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(a) along and (b) across the tooth length are considered. The paper is

supplied with numerical examples.

NOMENCLATURE

aA ( ' )	axial displacement of gear i

bd 	machine setting parameter

ae(i)	 magnitude of gear eccentricity vector ve(i) of gear i

of	 machine setting

(i,j,k)	 unit vectors of coordinate system Sf

L	 cone distance measured from apex to mean contact point

AL	 machine setting

n	 surface unit normal

(nx ,ny ,n z ) components of n

q 
	 machine setting parameter

r	 position vector locating contact point

rd 	mean head cutter radius

ds (i)	 displacement of contact point due to errors of gear i

Sf 	fixed coordinate system

S 
	 coordinate system fixed to generating gear

(x,y,z)	 components of r

a l 	initial position of eccentricity vector ne(i)

s	 gear spiral angle

Y i	 pitch angle of gear i

oa	 sum of gear dedendum angles

A i	 dedendum angle of gear i

dd	 surface coordinate of generating surfaces

E 
	 surface of gear tooth i
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PRECISION OF SPIRAL-BEVEL GEARS

uy F. L. Litvin*, R. N. Goldrich+ , J. J. Coy**, and E. V. Zaretsky++

National Aeronautics and Space Administration
Lewis Research Lenter

Cleveland, Ohio 44135

SUMMARY

An analytical method was derived for determining the kinematic errors in

spiral-bevel gear trains caused by the generation of nonconjugate surfaces, by

axial displacements of the gear assembly, and by eccentricity of the assembled

gears. Such errors are induced during manufacturing and assembly. Two mathe-

matical models of spiral-bevel gears were included iii the investigation. One

model corresponded to the motion of the contact ellipse across the tooth sur-

face (geometry I) and the other along the tooth surface (geometry II). The

following results were obtained:

1. Kinematic errors induced by errors of manufacture may be minimized by

applying special machine settings. The original error may be reduced by an

order of magnitude. The procedure is most effective for geometry II gears.

2. When trying to adjust the nearing contact pattern between the gear

teeth for geometry I gears, it is more desirable to shim the gear axially; for

geometry II gears, shim the pinion axially.
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3. The kinematic accuracy of spiral-bevel drives are most sensitive to

eccentricities of the gear and less sensitive to eccentricities of the

pinion. The precision of mounting accuracy and manufacture are most crucial

for the gear, and less so for the pinion.

TNTRMI IrTTnN

Kinematic errors of spiral bevel gear trains are induced (a) by the

applied methods of their generation, and (b) by errors in manufacture and

assembly. In practice the generated tooth surfaces are not conjugate and thus

result in kinematic errors. To reduce these errors special machine and tool

settioys must be applied during spiral bevel gear manufacture.

Problems of gear precision were solved by Litvin [1]* and Baxter [2].

Gear-train noise as a result of kinematic errors was investigated by Townsend,

Coy, and Hatvani [3].

The new solution to the problem of spiral-bevel gear precision presented

in this paper is based on the following principles: (a) the real (nonconjug-

ate) tooth surfaces are replaced by conjugate surfaces;'(b) these surfaces are

put into mesh by modeling the errors of A.anuf acture and assembly; (c) the in-

fluence of these errors on gear-train kinematic errors is studied using the

new method of investigation applied in this paper. The investigation of kin-

ematic errors includes (a) the determination of kinematic errors caused by the

applied methods of tooth generation, (b) the determination of approximate

machine settings used to compensate the kinematic errors resulting from such

methods, and (c) the determination of kinematic errors exerted by gear eccen-

tricity and by axial displacements of gears during their assembly. Two models

of spiral-bevel geometry [4j, corresponding Lo the contact point path directed

*Numbers in brackets designate References at end of paper.
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Td	
see eq. (4)

9i	
angle of rotation of gear i

Od	
angle of rotation of generating gear

42	
kinematic error function

Ir
c
	gear pressure angle

METHOD OF INVESTIGATION AND BASIC EQUATIONS

Consider that the contact of gear-tooth surfaces E1 and 
E2 

is

localized and that they are in contact at a point at every instant. The loca-

tion of theoretical contact point M and the direction of the common surface

unit normal are given in coordinate system Sf rigidly connected to the

frame. The position vector locating the contact point and the unit normal

vector are denoted as r - OM and n, respectively. Suppose now that some

errors of manufacture and assembly occur. Due to these errors, tooth surfaces

E 1 and E2 are no longer in tangency - either they interfere with

eacn other or a clearance exists between them (Fig. 1). To bring the two

surfaces into tangency, once again, it is sufficient to rotate one of them

(the output gear 2) by a small additional angle AT2 . The kinematic error

function AT2 as a function of gear 1 rotation angle 91 may be

found by applying the following equation [5]:

[av2 rn] = (Edsg1) - Edsg2) )	 n	 {1)

Here, Eds(i) represent small changes in the position of the contact point

due to errors of manufacture and assembly of gear "i" (where i - 1,2).

Equation (1) is applied to two spiral-bevel geometries. Geometry I

corresponds to the contact point path running across the length of the gear

teeth (Fig. 2(a)). Gears with this geometry are generated using two tool

cones (generating surfaces) which are rigidly connected and in tangency along

4



a common cone genatrix, line L (Fig. 2(b)). In the process of meshing, the

contact point moves through space along line L. Geometry II corresponds to

the contact point path running al_ _on9 the length of the gear teeth (Fig. 3(a)).

These gears are generated by tool surfaces which are a cone and a surface of

revolution which are in tangency along a circle L (Fig. 3(b)). In the process

of meshing the contact point moves through space along circle L. Figures 4 and

5 show the cooro . ,ate systems applied to express the equations for the contact

point path and surface unit normal vectors for both geometry I and geometry II

gears. Coordinate system S f is rigidly connected to the frame and system

Sd is rigidly connected to the generating gear. Auxiliary coordinate sys-

tem Sc (Fig. 5) is also rigidly connected to the generating gear (and to

system Sd).

Expression of the equations is based on the following principles [1]:

(a) Two generating surfaces are rigidly connected and in tangency along a line

L. These surfaces form the two generating gears - surface zA generates

gear 1 and surface 
EB 

generates gear 2. (b) The four gears that are in

mesh - the two generating gears and the two generated gears - all have the

same instantaneous axis of rotation, axis z f . (c) Generated surfaces t1

and E2 always contact each other at a point that belongs to line L,

while their common normal intersects axis z f , the instantaneous axis of

rotation. (d) The line of action is the locus of contact points (contact point

path) of surfaces E1 and s2 represented in coordinate system Sf.

On the basis of the above principles, there results the following

equations for the position vector r( 
9d) 

of a point on the line of action

(contact point path) and the surface unit normal n(rd).

r( -
P d ) - x(w

d)i + Y('vd ),l + z(rd)k

5
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Here ®d is the angle of rotation of the generating gear.

For Geometry I:

sin(gd - ^d)
---sinv COSx. rd - bd 

—-- n'd	 c	 o T

sin Td	 (2)

y = an ^c x

bd sin ad

+ 

cos Td

z = siinid 	an vc x

nx = sin vc

ny = cos It c 
sin Td	 (3)

n z = cos 11 c 
cos Td

Td = ad _ qd + (P d; ad - qd = g0 - B

Here, Irc 
is the gear pressure angle; qd and b  = Of Oc are para-

meters of machine settings; rd = OcM is the mean head cutter radius; B is

the gear spiral angle.

For Geometry II:

X = 0

y=0
z = rd cos Td + b  cos(qd - 9d)	 (5)

nx = sin vc

ny = cos Tc sin Td
(6)

nz = cos Tc cos Td

6
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Here a
d
 # constant, and ad and 

Vd 
are related by

rd sin 
td 

-bd sin(gd - Vd) - 0	 (7)

The line of action of Geometry II gears coincides with axis zf.

EMALUATION OF KINEMATIC ERROR FUNCTIONS

For most gears, kinematic error functions &92(9d) (defined by

eq. (I))are piecewise (noncontinuous) functions with discontinuities at the points

of changing gear teeth. To evaluate these functions one must examine (a) the

range of the kinematic erro- function over the mesh of one gear tooth ; and (b) the

size of the jump at the points of function discontinuities. Note that the

magnitudes of the error functions are of secondary importance - more important are

the changes in these functions which are given by (a) and (b) above. Large

changes and jumps in kinematic error functions are a source of excessive tooth

surface wear, vibrations, noise, and the impact loading of gear teeth. Because of

these maladies it is important to understand and evaluate the nature of the

kinematic errors caused by gear manufacture and different types of mounting

errors.

To apply the general equation (1), a sample gearset was chosen as follows:

Ni	no teeth gear 1 - 20

N2	 no teeth gear 2 s 40

M12	 wl /w2 - 2.0

E	 shaft angle - 90-

T 	 pressure angle - 200

B	 mean spiral angle - 35*

L	 cone distance - apex-to-main contact point = 4 in.

rA	mean radius of head cutter for 
EA - 

4 in.

qA	(see Fig. 5) - 62.5*

7
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bA	(see Fig. 5) - 3.6939 in.

Y1	 pitch angle gear 1 . 26,57*

Y2	 pitch angle gear 2 - 63.43 -

Angle of rotation for one tooth of gear 1: - 9 * < 91 < 9*

Kinematic Errors Due to Methods of Tooth Generation

Consider Figs. 4 and 5. Conjugate gear tooth surfaces may be generated if

axis-xf is the common axis of rotation of the generating surfaces, and if

axis-zf is the instantaneous axis of rotation belonging to both the generating

surfaces and the generated tooth surfaces. In practice, when generating gears 1

and 2, the axes of rotation of the generating surfaces make angles of e l and

e2 , respectively, with axis xf (Fig. 6). Here A i ( i . 1,2) are the

dedendum angles of the respective gears. To simulate these manufacturing errors,

rotate the generating surface of gear 1 (with respect to that of gear 2) by an

amount

ea - aaj - (el + e2 )j
	

(8)

Therefore the displacement of the theoretical contact point due to errors ay

be represented as

ds(1) . as x r - as x (zi — xk)
-q	- -	 -	 -	 -

	 (9)

Then, from equations (7) and (1)

(znx - xnz)ea	
(10)

°'P2(9d) - —y cos Y2 nx + x cos Y2	 z sin Y2 ny - y s n Y2nz

Here V d - v l sin Y 1 ; Y2 is the pitch angle of gear 2. This equation

was applied to the example gearset with approximate dedendum angles calculated by

f	 8
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tan d i • ---W---

resulting in

sa = 01 + 02 = 0.0559 + 0.0558 = 0.1117 rad

Fig. 7 shows the plot of A92 
vs. 91 due to errors of manufacture

for both geometry I and geometry H. Both curves are nearly linear but with

Opposite slopes. During the mesh of one pinion tooth the kinematic error

function changes by approximately 14 to 19 arc-minutes. Now the objective is

to minimize these kinematic errors by applying special machine settings.

These machine settings are represented by translating the pinion (gear 1) by

the amount

as (1) = sEj + aLk
	

(11)

This yields that the total kinematic error function due to sa, AE, and eL is

given by

aEn + eln z — (znx — xnz )aa
	(12)

"2(4Pd ) _ -y cos Y2nx + x cos Y2 z sin Y2 ny - y sin Y2nz

To find the appropriate values of AE and AL, two conditions are imposed

on equation (12):

A92 = 0	 (13)

d(e*2)

^— = U

at the "midpoint" of gear tooth 1 rotation, ♦1 = 0. Applying equations

(12) to (14) and (2) to (7) results in

(14)

9



AE
tan *c cos 26

^T '	 cos A	
A6

`aLL-7 tan * sin 0a6

Geometry II:

T- (cos B - sin B tan gd)tan *c A6

AL- 
(sin 8 + cos B tan gd )tan *c A6

For the example gearset

Geometry I:

AE - 0.0679 in.

AL - 0.1866 in.

Geometry II:

AE - - 0.0460 in.

AL - 0.3492 in.

The plot of kinematic errors after the application of machine settings is shown

in Fig. 8. As may be observed the 
692 

function is now of near-parabolic

shape and the range of the original error function is reduced between 10 and

15 times. Since the range of error is smaller for gears of geometry 11, it is

concluded that compensating for errors by adjusting machine settings is most

effective for gears of geometry 11. Thus the application of special machine

settings is very effective in the reduction of the kinematic errors caused by

the method of generation applied in practice. Fig. 9 shows the kinematic er-

ror function 692 (9 1 ) plotted over the mesh of several gear teeth.

Notice that, at the points of changing gear teeth, there is no jump in the

value of this function. However, there are discontinuities in its slope.

10
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Kinematic Errors Due to Axial Displacements of Gears

In practice, during the mounting of spiral-bevel gears and during their

testing on Gleason Works machines, it is common to change their axial posi-

tions in order to correct the location and size of the bearing contact pattern

between the gear teeth [6]. Such axial displacements can induce kinematic

errors in the gear train which remain unnoticed unless the relations between

the angles of gear rotation are examined. It is for this reason that it is

important to investigate the nature of kinematic errors which accompany such

mounting changes.

Changes in the axial pcsition of gear "i" are represented by vectors aA(i)
N

( i - 1,2). Vectors &AM point out from the apex of their respective pitch

cones. The kinematic error function for this case is given by

(AA(1) 	sin Y1 + &A (2) sin Y2 )nx + (aA(1) cos Y1 - AA 
(2) 

cos Y2)nx 

_(y cos Y2 nx x cos Yz z sin 
Y2 ny -	 y 

sin  Y
2 nz

(19)

The kinematic error functions which are induced by axial displacements of the

pinion and gear (gear 1 and 2, respectively) are shown in Fig. 10. Taking	
4

into account that the main criterion for evaluating a kinematic error function

is not so much its magnitude, but rather, the amount it changes during the

mesh cycle, the following conclusion is true for the example gearset: When

trying to improve the bearing contact for geometry I gears it is more desir-

able to displace the gear axially; for geometry II gears it is more desirable

to displace the Pinion axially.

Kinematic Errors Due to Gear Eccentricities

A gear is said to be eccentric when its geometric axis (the axis about

which it rotates during cutting) does not coincide with its axis of rotation

11



ORIGIRN AL PA CS 15

OF POOR QUALITY

during operation. Sear eccentricity may be induced both by errors of manufac-

ture and assembly. Denoting the magnitudes of gear eccentricities by ae(i)

(i - 1,2), the displacement of the contact point is given by the vectors ae(1)

which rotate about gear axis "i". Further, the original position of the eccen-

tricity vector is given by angles a i ( i - 1,2). Applying equation (1) re-

sults in

nxzaex + n tae + nzzAeZ

1 (9d) 7-y  cos Y2 nx	x cos Y2 z sin— Y2 ny - y s n Y2 n=	
(20)

where

tae - aeM - aek2) : ( k - x.Y.=)

and

zaex - ael cos(gl + al ) cos Yl - ae2 cos( 92 + a2)cos Y2

zaey = -ael sin(gl + al ) - ae2 sin( 92 + a2 )	 (21)

zaez - -ael cos(9 l + a l ) sin Yl - ael cos(9l + al)sin Y2

To simplify expressions (20) and (21), one may approximate by considering the

angle of rotation of the generating gear for one tooth as small: vlsiny, = 0

so that the kinematic error function is now given by

al sin(rl + al ) + bl cos(91+ al ) + a2 sin(#2 + 
62 ) + b2 cos(92 + 42)

°v2 (v1 ) -	 s n Y2 cos rc cos s

where	 (22)

hl
r2 - N7 91

12
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al = -eel cos 
vc 

cos s; bl = hel (cos Y1 sin Vc 
sin Yl cos Vc 

sin 8)

(23)

a2 - -eel cos 
I  

cos B; b2 s -ee2 (cos Y2 sin 
vc 

t sin Y2 cos 
vc 

sin B)

Unlike the case of spur gears [5] the actual kinematic error function

(eq. (20)) has discontinuities at the points where gear teeth change during

meshing. However, the overall shape of this function is given by equation

(22). This approximate function is a sum of four harmonics: The period of

two of them coincides with the period of revolution of gear 1, and two of than

with the period of revolution of gear 2. Figure 11 shows the results o•1 i

plotting functions (20) and (22) for both geometry I and geometry II gears.

Here

eel = 0.002 in.	 01 = m2 = 0^

eel = O.0 in.

Figure 12 shows the smooth kinematic error function for

eel = 0.002 in.	 01 = 00

eel = 0.002 in.	 a2 = 180,0

It is clear that the angle of the gear "contribution" to the kinematic error

function is somewhat larger than the pinion contribution. Thus, in general,

the bearings and overall mounting precision of the gear are more crucial to

spiral-beve l gear-drive accuracy than those of the pinion.

The calculations for the examples presented in the paper are summarized in

the Appendix.

SUMMARY OF RESULTS

An analytical method was derived for determining the kinematic errors in

spiral-bevel gear trains caused by the generation of not,conjugate surfaces, by

13
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axial displacements of the gear assembly, and by eccentricity of the assem-

bled gears. Such errors are induced during manufacturing and assembly. Two

mathematical models of spiral-bevel gears were included in the investigation.

One model corresponded to the motion of the contact ellipse across the tooth

surface (geometry I) and the other along the tooth surface (geometry II). The

following results were obtained:

1. Kinematic errors induced by errors of manufacture may be minimized by

applying special machine settings. The original error may be reduced by an

order of magnitude. The procedure is most effective for geometry II gears.

2. When trying to adjust the bearing contact pattern between the gear

teeth for geometry I gears, it is more desirable to shim the gear axially; for

geometry II gears, shim the pinion axially.

3. The kinematic accuracy of spiral-bevel drives are most sensitive to

eccentricities of the gear and less sensitive to eccentricities of the pinion.

The precision of mounting accuracy and manufacture are most crucial for the

gear, and less so for the pinion.

14
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APPENDIX - SUMMARY OF EXAMPLE CALCULATIONS

Symbol Definition Value

N1 Number of pinion teeth 20

N2 Number of gear teeth 40

M12 Angular velocity ratio - N 2 1N1 2

T Shaft angle 90^

T 
Pressure angle 20*

B Mean spiral angle 35*

L Cone distance — apex to main contact point 4 in.

rA Mean head cutter radius for pinion 4 in.

qA Machine setting (see Fig. 5(c)) 62.5*

bA Machine setting (see Fig. 5(c)) 3.6939 in.

Y1 Pitch angle of pinion 26.57*

Y2 Pitch angle of gear 63.43

Al Dedendum angle of pinion 0.0559 rad.

A2 Dedendum angle of gear 0.0558 rad.

To obtain the kinematic error functions, the formulas defining them must be

evaluated for different values of 
V1 

corresponding to the rotation of the

pinion. For kinematic errors caused by methods of tooth generation and by

axial displacements the period of the kinematic error function is equal to

the pitch angle of the Minion. For errors caused by gear eccentricity the

error function has a period which depends on the angular velocity ratio M12

(see ref. [5]).

15
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-9 < 4p < 9"
1—

All kinematic error functions are evaluated here for

91 = 30

•A = 91 sin 
Y1 - 1.3419

sA = Geom I: 90 + qA - 8	 Geom I: 117.50

Geom II: sin-1 bAsin(gA - VA ) + q - •Geom II: 115.15*
r A	A A

TA = QA - q  + VA	
Geom I: 56.34

Geom II: 53.990

Contact Point and Unit Normal

x	 0.03620

y	 Geom I: eqs. (2) 4 U.08285 in.

Z 1	 6.3.99

0.0

Geom H: eqs. (5)U.0	 0 in.

4.1330

nx	 r 0.3420	 0.3420

ny ueom I: eqs. Mi 0.1822	 in.	 Geom II: eqs. (6) 4 0.7o01	 in.

nx	0.5208
	

0.5525

Kinematic Errors Due to Methods of Tooth Generation

A6 = Al 
+ e2	0.1117 rad

Before machine settings (see Fig. 7)

AV2 eq. (10)	 Geom I: -3 * 1' 43"

Geom II: -3 * 13' 11"

16
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Machine settings

Geom I:	 aE eq. (15)

aL eq. (16)

Geom II:	 AE eq. (11)

aL eq. (18)

After machine settings (see Fig. 8)

0.0619 in.

0.1866 in.

-0.0460 in.

0.3492 in.

ap2 eq. (12)
	

Geom I:
	 -6"

Geom II: 	 4"

Kinematic Errors Due to Axial Displacements

Pinion only (see Fig. 10(a)):

Given AA(1) = 0.2U in. AA (2) = U

aq2 eq. (19)
	

Geom I: 2 * 34 1 30"

Geom 11:  2 * 38 1 20"

Gear only: (see Fig. IU(b))

Given aA(1) = U	 aA(2) = U.20 in.

a92 eq. (19)	 Geom I: 18 1 13"

Geom II: 14' 23"

Kinematic Errors Due to Gear Eccentricity

Since for eccentric gears the kinematic error function a42(®1) cnanges

from tooth to tooth, one must take into account which tooth of the gear is in

mesh. Specifically, pl denotes the total angle of rotation of the pinion

and is the value to be used in equation (22) where 91 appears. Here

*	 3b00 + VA
w1 = (n - I)	 N 1	sin  Y1

*

92 = v1/M12

17
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where n - 1, 2, 0009 N1 is the pinion tooth nuinber being considered and 92 is

the total angle of rotation of the gear.

Given	 Yi = Y2 :0

eel = 0.002 in.

ee2 - 0

For WA = 1.3419", N - 4, 
91 

= 510, •2 = 28.5% and applying equations

(20) and (21) (see figs. 11(a) and (b))

e4P2
	 - Geom I: -1' 32"

- Geom II: -1' 29"

For the smooth kinematic error function, apply eqations (22) and (23), such that

al = -1.539540-3 in.	 bi = 1.296340-4 in.

a2 = 0.0	 b2 - 0

Using equation (22) with 9 1 - 57 * results in (fig. 11(c))

e(P2 = -1' 31"
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Figure 1. - Tooth surfaces with clearance induced by errors.
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Figure 2. - Geometry I: bearing contact and generating surfaces.
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Figure 4. - Applied coordinate systems.
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