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SUMMARY OF VIBRATION ANALYSIS

The objective of this study was to perform a vibration analysis of three
guyed tower designs for intermediate size wind turbines. These tower designs
consist of tubular steel sections totaling 28.6 m (94 ft) in length, mounted
on a soft pad foundation and supported by guys. Each wind turbine design has
a 38.1 m (125 ft) diameter rotor and a rated power of 200 to 400 kw with a
rotor axis at an elevation of 30.5 m (100 ft) above ground.

This vibration analysis was conducted because there was some concern that
these guyed towers might have natural frequencies of vibration close to the
blade passing frequency of the rotor or some multiple thereof. This concern
arose because of several facts.

The first is the knowledge that cantilever towers of propeller type wind
turbines will vibrate violently if excited by the rotor. Secondly, guy cables
are usually flexible, even with high pretension loads in them. As a result,
there was concern that the tower frequencies might be too close to the rotor
speed, Finally it is known that Darrieus type wind turbines, whose central
column is stabilized by guys attached at the top, have experienced serious
vibrations.

Another reason for conducting the vibration analysis was to determine how
the tower natural frequencies were affected by the guy dynamic characteristics,
the location of the guy attachment point on the tower and other factors.

The method of analysis used is one developed by R. W. Thresher, et al.
in their report titled "Modeling the Response of Wind Turbines to Atmospheric
Turbulence", Oregon State University Report No. RLO/2227-8l/2, DC-60, August
1981. Their report was prepared for the United States Department of Energy,
Division of Solar Technology, Federal Wind Energy Program. Because of the
large number of analyses to be performed, a computer program was written in
FORTRAN which determines the natural frequencies of vibration and plots these
frequencies as a function of rotor rotational speed. The frequencies of
vibration determined are for the first two modes of bending-pitch and the
first two modes of bending-yaw. The program determines these frequencies of
vibration using the inertia and stiffness coefficients of the wind turbine
system which are calculated using the calculator program, Inertia and Stiff
ness Coefficients and Wind Turbines. This calculator program is included
with the Oregon State University report.

Two designs in the analysis have two-bladed teetering hub rotors. Since
the analysis presented by Thresher, et al is limited to three-bladed fixed
hub rotors, it was necessary to modify their method. The analysis was modified
by eliminating the rotational inertia of the rotor about its axis and evaluating
the natural frequencies of vibration at zero rotor speed. For the three-bladed
fixed hub rotor concept the method was not moditied. Furthermore, the method
of determining the spring rate of the guys used to support the tower had to be
modified to account for the spring rate of the grouted anchors that the guys
are attached to.
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In the parametric study several of the system pfoperties were varied to
determine the sensitivity of the tower's natural frequencies of vibration to
variances of these properties. properties varied in9lude the mass of the
nacelle and rotor, effective guy stiffness, the height of the guy attachment
point, the location of the nacelle and rotor center of gravity, the mass moment
of inertias of the nacelle and rotor about the tower axes, and the rotor rota
tional speed. Then, by comparing the results of the different concepts, the
effects of different tower section mass and stiffness properties can be deter
mined and the effects of different rotor designs can be evaluated.

The results showed that only the lowest two frequencies of vibration were
in an area where they could be excited by the rotation of the rotor. The
analysis also indicated that these same two modes could be tuned by varying
the effective guy stiffness, the height of the guy attachment, the mass of the
nacelle and rotor, or the mass and stiffness properties of the tower sections.
It was also shown that these same two modes are very close in frequency and
that both change very little with the rotor's rotational speed.

In conclusion, the results of the analysis showed that the natural
frequencies of vibration of all three tower designs are not in a range where
they can be excited by the rotor. The effects on the natural frequencies of
vibration caused by changing some of the wind turbine system characteristics
were also shown.
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INTRODUCTION

NASA is performing ~ conceptual design study to investigate the possibility
of reducing the cost of intermediate size wind turbines. These wind turbines
are 30.5 m (100 ft) high and have a rated power between 200 and 400 kw. Three
concepts of tower designs for wind turbines are being considered. Each of these
tower concepts are made of tubular steel sections mounted on a "soft pad" foun
dation and supported by guys with grouted anchors. The "soft pad" foundation
is a concrete footing with a flexible pad interface between the tower base and
the footing. This approximates a ball and socket type of joint and minimizes
bending moments transferred to the footing. Two of the concepts have two-bladed
teetering hub rotors; the other has a three-bladed fixed hub rotor. All three
have a rotor diameter of 38.1 m (125 ft) with the axis at 30.5 m (100 ft)
elevation.

Cantilever towers of propeller type wind turbines are known to vibrate if
the tower natural frequencies are close to the blade passing frequency or some
multiple thereof. Also, in recent years, some towers of Darrieus type wind tur
bines which use guys to stabilize the upper end of the tower have experienced
severe vibrations. These two facts prompted the vibration analysis being re
ported here, namely, to determine the vibrational characteristics of the three
guyed tower concepts under study as mentioned in the previous paragraph. This
analysis should identify areas where the rotor might excite the tower's natural
modes of vibration. Furthermore, since these tower designs are still in the
preliminary design stage, it is important. to determine the sensitivity of the
natural frequencies of vibration to the various system pxoperties. In this way
problem areas can be identified and methods of rectification determined.

A method for vibration analysis of similar wind turbine configurations
systems has previously been developed by R. W. Thresher, et al of Oregon State
University. A major part of this analysis is based on their draft report
titled "Modeling the Response of Wind Turbines to Atmospheric Turbulence",
Oregon State University Report No. RLO/2227-81/2, UC-60, August 1981.

In the analysis of the three tower designs, the various tower and system
p!Dperties of the preliminary designs were estimated and the natural frequen
cies determined. The system properties were then varied individually to
determine their effect on the natural frequencies of vibration. The system
properties varied include: effective guy stiffness; the height of the guy
attachment; the mass of the nacelle and rotor; the location of the center of
gravity of the nacelle and rotor; the mass moment of inertia of the nacelle
and rotor about the tower's X, Y and Z axes; and the rotor's rotational speed.
Due to the large number of analyses to be performed, and to expedite the
calculations, a computer program was written in FORTRAN to calculate and plot
the natural frequencies of vibration. The results of all the above and the
computer plots are included in this report.
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DESIGNS ANALYZED

Candidate Guyed Tower Designs

In this report three concepts of tower designs for wind turbines were
analyzed. The three tower concepts have a hub height of 30.5 m (100 ft). One
of the unique features of these tower designs is that the towers are not can
tilevered but are supported by guy rods. These guy rods radiate out from the
tower at three equally spaced positions. The guys are attached to the tower
at 10.7 m (35 ft) above the ground and to concrete pads located 9.1 m (30 ft)
from the tower's centerline. The concrete pads are anchored by grouted rock
or soil anchors which extend below the surface to bedrock or to competent soil.
This is shown in Figure 1.

To prevent the guys from becoming slack, the guys are pretensioned to a
value greater than the change in tension experienced under maximum operating
loads. Similarly, the anchor rods are pretensioned to prevent the anchor pads
from unseating undev all conditions. Thus, the pretension on the anchor rod
is set to be greater than the maximum tension on the guy rod.

As mentioned above, the preload prevents the anchor pads from unseating,
therefore, there is negligible movement of the anchor pads as loads change.
This causes the effective spring rate of the anchors to be relatively high
when compared to the spring rate of the guys.

For the vibration analysis, the effective stiffness of the guys must be
determined. The derivation of the effective guy stiffness is presented in the
Thresher, et al report. To include the spring rate of the grouted anchors and
the soil, the guy system can be modeled as three springs.

4
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Thus, the total effective spring rate of the guys and anchors becomes

where

k
T

= Total effective guy and anchor spring rate

k
R

Spring rate of a guy rod

k Spring rate of an anchor rod
a

k
V

Vertical spring rate of soil due to compression

N Number of guys per position

e = Angle between horizontal guys

This assumes that the guys and anchors are located at three equally spaced
positions around the tower and that one guy is attached to one anchor.

The preliminary design of these towers specifies three guy rods and three
anchors per position for each concept. Using a guy rod spring rate of
29.55E + 06 N/m (2.025E + 06 Ib/ft) and a combined anchor and soil spring rate
of 218.9E + 06 N/m (15.0E + 06 lb/ft), the total effective guy spring rate
becomes 44.36E + 06 N/m (3.045E + 06 lb/ft).

Each tower is made of several tubular steel sections; Concept I is made
of three sections, Concept II has seven, and Concept III has eight. Each of
these sections has a different wall thickness and, therefore, each have dif
ferent inertia and stiffness properties. The lengths and wall thicknesses of
these sections are listed in Table I and the inertia and stiffness values are
listed in Table II. The sections are numbered vertically starting at the
tower base. Additional sections were added to account for the extra mass and
stiffness of the flanges and the segment from the top of the tower sections to
the rotor's centerline.

Located at the top of the tower, as shown in Figures 2 and 3, are the gear
box, generator, pitch change mechanism and controls. These are all mounted on
a rotatable platform. The sum of all these parts will be referred to as the
nacelle throughout this report. Also located at the top of the tower is the
rotor, which consists of the rotor hub and blades. Concepts I and II both
have two-bladed rotors with teetering hubs, whereas Concept III has a three
bladed rotor with a fixed hub. Furthermore, Concept I has variable pitch
rotor blades, whereas Concepts II and III have fixed pitch blades.

The vibration analysis requires the total mass and location of the center
of gravity for the nacelle and rotor to be calculated. For the various concepts,
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the total mass and center of gravity locations were estimated as follows:

TOTAL MASS OF
NACELLE AND ROTOR,

CENTER OF GRAVITY
CONCEPT ~ + mR LOCATION, q

I 16.19E + 03 kg 2.35 m
(1110 Ib sec2/ft) (7.7 ft)

II 14.59E + 03 kg 2.16 m
(1000 Ib sec2/ft) (7.1 ft)

III 14.18E + 03 kg -91.43E - 03 m
(972 lb sec2/ft) (-0.3 ft)

Since a fixed hub rotor blade can be located much closer to the tower
than can a teetering hub rotor blade, the rotor of Concept III is located only
1.52 m (5 ft) from the outside of the tower wall while Concepts I and II have
their rotor located 3.96 m (13 ft) from the tower. This accounts for the large
difference in center of gravity locations listed above. The center of gravity
location is measured from the tower centerline and a negative value indicates
that the center of gravity is located downwind of the tower centerline.

The mass moment of inertia of the nacelle and rotor about the tower axes
were also calculated, including the mass moment of inertia of the rotor about
its spin axis. Concepts I and II have teetering hubs; this allows the rotor
to remain parallel to its plane of rotation during small angular changes in
pitch and yaw of the nacelle. Thus the rotational inertia about the X and Z

axes is greatly reduced on Concepts I and II.

The theory that this analysis is based on does not account for the
flexibility of the baldes, therefore, it is most applicable to small systems
where the mass of the blades is a small percentage of the total mass. In this
analysis the mass of the blades was about 10\ of the total mass for Concepts
I and II, and 13% for Concept III. Also, approximately half the mass of the
blade was located within the first third of its span. Thus, this simplifica
tion is justified. Furthermore, this theory is based on a three-bladed fixed
hub rotor, therefore, care should be taken in interpreting the results for
Concepts I and II since they have two-bladed teetering hub rotors.

The total mass moments of inertia were calculated for each concept and
are as follows:

6

CONCEPT

I

I r
kg rn2

(lb ft sec2)

113.8E + 03
(83.9E + 03)

MASS MOMENTS OF INERTIA

I xx
kg m2

(lb it sec2)

113.5E + 03
(83.7E + 03)

l69.8E + 03
(125.2E + 03)



CONCEPT

II

III

MASS MOMENTS OF INERTIA

I r I xx I zz
kg m2 kg m2 kg m2

(lb ft sec2) (lb ft sec2) (lb ft sec2)

156.6E + 03 125.4E + 03 132.3E + 03
(115.5E + 03) (92.5E + 03) (97.6E + 03)

164.1E + 03 133. OE + 03 139.9E + 03
(121. OE + 03) (98.1E + 03) (103.2E + 03)

I r Rotational mass moment of inertia of the rotor about its
spin axis (Y)

I xx Mass moment of inertia of the nacelle and rotor about the
towel; 's X axis

I zZ Mass moment of inertia of the nacelle and rotor about the
tower's Z axis

The calculator program for determining the inertia and stiffness
coefficients also requires the number of intervals per tower section to be
used for integration. The following number of intervals were chosen.

CONCEPT

I

II

III

NUMBER OF INTEGRATION
INTERVALS PER SECTION

10

4

4

NUMBER OF
SECTIONS

3

7

8

TOTAL NUMBER OF
INTEGRATION INTERVALS

30

28

32

This completes the required input data for determining the inertia and
stiffness coefficients for the tower designs.

Case Studies

To determine the effects of varying the properties of,the tower, a
parametric study was performed. In this study each of the tower properties
were varied, one at a time, to determine their effect on the natural frequency
of vibration of the tower. First, the effective guy stiffness was varied from
25% to 200\ of the design value. Next, the height of the guy attachment was
varied from 2/3 to 4/3 of the design height. Similarly, the mass of the
nacelle and rotor was increased and decreased by 1/3 and the center of gravity
location was also changed. Finally, the mass moments of inertia about the
X and Z axes were increased and decreased. The following table lists all of
the cases examined. Each case was analyzed on each of the three concepts.
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CASE

A

B

C

D

E

F

G

H

I

J

K

L

M

N

o

P

Q

PROPERTY VARIED

25\ of design effective guy stiffness

50% of design effective guy stiffness

100\ of design effective guy stiffness

150\ of design effective guy stiffness

200% of design effective guy stiffness

Height of guy attachment increased by 1/3

Height of guy attachment decreased by 1/3

Nacelle and rotor mass increased by 1/3

Nacelle and rotor mass decreased by 1/3

Distance to center of gravity increased by 1/3

Distance to center of gravity decreased by 1/3

Nacelle and rotor inertia about the tower's Z
axis increased by 1/3

Nacelle and rotor inertia about the tower's Z
axis decreased by 1/3

Nacelle and rotor inertia about the tower's X
axis increased by 1/3

Nacelle and rotor inertia about the tower's X
axis decreased by 1/3

Both of the nacelle and rotor inertias about the
X and Z axes increased simultaneously by 1/3

Both of the nacelle and rotor inertias about the
X and Z axes decreased simultaneously by 1/3

Case C is considered the norm in this analysis.

The rotor has a design operating rotational speed of 4.19 rad/sec (40 rpm).
Since the natural frequency of vibration of a wind turbine system can vary with
rotor's rotational speed, each concept was analyzed from 0 to 6.3 rad/sec (60
rpm) at ten equally spaced points. Since Concept I and II have teetering hubs,
the natural frequencies of vibration will not change with the rotational speed
of the rotor. Thus, the frequencies of vibration should be evaluated at zero
rotor speed. On the other hand, Concept III has a fixed hub which causes the
natural frequencies of vibration to change with rotor speed. Therefore,
Concept III should be evaluated at operating speed.
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ANALYTICAL PROCEDURE FOR VIBRATION ANALYSIS

Inertia and Stiffness Coefficients of Wind Turbine Systems

To determine the natural frequencies of vibration of wind turbine systems,
the inertia and stiffness coefficients of the tower must be calculated. The
determination of the inertia and stiffness coefficients is explained in detail
in the Thresher, et al report.

For displacement of the top of the tower in the y direction, the stiffness
coefficient is (see Figures 4 and 5)

L
f EI(z) ('¥~(Z))2dZ + kc'¥~(a)
o

where

V Translational displacement in y direction

L Length of tower

EI(z) Tower bending stiffness

'JI
V

Displacement function

k Effective spring constant of guys
c

a Distance from ground to guy connections

'JII, 'JI" Represent the first and second derivatives with respect
to Z

The stiffness coefficient for displacement due to pitching about the X axis is

where

k
XX

L
f EI (z)

o
('¥" (z) ) 2 dz + k ,¥2 (a)

X c X

X Rotational displacement about x axis at the upper end of
the tower

For rotational displacement about the tower's Z axis the stiffness coefficient
is

L
f GJ(z)

o
2

('JI ~ (z)) dz
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where

GJ( z) Tower torsional stiffness

Rotational displacement about Z axis at the upper end
of the tower

For displacement due to translation in the y direction (V) is influenced
by the rotational displacement about the x axis (X), and vice versa. The
stiffness coefficient relating these two displacements is

L

kxv ~ EI(z) ~;(z)~~ (z) dz + k c ~v(a)~x(a)

Finally, the stiffness coefficient for translational displacement along the
x axis is

k uu k
W

- k
2

/kVx XX

where

U = Translational displacement in the x direction

The displacement functions (~) are interpolating functions which relate
the displacements within the tower to the displacements at the top of the
tower. For a tower with a ball joint at its base, these displacement functions
are

~v(z)
1 22' (z/L) (3 - z/L) )

~ ( z) = z/2 (1 - (Z/L)2)
X

~ <jJ (z) = z/L

~"( z) 3
V

-3z/L

~"( z) 2
-3z/L

X

~¢(z) = l/L

The equations for a tower with a ball joint at its base were chosen
because the tower designs utilize bases mounted on flexible pads which reduce
bending moments transmitted to the foundation. Similar equations for a
cantilever based tower can be found in the Thresher, et al report.
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The inertia coefficients of the tower are expressed in a similar fashion.
They are

L

Mvv ; m(z) ~V2 (z) dz + (mR + ~)

where

m(z) Mass per unit length of the tower

Mass of nacelle and rotor

and

where

M
XX

I
xx

L
I m(z) ~ ( z) ~ (z) dz
0

V X

L
'¥ 2I m( z) (z) dz + I

0 X xx

L
'¥ 2II (z) (z) dz + Im <P zz

0

Mass moment of inertia of nacelle and rotor about the
x axis

also

where

I
zz

I (z)
m

Mass moment of inertia of nacelle and rotor about the
z axis

Mass moment of inertia per unit length of tower about
the tower centerline

q The distance from the tower centerline to the center of gravity
of the nacelle and rotor

Finally

M
W

- 2(k /k ) M + (kv /k )2 (M
Vx XXVX X XX XX

I )
xx
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The displacement functions are the same as those used in determining
the stiffness coefficients. These coordinate functions are used in a finite
element technique and are explained in the Thresher, et al report.

The stiffness and inertia coefficients as outlined above can be calculated
using the calculator program Inertia and Stiffness Coefficients of Wind Turbines
which is included in the Thresher, et al report. The required input data
include (see Figure 4) :

1) The type of tower base.

2) The height of the tower (L) •

3) The effective spring constant of the guys (k ) •
c

4) The height of the guy connection (a) .

5) The length of the tower sections (L') •

6) The bending stiffness of the tower section (EI(z».

7) The torsional stiffness of the tower section (GJ(z» .

8) The mass per unit length of the tower section (m(z».

9) The mass moment of inertia per unit length about the tower
centerline (I (z».

m

10) The number of intervals for integration (N).

11) The mass moment of inertia of the nacelle and rotor about
the x and z axes (I and I ).

xx zz

12) The mass of the nacelle and rotor (~ + m
R

) .

13) The distance from the tower centerline to the center of
gravity of the nacelle and rotor (q).

The output from the above program is

and
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Equations of Motion for Wind Turbine Systems

Once the above mass and stiffness coefficients are calculated they can be
entered into the equations of motion for wind turbine systems.

The equations of motion for a wind turbine system, excluding aerodynamic
forces, are

·
~u 0 MU<p 0 U 0 0 0 U

·0 l\;v 0 M
VX

V 0 a a V

+ ·
~<p a M<p<p 0 <p 0 0 Sir <p

r

0
~X

0 M X a -Sir 0 x
XX r

k a 0 0 u 0
uu

0 kw 0 k
vX

V 0

+ =
0 0 k<p<p 0 <p 0

0 k
vX

0 k X 0
xx

To obtain the natural frequencies of vibration, these equations of motion
have the solution

u(t) Uo

vet) Vo
iwt

e
<p (t) <PO

x(t) Xo

13



Substituting this into the equations of motion yields

(k
UU

2 2
- M w) a (-MU</JW ) a

UU

2 a 2
0 (kvv - ~w ) (ku - M w)

X Ux

2 2
(iI Itw)(-MU</JW ) a (k<P¢ - M</J</JW ) r

(k
vx

2 (-iI Itw) (k w
2

)0 - ~Xw ) - Mr XX XX

Uo 0

Vo 0

</Jo a

Xo 0

where

i = I=l

W Natural frequency of vibration

I = Mass moment of inertia of the rotor about its spin axis
r

It Rotor's rotational speed

This requires that the determinate of the square matrix be equal to zero.
Expanding the determinate yields

14



If we let

2 2 2 2
W + (MuuM¢¢ - ~¢) (w )

The expanded determinate becomes

Natural Frequencies of Vibration

At zero rotor speed (Q = 0), the above becomes

o

thus the roots of G¢u and H
XV

will give the natural frequencies of vibration
at zero speed.

The equation for Duv can be factored to yield

Rearranging the determinate
2

H V(w )
X

2 2
w

At infinite rotor speed this becomes

The roots of these will give the natural frequency of vibration at infinite
rotor speed.

The calculator program, Natural Frequencies of Wind Turbine Systems,
included in the Thresher, et al report was written to determine the frequencies

15



of vibration at zero and infinite rotor speed. It can also be used to
calculate the rotor speed at which a given frequency of vibration will occur.

In this analysis it was desirable to determine the natural frequencies
of vibration as a function of rotor speed. Therefore, a computer program was
written in FORTRAN that extracts the roots in w2 of the expanded determinate.

computer Program for Vibration Analysis

The FORTRAN program uses the inertia and stiffness coefficients calculated
on the calculator program, Inertia and Stiffness Coefficients of Wind Turbines,
and determines the coefficients of (w 2)O, (w2)1, (w 2)2, (w 2)3 and (w2)4. In
the program

AG kuJ<¢<j>

BG - (kutr¢<p + k¢<pMUU)

2
CG MUUM¢¢ MU¢

k k
vX

2
AH k

XX W

BH -(k ~ +~ - 2kv ~ )
XX XX X X

2
CH

~Xx t-VX

AD 0

BO ~2I 2 k k
r UU W

co _~2I 2 (k uMw + k~ )
r U UU

DO ~2I 2 M Mw
r UU

Substituting these into the expanded determinate and collecting terms yields

(AG) (AH) + [(AG) (BH) + (BG) (AH) - (BO) lw2 + [(AG) (CH) + (BG) (BH) +

(CG) (AH) - (CD)] (w
2) 2 + [(BG) (CH) + (CG) (BH) _ (DO) 1(w

2) 3 +

(CG) (CH) (w
2

) 4 = °

16



After summing like coeffici.ents, the subroutine GNEWTN is called. This
routine determines the roots of a polynomial using a modified Newton method
and is capable of locating complex roots. This routine was supplied by NASA 
Lewis Research Center and requires the subroutine SYND1V for synthetic division.
The program is also capable of plotting the natural frequencies of vibration as
a function of rotor speed and uses plotting routines also supplied by NASA 
Lewis Research Center.

The computer program requires the following input data:

1)

2)

3)

4)

5)

6)

7)

8)

9)

Number of data sets (J).

Number of roots to be plotted (JPO).

Ti tle.

Mass moment of inertia of the rotor about its spin axis (I ).
r

The lowest rotor speed at which roots are to be found (R . ).m1.n

The highest rotor speed at which roots are to be found (R ) .
max

The number of points between the lowest and highest rotor
speeds at which roots are to be found (NS).

MUU ' MU~' ~, MVx' M~~, and MXX

kuu ' kvv ' kvx ' k~~, and k xx

The output includes:

1)

2)

3)

4)

The natural frequencies of vibration at zero rotor speed
(i.e., the roots of G~U and H

XV
).

The natural frequencies of vibration at infinite rotor speed
(i.e., the roots of D

UV
).

The natural frequencies of vibration at R . I R I and the
f . d b h'm1.n ma~ .number 0 p01.nts requeste etween t e m1.n1.mum and max1.mum

rotor speed.

A plot of the natural frequencies of vibration versus rotor
spin rate.

A flow chart of this program is included in Figure 6 and a listing can be
found in Appendix A.
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RESULTS OF VIBRATION ANALYSIS

The appropriate tower properties for each case and concept were entered
into the calculator program, Inertia and Stiffness Coefficients of Wind Tur
bines, presented in the Thresher, et al report. The output of the calculator
program provides the inertia and stiffness coefficients of the wind turbine
system. The inertia and stiffness coefficients were entered into the FORTRAN
program, Natural Frequencies of Wind Turbine Systems, which was developed for
this analysis. The output of the computer program provides natural frequencies
of vibration as a function of rotor rotational speed. Listed in Tables III and
IV are the first four modes of vibration for Concepts I and II evaluated at
zero rotor speed. Table V lists the same modes of vibration for Concept III
except they are evaluated at a rotor operating speed of 4.19 rad/sec (40 rpm).
The results of the different cases are plotted and can be found in Appendix B.
These four modes of vibration represent the first and second modes of vibration
in bending coupled with yaw and the first and second mode of vibration in bend
ing coupled with pitch. In these tables the first bending-pitch mode is labeled
wI (Mode I), the first bending-yaw mode is labeled w2 (Mode II), the second
bending-yaw mode is labeled w3 (Mode III), and the second bending-pitch mode is
labeled w4 (Mode IV).

Cases A through E for each concept are plotted in Figures 7 and 8. These
show the effect of varying the effective guy stiffness on the frequencies of the
four modes of vibration. Lines labeled lP, 2P and 3P have also been plotted on
Figure 7 and represent multiples of the rotor's rotational speed. Figures 9
and 10 show the results of Cases F and G and indicate the effect of changing
the height of the guy attachment point. The effect of varying the mass of the
nacelle and rotor, Cases Hand L, is shown in Figures 11 and 12 and the effect
of moving the nacelle and rotor center of gravity is plotted in Figure 13.
Finally, Cases L through Q, which show the effect of changing the nacelle and
rotor inertia about the X and Z axes, are plotted in Figures 14, 15 and 16. On
all of the above plots WI is the first bending-pitch mode, w2 is the first
bending-yaw mode, w3 is the second bending-yaw mode, and w4 is the second
bending-pitch mode. In all cases, WI and w2 were very close and are plotted
as one line.

The computer plot of the natural frequencies of vibration versus rotor
rotational speed for the design case, Case C, can be found in Figures 17, 18
and 19. The computer plots of the other cases can be found in Appendix B.

The natural frequencies of vibration of w2 at infinite rotor rotational
speed are listed in Table VI. Since Concepts I and II have teetering hubs
which eliminate the gyroscopic effects encountered with a fixed hub, these
results are not applicable. Even though these results are apparently not of
any significance now, their importance will be pointed out later.

The mode shapes of vibration for a typical wind turbine system can be
seen in Figures 20 and 21. These figures are excerpts from the Thresher, et al
report and represent a non-guyed wind turbine tower.
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DISCUSSION OF RESULTS

The results of the vibration analysis were analyzed to determine the
important features and to determine the sensitivity of the wind turbine system
to the variance of individual parameters. Note that in this analysis, in most
cases, only one parameter at a time was varied, but in actuality when one para
meter is changed so are several others. For example, if the mass of the rotor
changes, the center of gravity of the nacelle and rotor would move and the mass
moment of inertia about the tower's X and Z axes would also be affected. There
fore, several properties of the wind turbine system would change instead of
just one.

While analyzing the results of Cases A through E, it was determined that
all frequencies of vibration are affected by changing the effective guy stiff
ness (see Figures 7 and 8). This was expected because changing the effective
guy stiffness changes the stiffness of the tower. As expected, as the effec
tive guy stiffness decreased, so did the natural frequencies of vibration and
as effective guy stiffness increased, so did the frequencies. Comparing Fig
ures 7 and 8, we find that the lower two modes of vibration are affected the
most.

Points of concern are where a multiple of a rotor's rotational speed
coincides with a natural frequency of vibration. At these points the rotor
would excite the mode of vibration and cause the tower to oscillate near reso
nance. Since concepts I and II have two-bladed rotors, the first and second
multiple (IP and 2P) of the rotor's rotational speed are of importance. Since
concept III has a three-bladed rotor, the first and third multiples (lP and
3P) are of interest. When the lowest modes of vibration occur at frequencies
above the lower rotor orders, the tower is defined as being "stiff". If these
lower modes of vibration occurred at a frequency below the first rotor order,
the tower would be considered "soft". In this analysis, the lowest two modes
of vibration, in most cases, occurred at frequencies well above the first two
rotor orders for the two-bladed concepts and the first three rotor orders for
the three-bladed concept. Therefore, all three tower concepts in this analysis
proved to be "stiff".

In analyzing the results of Cases A through E (see Appendix B), it was
found that the effective guy stiffness had to be decreased considerably before
any natural frequency of vibration coincided with a lower rotor order. For
concepts I and II the effective guy stiffness had to be decreased to 25% of
the design value before the lowest natural frequency of vibration would be
excited by the second rotor order. For Concept III the effective guy stiffness
had to be decreased to 50% of the design value before the lowest natural fre
quency could coincide with the third rotor order. This indicates the tower
designs are very stiff and that the effective guy stiffness could vary signifi
cantly before reaching resonance. The high stiffness can be greatly attributed
to the use of prestressed anchors and anchor pads. Note that the two second
modes of vibration, w3 and w4' occur at relatively high frequencies and,
therefore, should not be of concern.
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The results of Cases F and G show the effect of changing the height of the
guy attaching point. Figures 9 and 10 show that as the height of the attaching
point is raised, the natural frequencies of vibration increase. This implies
that raising the guy attaching point increases the stiffness of the system and
thus increases the frequency of vibration. On the other hand, if the height of
the guy attaching point is lowered, the stiffness of the system decreases as
well as the natural frequencies of vibration. In both of these cases, the
first two modes of vibration were affected the most. The first two natural
frequencies of vibration of Concept III became excited by the third rotor order
(3P) when the height of the guy attachment was lowered to 2/3 of the design
value. The first two natural frequencies of vibration for Concepts I and II
did not coincide with the first two rotor orders in either case.

In Cases H and I, the mass of the nacelle and rotor was varied. As the
mass was increased the frequency of vibration of the first two modes decreased
and as the mass was decreased, frequency increased. Figure 11 shows that,
within the range of the analysis, none of the concepts have their first two
modes excited by the rotor orders of concern. Figure 12 shows that the second
mode of bending-yaw (w3) is greatly affected by the mass of the nacelle and
rotor but the second mode of bending-pitch (w4) is not.

Changing the distance from the tower centerline to the location of the
nacelle and rotor center of gravity had little effect on Modes I, II and IV,
but Mode III was greatly affected (see Figure 13). This plot shows that as
the distance to the center of gravity is increased, the frequency of vibration
of the second mode of bending-yaw also increases. The opposite happens when
the distance is decreased.

The plots of Cases L through Q show the effect of changing the inertia
of the nacelle and rotor about the tower's X and Z axes. As the inertia about
the Z axis was varied, the second mode of bending-yaw (w2) was affected the
most, but as the inertia about the X axis was varied, the second mode of
bending-pitch (w4) was influenced. These effects can be seen in Figures 14
through 16. The lower modes showed little change and, therefore, were not
plotted.

This analysis has shown that only the natural frequencies of the first
modes of vibration are in a region of concern, i.e., in a region where they
might be excited by the rotor. These first modes of vibration, wl and w2'
were shown to be most greatly affected by changing the effective guy stiffness,
the height of the guy attachment point, the tower mass and stiffness properties,
and the mass of the nacelle and rotor.

Once the basic wind turbine system is designed, the designer cannot
practically change the mass and stiffness of the tower nor the mass of the
nacelle and rotor, but the effective guy stiffness can be varied without a
great deal of redesigning. The effective guy stiffness can be varied by
changing the size and/or the number of guy rods. For these tower designs,
the minimum number and size of the guys were based on the cyclic loading under
normal operating conditions and the static loads experienced during hurricane
conditions. Thus, the practical design variables become, increasing the size
or the number of guys. The effect of the guys can also be changed by varying
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the height of the guy attachment point, but this would require significant
redesigning of the tower sections.

Finally, the results in Table VI, which lists the natural frequencies of
vibration at infinite rotor rotational speed, show that w2 changes very little
with rotor speed, i.e., w2 at zero rotor speed is approximately the same fre
quency at infinite rotor speed. It was also shown earlier that at or near zero
rotor speed, wI and w2 were also approximately of the same frequency. There
fore, the frequency of wI and w2 at zero rotor speed is approximately the same
as the frequency of w2 at infinite rotor speed. As discussed in the Analytical
Procedure, w2 at infinite rotor speed can be easily found by calculating the
square root of kuU/MUU' Thus, the natural frequencies of vibration of the
first modes can be easily approximated with one stiffness and one inertia
coefficient.
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CONCLUSIONS OF VIBRATION ANALYSIS

In conclusion, a vibration analysis was performed on three preliminary
tower designs for intermediate size wind turbines. A parametric study was per
formed to determine the sensitivity of the wind turbine system to variances in
inertia and stiffness properties. The following conclusions were made as a
result of the vibration analysis.

1) Under design conditions none of the tower concepts are excited
by the rotor at or below the operating speed of 40 rpm.

2) At present, only the lowest two natural frequencies of vibration
are in frequency range of concern. It was also found in the
operating range, that these first two modes are very clOse in
frequency. Furthermore, the first bending-yaw mode frequency
(w2) changes very little from zero to infinite rotor speed.
Therefore, the frequency of vibration of most concern can be
found by evaluating w2 at infinite rotor speed. This is simply:

w =2
(k 1M )1/2

UU UU

where kuu and MUU are the stiffness and mass coefficients for
translation in the x direction.

3) The frequencies of vibration of the lowest two modes are
significantly affected by the effective guy and anchor stiff
ness, the height of the guy attachment, and the mass of the
nacelle and rotor. These modes are also affected by the
tower section properties, i.e., tower sections' mass and
stiffness. Thus, the tower may be tuned to avoid excitation
of the lower modes by changing the effective anchor and guy
stiffness, the guy attaching height, the mass of the nacelle
and rotor, or the tower sections' mass and stiffness properties.
The most practical being the size and the number of the guys.

4) The center of gravity location of the nacelle and rotor had
negligible effects on the lower modes of vibration. The same
is true for the rotational inertia of the nacelle and rotor
about the tower's X, Y and Z axes.

5) The frequencies of vibration of the upper two modes were
affected in all cases, but were of so high a frequency that
they are of little concern. The effective guy and anchor
stiffness mostly affected the second bending-pitch mode
(Mode IV), whereas the nacelle and rotor mass and the loca
tion of the center of gravity affected mostly the second
bending-yaw mode (Mode III). The inertia about the Z axis
had the greatest affect on Mode III, and the inertia about
the Y axis mostly affected Mode IV.
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TABLE I

TOWER SECTIOO LENGTHS AND THICKNESSES

SECTION LENGTH WALL THICKNESS
TOWER SECTION m rom

CONCEPT NUMBER (ft) ( in)

I 1 7.62 7.94
(25.0) ( 5/16)

2 10.67 9.52
(35. 0) ( 3/8)

3 10.36 7.94
(34.0) (5/16)

II 1 3.66 7.94
(12.0) ( 5/16)

2 1.83 9.52
(6.0) ( 3/8)

3 3.05 12.70
(10. 0) (1/2)

4 5.49 15.88
(18.0) (5/8)

5 5.79 12.70
(19.0) (1/2)

6 3.66 9.52
(12.0) ( 3/8)

7 5.18 7.94
(17.0) (5/16)

III 1 3.66 14.29
(12.0) (9/16)

2 2.44 11.11
(8. 0) (7/16)

3 2.44 14.29
(8.0) (9/16)

4 4.57 19.05
(15.0) (3/4)

5 4.57 15.88
(15.0) (5/8)

6 4.88 12.70
(16.0) (1/2)

7 2.74 9.52
(9.0) ( 3/8)

8 3.35 7.94
(11. 0) (5/16)
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TABLE II

TOWER SECTION INERTIA AND STIFFNESS PROPERTIES

MASS MOMENT
BENDING TORSIONAL MASS PER OF INERTIA PER

STIFFNESS STIFFNESS UNIT LENGTH UNIT LENGTH
EI(Z) GJ(Z) M(Z) Im(Z)

TOWER SECTION Nm2 Nm2 kgjm kgm2

CONCEPT NUMBER (lb ft2) (lb ft2) (lb sec2jft2) (lb ft sec2 )

I 1 1. 861E+09 1. 489E+09 279.9 44.27
(4.502E+09) (3.602E+09) (5.845) (32.65)

2 2.226E+09 1. 780E+09 335.4 54.23
(5.385E+09) (4.308E+09) (7.006) (39.99)

3 1.861E+09 1. 489E+09 279.9 44.27
(4.502E+09) (3.602E+09) (5.845) (32.65)

II 1 1. 861E+09 1. 489E+09 280.3 44.29
(4.502E+09) (3.602E+09) (5.855) (32.66)

2 2.226E+09 1. 780E+09 336.0 52.99
(5. 385E+09) (4.308E+09) (7.018) (39.08)

3 2.948E+09 2. 358E+09 447.1 70.21
(7.133E+09) (5.706E+09) (9.337) (51. 78)

4 3.66lE+09 2.929E+09 557.6 87.11
(8.857E+09) (7.086E+09) (11. 645) (64.24)

5 2.948E+09 2.358E+09 447.1 70.21
(7.133E+09) (5.706E+09) (9.337) (51. 78)

6 2.226E+09 1. 780E+09 336.0 52.99
(5. 385E+09) (4. 308E+0 9) (7.018) (39.08)

7 1. 861E+09 1.489E+09 280.3 44.29
(4.502E+09) (3.602E+09) (5.855) (32.66)

III 1 1.861E+09 1.489E+09 247.4 39.,09
(4.502E+09) (3.602E+09) (5.168) (28.83)

2 2.588E+09 2.070E+09 345.7 54.36
(6.262E+09) (5.009E+09) (7.220) (40.09)

3 3.306E+09 2.644E+09 443.5 69.45
(7.998E+09) (6.398E+09) (9.262) (51. 22)

4 4.364E+09 3.491E+09 589.4 91.69
(10.56E+09) (8.447E+09) (12.309) (67.62)

5 3.661E+09 2. 929E+09 494.2 76.93
(8.857E+09) (7.086E+09) (10.280) (56.73)

6 2.948E+09 2.358E+09 396.4 62.21
(7.133E+09) (5.706E+09) (8.278) (45.88)

7 2.226E+09 1. 780E+09 296.6 46.78
(5.38"5E+09) (4. 308E+09) (6.195) (34.50)

8 1.861E+09 1.489E+09 247.4 39.09
(4.502E+09) (3.602E+09) (5.168) (28.83)
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TABLE III

NATURAL FREQUENCIES OF VIBRATION OF WIND TURBINE TOWER DESIGNS

CONCEPT I AT Q = 0

CASE CONDITION FREQUENCY OF VIBRATION, HZ (CPM)

WI w
2

w
3

w
4

A 0.25 k
T

1.26 1.26 9.07 11.35
(75.9) (75.9) (544.2) (681. 0)

B 0.50 k
T

1.72 1.72 9.18 11. 77
(103.2) (103.2) (550.9) (706.4)

C (NORM) 1.0 k
T

2.26 2.28 9.37 12.60
(135.5) (136.7) (562.1) (756.0)

D 1.5 k
T

2.59 2.62 9.51 13.39
(155.4) (157.6) (570.9) (803.8)

E 2.0 k
T

2.82 2.86 9.63 14.15
(169.1) (171.9) (578.0) (849.1)

F 1. 33 a 2.83 2.88 9.59 13.05
(169.8) (173.1) (575.6) (783.2)

G 0.66 a 1.65 1.66 9.17 11.90
(99.4) (99. 7) (550.5) (714.2)

H 1. 33 (fiR+ItN) 2.02 2.04 11.02 12.52
(121.1) (122.8) (661.4) (751.4)

I 0.66(fiR+~) 2.61 2.61 8.30 12.73
(156.7) (156.8) (498.3) (763.9)

J 1. 33 q 2.22 2.28 13.52 12.60
(133.5) (136.7) (8llA) (756.0)

K 0.66 q 2.28 2.28 7.95 12.60
(136.7) (137.1) (477.1) (756.0)

L 1. 33 I
ZZ

2.26 2.28 7.57 12.60
(135.4) (136.7) (454.5) (756.0)

M 0.66 I
ZZ

2.26 2.28 13.68 12.60
(135.6) (136.7) (821.1) (756.0)

N 1. 33 I 2.26 2.27 9.37 12.01
XX (135.5) (136.3) (562.1) (720.7)

0 0.66 I 2.26 2.28 9.37 13.29xx (135.5) (137.2) (562.1) (797.8)

P 1. 33 (IZZ ' I
XX

) 2.26 2.27 7.57 12.01
(135.4) (136.3) (454.5) (720.7)

Q 0.66 (I
ZZ

I I
XX

) 2.26 2.28 13.68 13.29
(135.6) (137.2) (821.1) (797.8)
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TABLE IV

NATURAL FREQUENCIES OF VIBRATION OF WIND TURBINE TOWER DESIGNS

CONCEPT II AT n = O·

CASE CONDITION FREQUENCY OF VIBRATION, HZ (CPM)

wI w
2

w
3

W
4

A 0.25 k
T

1.27 1.27 12.04 13.04
( 76.2) (76.4) (722.3) (782.3)

B 0.50 k
T

1. 76 1. 76 12.12 13.31
(105.6) (105.8) (727.7) (798.7)

C (NORM) 1.0 k
T

2.39 2.39 12.29 13.86
(143.5) (143.6) (737.4) (831. 5)

D 1.5 k
T

2.81 2.82 12.42 14.39
(168.9) (169.3) (745.7) (863.8)

E 2.0 k
T

3.12 3.14 12.54 14.92
(187.7) (188.5) (752.9) (895.5)

F 1. 33 a 3.07 3.08 12.47 14.12
(184.0) (184.8) (748.7) (847.3)

G 0.66 a 1. 70 1. 70 12.12 13.40
(102.1) (102.3) (727.7) (804 .4)

H 1. 33(mR+~) 2.16 2.17 13.90 13.65
(129.9) (130.4) (834.2) (819.1)

I 0.66(mR+~) 2.69 2.71 11.18 14.20
(161.6) (162.5) (670.8) (852.0)

J 1. 33 q 2.37 2.39 15.53 13.86
(142.5) (143.5) (931. 9) (831. 5)

K 0.66 q 2.39 2.40 10.89 13.86
(143.5) (114.3) (653.3) (831.5)

L 1. 33 I
ZZ

2.39 2.39 10.14 13.86
(143.5) (143.6) (608.7) (831. 5)

M 0.66 I
ZZ

2.39 2.39 16.84 13.86
(143.5) (143.6) (1010.8) (831. 5)

N 1. 33 I 2.39 2.39 12.29 13.37xx
(143.3) (143.5) (737.4) (802.1)

0 0.66 I
XX

2.39 2.39 12.29 14.41
(143.5) (143.8) (737.4) (864.6)

p 1. 33 (I
ZZ

' I
XX

) 2.39 2.39 10.14 13.36
(143.3) (143.5) (608.7) (802.1)

Q 0.66 (IZZ ,IXX) 2.39 2.39 16.84 14.41
(143.6) (143.8) (1010.8) (864.6)
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TABLE V

NATURAL FREQUENCIES OF VIBRATION OF WIND TURBINE TOWER DESIGNS

CONCEPT III AT r.l = 4.19 RAD/SEC

CASE CONDITION FREQUENCY OF VIBRATION, HZ (CPM)

w
1

w
2

w
3

w
4

A 0.25 k
T

1.28 1.29 10.58 13.51
(77.3) (77.6) (635.1) (811.0)

B 0.50 k
T

1. 79 1. 80 10.58 13.75
(107.4) (108.1) (635.2) (825.1)

C (NORM) 1.0 k
T

2.44 2.47 10.58 14.22
(146.8) (148.2) (635.3) (853.3)

D 1.5 k
T

2.90 2.93 10.59 14.69
(174.1) (176.1) (635.4) (881. 4)

E 2.0 k
T

3.24 3.29 10.59 15.15
(194.9) (197.5) (635.4) (909.1)

F 1. 33 a 3.16 3.20 10.58 14.44
(189.6) (192.0) (635.3) (866.5)

G 0.66 a 1. 73 1. 74 10.58 13.83
(103.9) (104.6) (635.2) (830.1)

H 1. 33 (m
R
+~) 2.22 2.24 10.58 13.99

(133.6) (134.6) (635.3) (839.8)

I 0.66(mR+~) 2.74 2.78 10.58 14.59
(164.9) (167.0) (635.2) (875.6)

J q+O. 52m( +1. 7 ft) 2.44 2.47 10.65 ·14.22
(146.8) (148.2) (638.9) (853.3)

K q-O. 52m( -1. 7 ft) 2.44 2.47 10.71 14.22
(146.8) (148.1) (642.9) (853.4)

L 1. 33 I
ZZ

2.44 2.47 9.22 14.22
(146.8) (148.2) (553.2) (853.0)

M 0.66 I
ZZ

2.44 2.47 12.81 14.25
(146.8) (148.2) (768.6) (855.0)

N 1. 33 I 2.44 2.47 10.58 13.72xx (146.5) (148.2) (635.2) (823.4)

0 0.66 I 2.45 2.47 10.58 14.78xx (147.1) (148.2) (635.2) (886.9)

p 1. 33 (I
ZZ

' I
XX

) 2.44 2.47 9.22 13.72
(146.6) (148.2) (553.2) (823.3)

Q 0.66(I
ZZ

,I
XX

) 2.45 2.47 12.82 14.80
(146.6) (148.2) (767.6) (886.9)
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TABLE VI

NATURAL FREQUENCIES OF VIBRATION, HZ (CPM)

AT INFINITE ROTOR ROTATIONAL VE~OCITY

CASE CONCEPT I CONCEPT II CONCEPT III

W
2

W
2

W
2

A 1.27 1.28 1.29
(76.2) (76.8) (77.4)

B 1. 74 1.77 1. 80
(104.4) (106.2) (108.0)

C 2.31 2.41 2.47
(138.6) (144.6) (148.2)

D 2.67 2.85 2.94
(160.2) (171.0) (176.4)

E 2.92 3.18 3.29
(175.2) (190.8) (197.4)

F 2.93 3.12 3.20
(175.8) (187.2) (192.0)

G 1. 67 1.71 1. 74
(100.2) (102.6) (104.4)

H 2.07 2.19 2.24
(124.2) (131.4) (134.4)

I 2.66 2.73 2.78
(159.6) (163.8) (166.8)

J 2.31 2.41 2.47
(138.6) (144.6) (148.2)

K 2.31 2.41 2.47
(138.6) (144.6) (148.2)

L 2.31 2.41 2.47
(138.6) (144.6) (148.2)

M 2.31 2.41 2.47
(138.6) (144.6) (148.2)

N 2.31 2.41 2.47
(138.6) (144.6) (148.2)

0 2.31 2.41 2.47
(138.6) (144.6) (148.2)

P 2.31 2.41 2.47
(138.6) (144.6) (148.2)

Q 2.31 2.41 2.47
(138.6) (144.6) (148.2)

28



NOTE: ALL GUYS ARE SHOWN BUT

ONLY ONE ANCHOR IS SHOWN

SOIL

ANCHOR

ROD

II-GROUT
~ BULB

!

GUY
ATTACHMENT

RING

BED ROCK

WIND TURBINE TOWER GUY AND ANCHOR ROD SYSTEM

Figure 1

29



CABINETS

w
o

/'

!

TOWER CENTERLINE

GENERATOR

PITCH CHANGE MECHANISM

TEETERING HUB

TOP VIEW OF AN INTERMEDIATE SIZE WIND TURBINE, CONCEPT I

Figure 2



r b ....---
~

U U

~ If]
-'-

~lH
I TT

" - ttfj - j -fi-
INE

I
I

-L...--- r--.....--

TEETERING HUB

WIND TURB

BLADE

GEAR BOX

o

PITCH CHANGE
MECHANISM

SIDE AND FRONT VIEWS OF WIND TURBINE, CONCEPT I

W
I-'

Figure 3



z

a

~v

L

32

WIND TURBINE TOWER
STRUCTURAL AND DIMENSIONAL CHARACTERISTICS

Figure 4



.,. Q I/i)

DIRECTION

y

v

X'~ND

" y

""\

z z,z

x,x

Q = Rotor rotation rate
1> = Yaw angle
X Pitch angle
U = Tower top X

displacement
V = Tower top Y

displacement

TOWER COORDINATE SYSTEM

Figure 5

33



YES

NS NS - I

Call
GNEWTN

Determine
Coefficients

of
GepuHxv-Duv

il il - ilStep

Rmax

Call
GNEWTN

Call
GNEWTN

Determine
Coefficients

of Ow

Determine
Coefficients

of HXV

Call
GNEWTN

Determine
Coefficients

of GepU

J J - I

Determine
Interval of

Steps, nStep

COMPUTER PROGRAM FLOW CHART

Figure 6

34



TOWER DESIGNS FOR INTERMEDIATE SIZE WIND TURBINES

III

Wl ' Wz
Concept 1

W
l

, Wz
Concept

,/ /' wl ' w2
Concept II

concepts I,ll and III
cases A through E

Natural Frequencies of Vibration
Versus Effective GUy Stiffness

3.0

Z.5

~
Z.O 3P

:z:

2
00".jJ
ttl
I-<
.00" 1.5:>
....
0

>. 2P
u
l::
<ll I::l
go

1.0 I
10<
r>..

'iil
I-<
::l
.jJ

lP'"Z
0.5

250\200%150\100\50\

0.0 '-- ~ -'- _'_ _..J. _'

o

Percent of Effective Guy Stiffness, \k
T

The frequencies of vibration of the first two modes as the
effective guy stiffness is varied from 25\ to 200\ of the

design value. kT = 44.36E + 06 N/m

Figure 7

35



TOWER DES IGNS FOR INTERMEDIATE SIZE WIND TURB INES

Natural Frequencies of Vibration
Versus Effective GUy Stiffness

concepts I, II and III
Cases A through E

18.0

- - w
3

, Concept II

6. 6. 6- w
3

, Concept II!

-0-- - w
3

, concept I

-0-- -0-
- -0-0-

16.0 concept IIIw
4

,

- ::: w
4

, Concept I!-
w4 , Concept I

14.0

10.0

8.0

250%200\150\50\

6. 0 L- J.- ...L- ....I- ~ ___J

o

Percent Effect GUy Stiffness, \k
T

The frequencies of vibration of the second two modes as
the effective guy stiffness is varied from 25\ to 200%

of the design value. kT = 44.36E + 06 N/m

Figure 8

36



TOWER DESIGNS FOR INTERMEDIATE SIZE WIND TUre INES

WI' w2
concept III
WI' w2
Concept II
WI' w2
Concept I

II
I

/ I
I

Concepts I, II and III
cases F and G

Natural Frequencies of Vibration
Versus Height of Guy Attaching Point

3.0

2.5

N 2.0 3P
:r:

c
0

-rl...,
ttl
~

.Q
·rl

1.5 ~:>

""' 1'1
0

2P
>,
u
C
aJ
::>
0'
(\)

1.0~
~

'iil
~

::>...,
IPtllz

0.5

0.0 '-- ..L- ........ -L. --'- ---'

o 1/3a 2/3a a 4/3a

GUy Attaching Height, a

The frequencies of vibration of the first two modes as
the height of the guy attaching point is varied.

a = 10.7m

Figure 9

37



18.0

TOWER DESIGNS FOR INTERMEDIATE SIZE WIND TURBINES

Natural Frequencies of Vibration
Versus Height of GUy Attaching Point

Concepts I, II and III
Cases F and G

16.0

w
4' Concept III

w
4' Concept II

14.0
t<l
:I: ....
2

~=
w
4' Concept I....

0 ....• ,..j..., w
3

, Concept II<1l
~

.a 12.0 :gr.,..j - -:> ....
II-< ....
0

><
()
l:: - - -6 6 6---Cll w

3
, Concept III::l

0'
Cll 10.0
~

fLo -0- - - w
3

, Concept I
M -0-<1l - - -0-'"::l...,
<1l
Z

8.0

6.0
o 1/3a 2/3a a 4/3a 5/3a

38

Guy Attaching Height, a

The frequency of vibration of the second two modes as
the height of the guy attaching point is varied.

a = 10.7m

Figure 10



f

TOWER DESIGNS FOR INTERMEDIATE SIZE WIND TURBINES

Natural Frequencies of Vibration
Versus Nacelle and Rotor Mass

concepts I, II and III
Cases H and I

3.0

2.5

.....
wl ' w2 ' Concept III......

2.0 w2 ' Concept II
N ..... 1
:I:

wl ' w2 ' Concept I
C
0

• .-j

+J
III

'".0 1.5•.-j ->
"-'
0 2P
G
c:
<l)
;:l
0'
UI 1.0
'"0..

.....
III

'";:l+J IPIII
Z

0.5

0.0 L- .L.- ....L- --'- --'- --'

o 1/3M 2/3M M 4/3M 5/3M

Nacelle and Rotor Mass, M

The frequencies of vibration of the first two modes as
the Nacelle and Rotor Mass is varied.

Concept I M 16.19E + 03 kg
Concept II M 14.59E + 03 kg
concept III M 14.18E + 03 kg

Figure 11

39



TOWER DESIGNS FOR INTERMEDIATE SIZE WIND TURBINES

Natural Frequencies of Vibration
Versus Nacelle and ftOtor Mass

concepts I, II and III
Cases H and I

18.0

16.0

/
w

3
, Concept II

/

14.0 /
N w

4
, Concept III

:xl

2 w
4

, Concept II
0

OM
+l

'" w4 , concept Ik
,Q
OM 12.0 / Concept I:> w

3
,

.... /
0 /
>,
u
c w

3
, Concept IIIQ)

::l
0'

10.0Q)
kr...
~..
~
+l

'"z
8.0

5/3M4/3MM1/3M

6.0'--- ......... ....L- -'- ....... --'

o

Nacelle and Rotor Mass M = (~ + M
R

)

The frequencies of vibration of the second two modes as
the Nacelle and ftOtor Mass is varied.

concept I M = l6.l9E + 03 kg
Concept II M = l4.59E + 03 kg
Concept III M = l4.l8E + 03 kg

Figure 12

40



TOWER DESIGNS FOR INTERMEDIATE SIZE WIND TURBINES

Natural Frequencies of Vibration
Versus Center of Gravity Location

Concepts I, II and III
Cases J and K

18.0

/ w3 ' Concept II

16.0 /

I
w3 ' Concept I

, _ w4 ' Concept III

~
14.0 - w4 ' Concept II

:I:

~
00"+> - - - w4 ' Concept Ittl
10<
.0"., 12.0:>
Ii-<
0

:>,
()

~ - -- w
3

, concept IIIQ)
;:l
tl'
Q) 10.010<

r>..
.....
ttl
10<
;:l
+>
ttl
Z

8.0

6.0 L..- '-- --J --J -1 --J

o l/3q q 4/3q S/3q

Distance to Nacelle and Rotor Center of
Gravity from Tower Center Line, q

The frequencies of vibration of the second two modes
as the location of the center of gravity is varied.

Concept I q 2.3Sm
Concept II q 2.l6m
Concept III q -.09m

Figure 13



TOWER DESIGNS FO~ INl'ERMEDIATE SIZE WIND TllRl5INES

Natural Frequencies of Vibration Versus
Mass Moment of Inertia of the Nacelle and

~otor About the Tower'. Z Ax! s

concepts I, II and III
cases Land M

18.0 \
\

w4 ' concept III
w

4
' COncept II

W
3

' COncept III

W
3

' Concept II
.....

- - - w4 ' Concept I

8.0

I zZ • l69.8E 03
2

Concept I + kg m2
Concept II I ZZ .. l32.3E + 03 kg m

2
- w3 , COncept I

Concept III I ZZ .. l39.9E + 03 kg m

6.0

0 l/3IZZ 2/3IZZ IZZ 4/3IzZ 5/3IZZ

14.0

10.0

12.0

16.0

Mass Moment of Inertia of the Nacelle
and Rotor About the Tower's Z Axis, I ZZ

The frequencies of vibration of the second two modes
as the mass moment of inertia of the Nacelle and

Rotor about the tower I s Z axis is varied.

Figure 14

42



TOWER DESIGNS FOR INTERMEDIATE SIZE WIND TURBINES

Natural Frequencies of Vibration Versus
Mass Moment of Inertia of the Nacelle and

Rotor About the Tower's X Axis

concepts I, II and III
Cases Nand 0

18.0

16.0

N 14.0
:I:

2
0

0';

+J
III
l-<
.0
.'; 12.0:>
....
0
>,
()

l::
(l)
::J
0'
(l) 10.0l-<

'"
'id
l-<
::J
+J
III
Z

~-----8=
w4 ' Concept III

w4 ' Concept II

w
3

, Concept II

w4 ' Concept I

- - -6c------i6-r----,6- - - w
3

, Concept III

- - -O)----~O)-----O- - - w3 , Concept I

4/3IXX

8.0

Concept I I XX = 113.5E 03 kg 2
+ m2concept II I xx = 125.4E + 03 kg m2Concept III I

XX 133.0E + 03 kg m

6.0 L- ----:I- --..JL.- --..J----: --..J'-- --'

o

Mass Moment of Inertia of the Nacelle
and Rotor About the Tower's X Axis, I XX

The frequencies of vibration of the second two modes
as the mass moment of inertia of the Nacelle and

Rotor about the tower's X axis is varied.

Figure 15

43



TOWER DESIGNS FOR INTERMEDIATE SIZE WIND TURBINES

Natural Frequencies of Vibration Versus
Mass Moment of Inertia of the Nacelle and

Roto r About the Tower •s Z and X Axe s

Concepts I, II and III
Cases P and Q

18.0 \
\
\

w
4

, Concept III

w
4

, Concept II

- w4 , Concept I

w3 ' concept II

w
3

, concept II!

Concept I I ZZ 169.8E + 03 kg
2

8.0 m2I XX 113.5E + 03 kg m2Concept I! I zZ 132.3E + 03 kg m2I xx 125.4E + 03 kg m2 - w3 ' Concept I
Concept II! I ZZ 139.9E + 03 kg m2I XX 133.0E + 03 kg m

10.0

16.0

14.0

12.0

6.0 '-- .L- ...I- --L.. ~ __J

o

Mass Moment of Inertia of Nacelle and Rotor
About the Tower's Z and X Axes, (Izz , Ixxl

The frequencies of vibration of the second two modes
as the mass moment of inertia of the Nacelle and Rotor

about the Tower's Z and X Axes are varied simultaneously.

Figure 16

44



i I

W

I I [ I I ! I I I
! I I I 4

, I1-~I-

i IiI ! i I I I
I I I I

! i \ ! I
I

I I I I ! I i :
i

,
I I I

1 i I I I I , II, I I ,
i ! I i

!

w
3

!
I

I

:

i
i I

i I I i I

! I. i i i

J_I II I I I i i I
~-l~. i I I I

I , I
-+--t~ , I i II : ; 1

iii i I I i II' I i I

J+ I I I
,

I ! II
I i

I i I
,

I I , i i !
WI' W

....
+-"H ,. -'! I

.-

I
-

! Iiii I I I I I

: : i+.- ! I I I
I

I I i II ! ! I I , I I I-i-..J..
I I

·t -
! I i I i I , I II I i

! 1 I I i I,

12.5

10.0

""
7.5

r

~
u
z
W
::l

'"Wa::
"-
..J
ex
0:: 5.0
::l
~

c:
z.

2.5

O. 0

o. 0 0.5 1.0 1.5 2. 0 2.5 3. 0 3.5 4.0 O. P. 4.5 5. 0 5.5 6.0

2
IP

2P

RaTeR SPEED. RRDI5

NATURRl FREQUENCIES OF WINO TURB!NE SYSTEMS

CONCEPT I, CASE C, 100~ EFFECTIVE GUY STIFFNESS
Figure 17



10. C

'"r
,.: 7.5
u
z
W
::J
a
w
rr
"-

5.0

2. S

C. r.

:
;

:
,

I i
i I I

I
I
I

! I I I Iii iii i I !
1--+--+-+1--+1-+-+-+-1 -+1 -+-f---+--+-+-I-f---+-+-+--il--+- --+-I---+-+--+-+--+-+--I---+-T ! I i I I I

i : I I 'tTl i"r i I :

iii I ! i [I I ! Ii' I Ii! i I! ,I i: i
i I ! I I! I I I I I !Ii! ! ! I I !: ! ! i i !
iii! Iii iii I' ; iii lit I 'i!' ,I iii"! i I ':' I ! i I I
, ',..! Ti.,,'+-+-I -4 I I ll-r-t+

i
- --I---~,r t-- '~II +i-- T" -1--1-... _L+-II-HI- --+--t-r'+- --1 --:-+- -i-;-f.

I
-

i : i I: I I I : I ii, i: I I I' ,I I I : ! ,1 i I I! . iii I
I. _I,. -tt-l! ,.,_,i_l] I ,i I I! I I , I I ,j : TTl I I : I I I: i!:: I II! I I : I I I- , - '---+ ~- -.l-+-t--i---t --l.--,-t- +-+-+-: -+-I~..j- -, -H- ~++-+- -it-H- LTIT--f--l---!i
,! iii I I !! : iii' I I ! I ': "I I "I: ! i! I I I I I ii' I ': w w

! , :; :' i I r' I , , +' i, i,! i ±: I! I 't I 1 " I, '1 i I :' '1 1'_
2

l-l-J'~-l'J--r--1"ll'~"-Jt="-l+jt~-'~J=!~'''~'l---It----~' ~-'J~~~~~;~~-~-~~~~~fTt~~' ~.L~~-+~'--tt~-1~--~~'~-+t-t~:~~--~-~+~tj--f-f·f-f-~~1r==1 P; 'I I i I I ! ' ! I' I' _~ ~ i : I :' "I I I
I. : : I ; I ; I I L' i I lit i ' I ~Ii' !, , 1
" , '.1 i! I J,'._ I,: Ii' '-+' . I , '_ =-;---: " I ._-' ' ' I J I : I 2P---rT tirr I' i'r- -ITill t' -! ; i' ii -1" -- I" +-- ~"I_ I II

: I I • I ! , i I
c. c o. S i. C l.S 2. 0 2. S 3. C 3. S -l. C O. P. 4. S 5. C 5.S 6. C

ABTeR SPErO. RRD/S

~ATURRL FREQUENCIES OF ~!ND TUR81NF SlSlfM5

CONCEPT II, CASE C, 100% EFFECTIVE GUY STIFFNESS
Figure 18

---_...--~_._---~---_ .. _.._--_.._-_._-.. --<--- ------------ ---- --- -------~---------~~-~--- ---------~--- -------- ----------------------



3P

2
2P

IP

6. 05.55. 0~. 0 o. P.~."3.53. 02.52. 01.51.00.5

: ! W4-N ' ,+- f- t f-- 1--,- l-I-- I-t-

! iii

! I : ~rt++ i
I

I
Iitt - -

, :
I

. I

~
! I I ,

I
- ,

II ,
! I ,

!I I

i
i

I I! I i
I
i W

3

,

I

i
I

i
I I I I

I
I i !, ,, ;I I i I

: I I ! i ! i !I

I i ! I : i I

i I i-l--
; I

! i :
I Ii

i

I i , I i
I !i , 7,·-1 I I i

r-ri I--
I ....

~I I f ;
WI' W

r-W-J- +
I I T I

. ..,~ ..-l- I !
I I I,' I- ,-l- t-- I-H T r I I' i ! ' I I i

.JJJ
I i i i i I,

I I I! : i I -
! I ' ! '''-;-l-l- I I i I. , I
, ,

I ! ! i I I : ! I, ,
I

; I

2.5

0.0

o. 0

12.5

10.0

r>J
:r

~ 7.5u
z
W
::J
C3
W
e:
II-

-'a:a:
::J
I-
a: 5.0-z.

R~T~R SPEED. RAD/S

NATURAL fREQUENCIES ~f HIND TURBINE SYSTEMS

CONCEPT III, CASE C, 100% EFFECTIVE GUY STIFFNESS
Figure 19



~l
~-;Xl

\ /
/)~\ /~

x v \ /

\ /
\ /

1\
1 \
I \
I I
I I
\ I
\ I

1st V-X Mode
Bending-Pitch

~l
/,---~ Xl

I \ ~
{ \ ~

\ ~
\ ~

\ ~

\ \
\ \
\ \
\ \
\ I

\ /
\ /

\ /
\ //

\ /
\ / 2nd V-X Mode

\ #/

BENDING-PITCH VIBRATION MODES AT ZERO ROTOR SPEED

Figure 20
(Excerpt from Thresher, et all



1 A
X /~,

1 /

jJx I

<P ~ /

u \" I
\ I
\ I 1st U-<p Mode
\ I Bending-Yaw

I \
I \
I I
I I
\ I
\ I

1~
X /~

/ \

/
/

/
/

2nd U- <P Mode

I \
I \
I \
I I
I ,
, I
\ I

BENDING-YAW VIBRATION MODES AT ZERO ROTOR SPEED

Figure 21
(Excerpt from Thresher, et a1)



APPENDIX A

FORTRAN COMPUTER PROGRAM

C*FREE VIBRATION APPROXIMATIONS FOR HORIZONTAL AXIS WIND TURBINES*
C NATURAL FREQUENCIES OF WIND TURBINE SYSTEMS
C

C THIS PROGRAM EVALUATES THE FREE VIBRATION FREQUENCIES FOR A WIND
C TURBINE SYSTEM. THE REQUIRED INPUTS ARE INERTIA AND STIFFNESS
C COEFFICIENTS DERIVED FROM CALCULATOR PROGRAM 'INERTIA AND STIFFNESS
C COEFFICIENTS OF WIND TURBINES'. ALSO REQUIRED ARE THE MASS MOMENT
C OF INERTIA OF THE ROTOR ABOUT IT'S SPIN AXIS, THE MINIMUM AND
C MAXIMUM ROTOR SPEEDS AND THE NUMBER OF ROTOR SPEEDS BETWEEN MINIMUM
C AND MAXIMUM THAT ROOTS ARE TO BE FOUND.
C
C THE OUTPUT WILL BE THE ROOTS IN FREQUENCY SQUARED OF THE NATURAL
C FREQUENCY OF VIBRATION AT ZERO ROTOR SPEED, INFINITE ROTOR SPEED,
C AND THOSE SPEEDS REQUESTED.
C
C THIS PROGRAM WAS WRITTEN FOR NASA LEWIS RESEARCH BY ROBERT J. CHRISTIE
C OF W. L. TANKSLEY BASED ON WORK OF R. W. THRESHER AND C.E. SMITH OF
C OREGON STATE UNIVERSITY.
C
C TASK ORDER 152-01 FOR NASA CONTRACT NAS3-21900
C
C * * * * * * * * * * * *
C
C THIS PROGRAM REQUIRES SUBROUTINE GNEWTN AND SYNDIV
C
C R = ROTOR ROTATION SPEED
C W = NATURAL FREQUENCY OF VIBRATION
C PLOTTING ARRAYS

DIMENSION ZZ(200) ,P(400) ,X1(400)
DIMENSION CX(3) ,CY(4),CT(8)
DIMENSION TITLE(12)

C
COMMON /COEFS/ NDGREE,NC,NSF,EPS1,X,COEF(40) ,ROOT(40)
COMPLEX COEF,X,ROOT

C PLOTTING DATA
DATA NX/18/
DATA CX/'ROTOR SPEED, RAD/S'/
DATA NY/21/
DATA CY/' NATURAL FREQUENCY, HZ' /
DATA NT/43/
DATA CT/'NATURAL FREQUENCIES OF WIND TURBINE SYSTEMS'/

C NUMBER OF SIGNIFICANT FIGURES IN ROOTS DESIRED
NSF=4

C EPSILON TEST
EPS1=.OOl
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C NUMBER OF SETS OF INPUT DATA AND PLOT OPTION
READ(5,10)J,JPO

10 FORMAT (2I6)
CALL MODESG(ZZ,12)

C TITLE
120 READ(5,20) (TITLE(L) ,L=1,12)
20 FORMAT (12A6)

C MOMENT OF INERTIA, MINIMUM AND MAXIMUM ROTOR SPEEDS, NUMBER OF STEPS
C BETWEEN MINIMUM AND MAXIMUM ROTOR SPEED

READ(5,30)RI,RMIN,RMAX,NS
30 FORMAT(3EI2.6,I6)

C MASS COEFFICIENTS
READ(5,40)RMUU,RMUO,RMVV,RMVX,RMOO,RMXX

40 FORMAT(6EI2.6)
C STIFFNESS COEFFICIENTS

READ(5,50)RKUU,RKVV,RKVX,RKOO,RKXX
NP=NS+2

50 FORMAT(5E12.6)
C WRITE TITLE

WRITE(6,180) (TITLE(L) ,L=I,12)
180 FORMAT(2Hl ,12A6)

C WRITE MASS MOMENT OF INERTIA AND ROTATIONAL SPEED LIMITS
WRITE(6,130)RI,RMIN,RMAX

130 FORMAT(26H MASS MOMENT OF INERTIA = ,E12.6/
126H MINIMUM ROTATION SPEED ,EI2.6/
126H MAXIMUM ROTATION SPEED = ,E12.6///)

C WRITE MASS COEFFICIENTS
WRITE (6,160)
WRITE(6,140)RMUU,RMUO,RMVV,RMVX,RMOO,RMXX

140 FORMAT(7H MUU = ,E12.6/7H MUO = ,E12.6/7H MVV = ,EI2.6/
17H MVX = ,E12.6/7H MOO = ,EI2.6/7H MXX = ,EI2.6///)

C WRITE STIFFNESS COEFFICIENTS
WRITE(6,170)

170 FORMAT(23H STIFFNESS COEFFICIENTS//)
WRITE (6,150)RKUU,RKVV,RKVX,RKOO,RKXX

150 FORMAT(7H KUU = ,E12.6/7H KVV = ,EI2.6/7H KVX = ,E12.6/
17H KOO = ,EI2.6/7H KXX = ,EI2.6///)

160 FORMAT(18H MASS COEFFICIENTS//)
C ROTOR INERTIA SQUARED

RISQ=RI**2
C COEFFICIENTS OF POLYNOMIALS
C *GOU*

AG=RKUU*RKOO
BG=(RKUU*RMOO+RKOO*RMUU) *(-1.)
CG=RMUU*RMOO-RMUO**2

C *HXV*
AH=RKXX*RKVV-RKVX**2
BH=-(RKXX*RMVV+RKVV*RMXX-2*RKVX*RMVX)
CH=RMVV*RMXX-RMVX**2
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C FOR ZERO ROTATION SPEED
COEF(3)=AG
COEF(2)=BG
COEF(l)=CG

C DEGREE OF POLYNOMIAL
NDGREE=2

C NUMBER OF COEFFICIENTS
NC=3

C SOLVE FOR ROOT S
WRITE(6,190)

190 FORMAT(20(2H *»
CALL GNEwrN
WRITE (6,60)

60 FORMAT(SOH ROOTS OF GOU IN W SQUARED AT ZERO ROTATION SPEED)
C FOR ZERO ROTATION

COEF(3)=AH
COEF(2)=BH
COEF(l) =CH
WRI TE (6 , 190)
CALL GNEWTN
WRITE (6, 70)

70 FORMAT (SOH ROOTS OF HXV IN W SQUARED AT ZERO ROTATION SPEED)
C FOR INFINITE SPEED

W2=RKUU/RMUU
W3=RKVV/RMVV
WRITE (6,190)
WRITE(6,80) W2,W3

80 FORMAT (34H W SQUARED AT INFINITE ROTOR SPEED/ 2E12. 6)
R=RMAX
RS=(RMAX-RMIN)/(NS+1)
GO TO 100

110 R=R-RS
C COEFFICIENTS OF DUV

100 OMSQ=R**2
BD=OMSQ*RISQ*RKUU*RKVV
CD=-OMSQ*RISQ*(RKUU*RMVV+RKVV*RMUU)
DD=OMSQ*RISQ*RMUU*RMVV

C COEFFICIENTS OF ENTIRE POLYNOMIAL AT R
COEF(S)=AG*AH
COEF(4)=AG*BH+BG*AH-BD
COEF(3)=AG*CH+BG*BH+CG*AH-CD
COEF(2)=BG*CH+CG*BH-DD
COEF(l) =CG*CH.
NDGREE=4
NC=5
X=O.
WRITE (6,190)
CALL GNEWTN
WRITE(6,90)R

90 FORMAT(27H ROOTS IN W SQUARED AT R ,E12.6)

52



C BUILD VECTORS
M=NS+2
P (M) =R
Xl(M)=REAL(CSQRT(ROOT(1»)/6.2832
M=M+NP
P(M)=R
Xl(M)=REAL(CSQRT(ROOT(2»)/6.2832
M=M+NP
P(M)=R
Xl(M)=REAL(CSQRT(ROOT(3»)/6.2832
M=M+NP
P(M)=R
Xl(M)=REAL(CSQRT(ROOT(4»)/6.2832

C CHECK NUMBER OF ROTATION FREQUENCY STEPS
NS=NS-l
IF(NS.GT.-2)GO TO 110
WRITE (6,190)
WRITE (6,220)

220 FORMAT(55H ROTOR,RAD/S W1 HZ W2 HZ W3 HZ W4 HZ)
WRITE(6,210) (P (L) ,Xl (L) ,Xl (L+NP) ,Xl (L+2*NP) ,Xl (L+3*NP) ,L=l,NP)

210 FORMAT(5(E12.6»
IF(JPO.EQ.O)GO TO 230
IF(JPO.EQ.l)N=NP
IF(JPO.EQ.2)N=2*NP
IF(JPO.EQ.3)N=3*NP
IF(JPO.EQ.4)N=4*NP
N=N+l
X1(N)=0.
P(N)=O.
CALL GRAPHG(ZZ,N,P,X1,NX,CX,NY,CY,NT,CT)
CALL PAGEG(ZZ,O,O,l)

230 J=J-1
IF(J.GT.O)GO TO 120
CALL EXITG(ZZ)
STOP
SUBROUTINE GNEWTN

C

C POLYNOMIAL ROOT FINDER, USES A MODIFIED NEWTON METHOD
C INPUT TO THIS SUBROUTINE IS AS FOLLOWS
C NDGREE DEGREE OF POLYNOMIAL INTEGER
C NSF NO. OF SIGNIFICANT FIGURES ACCURACY DESIRED (INTEGER)
C EPSl AN EPSILON TEST, USUALLY APPROX .0001
C COEF(I) ,I=l,NC COEFFICIENTS (COMPLEX)
C CALLING PROGRAM MUST HAVE THE FOLLOWING CARDS
C COMMON /COEFFS/ NDGREE,NC,NSF,EPS1,X,COEF(40) ,ROOT(40)
C COMPLEX COEF,X,ROOT
C X INITIAL GUESS OF A ROOT (SUB USES X=O IF NOT SPECIFIED)
C
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COMMON /COEFS/ NDGREE,NC,NSF,EPSl,X,COEF(40) ,ROOT(40)
COMMON /STORE/ C(40)
COMPLEX COEFFS
COMPLEX PVAL
COMPLEX COEF,C,F,DELTA,FPR,X,XO,ROOT
COMPLEX FO
DIMENSION PVAL(2D) ,NP(21) ,COEFFS(40)
EQUIVALENCE (AVX,NAVX) , (AVXO,NAVXO)
LOGICAL SKIPST
DATA MASK7/D777777777777/
N=NDGREE
NC=N+l
IF(EPS1 .LE. D.) EPSl=O.ODD1

2 NNSF=(9-NSF)*3
MASK=D
NZ=36-NNSF
FLD(D,NZ,MASK)=FLD(O,NZ,MASK7)
MTEST=MASK
DO 79 I=I,NC
NP(I)=NC-I

79 COEFFS(I)=COEF(I)
WRITE(6,2DD) N,(NP(I) ,COEFFS(I) ,I=1,NC)

20D FORMAT(22H POLYNOMIAL OF DEGREE I3/17H WITH COEFICIENTS/
1 (5H X** I2,1P2E18.7)}

WRITE(6,2D4} X
2D4 FORMAT(31HK USING STARTING VALUE FOR X= 2F15.8//

1 4X,IHM,4X,IHK,3X,2HIT,6X,4HABSF,14X,6HABSFPR,12X,IHX,32X,2HXO)
NR=O
K=D
IT=O
MN=O

19 CALL SYNDIV(N,X)
SKIPST=.FALSE.
F=C (NC)
AVF=CABS (F)
IF(AVF .LT. 1.0E-10 } GO TO 50
M=l
DO 1D I=N,32767,32767
FPR=C (I)
AVFPR=CABS (FPR)
IF(AVF .EQ. D.) GO TO 50
IF(AVFPR .EQ. D.) GO TO ID
DELTA=-F/FPR
IF(M .EQ. 1) GO TO 9
IF(CABS(DELTA) .LT. 1.DE-14} GO TO 9
SM=M
DELTA=CLOG(DELTA}/SM
DELTA=CEXP(DELTA)

9 IF (CABS (DELTA) .LT. 2.*AVF} GO TO 11
1D M=M+1
11 IF(IT .EQ. D} GO TO 6
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IF(AVF .LT. STORE) GO TO 666
IF(M .NE. MS) GO TO 66
SKIPST= .TRUE.
GO TO 16

666 IF (REAL (F*FO) .GE. 0.) GO TO 6
SKIPST= .TRUE.
GO TO 16

6 XO=X
AVXO=CABS (XO)
STORE=AVF
IT=IT+l
IF(MOD(IT,15) .EQ. 0) MTEST=MTEST*2
SKIPST= . FALSE.
K=O

66 IF(M .EQ. 1) GO TO 15
H=2**K
DELTA=DELTA/H

15 X= X+2.*DELTA
16 X=(X +XO)/2.

K=K+l
WRITE(6,201) M,K,IT,AVF,AVFPR,X,XO

201 FORMAT(3I5,6G18.8)
IF(SKIPST .AND. K .LT. 10) GO TO 19
AVX=CABS (X)
NXMXO=NAVX-NAVXO
IF (CABS (X-XO) .LT. 1.0E-6 ) GO. TO 50
IF(AND(NXMXO,MTEST) .EQ. 0.) GO TO 50
MS=M
GO TO 19

50 NR=NR+l
WRITE(6,505) NR,X

505 FORMAT(10HL ROOT NO. I4,9H FOUND, = 2G15.7)
ROOT (NR) =X
IF(NR .EQ. NDGREE) GO TO 100
MINUSN=-N
CALL SYNDIV(MINUSN,X)
N=N-l
NC=NC-l
00 51 I=l,NC

51 COEF(I)=C(I)
IT=O
MTEST=MASK
X=CONJG(X)
GO TO 19

100 CONTINUE
NC=NDGREE+1
WRITE (6, 200) NDGREE,(NP(I),COEFFS(I) ,I=l,NC)
WRITE (6,202)

202 FORMAT(lHL,20X,32HTHE ROOTS OF THIS POLYNOMIAL ARE /
1 4HLNO.,8X,4HREAL,10X,9HIMAGINARY,10x,9HMAGNITUDE,9X,5HANGLE)

PROD=I.
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00 101 I=1,NDGREE
PVAL(I)=COEFFS(1)
00 102 J=2,NC

102 PVAL(I)=PVAL(I)*ROOT(I)+COEFFS(J)
XMAG=CABS(ROOT(I»
PROD=PROD*XMAG
XANG=57.29578*AIMAG(CLOG(ROOT(I»)

101 WRITE(6,203) I,ROOT(I) ,XMAG,XANG,PVAL(I)
WRITE(6,205) PROD

203 FORMAT(I4,1P3G17.7,OPF11.1,5H DEG.,1P2G17.7)
205 FORMAT (27HL THE PRODUCT OF THE ROOTS = G20.8)

9999 CONTINUE
RETURN
SUBROUTINE SYNDIV(NDEG,D)

C
C SYNTHETIC DIVISION SUBROUTINE
C N= DEGREE OF POLY, AND IF N.L.T. 0, DO ONLY 1 LINE OF DIVISION
C D= DIVISOR
C C= ARRAY OF (N+l) COEFFICIENTS CIX**N+C2X**(N-l) --- CN
C

COMPLEX D,C,COEF,X,ROOT
COMMON /COEFS/ NDGREE,NC,NSF,EPS1,X,COEF(40) ,ROOT(40)
COMMON /STORE/ C(40)
L=NDEG
NN=IABS(L)
IF(L .LE. 0) L=l
00 2 I=l,NC

2 C(I) =COEF (I)
00 1 I=l,L
M=NN+2-I
00 1 J=2,M

l C(J)=C(J-l)*D +C(J)
RETURN
END

56



·.

0
0

~
~
tt:l
::0

'"d
l:"'
0
8en

~
0 'U
t;l tt:l

Z
~ t1
H H
ll:l :x:
~ ll:l
8
H
0
Z

~
:x:-
l:"'
><en
H
en

2P

6. a5.55. a4..0 O.P. 4..53.53.02.52. a1.5La0.5

i' I i I
W4

iI i-
f

! ! I I I i i
! i i I

i i I I I I I I I 1 I ! f I
I If

I

, ! I ! I I I iI I , I !

: ! I W
3

! 1 i !
I

I

I i

i I I I

i
! ,

I i 1 I,
,

i i I I -
I I !

I wI' W
I I

I i f !I

I i iIO. 0

O. 0

2.5

10.0

7.5

N
:r:

,:
u
z
W
:oJ
<3
W.,

5.0"-
-'a:.,
::>
f-
a:
z

ROTOR SPEEO. RAOIS

NATURAL FREQUENCIES OF WINO TURBINE SYSTEMS

CONCEPT It CASE At 25% EFFECTIVE GUY STIFFNESS



VI
(Xl'

IP

2P

2

6. 05.55. 0~. C o. P. ~.:;3.53. 02.52. C1.51.0c. :;

W4

1 I

I
I I

I,

w3

I

I

!

I

! I
, i

I
,

,
i

I -I wI' W
-

I ! I I

I
I

I

I
--f.--

I I I II i I
iO. 0

o. c

2.5

10.0

7.5

~

,:
c.J
Z....
'"a....
cr
~-

-rj S. 0
a::
=:J
;--
a:
:z:

R~TOR SPEED. RAD.S

NATURRL FREQUENCIES GF WIND TURB!NE SYSTEMS

CONCEPT I, CASE B, 50% EFFECTIVE GuY STIFFNESS



12.5

10.0

'"
7.5

:r

,..:
u
Z
w
~

'"w
lC
"-

-'cr:
0: 5. 0
~s:
z

2.5

O n
.~

W
4

I I i I !
I

! I I !

I i
I I ,

I

I I ( !
I

W
3

I

!
i

I

WI'

i ! I
I ,
I , i

I j

I !
I ! i

2P

IP

o. 0 O.S 1.0 1.5 2. 0 2.5 3. 0 3. ~ ~. 0 O. P. ~. ~ 5. C 5.0 S. 0
U'I,
~; ReTeR SPEED. RRDiS

NRTURRL FREQUENCIES eF WINO TURBINE S1STEMS

CONCEPT I, CASE C, 100% EFFECTIVE GUY STIFFNESS



0\
0'

12.5

iO.O

~ 7.5

,.:
u
Z
ILl
:::>
0
ILl
a:
u..

..J
a:
a:
:::> 5.0>-
a:
-"

2.5

O. 0

I I 1 I W
4! ,

I ! I I I i I i I
I

I I II
I

i I ! ! I ! I I !I I I I

I [ !
I • ,

I I I II I

--t--~,- -r+-r-
I 1

I
I

W
3

1

I i

I ,

I i I I

I i i

J . r
I I I

,
I

I- -

WI' W

I , -
iJ J

I
I

I I i
-~ ..J

I

i
I !

2
2P

c. c O. 5 \.0 1.5 2. 0 2. " 3.0 3. 5 4.0 O. P. 0\. " 5. 0 5. " 6. C

ReTBR SPEED. RADIS

NATURAL FREQUENC!ES BF WINO iURBINE SYSTEMS

CONCEPT I, CASE D, 150% EFFECTIVE GUY STIFFNESS



I I I W4
I I !I

I I
I I

,

I

W3

I

I

WI'

,
I

I

I

12.5

iO.O

N
T

~ 7.5u
z
w
::>
0
w
lC
U-

~
lC
::>
t-
a: 5.0:z

2.5

o. 0

e. 0 C. 5 \.0 \.5 2.0 2.5 3. 0 3.5 <ta.0 O. P. 4.5 5. 0 5.5 6. 0

2P

IP

ROTOR SPEED. RRDIS

NRTURRL FREQUENCIES OF ~IND TURBINE S~5TEM5

CONCEPT I, CASE E, 200~ EFFECTIVE GUY STIFFNESS



I I ! I I

I I ! I
W4

! I I I I

i I II ,

I I ! I I I I I

!

i

W
3

I

i
I I I

,
i

WI' W

I i

i I I i

I , \

12.5

10.0

'":r 7.5
,.:
u
z
W
::J
C3
UJ
a:
11.

..J
<:r
c
::J 5. Cr-
<:r
z

2.5

C. 0

c. c D. 5 \.0 2. D 2. 5 3. 0 3.5 ~. 0 O. P. 4." 5. C 5.5 5. e

2

2P

IP

ReTeR SPEED. RRDiS

NRTu~nl ~'REQUENCIES l'lF WINO TURBINE SYSTEMS

CONCEPT I, CASE F, GUY ATTACHMENT POIN!' RAISED 12 FT



2P

2
IP

6. Q5.55. 0~. 00. P. 4. S3.S:3. 02.S2. 01.0O. tl

! i ! 1 ! I T W4

i I I j !
!

I i ! i ;, I

i I
, I ! \ i \,

! i I
I !I

, I I
1 w

3
I

I

I,

I I

I

I I I -
I

wI' W
I

I i I , ++-I I i IO. 0

o. 0

2.5

10.0

7.5

""T

,.:
u
-z.
w
:>
a
w
cr:
lL-

-' 5.0
a:
cr:
:>
I-
a:z.

R~T~R SPEEG. RRGiS

NRTURRL FREQUENCIES ~F WINO TURBINE S!5TEMS

CONCEPT I, CASE G, GUY ATTACHMENT POINT LOWERED 12 FT



I I I ! I I I J !

I T r ! I T I
w4

i I I I !
I,

I i ! I I

T !
I

I

I
I

!
I w3

I

-

I
I

WI'~

r :

I I I
I I I

I

12.5

10. 0

2.5

c. 0

C. C o. ~ I.C 2. 0 2. " 3. 0 3. ~ 4..0 O.P. 4.." 5. 0 5. " 6. 0

2
2P

Ip

R~T~R SPEED. RRD/S

NRTURRL FREQUENCIES ~F WIND TURBINF ~TSTFMS

CONCEPT I, CASE H, NACELLE AND ROTOR MASS INCREASED BY 1/3



12.5

10. 0

N 7.5
r

,;
u
z
W
:0
C3
W
a:
!L-

a!
a: 5. 0
:0
l-
a:
:z:

2.5

0.0

I : : I I A W
4''t'

, 'f

! I I I i ! ! . I I i ! i I I !I I I ,, I
I I i i i

I

I ! I , I I I ! I I I I I 1 I i II -L ;
I ! I I I I I I ! ! I I i Ii I

! I ! I i I i:

I I !
I

I I

i I !
! i I

I
I

I
! W

3I
I

I i !
I i

I I

!
I I

! i
, I I I I II

I !
I

I I
I W

1
, W

I II I -
i I I I I

I I I !

I I I I ! , ! j
I

r+- i i I
I

I
- h

I I I i ! : II I I I I

2

2P

1P

o. c O.S 1.0 2. 0 2.5 3. D 3.5 .... C O.P. "'.5 5. 0 5. ;, 6. C

RClTClR SPEFO. RRO/S

~RTURAL FREQUENCIES OF WINO TURBINE SYSTEMS

CONCEPT I, CASE I, NACELLE AND ROTOR MASS DECREASED BY 1/3



I i i I i i ! i 1 I ! ,
i , i A: , i I W

4
! i i I ~!

,
I i I

I I I
,

i I I I i I I I Ii I I
~ I ,i J i ! I ,

I I
, i

I I i

i ,
I I I ! ! I I :

W
3, I

I

1 I ,
! ! !I

I i
I I I i !i

I I, ,

I

t
I

,

I

I
i :

! i
I i
i
! i

I , ,
I I i

i
, I I I I

I

!
I

,

Wi' W

-
I

,
i -H-

i i , , i .

i
~

i

I I,

0'1
0'1

12.5

10.0

N
T

~
7.5

u
z
w
::>
C3
w
0:
u..

c!
a:
::>
<- 5. 0a:
z

2. 5

O. 0

C. 8 0. 5 1.8 1.5 2. C 2.5 3. 0 3.5 4.0 0 • P • 4.5 5. 0 5. 5 6. 0

2
2P

lP

ReJTeJR SPEEO. RRD/S

NRTURAL FREQUENCIES elF WI~D TURBI~E SYSTEMS

CONCEPT I, CASE J, DISTANCE TO CENTER OF GRAVITY INCREASED BY 1/3



I i 11 : 1
I I ! i I i i

, I i IJ i i 1 Ii , , I

, : I) i I 1 i I i ! I I I I
I I I i 1 I !

w4
i i I I I --l-J i i I : I I : 1 I i j

I ! i I ! I
I iii I i I I i I i i 1 i I I I I i I

i i i I I ! ii , I i -4 ' ,

! I I , i ! I I i ! i i I I i I ! t I ! !i I I
,

I i i ! I , I I i I I I I II I
I I

I ! I i I ! i I i I II ! I
I I I I I i I 1 j II

i
I !

I

W
3

I

I

I I
I

I I I

I I I I

I , ,
I I I -i iI II I

! I i I I I
I :

,
I :

i I I
I I ,

I I I

i
! I I

I

I !
I

I

I I

WI' W

-
1-+ t r I

l- f-

I I I I
iI I i ! I

I ! i -T i i I i I1-+ I , 1--- 1I I ! i ,
I I ! ,

I I !I I I I

12.5

10.0

N 7.5
:I:

,:
U
Z
w
::>
Cl
w
a:
U.-

S. C

2.5

O. 0

o. 0 O. 5 i. C 1.5 2. 0 2.5 3. 0 3. 5 4.0 O.P. 4.5 5. C 5. 5 6. 0

2
2P

IP

p,eT~R SPEED. RRDiS

NRTURRL FREQUENCIES OF WINO TURB!~~ 5lSTE~S

CONCEPT I, CASE K, DISTANCE TO CENTER OF GRAVITY DECREASED BY 1/3



en
ex>

N
r

,..
u
Z
llJ
::J
C3
llJ
0:
u..

, 1 i I i i i :
, : I I I

,
I -.i i, ~

I I I W4\2.5

11 T, il l I
I I I 1 Iii I I I I I I I ! i I I I

i
,

; I I I I I I, I I I ;
f-

I ! i I 1 1 I ITil i I ! I I I I ! I i I ! I I ! ! I I

! I ! I I !

I ! I I i I i I i
,

I i . i I II
;

i I I I : i I I i
I I i, I

I i ! ; !! IiO. I}

!
I I

1.0 1.5 2. 0 2. 5 3. 0 3.5 4.0 O.P.4.5 5 " 5. 5

I

G.O

I !
! !

ROHIR SPEED. RRGiS

~qTURRL FREQUENCIES OF WING TURBINE S,STEMS

CONCEPT I I CASE L, NACELLE AND ROTOR INERTIA ABour Z AXIS INCREASED BY 1/3



1P

2
2P

6. 05. 55. C4.0 O. P. 4. 53. 53. C2. 52. 01.51.0O. 5

I I I i I I .-;. ,
W

4H-'n 'r i I
I I ! I I ! i I ! i I I I i I i ! I ! :

-++
!

i
!

I i++ !

\ I ! ! I I I
I ,

!,
W

3! ,

+H+t+H I I i I , I

I Ii; I I I I

i i I i I
I

I ! i i
, I I

, I I

I I I

! !
t

i i I

\

i
I !

f-I- T I I II !

I , I I I I i I !! I

t-
;

I--I--r ! I I !I I I I I

: I I

,
!I

I i w
1

, w
I

I i I I i
1,+-11 ! !

I

I II : i I
i I I !!

,
I

I , I I, ! I , ,
O. 0

0.0

2. 5

.0.0

12.5

to<
r

7.5,-
u
z
UJ
;:)

a
UJ
tr:
"-

5. 0

0',
1.0' ReTeR SPEED. RRD/S

NR~URRL FREQUENCIE~ OF WING TURBINE SlST=MS

CONCEPT I, CASE M, NACELLE AND ROTOR INERTIA ABOUT Z AXIS DECREASED BY 1/3



-..J
o

IP

2
2P

! i I i i I : ! 1 i I I i I i i i ; I i
, I iii 1 I i i ! i i !

I
! !

J ! I i i Ui ! i i i I ill

I ! T ! I I ! I' I I
i ! i ! i ! ; ! I ! I I I I I

, ..,. 4

~t
! I i . I ! i i j I I...1- i I I ; . ! I I I-+- T""-+-

I
; I i ' ! I I I : ! I ! I l 1 I i I' I I ! I i \

; Ii ' ! I I I i i
! i !

, I I i ! I I i I I i

H·
I I i I I · ' I I i I i 1 I

I I ! ! i
! II I ;I

I +t'-j- f-

I I
! I I I I i I II I I ,

i I i I, I I I ,

I i i
I ,

j
w

3
!

I

I I
I

I I i,

I I

!

! 1
i

I i
! I I

I I I I I I ! : II ! I ! ,
i 1I I I

I I I i I : ! I
i,

t I i
I ! ! I ! I I I i I,

I I, I

I I I i I iI I
WI' w

T -
i I I I I ! I

J
,

I i....;..

I I !
I i- .... I I I i II I i

,
I I I i

i I i I i
: ,

I I I

i i ! I
I

! I I I
i , : : !I I I Io. ()

2.5

10.0

12.5

7.5

N
:r

,.:
u
z
w
:;)

a
w
It:
11.

-J
5. 0a:

It:
:;)

;r
:z:

D. C o. S l.0 l.5 2. C 2. 5 d. C 3.5 4. cO. P. 4.:' 5. a 5. S

ReTeR SPEED. flRD/S

~RTURfii ~REQUENCIES elF Wl'NO TURBHiE 5i5TEMS

CONCEPT I, CASE N, NACELLE AND ROTOR INERTIA ABOUT X AXIS INCREASED BY 1/3



12.!>

10.0

, '
I' 'f I 't', I I i 'f I I I I I! I I I

!I!, i III i I I ! i II I j I' Iii I I Ii: I I J ! I I ! I II! I!e-:+ ,_-Li' -1--l--'-+-~i-+++-J--l---1-W' ++1++-J;--+!-1-H-++--f-+-j--H1-+-i' 4,-+-;1.-++1~14-++-++-+-H-t--Hl-+i --ji-+-+-H+~I-+-t-+--J
I Ii, i [ ! Iii: i ' i 1 i

I ' i! I I i I I I !! I ii, , !
, ' I ! I

O. 0 O. 5

! I

! i
I I I

1.0

I

I

I

I I I
! i I i

i
,

I I I! I i i I
I

3.!>

FHn~R SPEED. RRD/S

I I

i

I I

I I
i

, I
;

!
, I Wi' Wz

- 2P
!

I I I I

: lP

l-

I i ! I I iI

'::. C O.P. 4. ~ 5. 0 5. !> G.O

NATURRL FREQUENCIES O~ WI~O TURBINE SYSTEMS

CONCEPT I, CASE 0, NACELLE AND ROTOR INERTIA ABOUT X AXIS DECREASED BY 1/3



12.5

iO. C

7.5

N
:r:

,...
u
z
w
::>
C3
w
cc
"-
..J 5. 0cr
cc
::>...
cr
z

2.5

D. D

I I i il ! ;
1 ! ; I I I I i I i I I I Ii I

,
Ii i , I I

! T I I ! I I I I i i
"[ I !

w
4i ,

I I i I

~
1 I ,

I I
, I ! i ! i ! I I I 1 I II I t i: t I

! i I i I i i I i,

I I I i
I I

I I I
,

I
I i

I W
3

i

I

I I I

I I I

I I I I i I I i
i I I i iI I i
! i I I .' i

I I I I I I I I

I t ,
II i,

WI'

-
!

I I 1 I

i i ! j Ii

i I ! I
! ,

I 1 , i

! -1
i I I ! i i I

i I I i I , , :

IP

D. Q O. 5 1.0 1.5 2. D 2.5 3. D 3. 5 ~. DO. P. 4.5 5. C 5. S 6. C

ROTOR SPEED. ARDIS

NRTURRL FREQUENCIES OF WI~D TURBINE 5YST=MS

CONCEPT I, CASE P I NACELLE AND ROTOR INERTIA ABOUT X AND Z AXES INCREASED BY 1/3



12.5

10.0

N
:r

,.: 7.5
u
z
UJ
::J
C3
4J
a:
"-
..J
a:
a:
::J.... 5. 0a:
z.

2.5

o. c

: : W4I i I
! !

I W
3I i I I I i ! , I II

I I i I I ! i I ! II I II I

! i i I I ! ! \h
I :

I I I
I

I

I

I

I II ,

I
!

I I I,
, i ! I [

I I I
I I I ! ! i I

,
II

: I
,

I

I I I

I I
, I WI'

-
I I I I

I I I iI

.

f---- I -
I ! I i ! i I ! ! II I I

IP

O. 0 O. 5 1.0 1.5 2. 0 2. 5 3. 0 3. 5 4.0 O. P. 4." 5.0 5.5 6. a

-...J
W

ReTeR SPEEO. RRG/S

NATURRL FREQUENCIES eF ~lNO TUR8!NE SlSTfMS

CONCEPT I, CASE Q, NACELLE AND ROTOR INERTIA ABOill' X AND Z AXES DECREASED BY 1/3



I ! I !
, I I I ! I 1 i i , i i ,, ; i

I ! I ! I ! I I I I i I !
, I 1 I i

W
4

12. ~ i I I

I I i ' i ! I I I ! I , I I I I, I ,
! ! I I

, W
3; I

! ! I I
I

I i !

10. a
I

,
I

N
:r:

>
u
Z
w
::>
o
w
a:
u..

..J
a:
a:
::>
l
e:
z

7.5

5. 0

i

Ii!
I I

l-+-!H-!++-1,_+-[1+-+-+-++--il-+-+-+-+-+-+-f-+-+-+-t-+-+-H---jl-+-+-H-t-~IH-+-+,+--+I ++--iH--+--H++-H++--IH--+--H-+-+-H,

2.5

O. ~

i

1.0 1.5 2. 0 2. 5 3.0 3. 5 4. G O.P . .(. ~ S.C 5.5 6. C

RcrTcrR srEED. RRD/S

NRTURRL FREQUENCIES crF W!ND TURBINE SYSTEMS

CONCEPT II, CASE A, 25% EFFECTIVE GUY STIFFNESS



iP

2P

2

I I I
,

i I I
W

4,
I I i ! ! i I
I I i ,
I I

- W
3I I I I I i

! I
, ,

I! I I I

I I
I

t
I

I ,

I
I

I

\
I

tI I

I i
I i I

I
I

-+-! i
!I

I,
I

I
I

I

I
-

i i

I -
I Wi' W

I i I I
I i !

i I i i I

H-I

j ! i I i! I IO. 0

2.5

iO.O

12.5

....
:r 7.5
,:
u
z
w
::>

'"wa:
u.

..J
cr
a:
::> 5.0>-
cr
z

Q. 0 o. :> 1.0 I.!> 2. 0 2.:> 3. 0 3.:> ~. 0 O.P. 4.!> 5. 0 5.5 6. 0-..J
U1 RDTI'lR SPEED. RRD/5

NRTURRL FREQUENCIES OF iilNG TURBINE S~5TfMS

CONCEPT II, CASE B, 50% EFFECTIVE GUY STIFFNESS



_+-+'+-+'-+ I -i-~-+--+--f-:--+-+--,~-+I-+--+'-+--+-+---i'-+-+i+-+-'+-+---+---+-+-'-_+.--\'--++'+-+--1-+1-+-\1-+ ! i "I ! i I

! T! i I I T I I I I I I I Ii! , i -;-ti,-1_+--,If--+I-+--+'-+_If----C!-+-.-r-4~-+i -+_-+'-+--+1_+--1
I-+-I--+-I--+-I--+-f---t-t-+--f--+--l--J-...-l---+-l---+-l-+-J--+-f--'-' -n---+-+---+--++++++

12. 5d>:l=+;:+::t:~4t::~li :t=H=t::t:ct=l=+:+~:::j:' ::j:;~1:i~'~l::t:'t:~!~I:<ti~it:j::::t:' ~!::t:'~':<t:'~; j!:t:tt:4=<t:t:t:t:tI=l:i~':j;!:t:t:t:~1=t:t31:t:j':t!:ttl:t:i ~
I-+-+++-H-++-H-+-l-+-H-l...++-H-'r+---+-+-+-t--I--+-+-HH++-H-+++-H-++-~'---t-++-HH++-t-j-+-l-+-H-+-+-+-1I ' ! 'I I ! !' iii i I :

,.,
:r

10. C

, ,, T

i

>
u
Z
ILl
~

C3
ILl
cr:
4.

-'cr:
cr:
~

>-
cr:
z

7,5

5. 0

2.5

C. 0

I

-Ll I ' I !i i, I--+-l-+-+I--+-+-+-I-~+I-+--J-++-+-+-+-+-++-+-I-~+-t-++-+++-+-++-+--+-I-+-H~+-t-++-+I-+-+-+!-+-+-,I -+,-++-1'+-+++-+-,H

!ii' Iii i I I iii I

! I ! ++-+.+-+---14-+-H-++-t-+-l--+-l-++-t-+-+-+--l4-+-H-++-t-+I-1-H-+-+--+-1i +I_++I-l--+--l-+-ti-+--t-!_+-i'+-t!l-+1_~11-t1-+-+1+_

~--+--+-I:+-!,'~-+-+-+-+-+-+-+-+-+,-+-+-+-+-+-+-+-+-+--+-+-+-+-+--+-l-+-+-+-+-+++-+:-++-+-++--iI+1 +-+-+:-Hi:-+-+I---'I~-+!-+-+--+-+-+-+-+-i +,-l

O. 0 a. ;, LO i.5 2.0 2.5 3. 0 3.5 4.00. P. 4.5 5. C 5.5 G. 0

R~T~R SPEED. 'lAOiS

NATURAL FREQUENClES ~F wlND TURB!NE SYST"MS

CONCEPT II, CASE C, 100% EFFECTIVE GUY STIFFNESS



i I -t-L r i I if I I J-W- I I , i i i i
W

4
! ,

I ! I ! I II! Hi i i I ! i ! t ! ! T_t- Ht+J.l! [ i I :,
[

I
I -+- I f-. , -+-

I ! I I I , i i i I +[ i i -tt I i I
I ,

iI I I I 1I , I ' I' I I I !

! I +- 'T-
t i I

~._+-........... '
I I ii : i I I i i i I ; I iI i I I ! !

T I I' I I i I I ! ! I I I :
W

3

! ! II ! ! I
,-

II I I ! I,
I

! I I I I
I I I i

I ,
I i I !

I ,

I ,
I I

I
I

, ,
1

, ! I i I

I I I I I I

i i

! I

I
,

I i I

I i I I I I
! i I I I ! I

i ! i , I

! I I , I I ! i !I

I I r I !
, I ! :,

I I i ! I I I I I
I I,

wI'I I 'T
! I I I I I ! i I I i IL -

I i 1 i i I 1 I ! ! -t-f-i I I I I I
I

I I i I L: , , I !I -+- i -r i i , I

! \
- -

I ' -r-- '
; i i ,+ i i

I ! i I ! r I I ! I i i I
; i I I I I I

12.5

10.0

N
I

,.: 7.5u
z
W
:::J
C2
w
a::
lL

-'a:
a::
:::J
!-
a: 5. 0'z.

2 "

O. 0

O. C 0.5 i. C 1.5 2. C 2.::> 3 r

~eTeR SPEED. ~AO/S

3. " 4. 0 O. P. 4. ~ 5. 0 G. Q

IP

NR1URRL F9EQUENCIES e~ WINO TURBINE SlSiE~S

CONCEPT II, CASE D, 150% EFFECTIVE GUY STIFFNESS



15. Q

12.5

10.Q

N
r

,..:
u
z i.5w
::0
C3
UJ
a:
U-

cr
a:
::0
t-
o:
z. 5. Q

2. 5

Q. Q

i i j ! I' I I I i , 'I j I ; I i I . I I I i I !

W4, : I : I I I i !-+ ;

i
I I I iI I I I I I I

! ,
I ! I i I i, I ! i I

, i I. I ! iI

I ,
I ! i i i . I I I i i 1

! : ! I ! I ! i I I i I i, I

I I .1 , I :.1. I 1 i , iI I

I ! I I i I I ! I I I 1 , I I ! I i I
w

3, I

I I !
, I :

! I ! !I ! I I

i I
I I i I,

i

I I
I I

! II I I i

j i I
I

I I I i
I I \ I
J

I , ,
I ,

I I i I
I ! I i ! ! I I

i i
,

I ,
, ,

I

i i I I ! I I

! ! t ,

I
I

I I II
T

: I I i \ I ! i
I

, WI'
I , I I I

I ! I i I i i I
, 1

I I I I i,
I

I

H
i ! I -

I
I ++

I +t~-
! Ii I

i I I I I
,

I
I

i ; i I I
I I

-
i

I
I i !

I
I , I II

I T
! I I I I I • 'i ! !

, I i i i

'"

2P

IP

Q. Q 0.5 I.Q 2. 0 3. 0 3.5 4.00.P.4.5 5. 0 5.5 6. 0

~~T~R SPEED. 9RD/S

I<ATURRL FREQUENCIES 1')" HIND TURe,NE S15Tf'~15

CONCEPT II, CASE E, 200% EFFECTIVE GUY STIFFNESS



12.5

10.0

l>/
r

~ 7. 5u
z
W
=:J
0
W
0:
"-

ci
0:
=:J
>-a: 5. 0z

2.5

O. 0

I i I I , 1 I I I I I ,
I I

-H-i--L J! I I I I I ! I !
W

4
I ! I I I i I I
i ; I I I

I I ! I T I
-'-

i
, I I J

I I 1
w

3

I I
i i I I II I

I I I
, I I I

I

I

I I

i
I I I I I 1

I I ! I
, I ! ! I T-I I

I

I I
WI'

I

-L
T ,

-f
,

I
I , ..

I I I I i
i ! I

I i I ; I I i i
I

I i i I

2P

IP

c. c G. S i.O 1.5 2. 0 2.5 3.0

Rel~R SPEf.G. RRD/S

4.0 O.P. 4. 5 5. 0 5. 5: G. 0

~RTURqL FREQUENCIES 0" wiNO TURBINE SrSTfMS

CONCEPT II, CASE F, GUY ATTACHMENT POINT RAISED 12 FT



I i ,i i ! ! i ! ! , ,
I i ! I '-W I I

W
4, I

,
, , I I i I ! n I I: i i i ! i ! 1 ! i I I ' i !

,1 I i \ i I , , : : i A i t I

I I U- 1 ! !
,

I I I
,

I r; I i ,1 11
W

3
I I ! if-+++ I-- -;-----4- ; • I

I : I I ! I , !
, ! 1Iii I i I i

1 I i i !
,

i I 1
i , i I I-

I !
-

I
I j I I

I !I I

I
,

I

I

I
I i

I
,

I, I : , !

I I I !,

I I i i I ! ! ,
! I , i,

i- l- T tI I J i I
_.

I i -t I I
'[ ! \ i I I,

I
,-

i ! i I
--

, ; i
,

I I I I I

i I
, i!

,
A

1 I J I i
-+-. wI'

t I I I !,

+ ! ! ! I

I I -r r- 1--
1

- --

I

+ I
! I I I ! ! I

I
i I , ! I i i ! I i

CD
o

12. ;,

10.0

"":r 7.;'

,.::
u
z
w
::>
OJ
w
a::
"-
...J
a:
a::
::> 5. 0f-
a:
z.

2. ;,

o. c
o. 0 c. s i.0 2. 0 2. '" 3. 0 3. :> 4..0 O.P. 4.. s ;,. C ;,. " G. 0

2P

"WTDR SPEEO.RRO/S

~RTURRl FREQUENCIES DF WINO TURBINE S~STfMS

CONCEPT II, CASE G, GUY ATTACHMENT POINT LOWERED 12 FT



12.5

10, G

'"I
,: 7.5u
z
W
:oJ
C3
W
cr
"-

-'c:
cr
::J
f-
a: 5. Gz

2.5

G. G

.
. I I I i , ! ! I I I ; , I, I , I '''':' W

4,01<: 'X : I J ::l:: I , I I ! I I I 11 ! II

, i i J I I i , : I T i I 1 i I I
I i ! I i I I W

3I I I I I

! i i , I
,

I i I i i I i ! ! i I I I !
! I I I ! i I i I i I I I I

I I i i,

I i i
I

! II I i I !

, I I I I i

I-
I
I I i I, , .-
J I,

I I I

I-

I I

i
I

I I
I

I I II
I I

, I I I i
I ! I

,
I

i I , I
! I I I I I

i i I i iI I I
I

i i I ! I Ii I I I, , ! L
I

! I I iI
I t -

J
I; I I

I i
WI' W

I

I

-'-t-
I ! I IJ H- i

,
!

I i I I ! I i
L I ! I +- !
I

,
I I ' I j I !I i I I i I I , I I

2
2P

IP

C. Q o. s i. (] l.S 2.0 2.5 3.0 3. 5 4. (] O. P • 4. S 5. (] " ,.... Ol 6. C

ROTOR SPEED. RRD/S

~nnJf1qL FRfQilfl><CIES OF WINO TURBll><E SrSTEMS

CONCEPT II, CASE H, NACELLE AND ROTOR MASS INCREASED BY 1/3



• (Xl
N

'" ; .... -'
,

::1 W

I i ! ! I ! r ! ! ! r ! ! ! ! !
' 4

I i ' i i !
,

111
,--+- -;-t I ,

i I ! ! I 1 -!- ' !
I J i I [ I I

I
I I

,-j

12.5
, i

i I i ! I !
: ; -;,

I ih-i I I I I I I i I I I

: f I j I I

1 i I

I i .-1
w

3

I I
10. a I , l

i 1
i

I !
"" !:r

,.: 7.5 I
'-'z i !"J::>
C3

'"II:
l<-

I 1 I
-'a: I I i I I i lII:
::>
l- i Ia: 5.C ! iz fI i ; I !

! i i I I !

i I T I
I ; Ii i I i I

I ! i I I i
i T I : ! 1 I i I,

...h ..L I I
2.5 WI' w

2
I i I I I , I ! 11, I I

,,~+ iTi
! I 2P

i i I I,

I i
. i

I n-4-~++! I ~4i i
J ~

--; !--.-:. -r IP: I 1." I : I ! I:C. C

C. 0 O. 5 i.0 1.5 2. 0 2,5 3. 0 3. 5 4. 0 O. P. 4.5 5. 0 5. 5 6. ~

AOTOR SPEED. RAO/S

I;ATURAl fREQUEI;CIES ()f WINO TURBINE s;-sorEMS

CONCEPT II, CASE I, NACELLE AND ROTOR MASS DECREASED BY 1/3



15. ()

12.5

10.0

N
r

>-'
u
z
ILl
~ 7.5C3
w
a:
u.

-'a:
a:
~

f-
a:
z

:>. ()

2.5

c. ()

: i i ~ : I i , ,
I i I i I I I i J i , , , i : W4

I i

i ! i ! ! : ! i I
,

i
,, i I i I I I I i J I Ii I

-.-l---t- I : \ \ 1 , I I i
,

I ,
i, ++t " i I. I I

I i -1-
,

r-+- +-:-- ,
! ! I ! , ,

I i
,I : I I I i I ,

I : i I , I i
I

I i ! I , ,
, -r I I -r I -t I I +- I I I I - W

3: ,
i I I , i ! i i,

I I ! I ! I lI I .

i I \
: I ! ! i I I iI

I I I I I I, i I
I I I I I

I

,

I ,
i i I

i, I
I
I

I
i I

! I

\
I I , I 1

I I I
I I ! I

I I I i
I

I !++ ~+-
,

I I I I : i ! I Ii: i I i
I I ;

I ! , I

I ! i , I I i ! LL
I ! I I

,
I I

, I LI i I
I I I I , i ! I ! I i

,
I--

II I ! I, I
, i I I ! I I WI' W

i

i '-I 1 --- I i I I : I ,n ! I \H-t--+ i I I ---l-l-__. I I ,.
I I I ! ! I i I

#+ I I I , I
,

I I
, i II

~-IH-r, I , I,
I I T !

I ! :, I I I I i ,

2
2P

IP

Q. C C.:> 2. C 2.~ 3. 0 3. S 4.C O.P. ~.5 5. C 5. " c. C

OJ
tAl

'lClTClR SPfEO. 'lRO/S

hRTURnL FREQUENCIES ClF WlhD IURBlhE SYSTEMS

CONCEPT I, CASE J. DISTANCE TO CENTER OF GRAVITY INCREASED BY 1/3



12.5

10.0

N
T

,.: 7.5
u
z
W
::J
C3
u.J
It:
"-

cr
a::
::J
>- 5. 0a:
:z:

2.5

D. Q

---~-~~.i-
! H i i i i J -1 I I i_++++ ~+- I i 11 , Ii i , w

4
- ,---i -"~

I I I I -j, I i r I I ! 1 I I! ! j : , ! : , I i i i i I I i ,
i I Ii I i i : i . ! :

,
I I ! ! ! I

1 ! I i I i i I i i ! i I
I I

, i I I , : I I, i
, I i , i I t-, , I

I ,

r-fli:
I i ! ! i i

, i ! I I i i , i I

I i ! i I I i ! ,, , , I 1

i
,

-W+!- t i ! ! : -to i I I
,

I
i !

--r,
i . II i i

~_l i I II ' • H-+-,-
,

I i
I I _I~+- -1-;1-1 I----+-~-- f- - - - t-: i I : : ! I I I I , i I ! i : ii ! iii I ' , 1 I

'f i ! I i I
,

1 w
3!

i ! I I I i ! I ! ! I !
I

I i , I I ,

i
,

, I I I i

r I,
I I I i I I ! I !

-
I I I !
I ,

1 i I
I

I , i I
! !!~ ! !

!
1--+- - -

I 1 I I I 1, I I

: I i I ! : l i ! ' i I
+~

i I , I !
h-:-i +t+.f-~ --+ 1--+-+-

i I i
I l ' 1

I

I l . I I I i I I I,

+1- i I
, !

I + i I ! Ii , -- - ,

! i I I I I i 1 ! I , i i I I Ii i +I I I I I I
,

I I II

i / T I ! ! I
WI'

I I

I i I ! I
t-

o i I I ! II I i i i 1 ,
II I- I :

f-- tr-i----i , +I
-r-- .

i I i i I
I i

, I I I :J I i 1 I i i

+ -~
-

I J i 1

i 1 I i1-f- -
! I I !I i I I ! I : I

IP

O. 0 D. 5 LO 1.5 2. 0 2.5 3. C 3. " ~. 0 O. P. ~. 5 5. 0 5.5 6. 0

RIneR SPEEO. RADIS

NATURAL fREQUENCIES BF WINO TURB!NE S~STEMS

CONCEPT II, CASE K, DISTANCE TO CENTER OF GRAVITY DECREASED BY 1/3



IP

,
2

2P

fl. C5. 55.C"-.0 O.P.4.53.53. 02.52. 01.51.0o. 5

I I i I I i i i ; ; I I I ! i i ; I
I

W
4

I It-
, i,

!
I !

,
I I ! I Ii I i ! I i I I : i I I t i I ,

iI I I' ++i- t I

..
j ! I ! !I I I I I i ! ! 1 I i I ! I rI ! I , I

I

~l
I i I I I ! I I ; ! I i ! I i i! I I I '

: (
.

I : [ I 11 i I" i i ! i I I I I i i ,

! i \ I i T I I ! I I I

I ! I I

I i i I I I I I !
I I

I

w
3

I I i

r

I i I Ii i

I

I I I

I : I I i II

! I i T I i
i I I

I I I I , i I ~, I I i I II I

I ! 1-- \ i \ I,I I -t
I I I r I I !
I I I I i I

I

wI' w

I -
I I I I i .+ I

,- --- -- -- -t I

I i I I :I
I i

+ I I I
J

~.
I

I ! 1 ,
I I I I Ii I

I I I I !Q. 0

c, c

2.5

10. C

12.5

N
:r

,: 7.5
u
z
w
=>
C3
W
tt:
U.

'ii.
tt:
=>
<- S.Ca:;
z:

RO~OR SPEED. RRD/S

IItRTURRI FREQUENCIES OF WINO TURBIlltE SYSTEMS

CONCEPT II, CASE L, NACELLE AND roTOR INERTIA ABOUT Z AXIS INCREASED BY 1/3



_1 I I 't iii, I If, I II I 'I! i I I w4

i ii ! I '\ i' , ' I, I I ' " "I ' LLLt ,: I if i~- i-j
I ' i, I U I iii I, tt++Ti--+-+---!+-+-l-";-t--l!--+-1--+-+-T,-+-; : i i )-1''-+;-!,i-...L;! -!;I-~-t-t+++ ~.

I---+I-----+---+/--J---I-!,i---t,,-----,-! -j'·--+--H-+++----H--+··-t- +-+-++++ ji ' ii' ,! ! i i !,,'! I ! I i -r I!', \ r " i

00
0\,

15. a
1---+---1--'+'---,-!---l- I ++---+--I--+-+-+---+-1----I-+-+-'-+'-+-+--+'_-1---', ---tl-+-+-+ I

! lIlt ! f! j - !
iii I

-r
i

12.~

10.0

+-+,-+--+-t---t-i ---++f-+--+-+-----+-+--+-H-++---!-+----i-----H-+-+-H-+--+--H++-Hr+-+-H+--+--H-----i----++--+++.f---+-++H-~_+_H-_+__i_+'-I, i I I ! I I J

.

N
'I

>-
u
z
~
C3
W
C
lL.

...J
cr
~

::J
r
cr
Z.

7.5

5. a

, ,
i

I I

i
I I

I I

: I i

f '

I
1 I

I I i

2.~

I I I Ii! , !' ! J
1-I-f-----++-+-I--+-+---I--+--J-4-+--J--- - - -+---r--H-+-+-+-H-+-+--+---+-H-+-+--+-+-1H-+--+---+---H-+-++-+-l----+-+-+-+---Hri--++---l-H--+-+-
H-ti +-+-H-++++-H-+++HI--+-I H-++++-H --+!++-H1H+++----H-++++-il-+--l--1+-I---H--+-'I--+-f----+--+--+-II--+-+--l-+-i---' +!I
H-+++-H-++++-H-+++-H-+-+:++'++h-+-+++-H-++++--H-I-+++-HH+++-H-+I--i-+-H~-I-+---I---+-h~ +'--,--,

; Ii! iii Ww1 ' 2

lJI'l1i-!J'I[fJ:lrJilrJ;[JJ;~~J~"~1T+--' ~;·~'l+-~f-~--+~~W~:-----L~'~'4~'tU¥§$§~~*§*§*m*~'~-~-f" ftlf== 2P

!__~ +--+----t-+:--+ L--t-t-j-+-+-+-H-+-~.4! I! I I'

H
-1- I" I '.~. - ' I

i I I 1P
c. c -- -~ I J l i: I i 1 ! I I ~ -

D. D O. ~ La 2. a 2.5 3.e 3. " 4..0 O.P. 4.. ~ 5. C 5. " 6. a
ROTOR SPEf~ RAO ~

CONCEPT II, CASE M, NACELLE AND ROTOR INERTIA ABOUT Z AXIS DECREASED BY 1/3



;[ i , I I 11' 1 i , 1 I I I ! i I 1
W

4
i i I i ! : ! i ! ! I I i ! , ! II I I : I , I

A , , I ,
I W

3I I I I I I i I i I I i I I I !I I : i I
I i ! I I I ! I ! i I I ! I I! , !

i I i i ! I !
i 1

!

!

1 i

I I

I i
\ i

, I I i
1 i I I

I i I i i i

! ! I i I i i
! T I I

I

I
, 1 i i I I ! II : I I I I ,

i
I

I 1 I!
I I ,
! I

I ,
I, i

,,
I I ! I I ! ! wI'I :

Ii I I I : -
1 I I I I

,
II I

I I
-+-~ ! I I-+--

I
, I I-I I I i , , : i I , : !, I ! ,

I I I I i II

1I -l i i : I I II
1--+

I I ! ! I
,

I , I I I
I I! : ! ! , Ii , , ! i : II

i

\2.5

10.0

N
r 7.5

,..:
u
z
w

'"<:3
W
II:
"-

5.D

2.5

0.0

o 0 O. 5 i.O 1.5 2. Q 2. .) 3.5 4.0 O. P. 4.5 5. D 5. 5 G. 0

2P

IP

ROTOR SPEED. RRO/S

NRTURRL FREQUENCIES D~ WINO T~RBINE SYSTEMS

CONCEPT II, CASE N, NACELLE AND ROTOR INERTIA ABOUT X AXIS INCREASED BY l/~



00:
00'

, 't' :+' !, i,,!' 1 . I, '11-+-+-1-e-t++---+-+-1-t-+-+-1-H-,--+'-t---L; I '-+-1-+-r-+--'-+--'-++-H-+--+-H-+~H-++-H'-+-+-+-I'-+-+-+-t-+-+-I
: 1 i! I!' I,", iii i I I I' ! !t!i : : I !!

+--+--+--t--T:--t--r-t-t-+-,+-+-t--+-+-t-+++_ ~, liT; 'I ,-1--,-'+-+--',--++-+--f'---j-,-+---t-i-+1,-, t-+-+-,~c-t--T'+''+-+-1-+--+,-j
'I:: II II li'---Lt_' 'i ii: i I 1,1111 i I

I-l--t-+-+--+-+--+-+--+-+-+-+--+-+-+-+--+:-+-,--;-:-+--;-1-"-;;-H- ! i-it I I !' t ! i-i Ii! !, I i
12.:: 1:;:P=t:+=I=!*=1=R++=R;++=H+:HH++=H+d>=H~::t:i=+=<t;:::t=H=+:j::tj4:t:+:::;=t::t<>::t=t::t:t:j:::+<t::H=+:j::t=k1~ " ~ I~ +1-+-+-+-+--+--'-,+i-++-+--+-+-1-H-++-+--++-+

j
-+-I! -+,-+-+-H,-+-+'-+-+--+1++-+--+:-+-',-+i--+;+-H---t--'-H-++-H-+-+i-+-li-+-+-+-I-+-+-+-H

+--+-+-+-+-1'+-+--+-+-+-+--+-+-+-+--+-+-1'+-+-1;-r--+-+
I
-+-

i
, +-f-t-+-+-+-+-+--+-+

i
,--+-t--+-+:jT-+-+-+-+-+j-+i+-+--+i--r-+-+--+-+-,:-+-+-t-+-+-+--<+--+-+-+-i

i. I ! I
1-+

1
-+-+,-I,-+-+\-++-+-+-+-+!, -11-+-+-+-+-+-+,-+t II i I I \ I i

-~-t-t--;-II +J-~-t--f-+-+:-t--f-+i:-+-t--.,It-t-
I,+I, -I-+++T! -i-L

T
1.-;-1-t--t-!'+-+--+--t-+--t-1f--t-1+- -~-f1,-+I-t-_t-"+-,.,i-t--t-t

i
It::,--+--1--+-++--+--t-W-J

! I' i: I I, iii I I I I! I I I I I i

N
:r

,.,
u
z
W
::J
C3
W
cr;
IL

C'
cr;
::J
;
c:
z:

10.0

7.5

S. 0

I

I

!
I I

I ' !,

i

i

i

I

I

i ! it!!ii' IL' Iii! I Ii' ! ttl
I-+-+--+'-j-!'+-j-'-t-t-+1+1-1-+--+-+-1-H-++-HT_-+---+-+-_Tj---rt--+'_Ij-'+I-_

r

'j-i-+--;.1-'+--++-+'+'+-H-+-+1++-H-++-H-++-+-+i -'-I' -+i-+-+-+--+-+-+-+-+-+-+:-+J
ill Iii I WI' W22. 5 ~=+=Fj;4*iR*:R=F:pjFj;;*M*M*H=F~RlJ;*Ff*H*:R4;;f;;:Ff:cFR*;j:;;;f~~;:;;f*R*F4=F;;f;;:FF~

IB'~!llrtl!1-'Jljl~'11111-+1~~[lJJIJ!~~~}f'~+!:~'~~fffJJ~f~H-~i~r~~B~~ri't
l

M~~flM~~H~;~i==- 2P

I_-+-~-+-fl+'_~j-'~++-_--+~I!--+-!:--+l--t+-!.~:_~!_-:~~:-:_-tl-,-+·t-+---!-+--+--+---!--+-f-+-il'-+---+-+--+1- Lfl I I : I lP

-+- iii I _-+_ I
I· I i' i!

0.0 ' ! ,

O. 0 O. " 1.0 2.0 2. ::, 3. 0 3. " ~. 0 o. P. ~." S. 0 S. " G. C

~RTURAL "RfCUENCIES C~ MIND TURB!NE S1STEMS

CONCEPT II, CASE 0, NACELLE AND ROTOR INERTIA ABOUT X AXIS DECREASED BY 1/3



: ! i I , I I I I I , I
I I ! i I I i I i I w

4, I I , !-
j i I I iii ! I I I I ! I

- --r"-

i I i I I ,
i ! ! ! ! I I12. :> I

i I I
,

r
I I ! I ! ! i ! I f I I

,
i ! !

, i I I, i ! II : I I I ! I I I I

I ! : i i ! ! i I I ! i I I
I : I I

Ii i I ! ; ! I I ! ; II ! :-1- I I

-l
,

i I ! I I
, I i I

,
! I

--t-j ! i i I --+-Ii r,
i , I I,

i i I i I I !
! ! I ! ! I I I I I !

I I I

! I I I I I W
310. C

I

I I

I I I
I

"" I I !r 7.:>
,.: I !
u

Iz
w
:>

Ia
I I Iw I

e-
lL. I !

; I I I I
I I i I I

5. C ! i

I i ;
i I , i ! I

tt
, ,

i I j I I I i I I ! I I i I i, I !

I I I I ! i I I
i i I II I I I

I
-

!
, I

!
i ! I

,
i ! I I I I

I I I I I W1 ' W
22.5 I I I

I i i :
,

I 2P+
~-++ . Ii! I I +-4-+ I I I I I Li-- ,

--1\1: :
; i i\

I \ I : I ! I I i: I 1P

-4- I
-;- !i 1.1 I i I: -t-l-i--

! ! ! ! I I,
i I II ,

: I
,

: I I
O. 0

o. 0 0.:> 1.0 1.:' 2. 0 2.:> 3. C 3. S 4. C O. P. 4.:, 5. 0 5. :> 6. 0
(Xl
~ RClTClR SPEED. RRO/S

I<RTURRl FREQUENC!ES ClF WIND TURB!NF srSiEMS

CONCEPT II, CASE P", NACELLE AND roTOR INERTIA ABOUT X AND Z AXES INCREASED BY 1/3



1.0
o

H-~!!-+-H-+-l-+-H-+-++'_IH-+-+I-+-I++-iH-++-H-+-+-f---'H-++--l-I!-+-+-+-+-+-++-f---'H,I, .il--!-+--L
i
,' -+,!i---+--+-+_~--+-+---H-+--l

I I I i I! Iii I
I--t-+-+-+-I-+-+-+-+---J-+--+--+-+-t-+-+-+-I-+_+_-+-+-t-+--+-+...,~--++-+---:-+--+--t--t---i--+--+-+-It----r-+-+--j-'-t---r---+-,-+-+-~-+--+-+-I--+_+_+-+---J-I
;__ I ,I,I ' ,I ' I ! -+-+-'-+-+----+!_-+---+I-+-'-+1-+1 -+-+----+--+_-+-+-+-+-+-+-+-t-+i~
f---+--+-;-+-~- ---'------+---+--+++-+-t---t-l ! :-t--+-+~----+-!+ii -t-t--t!'-+i-+I-+-f-! i-+-+- -t-ffi-~+ I i i I: H--+---t-t-+-I: +l-+-f--+-+-

i
-+

1---+_+_-+1.-+-1' -f-r!-L-.+--+i--+-+1-+--r-.....----II-f-_+_-+---r-+-+-+---+-I~_+__+i--t-llli''__U _+-1
1
_+1---t'-+--+ --+-----t-t--+-+--+-+I -H',__1-! --L_I~-+! _+1-+-+_+-t---i-_1

I i' ,,'.' i" I" '.' i' ! I,' ',' ii' t- '! iii ' I i- i --r--+-~-+--+-+-H-+-+'H-+--+---+-t-----"-+---t-+-H--4-,+'-++t-,. i_+r--+-t i ii-+-+--f---'iH-1-+_+j-+-++i-+-+--t-t-i+-j------;-,~II--
f---+---+-,_1-++-+-1----t!-++--+-'i-+1-+--+ U-LL r-t--I +-t-i,_-+-+---+--+-'-+1-+1 -+1_--+-,-t'-L ~i_W ! I! I ,
I,ll , ilil i Iii it iill i!--4--t--t-!+-'i----+-+--i ,[ ;-

i : i 1.1 J! ! ! lUi 11 : Ii: ill' I i I t-
,-l-L, 1 _il.L.l... 'f -Li-+l _' ; i ','f L I I --i-

I
....1:' .r I" I," 1

"

'r' i -lot -+---L--+- --+--.1-,+,----t-" I'!i :"1: 11i 1'11!1 ~- ill i
t--'-t- ---1-- I - i ~-H'J HI'I 'Hi;: r-f-++- - -+j'-+-H----1- I 'J ..

:' ) i; i IL'. ',: Ii r I 1 1 1 I . I 1
~ -j-+-~-'-+- ,.-r----+--+ ----l-- ---+--

i L,'. i ;,. ii, , I ! ! : I·: f-~ ; I HI". ,J, - .,.!,. +--+--i-+-+-1H-+--+---I--7-+--1' --j-- +----t- r-~ -- ~ + ,-,-----
, ::, i ! ' : :" , !

, I

i

I I

6. 05. :.

I I

5.0

i

!

~. 0 O. P. 4. ~

!

3. ~

I : J I i

i ,
i ! I t I,

I
i i i ,

! i i
, ,,

, 1 i 1
,

I i I
! I

f
:
,

i ,
1

~. 0

I

I I I
I I !
! I, i [

!
I i
I

2 .. ~2. 01.5i.eo. ~

, ,

I
!

I ' I i

o. c

2. 5

5. 0

c. c

7.5

i2.5

i5.0

10.0
N
:I:

,..
U
Z
w
::>
<3
W
a::
"-
..J
cr:
a::
::>
I
a:
z:

RCTOR SPEE~ ~RO/S

~RTURRl. fREQUENCIES (:)" Wl~O TURBI~E S1STEMS

CONCEPT II, CASE Q, NACELLE AND ROTOR INERTIA ABOUT X AND Z AXES DECREASED BY 1/3



12.5

I! IT! I I I ! iii . !: ~;! !! i I!
I -i-H-+---+-H-+---'-H-+-+-+-t-++-H-i--c-+--t,-+--+--H-+--+--H--+-+-h--+-+-hl-t--+-+-1--+-+-+---!I---t--+-H-i.--+---t-+-++--Hi : I I I 'ii i I I ! !! I

1-+1--+-+
,
-f-I'+-If-'+I_;-I!+-t-.--+i

_+-+-+_;..-!!+-f-i +i--+-+-+-+--!--+-+-i+i_+-+!-+-ti----.;--t-t-t-+--+-+-!'-+-+-f---+-4i-+--+-+-+-+-'-t!-+-+-f1 +-+-+I---+---+_L JJ
Ii! i ! i I I ': iii i I I [i : I i

W
4

10.0
I W 3

f-+-+--+-f--+-+-+-f--+-+---+-f-+-+--+-f--+-+---+-f--+-+--+-t-+-+-+-+-+-++-t-+-+-+-+-l-+-+-+-f---+-+-+-I-+-+-+-+-+-+-+-l--+-+-+-li--t--+--+-Ii--t---l

-j--+-+-+-1-H-t--t--+-+-H--+-t--+-+-t-H---++--t-+-J---++--+-t-+-H--+-t--+-+-+-+-+---++--t-HJ---+++-l-t-H--+-t--t-+-+-+-t---++-+-H

"":r

I iii: i I I i

>
u
z
w
~

a
w
a:
u.

-'
CI
a:
~

>
ex
z

7.5

5. C

f I I I i I i
, i

3P

2. 5iii ....rr

6. C5. 55. 04.0 O.P. ~.53.53.02. ::.2. 0\.5\.0O. 5

! ! I ! I I !, ! i_I-' ! I

~itt.;illlllll'-~I-I-~-llllm!F 2P

f------ - WI' w2

I-_++_-+f----t__ ~--+---_+--+ I U-i-"- i i ! I IP

0.0 ! ! i ! : "i !

o. 0

FlOTDP, SPEED. RRO/S

NATURRI fREQUENCIES 0" WI~O TURB1~E SYSTEMS

CONCEPT III, CASE A, 25% EFFECTIVE GUY STIFFNESS



..;. W
4

I
i ! i

:

! I i I-
1
1

W
3

i

!

I -. 1 i

- -+--f-+---+-+-~' +-, l!:! ~++-+,-l-t 'L~-- _11+:+-t--++-t-+:-+,- --r- ~+,---'r+ r-t-+- ++-
I I: i I :Ii' i! ! I . i i : i I I!: i! Ii! 'i I! I

I-+-H-!I-+-+-H-j-+-H-j-+-+-+++-r-+~ I . i I : ! , !
:. ! ,! iii i ' ! ; i ' Iii' I: I i ! I !

i , I I i !! iii, I i I !! Ii
-t-.!: I

! I !: ,: !: iii i I I : !; iii
-~-Tit r-rt~+-+-+--+-+-+-+--+l-+-i'-+-+-+-+--+-+-+--+-!,-+-+-+-+--+-+-+-+--j-t-+-+-+-+-+-+--+-~-+-rt I : i

-+-+--i-+-+--r-i-+-+-+--H-+-+-+--+-+--'--ji 1 :

i2.5

10. [)

I

N
r

I

.!

3P

2P

6. C

I ~
i j

I

I i I
i ! !

5. C

I,
i i I ,

i
, i I i !

-l-
I ! !I, ,

-t.0 O. P. 4. S

I

i I
I I i
: !

1+
I
I
:

!

I

3.53.0

i I
- I

I ! 1l-
I I
I I

! ! i

I , II

2.52. 01.5

I I

i
i
I

! . I I
I ! '+j, i 1

I i . I I ' !
i i t+t+ II I . :

I i I,
I ! I i

l. 0

I ! I
! !

! i I : I I I :-r-r-i -!-:-+-i-+--!I-+-+-+--+-I--+--+-+ I I
~+-!.-+-l-+-+-t-+-+-+-+--+-f-+-+-+--+-+-+-+-+-+-+-+-+ II ','ILI!iW,I'-I :--tj-I ! :,--,-+-+-+--+-;-+-+-- II

I I I :!

2.5

5. [)

7.5

tt
a:
:::J
f
a:
.z

>
u
z
u.;
:::J
(3
u.;
cr:
"-

ROTOR SPEf~ RRDiS

NATLIARL FAEr:UE~C:FS 0" WING TURI3!NE S'rSTfMS

CONCEPT III,.CASE B, 50\ EFFECTIVE GUY STIFFNESS



i I . _~ !:! Ii: I ! I !
I ) I . -++--j--++H-++H----l-+-+-if-i--+-+-ir-+-t--+-H-t:---+----t~I--+_+-:-+-+---t-I-+-+---+-t_+-+--+-H-T-j--+--t-TTTT, i 'I t Ii, ,

12. "

10.0

I

i I
i i i I

I I
I 1

1

I

1
I

i

J

i
t

I

I

i

~I
W

1-+-t-hH--t-H-trH--r-t-t-t-r-t-1i'--tt'-itH-Tti'-r
1

-rH---ttlH--r-H-r-rr-t-rTliTH-t-!'-rltitii:t.:p::F?'irt---- 3P.... ;1
1-....

i ....
i T+r T-

i
! ! I

! ,

2. 0 2. " 3. [) 3. 5 ~. 0 O.P. 4. 5 5.0 5.5

ROTOR SPEED. %O/S

NRTURAI rAEQUENClf~, tJF WIND TJRRlt>:E SYSTEMS

CONCEPT III, CASE C, 100\ EFFECTIVE GUY STIFFNESS



'5.C

12.5

iO. C

...
r

,.:
u
z 7.5
ILl
::>
a
ILl
II:
II-

..Ja
a:
::>
f-
a
z 5.C

2.5

w
4

00
3

.
..

wI'

_;::00

--

3P

IP

C.C

c. C 0.5 l.C 2. a 2.5 3.C 3.5 ol.a O.P.ol.5 5.C 5.b 6.C

"OTDR S~EED. RRD/S

NRTU"RL FREQUENCIES DF HIND TUR8INE SYSTEMS

CONCEPT III, CASE D, 150t EFFECTIVE GUY STIFFNESS



i5.0

12.5

10.0

N
:c

r:
uz
III 7.S::l
0
ILl.,
\l.

-'a:.,
::l
0-
a:z

5.C

2.5

C.C

W
4

W
3

W
1

,

-
1-1-... ,.....

,

2P

lP

2.0C.D 0.5 1.0 1.5 2.5 3.C 3.5

ROTOR SPEEO. RAO/S

~ATURAL fREQUENCIES O~ HI~O TUR~INE SYSTEMS

~. CO. P. ~. 5 S.O 5.S 6.0

CONCEPT III, CASE E, 200~ EFFECTIVE GUY STIFFNESS



1.0
0\.

12.5

10.0

...
;r

~ 7.5u
z
!!!
a
IIJ.,
....
..J
a:.,
::l
f-
a: 5.0z

2.5

W
4

w
3

WI'

--,----- --
----

-'-..--

2P

IP

0.0

0.0 0.5 1.0 1.5 2. 0 2.5 3. 0 3. 5 <to 0 O. P . ~. 5

ROTOR SPEED. ~AD/S

NATURAL F~EQUENCIES OF HIND TU"~!NE SYSTEMS

5.0 5.5 6.0

CONCEPT III, CASE F, GUY ATTACHMENT POINT RAISED 12 FT



12.5

10.0

N
:r

,.: ·7.5
u..,
w
::>
a
OJ
c....
.J
a:
c
::>
f- 5.0a:

'"

2.5

W
4

W
3

,

~

_10-1---
--_....

~ WI'

10-i--t-
.-

....~~-~

3P

0.0

0.0 0.5 \.0 1.5 2. 0 2.5 3.0 3.5 '.0 O. P. ,.!> 5.0 5.5 6.0

R~T~R SPEED. RRD/S

NRTURRL FREQUENCIES OF HIND TUReINE SYSTEMS

CONCEPT III, CASE G, GUY ATTACHMENT POINT LOWERED 12 FT



W4

W
3

-
W

1
,

-...
I-

-~
....1-

\0.
(Xl

12.5

10.0

""or

,.: 7.5u
z
w
:::>
C3
w
a:
II-

..J
a:
a:
:::>
f-
a: 5.0z

2.5

O. 0

O. 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 •. () O.P.--4..:' 5.0 5.5 6.C

3P

1P

~~T~A SPEEO. ~RO/S

~ATURRL FREQUENCIES ~F WINO TURBINE 51SIEMS

CONCEPT III, CASE H. NACELLE AND ROTOR MASS INCREASED BY 1/3



15.C

12.5

10. a

'":r
,:
uz 7.5w
::>
13
w
a::
u..
..J
cr
t:
::>....
crz 5.C

2.5

W
4

W~
.j

-
W1 '

3P

1P

wi
Wi

O. C

C.O 0.5 LO 2. 0 2.5 3.0 3.5 •. 0 O. P .4.5 5. 0 5.5 6.0

ROT~R SPEED. ~AD/S

NATURAL FREQUENCIES OF WINO TURBINE SYSTEMS

CONCEPI' III, CASE I, NACELLE AND ROTOR MASS DECREASED BY 1/3



...... '
o
o

3P

IP

w
2

2P

W
4

W
3

I

--........
WI'

I-~r-- -
.... - ....

f- ....
_l- f----

2.5

10.0

12.5

'":r
~ 7.5u
z
'":J
"'"0::
IL.

.J
a:
a:
::J...
a: 5. 0z

0.0

0.0 O. 5 1.0 1.5 2.0 2.5 3. 0 3. 5 4.0 O. P. 4.:' 5. 0 5.5 6. 0

ROTOR SPEED. RAO/S

NATURAL fREQUENCIES Of WINO TURBINE 5~5TEMS

CONCEPT III I CASE J I DISTANCE TO CENTER OF GRAVITY INCREASED BY 1.7 FI'



12.5

10.0

N
T

,.: 7.5u
z..,
::J
a..,
c:
"-
-'cr
a::
::J....
cr 5.0z

2.5

W
4

W
3

---- WI'

--
----

--_......---
~~I-i

_......
~

IP

ReTcrR SPEED. RRD/S

NATURAL FREQUENCIES crF WIND iUR~INE SlSiEMS

I-'
o
I-'

o. a
o. c 0.5 1.0 1.5 2. a 2.5 3. 0 3.5 4. a o. P. 4." 5.0 5. 5 6. a

CONCEPl' III, CASE K, DISTANCE TO CENTER OF GRAVITY DECREASED BY 1. 7 FT



I-'
0'
f\),

12.5

ID.I)

N
:r

,.:
7.5u

z...,
::J
C3...,
0:
"-
..J
a:
0:
::J
I-
a: 5. C:z.

2.5

W
4

w
3

Wi'

-
-- lP

D. C

o. I) O. 5 1.0 1.5 2. 0 2.5 3.0 3.5 4.0 O. P. 4. 5 5.0 5.5 6. 0

~BTBR SPEEO. ~AO/S

NATURAL FREQUENC1ES BF W1NO TURB1NE SrSTEMS

CONCEPT III, CASE L, NACELLE AND ROTOR INERTIA ABOUT Z AXIS INCREASED BY 1/3



12.5

N
J:

,:
7.5u

z
w
:>
C3
w
c....
--'e:

'":>....
e: 5.Dz

2.5

W
4

W
3

--- WI'
---

-J,..-,l-I--

3P

IP

6. 05.55. 04. DO. P .4.53.52. 0 2.5 3.D

ROTOR SPEEO. RAO/S

NATURAL FREQUENCIES OF WIND TURelNE SYSTEMS

1.5l.DO. 5

D. D

D. D.....
o
w

CONCEPI' III, CASE M, NACELLE AND ROTOR INERTIA ABOUT Z AXIS DECREASED BY 1/3



12.5

10.0

N
:I:

r: 7.5
u
z....
:::>
C3

""'C....
..J
cr
a::
:::>
<- 5.0cr
z:

2.5

W
4

W
3,

-.-----
...."..- WI'

i--..- ---
----_.....

---i------

3P

IP

O. 0

o. 0 O.~ 1.0 l.~ 2. 0 2.5 3.0 3.~ 4.0 O. P .4. ~ 5.0 5.5 6.0

R6TOR SPEED. RADIS

NATURAL FREQUENCIES OF WINO TURBINE SlSTEMS

CONCEPT III, CASE N, NACELLE AND ROTOR INERTIA ABOUT X AXIS INCREASED BY 1/3



15. C

12.5

10.0

N
·r

~
u

7.5z

'"=>
CJ

'"cr:
lL

..J
<r
cr:
=>
f-
<r
:z 5.0

2.5

..

w
4

w
3

-
w1 '

-
-

3P

1P

ROTOR SPEEO. RRD/S

NRTURRL FREQUENCIES OF WINO ,URBI~E SYSTEMS

I-'
o
\Jl

C. 0

G. G a. " La 1.5 2. 0 2.5 3. 0 3.5 4.00.P.4.5 5. a 5.~ B.G

CONCEPT III, CASE 0, NACELLE AND ROTOR INERTIA ABOUT X AXIS DECREASED BY 1/3



1-',
o
0'1

12.5

10.0

N
:r:

~
7.5

u
z
bJ
::>

'"bJ
c:
ll..

--J
a:
a:
::>
>-- 5. aa:

"

2.5

W
4

W
3

~I----
0-

Wl'- -
..... - ---

----
-

3P

IP

0.0

0.0 0." 1.0 1.5 2. a 2.5 3. 0 3. " 4.. a O.P. 4." 5. a 5.5 6. 0

~~T~R SPEED. RADIS

NATURAL FREQUENCIES ~F WINO iURBINE S1STEMS

CONCEPT III, CASE P, NACELLE AND ROTOR INERTIA ABOUT X AND Z AXES INCREASED BY 1/3



.. ..

15.0

12.5

10. a

N
X

,.:
u

7.5z

'"'"C3

'"a:
u..
...J
a:
a:

'"....a:
z: 5.0

2.5

W
4

W
3

--I"""

Wi'

.....
lP

6. 05. 55. a-i. a O.P.-i.53.52.0 2.5 3.0

ReTeR SPEED. RAD/S

NRTURAL FREQUENCIES eF WIND TURBINE SYSTEMS

1.5l.oO. 5

o. a
o. aI-'

o
-..J

I

CONCEPT III, CASE Q, NACELLE AND ROTOR INERTIA ABour X AND Z AXES DECREASED BY 1/3



a

A

E

f. ,
~J

Fu' F
v

G

h

I

I
m

I r

I xx' I zz

J

k a

k c

k
R

k T

k
v

k, .
~J

1

L

I'

m

m. ,
~J

108

APPENDIX C

SYMBOLS

Distance from ground to guy connections

Cross sectional area

Modulus of elasticity

Flexibility influence coefficients

Loads in u, v directions

Shear modulus of elasticity

Hub radius

Area moment of inertia

Mass moment of inertia per unit length about the centerline of tower

Mass moment of inertia about the rotor spin axis

Mass moment of inertia of nacelle-rotor around x, z axes

Polar moment of inertia

Anchor stiffness

Effective spring constant of guys

Spring rate of a guy rod

Effective guy and anchor stiffness

vertical spring rate of soil due to compression

Stiffness influence coefficients

GUy cable length

Beam, tower length

Tower section length

Mass per unit length

Tower inertia coefficients

..
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P

q

Q
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U, V

w

B

e

A

<p, x

'¥.
1.

W.
1.

n

n

•

Mass of nacelle

Mass of rotor

System inertia coefficients

Total mass of tower

Number of integration intervals, also number of guys per position

Operating point

Generalized load at ith location

Rotor's rotational velocity

Distance to nacelle-rotor C.G.

Thermal energy

Strain energy

Kinetic energy

Displacements at tower upper end

Work

Approximate function for blade model deflections

Angle between guys and ground

Dimensionless blade natural frequencies

Rotational displacements at tower upper end

Displacement functions

Natural vibration frequencies

Rotor speed

Dimensionless rotor speed frequency
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