure 2. The models were made of steel and had smooth 

surfaces. 

The force and pressure distribution measurements were performed 

in the transonic wind tunnel [5,6J and the experiments for flow vis­

ualization were performed in the high speed wind tunnel [7,8J of 

the DFVLR/AVA in Goettingen. 

The range of experimental work is shown in Table 1. The mea­

surement problems result because of the requirement of covering a 

large Reynolds number range up to very large Reynolds number '(ReD = 107
' 

and more) and angles of attack of up to gOo for very slender bodies 

with total lengths of 20 D and more. There was no wind tunnel 

available with a large test section within which the Mach number 

and Reynolds number could be varied independently within a large 

range. Because of this, the possibilities of experimental work was 

severelY,restricted. 

3.2 Flow images and evaluation /25 

The example shown in Figure 3 shows the streamlines near the 

wall for a body with angle of attack a = 20 0 from four directions 

over the circumference. The streamlines were made visible by means 

of a sprayed on mixture of oil and titanium dioxide which was sprayed 

on the model. The flow which reaches the body with an angle of 
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evaluation of this body cross-section in Fig. 

cp ; 180· 

Figure 3. Paint images of body 1. 
View from four directions around circumference, ¢ = 0°, 
90°, 180 0 and 270°, Maw = 0.7 Rep = 5.7 • 10 5

, a = 20° 

x 
0=7.75 ~ =9 o t Maw sincx 

x 
0;::10.25 

Figure 4. Smoke images of the vortex pair of body 2 
M.l.;O,6.Rcn=5.S-IO"a=20'" light planes at x:D = 7.7 5:9 and 10.25 lo).S:r.ID;O.'?S 

after probe measurements [9J 
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attack separates along the suction side from the body. This can be 

seen in Figure 3 which shows white lines running along the body. 

All of the streamlines coming from the pressure side merge tangent­

ially into these separation lines. Along the separation lines, 

vortex layers are created which roll up over the body like cones 

pointing inwards, and form vortex cores which rotate in opposite 

directions. Such vortex cores which are made visible in perpendicu­

lar planes which respect to the body longitudinal axis using smoke 

are shown in Figure 4. The comparison with the vortex position 

found from probe measurements [9J shows good agreement with the 

smoke images. The smoke method can be used for high incident flow 

speeds as well where great difficulties occur if probe measurements 

are used. 

Figure 3 shows two white lines along the body in the suction 

side quadrants which can be interpreted as primary and secondary 

separation lines according to the manner in which they are created. 

Figure 5 gives a qualitative description for this. A body cross­

section has an incident flow with a transverse speed of' uQ = U", sinn 

The flow attaches at AnI' divides and flows around the body. The 

primary boundary layer separates again at Ab l and two vortex layers 

are produced which roll up and form the primary vortices on the suc­

tion side. The vortices form a dead water region which is limited 

by the backside of the body and by two streamlines which merge at 

the free stagnation point on the leeward side. Within the dead water 

region, the vortices WI induce down wind velocities and this makes 

the flow reattach at An2 . After this, the flow is directed outwards 

and produces a secondary boundary layer. This boundary layer separ­

ates at Ab 2 , and the secondary vortices W2 are produced. The crea­

tion of further vortices could not be found but cannot be excluded. 

The points Ab l and Ab 2 are associated with these primary and secondary 

separation lines mentioned above. An
3 

is a separation line between 

them. /2 

Figure 6 gives the results of a quantitative evaluation of' the 

paint images. For three body cross-sections, and for angles of' 
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Figure 5. Schematic repre­
sentation of separated body 
flow at the body.crofls-sec­
t ion xlD = 10, for Ma. = 0,7, Reo = 5,7· 
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Figure 6. Separation points and 
streamline angles over body 
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Figure 7. Normal force coefficients depending on angle 
of attack for variable Reynolds number of the incident flow 
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Figure 8. Normal force coefficients depending on angle of attack 
for variable Reynolds number of incident flow. 

attack of up to a = 3Qo we show the 

polar angles of the primary and 

secondary separation, tP).Abl. and 

ct>2.A~I., , according to the points 

Ab
l 

and Ab 2 of Figure 5. In addi­

tion, the maximum inclination 

angles of the streamlines with res­

pect to the body axis were deter­

mined. In Figure 6, this is com­

pared with theoretical values 

which were calculated for incom­
pressible potential flow. For the 

front part of the body cross-sec­

tions, the calculation and the ex­
periments show slight differences, 

but these differences vanish almost 

completely for the rear cross-sec­

tions. One important parameter for 

the compressibility influence is 

the transverse flow Mach number 

MaQ': Ma.sin a, which will be discus sed 
later on. For the experiments, we 
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Figure 9. Pressure distributions 
over body surface at various body 
cross-sections for constant Rey­
nolds number of incident flow. 
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have MaQ~O,35" so that a comparison with calculations still makes 
sense for incompressible potential flow. /2' 

3.3 Force measurements 

A selection of the results is shown in Figures 7 and 8 which 

gives the normal force coefficients as a function of angle of attack 

for the incident Mach numbers Ma~=O~ and 0.8 for various Reynolds 

numbers. The possible Reynolds number range of the transonic wind 

tunnel was completely exploited for the measurements. For the Mach 
numbers given, it extends from ,ReD=,1,1-10

5 to 8,4-105_ 

No additional devices were attached to the steel models for 

influencing the boundary layer transition. The large angles of attack 

were achieved using various offset model holders which especially in 

the angle of attack range between a = 55° to 90° have a somewhat dis­
turbing influence on the measured values. 

As Figures 7 and 8 show, the coefficients depend greatly on 

the angle of attack in a nonlinear manner. The influence or Reynolds 

number on the coefficients is very great and results in differences 

of up to 100%. Especially for small incident Mach nu~bers, this 
extends over the entire angle of attack range up to a=9~-

We will not discuss the pitch moment coefficients as a function 

of angle of attack here. They can be found in [lJ. 

3.4' Pressure distribution measurements and normal force 

distributions 

Pressure measurement distributions give important information 

about the details of the body flow and make it possible to determine 

the normal force distributions. Typical results for compressible 

subsonic flow can be found in Figure 9 where the pressure coefficients 

care given as a function of polar angle <P at a = 15°, for M~x = 0,7 
P - - I -

and ReD = 5,2 -10. This is given for various planes xlD = const 

11 
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perpendicular to the body longitudinal axis (x = 0 at model tip). 

Figure 9 shows that for the flow conditions given the pressure 

increase on the suction side up to a cross-section occurs with a 

continuous increase for about twice the ogive length up to ¢ = /28 

180°. Up to here, apparently there is no flow separation. Flow 

separation occurs for the first time in the cross-section plane at 
- '" xID=3,9 for ¢ '" 120°. For body cross-sections further down-

stream, separation occurs at $= 105° For the circumferential 

angles mentioned, which correspond to the primary separation lines 

of Figure 3, the suction side pressure increase ends and the pressure 

distribution takes on a more or less constant variation. The 

pressure minimum in the ·individual cross-section distributions is 

displaced from large circumferential angles on the suction side of 
the front cross-section planes to circumferential angles of $<90° 

for the cross-sectional areas further downstream. 

Figures 10 and 11 give examples of the influence of Reynolds 

number on the pressure distributions. The transition from laminar 

to turbulent separation becomes apparent in Figure 10. For the Rey­
nolds numbers ReD';;' 1,6 'lOs' and 2.4 • 105 , separation occurs already for 

the circumferential angle $'=60°, , which indicates laminar separa-

tion. For all other cases, separation apparently is turbulent at 
$ = 120°. 

For small transverse slow Mach numbers, the separation is con­

trolled by Reynolds number. With increasing transverse flow Mach 

number, the Reynolds number influence is almost reduced to zero, as 

can be seen in Figure 11. For the over critical transverse flow 

Mach numbers, separation occurs similar to laminar separation for 

circumferential angles of between ¢ = 60° to 80°. Further details, 

especially an explanation of the critical transverse flow Mach num­

ber and circular cylinder flow, are contained in [IJ. 

Using numerical integration of the measured pressure distribu­

tions, the local normal force coefficients are calculated. These 

12 
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Figure 10. Pressure distributions along body surface 
for variable Reynolds number of incident flow. 

extensive results are shown by Figures 12 to 14 which gives the 

normal force distribution. 

Along the ogive the local normal forces increase greatly and 

depending on Mach number, after one-half to two-thirds of the ogive 

length, they can reach maximum values and then decrease rapidly. 

Various transition regions occur behind which the local normal force 

coefficients are given by constant values or this may be a good 
approximation. The normal force distributions in Figure 12 results 

from pressure distributions as shown in Figure 8. These are based 

on turbulent separation. 

As already mentioned, for over critical transverse flow Mach 

numbers, the flow separates from the body just like for laminar 

13 
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Figure 11. Pressure distributions over body surface for 
variable Reynolds number of incident flow. 

separation. Because of the large dead water region with reduced 

pressures, large local normal forces occur along the body as shown 

in Figure 13. These normal force distributions can be attributed 

to the pressure distributions given in Figure 10 for angles of 

attack of u>13°. /31 

Figure 14 gives examples of normal force distribution for var­

iable Reynolds number which are given here without comment. They are 

intended to give the reader a complete overview of the experimental 
work. 
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Figure 13. Normal force distributions for constant 
Reynolds number of incident flow. 
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4. Theoretical analysis of the experimental results 

4.1 Theoretical calculation methods and comparison 

with measurements 

An exact treatment of the flow field around bodies with high 

angles of attack is not possible today. The approximate methods 

known from tbe literature are of the empirical or semi-empirical 

type and can be summarized with the term "transverse flow theory". 

H. J. Allan and E. W. Perkins [lO,llJ make the assumption that the 

total normal force on the body consists of a frictionless part 

(potential transverse force) and a friction part (friction trans­

verse force). In order to determine the potential transverse force, 

Allan and Perkins use a simple method of M. M. Munk [12J which is 

based on tbe momentum theorum. It applies for relatively slender 

bodies in frictionless incompressible flow and, therefore, is res­

tricted to very small angles of attack. This method was developed 

in the analysis of balloon bodies. Methods for determining the fric­

tion lift for such closed bodies of revolution were given by H. 

Multhopp [13] and X. Hafer [14J. Projectile bodies differ from these 

body shapes because of a large ratio of length to diameter, the fact 

that the cross-section is for the most part constant, and because the 

tail is blunt. For such bodies, Allan and Perkins determined the 

friction transverse force by associating a circular cylinder with the 

transverse flow speed uQ = U., sinn to each body cross section, and 

a difference is made between laminar and turbulent separation. 

H. R. Kelly [15J further developed the method of Allan and 

Perkins. Based on an analogy between the stationary, three-dimen­

sional flow around a projectile body and the unsteady two-dimensional 

flow of a circular cylinder which is suddenly se~ in motion froIT. 

rest, the nonlinear, local normal force is set equal to the instant­

aneous drag (per unit of length) of a circular cylinder having the 

transverse flow speed UQ. The time coordinate of .the unsteady case 

is associated with the space longitudinal coordinate of the body. 
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Figure 14. Normal force distribution for constant 
Reynolds number of incident flow. 

The method ,of Kelly was expanded greatly by K. D. Thomson 

[16J, especially by introducing a number of empirical corrections 

for various influences, for example, pressure gradients at'the 

model head, various tail geometries, etc. 

Both Kelly and Thomson use the assumption of Allan and Perkins 
that the total normal force is the sum of the potential transverse 

force and the friction transverse force. The unsteady drag coeffi­

cients for determining the distribution of the friction transverse 

force were taken from test results which were obtained first by 

M. Schwabe [17J and later on in improved form by T. Sarpkaya [18J. 

The results of these experimental investigations for circular cylin­

ders suddenly accelerated to a constant final speed are represented 

by the drag function shown in Figure 15. This drag function applies 

for laminar separation from the cylinder. For the more important 

practical case of turbulent separation, no experimental data is 

available. Kelly uses, therefore, a function for turbulent separa­

tion which is obtained from the one for laminar separation multiplied 
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Figure 15. Local normal force coefficients over body of 
projectile for laminar and turbulent separation. 

by a factor which equals the ratio of the stationary turbulent 

drag coefficient and the stationary laminar drag coefficient. 

Thomson gives this factor as a function of angle of attack. 

One can object to the method discussed above because the bound­
ary layers of the body with angle of attack and the boundary layer 

of the circular cylinder, in general, are not the same. Conse­

quently, the separation process leads to different values for the 

local normal force and the unsteady and stationary drag. In the 

best case, the equality of local normal force and drag for laminar 

boundary layer could be expected because only for this case is the 

transverse component of speed independent of the longitudinal com­

ponent. For this reason and because no experimental data was avail­

able for unsteady drag coefficients force turbulent separation, E. 

Wedemeyer [19J determined the corresponding function from extensive 

measurements of K. Hartmann [2J and the result given by Schwabe and 

Sarpkaya. Figure 15 also gives this function determined using the 

unsteady analogy discussed above, in addition to the drag function 

of Sarpkaya. Comparison shows that the turbulent coefficients differ 

. not only by a constant factor from the laminar one but also the tur­

bulent coefficients is more condensed in the direction of the abscissa. 

This means that in the case of turbulent separation for the unsteady 

problem, the stationary end value is reached much earlier. 
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Recent work by F. J. Marshall and F. D. Deffenbaugh [20J and 

F. D. Deffenbaugh and W. G. Koerner [21J also using the unsteady 

transverse flow analogy, attempt to use no empirical input data at 

all. The application range of these methods is also limited and 

the results obtained with them can only be made to agree with 

experimental results using an empirical factor which depends on 

body geometry. /3 

According to the transver.se flow theory, we find the following 

calculation of the coefficient of normal force 

(1) 
4 sin2 a LRJID ( X ) 

-Cz =sin2a+ --l't-- C",!d D . 
x.ID 

The first term on the right side of equation (1) is the part 

of the potential transverse force. It is obtained from the theory 

of slender bodies for incompressible potential flow. The second 

term of equation (1) is the part of the friction transverse force. 

It was calculated using the drag function shown in Figure 15, and 

because of the different reference quantities of the normal force 

coefficients and the drag coefficients, the ordinant values still 

had to be multiplied with l't/~ The further ana~ysis is the non-
linear normal force part caused by friction. The results of the cal­

culations for the normal force are shown in Figures 7 and 8 for com­
parison with measurements. As the comparison shows, the measurements 

first fo~low the calculation for turbulent separation fop all Rey­

nolds numbers, go slightly below this curve and then transfer to the 

curve calculated for laminar separation with a clear increase. This 

transition occurs for ever larger angles of attack with increasing 

Reynolds number. In the next section we will give an explanation 

for this behavior. 

4.2 Representation of the nonlinear normal force part 

as a function of the effective Reynolds number 
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Figure 16. Limiting curves for laminar and turbulent 
separation over body. 

One obtains an important result by showing the correspendence 

of those Reynolds numbers and those angles of attack, at which the 

measurements of the curve calculated for turbulent separation 

transfer to the calculated curve for laminar separation with a 

large increase given in Figures 7 and 8. Figure 16 shows the trans­
ition points by dots obtained- from measurements. They should not 

be considered measurement points. They can be represented by a 

single curve and the following relationship results. 

(2) ReD = 8,7 _ 10.1 (= Reeff), 
sin a 

valid for a > 5°. 

Equation (2) defines an effective Reynolds number for the fol­

lowing analysis. Using this empirically found function, we have a 

limiting'curve which encloses the Reynolds number--angle of attack 

pairs together with the ordinate within which the flow separates in 

a turbulent manner. To the right side of it, we have the region of 

transition to laminar separation. This region has to be limited by 

an additional curve for Reynolds numbers k~<2:105 and on its right 

side, only laminar separation occurs. It cannot be directly deter­

mined from the present measurements due to the reasons mentioned in 

[lJ and, therefore, it was determined indirectly from the universal 

empirical function in Figure 19 still to be described. 
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Using the effective Reynolds number Re[)/sinu defined here, 

it is possible to classify separation over a body with angle of 

attack in a physically more correct manner than if one uses the 
transverse flow Reynolds number ReDsinuo used by many authors. 

The latter is usually not a criterion for whether or not separation 

is laminar or turbulent. For smaller angles of attack, the trans­

verse flow Reynolds number is very small and, therefore, one would 

expect laminar 'separation. In contrast to this, for small angles 

of attack the running lengths of the streamlines over the body are 

very large and turbulent separation occurs. The lengths character­

istic for the true conditions is the running length of the stream­

lines. The author has already indicated this in [4J and it is also 

mentioned in H. Esch [22J. The length of the streamlines near the 

wall up to the separation points is a function of the angle of attack 

and is approximately defined by the effective Reynolds number by 
means of D/sina = ((a) Therefore, if one goes through an angle of 

attack range, the effective Reynolds number is also simultaneously 

changed. Therefore, angles of attack smaller than, 5° are excluded 

for the range of validity of the effective Reynolds number. In this 

range, linear, potential theory methods give sufficiently accurate 

results. 

We now have to deal with the question of the dependence of the 

nonlinear normal forces on the effective Reynolds 'number defined here. 

According to the transverse flow theory, the nonlinear normal force 

parts is associated with the drag of the circular cylinder. This 

means that at least in the incompressible subsonic range, a similar 

Reynolds ~umber dependent like for the circular cylinder would be 

expected. In order to establish the presumed relationship, the non­

linear normal force parts from force measurements were split off and 
were plotted in the form of an analog drag coefficient as a function 

, of effective Reynolds number shown in Figures 17 and 18. The non­

linear normal force parts were calculated from the measured total 

forces according to the following equation 

(3 ) 
(CZ)nl. = Cz - sin 2 Uo 
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The term sin 2a results, as already mentioned, from the theory 

of slender bodies for incompressible potential flow. The recalcula­

tion of the nonlinear normal force coefficient to the reference quan­

tities of the circular cylinder leads to the following: 

(4 ) 
(C) 

(CW)nl. = ~~ jt D 
sin2 a 4 Lz' 

The drag coefficients calculated according to equation (4) are given 

in Figures 17 and 18. All of the curves have a qualitative behavior 

which corresponds to the transfer from undercritical to overcritical 

Reynolds numbers in the case of a circular cylinder. For the values 

of the body, the critical region starts approximately for the effect­
i ve Reynolds number of Rev/sin a = 5· lOS; and the corresponding Reynolds 

number of the circular cylinder is Rev = 2 '10
5
• • With increasing inci-

dent Mach number and, therefore, transverse flow Mach number, the 

(CU')nl: values over the entire investigated range increase somewhat. 

For constant effective Reynolds number, a different transverse flow 

Mach number corresponds to each curve of Figures 17 and 18. Along 

each individual curve the transverse flow Mach number is not constant. 

It increases from the right to the left when passing through the 

curves, depending on angle of attack. For orientation, the curves 

have various marked angles of attack. The transverse flow Mach num­

ber takes on these values which extends from incompressible flow up 

to critical and even overcritical incident flow. In Figures 17 and 

18, along the abscissa, we show the effective Reynolds number at 

which the individual curves reach the critical transverse flow Mach 

number. The critical transverse flow Mach number was assumed to be 

(MaQhro:. = 0,5 , that is somewhat larger than the potential--theory 
critical valtie of the circular cylinder. On the right side of these 

marks, the transverse flow Mach number is smaller than the critical 

one and it is larger on the left·side. 

With the exception of the case given in curve 6 of Figure 18, 

in all of the other cases the transition from turbulent to laminar 

separation occurs before reaching the critical transverse flow Mach 

number. For curve 6, the relatively sudden drag increases apparently 
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caused by reaching the critical transverse flow Mach number. The 

transverse flow Mach number and the effective Reynolds number are 

coupled and experimentally, it is not possible to vary the effect­

ive Reynolds number over a wide range for different transverse flow 

Mach numbers when they are held constant in order to determine their 

effects separately. 

4.3 Calculation of normal forces using a universal 

empirical function 

The curves in Figures 17 and 18 can be roughly approximated by 

a single curve. This can ·be used as a universal empirical function 

for describing an analog drag coefficient for projectile bodies as a 

function of the effective Reynolds number. In Figure 19, we show 

the variation of the universal empirical function from the results 

of the previous chapter. Since there is a certain subjective influ­

ence inside the limits defined by curves 1 to 5 of Figures 17 and 18, 

for orientation, the drag variation of a circular cylinder was used 

[23,24,25J. Various details of the deviations of the experimental 
values from the basic trends given by the universal empirical func­

tion are discussed in detail in [IJ. 

Starting with the drag function given in Figure: '19, the normal 

forces of the body were calculated for several examples in order to 

test the usability of this function. As examples, we mention here the 

calculated normal force coefficients f'or Mao< = 0,5 and 0.8 for various 

Reynolds numbers. They are given in Figures 20 and 21 together with 

the corresponding measurement values. The comparison of measurement 

and calculation shows that using the empirically found universal 

drag function, one can satisfactorily represent the effects which 

depend on Reynolds number. 

The influence of Mach number is not contained in the universal /~ 

drag function. This means that if one exceeds the critical transverse 

flow Mach number, the calculation gives normal force coefficients 
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Figure 21. Normal force coefficients depending on angle 
of attack for different Reynolds numbers, comparison of 
calculation and measurement. 

which are too small as shown in Figure 21. Strictly speaking, the 

universal drag function should be limited to the range of incom­

pressible transverse flow Mach numbers. The calculated values, 

however, show that satisfactory results are obtained in this way 

for the entire range of undercritical transverse flow. The influ­

ence of Mach number could be considered by an additional empirical 

correction. 

5. Summary 

New extensive experimental work of projectile body models with 

angles o~ attack of up to 90° was reported on. The experiments 

include force and moment measurements, pressure distribution mea­

surements and flow visualizations using paint images and smoke photo­

graphs of body vortices. In the investigations, the influence of 

Reynolds number on the aerodynamic forces was of primary importance. 

A theoretical analysis of the experimental results led to the defin­

ition of an effective Reynolds number and to the representation of 

its influence on the aerodynamic coefficients. This effective Rey­

nolds number considers the pathlengths of the streamlines with its 
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characteristic length and has been found to be a usable criterion 

for evaluating whether or not separation over the body is laminar 

or turbulent. The nonlinear normal force parts can be represented 

by only one function in the form of an analog drag coefficient of 

the circular cylinder as a function of effective Reynolds number. 

The normal forces and pitch moments calculated according to the 

transverse flow theory using this function give satisfactory results 

over the entire range of undercritical transverse flow Mach numbers. 
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