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	1.	 OVERVIEW

	

1.1	 INTRODUCTION

This chapter gives an overview of the algorithms for

detecting ocean currents and estimating geostrophic velocities

with satellite altimeter data. Chapters 2 through 6 describe

the theory of operation and the specifications for each algorithm.

	

1.2	 ALGORITHM DESCRIPTIONS

The current-detection and velocity-estimation algo-

rithms process single tracks of residual satellite altimeter

data and yield the following outputs:

• Detected locations of specified ocean-
current signatures along the satellite
subtrack

•	 Estimated amplitudes of the detected
signatures

•	 Estimated rms errors for the locations
and amplitudes of detected signatures

•	 Estimated cross-track component of the
boundary-current geostrophic velocity
and an rms error bound for the estimate

•	 Expected number of false alarms.

The residual altimeter data are inputs to the algorithms

and are computed from raw altimeter data in three steps by

t
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•	 Applying corrections for known error
sources

	

•	 Interpolating the data through intervals
in which the data are in serious error
(e.g., outliers)

	

•	 ."ibtracting an estimated gravimetric
geoid profile along the satellite subtrack.

The resulting residual data are noisy measurements of

the dynamic sea-surface height. The characteristics of the

noise in these depend on the noise in the raw altimeter data

and on the accuracies of the error corrections and the geoid

profiles. The detection algorithm exploits both the statistical

properties of the noise in the residual data and the known aver-

age properties of ocean-current signatures in the altimeter data.

For specified models of the noise and oceanographic signature,

the algorithm maximizes the probability of detection at a spe-

cified probability of false alarm and minimizes the rms errors

in the estimated current signature parameters.

As depicted in Fig. 1.2-1, the detection algorithm

consists of four subalgorithms that perform separate functions.

a most

ALTIMETER-MINUS-GEOID DETECTION

	

RESIDUAL DATA	 MATCHED	 STATISTICS
	 THRESHOLD

 DETECTORICONVOlUT1ON1

ARI	 RESPONSE SgNAI•TO•NOW
AUTOREGRESSIVE MODEL MATCHED•FILTER	 RAT* AND MEAN

MODELING	 DESKiN	 FREOUENCr

GENERIC OCEAN -CURRENT SIGNATURE

SPECIFIED FALSE-ALARM RATE

Figure 1.2-1	 Structure of Data-Adaptive Current
Detection Algorithm
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•	 AUTORKGRESSIVE MODELING - The residual
data are analyzed to determine a stochas-
tic autoregressive (AR) model for the	 4

process that generated the data. The
order of the AR model is selected to
minimize the Akaike information criterion.

•	 MATCHED-FILTER DESIGN - The AR model,
together with a user-specified generic
ocean-current signature, are used to
compute the impulse response of the op-
timal matched filter for detecting and
locating the generic signature in the
noisy residual data.

•	 MATCHED FILTER - The impulse response of
the mate a	 lter is convolved with the
residual altimeter data to compute a
sequence of sufficient statistics for
the threshold detector.

•	 THRESHOLD DETECTOR - The detector compares
t e su icient statistics with a threshold
value that is chosen to yield a specified
false-alarm rate. A detection occurs
when the statistic exceeds the threshold.
The estimated location of the detected
signature is given by the location of
the local maximum of the statistic.

3

1.3	 GENERIC OCEAN-CURRENT SIGNATURES

This section describes two parametric families of

ocean-current signatures. The first family is used for design

ing matched filters to detect warm-core and cold-core current

rings. The second family is intended for detecting boundary

currents, such as the Gulf Stream, and for estimating geo-

strophic current velocities.

Ring-Current Signatures - A family of generic alti-

metric signatures is described for modeling the dynamic sea-

surface features caused by cold-core and warm-core current

1-3



rings. The sea-surface height H(x) at radial position x with

respect to the ring's center is modeled as

H(x) _ - D exp (-9.21 (x/W) 2 )	 (1.3-1)	 z

D = signature depth

W = signature width

D is positive for cold rings and negative for wars ringr. This

parametric model has a simple mathematical fors and appears to

be in reasonable agreement with available data on ring signa-

tures (e.g., Refs. 1-3).

The width W is defined as the diameter at which the

signature is 10 percent of its central value:.

H(W/2) = H(0)/10

Equation 1.3-1 has the fors of a Gaussian probability

density. Therefore, these are referred to as Gaussian ring

signatures. An example of a Gaussian ring signature is shown

in Fig. 1.3-1, where the central depth is 0.5 meter and the

width is 150 km.

The tangential current-veLocity distribution implied

by a ring signature may be computed by setting the radial slope

of the sea surface equal to the sum of the horizontal Coriolis

acceleration and the centrifugal acceleration divided by the

acceleration of gravity:

dH/W%2= f v(x) + v(x)/x	 (1.3-3)
g

1-4
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Figure 1.3-1	 Gaussian Cold -Ring Signature,
Depth = 0.5 ®, Width = 150 km

f = 20 sin# = Coriolis parameter

0 = earth ' s rotational velocity

0 = latitude

v(x) = tangential current velocity

g = acceleration of gravity.

The geostrophic velocity component is

V
9
 (x)_	

dH x	 (1.3-4)

Solving Eq. 1.3-3 for the total current velocity v(x) yields

v x
V(x) = ^ 1 + —x$-f-- - 11

	(1.3-5)



r'

t

For a Gaussian 0.5-m 150 -ka ring signature at 45 -degrees

latitude, Eqs. 1.3-4 and 1 . 3-5 yield the velocity distributions

shown in Fig. 1.3-2. The geostrophic approximation is seen to

over-estimate the maximum velocity by approximately 0.1 m/s (14X).

TANGENTIAL CURRENT VELOCITY
1.00

LATITUDE • 45 Dogi
0.7E

0.50

0.25

V

+++44%41
t +

+ 0o	 °+
+0	 oM

O	 0+

*o	
0^0

40	 0
°	 40

o

0
0	 EO	 100	 160

ALONG-TRACK LOCATION Ikml

Figure 1.3-2

	

	 Tangential Current -Velocity Distributions in
Gaussian Cold Ring. Crosses = geostrophic
approximation; circles = geostrophic approxi-
mation with centrifugal correction.

Boundary-Current Signatures - A family of generic al-

timetric signatures for boundary currents is defined with the

aid of Fig. 1.3-3, which depicts a satellite subtrack crossing

a current at angle 8. At position x along the subtrack, the

dynamic height H (x) is modeled with the hyperbolic tangent

function.

H(x) = -(A/2) tanh ( 3 x sin8/Wc )	 (1.3 - 6)
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0

XWO
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Figure 1.3-3	 Geometry of Geostrophic Current and
Satellite Subtrack

A = amplitude of dynamic height change

0 = track angle with respect to current velocity

We = width of current (90% height change)

The along-track slope of the signature is

dH(x)	 3 A sine sech2 3 x sine
ax-	 2 We	We

Far the coordinate system in Fig. 1.3-3, this slope is related

to the cross-track component V c (x) of the geostrophic velocity

as follows

Vc W	
dHdx(x)	

(1-3-8)
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0

For tracks that cut across the current, the geostrophic

velocity profile V9(x) along the subtraek is proportional to

the cross-track velocity Vc(x)

V8(x) a VC(x)/sine

For the signature slope given by Eq. 1.3-7, the geo-

strophic velocity profile is therefore

Vg(x) _ t WC sech2 3 x nd
WC	 c

The signature amplitude parameter A is proportional

to the maximum geostrophic velocity Vg(0)

2fW

For tracks that intersect the current, the signature width Ws

is proportional to the current width We

Ws : We/sine	 (1.3-12)

Typical model parameters for the Gulf Stream in the

western North Atlantic are an amplitude of A a 1 n , a maximum

geostrophic velocity of Vg(0) = 2 m/s, and a latitude of

4 a 45 deg. From Eq. 1.3-11 the current's width is We = 71 km.
For a nominal track crossing angle of 60 deg, the along-track

width of the signature is Ws : 82 ks. Figure 1.3-4 shows the

dynamic sea-surface height signature for these parameter values,

while Fig. 1.3-5 depicts the geostrophic velocity profile im-

plied by the height signature.
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Figure 1.3-4	 Dynamic Sea-Surface Height Signature
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2.1	 THEORY

An autoregressive (AR) model of order p for a time

series {x(t); t = 1,2,...,n) is a difference equation driven

by white noise wp(t)

x(t) = C 1 x(t-1) + C2 x(t-2) + ... + C  x(t-p) + wp(t)

t = p+1. P+2, ..., n

To identify the best AR model for the underlying random

process that generated the x(t) data, a family of AR models is

considered. Each member of the family corresponds to a different

model order

p = 0,1,2,...,pmax

When modeling residual altimeter data, sampled at a 1-Hz rate,

a reasonable choice for the maximum order is

pmax = integer(n/20)

For each order (p = 0,1,2,...,pmax) in turn, the AR

coefficients Cl,C2,...,Cp (C o = 1) are selected to minimize the

sample noise variance

2	 1	
nw2(c)	 (2.1-2)

n-pmax t=pmax+l P

2-1
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This variance is then used to compute the Akaike information

criterion (Refs. 5-2)

AIC(p) = n ln(a2 ) ♦ 2p	 (2.1-3)

The particular order p that minimizes AIC is identified; the

corresponding AR parameters

Cl,C2,... ,Cp902

then define the particular AR model ( for the x(t) process)

that is best supported by the available data.

There are many known algorithms for computing the AR

coefficients to minimize the sample variance - in Eq. 2.1-2. An

effective algorithm for the present application is based on an

augmented version of the COVAR algorithm ( Ref. 4). which is

described in the following section.

2.2	 AUGMENTED COVAR ALGORITHM

This section describes an augmented version of the

COVAR algorithm (Ref. 4), which solves the following problem

by Cholesky factorization.

GIVEN:	 1. Data sequence (x(0),x(1),...,x(N-1))

2. Integer M

FIND:	 1. Coefficients (al,a2,... ,
a ls

) that minimize
the sum-squared AR resfdu^

N-1
a = F (x(n) +

n=M

2. Minimized value of a

ak x(n-k)) 2	(2.2-1)
k=1

2-2



SOLUTION:	 1. Define

N-1
c ik = E 

x(n-i) x(n-k); k = 1,2,...,M 	 (2.2-2)
n

i = 1,2,...,M

2. Solve the following M equations for ai

i=1
aic ik = - c

ok ; k = 1,2,...,M	 (2.2-3)

In the following description of the augmented COVAR algorithm,

asterisks are used to indicate additions to the original algo-

rithm in Ref. 4.

INPUTS: N, {x(t); t=0,1,...,N-1), M

N = number of time-series data

x(t) = datum at time t

M = maximum autoregressive order

OUTPUTS: M, {C(k); k = 0,1,2,...,M), {MS(k); k = 0,1,2,...,N)

M = maximum AR order

C(k) = kth AR coefficient

* MS(k) = mean-square value of AR residuals for model
of order k

ALGORITHM:

1. Compute 
c00' c10, and c

ll using Eq. 2.2-2

2. Initialize the following parameters

a00 = 1
	

(2.2-4)

a0=c00
	

(2.2 -51\
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•	 MS(0) = a0/( N-M) (2.2 -6)

k = - c10/cll (2.2-7)

a10 = 1 (2.2-8)

all = k (2.2-9)

b01 = 1 (2.2-10)

00 = cll (2.2-11)

a l = a0 - ki^0 (2.2 - 12)

•	 MS(1) = a l/(N-M) (2.2-13)

Recursively stepping m (for m = 1,2,...,M-1), compute:

cm+l,0 using Eq. 2.2-2

cm+l,k = cm,k-1 + x(M-m-1) x(M-k)

- x(N-m-1) x(N-k); k = 1,2,...,m+1	 (2.2-14)

Ymn 
_ 1
Vn	

cm
+1, j bnj',̂^_ 1

n - 0,1,...,m-1	 (2.2-15)

-1
bmj = Ymi bij ; j 2	 1,2, ... ,m (2.2 - 16)

i= -1

bm,m+l = 1	 (2.2-17)

Bm I
+1

cm+l,i b
mj	 (2.2-18)

j=1

km+l - 1̂m

m
E cm +1 i ami
i=0 	 '

(2.2-19)

am+1,0 = 1 (2.2-.20)

am+l,i 2 ami + km+l bmi ;	 i = 1,2, ... ,m (2.2-21)

am+l,m+l = k®+l (2.2-22)

am+l 2 am - km+1 Pm (2.2 - 23)

2-4
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* MS(m+ l) = am+1/(N-M)

STEP m OF RECURSION IS COMPLETED

4. Termination (end of step M-1)

ak = aM0 k = 1,2,...,M
a = am

* C(0) = 1

* C(k) _ -ak ; k = 1,2, ... ,M

(2.2-24)

(2.2-25)

(2.2-26)

(2.2-27)

(2.2-28)

The augmented COVAR algorithm is called as a subroutine

in the AR modeling algorithm (ACOVAR) used for ocean-current

detection, which is specified below.

2.3	 SPECIFICATION FOR THE AUTOREGRESSIVE MODELING ALGORITHM

For ocean-current detection, the ACOVAR algorithm is

used for autoregressive modeling. ACOVAR uses the augmented

COVAR algorithm (Section 2.2) as a subroutine. Formal speci-

fications for ACOVAR are given in the following.

NAME:	 ACOVAR

PURPOSE: Compute the parameters of an optimal autoregressive
(AR) model for one track of residual altimeter data.

INPUTS: N, {D(k); k = 1 9 2 9 ... ,N)

N = number of residual altimeter data

D(k) = kth sample in the time series of residual altimeter
data along one satellite subtrack

OUTPUTS: P, {C(k); k = 0,1, ... ,P), VAR

P = order of selected AR model

2-5
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C(k) = kth AR-model coefficient

VAR = mean-square value of AR residuals

ALGORITHM:

1. Use the augmented COVAR algorithm to compute the AR
coefficients C(k) and the mean-square residuals MS(k)
(for k = 0,1,2,...,M) by using the following assignments

x(k) = D(k+l); k = 0,1,...,N-1	 (2.3-1)

M = INTEGER (N/20)	 (2.3-2)

Set PMAX = M.	 (2.3-3)

2. Compute the Akaike information criterion {AIC(k);
k = 0,1,...,PMAX) for each order of AR model

AIC(k) = N ln(MS(k)) + 2k
(2.3-4)

k = 0 9 1 9 ... ,PMAX

3. Determine the smallest J such that

0<J<_PMAX
"	 (2.3-5)

AIC(J)	 AIC(I); I = 0,1,...,PMAX

4. If (J = PMAX) or (J = 0) then

P = J	 (2.3-6)

VAR = MS(J)	 (2.3-7)

GOTO STEP 5

If (J < PMAX) then

GOTO STEP 1 BUT USE M=J	 (2.3-8)

5. OUTPUT P, {C(k); k = 0 9 1 .... ,P), VAR

6. END

2-6
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3.	 MATCHED-FILTER DESIGN ALGORITHM

3.1	 THEORY

The theory of optimal matched filters for detecting

deterministic signatures in additive colored noise is discussed

in several text books (e.g., Refs. 8, 9, 11). The key results

of that theory for ocean-current detection are summarized in

the following.

The problem of detecting ocean-current signatures in

residual altimeter data is formalized as follows.

GIVEN:	 D(t) = time series of residual altimeter data

m(t) = ocean-current signature time series

N(t) = stationary Gaussian noise model for residual
altimeter data that are free of m(t)

T = specified time (location) in the data D(t)

As = unknown signature amplitude scale factor

hypothesis that D(t) = N(t) + A sm(t-T) with
AS X0

HD = hypothesis that D(t) = N(t)

FIND:	 An optimal decision rule for correctly choosing between
hypotheses HO and HT ; and an optimal estimate of the
amplitude As when HT is chosen.

OPTIMALITY: Maximize the probability of correct detection
for a specified probability of false alarm.

SOLUTION: Compute the likelihood ratio

3-1
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Likelihood of D(t) under HT

LIkelihoodof It under 0

Select HT when LR > threshold value.

Select HO when LR < threshold value.

As depicted in Fig. 3.1-1, the optimal decision rule can be

efficiently implemented by processing the residual altimeter

data D(t) with one matched filter and a threshold detector to

test HT against HO for all possible values of T. Once a de-

tection is made (i.e., HT is selected), the best estimates of

the location T and the amplitude scale factor A s are easily

computed from the matched - filter output.

RECOMMENDED SCALING OF RLTER OUMT

j7M

PASCUAL
SCAM	 Off"WTKW

^DATA^	 MAATTCH	 x	
OUTMR rIt)	 o	 DATA

h W	 TM - TNIWSHM

NOWE
HAS sTA A c OVVMTKW

OR UW"	 FALM.ALAM
RATA DAIq

Figure 3.1-1	 Matched-Filter Detector

The optimal matched filter for long data setts is a

convolution operator having the frequency response H(F) and

the impulse response h(t) (e.g., Ref. 11, pp. 325-329)

3-2
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h(t) 4. H(F) 
e12nFt dF

NN

F = frequency (cycles/sample)

MM = Fourier transform of the ocean-current signature.MW
SNN (F) = power spectrum of the res ! 4ual altimetry N(t)

The Fourier transform of m(t) is defined as

m
M(F) _ E m ( t) a-i2nFt	 ( 3.1-3)

t=-m

MW =	
MM e12nFt dF	 (3.1-4)

f ^'

When the residual altimeter noise model N(t) is auto-

regressive (AR), the optimal matched filter can be implemented

as a finite - impulse - response (FIR) filter. This means that

the matched - filter impulse response h(t) has finite support,

i.e., h(t) = 0 for t < tmin and t > tmax , for finite twin and

tmax.

The AR model for the noise N ( t) is a difference equa-

tion of order p driven by white noise W(t)

N(t) = C1 N ( t-1) + C2 N(t-2) + ... + C  N(t-p) + W ( t) (3.1-5)

t = ...-1,0,1...

Mean (W(t)) = 0; Variance(W(t)) = a2

From linear - system theory (Refs. 10 and 11), the power

spectrum SNN (F) of N(t) is

3-3
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2

G(F) m 1 - 
AM 

Gk e -12xFk	 ( 3.1-7)

From Eqs. 3 . 1-2 and 3.1-6, the matched-filter frequency response

may be expressed as

^T

H(F) = MN	 = v-2G(F) G( -F) M(-F)

The Fourier transform of Eq. 3.1-8 yields the following

expression for the impulse response h(t) of the matched filter

h(t) = a- 2g(t) * g(-t) * m(-t)	 (3.1-9)

g(t) = 1 G(F) e12nFt dF	 (3.1-10)

g(t) = 0; t < 0	 (3.1-11)

g(0) = 1	 (3.1-12)

g(1) _ -C1	 (3.1-13)

g(p) _ -Cp	 (3.1-14)

g(t) = 0; t > p	 (3.1-15)

Since the convolutions in Eq. 3.1-9 contain only a finite number

of non-zero terms when m(t) has finite support, the impulse

response h(t) also has finite support.

The rms signal-to -noise ratio achieved by the matched

filter is defined as

3-4



s

SNR = Peak Filter Output Due to Si gnature m(t)	 (3.1-16)
Rms Filter Output Due to Noise N(t)

The SNR of an optimal matched filter can be computed

with the formula

SNR =	 h(j) m( -j)	 (3.1-17)

where only a finite number of terms contribute. The rms value

of the noise in the filter output is numerically equal to SNR

when the filter is optimized

Rms Noise in Filter Output = SNR 	 (3.1-18)

The peak filter output value due to the signature m(t) is also

expressible in terms of SNR:

Peak Filter Output Due to Signature m(t) = SNR 2 (3.1-19)

Since the SNR equals the rms value of the modeled

noise in the filtered output, it is convenient to scale the

filter output by the factor 1/SNR as shown in Fig. 3.1-1.
This yields a test statistic Y(t) that contains a random com-

ponent having a standard deviation of unity.

The mean output frequency Fm of the filter is a num-

ber that measures the average rate at which the filter output

changes sign

Fm = Half the Average Rate of Zero Crossings 	 (3.1-20)
of Noise in Filter Output

3-5
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By using results in Ref. 10, p. 199, it stay be shown for the

Gaussian noise in the filter output that

F®_ 1 cos-1 (x/SNR2
) (cycles/sample)	 (3.1-21)

X =	 h(k) m(1-k)

k=-a

Equation 3.1-21 is derived in the Appendix of Ref. 12.

3.2	 SPECIFICATIONS FOR THE MATCHED-FILTER DESIGN ALGORITHM

For a specified AR noise model and a specified ocean-

current signature, the DESIGNMF algorithm is used to design

the optimal matched filter. Formal specifications for this

algorithm are given in the following.

NAME:	 DESIGNMF

PURPOSE: Compute the impulse response of the matched filter,
the signal-to-noise ratio, and the mean output
frequency.

INPUTS: P, {C(k); k = 091,...,P), VAR, NM NH,
{M(k); k = -NM,-NM+1,...,NM), SNR, FM

P = order of the AR model for the residual altimeter
data

C(k) = kth coefficient of the AR model

VAR = mean-square value of the AR residuals

NM = half-width of the time series containing the
oceanographic signature to be detected (support
of signature contains 2NM + 1 points)

M(k) = kth sample in the oceanographic signature time
series
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,1;H = half-width of the matched-filter impulse response
(support of impulse response contains 2NH + 1 points)

SNR = rms signal - to-noise ratio

FM = mean output frequency ( cycles/sample)

OUTPUTS: NH, {H(k); k = -NH9-NH+1,...,NH)

NH = half-width of the matched-filter impulse
response

H(k) = kth sample in the matched - filter impulse
response

ALGORITHM:

1. Compute A(k), the convolution of G(k) and G(-k):

G(k) = 0, k < 0	 (3.2-1)

G(Q) = 1; k = 0	 (3.2-2)

G(k) _ -C(k); k - 1,2,...,P 	 (3.2 -3)

G(k) = 0; k > P	 (3.2 -4)

A(k) _	 G(j) G(j-k); k - -P,-P+l,...,P
J=0	

(3.2-5)

2. Compute B (k), the convolution of AM and M'(-k):

M'(k) = 0; k < -NM	 (3.2-6)

M'(k) = M(k); k = -NM,-NM+1,...,NM	 (3.2-1)

M'(k) = 0; k > NM	 (3.2-8)

B(k) _ E AM M'(j-k); k = -NH,-NH+l,...,NH
j=-P	

(3.2-9)

3. Compute H(k), the impulse response of the matched
filter, by scaling B(k):

H 	 = VAR- ^W; k	 NH. -NH+1,...,NH	 (3.2-10)

:
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4. Compute SNR, the rms signal-to-noise ratio:

SNR s (
NX
 E	 H(k) M(-k)) 4 	(3.2-11)

ku-NM

5. Compute FM, the mean output frequency:

FM = (2PI) -1 cos-1 (x/SNR2 ) (cycles/sample)

(3.2-12)

NM
X = E H(k) M(1-k)	 (3.2-13)

k=-NM

PI = 3.14159...

6. Output: NH, {H(k); k = -NH,-NH+1,...,NH)

7. End
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	4.	 MATCHED-FILTER CONVOLUTION ALGORITHM

	

4.1	 THEORY

The optimal matched filter, depicted in Fig. 3.1-1,

processes the residual altimeter data D(t) to produce a test

statistic Y(t) for the threshold detector. The scaled output

of the matched filter is computed through the following convo-

lution of the data D(t) with the filter's impulse response h(t)

Y(t) _ 
MW 

j h(k) D(t-k)
k= -a

(4.1-1)

Since both h(t) and D(t) are finite sequences, the convolution

in Eq..4.1-1 has only a finite number of terms.

4.2	 SPECIFICATIONS FOR THE MATCHED-FILTER CONVOLUTION ALGORITHM

The matched filter is implemented as a convolution in

algorithm CONVOLVE. The formal specifications for this algorithm

are given in the following.

NAME:	 CONVOLVE

PURPOSE: Convolve the residual altimeter data with the matched-
filter impulse response and scale the output.

INPUTS: NH, (H(k); k = -NH,-NH+1,...,NH), N.
(D(k); k = 1,2,...,N), SNR

NH = half-width of the matched-filter impulse response
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H(k) = kth sample of the matched-filter impulse response

N = number of data in the residual altimetry time series

D(k) = kth sample in the residual altimetry time series

SNR = rms signal-to-noise ratio

OUTPUTS: N, Wk); k = 1,2,...,N)

N = number of samples in the scaled output of the
matched filter

Y(k) = kth sample in the scaled output of the matched filter

ALGORITHM:

1. Compute Y(k), the scaled convolution of H(k) and DIM:

D I (k) = 0; k < 1	 (4.2-1)

D I (k) = D(k); k = 1,2,...,N 	 (4.2-2)

D I (k) = 0; k > N	 (4.2-3)

Y(k) = SNR-1

k = N

Y(k) = 0; k

Y(k) = 0; k

2. Output: N, {Y(k);

3. End

NH
H(J) D'(k-j);	 (4.2-4)

3=-NH

H+1,NH+2, ... ,N-NH

• 1,2, ... ,NH	 (4.2-5)

• N-NH+I,N-NH+2,...,N	 (4.2-6)

k = 1,2,.. ,N)
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5.	 THRESHOLD DETECTION ALGORITHK

	

5.1	 THEORY

The threshold detector compares the sequence of scaled

test statistics Y(t) from the matched filter against a detection

threshold. When Y(t) exceeds the threshold, an alarm is said

to occur. These alarms are classified into three categories:

•	 Correct Detection caused by occurrences
ot modeled current signatures in the
res ua a timeter data

•	 False Alarms caused by random excursions
of-the  mode'Ied noise in the residual
altimeter data

• Unmodeled Detections caused by unmodeled
current signatures or unmodeled noise n
the residual altimeter data.

The statistics of correct detections and false alarms

are computed for the specific ocean-current signature and the

specific noise model for which the filter was designed. On

the basis of these statistics, the expected average performance

of the detector is predicted, and the detection threshold is

adjusted for a desired tradeoff between detection probabilities

and false-alarm rats.

Formulas are listed below for computing the follow-	 {

ing performance statistics of the detector: the probability
I

of false alarms; the average false-alarm rate, the maximum-

likelihood estimates of signature location and amplitude (and

their rms accuracies), and the probability of detecting a sig-

nature with a prescribed amplitude.
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Probability of False Alarm - Let TH denote the detec-

tion threshold. The probability P f that the noise component

alone in Y(t) will exceed TH is given by the standardized normal

probability distribution function:

Pf = Prob{Y(t) > TH; noise alone) 	 (5.1-1)

P f = Q(TH) =-I
- 
exp(-x2/2) dx	 (5.1-2)-C

The detection threshold that yields a prescribed probability

of false alarm is

TH = Q
- 1 ( Pf )
	

(5.1-3)

Average False-Alarm Rate - The threshold detector

processes data ffom individual tracks of altimeter data, and

it is often reasonable to set the detection threshold so that

a specified number of false alarms is expected to occur per

unit distance along the track (expressed in the units of alarms

per data sample). This false-alarm rate (FAR) is computed as

FAR = (Fm) exp(-TH2/2) (alarms/sample) 	 (5.1-4)

Fm = mean output frequency of modeled noise
in filter output

Equation 5.1-4 is derived from results in Ref. 10, p. 492. The

expected number of false alarms (EN) along a track of data

having N samples of the test statistic Y(t) is

EN = N-FAR
	

(5.1-5)

Detection Threshold - The detection threshold TH is

chosen to yield a specified false-alarm rate FAR
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Y(to)
As = — R (5.1-8)

TH = -	 n(FAR/F 
a )
	

(5.1-6)

Equation 5.1-6 is obtained by solving Eq. 5.1-4 for TH.

Detected Signature Location and Amplitude - The best

estimate of the location of a detected signature is the value

of t for which Y(t) achieves its local maximum value above the

threshold TH. Let to denote this estimate of signature location.

The Cramer-Rao (C-R) lower bound on the rms error of this esti-

mate depends on the filter's maximum scaled output Y(to):

C-R Lower Bound = 	 1 t	 (samples)	 (5.1-7)n Fm
	 o

The maximum-likelihood estimate of the signature amplitude

scale factor As is

and the rms (one-sigma) error in this estimate is 1/SNR. The

best estimate of the detected signature is then As•m(t-to).

Probability of Detection - The probability of detect-

ing the signature As m(t) is

Pd (As ) = Q(TH - As • SNR)
	

(5.19)

5.2	 SPECIFICATIONS FOR THE THRESHOLD DETECTION ALGORITHM

The threshold detector is implemented by algorithm

DETECTOR. The formal specifications for this algorithm are

given in the following.
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NAME:	 DETECTOR

PURPOSE: Compare the scaled output of the matched filter
against a detection threshold; locate and count all
alarms; compute a signature amplitude scale factor
for each detection.

INPUTS: N, {Y(k); k = 1,2,...,N), NH, SNR, FM, FAR

N = number of samples in scaled output of matched filter

Y(k) = kth sample in scaled output of matched filter

NH = half-width of matched-filter impulse response

SNR = rms signal-to-noise ratio

FM = mean output frequency (cycles/sample)

FAR = average false-alarm rate (alarms/sample)
(FAR must be < FM)

OUTPUTS: NALARM, {A(k); k = 1 9 2 9 ... , NALARM) 9

{L(k); k = 1,2,...,NALARM), EN,
{CR(k); k = 1,2,...,NALARM), AE

NALARM = number of alarms

A(k) = signature amplitude scale factor for kth
detection

L(k) = location of the kth detection (sample number)

EN = expected number of false alarms

CR(k) = Cramer-Rao lower bound on rms location

error of kth detection (samples)

AE = standard deviation of the errors in the
estimates of the signature amplitude scale
factors

ALGORITHM:

1. Compute detection threshold TH

f
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TH = 42 ln(FR7W(5.2-1)

2. Count number of alarms (NALARH), record the location

L(k) of the kth positive-going threshold crossing, and
mark locations in srray A(N) of all samples Y(k) that
exceed the threshold

NALARM = 0	 (5.2-2)

FLAG = 0	 (5.2-3)

FOR K=NH+1 toN - NH

IF FLAG = 0 AND Y(K) > TH THEN

	

NALARM = NALARM-+ 1	 (5.2-4)
FLAG = 1	 (5.2-5)

L(NALARM) = K	 (5.2-6)

IF Y(K) > TH THEN A(K) = 1	 (5.2-7)

IF Y(K) <_ TH THEN FLAG = 0	 (5.2-8)

NEXT K

3. Skip to output if there are no threshold crossings

IF NALARM = 0 THEN GOTO STEP 7

4. Compute the estimated signature location and signature
amplitude scale factor for each alaem.

FOR I = 1 TO NALARM

FOR K = L(I) TO N-NH
IF A(K) = 0 THEN

KE = K (NEGATIVE-GOING
THRESHOLD CROSSING) (5.2-9)

	

K = N-NH (EXIT LOOP)	 (5.2-10)

NEXT K

TMAX = -1E38	 (5.2-11)

KB = L(I)	 (5.2-12)

FOR K = KB TO KE-1

IF Y(K) > TMAX THEN TMAX = Y(K)	 (5.2-13)
LL = K	 (5.2-14)

NEXT K
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L(I) = LL (LOCATION OF I-TH DETECTION) 	 (5.2-15)

AM = Y(LL)/SNR (SCALE FACTOR FOR I-TH DETECTION)
(5.2-16)

CR(I) = 1/(2A-FM-Y(LL)) (C-R LOWER BOUND)	 (5.2-17)

NEXT I

5. Compute EN, the expected number of false alarms caused
by modeled noise in the residual altimeter data.

EN = (N-2-NH)FAR	 (5.2-18)

6. Compute AE, the standard deviations of the errors of
the estimated signature amplitude scale factors

AE = 11SNR	 (5.2-19)

7. Output: NALARM, (L(k); k = 1,2,...,NALARM),
{A(k); k = 1,2,...,NAL.ARM), EN

8. End
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6.	 GEOSTROPHIC -VELOCITY ESTIMATION ALGORITHM

	

6.1	 THEORY

Nearly Eeostrophic boundary currents, such as the

Gulf Stream in the western North Atlantic, produce character-

istic signatures in altimeter data when the satellite subtracks

intersect the current. Figure 1.3-1 depicts a satellite sub-

track crossing a current at an angle 8. At position x along

the subtrack, the dynamic sea-surface height H(x) is related

to the cross - track component of the geostrophic velocity Vc(x)

by the equation

Vc(x) _ - $^ dH x 

f = 20sino = Coriolis parameter

0 = earth's rotational velocity

A = north latitude

g = acceleration of gravity

For the hyperbolic - tangent current signature H(x)

described in Section 1.3, the cross-track velocity is

Vc (x) = 
3 

A sech2 (3 x/Ws)
s

(6.1-2)

A = amplitude of dynamic height change

We = width of current (90% height change)

Ws = We/
sine = width of signature when sin 0.90
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e = track angle with respect to current velocity

The maximum cross-track geostrophic velocity is

[Vcjmax = Vc (0) =	 S	 (6.1-3)
S

Equation 6.1-3 indicates that the maximum cross-track

velocity can be computed from estimates of the amplitude A and

width Ws of the boundary-current signature. The required esti-

mates of A and Ws are computed from a track of residual altimeter

data in two steps.

In the first step, the residual altimetey are processed

with a bank of five matched filters; each filter is optimized

for a different width of signature (Ws = 50, 60, 75, 100, 150

ke). The particular filter that produces the largest scaled

test statistic [Y(t)] max in response to the boundary current

is identified; its value for Ws is the maximum-likelihood es-

timate Ws for the sample of data being processed.

In the second step, the maximum-likelihood estimate A

of the signature amplitude is computed as

A = A-As	(6.1-4)

A = signature amplitude used in designing the
matched filter

As = estimated amplitude scale factor based on
matched-filter output

As = [ Y (t) ] m&x/SNR

SNR = matched-filter rms signal-to-noise ratio

The estimated maximum cross-track velocity is then

computed as
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Vc (0) = 3- tA	 (6.1-5)
2 f Ws

The standard deviation of the error in estimating A is

w	 w 
6A = A-6As	(6.1-6)
w

6As = 1/SNR = standard deviation of error

in As

The standard deviation of the velocity estimate is estimated as

A

6Vc (0) = 3	 (6.1-7)

Ws

6.2	 SPECIFICATIONS FOR THE THRESHOLD DETECTION ALGORITHM

The geostrophic-velocity estimation algorithm is named

GVE. The formal specifications for this algorithm are given in

the following.

NAME:	 GVE

PURPOSE: Estimate the location and magnitude of the maximum
cross-track velocity in a geostrophic current.

REQUIRED EXTERNAL
ALGORITHMS: ACOVAR, DESIGNMF, CONVOLVE, and DETECTOR

ACOVAR = autoregressive modeling algorithm

DESIGNMF = matched-filter design algorithm

CONVOLVE = matched-filter implementation algorithm

DETECTOR = threshold detection algorithm

6-3



INPUTS: N, (D(k); k a 1,2, ... ,N), (LAT(k); ka1,2, ... ,N)	 I

N a number of data in the residual altimetry time

D(k) = kth sample in the residual altimetry time series

LAT(k) a north latitude of kth sample in altimetry
time series

OUTPUTS: NL, V, LE, VE

NL a estimated location of maximum geostrophic
velocity (data sample number)

V = estimated maximum cross-track geostrophic
velocity (meters per second)

LE = Cramer-Rao lower bound on rms error in estimated
location NL of the maximum geostrophic velocity
(samples)

VE = standard deviation of the error in the velocity
estimate V, due to modeled noise (meters per
second)

ALGORITHM:

1. Use the algorithms ACOVAR, DESIG MF, CONVOLVE, and
DETECTOR to test if a geostrophic current signature
is in the residual altimetry data (D(k); k a 1,2,...,N).
For this test, input to DESIGNMF the tanh model current
signature defined in Section 1.3 with the following
parameter values: A a 0.5 m; Ws a 75 km.

If a geostrophic current is not detected, then set
V =0, NL a 0, LE a 0, VE a 0 and skip to Step 7.

2. Truncate the deta set (D(k); k a 1,2,...,N) to remove
the detected geostrophic current signature. Process
the truncated data set with ACOVAR to compute an
autoregressfve (AR) model.

3. Use the AR model computed in Step 2 with the algorithm
DESIGNMF to design a bank of five matched filters,
each matched to a tanh current signature having a
different width. Suggested widths are W a 50, 60,
75, 100, and 150 kw. The signature amplitudes are
all set to A 2 0.5 meter.
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4. Implement the five matched filters from Step 3 by
using the algorithm CONVOLVE. Filter the residual
altimeter data (that part which contains the detected
current signature) five times, once with each of the
matched filters.

5. Compare the scaled test statistics Y(t) coming from
each of the five matched filters in Step 4, and iden-

	

tify that output sequence which achieves the largest 	 i
value in the vicinity of the geostrophic current.

6. Use the algorithm DETECTOR to compute the geostrophic
current location NL, the Cramer-Rao lower bound LE on
the rms location error, the signature amplitude scale

	

w	 w
factor As , and the rus error AE in the A s estimate.

Compute the estimated maximum geostrophic velocity V

3 g As 0.5	 w

	

V =	 ; W : signature width corresponding
2 f Ws	s to largest Y(t) in Step 5

g = 9.81 8/82

f = 7.29 x 10-5 - 2 - sin(LAT(NL))

Compute tb2 standard deviation VE of the error in the
velocity estimate V

VE s V-AEAs

7. Output: NL, V, LE, and VE
6

8. End
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7 .	 SUM MY

This report documents the specifications of NOSS algo-

rithms for ocean current slapping and summarizes the detection

theory on which the algorithms are based. The inputs to the

algorithms are individual tracks of residual satellite radar

altimeter data from which estimate4^ geoid profiles have been

subtracted. The algorithms are based on the fact that cold-

core and warm -core current rings and boundary currents can be

detected by identifying the occurrence of characteristic sea-

surface height signatures in the residual altimeter data. In

the cnae of nearly geostrophic boundary currents, the cross-

track component of the current velocity can be inferred by

estimating the a1Qng - track sea-surface slope from the altimeter

data and then using the geostrophic equation to compute the

velocity.

Optimal matched filters are used to detect, locate,

and estimate the amplitudes of generic current signatures in

the residual altimeter data. The algorithms automatically

analyze each track of residual altimeter data and compute an

optimal autoregressive model for the noise signal in the data.

Using this noise model, together with a parametric model for

the deterministic ocean -current signature that is to be detected,

the algorithm designs a statistically optimal matched - filter

detector for discriminating between the noise and the signature.

The detector is optimal in the sense that the probability of

detecting the ocean -current signature is maximized for a spec-

ified probability of false alarm ( a false alarm occurs when the

random noise excursions in the altimeter data masquerade as a

current signature and cause a false detection). The algorithm
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adjusts the sensitivity of the detector to achieve a specified

average false-alarm rate (e.g., 1 false alarm per 10,000 km of

data along the satellite subtrack).

The algorithm for estimating the geostrophic veloci-

ties of boundary currents employs a bank of five etched-filter

detectors; each filter is matched to a different width for the

current signature. The algorithm determines that signature

width which is most probable (given the available altimeter

data) and computes a maximum-likelihood estimate of the current

signature amplitude. From this information, the algorithm

estimates the maximu® along-track slope of the sea surface and

uses the geostrophic equation to compute the estimated geo-

strophic velocity. The rms accuracy of the velocity estimate

is also computed by using the Cramer-Rao lower-bound on the

variance of the estimated signature amplitude.

'he development of the algorithms is documented in

Ref. 12. This reference also summarizes the results of veri-

fication tests in which the algorithms are used to detect cold-

core current rings and to estimate geostrophic velocities with

SEASAT-A altimeter data and harsh-Chang geoid estimates (Ref. 13).
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