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RESULTS OF CHQPPER-CONTROLLED DISCHARGE LIFE CYCLING STUDIES

ON LEAD-ACID BATTERIES

John G. Ewashinka and Steven M. Sidik

NASA Lewis Research Center

Cleveland, Ohio 44135

r,	 ABSTRACT
rnN

W	 A group of 108 state-of-the-art nominally 6 volt lead-acid batteries were

tested in a program of one charge/discharge cycle per day for over two years
or to ultimate battery failure. The primary objective of this program was
to determine battery cycle life as a function of depth-of-discharge (25 to

75 percent), chopper frequency (100 to 1000 Hz), duty cycle (25 to 87.5

percent), and average discharge current (20 to 260 A). The secondary ob-

jective of this test program was to determine the types of battery failure

modes, if any, were due to the above parameters. The four parameters above
were incorporated in a statistically designed test program which is a

variation of a central composite factorial design experiment.

INTRODUCTION

One widely used technique for motor speed control in electric vehicles

is the chopper (pulsed) control. Electric vehicle designers have compara-

tively little data available on battery response to chopper controlled dis-
charge. Also, the question arises as to what effects on battery cycle life

could be attributed to chopper control. Some preliminary studies were done

at NASA Lewis Research Center using a state-of-the-art lead-acid battery
(ref. 1) to determine if there were any effects of pulse discharging on bat-

tery response. As a result of this study and under the sponsorship of the
DOE Electric and Hybrid Vehicle Program a contract was awarded to TRW, Redon-
do Beach, California to expand and verify the NASA Lewis findings. TRW was

to determine the influence of chopped discharging upon the cycle life of a
typical lead-acid traction battery. Parameters to be investigated were:
depth-of-discharge, chopper frequency, duty cycle (ratio of on-to-off times),

and average discharge current. The tests were statistically designed to max-
imize the information obtained.

The test design used was a variation of a central composite factorial de-

sign involving 36 different test ccnditions aith three batteries in series

for each condition, for a total of 108 batteries.



TEST FACILITY

Figure 1 shows two identical independent systems at TRW consisting of 18

test stations each for a total of 36 test stations. The lead-acid bat-
teries were installed on four wooden tables open to the room environment.

Discharge load banks, bus bars, and system cabling were contained on the
tables. Protective Plexiglass shields encompassed the tables for personnel

safety and convenience. System charg ,;ng power supplies and computer control
equipment were positioned separately at either end of the tables. The oper-

ation of the 36 test stations, monitoring, anc data acquisition were com-
pietely automatic and controlled by a microcomputer system. The only manual

operation for this program was checking the specific gravities of all 108
batteries. The room temperature and relative humidity conditions were mon-
itored and maintained at 22+2° C and 70 percent RH throughout the test
program.

LIFE CYCLING DISCHARGF TESTS

One hundred and twenty 6 volt lead-acid batteries were purchased from

ESB (Exide) which were from the same production run and numbered from 1 to

120. The test program required 108 lead-acid batteries. An additional
eight spare batteries were procured for contingency purposes. The individual
batteries were weighed, electrolyte levels checked, and initial specific

gravity measurements recorded for each battery. The batteries were then
discharged several times according to the manufacturer's specifications for

actual output capacities. According to the test plan (Table I) each of the

selected numbered batteries were placed into its designated test station.
A test station consisted of three batteries connected in series. Each test
station was then discharged to the criteria fixed in the test plan for that

station. A discharge cycle was terminated when the required depth-of-
discharge was achieved or when the voltage of a battery in a series string
reached 3.9 volts. Within the constraints of the test plan it was possible

to have one charge/discharge cycle per day for each test station. Dischar-

ging was done during the day for purposes of monitoring. Recharging the bat-
teries was done during the evening due to the long recharge times required,

usually 8 to 12 hours. Further, a charge or discharge half cycle could not

be started until the battery electrolyte temperature was within +5° C of the
room ambient temperature.

Equalizing charges were usually done every other week and depended upon
the batteries specific gravities (below 1.240) at the end of a normal re-

charge. If an equalizing charge was required all the batteries were equal-

ized at the same time.



EXPERIMENTAL DESIGN

four controllable parameters selected (DOD, average current, frequen-
cy erid duty cycle) were set up in a test matrix so that most of the condi-
tions that could affect battery performance could be isolated, studied and
quantified. Other investigators found that depth-of-discharge had an effect
on battery cycle life (ref. 2). It is also thought that high average dis-
charge currents may adversely affect battery cycle life. It was not known
whether duty cycle and chopper frequency adversely affected battery life or
perhaps enhanced the cycle life. Table I, using the conditions mentioned
above, shows the experimental conditions selected for this program, which
comprise a variation of a central composite factorial design.

The directly controllable variables of this experiment are designated as:

A - average current

C = duty cycle

F - chopper frequency

D = nominal depth of discharge

Figure 2 graphically indicates the points at which tests were performed.
Axes A and C represent the average current and duty cycle respectively. The
points run were for DOD's - 25, 50, and 75 percent and are shown in Figures
2(a) to (c), respectively. Note that the A and C combinations form a "box"
for DOD = 25 and 75 percent and a "star" for DOD - 50 percent. The box and
star are tilted with respect to the A and C axes. To achieve the usual scal-
ing of variables in a two-level factorial experiment (i.e., low level is de-
rioted by -1 and high level is denoted by +1)(ref. 5). New (scaled)
variables are introduced as:

X = A- 140 + C- 55	 (1)
120— __7U_

X

	

A - 140 
+ 

C - 55	 (2)
2 = —40	 --1U—

X3 ?--^- -1
	 (3)

X4= ()
	 (4)

Note that the X11, and X2 axes are now centered at the middle of the
box and star, also R 1 and X2 range from -1 to +1 from one edge of the
box to another. The scaling of frequency defined by X 3 ranges from -0.8

to +1, while the sca,ing $f DOD ranges from -1 to +1 as desired. The experi-
mental design is a full 2 factorial on X11, X2, X3, Xq with repli-
cated center point; star points for X 1 dnd X 2 ; and fill-in conditions to

investigate the regime near continuous discharge.
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DATA ANALYSIS

The resulting cycle lives for each test condition are presented in Table I.

Column 1 presents the article number which is comprised of three batteries
connected in series. Column 2 indicates whether the test was continuous or

chopped. Columns 3, 4, 5, and 6 indicate the average current, duty cycle,

frequency, and depth-of-discharge (DOD) for the test conditions. Columns 7, 8

and 9 indicat^ the last cycle observed for each of the three batteries. Some

of the batteries were not tested to ultimate failure and these censored obser-
vations are indicated by "(0)" in columns 7, 8, and 9. Column 10 is the
predicted mean cycle lives of the batteries. A few other batteries either
were taken off test early due to extraneous causes or failed at such early
cycle life that they were not considered representative. These are identified
by appropriate notes in Table I. Because the data has been censored in some
instances, it is not appropriate to fit equations using a simple least squares

type of analysis. The model selected is that for any specifies values of X -
(XA,X2,X3,X4) the probability of a battery failing before or up to the
y	 cycle is given by

F(y) = 1 -exp {-exp [( y - u)/o]}

	

(5)

where u = u (X1,	 X4) is a function of the controllable variables.
This equation describes what is known as a smallest extreme-value distribu-

tion which occurs commonly in reliability and failure analyses (ref. 3). The

parameter u is close to the mean failure time while a is close to the stan-

dard deviation of the distribution of failure times.

As an initial postulate for the functicnal form of u(X1 .... ,X4), a sec-
ond order polynominal is used,

u(X 1 ,..., X 4 ) = 60 + 9 1X 1 + 0 2X 2 + ' 3X 34 8 4X 4+ 6 5X1 + '6X1X2+ ' 7X2 + B8X 1 X 3 +

+ 89X1X4 
+ 0

10X2X3 
+ 011X 2 X4 + 0 12X 3X4 + '13X4 + 

s 14X3 	(6)

where the X1,X2,..., are the scaled variables defined in equations (1) to (4)
previously.

RESULTS

It was determined that when only significant terms of equation (6) (ap-

proximating polynomial) are retained, the function:

u(X 1 ,..., X4 ) = 542.98 - 38.57 XI
	

(7)

+ 13.79 X 2 - 97.83 X4 - 0.25 X2

was obtained.
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The major points obtained from this experiment are: First, frequency has
no effect on cycle life because all the terms involving variable X3 (the
scaled frequency variable) were judged to be insignificant. Second, increas-
ing DOD leads to a decreasing cycle life because the coefficient of X4 (the
caled DOD variable) is -97.83. Thus, for example, the difference in mean

cycle life between 25 percent and 75 percent nominal DOD is given by twice
the slope of equation (7), i.e., 2(97.83) - 195.6 cycles (because X4, the
scaled DOD variable, changes from X 4 - -1 to X4 - +1 as DOD changes from

25 percent to 75 percent). Third, increasing average current and duty cycle
simultaneously ( - measured by increasing the X11 variable) leads to de-
creasing cycle lire because the coefficient of X 1 is -38.57. Thus, for

example, the fitted equation indicates a decrease in mean cycle life of 2 x

(38.57) = 77.2 cycles as X1 varies from Xi = -1 (i.e., average amps =
100 and duty cycle - 35 percent) to X 1 - 1 (i.e., average amps - 220 and

duty cycle = 65 percent).

And fourth, the charge in mean cycle life for deviations along X2
(scaled average current and duty cycle) changes in a nonlinear fashion be-

cause the coefficient of X 2 is nonzero.	 The fact that this coefficient is

negative implies a maximum exists.

Fifth, all the battery failure modes were characterized by a single fail-
ure mode; this is a gradual decrease in output capacity to half-capacity, the

ultimate failure. This usually occured after several hundred cycles and is

characteristic of electrode aging and/or end of useful battery life. Post-
test analysis of 23 of the failed batteries supported the existence of a

strong wearout factor which is typical of end of battery life. Also evident

from the post-test analysis were positive plate shedding, grid oxidation and
loss of active material.

CONCLUSIONS

At this point, the most important conclusions that may be drawn are: (1)
there appears to be no significant effect upon cycle life if batteries are

discharged in the pulsed mode; (2) the chopped frequency of discharge has no
significant effect; (3) the variable with the greatest effect on cycle life
remains that cf DOD, and (4) increasing both duty cycle and average current
have an effect on cycle life, but not as pronounced as DOD. The effect of

the controllable variables upon the total energy and/or power delivered by
these batteries still remain to be evaluated. Eventual cost/benefit analy-
sis may depend more upon other considerations than cycle life. The final

judgment remains to be made.

APPENDIX

We assume the cycle life of a battery is an observation from a smallest

extreme-value distribution (ref. 3, Mann, Schafer, Singpurwalla) with para-

meters u and a. That is the probability a battery failing before cycle

number y is:
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ORIGINAL PACE IS

OF POOR QUALITY

F(y)	 1 - exp (-exp Y u)

We also assume that the location parameter u is a function of the test

controllabie variable as:

u(xl,...,x4) = ao + 01X1 + 02X2 + 03X3 + 044 + aA + 06X1X2 + 0A

+ 98X1X3 + 09X1X4 + 8 1OX2X3 + 0 11 X2X4 + 012X3X4 + 0134

where X1, X2, X3, and X4 are defined in equations (1) to (4).
We also assume that a is independent of the test conditions. The a's

and o are estimated by maximum likelihood as in reference 4. Then, as is

done in linear regression methods for uncensored data using the normal dis-

tribufioni variance inflation factors are calculated as the diagonal elements

of (X X)-1 . These are normalized so the largest is unity and the a's

are then divided by the corresponding normalized variance inflation factors
to obtain an analog of the t-statistic in ordinary linear regression. The
relative significance of such statistics may be judged by producing a dot

plot of these statistics and claiming those that deviate markedly from zero
are probably significant (ref. 5, Box, Hunter and Hunter).

The results of the first iteration of this procedure are presented in
Table II and figure 3. From the dot plot, it seems that the X1, X2,

X2 , X
1 X2

and X4 terms are the ones of possible major significance. It is

clear that X 3 (frequency) has no significant effect. At this point we
dropped all terms involving X3 and re-fit the model. The results are

given in Table III, and the dot plot of the coefficients divided by the

variance inflation factor in figure 4. Recognizing that the choice of

significance is subjective, we decide that the dot plot in figure 4

indicates the only significant effects to X 1 ,X29 X2, and X4. The estimated
a's and o for this model are given in Table IV. In summary, we have,

u(X1 , X2 , X3 , X4 ) = 542.98 - 38.57 X1 + 13.79 X2

-97.83 X4 - 0.25 X2

and o = 53.67

For the smallest extreme value distribution the mean life is E(y) - u - ya

where y = 0.57722 is Eulers constant and V(y) = 1.64493 a .

One of the purposes of this experiment was to determine if chopped

frequency discharges had an effect on cycle life. To this end we used the

continuous discharges and fill-in tests to look at those possible effects.
Figures 5(a) to (c) plot the cycle lives observed as a function of duty

cycle (where 100 percent duty cycle represents continuous discharge), at the

50 percent nominal DOD level. It seems rather clear that duty cycle exerts
no significant effect upon cycle life.

As a comparison to previous experiments, one may also plot life vs.
discharge amps for continuous discharge. This is done in figure 6 and we

see a dramatic decrease in life as average amps is increased. This is in
accord with the results of reference 4.
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TABLE II

Coefficient
and term Estimate	 "t" - statistic

so 509.43

11
X1 -51.90 -198

12
X2 20.39 170

1 3 X3 -10.52 -19

04
X4 -115.04 -257

15 X 12 12.53 63

06
X1 X2 -10.52 -103

1 7 XZ1 .96 262

18 X IX 3 9.36 19

I9 X IX4 24.97 64

110
X 2X 3 -2.37 -6

Ill
X 2X4 -4.67 -46

112 X 3X4 -6.65 -12

113 X24 6.77 47

a 50.92

The coefficients, estimates of coefficients and
their "t"-statistics for model 1.
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TABLE III	
OF p0on, QUALITY

Coefficient
and term Estimate "t" - statistic

00 507.54

11 X1 -54.85 -209

02 X2 21.08 212

04 X4 -117.24 -261

05 X2 15.04 81

06 X 1 X2 -9.74 -119

0 7 X2 1.90 428

09 X 1 X4 25.49 65

I ll X
2 X 4

-5.66 -62

0 13 X2 48.38 48

C 52.59

The coefficients, estimates of these co-
efficients and their "t" - statistics
for model 2.
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TABLE IV

Coefficient
and term Estimate

80 542.98

01
X 1 -38.57

82 X 2 13.79

0
4 X4 -91.83

g 7 XZ -.r5

0 53.67

The coefficients and
their estimates for
model 3.
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Figure b. - Number of cycles observed as a
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