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James A. Pennline
National Aeronautics and Space Administration

lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

Constructive existence and uniqueness results for boundary value problems
associated with some simple special cases of the second order equation
v/’ = £(x,¥,y’), 0 $ ®x £ 1, are sought. The approach ue consider is to
convert the differential equation and boundary conditions to an integral
equation via Green's functions, and then to apply fixed point and contraction
map principles to a sequence of successive approximations. The approach is
tested on several applied problems. Difficulties in trying to prove general

theorems are discussed.

1. INTRODUCTION. (General Problem of Interest.)

The topic of interest is the establishment of constructive existence and

uniqueness for nonlinear, two-point boundary value problems

(1.1a) y’, = f(x,y:y,), 0 £ X

[FaY

1,

(1.1b) ay(0) + azy”7(0) = ¢4, byy(1} + bay7(1) = c3.

By constructive existence and uniqueness, we mean results whose proofs suggest
a method for computing the solution numerically. The type of approach considered
involves one of many already Known methods for obtaining solutions numerically.
The equation and boundary conditions are converted to an integral equation via
Green's functions. Then the solution of the integral equation is sought using
successive approximations. Houwever, the equation is first parametrized in a
special way which depends on conditions assumed to be satisfied by f. Some neu
existence and uniqueness results can then be obtained.

For the initial value problem associated with (la), there exists theory that
assures a unique local solution for a large class of equations. Houever, the

question of existence and uniqueness or just existence for boundary value
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problems associated with (la) is hard to answer unless very strong assumptions
are made on £f. Even in many recent papers on existance and uniqueness,
assumptions made on ¥ usuall include a condition (such as a Lipschitsz condition,
a boundedness condition, or nondecreasing behavior) in the argument y for all y.
Thus, although they may contain more general results with weaker conditions on £
than in earlier comprehensive works (such as Keller (1], and Bailey, Shampine
and Waltman [2]) they can still he too strict for many applications. Also,
proofs are not aluays constructive in nature, and in many practical applications
solutions are computed without establishing existence.

Our basic idea is to seek constructive existence and uniqueness for various
cases of (1) based on assumptions on f that hold only for y(x) that satisfy a
certain constraint. Although our primary objective is to have results which
enable the solution to be computed numerically based on the constructive nature
of the proofs, ue have a secondary goal. We would like numerical methods to
lend themselves to the application of results from research in vector acceleration

of sequences and series.

2. MOTIVATION.

In the interest of applied mathematics, ue can shou problems which arise
naturally in the applied sciences and which exemplify the general problem (1.1).
Examples of problems (1.1) can be shoun to arise for instance from problems in
heat transfer, problems in the analysis of chemical reactions, and problems in
fluid mechanics. In particular, we mention the following.

In the analvsis of the stagnation point shock layer (3], it is shoun that
the total enthalyp_ is governed by

(2.1a) y’/(x) = KR(y(x))"™ - xRy‘/(x), nzl, 0 £ s,
(2.1b) y(0) = 0, y(1) = 1.

The quantities K and R are positive constants characterized as a radiation loss
parameter and a Reynolds number respectively.
In a problem concerning the analysis of heat and mass transfer in a porous

catalyst (4], the following bhoundary value problem is obtained.

/ vBt1-y) \
(2.2a) y”=ayexp‘\ Ly

1 + ﬁ(l-y)'
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(2.2b) y’(0) = 0, y(1) = 1. ‘

The quantities v, § and « are positive constants representative of
dimensionless energy of asctivation, heat evolution and Thiele's modulus
respectively.

We also consider vector cases of problem (1.1). In particular, for the 2.

by 2 case, y(x) = (y4 (x), y;(x))T , and £ = (£,, fz)T . A general form
of the linenr separated boundary conditions would be

Ryy(0) + Ray/(0) = Cq, Bay(l) + Bay/(1) = C,

where Ay, A2, By and B, are two by two matrices and Cy; = (c44, 621’1- and C; =
(cr2» czz)T . Examples can be shoun to arise in fluid wmechanics. For instance,
consider the follouwing.

The unsteady squeezing of a viscous fluid between tuwo parallel plates is
discussed in {5]. With the normal velocity prescribed, the unsteady Navier-
Stokes equations admit a similarity solution. The similarity equation for the

axisymmetric case is

(2.3a) S(xf’77 & 3£/7 - ££/77) = §7/77,
i
; (2.3bh) £(0) = £/7¢0) = ¢, £(1) =1, £/7(1) = 0. :
which cen he written as a vector case of (1.1),
\
[ vr\ y2 ‘
(2.43) : = ;
R \ Sluyz2” + 3y2 - yay2’) /
(2.4b) ys(0) =0, y,(2) = 8¢, ya(l) = 1,-y47(1) - 0,

where yq9 = £ and y, = £/7/.

For more examples, see Appendix A.

3. A BASIC RESULT.

Rt s Lith st

Investigation into the construction of theorems for various subclasses of.

problem (1.1) is based on a result in [6] established for the problem
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(3.1a) y/’ = £(x,y), 0s<xnsl,

(3.1b) y(0) = o, y(1) = 0. ORIGINAL P2ez 13
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where the gradient y/ doas not appear explicitly. This result is an extension

of a similar result due to Keller {1]. First, subtract k2y from both sides of
(3.1a) and consider the equivalent problem '

(3.2) y// - Rty = £(x,y) - kiy, y(0) = y(13 = 0.

Then, for k2 # 0, (3.2) can be converted by the Green's function procedure
into the equivalent integral equation

1
(3.38) yix) = S gulx,B) (K2 y(&) - £(E,y(E))) dE
]

where

1 ginh kx sinh k(1-%), 0 <n<e§,
(3.3b) gu(x,§) = — . .
K sinh K sinh k(1l-x) sinh k&, g <<l
The theorem in [6] that uwe are refering to is the follouwing. !

Theorem 6. In the boundary value problem (3.1), let 3f/3y bhe continuous

for all % € (0,1} and all y. Suppose that there exists N > 0 and § 2 0
such that 0 € § £ 3f79y £ N for all x € [0,1] and all y. Then a unique
solution of (3.1) exists. For kZ = (1/2) (8§ + N), it is given by the limit

of the convergent sequence of functions

(3.643) yo(x) =0,
1
(3.4b) ym+i(y) = S ax(x, &) [R2ym(E) - £(E,y™(%)) ] 4%, m=0,1,"".
0
Proof. Let
(3.5) emti(x) = ym*i(x) - y*{x)
and
(3.6) {lem*t]] = max [jem™* ' (x)|, m=0,1,°.
0<x<l

Then for m = 1,2,*++, uWe can apply the mean-value theorem to f(x,, :)) -
£(n,ym-t(r)) to obtain



1

at
(3.7) amti(x) = S gulx.§) (k2 - ;—(l.v‘(()-‘(!)o‘(t))l e™(§) 4k,
y

°
ORIGINAL PAGE S
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(3.8) k2 = (1/72) (8 + N)

and the bounds on 3f/3y, the bracketed term in the integrand of (3.7) satisiies
0 < |k? - 3fsay| € (172) (N - 8). Therefore, from (3.7),

1 1
jem™*i(x)] < ; (N - 8) S gu(x,8) dt- |le™]l »
0

1 cosh Kk((1/2)-x)
= (/72)(n - 8) - (1 - ) lile™l|
k? cosh(k/2)
(3.9)
N-8 1l
< l - ) "em”a a= 1,2,

< 1
N+3§ cosh(k/2)

Since this relation holds for all x ¢ (0,11,

(3.10) Hem* |l < pe llemll
where
N-8 1
(3.11) Uk = (1 - ).
N+ 8 cosh(ks2)
Observe that gy < 1, and |lem™*?}] < p™lle']| . Thus {y™)} is a Cauchy sequence

in the space of continuous functions on [0,1) with the norm defined by (3.6).
Therefore, a continuous limit y(x) exists, to which {y™(x)} converges uniformly.
Since the order of the limit operation and the integration can be interchanged

the limit function satisfies the integral equation (3.3). To establisgh
unigueness, let yq(x) and y;(x) be tuo solutions to (3.1). Then they both satisfy
(3.3) for k? = (1/2) (8 + N). By tha same analysis that leads to (3.10),

lys = yall < mcllys = y2ll . Since e < 1, |lys - y2ll = 0, or yy = y,.

4. PROGRESS. (Some New Results)

In [7]), tuo theorems were constructed for




(4.12) y’/ = £(x,y), c<xs,
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(4.1Db) y(0) = y,, y(1l) = y4.

One theorem establishes existence and uniquenass awong all y for uhich |y(x)| €
max {|yel, lysl}, x € [0,1]. The other establishes existence and uniqueness
among all y for which 0 S y(x) < M where y, and y; are assumed nonnegative and
max {yo,» Y1} £ M. The conditions assumed on f differ slightly. Recently (8],
we have obtained results for a more general subclass of (1.1), namely

(4.2a) v’/ = E4(x,y) + p(R)y’/

Theorems have been established for three different sets of boundary conditions,

(4.2b-1) y(0) = yqo, y(1) = y,,
(4.2h-2) Y’(O) =40, Y(l) = Y4
(4.2b-3) y(0) = yo. y/(1) = 0.

Since the results for (4.2a) together with (4.2b-1) have as special cases the
results reported in [7]) for (4.1), we shall shou a theorem and proof for (4.2a)
together with (64.2b-1).

The approach taken on (4.2a) is as follouws. Assuming p(x) has a continuous

derivative, multiply both sides of (4.2a) by the integrating factor e-V(x), gyhere

(4.3) vix) = l Sx p(E) df .
2 v
Then urite (4.2a) as
(4.4a) u’’/ = F(x,u),
where
(4.5a) u(x) = e-Vix) y(x),
(4.5b) F(X,u(x)) = e-VIxXI£,(x,eVixXIyu(x)) + q(x)ulx).
(4.5¢c) qi{x) = (p(x)r2)2 - p/(x)r2 .

6
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{4.4Db) ufo) = @-vVioiy,, u(l) = @-Vity,,

Now we can follow an approach similar to the one for (3.1). First replace
(4.48) uith the equivalent egquation

(4.6) u’’ -~ R%u = F(x,u) - ktu.

Then for kt # 0, (4.6) together with (4.4b) can be converted into an integral
equation by the Green's function procedure for the operator (d2/dx2 - k2), i.e.,

1
(4.7a) ul(x) = h(x) + S gk(x,§) (k2u(g) - F(E.u(E))) 4%,
0

where

[ sinh K(1-§) sinh kx, 0Sx<E,
{4.7b-1) guix,§) = $ ,
K sinh k L sinh k(1-x) sinh Kk§, g<xsl,
and
e-VIi0) vy sinh K(1-x) + e V1) yy sinh kx
(6.7¢-1) h(x) = .

sinh K

In sddition to assuming that p(x) has a continuous derivative on [0,1], uwe

shall also assume q(x) of (4.5c) is nonnegative on [(0,1]. Then, if ue define

(4.8) 83 = min g(x), N; = max q(x),
0&x<l p<n<l

we will have §; 2 0, and N; 2 0. (Note. The assumption q(xX) 2 0 can be weskened.)

Theorem 1A. In the boundary value problem which consists of equation (4.2a)
together with (64.2b-1), let max {lyol,ly+«]l} € M. Suppose there exists an N, > 0
and a 8§y 2 0 such that 0 S 8§, < 3fy/73y < Ny for all & ¢ (0,1] and all y such that
ly(s)| € eViximax{e-V!0),a-VI1IINM, X ¢ {0,1]. Suppose further that 8 S f4(x,y)
€ (Nqy#84)y. ¥y 2 0, and (Ny+84)y < £4(x,y) €0, y £ 0, for all x € [0,1] and
all y such that Jy(x)} € eV )maxie-V(0) e-V(11}M, x ¢ [0,1). Then there exists
a unique solution of the problem satisfying Jy(x)| < eV{Xipax{e-V(0) ,e-V(1)iy,

% € [0,1]. Let 8 = (84+482) and N = (Ny+N;) where N2 and 3, are given by (4.8).




For k® = (8+¢N)s/2, the unique solution is given by y(x) = eViX)u(x), where
v(x) is given by (4.3) and u(x) is the limit of the convergent sequence of

functions

( 8) o(x) = hix) “V(®) yo minh K(1-x) + &-V(1) y4 sinh kx
4.9 uo(x) = hix) =
sinh K ’

1
( 4.9b)  u™(x) = h(x) + S g, 8) [R2UMCE) - FCE,umCE))] dE, m = 0,1,°++,
[ ]

— sy

where gu(x,§) is given by (4.7b-1). CheGiiviag. a1
Proof. Llet OF POOR QUALITY,

(4.10) E = max {e-V(0), @-ViN)} |

First, we show that each member of the sequence ( 4.9) satisfies |um™(x)| £ EM,
m=20,1, ++-, for all x ¢ [0,1]. Observe that

Iyol sinh R(1-x) + |y4| sinh kx
sinh K

Jul(x)| S E

sinh k(1-x) + sinh Kkx
sinh Kk

AN

E max {lyol.lysl}

(4.11)
" cosh k((1/72)-x)
cosh(k/2)

[

A

EM, ® € (0,1].

Now assume that ul(x) satisfies |ul(x)| < EM for some i 2 0.
Then €rom ( 4.9b),

1
(4.123) [|ui+W(x)] € |h(x)]| + S gk(x, &) |k2ul(§) - F(§,ul(g))| dg.
(]

Now, if [ui(x)| < EM, then |eVi¥ ul(x)| = eV!X)|ul(x)| < @V!*XI)EM. Thus, if
eVixiyi(x) 2 0, then 0 < f4(x,eViXIui(xr)) € (844N, )eViXui(x) by hypothesis.
This in turn implies from (4.5) that if q(x) 2 0, x € {0,1], then 0 £

F(R,ul(x)) £ e VIXI(§44¢Ny)eViXIul(x) + (82+4N2)ul(x) = (8+NJul(x) = 2KZul(x) if
ul(x) 2 0. Similarly, it follows that 2kZul(x) = (B+N)ul(xr) < F(x,ul(x)) £ 0, if




ul(x) € 0. Therefore the term |k2ul(g) - F(§,ul(§))]| in the integrand of (4,12a)
will ba bounded by k2|ui(g)], and it follous from (4.12a) that

sinh R(1-x) + sinh Kkx 1
ul*1(x)| S M ( )+ S gn (s, §) 4§ K2EM
sinh Kk °
sinh k(1-x) + sinh kx sinh K(1-x) + sinh kx
(4.12h) = EM ( Y+ Q1 - )
sinh K sinh Kk
= . GRIGH 1Rk b b =

OF pPCot GUALITY

Thus, by induction, |{u™(x)| S EM, m =0, 1, 2, -*-. Nou define

(4.13) em*t(x) = umtI(x) - um(xn)

and

(4.14) lem*1]| = max [@™*' (X))}, m =0, 1, co°,
0<x<1

Since 3f,/9y is continuous, 3F/3u is continuous so that we can apply the mean

value theorem to F(x,u™(x)) - F(x,u™" '(x)) to obtsin
1 aF

(4.15) em*t(x) = S gkin,§) 1R - ;—(E.um(s)-O(E)em(E))l em(g) d¢,
0 u

where 0 < 6(§) < 1. Note that from (4.5)
(4.16) aF/3u = e-VIXx) 3f,73y 3ysdu + q(x)

= 3fq78y + q(x).

Also, if |eVixlu(x)| < eV!X)EM, then 0 < 8¢ < 3f1(x,eVixIulx))z2y £ Ny, by hypothesis.

This in turn implies from (4.16) that 0 < 5448, € AF(X,u(x))’7du € Ny#Np, if q(x) 2 0,
or 0 £ B <€ 3F/73u £ N. Since we have already shown that each mewmber of the sequence
( 64.9) satisfies |um™(x)| < EM, x € [0,1]), it follows that

ar
(4.17) 0 <8< ;—(E.u“(!)-&(i)e“(s)) $N.
u

P s
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(4.18) K2 = (8 + K) 7 2

the bracketed term in the integrand of (4.15) satisfies |k2 - aF/du| $ (N-8)72
and '

1 1 N
len* 1G] S = N - 8) S Gu(x,§) Ak Jlem|l ,
0

1 cosh R((172)-x)
(4.19) = (172)(n - 8) - (1 - ) llem|)
k? cogh(kr/2)
< Hi "."‘"p m=90, 1, °°°,
where
N-8 1
(4.20) Hx = -

( ————)
N+8§ cosh(ks2)

Since (4.19) holds for all ® € {0,1), lle™* 1|l <€ px llem|| . Note that

P <1, and |le™* ] < (u)™ e’ . Thus {um(x)} given by ( 4.9) is a Cauchy
sequence in the space of continuous functions with the norm defined by (4.14),

We can conclude that the sequence ( 4.9) converges uniformly ¢o a limit u(x)

which satisfies the integral equation (4.7a) and is such that |u(x)| < M,

® e [0,1]. Then y(x) = eVixly(x) is a solution to (4.2a) with (4.2b-1) satisfying
jy(x)] € eVUXIEM, ® € [0,1].

To establ.fh uniqueness, let y (x), y2(x) be tuo solutions in which
lyatn)| € eV{*:EM and |y (x)| € eV!X)EM, % ¢ [0,1]. Then uq(x) = e Vixly,(x)
and up(x) = eV y,(x) both satisfy the integral equation (4.7a) with g,.(x.,§)
given by (4.7b-1), h(x) given by (¢.7¢c~-1) and k2 = (5+N)/2 as specified in
Theorem 1A. By the same analysis that leads to (4.19), ue can shouw that

Jus(d-ua(x)| € px Huy-uzil, x € 10,1], or

Nus = uall < e luy - uzll.

Since py 1S given by (6.20) and px < 1, we must have |Juy-uzll = 0,
or us(X) = uz(x). Thus yy = y;.

The importance of Theorem 1A is that 3f4/3y and f: 2re required to satisfy
conditions only for all x € {0,1] and all y such that |y(x)| is bounded by an

10



expression dependent on boundary values and pix). Of course, the axistence and
unisuonnss applies only to functions that satisfy this constraint. This kind of

approach is uell wotivated though for problems that arise naturally in the epplied

sciences, since y(x) usually represents a physical quantity which may be knoun to
be bounded in absolute value or which wmay be of one sign. With this in mind the
following sdditional result is obtained. It imposes conditions under the
constraint that y(x) be nonnegative and bounded above. In the interest of space
we state it without proof.

Theorem 1B. In the boundsry value problem (4.2a) uith (4.2b-1) let yo, ¥4 be

nonnegative and let max (ye, ¥1} S M. Suppose thare exists an Ny > 0 and a
84 2 0 such that 0 < 8y S 3£473y S Ny for all x € 10,1] and all y such that
0 S y(x) S eVIX)EM, % € [0,1], where E is defined in (4.10). Suppose further
that 0 < £4(x,y) S (172)(Nq+84)y for all x ¢ [0,1] and all y xuch that 0 $ y(x)
S ev'®IEN, nw € [0,1]. Then there exists a unique solution satisfying
0 S y(x) S aV'XIEM, x € [0,1]. Let 8§ = §,45; and N = Ny+2N; uhere N; and §; are
defined in (4.8). For k? = (§+4N)72, the unique solution is given by y(x) =
eV (X Iu(x) where vi(x) is given by (4.3) and u(x) is the limit of the convergent
sequence of functions given by ( 4.9).
The proof is similar to the proof of Theorem 1A and requires shouwing that 0 <
umK) S EM, k€ (0,10, m= 0, 1, +o-.

Similar theorems can be stated for (4.2a) together with (4.2b-2} and (4.2a)
together uwith (4.2b-3;. We make note of one, for example, (4.2a) with (4.2bh-3).
This problem can also be converted into the integral equation (4.7a) with

1 (k cosh K(1-§) + v/(1) sinh K(1-§)) sinh kx, 0 £ x < §,
(4.7b-3) gu(x,§) = —

K | sinh kg (k cosh k(1l-x) + v/(1) sinh k(1-x)), E < xs$1,
uwhere
K = kK (k cosh kK + v/(1) sinh k),
and
K cosh k(l-%) ¢ v/(1) sinh k(1-x)
(4.7¢c-3%) h(x) = e-V(0) y4

K cosh K + v/(1) sinh K

Theorem 3E. In the problem (4.2a) together with (4.2b-3) agssume 0 £ yo < M.
Surpose there exists an Ny > 0 and a 84 2 0 such that 0 S 8§, S 8£473y S N, for
all x € (0,1] and all y such that 0 € y(x) < eVix)-VtoIN, x ¢ [0,1]. Suppose
further that 0 < f4(x,y) € (172)(N(48,)y for all x ¢ {0.,1) and all y such that

0 S y(x) S evVixI-vVioIM, x ¢ [0,1]. If v/(1) 2 ¢, then there exists s unique

11




solution satisfying 0 S y(x) S eVixI-VioIy, x ¢ (0,1), define 8 = B,+3;

and N = Ny+2N; where N; and 8; are given by (4.8). Then for k2 s (N+3)/2, the
unique solution is given by y(x) = eVix)u(x) where vi(x) is given by (4.3) and
u(x) is the limit of the convergent sequence of functions

k cosh X(1=-x) ¢ v/(1) sinh k(l-x)
XK cosh k ¢+ v/(1) sinh k

(¢.210) u¥(x) = hi(x) = @°Vie) y(

L ]
(4.21b)  u™*i(x) = hix) ¢ S Gu 0, §) TRPUMCE) = FCRU™CEI) ] AR, m = 8,1,000,
[ ]

where gi(x, ) is given by (4.7h-3). ORIGINAL Facz 18
OF POOR QUALITY

S. FUTURE INVESTIGATION

It is of interest to wcoken assumptions for some 0f the :iosults already
established. TFor instance., one could consider removing tha assumptions that
qix) of (4.5¢c) be nonncéutivc and the assumptions on £4. They could he re-
placed uwith the single assumption that there exists a § 2 ¢ and an N >
0 such that

(5.1) 0 €8 < dF/3u SN, 0S5 P(x,u) S (172)(N+¢8)u,
for all u as constrained in Theorem 1B, for instance. We would also like to

allou 3f,73y and/oxr 3F/3u to be negative, e.g., to consider cases in
which

(5.2) -B S 3f v3y S N, B>0.
We can state a simple result for (4.2a) uwith (4.2b-1) in which we assume that
-8 £ 3r/73u < N for all uy, 0 £ B S N/2, and take k2 = N/2. It will work if
N < 8(cosh-1'2)2, HMore general boundary conditions cen also be congsidered.
However, Green's functions and their analysis will be more complicated.

A generalization to the problem

(5.3) y’’/ = £(n,y,¥/),

in which we assume for instance that 6 < 8y S 2£,78y £ Ny, and either 0 < §; ¢

afs3y’ < Ny or -N; S 3f/3y’ € -83 S 0, will b harder. We propose to consider

12
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In this instance a different norm will have to be used to establish convergence
of the sequence of successive approximations and in turn the existence and
uniqueness, e.¢., max (K¢2ly(x)| + 2Kk iy/(x)|. Preliminary investigation reveals
that unlike results repo-ted in Section 3, convergence will depend on the
magnitude of Ny and N; and convergence uwill not aluays be guaranteed merely
if 3fsdy and 3£/79y’/ are nonnegative and hounded above.

Because of example 3 of Section (2.4), and example (A-4) of Appendix A, it
appears that results for

77 £4(y2)
(5.5) —_ ( 4] - 1ly2 ,
y2/’ £2(%,y4,¥2,¥27)

v
.

Aqy(0) + Azy7(0) = Cy4, Bay(l) ¢+ Bay/(1) = C,,

will be useful. Unfortunately, a wmore complicated integral equation will have to
be analized, namely one of the form

1
(5.6a) y(x) = H(x) + S G(x,8) F(E,y(8),y/(2)) d¢
°
T T
where H = (hy, hy) , F = (£, £;) , and

(5.6b) G(x,§) = .
\ g24(x,%8)  g22(x,§)

/ gee{x.§) g12(X,§) )
\
6. SOME APPLICATIONS AND SOME NUMERICAL RESULTS

Lets demonstrate an application of the results reported in Section 3 to, for

example, problem (2.1), i.e.,
(6.1a) v’/ = KRy"™ - XRy’,

(6.1h) y(0) = 0, y(1) = 1.

For this specific case of (4.2a) with (4.2b-1), we have

(6.2) f4(x,y) = KRy", p(x) = -xR.
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In terms of (4.4) and (4.5), (6.1) becomes OF FOOR QUAUTY

(6.3a) u’//7(x) = F(x,ulr)) = @ VIXIKR(eV!XIu(x))" + q(x)ulx),

(6.3b) u(o) = 0, u(l) = @-V(1) = axup(R/4),

where

(6.3¢c) vix) = -niR/4, q(x) = (-xR/2)2 + R/2, ulx) = @-Vixly(n).

For K2 # 0, (6.3) can be converted into

e V(1) ginh kx 1
(6.48) u(x) = - + S gr(x,8){k2u(g) ~ F(E,ul))) dt,
sinh Kk °
where
' sinh k(1-§) sinh kx, 0<n<E,
(6.4b) gr(n,§) = ——
K sinh K | sinh k(1-x) sinh k§, §<nsl,

In this problem, one expects that 0 < y(x) € 1. We shall demonstrate
a direct application of Theorem 1B, and show constructively that there exists a

unique solution satisfying 0 < y(x) < eV{(X)-V(1) = exp(R(1-%2)/4), % € {0,1].

The conditions of Theorem 1B are satisfied as follous.

(a) For this problem, £4.(x,y) = KRy", so

(6.5a) 3f473y = nKRy""?
and
(6.5b) 0 < 3f473y < nKR(exp(R/4))N-1

for all x € [0,1) and all y such that 0 < y(x) € eV(X)-V(1), » ¢ [0,1]. Note that

(6.6a) 8y = 0, Ny = nKR(exp(R/4§))n-1

in this case, while

(6.6b) 8; = min q(x) = R/2, N; = max q(x) = RZ/4 + R/2.
0<xsl 0<x<1

As defined in Theorem 1B,

14



(6.6c) 8 = R/2, N = nKR(exp(R/4))"-1 & 2(R2/¢ ¢ R/2).

(b) If x ¢ [0,1], and y is such that 0 S y(x) S eViX)-VIt), x ¢ [08,1], then

(6.7) 0 S £4(x,y) S (n72) KRCGaxp(R/7&))N-%y = (1/2)(Nq.+84)y, n 2 2.

According to the conclusion of Theorem 1B, for

(6.8) K2 = (1/72)(3 + N) = (1/2)(nKR(exp(R/4)"-' + R2/2 + (3/2)R)

the sequence

Gie TNAL FE
. OF i’ka‘- i{".‘“"t‘
(6.9a) u%(x) = exp(R/¢) ginh kx 7 sinh Kk,
exp(R/4¢) sinh Rx 1
(6.9b) umti(x) = + S grn, 8){k2u™(E) - F(E.u™(§)))dE,
sinh kx °

m=20, 1, *++, has a limit u(x), and y(x) = @Vi{X)yu(x) = exp(-Rx2/4)ul(n) is the é
unique solution of (6.1) satisfying 0 <€ y(x) < exp(R(1-x2)/4), x ¢ [0,1]). In

particular for the sequence (6.9),

Numet - umf] < gy [fu™ = um-1)},

where
nKR(exp(R/64))"-' & R2/2 + R/2 1 \
(6.10) g = - m—————
nKR(exp(R/4))IN-1 + R2/2 + (3/2)R cosh(k/2) /

To obtain a numerical solution of the limit u(x) of the sequence (6.9), it

can bhe approximated by the discrete solution uwg = u(0), Wy = ulng), +°+,

Wp. 4 u{xp.1), wp = u(l) on & uniform grid, h = 1/p, %¢y = h, %3 = 2h, ++»,

(p-1)h, %p = 1. By using the trapezoidal rule on the integrand, w,; can

Rp. 1

be computed by the expression

16.11) w; = hix;) + 5i o; gulx;,%;) [RZwy - Flx;,uy))], 4 =2 0,1,++, p,
=0

where o = ap = h/72, a3 = h, 3 = 1,*++,p-1. Keller [1] has shoun that this

should yield accuracy on the order of hi.

15
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To compute the approxiwmations (6.11), a sequence of net functions (u;™},

m=4g, 1, o+, can be defined as o ew
GRiciNAL P 9
(6.12a) w;% = hix;),

(6.12b) w;™*' = h(x;) + i o) Gu(Rg,i;3) [R2u;™ - Fix;,w;™) 1, i=20,1,2*, P
i=0

where g = ap = h72, a; =h, j =1, *++, p-1. By arguments similar to those
given by Keller (1] for (3.1), one can shou that the limit of (6.12) exists and
is the unique solution of (6.11). Also, as p + =, the contractive parameter
for the sequence (6.12) will converge to the contractive parameter uy for the
corresponding continuous sequence.

The following table indicates some values of the contraction parameter jy

n R K e (6.10)

2 10 .01 .76

2 10 .1 .82

5 10 .01 .999

5 10 .1 .9999
Table 1.

It is important to realize that the value of uy is merely a bound on the
contraction of the sequence. 1In practice, the actual number of iterations
required to achieve a given error tolerance wmay be significantly less than the
number expected by the value of px. To illustrate this we programmed (6.12) for
problem (6.1). Programming was done in standard Fortran on and IBM 3033. For

example consider the case n=2, R=10, and K=0.01 in Table 1. Assume that p is

sufficiently large that the contractive parameter for (6.12) is nearly px of (6.10).

Then if |ju! - u?|] £ 1, the relation [fum*?! - um™}] < (ud™ [lu? - u®||

implies it chould take at most 33 iterations to get |(lum*! - um|| < 10-%., It
actually took m+l = 164 with h = (1/50). Consider the case n=5, R=10, and K=0.01.
Note that uyx is very close to 1 in this case. In such a case, the rate of
convergence of the sequence may be very slow, thus causing the number of iterations
required to achieve a given error tolerance in the programming of (6.12) to be
large. Keller [1] suggests Neuton's method as one alternative to a more rapidly

convergent scheme. However, analiysis such as the following can also be applied.

16
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First, we obhserve that the initial approximation u®(x) of (¢.9a) is one
suggested by the integral equation itself. If the initial approximation is
chosen closer to the limit of the sequence, the number of iterations required to
achieve a given error tolerance uill be i1educed gince |ju! - u?]| will be smallerx.
To this end we can appeal to comparison theorems {[{2]. For instance, if y;(x) is
the solution for n=2, R=10, K=.01, and 0 S ya(x) £ 1, then y2(x) S ys(x) where y; is
the solution for n=3, R=10, K=.81. Thus in the case n=3, R=10, Ks.01, the initial
app.soximation in the sequence (6.9) may be taken as u®(x) = exp-Vixly,(x) instead
of u%(x) given by (6.92).

Secondly, uwe suspect that the solution y(x) = eVi{X)u(x) = exp(-xZR/4) u(x)
satisfies 0 € y(x) € 1 for problem (6.1). If we can show that 0 < exp(-x2R/¢)ugp(x)
€ 1 for each m, then

dF
(6.13) R72 £ ;—(x.u") € nRK + R2/4 + R/2
u

ORICIEAL bovsd -
oF PR QUALITY

for each m. Thus if we choose
(6.14) kz = (1/2) (nRK + R2/2 + R)

the sequence (3.33) uwill contract according to

Hum*t = u™[] < py flum - um-1]]

where
nRK + R2/2 1
(6.15) b = (1 - ———————)
nRK + RZ/2 + R cosh(kr/2)

a.d Kk is given by (6.14). Compare the follouwing Table 2 to Table 1.

n R K Mk (6.15)

5 10 .01 .73

5 10 .1 .75
Table 2.

When we used k2 given by (6.164) and the solution for the case n=2, R=10, K=

.01 as the initial approximation in *+he sequence (6.12), it only took & iterations

17



with h = 1/50 to get |ju™*! - um|| < 10-% for the case n=3, R=10, in problem
(6.1). For the case n=4, R=10, K=.01, we used k2 given by (6.14) and the
solution for the cale n=3, R=10, K».01 as the initial approxiwmation and it only
took 3 iterations. Finally, for the case n=5, R=10, K=.01, we used k? given
by (6.14) and the solution for the case n=4, R=10, K=.0l as the initial
approximation, and it only took 3 iterations.

Consider the vector problem (2.4) shown in Section 2,

77 f
(6.16a) ¥ = / ¥ = !
Y2’/ \ S(xya’ + 3y2 - y1¥27) £,

(6.16b) y1(0) = 0, y2(0) = 0, y1(l) = 1, y4/(1) = 0.

ORIGINAL r
()F P(”)R cx;ﬁa

There are several uays to extend the approach to systems. For instance, We note
in this case that
(6.17a) df4/70y4 = 0, 9f4/70y; = 1, 3£473y4/ = 0, 3f4/73y2’ = 0,

(6.17b) 3f2/8y4 = -Syz’, 3f278y2 = 38, 3f273y4/ = 0, 3f32/79y2/ = S(x-y4),

Then, uwrite (6.16) in terms of uy = y4 and u; = eMixy,,

(6.18a) D2u, - 142u; = -F,

(6.18h) ~mq2u, + (D2 - n2)u; = -F; , nZ = ngy24n;?
where D2 = d2/dx2 and

(6.18¢c) ' F1 = 142u; - e-MiXy,,

(6.18d) Fz = my2uy + (ny2uz - 2nz2Quz’/-nauz) - eM1xf;).

The boundary conditions are

(6.18e) uqe(0) = 0, uz(o) = o, uqe(1) =1, ug’(1) = 0.

Problem (6.18) can be converted into an integral equation of the form

Juro ) TheGo 1 Fy(8,uz(8))
(6.19) ) = + S Glx, ) ds.
youz(x) fo ha(x) 0 F2(E,us(8),uz(§),uz’ ()

For explicit representation of hy, hz, Fq, Fz, and G see [8].

To get a numerical solution to (6.19), one can try programming the sequence

18 ) ﬂﬁ:msag_&mi
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(6.20a) us®(xR) = heln), uy®/(x) = hy/(x), ORIGINAL ISISHRPIR
(6.20b) UPtCR) = ha(k),  Up®/(x) = hy/(x), OF POOR QUALITY

Uyt (x) ) 1 Pt ugt(8))
6.200) « + S G(x.e)/ 16us at,
ugt 1 (x) ha (%) . \fz(s.u¢‘(5).ug‘(t).ugt’(t))

Uy L* 1/ () hy/(x) ' FoE -uzt(8)) f
(6.204) = + S G/ (R, §) e,
Ut 1/ (x) hz” (%) 0 FaCE,uqtCE),uzb ), uzt’ (§))
l = 0’1’-00.

Suppose we take S > 0, and try to find a unique solution for uwhich
(6.21) GSYQ$1'°$V1I$PD'stz$°n‘"£yz/$°'

for all x ¢ {0,1). We propose choosing values
(6.22a) ns2 = 3872, 2n; = max|(x-y4)S|7 2,
(6.22h) my2 = max (-Sy;’/) 7 2, 142 = (1 + @ n2) /7 2

Then, if each member of the sequence (6.20) satisfies the bounds (6.21), and if
the sequences converge uniformly with respect to some norm, we can conclude
that a unique solution to (6.16) satisfying the bounds (6.21) exists. Its the limit
of the sequences (6.20). This has not been done rigorously yet. Houwever, ue
shall report some numerical results wuhich are encouraging.
The sequence (6.20) was replaced by an approximation in which we evaluated
uy9%, u%, and u,9%/ discretely at p points x; = (j-1)h, j = 1,+-,p,
h = 17(p-1). Then we obtained the values of the remaining members of the
sequences at each discrete point by evaluating the integral using the

trapezoidal rule. The interation was stoped if and when

max {|ey™(x;)|,|(ey™(x;))’|,|ez™(x;)|,]|(es™(x;))/ ]|} < 190-"

where
e ™(x;) = v ™ )-y;™ (%), (e;™(x;)) = (y;™(x;)-y ™ 1(x;)), 1i=1,2.

The following results were computed using standard Fortran on an IBM 370 3033,
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case 1 case 2 case 3

s .11576  2.081 6.868
ny .4167 1.767 3.210 ORIGINAL PA3E 1S
n; .008682 .2601 .5151 OF POOR QUALITY|
my .4167 2.06 6.934
1, .9978 .9410 .8937
. h 1750 1750  1/40
iterations . 4 6 11
CPU time 46sec 17sec 93sec
y2(1) (computed) -3.0622 -3.968 -5.700
y2(1) value -3.0622 -3,961  ~5.503

reported in [51

CONCLUDING REMARKS

Analytical Advantages and Disadvantages.

Constructive existence and uniqueness is given for a large class of i.on-
linear problems. Houever, explicit Green's {unctions can be difficult to con-

struct and analize. Also, analysis for systems can be complicated.

Numerical Advantages and Disadvantaggi.

One advantage is that boundary values are built right into the integral
equation. In numerical procedures, one does not necessarily need to approximate
the derivative at one end if only the unknown is given as in initial value
methods. No derivatives need to be approximated and therefore no difference
approximations are required. We Know before a numerical method of approximating
the sequence of successive approximations is applied that the sequence converges
to the unique solution of the problenm.

One disadvantage is that in practice a large number of mesh points may be
required to approximate the function sequences accurately. Another is that slou

convergence may be a problem.
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In a problem concerning radiation heat transfer for annular fins (9], the
temperature distribution is shoun to be governed by the energy equation written as

(A-1la) y/7(x) = q(x) (y(x))* + p(x) y/(x), 0Sxs1,
(A-1b) y(6) = 1.0, y’(1) = @,
where
B

(A-1¢c) q(x) = ’

(1-x) tan a + ¢
and

tan o 1
(A-1d) p(x) = -

(1-x) tan @ + & x + p ’

The quantities o, ¢, and p are conétants related to angle of taper, fin
thickness at tip, and radius of fin base and fin tip.
A flat plate model of a catalytic converter {10] leads to the nonlinear tuo

point problem

(Y’)z \

(A-2a) y// = - —
(2 - y)

(A-2b) y(0) = yqo. y(1l) = 0.
The unknoun y represents mole fraction ~f a gas.

A problem involving fluid flou in a two-dimensional channel [1l1] leads to
the following boundary value problem governing the velocity distribution
(A-3a) £/777 = R(¥£777 - £7§77)

(A-3b) £(o) =0, £/77(0) = 0, (1) =1, £/(1) = 0,

We can write this problem in vector form with y, = £ and y, = £//,

y Y4
(A-6a) ( ! \ = y2
‘ \ y2// R(ysy2/ = y4/y2)

/

(A-4b) v1(0) = 0, y (0) 0, ya(1) = 1, y4/(1) = 0.

N |



1)

(2}

(3}

(4}

(51

(61}

(71

191

(10}

{111}

e e g Sl TR EETE RIS n aa e e b s

REFERENCES

H. B. Keller, Numerical Methods for Two-Point Boundary Value Problems,
Blaisdell, Waltham, Mass., 1968, pp. 106-127.

P. B, Bailey, L. F. Shampine and P, E, Waltham, Nonlinear Two-Point
Boundary Value Problems, Academic Press, New York, 1968,

R. M. Nerem, An Approximate Analysis of Thermal Conduction and Radiative
Transport in the Stagnation-Point Shock Layer, AIAA J., 4 319665, Pp. S$39-41,

M. Kubicek and V. Hlavacek, Solution of Nonlinear Boundary Value Problems-V,
Chem. Eng. Sci., 29 (1974), pp. 1695-1699.

C. W. Wang, The Squeezing of a Fluid Between Two Plates, J. Appl. Mech.
43 (1976), pp. 579-583.

J. A. Pennline, Improving Convergence Rate in the Method of Successive
Approximations, Math Comp., 37 (1981), pp. 127-134,

J. A, Pennline, Constructive Existence and Uniqueness for Some Nonlinear
Two-Point Boundary Value Problems, J. Math Anal. Appl., To Appear.

J. A. Pennline, On Construction of Solutions to Nonlinear Two-Point Boundary
Value Problems, Prelim. Report, Contributed paper at 88th annual American

Mathematical Society meeting, Cincinnati, OH.,, Jan. 13-17, 1982,

H. H. Keller and E. S. Holdrege, Radiation Heat Transfer for Annular Fins

of Trape:oidal Profile, J. Heat Transfer, Trans. ASME, 92 (1970), pp. 113-116.

T. Y. Na, Computational Methods in Engineering Boundary Value Problems,
Academic Press, New York, 1979, p. 80.

R. M. Terril, Laminar Flow in a Uniformly Porous Channel, Aeronaut. Q.,
15 (1964), pp. 299-310.

22



	GeneralDisclaimer.pdf
	1982023073.pdf
	0027A02.pdf
	0027A03.pdf
	0027A04.pdf
	0027A05.pdf
	0027A06.pdf
	0027A07.pdf
	0027A08.pdf
	0027A09.pdf
	0027A10.pdf
	0027A11.pdf
	0027A12.pdf
	0027A13.pdf
	0027A14.pdf
	0027B01.pdf
	0027B02.pdf
	0027B03.pdf
	0027B04.pdf
	0027B05.pdf
	0027B06.pdf
	0027B07.pdf
	0027B08.pdf
	0027B09.pdf
	0027B10.pdf


