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HIGH TEMPERATURE COMPOSITES - STATUS AND FUTURE DIRECTIONS 

ABSTRACT 

Robert A. Signorelli 

National Aeronautics and Space Administration 
Lewis Research Center 
Cleveland, Ohio 44135 

High temperature composites are being studied in the hope of creating a 

new class of materials with higher-use-temperature potential. The types of 

composites being explored include ceramic/ceramic, ceramic/metal, and metal/ 

metal. Thi s paper wi 11 review the general results obtained for each type with 

a view toward evaluation of their current status and suggestions for future 

direction of development. 

INTRODUCTION 

Designers of heat engines, particularly aircraft gas turbine engines, can 

increase efficiency and reduce fuel consumption by increasing combustion 

temperature. Combustion gas temperatures for peak efficiency are typically 

well above those allowable by the maximum service temperature of current hot 

components. Materials research over the past thirty years on high temperature 

alloys, principally nickel and cobalt base, has provided ever-increasing 

component operating temperature limits which currently are 951-981 0C 

(1751-18110 F). More recent alloy improvements also have permitted an 

increase in service life from a few hundred to several thousand hours. In 

addition, elaborate and ingenious air-cooling designs have allowed increased 

combustion temperatures without exceeding material use temperature limits. 

The success of these efforts has permitted remarkable growth in reliability 

and efficiency for aircraft gas turbines which has helped to revolutionize air 

transportation. However, the limited potential for further improvements in 



conventional alloys to permit higher use temperatures has fostered work toward 

alternate material approaches. Directional solidification of superalloys, 

both polycrystalline and single crystals, is being used to eliminate trans­

verse grain boundaries as a source of weakness. Directional solidification of 

eutectic alloy compositions is controlled to form rod or lamellar phases with 

the strengthening characteristics of composites. Oxide dispersion 

strengthened superalloy composites, with oriented structures, are another 

approach being pursued for heat-resisting materials. Fiber composites 

fabricated by bonding together strong, refractory fibers into structural 

elements are still another promising family of materials. 

The diminishing additional gains possible from conventional poly­

crystalline alloys also is influenced by the severe erosive and corrosive 

oxidation environment present in modern turbine engines. Refractory metal 

alloys have demonstrated significant strength and creep resistance at higher 

temperatures but with unsatisfactory environmental resistance. Coatings, the 

subject of intensive study, show indications of some success, but with 

inadequate reliability for the long service times required. The failure to 

provide refractory alloys with a satisfactory combination of properties for 

high-temperature service has directed increased attention to ceramic 

materials. Conventional ceramic materials such as oxides, carbides, and 

nitrides have a combination of high-temperature properties that make them 

potential candidates for turbine components. However, some significant 

property deficiencies, including low ductility and flaw tolerence, have 

restricted their application. 
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Composites offer a promising approach for achieving structural materials 

that combine the high temperature strength of refractory materials while 

preserving much of the toughness and flaw tolerance of metals. This paper 

will discuss those composites which appear to have high temperature 

potential. These include: brittle/brittle combinations, such as silicon 

carbide or carbon fibers in a ceramic or carbon matrix, brittle/ductile 

combinations, such as aluminum oxide fibers in iron or nickel alloys, and 

ductile/ductile combinations such as refractory metal alloy wire in iron or 

nickel alloys. 

BRITTLE/BRITTLE COMPOSITES 

The high temperature strength of conventional monolithic ceramics is 

sufficient for a significant use temperature increase. Two ceramics studied 

for turbine applications are silicon carbide and silicon nitride. A 

combination of high temperature strength and thermal cycle resistance makes 

these materials logical choices for study. However, their low toughness 

5alues make them vulnerable to catastrophic failure. Attempts to increase 

toughness by incorporating refractory metal wire mesh have met with some 

success. But cracks, which can not be avoided in the brittle matrix, may lead 

to severe oxidation of the reinforcement wire. Despite this, refractory 

wire/ceramic composites can be considered for short time applications. 

Use of oxidation resistant ceramic fibers has been studied to add 

toughness without sacrificing oxidation resistance. A severe limitation to 

this approach has been the relatively small number of ceramic compositions 
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available in fiber form. Silicon carbide and carbon fibers have been hot­

pressed into ceramic matrix composites. The high processing temperatures 

required have caused a reaction between matrix and fib~r which typically has 

severely degraded fiber properties. This problem has fostered approaches 

which use weak bonding between fiber and matrix. A good example is carbon 

fibers in glass. Small diameter fibers are preferred for such an approach 

because their large surface-to-cross-section area provides a small stress 

transfer length. Further, small diameter fibers can provide a small inter­

fiber spacing which limits stress induced matrix crack progagation length. 

The potential of this type of composite for high service temperatures at 

moderate strength levels has fostered a renewed interest in ceramic matrix 

composites. However, the primary effort in high temperature composites over 

the past two decades has been directed at the ductile matrix type, both with a 

brittle ceramic filament and with more ductile refractory metal alloy 

filaments. 

BRITTLE/DUCTILE COMPOSITES 

The initial impetus to study fiber composites was based on the strengths 

of ceramic fibers and whiskers which were well above the values possible with 

bulk forms of the same material. Other properties that make such reinforce­

ments a leading choice for composite development are high modulus, good 

strength retention at elevated temperatures, excellent oxidation and corrosion 

resistance, and a density lower than that of conventional high-temperature 

alloys. 
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Single crystal aluminum oxide or sapphire whiskers, such as those in 

figure 1, have demonstrated tensile strengths approaching a theoretical value 

for cohesive strength, about 11 percent of Young1s modulus. The scatter in 

strength is large, but small diameter whiskers, under one micrometer, display 

values to 41 GN/m2 (6 million psi). Typical tensile values of 6.9 GN/m2 

(1 million psi) at room temperature decrease to 4.1 GN/m2 (611,111 psi) at 

11910C (2111oF). Consolidation of whiskers with such high temperature 

strengths into useful metal matrix composites offers the potential for 

remarkable strength improvements. However, small size whiskers are difficult 

to fabricate into a composite. They must be reasonably well aligned, 

surrounded by the matrix, and bonded to the matrix to be able to transmit 

stress. The strength of the near-perfect crystal structure of whiskers is 

associated with very smooth, flaw-free surfaces which can be readily altered. 

Bonding is particularly troublesome because reaction at the matrix-whisker 

interface to achieve bonding can roughen the surface and drastically reduce 

strength. Fabrication methods also are troublesome because of the limited 

fiber-to-fiber distance necessary to achieve a reasonable fiber content. For 

example, with a 1 micrometer diameter fiber, less than a 1/2~m distance 

between fibers is necessary for a 51 volume percent fiber content. Liquid 

infiltration is a possible fabrication method, but poor wetting can inhibit 

matrix infiltration. Alloying with elements to improve wetting also tends to 

accelerate attack of the filament surface. Thus, opposing effects must be 

combined to achieve a difficult compromise. 
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Coatings have been tried on whiskers as a technique to improve bonding 

while resisting surface attack of the reactive matrix. However, the small 

diameter of whiskers limits coating thickness to achieve reasonable volume 

fiber content. But thick coatings typically are needed to promote matrix 

infiltration into the whisker array. For example, a 1/2 ~m coating of 

tungsten or platinum metal was dissolved in a few seconds in an attempt to 

infiltrate liquid nickel matrix into alumina whiskers. Dissolution of the 

coating was followed by poor infiltration and whisker strength degradation. 

Powder metallurgy fabrication approaches also were unsuccessful because of the 

small interfiber distances with whiskers and because the hot pressing of the 

solid state powder/whisker billets caused whisker damage and fracture. In 

almost all cases, the high temperature properties achieved for whisker 

composites were disappointing compared with conventional superalloys. 

A further problem encountered with composites of sapphire whiskers and 

iron, cobalt, or nickel matrix alloys is the large thermal expansion mismatch 

between fiber and matrix which generates internal stresses when composites are 

exposed to the typical thermal cycle of heat engines. The stresses can cause 

disbonding or fracture of fibers. The lack of success with sapphire-whisker 

fiber-reinforced metal composites, to a large degree, was heightened by the 

small sizes of whiskers. 

In an attempt to circumvent these problems, a considerable effort was 

undertaken to explore brittle/ductile composites using larger diameter 

fibers. Flame polished single crystal rods, as well as single crystal 

continuous fibers, were produced. These fibers, with diameters from 100 to 
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350 pm (.004 to .015 inch), had tensile strength values lower than the higher 

strength whiskers but about equivalent to the average values of whiskers. 

Strength values were sufficient to encourage studies aimed at developing 

composites for high temperatures. The larger diameter greatly simplifies 

fabrication. Fiber coatings to promote wetting and inhibit surface attack can 

be applied with a thickness of several micrometers. Several candidate 

coatings, including refractory metals, carbides, and oxides were tried. 

Composite test specimens were fabricated using liquid and solid state 

fabrication incorporating 100-350 pm (.004-.015 inch) diameter sapphire 

fibers. However, long time exposure to service temperatures and thermal 

cycles indicated problems. A combination of surface attack and thermal cycle 

induced stress caused failures at disappointing strength levels. Relatively 

minor surface attack, when coupled with the stress from thermal expansion 

mismatch between fiber and matrix, was sufficient to cause failure by fiber 

fracture or disbanding. The current level of activity in aluminum oxide 

fiber/metal composites for high temperature use is very low because such 

problems were encountered. These problems while formidable are not 

unresolvable. 

One limitation hampering development of brittle/ductile composites is the 

limited number of ceramics composition available in fiber form. A number of 

different fabrication processing methods have been studied to make it possible 

to fabricate a family of ceramic fibers for high temperature composites. One 

of the more successful methods developed uses a focused laser beam to melt the 

tip of a polycrystalline feed rod. The suspended molten drop is then contacted 

by a single crystal seed rod which is withdrawn at a controlled rate. 
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Continuous filaments with diameters from 50 to 50Q pm (.002 to .020 inches) 

were grown in this way. This method offers the potential for growth of fibers 

of a wide range of high melting temperature ceramic composition without the 

limitation of crucible contamination. Improved fibers combined with a matrix 

composition to reduce thermal mismatch effects offers a potential means to 

overcome the problems that have prevented the achievement of the brittle 

fiber/metal matrix high temperature composites. 

Silicon carbide shares with sapphire a decade or more of concerted study 

as a reinforcement for high temperature composites. Silicon carbide 

whisker/metal composites were studied and abandoned because of the same 

problems encountered with sapphire whiskers. Fortunately, silicon carbide 

polycrystalline fibers, produced by chemical vapor decomposition on a heated 

substrate, were available for use in studies of high temperature composites. 

These fibers, while not as strong at the intended service temperatures, 

9800e to 12000C (lB00-22000F). offer a large advantage over the best 

superalloy candidates. The comparison of calculated, density compensated 

strength of SiC composites to similar data for typical superalloys, figure 2, 

shows what could be achieved if SiC fiber strength could be utilized in 

composites. SiC is readily wet by most candidate superalloys and there is no 

problem in obtaining bonding. However, the reaction-degradation of SiC 

filament with most candidate matrix alloys can quickly destroy the filament at 
o temperatures above 980 C. Thus, coatings are necessary to achieve 

reasonable service lives. The micrograph in figure 3 shows the reaction 

obtained with an uncoated fiber as contrasted with a coated filament. 
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Refractory metal coatings can be effective, but t~e density increase from the 

coating thicknesses required, 20-50 pm, are prohi~itive. Refractory carbide 

coatings have been shown effective, but a practic~l coating process to obtain 

long time diffusion barrier reliability has been elusive. 

As with sapphire filaments, the thermal expansion difference makes the 

problem of retaining a stable coating between the high thermal expansion 

matrix and the lower expansion of the filament difficult. The brittleness of 

coatings and the coating/fiber interface further compounds the complexity. 

Recent studies in the US and USSR have addressed the reaction problem between 

SiC and Fe, Ni, and Co matrix materials. The results are consistent in 

indicating the need for a coating to reduce reaction at temperatures above 

9800C (18000F). There is some divergence of results at lower temperatures 

with the most pessimistic indicating reaction starting at 675 0C (12500F). 

However, other studies indicate relatively limited reaction to 92SoC 

(17000F ). 

DUCTILE/DUCTILE COMPOSITES 

The problems encountered in studies to develop the technology of brittle 

fiber/ductile matrix high temperature composites had thwarted efforts to 

achieve the high potential strengths theoretically possible. As discussed 

above, the strength limits obtained have been low because of a combination of 

fiber/matrix surface reaction and internal stresses from thermal expansion 

mismatch. Further approaches to overcome these problems should be under­

taken. An alternate approach which has received continued effort is based 
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on refractory metal alloy wire as the high strength phase. While the 

theoretical specific strength potential of this f~ily of metal matrix 

composites is less than that of ceramic fibers, as shown in figure 4, the 

ductility of refractory alloy wire drastically reduces the severity of the two 

primary obstacles with ceramic fibers. As described above, ceramic fibers 

were notch sensitized by the surface roughening effect of reaction with matrix 

alloy elements. In contrast, fiber-matrix reaction with alloy wire causes a 

diffusion controlled, very gradual degradation of wire properties typical of 

the strength degradation of highly alloyed superalloys at their service 

temperatures. In addition, as will be shown subsequently, the temperature for 

such degradation of refractory metal alloy is above that at which superalloys 

are used. Further, the thermal expansion mismatch problem is more tolerable 

because of the ability of the fiber to relieve strains rather then to 

fracture. Thus, a ductile/ductile combination offers the practical potential 
I 

for realizing a use temperature increase in the near term. This system also 

serves as a learning vehicle since many of the technology factors for high 

temperature composites are common to all systems and the refractory alloy 

wire/superalloy composite system offers the opportunity to address them. 

Screening of Mo, Nb, Ta, and W alloy wire properties indicated the 

potential for several candidate systems. Since the creep rupture properties 

of composites are usually directly related to those of fibers, these data were 

evaluated first. Most of the studies were conducted using commercially 

available lamp filament and thermocouple wire. The need for higher strength 

wire was recognized and fabrication processing for producing wire from 

stronger alloys was undertaken. Representative data from that program are 
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shown in figure 5. The 100-hour 10900C (20000F) rupture strength of the 

strongest wire produced, W-Re-Hf-C wire, was over 16 times that of superalloys 

and ~wice as high as commercial lamp filament. The properties of the 

W-Re-Hf-C wire were not optimized by a thorough thermomechanical fabrication 

study. Further, there has been no refractory metal alloy composition study 

conducted with the purpose of maximizing strength properties for composite 

application temperatures. Thus, the properties demonstrated thus far are 

merely indications of the properties of the first generation of fibers. 

Considerable further improvement in properties can be projected. Based on 

these strength data and other factors, tungsten wire was chosen for most 

composite studies. The acronym TFRS is used for tungsten fiber/superalloy 

composites. 

Matrix alloy selection also plays a major role in TFRS properties. Matrix 

alloy composition must be compatible with fibers to minimize interdiffusion 

related strength degradation. The photos of figure 6 show the wide range of 

compatibility that variation in matrix composition can achieve. The photos in 

figure 6 a, b, d, and e show the varying degree of reaction with commercial 

tungsten lamp filament and the four alloys listed in Table I. 

TABLE I 

Nickel-Alloy Matrix Materials 

Nominal Composition of Alloy (w/o) 

Alloy 
number Al Nb Cr Mo Ni Ti W Ta 

1 20 55 25 
3 2 15 56 2 25 
5 1.25 19 4 70.5 4 1.25 
7 4.2 1.25 15 4 66.8 3.5 4 1.25 
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The almost complete destruction of TZM molybdenum alloy wire by all four 

alloys is typified by the results with alloy 1 in figure 6c. Data have been 

accumulated to indicate that matrix compositions can be selected to control 

reaction and bond the fibers into a useful structural member. However, other 

requirements influence matrix alloy choice. For example, oxidation and hot 

corrosion protection of the otherwise oxidation prone tungsten also is 

necessary. Also, matrix ductility is important to provide impact resistance 

at low temperature and to provide mechanical and thermal fatigue resistance. 

In general, relatively strong conventional nickel and cobalt alloys have been 

unsatisfactory as matrix alloys for TFRS because of fiber/matrix inter­

diffusion and property loss. These alloys also are less effective in 

resisting strain from thermal expansion mismatch. Weak, ductile, oxidation­

resistant, iron-base coating alloys (Fe, Cr, Al, Y) have been the best 

compromise compositions identified to date. 

One of the significant first accomplishments with TFRS was to evolve 

fabrication processing for production of test specimens in order to evaluate 

properties. As with many other composite materials, conventional fabrication 

processing methods such as casting, rolling, and forging are not ideal. Of 

the several fabrication processing approaches used, diffusion bonding of fiber 

arrays with matrix alloy powder or matrix foil has been the most effective 

method. A number of mechanical properties have been evaluated to permit an 

evaluation of the relative merit of TFRS compared with current high 

temperature alloys. The brevity of this review prohibits detailed discussion 

of the properties of TFRS. However, a brief review of some results is 

appropriate here to indicate the potential of the material and to identify the 
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problem areas. The stress rupture data for 100 hours at 10900C (2000oF) 

for representative TFRS and the strongest superalloys are shown in figure 7. 

The W-Hf-C/superalloy composite is more than three times stronger than the 

superalloys. Results obtained in creep rupture indicate the potential to 

increase use-temperature as much as lS0
0
C (300

o
F) above that of the best 

currently identified superalloys for turbine blades. The properties measured 

included thermal stability, impact resistance, thermal fatigue, thermal 

conductivity, and thermal expansion. Screening of these properties has 

indicated that TFRS has promising potential for further development. However, 

one of the critical areas in need of further study is thermal fatigue, 

particularly with the fiber content and ply orientation for engine components, 

rather than with simple unidirectional test specimens used thus far. 

One of the compensating benefits associated with the low thermal expansion 

properties of tungsten fibers is that TFRS composites have a low thermal 

expansion compared with conventional superalloys. Thus, low expansion thermal 

barrier ceramic coatings on TFRS composites would be expected to improve 

cyclic temperature service lives since the coatings would be less likely to 

spall from the TFRS substrate. Thermal barrier coating can effectively permit 

an increase in the allowable gas temperature without increasing material 

temperature. Alternatively, cooling airflow can be reduced at a given turbine 

gas temperature. Both are advantageous to increase performance and/or to 

reduce fuel consumption. 
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A further potential advantage that TFRS offers for cooled turbine 

components is a much higher thermal conductivity. Tungsten has about a three­

fold higher thermal conductivity compared with superalloys. Thermal 

conductivity of TFRS with typical fibe content is about one and one-half to 

two times the thermal conductivity of superalloys. This higher thermal 

conductivity can significantly improve the potential use-temperature of air­

cooled components. This advantage also can permit the use of a simpler, lower 

cost cooling geometry. For example, convention cooled blades with impingement 

inserts may be substituted for the complex geometries needed for film or 

transpiration cooling. 

Fabrication processing of simple test specimen geometries has been 

accomplished using several solid state methods. The processing methods used 

to produce TFRS test specimens followed the techniques evolved for aluminum 

and polymer matrix composites. Pressure and temperature are applied to an 

assembled array of fiber/matrix composite plies. An advantage for TFRS is the 

ability to plastically deform the tungsten alloy wire at temperatures above 

about 3700C (700oF). Plastic deformation eases the problem of fiber 

cracking during fabrication and permits secondary plastic deformation of a 

composite billet. The fabrication of complex, hollow, air-cooled airfoils 

parallels the methods used to make fan and compressor blades with refinements 

to permit the hollow airfoil and film cooling holes near the trailing edge. 

The process shown schematically in figure 8 has been used to fabricate a 

prototype first stage turbine blade. The process uses diffusion bonding of 

monolayer composites along with steel core plies and unreinforced cover skin 

plies at the inner and outer surfaces. After diffusion bonding, the steel is 
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leached from the airfoil leaving a hollow configuration. An impingement 

cooling insert can be inserted to improve the interior cooling airfoil path. 

The successful fabrication of the blade, figure 9, offers evidence that 

fabrication processing of complex components can be achieved. This 

accomplishment is to provide a basis upon which the manufacturing technology 

for TFRS components can be developed. 

A further milestone has been reached as part of the prototype turbine 

blade fabrication, which addresses the concern of component density and weight 

for TFRS composites. The density compensated mechanical properties values of 

TFRS are used for comparison with superalloy properties for components, 

particularly rotating airfoils where component stress levels are density 

related. Since tungsten is twice the density of nickel, the concern has been 

that while the density compensated strength values are high, the component 

weight could be high also and affect the requirements for other components 

such as turbine disks. However, by varying the fiber content along the span 

length of the airfoil to match the stress and temperature requirements and by 

varying the hollow blade wall thickness, blade weight can be very similar to 

that of superalloys. The prototype blade weight with TFRS was within 10 

percent of a conventional superalloy blade weight. 

SUMMARY 

The study of high temperature composites, fostered by the desire to 

provide improved heat resistant engine components, has been rewarded with 

considerable success and some disappointments. Composites with brittle 
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ceramic fibers such as A1 203 or SiC, either whiskers or monofilament in a 

ductile metal matrix, have achieved strengths far below their promising 

theoretical potential. Reaction at the fiber-matrix interface degrades fiber 

strength by causing surface flaws which act as local stress concentrations. 

Thermal expansion mismatch between ceramic fibers and candidate matrix alloys 

can induce severe internal stresses. The combination of thermally induced 

stress and surface flaw stress concentrations leads to low strengths. 

Coatings and/or alternate fibers are needed to consider future work in this 

area promising for increased temperature components. 

Composites of ceramic fibers in a ceramic matrix have had mixed results. 

Attempts to increase toughness for conventional high strength ceramics such as 

silicon carbide or silicon nitride by reinforcing with carbon or ceramic 

filaments have made limited gains. The high fabrication temperatures for 

producing the matrix body without destroying the filament presents a difficult 

challenge. An approach that has,offered the potential for intermediate 

strength composites is to bond an array of fibers using only a mechanical bond 

or very weak chemical bond. Graphite/glass and carbon/carbon composites have 

shown useable properties at intermediate to high temperatures. 

Efforts in ductile refractory metal fibers in a ductile metal matrix have 

focused on tungsten fiber reinforced superalloys. TFRS offers a promising 

potential for a use-temperature increase for turbine components of up to 

lS00C (300oF) above commercial superalloys. Also, a successful 

demonstration has been made of the feasibility to produce a hollow air-cooled 

blade with a weight approaching that of superalloys. However, the larger 
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effort to develop manufacturing process technology is yet before us. A 

specific and complete data base must be accumulated upon which more detailed 
I 

component designs can be developed. These data will include the effects of 

multiaxial stress and cyclic thermal conditions required in components. 

An additional need that must be addressed for all high temperature 

composites, including FRS, is the development of failure models and associated 

analysis techniques to predict performance and aid in design. The lack of 

such theory and supporting data are a major obstacle to the acceptance of 

composites for high temperature applications. Similarly, fabrication of and 

simulated service evaluation of components are necessary to develop the 

confidence for service commitment. The revolutionary nature of composites, 

combined with the complex requirements for all high temperature service, 

presents a formidable uncertainty impeding acceptance by high level decision 

makers. The benefits to be gained are great, but the perceived risks must be 

reduced to gain wider acceptance. 
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(a) Separated whiskers on a glass slide. (b) Section of whisker matt not separated. 

Figure 1. - Typical appearance of separated and unseparated AI203 whiskers. 
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Figure 2. - Potential strength of silicon carbide/superalloy. 

Figure 3. - Interfacial reaction of silicon carbide/supel'alloy. 
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(a) Alloy 1/218 wire, (b) Alloy 5/218 wire, 

(c) Alloy lIrZM wire, (d) Alloy 3/218 wire, 

(e) Alloy 7/218 wire. 

Figure 6. - Refractory wire/matrix reaction. 
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