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COMPUTATION OF SUBSONIC FLOW AROUND AIRFOIL SYSTEMS 

WITH MULTIPLE SEPARATION* 

Klaus Jacob** 

SUMMARY 

A numerical method for computing the subsonic flow around 

multi-element airfoil systems has been developed, allowing for 
flow separation at one or more elements. Besides multiple rear 

separation also short bubbles on ·the upper surface and cove bubbles 
\; can approximately be taken into account. Also , compressibility 

effects for pure subsonic flow are approximately accounted for. 
After presentation the method is applied to several examples and 

improved in some details. Finally, the present limitations and 
desirable extensions are discussed. 

rA 

~. 

NOTATION ~. 
***/6 

aI' a 2 superposition factors for the corresponding basic solutions 
(a

l
), (a

2
) 

Ai,m m-th connection point for the dead water on profile 
number i 

bi superposition factor for basic solution (b i ), i.e., pure 

circulation flow around profile number i 

ca lift coefficient 
c

p 

cml/4 

di,m 

E 

H 

pressure coefficient • (p - p.) / (V!p/2) 

pitch moment coefficient, referred to the 1/4 point 
superposition factor for the basic solution (di ), i.e., ,m 
pure outflow from profile number i, where the source occu-

pation starts at point Ai ,m 
yield of source occupation 
trailing edge 

j 
DFVLR Research Report 81-24, 1981, 63 pages. 

** Institute for Theoretical Fluid Mechanics of DFVLR, Goettingen. 
*** Numbers in margin indicate pagination of foreign text. 
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vn ' vt 

vx ' v y 
x, y 
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°1' °2 

r <Pk' 1Pj 
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1 

K 

W n 
Wt 
p 

2 

geometric functions defined by equation (2d) and equation 

(2e) 
profile chord 

Mach number of incident flow 

number of given support point on the contour of profile 

number k 

number of profiles in the profile system 
point on the upper boundary line of the dead w~ter region 

of profile i 

static pressure and static pressure of incident flow 
respectively 

Reynolds number = V -1 kinematic viscosity 
. 00 

running length along profile contour or gap distance 

(in Figure 13) 
various lengths in Figures 4 and 13 
attachment point of dead water region along the underside 
of profile i 
local flow speed 
incident flow speed 

incident flow speed of resulting flow 
normal and tangential component of flow speed along profile 

contour. These are identical with the intensity of a sur­

face source and vortex occupation 
x and y components of flow speed 

cartesian coordinates 

angle of attack 
displacement thickness and momentum loss thickness of 

boundary layer 

parameters; to each value of for example <Pk there is the 
unique contour point of the profile number k associated 

with it 

circulation around profile i 
adiabatic exponent 

transformed source intensity according to equation (2b) 
transformed vortex intensity according to equation (2a) 
density of flowing medium 
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Subscripts: 

i, j , k running numbers of profile 

m, ~, v running numbers of points on profile contours 
00 in the flow far away from the profile system 

LA at the separation point of the laminar boundary layer 

1. INTRODUCTION /9 

Wings with slats and slot flaps (mechanical lift aids) have 
for a long time been used te improve the takeoff and landing per­
formances of aircraft. The longitudinal section through such a . 

wing system results in a profile system (see, for example Figure 14, 
top). 

Over the last few decades intensive experimental and theoret~ 

ical profile research has led to substantial improvement of indi­

vidual profiles, for example, substantially reduced drag for fast 
flight due to the development of laminar profiles and over-critical 

profiles. There has also been improved high lift and stall behavior 

by suitable curvature, S-shape, etc. Improvements to the (two­

dimensional) profiles have also resulted in better (three-dimen­

sional) wings especially for large wing aspect ratios. The calcula­

tion possibilities for individual profiles have advanced consider­
ably. For incompressible, frictionless flow, very exact surface 
singularity methods are available. Friction and even flow separa­
tion can be approximately considered in calculations. 

On the other hand, for profile systems, the magnitude of avail­
able experimental data as well as the possibility of calculation 

r are rather restricted. The high lift configurations which are very 
important for takeoff and landing of our aircraft have developed 

~. empirically for the most part. The calculation of such profile 

systems can be done for frictionless flow using singularity methods 

(see, for example, [1-3J), but friction and partial separation ·are 
even more important in practice than is the case for individual 
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profiles. Calculation methods for profile systems with friction 

and separation are still in the beginning stages 'of development. 

The aircraft industry is very interested in reliable and practical 

calculation methods of this type in order to develop better high 

lift configurations for new aircraft and to reduce the experimental 
expenditure. 

Based on the calculation method for the individual profile with 

flow separation [4J developed by the author, during the 70's 

several similar methods were developed for profile systems, for 

example, z. B. von BHATELEY and BRADLEY [~J, JACOB and STEINBACH /10 

[6J, HAYASHI and ENDO [7J and OLSON [8J. All of these methods have 

one common feature in that a potential flow with an imbedded simu-

lated dead water region is calculated using surface singularities 

and this is combined with boundary layer calculations using itera­

tions. Differences between the individual methods occur in the 

modeling of the dead water region and in the boundary layer method 

used. All of the methods up to the present were restricted to anal­

yzing pure trailing edge separation)and additional possible physi-

cal phenomena such as separation bubbles, bottom side separation. 

compressibility effect were not considered. Wake boundary layer 

confluence is only included approximately in [8J. A ground influ-

ence is only considered in [6,6bJ~ Most methods are restricted to 
simple separation, that is, separation at only one element of the 

profile system. 

A general and really reliable calculation method can only be 

developed in steps by researching all of the possible physical ph en-

~ omena, continuously comparing them with experiments, theoretical 

. modeling and these all have to be included in the calculations. In 

" 
addition, reliable criteria for the occurrence of individual pheno-

mena are required. Of course, a restricted method carr be useful 

but only if its limitations are known and'it is appropriately 
applied. 

4 
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In the present paper we will extend our method for profile 

systems [6J by three steps: 

The most important part of the work was the extension to cases 

of multiple trailing edge separation. This means that simultaneous­
ly separation regions are allowed at several parts of the profile 

system and their interaction is considered. It is only in this 

way that an exact determination of the maximum lift, an? caleula­

tion of the lift curve in the post-stall range becomes possible. 

In addition, two smaller extensions ~re made which allows 

the considerat~on of short separation bubbles and a consideration 

of the influence of compressibility for subsonic flow. /11 

The extended method is then tested with various examples and 

new application limits and desirable further extensions are deter­

mined. 

'J 

2. THE CALCULATION METEOD 

2.1 Introduction into the previous method [6,6a] 

We will first consider the simplest case of a flow around a 
profile system with separation,that is, incompressible flow with 

a simple trailing edge separation with a large Reynolds number (Fig~ 

ure 1). It is assumed th~t only three of the basic elements of the 

flow field exist; that is, approximately frictionless external 

flow, the boundary layer at the body contour and a dead water 

region with almost quiet 'flow, abovearld behind one of the profiles~ 

First of all, no additicnal elements are assumed (for example, 

separation bubbles and further dead water regions) which could sub­

stantially change the flow. 

The calculation of such a flow r~quires the calculation or 

theoretical modeling of each of the elements and consideration of 

their interactions. 
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Our calculation is divided into two main parts which are 

coupled by iteration: 
1) ,the calculation of a potential flow with enclosed simulated 

dead water displacement region for a given separation point, 

2) boundary layer calculation at the body contour outside of the 
dead water region'for a given pressure distribution. 

The coupling is carried out through the pressure distribution 

and the separation point: 

A separation point is found by itera~ion for which the corres­
ponding potent~al flow has a pressure distribution where the cor­
responding boundary layer separates exactly at this point. 

Calculation of the potential flow with dead water: 

For the calculation of the potential flow, a singularity method 
with vortex occupation on the body surface is used. In addition, /12 
on the profile with separation a source occupation is applied through 

which an outflow region is generated which is similar to a dead 

water region in its characteristics regarding the displacement 
effect with respect to the external flow. For this simulated dead 

wate~ region, it is required that it has constant pressure'along 

its boundaries near the profile. 

After specification of the source occupation vn(~)' there is 
first the problem of determining the vortex occupation Vt(~) in such 
a way that the kinematic flow condition at the body contour is sat­

isfied everywhere. For solving this problem, for the case of a 

single profile of MARTENSEN and SENGBUSCH [9], the following inte­
gral equation of the second kind was derived: 

(1) 211 
1 J ., Wt(lP) - 211 K(IP,IjI)wt(ljI)dljl 2v .. (x(lP)cosa +Y(<D)sin a) + 

211 

+ 2~ J L(IP,IjI}wn(ljI)dljl. 
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For the case of a profile system consisting of N profiles, equa-. -
tion (1) can be extended to the;~following system of coupled linear 

integral equations 

(2) N 211 

wtllPk' - 2::' 2\ J KIlPk,l/Ij' • wt(l/Ij,dtJi j 
j = 1 0 

211 
• • 1 J 2v .. lx(lPk'cosa +yllPk'sin al + 2'11 LI<Dk,l/Ii) Wn (I/Ii) dl/l i , 

o 

for k 1 ,2, ••• , N • 

Here we have: 
i number of the profile with separation, along which there is the 

transformed source occupation 

j,k running profile numbers 

(2a) ~t(::>k) vt(<D k )' 5(lP k ) 

(2b) ... .1 (~.) v (wi' • 5(1/11
' 

n l. n 

S (1111 = ds/dlll= 

W
n

, 

transformed vortex intensity at 
the point ¢k of the profile k 
transformed source intensity at 
th~ pOint ~i of the profile i 

(2c) = / (dx/di)2+ (dy /dlP)2 derivative of the running length 
s along the profile contour with 
respect to the parameter ¢ 

It is assumed that each profile is available in a parameter 
representation X(iIl), Y(IP) so that starting with' ill = 0 at the trailing 

edge, the profile is passed through exactly once in the counter­
clockwise direction for ill = 0 to '~2 n_ • 

In equation (2), in addition K(',p,ljIl •. and r L(iP,ljI) are the influence 

functions. They are the tangential speed which is produced by unit 

vortex or unit source which lie at a point defined by ~, at a con­

tour point defined by ¢. It is calculated according to the following 
formulas: 

7 
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(2d) 

Y(<llk'· [x(lj)kl-X(1/I,II-X(lj)kl[Y(lj)kl-Y('~,'1 
K (lj)k,1/I ,I = 2 ] ] 

J [x(~k' -x(1/Ij,f + [Y(<:lk
' 

-y(w j ,)2 

(2e) x ( !j) k I [x ( 'II k I - x ( I/- i I) + y ( Ij) k I • [Y ( III k I - y'( W i I I 
L("'k,ljIi

' 

= 2 
[x(lll k ' -x(1/Ii,)2 + [Y(lll k ' -Y(~'i'12 

The system of i~tegral equation (2) can be transformed by 
discretization into a set of N linear equation systems 

which can be solved numerically. One condition for a unique 

solution is that not only all of the geometric data but also 

the incident data v and a as well as the source occupation w on 
00 n 

the right side of equation (2) are known. ' In addition, one addi-

tional condition is required for specifying the circulation for 

each profile. 

By the simultaneous solution of the equation system for differ­

ent right sides and different additional conditions, the so-called 

basic solutions given in Figure 2 are calculated and with a weighted 
superposition we finally are able to generate flows of the kind 

shown in Figure 1. /14 

The basic solutions (al ) and (a2 )(parallel basic flows) are 

obtained for v = 1, a = 0° and 90°, w = a respectively and the 
00 n 

addi tional conditions wt {'Ilk = 0) = 0 for all k. «'l)k = 0 means the 

trailing'edge of profile k). Basic solution (b) (pure circulation 
flow around profile i) is obtained from I V",,= 0, wn = 0 and the addi­

tional conditions 

211 

r i J bl t '(iII i ldIP i I> 0 and bit (iII k =OI = 0 for all k t- 1. 

One basic solution (d) (pure outflow) is obtained from Voo = 0, 

a source occupation dlf'ferent from a * on profile i wn (iIIi) ;. 0 

between A and U and the additional conditions 

211 

r i J wt (iII i )dill i 0 and wt (iII k =O) = 0 for"'all k t- 1. 

*)See [lOJ in section 2.2.1 for the selection of the source occupation. 
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The basic solutions of the last kind are made available for differ­

ent positions of A = A , m = 1.2, ... so that it is possible to pro-m 
duce displacement regions of various length by superposition with 

other basic solutions. The basic solution (d) corresponding to 

Am will be called (d~). 

After obtaining the basic solutions it is then necessary to 

produce a resulting flow by superposition with suitable. weighted 

factors aI' a 2, band dm which have a given incident flow Voo ' a 

and a displacement region along whose boundary the pressure is 

constant. 

The incident flow is only determined by the basic solutions 

(al ) and (a2 ) which are the only ones not equal to zero. For Voo 

= 1 (reference speed for all speed magnitudes) we find the following 

for the superposition factors a l and a 2 : 

(3) a l = cos a. and a 2 = sin a.. 

The remaining superposition factors band d of the circulation m 
flow and outflow essentially determine the direction and thickness 

of the displacement region. They are determined by iteration in 
such a manner that the resulting flow has equal pressure ~t three 

characteristic points, that is, at the two separation points A and /15 m ---
U and a point 0 on the upper boundary of the displacement region 

above the profile trailing edge (see Figure 1). In this way we have 

satisfied the condition for constant pressure along the boundaries 

of the displacement region near the profile approximately. Therefore, 

one has to solve the two equations 

(4) CpA (b,dm) Cpu (b,dm) Cpo (b,dm) 

We will discuss this problem further in section 2.2.2. 

9 
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Calculation of the boundary layer 

After we have obtained a potential flow with a simulated dead 

water region with a specified attachment point Am' we must examine 
whether this flow is physically realistic. It is only when the 

flow has a boundary layer which separates exactly at Am that ·it can 

really exist. Otherwise, the calculation for different Am has to 

be repeated until the correct solution is found. Duri~g this iter­

at jon process we require boundary layer calculations which will pro­

vide reliable solutions which are not too complex. We use the inte­

gral method of Rotta in [llJ which was programmed. 

Our"boundary layer calculation always starts laminarly at the 

front stagnation point and can be continued in a turbulent manner 

as desired starting at a specified transition point or according to 

the empirical transition criterion of Michael [lOJ or it can start 

from a calculated laminar separation point and this is continued up 

to turbulent separation. In addition to determining the separation 

point, the boundary layer calculation is also used to determine the 

friction drag and the boundary layer displacement thickness 01' The 

boundary layer displacement in our calculation is considered by add­

ing an additional basic solution (do) with the source condition 

(5a) (Sa) Vn d(6 1 ' vt)/ds, 

and the.additional condition 

(5b) wtlok= 0) • 0 

* 

Wn("'k) d(6 1 ,vt )/d"'k 

" *)RecentlY, we have preferred the additional condition ·IIltIA.' ·""illtI211-A~1 

10 

with A~ Ii; 2./30, that is, the condition of equal velocity at two 
points which lie near the trailing edge at the same distances 
along the top side of the bottom side. 

/16 
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In later sections we will discuss some new features in fur­

ther details of the boundary layer calculation. . 

The overall procedure for the previous method 

The overall probedure includes a preliminary phase consisting 

of two iterations inside of one another and a final calculation: 

The preliminary calculation contains: 

The preparation of all geometric quantities~ calculation of 

basic solutions a l and a 2 , 

calculation of the attached frictionless flow (superposition of 

basic solutions (al ) and (a2 ) and the corresponding boundary layer 

and finally the calculation of the basic solutions (b), (do)' (dl ), 
(d

2
) .•• 

The internal iteration includes: 

The calculation of a flow with simulated dead water region 

for an attachment point Am at the profile number i. This is done 
by superposition of basic solutions ; (ad, (aa), - (b), (do) and (dm) , 

The determination of suitable superposition factors band dm is 

done by iteration. The purpose of this iteration is to achieve 

equal pressure at points A , U and O. 
m 

The external iteration is used to find a flow with simulated 

dead water region where the attachment point Am coincides with the 

separation point A of the boundary layer. In addition to the inner 

iteration it includes a boundary layer calculation for the top side· 

of profile i for determining the separation point A. Starting with 

an attachment point near the trailing edge~ this is done in small 

steps and pushed forward until the boundary layer calculation for 

the first time results in no separation ahead of A . m 

The final calculation contains the following: 

11 
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Determination of the force and moment coefficient~ of the . 
profile system by integ~ation of the pressure and shear stress 

distribution, also boundary layer calculations for th~ top side 

and the bottom side of all of the profiles participating in the 

system. We then fin~ whether as assumed separation actually /17 

occurs for a single profile (number i) for the given configuration, 

incident flow angle and Reynolds number. Otherwise, the calculated 

flow cannot be looked upon as realistic. 

2.2 Determination of multiple trailing edge separation 

For maximum lift and especially in the post stall range, pro­
file systems often have several separations in regions at various 

parts of the system. For example, a profile with a highly deflected 

gap flap will only exceed its maximum lift at an angle of attack 

for which there is a substantial separation over the main wing for 

flap separation. In order to allow one to calculate the maximum 

lift and the post stall behavior for profile systems, it is necess­

ary to expand our method to the case of multiple separation. 

In order to be able to not only simulate a profile but in the 

extreme case to simulate all profiles of the system and their 

separation regions, suitable source conditions along all profiles 

are, required. This leads to the following expanded integral equa­

tion system 

12 

N 2'1 

(6) wt(lPk) - 2\ L J K('k,l/Ij)Wt(l/Ij)dljl j • R('k) 
j .. , 0 

for 
.,. 
'k-',2, ••• N 

,where 

(6a) R(lP
k
)" 2V .. (X(lPk) cos a + Y('k) sin a) + 

N 2'11 

+ 2\ ~ J L(ok''''j) wn (I/Ij)dljlj.' 
j=1 0 
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As will be discussed in the following sections, this system 

of coupled linear integral equations allows one to calculate an 

additional supply of basic solutiotis which then'can be superimposed 

during an additional iteration method in such a manner that the 

resulting flow contains several simulated dead water regions. /18 

2.2.1 The required basic solutions and their calculation 

In addition to the basic solution (al ) and (a2 ) discussed in 

section 2.1, for each profile i (i = 1.2, ... N) we require one cir­

cUlation flow (b i ) and a set of outflows (d. 1)' (d. 2), ... with 
l, l, 

various attach~ent points Ai,l' Ai ,2, ... of the source occupation. 

We will now exactly define these basic solutions and give the 
corresponding right sides R(~k) for equation (6) as well as the 

additional conditions: 

Basic solution (b i ): Source free, circulation flow which 

vanishes at infinity with specified circulation r i = 2n 1 v"" around 

profile i, which satisfies the Kutta outflow condition at the trail­

ing edge at all other profiles. This means: 

W (~.). = 0 for all j 
n J 

v = 0 
00 211 

J wt("'i)dl/>i 211lV .. 
o 

Wt (¢k = 0) = 0 for all k # i. 

The first and second conditions substituted in equation (6a) 

give 

R(¢k) = O. 
The third and fourth conditions are additional conditions for unique 

calculation of these basic solutions. For each profile, a basic 

solution of this kind is calculated. 

Basic solution (di ): Outflow which vanishes at infinity which ,m 

13 
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is caused by. a specified source condition between contour points 

Ai and D. has no circulation around profile i ~nd satisfies the /19 ,m 1 . ---

Kutta outflow condition at all other profiles. This means: 

v = 0 
00 

Wn (1J!i l "fO between A. and D., w (~.) = 0 for j ! i l.,m 1 n J 
2ii 

J wt (1J!i1d1J!i 0 

Wt(<I)k=OI 0 for all k 'I i. 

The first and second conditions in equation (6a) give 

211 

R(<I)k l 2\ J L (lI)k' 1J!i l wn (1J!i 1d1J!i • 

The source occupation w (~.) which occurs here is calculated accord­n 1 

ing to equation (2b) and the normal velocity distribution v accord­n 
ing to Figure 3 is selected (see also [lOJ). 

The third and fourth conditions are again the additional con­

ditions for unique calculation of this basic solution. For each 

profile, several basic solutions of this kind are calculated (for 

several attachment points of Ai ) on the profile top side. ,m 

Numerical solution of the integral equation system 

The integral equation-system (6) after discretization* gives a 

linear equation system for each value of k. If Mk is the number of 

support points Pk ,Il' 11 = 1,2'·;·'~k on the profile k, then the k-th 

equation system contains Mk equations. All of the N equation systems 

then give 
N 

M ;: L Mk 

k=l 
equations 

*)APproximation of the integral by sUM according to the rectangle 
rule. 

14 
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The number of unknown values of vortex intensity (wt ). v at all 
J , 

support points Pj,v' v = 1,2, ••• , Mj , j = 1,2, ••• ,N is 

N 

M = 2: Mj 0 

j =1 

Nevertheless, it is not immediately possible to obtain any general 

unique solution of the overall system because each individual equa­

tion system is simply linearly dependent. It is only after one addi­

tional condition is added to each of the equation systems that one 
obtains a unique overall solution. (The summing up of the additional 

equations for all of the equations of the system has proven itself). 

In order to obtain good numerical results with the minimum 

effort, in earlier work a number of special measures for establish­

ing equation systems were developed, for example, a method for 

obtaining favorable support point distribution [12J, special formu­

las for better treatment of relatively thin profiles and profiles 

with corner trailing edges [13J and many other things. In [lOJ, 

there is a discussion of this. We will not discuss these details 

again even though they are important for practical success of the 

method. 

By solving the overall system of linear equations for those 

right ·sides and those additional conditions which correspond to a 

special basic solution (g), one finally obtains all of the values 
; ( ) 19' of the transformed vortex occupation. wt jv, and, therefore, using 

equation (2a) the tangential speeds '(Vt)J~) at all of 
the support points Pjv ' v = 1,2,00 oM j of all profiles j = 1.2, ... , N for 

this special solution (g). 

In the practical calculation of the tangential speed for our 

different basic solutions, it is economical to simultaneously solve 

the linear equation system for all basic solutions in which the 

equation systems only differ by their right sides (including the 

additional conditions). This applies for the basic solutions (al ) 

15 



r. 

'-

~. 

and (a2 ) as well as for each group (b i ), (di,l)' (d i ,2)' ... for 
a fixed i. 

2.2.2 Superposition of basic solutions 

After we have made available vortex and velocity distribu-
tion for all of our basic flows, it is now necessary by means of a 
suitable weighted supersposition to obtain a resulting .flow with 

simulated separation regions at several profiles, and an equal pressure 

condition has to be satisfied for each of the separation regions. 

(7) 

The resul~ of a superposition 

(a
1

, (a
2 
I 

(vt ' jv a 1 • (vt ' jv + a 2 • (vt ' jv + 

(do' 
+ (vtl . + 

)V 

N (b
i

, 

2: [bi·(Vtl jv +di,m
i i=1 

(d 
(v I i,m' 

t jv i 

depends on the values of the basic solutions and on the selected 

superposition factors ai' a 2 , b l ,ml' b 2, d 2 ,mz 

For Voo = 1 and a given outflow angle a, a l and a 2 are to be 

looked upon again as given according to equation (3). 

i = 
For given attachment points of the separation regions Ai ' , ,mi 1.2, ... ,N the 2 N additional superposition factor Bi and 

di ,i = 1.2, ...• N are to be found in such a manner 
,m; 

presSure coefficients 

that the 

(8) C = 1-(v/V ,2 = f(b1 ,d m ,b2',d2 m , ••• ,bN,dN m ' 
p ... 1, 1 ' 2 ' N 

are the same at the comparison points Ai,m ' Ui and 0i of each sep­
aration region. In other words, the commo~ zero of the two N ' 

functions 

(9) CpA - Cpu gi(b1 ,d1 m , ••• ,bN,dN ' 
i,mi i ' 1 ,mN 

i = 1,2, ••• ,N 
- C cpUi pOi h (b ,d , .••• ,bN, dN 

m.. I 
ill,ml ' N 
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is to be determined. 

The values of the function gi can be easily 'calculated for a 

given set of superposition factors using equations (7) and (8). 

The calculation of the function values of hi is more complicated. 
First of all, the f~eld points 0i along the upper boundaries of the 
separation regions have to be determined and the velocities there 

Vo have to be calculated~ /22 
i 

The velocity components v and v at an arbitrary field point x y 
P(x,y) are calculated from the following formulas: 

(lOa) 

(lOb) 

N Mj 

vx'(X,y) = v .. • cosa + L M~ L 
j=1 J v=1 

N Mj 

v (x,y) = v • sin a + ~ -l ~ y .. ~ M, ~ 
j=1 J =1 

(x-x. ) (W ). -(y-y. ). (wt)j 
)V n)v )V v 

(x-x. )2+ (y_y )2 
JV jv 

(y-y, ) (w ), + (x-x, ) (w
t

) . 
)v n]V ]V )v 

(x-x. )2 + (y_y. )2 
JV JV 

A field point 0i can now be found by starting at a point near to 

A. and following the speed direction (streamline), until one has l,mj 
reacned the desired position above the profile trailing edge. Then 

• a a 
one obtains v 0 from v = vx + Vy • 

i 

Now that we are in the position of numerically calculating the 

values of the functions gi and hi according to equation '(9) for a 

given set of superposition factors bl, ... ,dN' , we will now consi­,mN der the determination of the zeros. 

We have to find a set of superposition factors so that 

(11) 
gi (b 1 ,d1,m

1 
, ••• ,bN,dN,mN) = 0 

for i = 1 , 2 , ••• ,N 

hi(b1,d1 , ••• ,bN,dN ) =0 
,m1 ,mN 

The solution of this problem is done using an iteration and recourse 

to physical interpretation. First of all, we assume that 
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reasotiable zero solutions are available for the superposition fac­

tors b~O), d!~l, ... ,b~O), d~~l ,and we will discuss this at the end 

of this section. 

We start the entire iteration calculation with small separation 

regions at all profi~es, that is, with attachment points Ai,l which 

are only a few per cent of the profile chords away from the trailing 
* edges. In this case, one can expect that the mutual influencing 

" of the separation regions is small and, therefore, the correct value 

pair b i , di,l will barely depend on the other ones. /23 

Each value pair b., d. 1 is then calculated using a two-dimen-
1 1, 

sional Newton method (see [6a], and for all of the other superposi-

tion factors, the previously highest approximations are used and 

fixed: 0 

bIn) dIn) 
1 ' 1,1 and the highest approximations of bj,dj,l for j ! i 

~bln+l) d 1n+ l ) 
1 ' 1,1 

n= 0,1,2, ••. 

. 
As soon as this iteration is finished, the next profile is cal-

culated: i = 1.2, ... ,N. The result of this iteration are improved 
approximations 'bl', d;,l' ... ,bN, ciN,1 of all of the superposition fac­

tors. But ih the calculation of, for example, b:, d:, I ,only the 

zero approximation of the other superposition factors were available. 

"A second run through this iteration may be useful (after substitu­

tion of the zero approximations with new values) (especially if the 

separation regions are large and the Z0ro approximations were not 

very good). 

~ Using the selected superposition factors, the resulting over-

all flow is known. If ib is necessary to make calculations for 

additional attachment points Ai (that is) larger separation regions) ,mt (see section 2.2.3), then this can be done in the same way as for 

*)We selected the first attachment point Ai 1 as well as the attach­
ment point Ui on the lower side at about' 98.5% of the profile 
chord. 
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the attachment points Ai,l' One requirement is that we will always 
have a good zero approximation for superposition'factors 

b (0) 
1 ' 

d lO ) , ••• , b IO ), d lO ) 
l,rnl. N N,rnN 

This is done by allowing the attachment points Ai,m with Mi = 1,2,3, 
... to only advance a. small step and for each new se! of attabhment 

points we will use the results of the previous calculation as the 

zero approximation for the superposition factors: 
New bi (0) = previous bI and 
. d (0) - d I 

new i,rni - i,rni-l and previous. di'· , depending on whether for pro-,m1 file number i the attachment point was displaced forwards or not. 

At the end of this section we will now discuss how reasonable 124 
zero approximations of the superposition factors can be obtained 

for the first attachment points lying near the trailing edges. 

If the displacement region near the trailing edge H. has the 
l 

height h which is simulated by the outflow region (see Figure 4) and 

the average speed of the outflow is approximately V~, then approxi­

mately the following relationship has to hold: 

(12a) 

(12b) 

V",.h di,l'Ei,l where 

~A 
i,l 

Ei,l J Wn(l/Ii'dl/l i 

~Ui 
is the yield of the 
source occupation 

With our selected source occupation, the yield is E
i
,l ; 0,7 • V~ • t. 

"FOr small displacement regions, then from equation (12a) we find 
di,l ;; (h/t)/0.7. if we use the estimate hIt = 1.2, ... ,N, we obtain 

(13) 
( 0) . 

d
i 

;; 0,6 i=1,2, ••• ,N. 
,1 

We Will select the superposition factor bi(o) in such a way that the 

resulting overall flow provides for smooth departing flow at the 

trailing edge Hi of each profile i: 
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W
tHi 

v14) 

(a l ) (a
2

) (b i ) (di,l) 
alw

tlHi 
+ a 2 w

tHi 
+ biw

tHi 
+ dill w

tHi 
+ 

N 

+2:: 
j =1 
j #i 

• (b.) (d.) 
[b J d ),1 

J
,W tH + . lW tH i J, i 

o. 

Based on' the addi tio.nal conditions selected for the basic solu-
(g) (bi)' 

tions, all of the wtHi are zero, with the exception of wtH 
(di 1) . i 

and wtHi ' Therefore, equation (14) gives 

(0) (b i ) (0) (di,l) 
b i w

tHi 
+ d i , 1 W

tHi 
o 

Using equation (13) we find 

b (0) - 0 6 • 
i ' 

(di,l) (b i , 
WtH /"'tll 

i i i=1,2, ••• ,N. 

We now have the required approximation values for the first itera­

tion. 

2.2.3 Finding separation point 

After calculating the resulting flow with the separation 
regions behind the attachment points Al ,m t ' A2 ,m 2 '····, AN,mN 

boundary layer calculations are carried out for the top sides of 

all profiles. For each profile i these determine whether the 
boundary layer would separate for this flow ahead of Ai,mi' 

If this is the case, then for the corresponding profile the point 

6 is considered as new attachment points for the next cal-

cUlation which should lie a small distance ahead of it; otherwise, 

the previous attachment point is retained. Our attachment points 

/25 

are placed along the upper side support points along the profile 

contours in such a manner that when mi is increased by 1, the attach­
ment po1hnt ';moves to the next forward support point by a small amount. 

The overall calculation is repeated for a new set of attachment 

points. This is repeated until a set is found 'for which the result­

ing flow for the first time no longer has any separation ahead of 
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any of the attachment points. This flow is the result of our cal~ 

culation. Since for the attachment points just behind them, separa­

tion would have resulted ahead of these points now that it no 
longer occurs, one would expect that the last used attachment points 

will agree with the desired and physically correct separation 

point. One has to determine, however, whether one can justi~y 

always moving forward when finding the correct set of attachment 
points of the separation region (or whether one should stand still). 

" We, therefore, have assumed that an increased separation at one of 
the profiles will also result in an intensified separation at the 
other profiles (or at least it will stay the same)~ but will never 

result in a reduced separation. Let us consider the most important 
case in practi'ce of a slat-main wing slotted flap combination 

with the following possibilities: /26 

(a) intensified separation at the flap: 

Because of the reduced flap effect (reduced speed at the rear 

part of the main wing topside) intensified separation can be expected 
over the main wing. 

(b) intensified separation at the slat: 

Because of the reduced slat effect (reduced unloading of the 
main wing in the front part, higher suction peak) intensified separ­

ation can be expected over the main wing. 

(c) intensified separation over the main wing: 

The reduced circulation over the main wing again gives a flow 
which has a reduced inclination but a slower flow in the region of 

the slat and a flow with higher inclination in the region of the 

(extended) flap. For the flap it is not certain which effect dom­

inates but for the flap, intensified separation can be expected. 

21 



" 

From (b) and (c), we finally find the indirectly intensifying 

influence of a slat separation on the flap separation. 

This means that with some care the assumption made above for 
a tendency of alternating intensification of the separation regions 

can~e accepted. 

The other question has to be posed: Is the final solution 

found with the method described the only possible one or 'only that 

solution with the smallest possible separation regions? 

The questlon of whether there are physically correct solutions 

with larger separation regions will be discussed in section 3.4 
for several calculation examples. When looking for the separation 
points, we will use the methods discussed above as well as the 

reverse method by starting with very large separation regions. 

The attachment points will be displaced backwards in small steps 
until for the first time· separation occurs ahead of all attachment 
points. In ·this way we will determine the solution with the largest 

possible separation region; We should report here that for all of 

the investigated cases, the solutions with the smallest possible 
and the largest possible separation regions approximately agree, that 
is, the solution was unique. 

2.2.4 Closed dead water model for impr0ving the dead water /27 
pressure calculation and drag calculat~on 

In [lOJ for a single profile it was found that a certain improve­

ment to the calculated results can be achieved, especially for the 

dead water pressure and for the drag, ·by transferring from the open 

,. dead water model to a dead water model with finite length. This is 

achieved by applying an additional sink at a suitable position behind 
the profile. 
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For our profile systems with multiple separations, this pro­

cedure improvement is only partially adapted. In order to avoid 

complication, a refined dead water model is only used for the pro­

file of the system which is the farthest downstream . 

. 
2.3 Consideration of separation bubbles 

In addition to the previously treated trailing edge separation 

which expands from the trailing edge with increasing inclination 

and has a displacement region which extends above the trailing edge, 

the separation can also occur in the form of so-called separation 

bubbles in which the separation region is limited by a reattachment 

of a flow along the profile contour. One distinguishes short and 
long separation bubbles. 

Short separation bubbles have a length of a maximum of only a 
few per cent of the profile chord length, are rather thin and have 

no important displacement effect. They can influence the flow in 

two ways: First of all, by changing the boundary layer and, there­

fore, the trailing edge separation. Secondly, by a sudden bursting 

which can generate a large separation region and, therefore, a sub­

stantial lift loss. Short bubbles are caused by laminar separation 

and turbulent reattachment of the flow. According to experience, 

they occur for medium Reynolds numbers at profiles with moderate 

thickness and slight curvatur~ ~long the p~ofil~ t~psiqe near the 

nose. 

In [14J it is shown for a single profile how the short bubble 

can affect the trailing edge separation approximately. This is done 

by using empirical criteria for the occurrence and bursting of short 

bubbles, as well as empirical formulas for the bubble length and the 

initial values of turbulent boundary layer behind the bubbles (detail 

see [14J). These criterion formulas all contain parameters at the 
laminar separation point LA [(vt'LA' (o2'LA' (tlvt/tls'LA1, which are avail-

able after the conclusion of the laminar boundary layer calculation. 
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The extension of the method could occur alone within the framework 

of the boundary layer calculation: 

During the calculation of the laminar boundary layer, it is 

examined whether transition has occurred. If not, then at the lami-

nar separation point LA, it is examined whether a short bubb1:e can 

exist. If this is the case, then it~ length IB is calculated and 

the turbulent boundary layer calculation is started only at a dis­

tance IB behind LA. The momentum and energy loss thickness of LA 

are used. as initial values. Otherwise, the turbulent boundary layer 

calculation is started at the transition point or at LA. If burst­

ing of the bubble can be expected, then LA is assumed to be a turbu­

lent separation point. 

The expanded boundary layer program was UBb1 In 0l!J' p'!:llfl1e 

system calculations. If a short bubble exJ f:its, .. 0:1e Lif~;."l·::,- .obt ;,J DS 

a somewhat reduced trailing edge sepaJ'at j on a n.lt: ... ~he;.'I.~.fc ""!~, a ::. ';,;!~"'­

what larger lift. 

Long bubbles ean extend over a large part of the l.Y.f'OJ':U.r:" '.'[JO:.:'.J. 

can be very thick .and CRn have a substantial djr~ct dl~ylac~m~~t 

effect on the external .. Li..ow. If such bubblesa!"e cn the p:~:·;·Tn:= 

topside, whIch especiaTly occurs for thin profiles. or ::;mali He;';-:lOlds 

numbers, then therei.s _8. .lj ft decrease and drag. iner.e.:LsL.ReLi[i~)lE-~ 

calculation methods for such bubbles are not ye~ avail~ble.. For pro­
file systems especially at higher Reynolds numbeI'i3,; ·~·j(·h· t(:: P,LUE; 

large bubbles probably occur rarely. More often l:irL'_" i~ U:)l)J (;~:) 0(;(: ,d:' 

along the profile bottoms ide and when they separate~ ~n0y ~r2 

triggered at the specified points with largecllrvatU):'c (for eX3.m[J10, 

at the slat bottomside and at the beginning of thE flap cavity). 

Such bubbles on the bottomside can substantially I.!hDrlf'::' the pressure 

distribution, but usually are not very important for, the overall flow 

and the lift. They can be considered wi th estima-f~ed (,!':"ll1t,)ur modifi- /29 

cations to sufficient accuracy. We will discuss this in section 3.2. 
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2.4 Consideration of compressibility 

High lift systems are being used for low speeds (the Lande­
Mach numbers of large commercial aircraft are Maca .. 0,20)). Because 

of local over-speeds, compressibility influences can be felt 
already for incident' Mach numbers starting with 1 Maca ;; 0,1 ·For a 

pure subsonic flow, because of increased pressure gradients, the 

trailing edge separation is somewhat increased and, therefore, there 

is a reduction in the lift. Local supersonic regions and compress­

ion shocks can occur already starting at Maca;; 0,20 

We will n?w consider a relatively simple compressibility cor­

rection and will restrict ourselves to pure subsonic flow. This was 

developed in [15J and was successfully used for single profiles. 

After obtaining the final solution for incompressible flow with 

separation, the pressure coefficient c . k is recalculated accord­
p ln 

ing to [15J using the approximate formula 

(15) 
C

p 

ink. 1 _ [ 1 +_2_ 1- (1 + ~Ma 2C )(.:-1)/.: 
.:-1 00 p Ma

2 
J. (1+-':2 Ma"c )0.72/': 

~ 00 p 

to find the pressure coefficients cp in the compressible flow. (The 

calculation of c from this equation is done by iteration by solving 
. p 

the equation c p ink. -f (K ,Moo,ep ) = 0 using the Newton method). Using 

the pressure coefficients corrected in this way, the boundary layer 

calculation is again carried out with consideration of the compress­

ibility. The search for the physically correct solution is continued 

if separation now occurs ahead of at least one dead water attachment 
point. 

In order to avoid cases where the given incident Mach number is 

over-critical during each compressibility correction it· is examined 

whether the pressure coefficient c i k is less than the value /30 * p n ---

cp ink 
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using equation (15) corresponding to the critica~ pressure coeffi­

cient 

(16) 
* 2 __ K_ 

C --- [1~ (-l_+!=.! 2 "-1 
P "Ha 2 K + 1 K + 1 Ma ... ) ) ... 

anywhere. In this case, the Mach number is reduced until everywhere 
It 

we have c p ink. 0: c p ink. In the case of a given over-critical 
Mach number, the critical Mach number is determined and the calcu­
lation is carried out for it. 

3. METHOD TESTING AND IMPROVEMENT TESTS 

In order to test our calculation method, its application limits 
and possible improvements, numerous examples were calculated and the 

theoretical results were compared with measured results as far as 
possible. 

3.1 First results for a profile with Fowler flap 

The first flow calculations were done for the profile GA(W)-l 

with a 30% deep Fowler flap, for which experimental investigations 
were described in detail in [16,17J. This included force measure-­

ments, pressure distribution measurements and flow visualizations 
for various flap p6sitions and angles of attack, but for moderate 

Reynolds numbers (between Re = 2 • 10 6 and Re = 3 • 106). The Mach 
number was Ma~ = 0,15. In order to fix the laminar-turbulent trans­
ition, turbulent strips were used for all measurements which were 

attached at 5% profile chord al~ng the topside and the bottoms ide 
of the main wing. 

Figure 5 shows the lift curves according to theory and experi­

ments in the case of deployed flaps with 30% flap deflection and 

for comparison also for the case of the retracted flap (single pro­
file). The Reynoids number was 2.2 • 106 . For the calculations, 

it was first assumed that there were no separation bubbles on the 

topside and that the transition occurs at the laminar separation 
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point but at the latest at the location of the tvrbulent strips, 
and also that the flow was incompressible (Ma = 0). For the case /31 

00 ---

of the deflected flap, for small to moderate angles of attack there 

is a good agreement between the theoretical curve and the experiment­

al value (symbols) .. In particular, it is found that the substantial 

increase in the lift compared with'the single profile as well as the 

lift loss (caused by friction and partial separation) as compared 

with ideal flow is well represented by our theory. The maximum lift 
coefficient is substantially increased by the deployed flap as 
follows: 

according to measurements from about 1.55 to about 3.6 and 
according to theory from about 1.50 to about 3.8. 

This result is somewhat satisfactory as well. On the other 
hand, in the post stall range, the results are not satisfactory for 
the present profile system. We will discuss this later. 

By consideration of the compres.sibility (dashed curves), the 

results were somewhat improved but not drastically. 

The following observations are unsatisfactory. 

a) For the single profile at moderate angles of attack, the 

measured lift coefficients are clearly higher than the calculated 
ones. This could be caused by the fact that here short separation 

bubbles occur in practice in spite of the turbulent strips which 
already occurred ahead of the turbulent strips. A second calculation 

where short separation bubbles are allowed resulted in t·he thin 
curve shown. According to this, such bubbles seem to also exist 
for moderate angles of attack but not in 'the post-stall range. Our 
empirical criterion for the existence of bubbles also gave short 

bubbles in the post-stall range but is unreliable here. 

b) For the flap profile in the post-stall range, the calculated 

lift coefficients are much higher than the measured ones. In the 
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present example physical phenomena must come int? play, which are 

not completely covered in the theoretical model yet. In order to 

obtain a better insight into the physical reality, in Figure 6 we 

show the pressure distribution of the flap profile for ex :f. 10.30 and 

12.8%. . At ex = 10.3., the theory and the measurement have only small /32 

separations over the main wing. At the flap our calculation results 

in moderate trailing edge separation, whereas the measured pressure 

distribution indicates a separation bubble near the nose. Overall, 

the pressure distributions agree for the most part. 

At ex = 12.8 0 on the other hand, the measurement at the flap 

shows a remarkable pressure distribution. It deviates from the 

pressure distribution for the flow without separation (dashed curve) 

as well as from the pressure distribution calculated for trailing 

edge separation (solid curve) to a significant degree. Apparently, 

we have no clear trailing edge separation here but a very strong 

influence of friction. Perhaps this is a long bubble with adjacent 

very thick boundary layer. Over the main wing the measurement shows 

clear trailing edge separation with substantial dimensions, whereas 

the calculated flow is approximately attached. The unrealistic 

modeling of the flap flow here apparently leads to a false result: 

with respect to the position of the separation point over the main 
wing. 

Clear agreement in the pressure distribution over the main 

wing, on the other hand, occurs when the position of the separation 
* point is correctly' specified there· (solid curve in Figure 7) . For 

the entire flow in this case, the lift coefficient of ca ;; 2,9, 

results which is not very different from the measured one. At the 

flap the calculation gives 50% trailing edge separation with a 

*)For the calculation the computer program was extended so that the 
iteration determination of the separation points could be selected 
for those profiles, for which no fixed specified separation points 
were available. 
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pressure distribution which is clearly different from the measured 

one. 

In order to examine to what extent the modeling close to real­

ity of the flap flo~ might lead to a better overall solution~ we 

attempted to achieve a pressure distribution over the flap with a 

suitable contour modification which is close to the measured one. 

The result is the dashed curve in Figure 7. Automatically, we found 

a stronger separation and a better pressure distribution over the 

main wing and a lift coefficient of ca = 2.6 which almost agrees with 

the measured one. This means that we would be in the position of /33 
calculating the overall flow even for substantial separation over 

the main wing (that is, in the post-stall range), if we were only 

able to analyze the flow over the flap better. For this purpose, 

we would have to have more information about how the measured press­

ure distribution comes about over the flap and we would have to know 

the responsible physical phenomena. The following possibilities 

should be considered: 
a) long bubble over the flap topside 

b) insufficient modeling of the main wing wake and possible contact 

of this wake with the flap boundary layer (wake boundary layer 

confluence) 

c) influence of separated flow at the flap cavity on the flow around 

the flap. 

Better information about the true condition can only be obtained 

with very careful experimental work on tHe flow field in the vicinity 

of the flap. In the present case, we could not progress using 

theory alone. It is possible that the complications are caused for' 

the most part by the relatively low Reynolds numbers of the measure­

ment and the special geometry of our example. For large Reynolds 

numbers over 107 which are important for large aircraft, topside 

separation bubbles probably would no longer occur and the friction 

effects would be in general smaller. This fact and somewhat larger 

gap dimensions between the main wing and the flap make a wake-
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boundary layer confluence less probable. Theref9re, we should 
expect that our method in its present form (that is, without con­

sideration of phenomena mentioned in a) and b)) will give better 

results for large Re and more favorable configurations. 

3.2 The problem of flap cavity flow 

Along the bottom side of the main wing at the beginning of the 
flap cavity there is a corner or at least a strong curvature. In 

both cases one would expect separation of the flow. For the re­
flected flap, the flow which is directed upwards, ahead of the flap 
is probably reattached again. In the flap cavity, therefore, we 
expect a separation bubble. In order to estimate the displacement ·V34 
effect of such a bubble, we carried out calculations for two extreme 

assumptions as follows: 
a) for infinitestimally small bubbles (the original small con­

tour of the flap cavity was used as the profile contour) 
b) for a thick bubble whose contour corresponds to the retracted 

flap (the original profile GA(W)-l without flap cavity was used as 

the main wing in the calculation). 

The pressure distributions a = k9,3° for both cases are compared 
in Figure 8 and the measured ones. It can be seen that the bubble 

only has a local .influence on the pressure distribution. It can 

also be seen that the simple assumption of a bubble which has the 
shape of the retracted flap already leads to a rather usable correct­
ion of the pressure distribution along the bottomside of the main 

wing. This assumption was, therefore, retained for all previous 
* calculations . 

Regarding the displacement effect, it seems that a very accur­

ate modeling of the flap cavity bubble does not seem to be necessary. 

*)Using a somewhat shorter bubble, which reattaches at about 5% 
ahead of the trailing edge and which has a maximum convex curvature 
at x/I=O.75, one obtains a slightly better matching to measured 
results. 
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On the other hand, other influences should not be excluded, for 

example, that the transition zone between the bubble and the exter­

nal flow extends down to the flap boundary layer and it is in­

fluenced (due to increased total pressure and/or the change turbu­

lence of the incoming flow). Also there is the possibility of . 
unsteady separation in the flap cavity, especially for a cont'inuous 

transition. Extensive experimental work about these questions would 

be very interesting in order to obtain more knowledge and to improve 

the theoretical model. 

3.3 Testing of various trailing edge conditions for 

calculating the dead water region 

As mentioned in section 2.2, we used the following two condi­
tions for specifying the circulation and the displacement for each 

profile 

(17 a,b)) CpA II Cpu and cpu .. CpO 

A and U were the topside and bottom side separation points and 0 was /35 
the point on the upper boundary of the displacement region. U was 

always assumed at 98.5% of the profile chord and 0 was assumed at a 

distance AH from A on the streamline which starts at A. There is a 

certain arbitrariness in the selection of points U and O. 

Using a few examples, we examined whether by changing the condi­

tions mentioned above the result of our calculations would be sub­

stantially influenced and whether they could then be improved. We 

were primarily interested in the correct lift value and also in an 

improved determination of the dead water pressure which was usually, 

too high in our previous calculations. The test calculations' were 

first performed for the profile GA(W)-l (with a retracted flap). 

.First of all, we varied the position of the lower comparison point U 

as follows (see also Figure 9): 

1) U. = u97 ' that is poirtt U at 97% of the profile chord along 

the bottom side profile contour, 
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2) U :: U96 , 

3) U :: U,01 ' 

that is point U at 9S.5% of the profile chord 

along.the bottomside contour 

point U is 1% behind the profile along the 

extended profile central line. 

Figure 9 shows the results of test calculations for n = So 

(slight separation) and n = 16° (moderate separation) .. First of 

all, one can see that compared with the theory of frictionless flow, 

our theory with friction separation in every case results in a sub­

stantial improvement. 

The different position of the point U brings about slight 

changes in the results for small separation regions (n = SO) and 

somewhat larger differences for large separation regions (n = 16°). 

Regarding the pressure distribution outside of the dead water region 

and regarding the lift, best agreement with the measurements occurs 

for u:: u98,5. The position of the separation point A is well cal­

culated, but the value of the dead water pressure is clearly too 

high in all cases. U:: U,O, at n = 16° gives the most favorable dead 

water pressure, but leads to a lift coefficient which is clearly too 

high. In addition, sometimes there are convergence difficulties with 
U :: u,O, 

Additional test calculations of this kind were performed with 

the profile NACA 4415. They confirm the above. The most important 
input data and results are given in the following table. 

PROFILE NACA ~~15 Re - 3 • 10", Maoo < 0.15 

(calculation for: incompressible flow, transition in the lam. 
separation point) 

n ~~~~~~t Lift=:~~~~!:ientt~~o:~c::~~n~r::~i0n and separation 

friction from [lSJ U = U 97 U = O!e.s U = UlOl 
SO 1.52 1.20 1.27 1.26 1.25 

14° 2.24 1.40 1.37 1.39 1.45 
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The table again shows a very slight dependence of the result 

on the position of the point U at a = 8° and only a moderate depen­

dence at a = 14°. The most favorable result is again obtained for 
U = u98 ,S. 

In this way we calculated the complete lift curves for two 

different Reynolds numbers and these are compared in Figure 10 with 
measurements. 

Even though the lift can be easily calculated (as well as the 

separation pOint), there is still the problem of the excessively 

high dead water pressure. F,or large dead water regions, this is 

important for the moment and the drag. For the moment curves shown 

on Figure 10 bottom, we find good agreement between the theory and 

the measurement only up to Q. a 12°, , and beyond this the calculated 

moment is too large. 

Our attempts to change the conditions (17a,b) in order to ob­

tain better results were continued. 

As the next step, we 
changing the distance AO. 

gave the following for Re 

varied the position of the point 0 by 
Calculations. for the profile NACA 4415 

= 3 • 106 and a = 14°. /37 

for ,I AD 
. . 0,9 Ail 1,0 AD 1 ,1 Ali rre:~lerft 

valoos ell .' 1,390' . 1,392 -1 ~ 393 1,410 

and,' em 1/, " ~ 0,020 -0,021 , -0,021 -0,070 

It is found that the results are rather insensitive to a moder­

ate variation in the position 01 0 and that the lift agrees very 

well with measured values for all cases. Therefore, we cannot bring 

about a substantial improvement in the moment coefficient in this 
way. 
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It is found that the results are rather insensitive to a 

moderate variation in the position of 0 and that the lift agrees 

very well with measured values for all cases. Therefore, we cannot 

bring about a substantial improvement in the moment coefficient in 

this way~ 

Finally, the conditions (1 7a, b) were replaced by 

(lBa, b) cpA = cpO and vtH = 0, 

In other words, equal pressure is only assumed for points A and 0 

and the requirement for equal pressure in U is given up and 
replaced by t~e requirement for smooth departing flow at the trail­
ing edge. The idea of this is to avoid the coupling of the dead 

water pressure and the relatively high pressure 
bottomside. Calculations with these conditions 

for the profile NACA 4415 at Re = 3 • 106 and a 

and 
c a = 1.440 

cm 1/4 = -0.031. 

along the profile 

gave the following 

= 14° 

Here we find an improved moment coefficient which is still not 

satisfactory at a somewhat higher lift coefficient. Calculations 

for additional angles of attack showed that the same is true for 
larger angles of attack, but for smaller angles of attack, the con­

ditions (17a,b) and (lBa,b) give practically the same good results. 

Since we do not have anytRing better, we will continue to use 

the conditions (17a,b), that is U = U9B . 5 and AO = 1.0 • AH. 

The investigations in this section showed us that the lift is 

usually calculated correctly and it changes only slightly when one 
varies U and 0 moderately. The problem of the excessively high 

dead water pressure and moment coefficient for large angles of 

attack, however, remain. We can probably only find a remedy-by /3B 
using a fine dead water model. The model of DVORAK and MASKEW [lBJ 
seems promising where the boundaries of the displacement region 

are represented by vortex layers. 
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3.4 Various methods for finding separation pOints and 

investigations about the uniqueness of' the solution 

We will now discuss the question whether the separation points 

which are obtained for the searching method discussed in section . 
2.2.3 for profile system are the only possible ones. It is hardly 

possible to give a general proof of this. However, there is one 

way to clarify the question of a unique solution for a.single indi­

vidual case. If one accepts the principle of mutual intensification 

of separation regions, then the previous method (search method 1) 

for which the search starts with very small separation regions, will 

lead to the solution with the smallest possible separation regions 

compatible with one another. Conversely, one will obtain the solu­

tion with the largest possible separation regions compatible with 

one another if one starts the search with very large separation 

regions and if displacement points are displaced in very small steps 

backwards until, for the first ti=e, separation is established ahead 

of all attachment points (search =ethod 2). If calculations are 

made according to both search =et~cds and if both result in the 

same solution (approximately), then this solution is unique. 

Strictly speaking, if a unique solution existed, search method 2 

should lead to a somewhat smaller separation region than search 

method 1 because the attachment points A were displaced in finite 

steps, forwards in the case of search method 1 until they were just 

ahead of the separation points~ For search method 2, they were dis~ 

placed backwards until they were all just behind the separation point. 

After an appropriate program extension, calculations were mad~ 

according to both search methods for several examples. Figure 11 

shows the results for our GA(W)-l profile with 30% Fowler flap and 

~ for 30% flap deflection and a = 16°. We show the positions of the 

attachment point for each iteration step. As expected for the case 

of a unique solution, the attachment points for: both profiles for 

search method 2 are somewhat behind those found for search method 1. 

A solution with larger dead water regions, therefore, does not /39 
exist. 

35 



.' 

In the same way two further cases with multiple separation . 
were investigated, that-is 

the slat-main wing configuration of Figure 13 for , 
Re ; 3,3 • 10 , Ma..,= 0, d. = 36" (strong separation over the main 

wing, slight separat~on over the slat), and 
the three part configuration consisting of slat, main wing arid flap 
of Figure 14 for Re = 1,5 .10', Ma ... = 0, a = 20°. (strong flap separ-

ation, small separations over the slat and the main wing). 

In both cases we found uniqueness of the solution. 

With the assumption that the solution is always unique, of 
course only a single search method has to be used. Search method I 

should then be preferred because, compared with search method 2, 
it usually-requires less computation time. Also, search method 2 
sometimes has convergence difficulties in the iteration calculation 
of the superposition factors. 

In the calculations with slats it was found that the principle 

of mutual intensification of separation regions is only partially 

applicable for the slat. The slat separation does influence the 
separation over the main wing but conversely, for substantial main 

* wing separation there is a somewhat reduced slat separation. From 

this the requirement arises for extending the search method in such 

a manner that the dead water points can migrate not only forwards 
during the search process, but if necessary, also backwards. This 

was brought about by using search method 2 after using search method 

1 with the found attachment points. Starting with its result, 

finally search method I is used again. In this way by searching 

~orward§, backwards and forwards, the correction to those separation 
regions iR brought about which would be too large if only search 

method 1 or 2 were used individually. 

*~XPlanation: Reduced circulation over main wing results in a 
smaller effective angle of attack of slat. 
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For our three part configuration, Figure 12 shows the itera­

tion for the combined search method. 

The following table gives the positions of the dead water 

points along the various wing parts according to the various search 

methods. 

slat 

xA/ = -0.025 

-0.020 

-0.000 

main wing flap 

IT. 862 1.037 

0.872 1.037 

according to search 
method 1 
according to combined 
search method (1-2-1) 

0.880 1.052 according to search 
method 2 

As expected, search method 2 always gives values which are 

somewhat too large (that is, separation regions are too small). 

There are differences between the results of search method 1 and 

the combined search method only for the slat and the main wing and 

they are not large. 

For safety, in the following we will always use the combined 

search method. There is a possibility of reducing the calculation 

effort as will now be discussed. 

In Figure 12, it becomes apparent that the steps should be 

substantially increased during phase I of the searching process. 

This probably is acceptable for the combined search method as well 

because in this way the true separation point is clearly exceeded 

and because this can again be connected by the backward searching 

in phase 2. On the other hand, it has to be considered that for 
large steps, the superposition factors band d will change drasti­

cally from step to step so that for the inner iberation (determina­

tion of the superposition factors) the zero approximation values 

will be not as good and, therefore, one would expect higher compu­

tational times and even convergence difficulties. It does not 

seem possible to give general information about the optimum step 
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size with respect. to the overall computation time, but by carefully 

adjusting the step size.during search phase 1, a'reduction in the 

overall computational time can probably be brought about. There­

fore, for the present example, we carried out sample calculations 

with the .double and triple step size. Both calculations gave the /41 

same results as for ~imple step size (without convergence diffi­

culties). The overall computational time (using the IBM 370/158 

computer) were the following: 

for the combined search method 

with simple step size 19 minutes CPU time 

with double step size 17.5 " " 
with tDiple st~p size 16.6 " " 
for search method 1 18 " " 
for search method 2 26 " " 

Accordingly, the combined search time with the triple step size 

is the ~ost favorable. A further increase in the step size does not 

bring about any substancial calculation advantages but increases the 

danger of convergence difficulties for the inner iteration. The 

possible calculation time gained by further improvement of the 

search method is too limited because most of the total calculation 

time (about 14 minutes in the present case) is required outside of 

the search process, especially for the calculation of the basic solu­

tions. 

For the further calculation we use the combined search method 

with the triple step size during search phase 1 (and simple step 

size during the other phases). 

At this point we would again like to point out that in the 

case Maoo ! 0 the compressibility correction (according to section 

2.4) is used in the last two search phases whereas the(r~ugh) 

search pnase 1-l,s only carried out for incompressible flow in order 
to save time. 

38 



3.5 Calculation results for profile with slat 

For the two part configuration consisting of slat and main 

wing investigated experimentally in [20J, Figure 13 shows the lift 
6 curve according to ~heory measurements for Re = 3.4 • 10 and 

Ma = 0.16 for the two gap widths s. For comparison, we also show 
00 

the lift curve for the fast flight profile NACA 64-210 without 

slat. The measured and calculated maximum lift coefficients 

agree in all cases very well. Both the substantial lift gain with /42 

the slat as well as the slight displacement of the lift maximum with 

the change in the gap are well predicted. In the post-stall range, 

on the other hand, the calculated lift coefficients are always some­

what higher than the measured ones. 

Tbe lift maximum is exceeded also when a slat exists due to 

advancing separation over the main wing. The small separation over 
the slat only starts to expand above a; 35° For the calculations, 

it -as, therefore, assumed that no bubbles exist and that the trans­

i~~on occurs at the laminar separation point. For the main wing, 

we ~sed M1 = 120 target points and for the slat we used M2 = 60 for 

target points. The calculation time on the IBM 370/158 was 7-11 
minutes per angle of attack, depending on angle of attack (and, there­

rore, separation regions). 

3.6 Calculation results for a three-part profile system 

For a three-part high lift configuration consisting or slat, 

main wing and Fowler flap designed at the DFVLR Institute ror Design 

Aerodynamics, pressure distributions and lift curves were calculated. 

Measurements for these configurations are in preparation but experi-

.- mental results are not yet available. 

Calculations were first done ror rather large Reynolds numbers 

(Re = 1.5 • 107 ), as might occur during takeoff and landing of large 

cruise aircraft. Figure 14 shows the configuration and the calcu­

lated pressure distribution for a = 00 and a = 200 (corresponds 
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approximately to c ). For a = 0°, there was a substantial sep-a max 
aration on the topside Qnly over the flap. But ~he following bound-

ary layer calculation which is also carried out for the bottoms ide 

of the profile, shows turbulent separations at the bottomsides of 

the slat and the main wing. With the assumption that in this way 

long bubbles are created in the slat bottoms ide and in the sLat 

cavity, the calculation was again repeated with the corresponding 

modified profile contours. The resulting pressure dist~ibuti~n is 
also shown in Figure 14 and shows the displacement effect of such 

bubbles on the bottomside. Substantial changes in the pressure dis- /43 
tribution only occurred near the bubbles. Over the flap there was 

only a slight enlargement of the suction ~eak. The separation points . * 
and the total lift coefficient practically did not change . 

For a = 20° on the topside, there was a strong separation at the 

flap and in addition, no separations over the main wing and the flap, 

whereas on the bottomside there was no separation. As Figure 15 (top) 

shows, as the angle of attack is increased further (a > 20°), there 

is an intensification of flap separation and a rapid increase in the 

separation over the main wing, and therefore, a reduction in the 

lift coefficient. The separation over the slat first increases 

slightly and then decreases slightly again for larger angles of 

attack. Figure 15 shows the various lift curves in the lower part. 

Except for Re = 1.5 • 107 , the lift curve was also calculated for 
Reynolds numbers which can be achieved in.1 the wind tunnel (Re = 

6 • 106). There is a strong influence of the Reynolds number on the 

maximum lift of these high lift configurations. AccordIngly, for 

the full scale version, one would expect about 13% higher lift coeff­

icient than for model measurements in the wind tunnel, provided that 

in both cases there were no physical phenomena which were not 

*)This does not mean that such bubbles could not change the overall 
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flow in another way than by their displacement effect. In parti­
cular, for small gap width it is possible that the transition 
zone between the bubble and the external flow would have an effect 
on the profile behind it because of the reduced energy and the 
changed turbulence in the boundary layer and in this way, the separ­
ation in the overall flow would be changed. 
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included in the calculation, such as bubble effeqts and wake-bound­

ary layer confluence. 

Finally, the calculation was made with consideration of com­

pressibility (dashed,curve) that is for Maoo = 0.19. This is approx­

imately the (lower) critical Mach number at the lift maximum f0r 

Re = 1.5 • 107 . Because of the influence of compressibility, the 

lift maximum is displaced towards smaller angles of attack and is 

substantially reduced. 

For these calculations, it was always assumed that the laminar 

turbulence transition occurs at the laminar separation point. 60 
target points were used for the flap and 100 target points were used 

for the main wing. The computation time on the IBM 370/158 was 15-

20 minutes for a set of parameters (a, Re, Ma ). /44 
00 ---

4. SUMMARY AND OUTLOOK 

In numerical calculation method [6] for steady incompressible 

flow over profile systems with simple trailing edge,separation was 

extended to cases where there are several separation regions over~ 

the various parts of the profile system. It is only by describing 

this multiple separation that it becomes possible to calculate the 

lift curve in the vicinity 0f the maximum lirt and in the post-stall 

range for mechanical high lift systems. 

In the extended calculation method, in addition to multiple 

trailing edge separation, the influences of bubbles and compressi­

bility were included for subsonic flows, approximately. The expanded 

method was programmed in FORTRAN and was tested with various examples. 

In all investigations, plausible unique solutions resulted. Compari­

son between theoretical results in measurements showed for the most 

part satisractory agreement. 
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It was also found that the calculation poss~bilities are sub­

ject to some important restrictions: 

a) steady plane flow is assumed. Unsteady effects for wing 

oscillations, gusts, acceleration, pulsating separation regidns, 

etc., as well as thr~e-dimensional effects over wings with finite 

stand are not covered. 

b) It is assumed that the wakes of upstream wing parts (wake­

boundary layer confluence) do not substantially influence the bGund­

ary layer directly. In practice, such influences often exist for 
moderate Reynolds numbers and small gap width. 

c) Compressibility influences are only considered for pure sub­

sonic flow and' only approximately. In practice, local supersonic 

regions could certainly occ~r for high lift configurations. /45 
d) Separation bubbles are only considered incompletely. On the 

profile topside, only short bubbles are allowed and these are only 

allowed to a Imnted extent and only as regarding their effects on the 

trailing edge separation. The empirical criteria present for the 

occurrence and bursting of such bubbles are incomplete and not very 

reliable. 

Bubbles along the profile bottoms ide can only be roughly covered 

by estimated contour modifications with respect to their displacement , 
effect. In practice, separation bubbles of all kinds occur, espe­

cially for not very large Reynolds numbers, and can substantially 

influence the overall flow under some conditions. 

e) Our potential theory dead water model satisfies the condi­

tion of constant pressure only approximately (at three points) and 

according to experience, results in dead water pressure which is 

somewhat too high. For larger separation regions in this way, the 

moment and the drag are inaccurately calculated. 

In addition~ for separation over the main wing of a slotted 

flap configuration (section 3.1), a modeling which is too rough for 

the main wing wake could be the reason for unsatisfactory descrip­

tion of the flap flow. 

f) The computer program can only be applied for trained persons 

in its present form because of continuous improvements. It is not 
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yet optimized and it is insufficiently documented. It still does 

not contain the ground effect. 

From all this, we have the following stimuli for future work: 

- improvement, ~ompletion and documentation of the computer 
program 

- development of a refined dead water model for strong and 
multiple separation 

- better coverage of all bubble effects 
- better coverage of compressibility influences, if possible 

for transonic flows 

- consideration of wake, boundary layer confluence 

- development of methods for three-dimensional and unsteady 
flows with separation 

This further development cannot occur purely theoretically and 

will require substantial support of experimental work. 
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Figure 9. 

theory without friction 

I ex= 16~ Re =2,2 '1!tj 

theory without frictior 
'---- Co = 2,51 

,.( ~co=l,55 
-11 " . .... I 

Cp 

o I :Jr = IIQ,o;: _ j '0 ..... =,\1 

+1' I J I 

0.50 0,75 1,0 0,50 0,75 1,0 
xiI - xiI'" 

theory with friction and separation 
UsU97 -- ca =1,06 --USU97 -- Ca. 1,39 

_{U S U98,5 -- ca = 1.19 -- U :: U98,S ~ Co " 1,52 

U:: U101 -- ca .. 1.19 --- U = U101 -.. ca .1,67 

Pressure distributions for single profile for 
different pos-! tions of comparison point U 



. . 
;.!.-

'. 

," 

, . 

Figure 10. 
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Figure ll. 
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Figure 12. 
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Figure 13. 
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Figure 14. 
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Figure 15. 
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