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ABSTRACT
LO
M
F

w	 Constructive existence and uniqueness results for boundary value problems

associated with some simple special cases of the second order equation

y" = f(x,y,y-), 0 S x S 1, are sought. The approach we consider is to

convert the differential equation and boundary conditions to an integral

equation via Green's functions. and then to apply fixed point and contraction 	 I

map principles to a sequence of successive approximations. The approach is

tested on several applied problems. Difficulties in trying to prove general

theorems are discussed.

1. INTRODUCTION. (General Problem of Interest.)

The topic of interest is the establishment of constructive existence and

uniqueness for nonlinear, two-point boundary value problems

(l.la)	 O S x S 1,

(1.1b)	 aly(0) + a2Y'(0) = c „ 	 biy(1) + b 2y ,1 (1) = c2.

By constructive existence and uniqueness, we mean results whose proofs suggest

a method for computing the solution numerically. The type of approach considered

involves one of many already known methods for obtaining solutions numerically.

The equation and boundary conditions are converted to an integral equation via

Green's functions. Then the solution of the integral equation is sought using

successive approximations. However, the equation is first parametrized in a

special way which depends on conditions assumed to be satisfied by f. Some new

existence and uniqueness results can then be obtained.

For the initial value problem associated with (la), there exists theory that

assures a unique local solution for a large class of equations. However, the

question of existence and uniqueness or just existence for boundary value



problems associated with (la) is hard to answer unless very strong assumptions

are made on f. Even in many recent papers on existence and uniqueness,

assumptions made on f usuall include a condition (such as a Lipschits condition,

a boundadness condition, or nondacreasing behavior) in the argument y for all y.

Thus# although they may contain mora general results with weaker conditions on f

than in earlier comprehensive works (such as Keller 111. and Bailey. Shampine

and Waltman (21) they can still be too strict for many applications. Also,

proofs are not always constructive in nature, and in many practical applications

solutions are computed without establishing existence.

Our basic idea is to seek constructive existence and uniqueness for various

cases of (1) based on assumptions on f that hold only for y(x) that satisfy a

certain constraint. Although our primary objective is to have results which

enable the solution to be computed numerically based on the constructive nature

of the proofs, we have a secondary goal. we would like numerical methods to

lend themselves to the application of results from research in vector acceleration

of sequences and series.

2. MOTIVATION.

In the interest of applied mathematics, we can show problems which arise

naturally in the applied sciences and which exemplify the general problem (1.1).

Examples of problems ( 1.1) can be shown to arise for instance from problems in

heat transfer, problems in the analysis of chemical reactions * and problems in

fluid mechanics. In particular, we mention the following.

In the analysis of the stagnation point shock layer (31. it is shown that

the total enthall.: is governed by

(2.1a)	 y ' l(x) = KR ( y(x)) n - xRy' ( x).	 n 2 1.	 0 <_ x _< 1.

(2.1b)	 y(0) = 0,	 y(1) = 1.

The quantities K and R are positive constants characterized as a radiation loss

parameter And a Reynolds number respectively.

In a problem concerning the analysis of heat and mass transfer in a porous

catalyst 141, the following boundary value problem is obtained.

Ys(1-y)	 1
(2.2a)	 y'/	 Q y exp

^1 +

2
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The quantities To p and at are positive constants representative of

dimensionless energy of activation, .heat evolution and Thiele's modulus

respectively.

We also consider vector cases of problem (1.1). In particular, for the 2

by 2 case. y(x) _ (y,(x), Y2 (x)) T , and f = ( f l , f2 ) T . A general form

•	 of the linear separated boundary conditions would be

AJ y(0) + A2y' ( 0) = C l ,	 BJy(1) + B2y-1 (1) s C=

T
where A,, A 2 , B, and B2 are two by two matrices and C i _ (c li p c2l ) and C2

(c,2, 
C22)T	

Examples can be shown to arise in fluid a,!^chanics. For instance,

consider the following.

The unsteady squeezing of a viscous fluid between two parallel plates is

discussed in (51. With the normal velocity prescribed, the unsteady Havier-

Stokes equations admit a similarity solution. The similarity equation for the

axisymmetric case is

(2.3a)	 S ( xf"1 + 3f'" - ff'//) = f"1l,

(2.3b)	 f ( 0) = f" ( 0) = 0,	 f(1) = 1,	 V M : 0.

which can he written as a vector case of (1.1),

(2.4a)	
Ylii`	 Y2

\ Y2 11	 S(xY2/ + 3Y2 - YiY2I)

(2.4b)	 Yl(0) = 01 Y2 ( 0 ) = 01	 yj(1) _ •1'-YJ1'(1) - 0.

where yj = f and y 2 = f"

For more examples, see Appendix A.

3. A BASIC RESULT.

Investigation into the construction of theorems for various subclasses of.

problem ( 1.1) is based on a result in 161 established for the problem

3

1



(3.1a)	 y" n f(x,y),	 0 S x S It

(3.1b)	 y(o) = 0,	 y(1)	 0.	 ORIGINAL: PA-z f-q is
OF POOR QUALITY

where the gradient y' does not appear explicitly. This result is an extension

of a similar result due to Kellar Ill. First, subtract k ey from both sides of

(3.1a) and consider the equivalent problem

(3.2)	 y" - k2y - f(x,y) - k =y,	 y(0) = y(1:	 0.

Then, for k= # 0, (3.2) can be converted by the Green's function procedure

into the equivalent integral squation

t
(3.3a)	 y(x)	

S gk (x,$) ( kz yQ) - fQ,yQ))) dp
0

where

1	 sinh kx sinh M-0,	 0 <- x < 1,
(3.3b) gk(x,V

k sinh k	 sinh k(1-x) sinh ki,	 I < x S 1.

The theorem in 161 that we are refering to is the following.

Theorem 0. In the boundary value problem (3.1), let of /ay be continuous

for all x E 10,11 and all y. Suppose that there exists H > 0 and S >- 0

such that O <— S 5 of /ay <— H for all x c 10,11 and all y. Then a unique

solution of (3.1) exists. For k 2 = ( 1/2) (S + H), it is given by the limit

of the convergent sequence of functions

(3.4s)
	

y0(x) = 0,

t
(3.4b)	 ymat(x) =	 gk(x,V Wy'"(f) - fQ,y"'(c))I d$,	 a = 0,1,•••.

0

Proof. Let

(3.5)	 em.t(x) = y"1.1 (x) - y'+(x)

and

(3.6)	 Iles *111 = max le",.t(x)I, 	 a = 0,1...._
0<-x<-1

Then for m = 1,2 ► ••• , we can apply the mean-value theorem to f(x,, 	 :))

f(x,y'"-I(x)) to obtain

4



(3.9)	 k2 = (1/2) (S + N)

and the bounds on Way, the bracketed term in the integrand of (3.7) satisfies
0 <- l k 2 - of/ayl S (1/2) (N - S). Therefore, from (3.7),

1	 Ilem*'Cx)l S — (N - S) io gk(x•E) dt- lie"'11,
2 

I	 cosh k((1 /2)-x)
_ (1/2)(n - S) — (1 -	 ) ile"'!Ik 2	cosh(k/2)

(3.9)

N - S	 1

N + S	 cosh(k/2)

Since this relation holds for all x c 10,11,

(3.10)	 Ile"1 II :5 	 Ile'"II

where

N - S	 1
(3.111 Pk	

N + S (1	
.

cosh(k/2)

Observe that Pk < 11 and Il em" I I S Nk"' Il e' ll . Thus (y'") is a Cauchy sequence
in the space of continuous functions on 10,11 with the norm defined by (3.6).
Therefore, a continuous limit y(x) exists, to which (y"'(x)) converges uniformly.
Since the order of the limit operation and the integration can be interchanged
the limit function satisfies the integral equation (3.3). To establish
uniqueness, let yj(x) and Y 2 (xl be two solutions to (3.1). Then they both satisfy
(3.3) for k 2 = (1/2) (S + N). By the same analysis that leads to (3.10),

11Y1 - Y211 :S 	 11Y1 - Y211 .	 Since Pk < 1 • 11Y1 - y:ll = 0, or yt = yt

4. PROGRESS. (Some New Results)

In 171. two theorems were constructed for

5



(4.1a)	 y"- : f(x,y),	 0 S x S It	 E w3i

OR10I(^tA^- PAGE r

OF POOR QUALITY

(4.1b)	 y(0) = Yo,	 Y11) = yl.

One theorem establishes existence and uniqueness among all y for which 1y(x)1 S

max (1 yel. IYjI), x 6 1 0,11. The other establishes existence and uniqueness

among all y for which 0 S ytx) <_ M where yo and yj are assumed nonnegative and

max (ye, yj) S M. The conditions assumed on f differ slightly. Recently M,

we have obtained results for a more general subclass of (1.1), namely

(4.2a)	 y-*" - fj(x,y) + p(x)yl

Theorems have been established for three different sets of boundary conditions,

(4.2b-1)	 y(0) = Y O ,	 Y(1l a Y1,

(4.2b-2)	 y'(0) = 0,	 y(1) a Yt,

(4.2b-3)	 y(0) = yo,	 y'(1) a 0.

Since the results for (4 . 2a) together with ( 4.2b-1) have as special cases the

results reported in [7) for (4.1), we shall show a theorem and proof for (4.2a)

together with ( 4.2b-1).

The approach taker. on (4.2a) is as follows. Assuming p(x) has a continuous

derivative, multiply both sides of (4.2a) by the integrating factor e-vtx), where

(4.3)

Then write ( 4.2a) as

(4.4a)

X

v(x) = 1 
S 

pQ) dt .
2 0

u , " = F(x,u),

where

(4.5a)

(4.5b)

(4.5c)

u(x) = e-v(x) y(x),

F(x,u(x)) = e- v9x) fj(x,ev(x) u(x)) + q(x)u(x),

q(x) = (p(x)/2) 2 - p/ (x)/2 .

6



u-11 - k Zu = F(x,u) - k=u.(4.6)

In terms of u, the boundary conditions (4.2b-1) become	 ORIGINAL PAi I-
OF POOR QUALITY

(4.4b)	 u(0) a a-vIo)yo.	 u(1) t e-v1t)y1.

Now we can follow an approach similar to the one for MD.  First replace

(4.4a) with the equivalent equation

Then for k 2 0 0. (4.6) together with (4.4b) can be converted into an integral

equation by the Green's function procedure for the operator (d=/dxs - k=), i.e.,

(4.7a)	 u(x) = h(x) + S gk (x ,P (k =u($) - F($,u(IM dj,
0

where

1	 f sinh MI-J) sinh kx,	 0 <_ x < f,
(4.7b-1)	 gk(x,i:)

k sinh k sinh k(1-x) sinh kf,	 < x S 1,

and

e-v40) yo sinh MI-x) + e- vt " y, sinh kx
(4.7c-1)	 h(x) =

sinh k

In addition to assuming that p(x) has a continuous derivative on 10,11, we

shall also assume q(x) of (4.5c) is nonnegative on 10,11. Then, if we define

(4.8)	 S: = min q(x),	 N2 = max q(x),
0<--x51	 0<-x51

we will have 8, >- 0, and N Z a 0. (Note. The assumption q(x) k 0 can be weakened.)

Theorem IA. In the boundary value problem which consists of equation (4.2a)

together with (4.2b-1), let max (lyol•lytl) S M. Suppose there exists an N, > 0

and a 6 1 ? O such that 0 <- 6 1 <- af,/ay <- N, for all k c (0,11 and all y such that

(y(x)j 5 e v ( x) max(e- vto) ,e- v( ' ) )M, x c (0,11. Suppose further that 0 S fj(x ► y)

<- (N 1 +6j)y. y ? 0, and (Nj+8,)y <_ fj(x,y) <- 0, y S 0, for all x i 10,11 and

all y such that jy(x)I 5 ev ( x )max(e- v4U ,e- v ( > ))M, x c 10,1). Than there exists

a unique solution of the problem satisfying ly(x)l <- ev(x)max(e-v(01re-v(11)M,

x c (0,11. Let 6 = ( 8, +8 Z ) and N - ( N,+N Z ) where N Z and 62 are given by (4.8).
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For k = n (S+N)/2, the unique solution is given by y(x) • ev(x )u(x), where

v(x) is given by (4.3) and u(x) is the limit of the convergent sequence of

functions

4.9a)	 uo(x) n h(x) n 
a-v(e) yo sinh k(1-x) + a-v") y, sinh kx

( 
sinh k

t 4.9b)	 u"( + '(x) n h(x) + 
S 

gk (x,j) tk=u0 (#) - F(I,u*((tO)1 d$, m = 0,1.•••.
0

i

where gk (x ► E) is given by (4.7b-1).	 Gtr	 N'a.

Proof. Let	 OF POLAR QUALITY,

(4.10)	 E = max (0'(9), a-v" )) .

First, we show that each member of the sequence ( 4.9) satisfies Iuxi(x)l <_ EM,

m = 0, 1, •••, for all x E 10,11. Observe that

luo(x)l 
S 

E 
lyol sink k(1-x) + ly,l sink kx

sinh k

sink k(i-x) + sinh kx
<— E max (lyol,lyll}

sinh k

(4.11)

cash k((1/2)-x)
<- E M

cosh(k/2)

<- E M,	 x E 10,11.

Now assume that u i (x) satisfies (u i (x)l <- EM for some i ? 0.

Then from ( 4.9b),

(4.12a)	 lui+i(x)l <- lh(x)I +	 gk (x,f) lk =u i ($) - F(g,u i (j))l dj.
0

Now, if lu i (x)l -< EM, then lev ( x )u i (x)l = ev ( x )lu i (x)l S ev(x)EM. Thus, if

ev ( x )u i (x) ? O, then O <_ f i (x,ev ( x )u i (x)) S (S,+N i )ev ( x )u i (x) by hypothesis.

This in turn implies from (4.5) that if q(x) 2 0, x s 10,11, then 0 <-

F(x,ui(x)) <_ e- v(x ) ( g j +N j )ev ( x ) u i (x) + (S=+NZ)ui(x) _ ( S+N)u i (x) = 2k=u i (x) if

u i (x) 2 0. Similarly, it follows that 2k z u i (x) _ ( S+N)u l (x) <- F(x,u i (x)) <- 0, if

8



ON) S 0. Thorefore the term Jk =u'(J) - F(j,u i (j) ) j in the inteyrand of (4.12a)

will be bounded by k t lu l ($)1, and it follows from (4.12a) that

sinh k(1-x) + sinh kx 	1
Iu' • ^(x)^ S EM {	 ) + 

S 
yk (x,j) dj k=EM

	

sinh k	 0

sinh k(I-x) + sinh kx 	 sinh k(I-x) + sinh kx
(4.12b)	 = EM (	 ) + (1 -	 ) !.M

	

sinh k	 sinh k

EM

OF f '%rri

Thus, by induction, JuN01 S EM, m = 0, 1, 2, -•-. Now define

(4.13)	 e'"•'(x) a um*'(x) - um(x)

and

14.14)	 I{em*111 = max jeM•J (x)j,	 m n 0, 1, •••.
0<-x<-1

Since af,/ay is continuous, 8F/8u is continuous so that we can apply the mean

value theorem to F(x,uO (x)) - F(x , uO - I (x)) to obtcin

aF
(4.15)	 e'^ + '(x) = 

S 
9 k (x,V Ik e - —Q,umQ)-9($)eI"(t))1 e l"($) dt,

c	 au

where 0 < 8(() < 1. Note that from (4.5)

(4.16)	 8F/au - e-v1x) af, /ay ay/au + q(x)

= af,/ay + q(x).

Also. if (evlxl u ( x)l <- ev ( x ) EM, then 0 <- 6 1 <- afj(x,ev ( x )u(x))/ay S M i . by hypothesis.

This in turn implies from (4.16) that 0 S 61 +6: S aF(x, u(x))/au S N j +N=, if q(x) t 0,

or 0 < S <_ aF/au <- N. Since we have already shown that each member of the sequence

( 4.9) satisfies ju'"(01 < EM, x c 10,11, it follows that

aF
(4.17)	 0 <- 6 <- - (Q,u"IQ)-0Q)e'"Q)) <- N

au

9



Thus with the choice	
OF p00R ()U6. uTY

(4.13)
	 kt n (8 + k) / Z

the bracketed tern in the integrand of (4.15) satisfies I ks - a!foul S (N-&)/Z

and

Iem+9 (x21 S ? cN — S)
 io

9k (x,i1) 0 . 11011 ,

(4.19)
1	 cosh k((1/2)-x)

• (1/2)(n - S)	
(1 -	 ) 

Ile O
cosh(k/Z)k2 

	

S Pk 110"'11 ,	 m = 0, 1, ..*#

where

	

N - S	 1
(4.20)
	

Pk
	 (1N + S	 cosh(k/2)

Since ( 4.19) holds for all x e ( 0 ,11, I I e'"" I I S Pk 11 em I I • Note that
Pk < 1, and I lem" 11 S (Pk)'" I) e' II . Thus (um(x)) given by ( 4.9) is a Cauchy

sequence in the space of continuous functions with the norm defined by (4.14).

We can conclude that the sequence ( 4.9) converges uniformly co a limit u(x)

which satisfies the integral equation ( 4.7a) and is such that (u(x)) <- EM,

x E 10,11• Then y ( x) - ev ( xi u ( x) is a solution to (4.2a) with ( 4.2b-1) satisfyinq

ly(x)I < ev(x) EM, x c 10,11.

To establ :,Fh uniqueness, let yj(x), y 2 (x) be two solutions in which

1y,(x)1 <- ev(x^EM and 1 y 2(x)I S ev ( x )EM, x E 1 0,11. Then uj(x) s e-v(x)yj(x)

and u 2 ( x) = e-v(x) Y2 ( x) both satisfy the integral equation (4.7a) with gk(x,g)

given by ( 4.7b-1), h(x) given by (4.7c-1) and k 2 s (S+N)/2 as specified in

Theorem IA. By the same analysis that leads to (4.19), we can show that

1u i (x)-uz(x)I S Pk I1u1 -u211, x E 10,111 or

Ilu' - U 211 :S 	 Ilu, - u211

Since Pk is given by (4.20) and Pk < 11 we must have IIuj -u2ll s 0,

or uj ( x) = u 2 (x). Thus y, = Y2.

The importance of Theorem IA is that af i /ay and f • ere required to satisfy

conditions only for all x c 10,11 and all y such that Iy(x)I is bounded by an

10



expression dependent on boundary values and p(x). Of course, the existence and

uniqueness applies only to functions that satisfy this constraint. This kind of

approach is wall motivated though for problems that arise naturally in the applied

sciences, since VW usually represents a physical quantity which slay be known to

be bounded in absolute value or which way be of one sign. With this in wind the

following additional result is obtained. It imposes conditions under the

constraint that y(x) be nonnegative and bounded above. In the interest of spaa,

we state it without proof.

Theorem 13. In the boundary value problem (4.2s) with (4.2b-1) let ye, yj be

nonnegative and let max (ye, y,) S M. Suppose there exists an Nj > 0 and a

8 1 2 0 such that 0 S S, S Of,/ay S N, for all x F 10,11 and all y such that

0 S y(x) S ev ( x) EM, x E 10,11, where E is defined in (4.10). Suppose further

that 0 <- f,(x,y) S ( 1/2)(N,+Sl)y for all x e 10,11 and all y touch that 0 S y(x)

S ev(x) EM, x i 10,11. Than there exists a unique solution satisfying

0 S y(x) S ev(x) EM, x F 10,11. Let 8 - 8 1 +8= and N - N,+2N= where N= and 8 2 are

defined in (4.8). For k 2 - (8+N)i2, the unique solution is given by y(x) -

ev ( x )u(x) where v(x) is given by (4.3) and u(x) is the limit of the convergent

sequence of functions given by ( 4.9).

The proof is similar to the proof of Theorem la and requires showing that 0 S

u"'(x) S EM, x e 10,11t IS - Of 1, • • • .

Similar theorems can be stated for (4.2a) together with (4.2b-2` and (4.2a)

together with (4.2b-3;. We make note of one, for example, (4.2a) with (4.2b-3).

This problem can also be converted into the integral equation (4.7a) with

1	 (k cosh k(1-1) + v'(1) Binh k(1-t)) sink kx, 0 S x < f,
(4.7b-3) gk(x,t) - -

K sink kt (k cosh k(1-x) + v'(1) sinh k(1-0), E < x S 1,

where

K - k (k cosh k + v'(1) sinh k),

and

k cash k(1-x) + v'( 1 ) sinh k(1-x)
(4.7c-3)	 h(x) - e- vlel ye	

k cosh k + v'(1).sinh k

?heorem 3B. In the problem (4.2a) together with (4.2b-3) assume 0 <- ye S M.

Suppose there exists an N, > 0 and a 8 1 2 0 such that 0 S 8 1 S 8f116y S N, for

all x E 10.11 and all y such that 0 <- y(x) <- &v(x)- v(e)M. x F 10,11. Suppose

further that 0 <- f,(x,y) <- (1/2)(N,+S,)y for all x c 10,11 and all y such that

0 S y(x) c ev(x)-v(o)M, x e 10,11. If v'(1) 2 C, than there exists a unique

11



y"', n f(x,y,y,,),

solution satisfying 0 S y(x) S evt x I -vc • 1 11, x t ( 0,11. daficte a n a,+b:

and N n Nj+ZN= where N= and as are given by (4.6). Tian for V n (N+a)/2, the

unique solution is given by y(x) n evtxl u(x) where v(x) is given by (4.3) and

u(x) is the limit of the convergent sequence of functions

k cosh k(i-x) + V M sinh k(i-x)
Yet	

k cosh k + V(i) sinh k

(4.21b)	 um• '(x) n h(x) + S gk (x,I) (k au"(1) - m,um(s))1 4E, a n 0,1,•••,
•

where 90x11) is given by (4.7b-3).
0-MIGITNAL	 19

OF POOR QUALITY

S. rMRL INVESTIGATION

it is of intertst to waken assumptions for soma of the %osults already

established. For instance, one could consider removing the assumptions that

q(x) of (4.5c) be nonnegative and the assumptions on f i . They could be re-

placed with the single assumption that there exists a a L 0 and an N >

0 such that

(s.l)	 0 S S <- aF/au S No	 0 S F(x,u) S (1/2)(N+8)u,

for all is as constrained in Theorem 111, for instance. We would also like to

allow af,/ay and/or ar/au to be negative, e.g., to consider cases in

which

(9.2)
	

-B S ifj/ay S No	 B > 0.

We can state a simple result for (4.2a) with (4.2b-1) in which we assume that

-8 S 8F/au <- N for all u, 0 <- B S N/2, and take k= = N/2. It will work if

N < a(cosh- 1 2) 2 . More general boundary conditions can also be considered.

However. Green's functions and their analysis will be wore complicated.

A generalization to the problem

in which we assume for instance that 0 S 9 1 S af,/ay S Ni, and either 0 <- S Z S

8f/8y/ S N= or -N= S Way' S -S= S 0, will bit harder. We propose to consider

12
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ORIGINAL PAS t a

(5.4)	 yl-* - k i = y 12k=yf = f - k i ty t 2k:yO.	 OF POOR QUALITY

In this instance a different nora will have to be used to establish convergence

of the sequence of successive approximations and in turn the existence and

uniqueness, e.g., max (k i = ty(x)t + 2k:ty0 (x)t. Preliminary investigation reveals

that unlike results reported in Section 3, convergence will depend on the

magnitude of H, and H= and convergence will not always be guaranteed merely

if afiay and afiay" are nonnegative and bounded above.

Because of example 3 of Section (2.4), and example (A-4) of Appendix A, it

appears that results for

(s.$) Y,"	
s (fl(yz)
	 •1

y=.*Jl	 f=(XVyJPy2 ► Y7^)

	

A l y(0) + A Zy-'(0) = C1 , 	 Bly(1) + B=y-'(1) = C=,

will be useful. Unfortunately, a more complicated integral equation will have to

be analized, namely one of the form

I
(5.68)	 y(x) = H(x) + 

S 
G(x,$) FQ,yQ),y-*Q)) dt

0

Ir
where H = (h i, h=) , F = ( f l , f=)T , and

(5.6b)	 G(x,$) _
	 g jI ( x,t )	g12(x,0

	

Jst(x,t )	g22(x,t)

6. SOME APPLICATIONS AND SOME NUMERICAL RESULTS

Lets demonstrate an application of the results reported in Section 3 to, for

example, problem (2. 1). i.e.,

(6.1a)
	

V" = KRyn - xRyl,

(6.1b)
	

Y(0) = 0.	 y(1) a I.

For this specific case of (4.2a) with ( 4.2b-1), we have

(6.2)	 fj(x,y) = KRyn ,	 p(x) : -xR.

13



ORIGINAL PSG` 13
In terms of (4.4) and (4.5), (6.1) becomes 	

OF Ftie QUALITY

(6.3a)	 ul"(x) - F(x,U(x)) - e- v ( XIKR(ev ( x )u(x)) n + q(x)utx),

(6.3b)	 u(0) = 0,	 u(1) - e-v(') - exp(R/4).

where

(6.3c)	 v(x) - -x =R14,	 q(x) - (-xR12) = + R/2,	 u(x) - e-v(X)y(x).

For k 2 * 0, (6.3) can be converted into

v(1 1	 1

(6.48)	 u(x) = e-
	 sinh kx + S 

gk(x,$)(k=u(j) - F(f,uQ ))) dl,

	

sinh k	 o

where

	

1	 sinh k(1 -1) sinh kx,	 0 <_ x < g,
(6.4b)	 9k(x,0

	

k sinh k sinh k(1-x) sinh kt, 	 $ < x <- it

In this problem, one expects that 0 S y(x) S 1. We shall demonstrate

a direct application of Theorem 1B, and show constructively that there exists a

unique solution satisfying 0 S y(x) S ev(x)-v(') = exp(R(1-x=)/4), x f (0,11.

The conditions of Theorem 1B are satisfied as follows.

(a) For this problem, f j (x,y) = KRyn , so

(6.5a)	 8f,/8y = nKRyn-1

and

(6.5b)	 0 <- 8f,/8y -< MR(exp(R/4))n-i

for all x e (0,1) and all y such that 0 <- y(x) <- ev(xi-v('), x s 10,11. Note that

(6.6a)	 0,	 N, = nKR(exp(R/4))n-i

in this case, while

(6.6b)	 SZ = min q(x) - R/2,	 NZ - max q(x) = R 2/4 + R/2.

	

0<-x<l	 0<-x<-1

As defined in Theorem 1B,

14
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(6.60)	 5 n R/2,	 N n nKR(exp(R/4))*' l + 2(R=/4 + R/2).

(b) If x 6 10,11, and y is such that 0 S y(x) S ev(KI - vi ". x a 10,1), then

(6.7)	 0 S f i (x.y) S (n/2) KR(exp (R/4)) n - l y = (112)(Nj +Sj )y, n 2 2.

According to the conclusion of Theorea 13, for

( 6.8)	 k= s (1/2)(8 + N) _ (112)(WR ( exp(R/O n - t + 1=/2 + ( 3/2)R)

the sequence

(6.9a)	 u0(x) = exp(R/4) sinh kx / sink k.	
OF i^Q

exp(R/4) s inh kx	 ^
(6.9b)	 um*^(x) _	 + 

S 
gk(x,f)tk 2uaQ) - FQ.ux'(j)))d1.

sinh kx	 o

a = 0, 1.	 has a limit u(x). and y ( x) = evcxa u(x) = amp(-Rx z/4)u(x) is the

unique solution of (6.1) satisfying 0 <- y(x) <- exp(R(1-x 2 )/4), x e [0,11. In

particular for the sequence (6.9),

11 UM * , -- UM 1 1 S Pk HUM - 'UM-111

where

-	 nKR(exp(R/4)) n - I + R 2 /2 + R/2	 1
(6.10)	 Pk =	 1

nKR(exp ( R/4)) n - I + R 2 /2 + (3/2)R	 cosh(k/2)

To obtain a numerical solution of the limit u (x) of the sequence (6.9), it

can be approximated by the discrete solution wo = u(0), w, = u(xj), •••,

wp_1 = u ( xp_,), wp = u ( 1) on a uniform grid, h = 1/p, x, = h, x= = 2h, •••,

xp_, = (p-1)h, xp = 1. By using the trapezoidal rule on the integrand, w, can

be computed by the expression

(6.11)	 w i = h(x i ) +	 a, 9k (x i .x0 tk 2w, - F(xj.wj))1. i = 0.1. ••• ► pv

j=0

where ao = ap = h/2, oc i = h. j	 1. ••• ► p-i. Keller [11 has shown that this

should yield accuracy on the order of h2.

9 

15
3



To compute the approximations (6.11), a sequence of net functions (wi"t),

m 0, it	 can be defined as	 --f

OF POOR Q
(6.12a)
	

w j • = h(xj),

(6.12b) wim" a h(xj) +
	

aj gk(xj,xj) )k =wjm - F(xj,wj m )I, 	 i n 0,1. ••• . pe

j=0

where ae = up = hit, aj = he j = 1,	 p-1. By arguments similar to those

given by Keller )1) for (3.1), one can show that the limit of (6.12) exists and

is the unique solution of (6.11). Also, as p + -, the contractive parameter

for the sequence (6.12) will converge to the contractive parameter Pk for the

corresponding continuous sequence.

The following table indicates some values of the contraction parameter Pk

n	 R	 K	 Pk (6.10)

2	 10 .01 .76

2	 10 .1 .82

5	 10 .01 .999

5	 10 .1 .9999

Table 1.

It is important to realize that the value of Pk is merely a bound on the

contraction of the sequence. In practice, the actual number of iterations

required to achieve a given error tolerance may be significantly less than the

number expected by the value of Pk . To illustrate this we programmed (6.12) for

problem (6.1). Programming was done in standard Fortran on and IBM 3033. For

example consider the case n=2, R=10, and K=0.01 in Table 1. Assume that p is

sufficiently large that the contractive parameter for (6.12) is nearly Ok of (6.10).

Then if I I u' - u' Il <- 1, the relation I I u'" • ' - um II < ( Pk )m 11U 1 - U011

implies it should take at most 33 iterations to get ilu m.l - umli <- 10- 11 . It

actually took m+1 = 14 with h = ( 1/50). consider the case n=5, R= 10, and 00.01.

Note that Pk is very close to 1 in this case. In such a case, the rate of

convergence of the sequence may be very slow, thus causing the number of iterations

required to achieve a given error tolerance in the programming of (6.12) to be

large. Keller (1) suggests Newton's method as one alternative to a more rapidly

convergent scheme. However, analysis such as the following can also be applied.

16



for each a. Thus if we choose

First, we observe that the initial approximation u 4 (x) of (6.9a) is one

suggested by the integral equation itself. If the initial approximation is

chosen closer to the limit of the sequence, the number of iterations required to

achieve a given error tolerance will be seduced since 1ju+ - u 0 jj will be smaller.

To this and we can appeal to comparison theorems 121. For instance, if y 2 (x) is

the solution for n=2, R=10, K=.01, and O S y=(x) S 1, then y=(x) S Y3(X) where y 3 is

the solution for n=3, R=10, K=.01. Thus in the case n=3, R=10, K=.01, the initial

approximation in the sequence (6.9) may be taken as ON) = exp- v ( xl yz(x) instead

of ON) given by (6.9a).

Secondly, we suspect that the solution y(x) = e v ( x ►u(x) = exp(-x =R/4) u(x)

satisfied 0 <- y(x) <- 1 for problem (6.1). If we can show that 0 <- exp(-x=R/4)um(x)

<- 1 for each at then

aF
(6.13)	 R/2 <- —(x,u"") <- nRK + R 2/4 + R/2

au

	

(6.14)
	

k= = (1/2) (nRK + R 2/2 + R)

the sequence (3.33) will contract according to

IIUtnal - U'"11 < Pk HUM - U'"-'11

where

nRK + RZ/2
	

1
	(6.15)
	

(1 -	 )
nRK + R Z/2 + R
	

cosh(k/2)

a_d k is given by (6.14). Compare the following Table 2 to Table 1.

n	 R	 K	 Pk (6.15)

5	 10	 .01	 .73

5	 10	 .1	 .75

Table 2.

When we used k = given by (6.14) and the solution for the case n=2, R=10, K=

.01 as the initial approximation in the sequence (6.12), it only took 4 iterations

17
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with h = 1/50 to get jjum+ ' - um ll S 10 - 4 for the case n a3, Rn10, in problem

(6.1). For the case n=4, R= 10, Ka .01, we used ks given by (6.14) and the

solution for the cake n =3, Ra l0 o K=.01 as the initial approximation and it only

took 3 iterations. Finally, for the case n=S, R=10, K a .01, we used k : given

by (6.14) and the solution for the case n=4, R=10, K=.01 as the initial

approximation, and it only took 3 iterations.

Consider the vector problem ( 2.4) shown in Section 29
ORIGINAL' ;

OF POOR

(6.16a)	 y' 	 y '	 =	 f^

yz"	 S(xyz' + 3yz - yt yz')
	 ft

(6.16b)	 yJ(0) r 0, y j (0) a 0,	 yj(1) = 1, y,'(1) = 0.

There are several ways to extend the approach to systems. For instance, we note

in this case that

(6.17a)	 afl/aye a 0, af i /aY2 = 1, afl/ay,' = 00 af i /aYz' = 0,

(6.17b) afz/ay l _ -Sy2', afz /ayz = 3S, afz/ay J ' a 0, afz/aye' = S(x-y,),

Then, write ( 6.16) in terms of u l = yj and u = = enaxy.,

(6.18a)	 D2ui	 - li zu z	 = -F1

(6.18b)	 -m12u,	 + (D 2 - n 2 )u2	 -F2	 n2 = ni2}nz2

where D 2 = d 2/dx 2 and

(6.18c)	 F, = 1j 2u z - e - ^ =xuz,

(6.18d)	 F2 a mj 2 uj + (n i zuz - 2nz(uz ' -nzuz) - e^'xf2).

The boundary conditions are

(6.18e)	 uj(0) : 0, u2(0) = 0,	 u 1 (1) = 1, u l '(1) = 0.

Problem ( 6.18) can be converted into an integral equation of the form

u J (x)	 hj(x)	 FiQ'UZQ))	

)
+ ^ G(x,^) 	 di.

U 2 (X)	 , h 2 (x)	 o	 F2Q,ujQ ) ► u2(j),u2'( ))

For explicit representation of h i , hz, F 1 , F Z , and G see 181.

To get a numerical solution to (6.19), one can try programming the sequence

18



(6.20a)	 UJO W = h i (x),	 u J o '(x) = hi'(x),	 OR13MAL " • -g `P

(6.20b)	 u:G(x) = h=(x),	 U2 O 'tx) = h='(x),	 0p PWR QUALITY

	

u^^ • ^(x)	 ^	 rF^(^,u22t^))
(6.20c)	 _	

h,(:))+
	 G(x,$)	 dj,

	

(U l t ^' (K)	 h2( )	 c	 ^F2(j,UjL(j)#U21(j),U21,

	

u^ L• "(x)	 hi"( x)	 F

	

u 2 t• "(x)	 h2'(x)	 o	 F2(,ujL().u2L($).u=L'(j))

1	 0,1,•••.

Suppose we take S > 0, and try to find a unique solution for which

(6.21)	 0 <- y, S It 0 S Y 1 ' <- p , -Q S y2 <- 0, -M <- Y2' S 0 ►

for all x 6 [0,1). We propose choosing values

(6.22a) nit = 3S/2. 2n2 = maxj(x-y j )SI/ 2.

(6.22b) mj2 = Max ( -SY 2 ') / 2.	 1i2 = ( l + e- n =) / 2

Then, if each member of the sequence ( 6.20) satisfies the bounds ( 6.21), and if

the sequences converge uniformly with respect to some norm, we can conclude

that a unique solution to ( 6.16) satisfying the bounds (6.21) exists. Its the limit

of the sequences (6.20). This has not been done rigorously yet. However, we

shall report some numerical results which are encouraging.

The sequence ( 6.20) was replaced by an approximation in which we evaluated

u j °, u 2 °, and u2 0 ' discretely at p points x j = (j-1 ) h, j = 1,•••,p,

h = 1/(p-1). Then we obtained the values of the remaining members of the

sequences at each discrete point by evaluating the integral using the

trapezoidal rule. The interation was stoped if and when

max ( le i s^(x j ) I,I(e i m (x j ))'I, lezm(xj)I,I(ezm(xj))'l) < 10-4
7

where

e ► '"(xi) = Y I M(xj) -y, M - I (xj ),	 (ej""(xj))' = (yjM(Xj) -yj" - 1(xj))-,	 i = 1.2.

The following results were computed using standard Fortran on an ISM 370 3033.
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case 1 case 2 case 3

5 .11576 2.081 6.368

n 1 .4167 1.767 3.210 016GI Al PA'
OF POOR QUALITY,n= .008682 .2601 .5151

ml .4167 2.04 6.934

1 1 .9978 .9410 .8937

h 1/50 1/50 1/40

iterations 4 6 11

CPU time 46sec 77sec 935e0

yz(1) (computed) -3.0622 -3.968 -5.700

y=(1) value -3.0622 -3.961 -5.503
reported in 151

CONCLUDING REMARKS

Analytical Advantages and Disadvantages.

Constructive existence and uniqueness is given for a large class of non-

linear problems. However, explicit Green's :unctions can be difficult to con-

struct and analize. Also, analysis for systems can be complicated.

Numerical Advantages and Disadvantages.

One advantage is that boundary values are built right into the integral

equation. In numerical procedures, one does not necessarily need to approximate

the derivative at one end if only the unknown is given as in initial vague

methods. No derivatives need to be approximated and therefore no difference

approximations are required. we know before a numerical method of approximating

the sequence of successive approximations is applied that the sequence converges

to the unique solution of the problem.

One disadvantage is that in practice a large number of mesh points may be

required to approximate the function sequences accurately. Another is that slow 	 1

convergence may be a problem.	 i

r
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Appendix A

In a problem concerning radiation heat transfer for annular fins 191, the

temperature distribution is shown to be governed by the energy equation written as

(A-la)	 yll (x) = q(x) (y(x))4 + p(x) y^(x), 	0 S x S 1.

(A-lb)	 y ( 0) = 1.0,	 y^(1) = 0,

where

(A-lc)	 q(x)
(1-x) tan a + 0

and

tan a	 1
(A-1d)	 p(x) _	 -	 .

(1-x) tan or + A	 x + p

The quantities a, 0, and p are constants related to angle of taper, fin

thickness at tip, and radius of fin base and fin tip.

A flat plate model of a catalytic converter 1 101 leads to the nonlinear two

point problem	 i

(Y,)2
(A-2a)	 -Y'^

(2 - y)

(A-2b)	 y ( 0) = yo,	 Y(1) = 0.

The unknown y represents mole fraction ^f a gas.

A problem involving fluid flow in a two-dimensional channel 1 111 leads to

the following boundary value problem governing the velocity distribution

(A-3a)	 f/'// = R(ff f " - flf'1)

(A-3b)	 f ( 0) = O, f"'(0) = 0,	 f(1) = 1, V Q ) = 0.

We can write this problem in vector form with yj = f and yz = fl-1,

(A - 4a)
Yy,//` -	 Yz

,	 J

Yz' /	R(YjYt' - YilYz)

(A-4b)	 YI(0) = 0, Yz (0) = 0,	 yj(1) = 1, yj'(1) * 0.
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