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I. INTRODUCTION

One of the most fundamental concepts in systems theory is

the basic definition of a dynamic system. A dynamic system

may be defined as an interconnection of entities (which we



shall call "components") causally related in time. It seems

equally natural and basic, therefore, to characterize the

system's behavior in terms of contributions from each of the

system's building blocks--"components." The performance of

the dynamic system is quite often evaluated in terms of some

performance metric we choose to call the "cost function V.

The cost function might represent the system energy or a norm

of the output errors over some interval of time. Concerning

the physical or mathematical components of the system, it is

only natural then to ask question CC: "What fraction of the

overall system cost V is due to each component of the system?"

This chapter is devoted to a precise answer to question CC

and to several applications of the mathematical machinery de-

veloped for answering the question. Such an analysis will be

called component cost analysis (CCA). Conceptually, it is

easy to imagine several uses for CCA.

(a) Knowledge of the magnitude of each component's con-

tribution to the system performance can be used to suggest

which components might be redesigned if better performance is

needed. By redesigning so as to reduce the cost associated

with these "critical" components (those with larger contribu-

tions to system performance), one is following a "cost-

balancing" strategy for system design. Thus, CCA can be use-

ful in system design strategies.

(b) Knowledge of the magnitude of each component's

contribution to the system performance can be used to predict

the performance degradation in the event of a failure of any

component. Thus, CCA can be useful in failure mode analysis.
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(c) Knowledge of the magnitude of each component's

contribution to the performance of a higher order model of the

system can be used to decide which components to delete from

the model to produce lower order models. Thus, CCA can be

useful in model reduction.

(d) Alternately, if one defines the components to include

each dynamical element of a linear feedback controller, the

knowledge of the magnitude of each component's contribution to

the closed-loop system performance can be used to determine

which dynamical elements of the controller to delete so as to

cause the smallest change in performance which respect to the

performance of the high-order controller. Thus, CCA oan be

useful in the design of Zow-order controllers that meet on-

line controller software limitations.

This chapter will focus on possibility (c) in some detail.

This notion of using a performance metric is basic in the

most well-developed and simplest problem of optimal control:

the linear quadratic problem. However, one of the fundamental

deficiencies of modern control theory is its absolute reliance

on the fidelity of the mathematical model of the underlying

physical system, which is essentially infinte dimensional.

Many "failures" of modern control applications are due to

modeling errors. Thus, theories that can more systematically

relate the modeling problem and the Control problem are sorely

needed since these two problems are not truly separable, al-

though most practice and theory presently treat them as

separable. This chapter presents one such unifying theory and

can be viewed as an application chapter in the sense U. it

is concerned with making the linear quadratic theory more

..:1-



praotioal. Thus, the proposed insights into the behavior of

dynamic systems are available within the standard mathematical

tools of linear quadratic and linear quadratic Gaussian (LOG)

theories (6). Hence, the contributions of CCA lie not in the

development of new mathematical theories, but in the presenta-

tion of cost decomposition procedures that readily reveal the

"price" of system components. A similar notion of "pricing"

of system components is a common strategy in operations re-

search and mathematical programming problems such as Dantzig-

Wolfe decomposition and the dual algorithm by Benders [1,2].

However, such useful notions of pricing seem not to have found

their way into common control practice. This paper calls

attention to the manner in which such notions can be used in

dynamic systems. The mathematical details are quite different

from the pricing of the static models of operations research,

but the concepts are similar.

The concepts of CCA evolved in a series of presentations

[3-5). However, these introductory papers left unanswered the

most important questions of stability, the best choice of co-

ordinates, and development of the theory of minimal realiza-

tions with respect to quadratic performance metrics. This

chapter, therefore, presents a complete theory for CCA and, in

addition, develops the theory of minimal realizations with

respect to quadratic performance metrics.

II. COMPONENT DESCRIPTIONS

The entities that compose dynamic systems are herein

labeled "components." To illustrate the flexibility is the

definition of components consider example 1. 	 3

3



3sampts 1. Let the vertical motion of a throttlable

rocket be described by

MS - f - mg,	 (la)

where m is the assumed constant mass, g is the gravitational

constant, and f is the rocket thrust that is regulated by e

fuel valve with the dynamics

f - of + u	 (lb)

for a given command u. Thus, for the system

S	 0 11m v	 -1 O

[ 1(u)
+(2)

0	 a	 f	 0 1

the vehicle dynamics (la) with state v might be chosen as one

system component, and the valve dynamics (lb) with state f

might be chosen as another component. In this case one might

wish to ascertain the relative contribution of the dynamics of

the vehicle and the dynamics of the valve in the overall

system performance metric

fT
V	 T	 f2(t)dt + [v (T) - v] 2 ,	 (3)

0

where T is the terminal time at which the velocity v(T) = v is

desired.

Alternatively, one may define components of (2) in any

transformed set of coordinates of (2). For example, one might

wish to know the relative contribution in (3) of the modal

coordinates of (2), in which case the system components are ql

and q2 described by

	

0 0 ql	-1 - 1/ma q

q 2	0 a q2	0 1/ma I (U)

5
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As described in the Introduction, "component cost analysis"

(CCA), is the procedure developed for answering question CC
t 

for any choice of component definitions. 	 In the special case 1

where the components are modal coordinates, the proced-.ire is

called "modal cost analysis" (MCA)	 [4].	 It is possible to use
CCA with any choice of component definitions including the

"balanced" coordinates of Moore [ 7], the "output-dscoupled"
coordinates used in Tse et al.	 [8], etc.	 For any choice of
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r	 ^ 2
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r— ..._	 1	 Subsystem
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Fig.	 1.	 Component definitions.
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coordinates the n components may be described in the form

	

n	
ni,xi = I 

Aiixi + D
iw, xi E R

J=1
(s)

ny = I CjxV
J-1

For notational convenience, we shall later need to differ-

entiate between the definitions of coordinates, components,

and subsystems. These distinctions can best be introduced via

example. A certain system has state .x. Let the symbols xi,

Xi , Xi all represent partitions of the state vector to various

levels of detail. The scalars X i , i = 1,..., N, will be

called coordinates. The vectors xi e R 
n i

, i = 1,..., n, will
N

be called the states of the components and X i E R i , i = 1,...,

s, will be called the states of the subsystems. Then for
I

n3, s2,	 -

X1

X2	n 	 s

x
i
	Xl	 N	 ni =	 Ni

Xn1

X	 ----- - ----- - ----- .	 ( 6)

•	 x2

-----	 X2

XN	
x3

N	 n	 s

	

coordi-	 compo-	 sub-
nates	 nents	 systems

As an example of component definitions, consider Fig. 1,

where dynamic elements x i , i = 1,... 12, and their inter-

connections are described. Each of these dynamic elements

I
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(selected a riori	 the analy st) with state x , i = 1,..., 1F	 by	 s► 	 i	 ?+

is called a component of the system. However, each component

may have additional dynamical variables Xl , X2 ,..., called

coordinates. This coordinate view of the system is the micro-

scopic view of the system, whereas, the view of certain col-

lections of components, called subsystem: is the macroscopic
c

view of Lie system. For the example in F) 	 1, see from (6)
s	 _

that

(
xl),xaX 	 x2X2 = x5	X3	 (x7).

x3	x6

(7)

(x,), 

	 -

	

X4 = 	 XS
:10\.
1l

	

X9	 x12

Of course, when the analyst chooses n i = 1 and Ni = 1, there

is no distinction between coordinate, component, and subsystem.

III. CONCEPTS OF COST DECOMPOSITION

In our preliminary discussions, we presume that the linear

system model

x	 A(t)x + D(t)w,	 x e Rn	 (8a)

y	 C(t)x, 	 y e Rk , w e Rd	 ( 8b)
n

having components x i e R i exists for the purpose of accurately

modeling the outputs y(t) over the interval 0 < t _< T. To

make this notion more precise, we construct the performance

metric

jf
T

V(T) _ x B 	 Y(t)dt + Y(T)
0

Y(t)	 IlY(t) 1iQ(t) 4 YT(t)Q(t)Y(t).	 (9)

(
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where 0(t) and Q(T) are positive definite and sy=stric, and

where the expected value operator S is needed if either the

initial condition x(0) or the disturbance w is randow. The

basic idea of component cost decomposition is illustrated by

the following example.

Esample 2.	 The quadratic function of x a R2 given by

V xTOx - x1011 + x1'20:2 + '2x1012 + x2423 	(10)

may be decomposed into costs due to components x 1 and x2 by

defining the component cost by

1 8V	 2	 (lla)Y1 $ 3x1 xl - x1011 + xlx20121

Y2 
Q 7 '^ x

2 
= x2()22 + '

2x1
()12

.	 (llb)

Hence, the total cost is the sum of the component costs

n

V	 Vi,	 Yi 	 (12)
i=1	

i

where n - 2 in this example.

To extend this component cost concept to the systems (8)

and (9), we must first specify the character of the excita-

tions of (8). The situation is now separately described for

deterministic and stochastic inputs.

A. COMPONENT COSTS FOR STOCHASTIC SYSTEMS

Let any inputs w(t) that are correlated with time or state

be described by a Gauss-Markov model.

We will assume, however, in order to simplify notation,

that w(t) in ( 8) is a zero-mean white noise process with in-

tensity W(t) > 0 and that x(0) has covariance x(0) _> 0.

The first definition follows the lead provided by (10)-

I

(12) .
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Definition Z. The component cost,Vi for the ith compo-

nent of (5) and (8) with respect to the performance metric (9)

is defined by

Vi (T) Q 
1 Ts 

fo

T 
RI M

xi (t) dt + 
aX (T) xi
 

(T )	 (13)

i
i	 i

Two important properties of the component costs V i (T)are

(a) the superposition property of component costs

n

V(T) 	 Vi( T),	 (14)

i=1	 '

(b) the component cost formula

T
Vi (T)- fi tr fo 

XCTQCdt + X(T)CT (T)Q(T)C(T)	 ,	 (15)

where X is the state covariance satisfying

7( = AX + XAT + DWDT ,	 X(0) = X0 ,	 (16)

and (')ii denotes the n i X ni matrix corresponding to the

position of xi in X.

These results allow one to examine individual component

contributions in a variety of situations involving (i) speoi-

fled times T, (ii) speo:.fied time intervals t e 10, T), and

(iii) time-varying systems. Examples of situation (i) in-

cludes circumstances in which the system goes through

"critical" times T, and at this time it is required to have

more precise knowledge about the dynamical interactions of the

system components than at other times. Some critical times in

engineering problems include

(il) spacecraft reentry time T,

(i2) time of rendezvous T of two spacecraft,

(13) critical times T in a nuclear reactor,

i

i

i

i
i

i,
i
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(i4) switch-in or switch-out time T of a power substation

in a larger power network, and

(LS) time T of maximum dynamic pressure of an aircraft or

rocket.

Examples of situation (ii) include finite-time control

problems:

(iil) air-to-air missile intercept; quidance of a rocket

to orbital insertion,

(M) rapid repositioning of a Flexible space vehicle,

(iii) a finite *ime industrial process.

Examples of the time-varying situation (iii) are co;moon and

will not be enumerated.

For time-invariant systems with T •, (9) and (15)

`	 simplify to

Y(•)- 1 i EY(t) - tr X(-)CTQC,	 (17)
t«.

Yi (•) - 1 lim 
r-6.	

3Y(t) 
t 	 xi (t)	 (18a)

t0i

tr [X(-) CT00 ii,
	

i18b)

where X(-) exists if and only if the disturbable icontrollable)

modes of (A, D) are stable, and Y( •) is the positive definite

solution of

0 - AX(-) + X(-)AT + DWDT
	

(19)

if (A, D) is a disturbable pair (6).

B. COMPONENT COSTS POP DETERMINISTIC SYSTEMS

If all disturbances are written in differential equation

form ( 8) without the noise w, and with specified

initial conditions, then we may simplify the form of (8)

i
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and (9) to

x - Ax,	 x(0) - x0 ,	 y - Cx,

V(T) - .foT Y ( t)dt + Y ( T)	 (21)

and (16) becomes

Vi (T) - ^ J T Xi( t) xi (t) dt + 
aj- xi (T)	 (22)

where ( 15) still holds except that ( 16) is now replaced by

X = AX + XAT ,	 X(0) A x(0)xT(0),'	 (23)

which has nontrivial solutions X(t), t e [0, T), for finite T.

Example 3. A finite-time deterministic problem.

For the example ( 2), find the component costs for vehicle

and actuator components v(t) and f ( t), if T - 1000, m - 1,

a = -1, v - 100, v(0) = 0, f (0). - 0, g - 9.8, and u - 1 is a

step input. The deterministic model of the inputs augmented

to (2) yields (20), where

0 1/m	 -1	 v -3	 -100

A = 0	 a	 1/9.8 ,	 r. =	 f	 ,	 x(0) =	 0

0	 0	 0	 9	 9.8

Putting ( 3) into the form (20) leads to

C(t) = 10 1 01, Q(t) - 1, 0 <_ t < T

C (T) - [1 0 0) , Q(T) = 1.

Solving (15), subject to (23), yields for (22),

'	 Vl (T) - 7.92 x 10 4 ,	 V2 (T) - 1., 00,	 V3 (T) - 0,

where V1 (T)/ 3 (T)	 0.9999 is the fraction of the cost associ-

ated with vehicle dynamics, V2 (T)/V(T) - 1.27 X 10-5 is the

fraction of the cost associated with actuator dynamics, and

^i
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V3 (T)/V(T) - 0 is the fraction of the cost due to the biases

in the system (gravity). Clearly the vehicle dynamics domi-

nate the performance.

C. INFINITE-TINE DETERMINISTIC PROBLEMS

In the limit T m , (21) yields V(T) - 0 if A is asymp-

totically stable. Hence, a different performance metric and

component cost definition is required for the special case of

infinite-time deterministic problems. An appropriate cost

function for this case is

VD (-) 	f Y (t) dt,	 ( 24)
0

which leads to

	

VD ( m ) = xOKx0f 	0 = KA + ATK + CTQC,	 (25)

where K exists if and only if the observable modes of (A, C)

are stable, and K is positive definite if (A, C) is observable.

Here the component cost VDi associated with component i is de-

fined as the net effect of the excitation of the ith component

state xi . Hence, in this case the excitation is x1 (0) and the

component cost is defined by

m	 n

VDi (-) _ a'^^ xi (0) 	 I xi

	

x	 (0)Kijxj(0)

	

1	 j= 1
(26)

tr(Kx ( 0)xT(0))ii,

where K satisfies (28).

The remainder of this chapter will focus on the stochastic

problem rather than the deterministic problem of Section III.C.

This means that the "output-induced" component costs (18) will

be of interest, rather than the " input-induced" definitions of

(26). The reader can find details of an input -induced

'^ti
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component cost for stochastic systems in (5), which, for

deterministic problems, is based upon ( 26), and for the sto-

chastic problem

V = E
J 

- Y(t)dt,	 x = Ax,	 Ex(0)XT (0) - X(0),	 (27)
0

(5] utilizes the stochastic version of the component cost

definition (26) whose calculation is

Vi - tr [XX ( 0)111 .	 (28)

For the stochastic problem

V = lim EY(t) ,	 x = Ax+ Dw,	 Ew(t)wT(T) = W6 (t - T)
t-•m

y = Cx,	 Y A IIYII 2	(29)

(5) utilizes the input -induced component cost definition

Vi 1 lim E 'Y Dui ,	 wi ^. Diw	 (30)

1

whose calculation is

Vi = tr [KDWDR fi .	 (31)

The input-induced definitions ( 30) of component costs Vi

represent the effect in V of excitations of component i,

whereas the output-induced definitions (13) and ( 18) represent

the total contributions of x i in V in the presence of all ex-

citations. The latter and more recent definition seems to be

a much more complete notion of the contribution of component

xi in the system cost while the system is subject to all its

natural environmental disturbances. Hence, this chapter will

present a theory only for output-induced definitions of com-

ponent cost, although the same procedures could be used to
i

work out a corresponding theory for the input-induced case.

To further simplify the presentation, only time-invariant

^S
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systems with infinite terminal time T will be treated in de-

tail. The application of the concepts to the finite-time case

will be straightforward.

IV. BASIC THEOREMS OF COMPONENT COST
ANALYSIS FOR MODEL REDUCTION

Given the time-invariant linear system

x - Ax + Dw,	 y - Cx,	 (32)

V = lim E y(t)'I Q ,	 O > 0	 (33)
t—

with components described by (5), and with zero -mean white

noise disturbances w(t) with intensity W, then the value of
n

component i whose state is xi e R i has been shown in previous

sections to be

Vi = tr[XCTOCI ii ,	 0 = AX ,+ XAT + DWDT	(34)

and Vi is called the ith component cost. The fractional part

of the ith component ' s contribution to V is Vi /V, where

V = Ejal Vi . This component cost information (34) might be
l

useful to guide system redesigns, failure movie analysis, and

model reductions as mentioned in the Introduction. In the
i

context of model reduction there may be considerable freedom

in the selection of coordinates before model reduction begins.

That is to say the definition of components is up to the

analyst. For any selected component definition, the model re-

duction scheme proposed is simply to discard (truncate) some

of the component equations (5). Suppose the component index i

belongs to the set R(i a R) corresponding to the retained com-

ponents xi , and i e T denotes the set of indices associated

A.
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with the truncated (deleted) component equations. The reduced

model is

n
XR = ARxR + DRw, x  e R r

r	 (35)

y CRxR' n 	 ni
i=1

where AR is composed of the set {i a R) of columns and rows of

A, DR is composed of the set {i a R) of rows of D, and C  is

composed of the set {i a R) of columns of C. The set R is de-

termined by those r integers (here denoted generically by 1,

2,..., r) associated with the r largest component costs

Vl 2 V2 > V3 2 ••• 2 Vr 2 Vr+1 2 ••• 2 Vn .	 (36)

The CCA algorithm for model reduction is therefore character-

,	 ized by these two basic steps:

The Basic CCA model reduction algorithm

I. Compute component costs Vi by (34) and rank according

to (36) .

II. Delete the n - r components associated with the n - r

smallest component costs. The resulting model is (35).

The remainder of the chapter seeks to characterize various
I

mathematical properties of this CCA algorithm. This is clearly

necessary since it is not apparent at this point whether the

CCA algorithm produces "good" reduced models. To address this

question of model error, we shall define-a model error index Q

in Section VI. But first a brief review of modal coordinates

is in order.

14



V. MDDAL COST ANALYSIS (MCA)

There is an important case in which the input- and output-

induced definition of component costs yield the same result,

and this case is summarized below.

Proposition 3. Consider system (29) where x i is the ith

modal coordinate and assume for convenience that A has

distinct-eigenvalues. Hence, A is diagonal. Then the CCA

algorithm will produce the same reduced model, whether the

output-induced or the input-induced modal cost definitions,

(18a) oc (30), respectively, are used.

Proof. To prove this result we must show that the compo-

nent costs as computed by (18b) and (31) are identical if Aij

in (5) has the property Aij - Ai d ij . First we shall show that

for all real Ai,

*	 *
Vi - [XC QC)ii = [KDWD 

)ii	
for all i ; 1,..., n, 	 (37)

where X and K satisfy

*
0 - XA * + AX + DWD

*
 , D = complex conjugate

transpose
(38)

(D) T
*	 *

0-KA+AK+C QC,	 (39)

when Aij - A i a ij . The complex notation * is required due to

the complex matrices A, D, and C. It is well known [5) that
*

the total cos. is the same by either calculation V - tr XC QC

or V - tr KDWD* , but the issue here is whether each modal cost
*

(37) is the same. Denoting the ith row of D by di and the ith

column of C by ci , the solutions of (38) and (39), respec-

tively, are

Xi j = -diWd j / (A i + Ti j ) .	 ( 40)
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Ki j = -ci(C j/ (,ri + a j

We also remark that mode i is observable (disturbable) if and

only if ci (di ) is not zero. Use (40) and (41) to obtain,

respectively,

n	
d c*

[XC*QC) ii -d 	 --_-- Qci 	(42)

'	 j-1

n	
c 

d*

[RDWD* )
ii
 -ciQ— Wdi .	 (43)

J-11ai + ^► j
Since the complex number on the right-hand side of (42) is the

conjugate of the complex number on the right-hand side of (43),

(37) is therefore verified for the special case of real eigen-

values of A. For a particular complex eigenvalue a i , let

li+l - Ti .
 

Equations ( 42) and , ( 43) show that the component

cost of any xi associated with a complex eigenvalue I
i 
will be

1

a complex number and that the component cost of xi+l corre-

sponding to the eigenvalue A i+l - Ti i will be the complex con-

jugate of Vi . That is Vi+1 - Vi and Vi have .the same norm.

Hence, replacing Vi by ( Vi l in the CCA (presently MCA) trunca-
f

tion rule ( 36), the MCA model reduction algorithm would always
1

truncate modal components so that complex conjugate pairs of

eigenvalues are truncated. Note also that in the case of

proposition 1, ni - 1 and for a complex conjugate pair

li+l - Zi p it is true that

Vi+l + Vi - 2ReVi .	 (44)

Hence, the total cost V is real, and the sum of the modal cost

of any two modal components associated with complex conjugate

i

(
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pairs of eigenvalues will be real. The proof is concluded by

noting that complex conjugates are truncated in pairs and from

the fact

[XC QC) i+l,i+l - [XC*QCl ii - [KVWD 1 11 ,	 (45)

we conclude that for a complex pair

Vi + Vi+i - [XC*QC)ii + [XC*QCli+l,i+i

- [KDPiD
* I

ii + [KDWD*I i+l,i+l' (46)

Hence the same modes will be truncated by either definition of

modal cost. #

Under special conditions the modal costs (42) and (43)

simplify greatly.

Proposition 2.	 If either (a), (b), or (c) holds:

*
(a) diWdj - 0,	 1 # j	 (disturbance decoupled modes);

*
(b) ciQcj - 0,	 1 0 j	 (output decoupled modes);

(c) (Rea i/ImY arbitrarily small, and wi # w  (lightly

damped modes);

then the modal costs of a linear system are given by

*	 *
c QC a wd

Vci	 Vi + Vi	 ---- Re--- 	 aIIciIIQ11diIIw.	 (47)

which holds for either the input-induced definition (30) or

the output-induced definition of modal cost and where V is de-

fined by (29). If Xi is real, then the ith modal cost is

Vci Q Vi'
The proof of parts (a) and (b) follow immediately from

(42) and (43). The proof of part (c) is given in [5). #
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Examples of case (c) in proposition 2 appear in [5] and

[17] where WA is applied to systems of order up to 200. It

should be noted that since the MCA formulas (47) are explicit

[hence, the linear matrix Eq. (38) does not have to be solved

numerically], the MCA algorithm may be applied to any system

for which modal data are available. It will subsequently be

shown that modal coordinates might not be the best coordinates

in which to perform model truncation. However, much insight

is available from (47) indicating that modal costs are com-

posed of the product of three properties of a mode: (1) time

constant, (2) observability norm, and (3) disturbability norm.

VI. MODEL ERROR INDICES

Having a reduced model (35), we now turn our attention to

the definition and calculation of a convenient measure of

"model error" when comparing the reduced modal (35) with the

evaluation model (32).

Definition 2.	 The errors associated with model (35)

produced by the CCA algorithm are measured by the model error

index

Q I (V - VR)	 (48)
1

where VR ie the performance metric associated with (35). If

the disturbable modes of (AR , DR) are stable, then

VR tr XRCR4CR ,	 0 ARXR + XRAR + DRWDR'	(49)

and V is the performance metric associated with the "evalua-

tion" model (32), as given by (33).

Of course, VR can be computed only after model reduction.

The information available a priori will be called the predic-

ted model error index ^.

r
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Definition 3. The predicted model error index is defined

by

Q Q ^^ (V - AV R)!,	 (50)

where

VR A EVi ,	 i e R.	 (51)

From (36), (50), and (51), it follows also that

7) 9T! ,	 9T	 EVi ,	 i e T,	 (52)

and

V - VR + VT .	 (53)

When applying the model error index Q to the reduction of the

closed-loop system ( to reduce controllers rather than models),

Q plays a role similar to the "suboptimality index" of Siljak

[14). Note also that the Q chosen here (48) is the difference

in the norms of y and y, whereas the model error index chosen

in [5] is the norm of the difference y - y. This choice (48)

is primarily motivated by the controller reduction problem

where VR represents the performance using the reduced control-

ler. In that problem VR > V since VR represents the sub-

optimal controller perfromance. Since V R is minimized if Q is

minimized, the difference of norms represented by (48) is a

more logical choice for controller reduction. This paper now

focuses on the prerequisite problem of model reduction where

all the essential mathematical results are derived for subse-

quent application to controller reduction.

For the model reduction problem, the model error index (48)

would be a meaningless index if the parameters of the reduced

model (AR , DR, CR) were arbitrary, since in this case param-

eters can always be found to make Q - 0. Reasonableness is



added to the problem, however, by the fact that the search for

small Q is subjected to the parameters (AR , DR, CR), which are

oonstrained to be a transformed subset of the original system

parameters (A, D, C). We now continue with this model reduc-

tion problem.

The questions that naturally arise and are to be answered

in the sequel are

(QI) Under what conditions is the predicted model error

index Q exact (Q - Q)?

(QII) Under what conditions is the model error index Q

zero?

(QIII) Under what conditions is the model error index Q

minimized by the CCA algorithm?

(QIV) Given that A is stable, under what conditions is

the reduced model produced by CCA stable?

VII. COST-EQUYVALENT REALIZATIONS AND MINIMAL
REALIZATIONS WITH RESPECT TO COST

Toward the development of the mathematical mac;winery

!	 required to answer questions (QI)-(QIV), we introduce the

`	 following definitions.

Definition 4.	 Cost-equivalent realisations

Let (AR, DR, CRP XR
(0), W R ) characterize the partial

i

realization (35) and let iA, D, C, X(0), W) characterize the

evaluation model ("complete" realization) (32). The partial

realization is said to be cost-equivalent if Q - 0.

Definition 5.	 Minimal cost-equivalent realisations

With respect to the given components (5), the partial

realization (35) is said to be a minimal cost-equivalent

realization if r is the smallest integer for which Q - 0.

I
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To simplify our bookkeeping, let us assume that the oom-

ponents ( S) are arranged in order of their component costs and

define

XR Q
	 (...,	 xi,...),	 i e R, (54a)

XT Q	 (0..6,xi,...),	 i s	 T. (54b)

Then ( 32) may be written in the form

±	 xR	 AR	 ART	 xR	 DR
•	 +

[AT.	 ]

jw,

xT 	 AT	 x 	 DT
(S5)

Y - (CR	 CT) xR

xT

Let X as defined by (34) be likewise partitioned in the manner

 ^T ,
X -

^	 [9'T

(5b)

Due to symmetry of X, the partitioned form of the linear equa-

tion ( 34) using ( 55) and ( 56) yields three linear equations of

smaller dimensions. 	 Two of these equa tions are

0 - ARXRT + XRTAT + ARTXT + XRATR + DODT. (57a)

0	 AT°T + RTA'T + ATRIRT + 
I
RTATR + DTWDT . (57b)

The remaining equation in XR is subtracted from (49) to yield

,l

0 AR"R + ^RAR + ARTNT + XRTART'
	

(57c)

where 77R XR - XR.
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A. ANSVIRS rO QUESTIONS

Using the above symbi

Proposition 3.	 The

exact in the sense = Q

(a) if tr (%CRQCR +

(b) if tr %CRQCR +

=O and V

QZ, QZZ, AND QZZZ

)ls, question 01 can now be answered.

predicted model error index 4 is
under any of the following conditions:

^TCT^R) = 0 and V .1 VR ;	 (58a)

tr 2XTCTQCT + tr 31 CTTQCR

< VR S	 (58b)

(c) if XRT • 0=

(d) if xT is unobservable=

(e) if xT is undisturbable.

Proof.	 Noting ( 49) and ( 50), it follows that the proof

requires that VR = VR if V >_ VR and requires that 2V = VR + 'VR

is V < VR. To show that VR Vk when (58a) holds, we first

write from (34) , using (55) and (56) ,

VR • tr [xcTQCI ii = tr(XRCRQCx + XRTCTOCR ), i e R

• tr{(!̂ R + XR) CRQCR + XR TCTQCR }.	 (59)

Now subtract (49) from ( 59) to obtain ( 58a) directly. To

prove ( 58b), write, using (34), (55), and (56),

V = tr XRCRQCR + 2 tr XR TCTOCR + tr XTCTQ CT .	 (60)

A
Substitute (60) into 2V	 VR + VR , using (491 and (59) to get

2(tr XRCRQCR + tr 2XRTCTQCR + tr XTCTQCT)

• trXRCRQCR + tr XRCRQCR + tr XRTCTQCR ,	 (61)
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which reduces to (58b).	 To prove (c), setXRT • 0 in (57c) to

obtain !	 • 0.	 Furthermore since	 • 0, .we have from (60)

and (49)

Y - VR • tz XRCPCR + tr X,rCTQCT - tr XRCi.QCRi

t

1 tr SERCRQCR + tr XT%QCT • tr 
XTCTQCT

Now, since the state covariance X is at least positive semi-

1 definite 161, XT > 0 and hence Y > YR 	Hence,	 (58a) is

applicable, and this prove s ( c).	 To prove (d), one may with-

out loss of generality assume 
ART 

= 0 and CT = 0 since xT is

unobservable.	 This yields from (57c) 7^R 	0, which immediately

leads to (58), since CT - 0.	 To prove (a), assume xT is un-

disturbable (i.e., set ATR - 0 1 DT - 0).	 This yields from

(57a) and (57b) AT - 0, ART - 0, and ( 57c) yields SCR - 0.

Hence, condition ( 58) is again satisfied.	 t

It may be crmforting to know that the predicted model

error index is accurate, but the initial issue of the "best"

choice of coordinates and components is still unresolved.

That is, some choice of coordinates may lead to smaller model

error indices than other choices, even though the predicted

model error index may be exact for each choice. 	 Before we try

to resolve the question of the best set of coordinates, we

shall define the limiting case where the reduced model is

"perfect." Thus, the following result answers question QII.

Proposition 4.	 The partial realization ( 35) is a cost-

equivalent realization of ( 32) under either of these

conditions:

(a) if and only if

tr AR° CRQCR + tr 2XRTCTQCR + tr XTCTQCT = Oi	 (62)
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M if xT is unobservable=
a

(c) if xT is undisturbable.

Proof. From (58) , it follows that proof of (a) relies

upon a proof that V - V  if (62) holds. Subtract (69) from

(60) to get (62) directly. To prove (b) we rely on the proof

of theorem 3, which showed that XR 0 if xT is unobservable

and that CT = 0 may be assumed. The conditions XR.= 0, CT = 0

lead to satisfaction of (62). To prove (c), note from the

proof of theorem 3 that XR = O, XT 0, XRT - 0 if xT is un-

disturbable. These substitutions in (62) conclude the

proof. #

Having answered questions QI and QII, it is now possible

to provide an answer to QIII. This answer is summarized by

proposition 5.
i

Proposition 5. Given a specified r and the components
i

(5), which satisfy proposition 3 (Q = Q), the model error in-

dex Q is minimized by the CCA algorithm.

!	 Proof. Since Q = Q the model error index is given by

(52). Among the set of (Vi , i = 1, 2,... n), the VT in (52)

is composed ;SV definition) of the n - r smallest subset of

V
i
 s, according to (35). Hence, Q cannot be decreased by any

other choice of r components from the given set of n compo-

nents (5). #

We must not read too much into proposition 5. It only

guarantees that there are not better r choices of the given n

components. The a priori choices of component definitions

that can be made are infinite. In any model truncation prob-

lem these three factors are important:
R

(a) choice of coordinates,
t
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(b) choice of a truncation criterion, and

(c) choice of an evaluation criterion for the reduced

model.

In CCA, the best choice (a) has not yet been determined,

choice (b) is given by (36) and (52), and choice (c) is given

by (48). One suggestion for choice (a) is introduced in the

next section. It should be noted, however, that depending

upon the question being addressed, the analyst may not have a

choice of coordinates. In this case the results of Section

VII.A apply, but the coordinate transformation of Section

VII.B will not be permitted.

B. COST-DECOUPLED COMPONENTS

The previous section describes CCA for any given choice of

components, and this flexibility is important for the analysis

of component costs using physical components. However, in

model reduction the analyst may be free to choose the refer-
4

ence coordinates and may not be restricted to the analysis of

physical components. The component costs for some choices of

components (i.e., choices associated with the underlying co-

ordinate transformations) are more convenient to interpret

than others. As an example of possible confusion, note that

even though the sum of component costs V i is positive (14), an

f
individual Vi defined by (15) or (34) can be negative. All

theorems of previous sections are still valid, but one might

obtain better refaced models by using absolute value signs

around each Vi in (36). Clearly, such issues need not be of

concern if all Vi are proven to be nonnegative. The cost-

decoupled components to be defined in this section will prove

1 to have this property.

^—	 1
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It may also be observed from the basic ideas of (11), from the

general component cost formula (15), and from the steady-state

cases of (16) and (34), that the component costs Vi and V  are

not generally independent. That is, the ith component cost

Vi is influenced by component j. This presents no problem for

the in situ component cost analysis for purposes other than

model reduction. But for model reduction such dependence be-

tween Vi and V  leads to errors in the predicted model quality

index Q, since in this case the deletion of component j also

modifies the cost of the retained component i. This nuisance

can be removed by choosing components that have independent

costs. Thus, the motivation for such component choices is to

gain the property Q = Q of proposition 3. For the purposes of

this section, define the components xi a R1 to be each coordi-

nate of the cost--decoupled state x 2 . Hance n  = 1 for all i

in this case. From part (c) of proposition 3, it is clear

that uncorrelated components (i.e., Xij = 0, 1 # j) yield the

property = Q. An additional property is added to obtain the

"cost-decoupled" coordinates defined as follows.

Definition 6.	 The "cost-decoupled" coordinates of a

linear system are any coordinates for which the covariance X

and the state weighing C TQC are both diagonal matrices.

A convenient choice of cost-decoupled coordinates may be

computed as follows. Let {x°, X°, C O , A°, D°) represent an

original set of coordinates and data, and let {x, X, C, A, D)

represent the transformed data according to the transformation

X* - ex,	 0 - X°A° T + A°X" + D°WD°T ,	 (63a)

i
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where 6 8x0Y and 0x, 0y satisfy

X•	 exeX	 -	 (63b)

t
0y EYQY ,

	

	 8XC •TQC •0x = EYA 2 7.	 (63c)YE

J
Note that ox is the square root of the covariance matrix X•.

t	 The nonsingular diagonal matrix ic y is arbitrary. The ortho-

normal matrix of eigenvectors of OXCTQCOx is E  and the corre-

sponding eigenvalues (which are also singular values [9) since

the matrix is symmetric) are elements of the diagonal matrix
A2

Y

In cost-decoupled coordinates, the system ( 32) is trans-

formed by

A = 0y10XlA°0x6y .	 (64a)

i	 D = 0y10X1D°, 	 ( 64b)
i

C = C •0x0y .	 (64c)

The calculation of the steady-state covariance matrix of a

stable system in cost-decoupled coordinates reveals that

X = 0-2	
(65)

and the state weighting matrix [CT QC] in the performance
1

metric

V = lim E 11Y112 = tr XCTQC
t^

is

CTQC = Q2A 2 .	 (66)

Hence from (65) and (66) ,

k
V tr XCTQC = tr Y = I a i [OXCTQC0x 1,	 (67a)

i=1
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where ai [ • j denotes eigenvalue of [•], and the summation is

only up to k, since there are only k nonzero eigenvalues of

eXCTQCeX, since rank C k. Note that the component costs in

cost-decoupled coordinates are

Vi - a i leXCTQCex I 	 (67b)
i

which leads to this simple interpretation of cost-decoupled

coordinates and component costs: In coordinates (components)

that are uncorrelated (X is = 0) and output decoupled ([CTQC]ij

= 0), the component costs are the eigenvalues of the state-

weighting matrix. In view of (67a) which holds for any 0 V , there

seems to be no disadvantage in the choice Ry = I, although a

different choice for Sty will be chosen in Section VII.D for

convenient comparisons with the work of others. Temporarily,

we choose Dy = I.

The useful properties of cost-decoupled coordinates are

now summarized in the followinq proposition.

Proposition 6.	 In cost-decoupled coordinates, the full-

!	 order model (55) has the following properties:

(1) Vi > 0 (the component costs are all nonnegative);

(2) AR has no eigenvalue in the open right half plane;

(3) AR is asymptotically stable if and only if the pair

(AR, DR) is disturbable.

Proof.	 Claim (1) follows immediately from (67b) since

Vi	 Ai [6XCTQC0.1 > 0.	 (68)

To prove claim (2) and (3) , partition (65) (with ny = I) as

F R RTi rI 01

3
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This reveals that 
X
RT - 0. Hence, writing the portioned fore

of (34), partitioned compatibly with (55), yields

0 = AR + AR + DRWDR, 	 (69b)

0 MT
ATR + ART + DRW)T .	 (69C)

0 AT + AT + DTWDT. 	 (69d)

Either (AR, DR) is disturbable or not. If (AR, DR) is distur-

bable, then the state covariance of (35) from ( 69b) is

X^ 
_fO OD
 e RDWDTe dt - I	 (69e)

R 	 R R

and the finiteness of XR guarantees asymptotic stability of

AR (XR would not be bounded for unstable AR under the disturb-

ability assumption). This proves the "if" part of claim (3).

If (AR, DR) is not disturbable then there exists an ortho-

I	 normal transformation

t

xl 	T T1

	

X =	 T

T
xR=	 x 

x2 	T2

to take the system (35) to the controllable conical form

i	 AllAl2 xl	 [Dl]w,. [

IX-1

	

2	 0	 A22 x 2	 0

x1

YR = [Cl C 2

I x 2

(70a)

(70b)

.i

i

-	 i



OF POOR QUALITYOF

Where (All , Dl ) is completely disturbable. Now (69b) becomes

0 = A11 + All + DjWDi,	 (71a)

0 - Al2,	 (71b)

0 - A22 + A22 .	 (71c)

The eigenvalues of AR are those of A11 and A22 . Since (All'

D1 ) is disturbable and f6eAl1t D1WD1 eAl1t dt s I < -, the

eigenvalues of A11 must lie in the open left-hand half plane

by reasons mentioned above. The eigenvalues of A22 must lie

on the imaginary axis since A22 is skew-symmetric (A22 - -A22)'

Hence, no eigenvalues of AR can lie in the right-hand half

plane but there are eigenvalues with zero real parts. This

proves claim (2). Moreover this proves that AR is not asymp-

totically stable if (AR, DR) is. not disturbable, the "only if"

i part of claim (3) . #
i

Proposition 7. If the CCA algorithm using cost-decoupled

coordinates produces a disturbable pair (AR , DR) then the fol-

lowing properties hold:

(1) Q = Q (the predicted model error index is exact);

(2) Q is minimized for a given r;

(3) Q = 0 if r _> k (the CCA algorithm produces a minimal

cost-equivalent realization of order k - rank C).

Proof.	 Claim (1) is proven by showing that (58a) holds.

By virtue of the fact that XRT = 0 (since X in definition 6 is

diagonal) it follows from (57c) that XR - 0. Hence (58a) is

3A
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satisfied if V >_ VR. To show that V > VR note from ( 67a) that

VR -

	

	 li leT TQCex1'	 i e R.
i

Hence, since X  > 0 for all i,

V - VR if r _ k,	 k - [rank C)

V> VR if r <k

and (1) is proven. The proof of claim (2) follows from (1)

and theorem 5. Claim (3) follows from claim ( 1) together with

(67b) and the fact that I()XCTMex , can have no more than k

rank C nonzero eigenvalues. # It may be readily verified

that proposition 7 holds for the general cost-decoupled co-

ordinates in definition 6, and proposition 7 is not restricted

to the special choice of cost -decoupled coordinates given by

(63). Furthermore, claim ( 3) of proposition 7 shows that the

CCA algorithm using cost-decoupled coordinates yields a cost-

equivalent realization of (32) if r >_ k and if the reduced-

order model is disturbable. These are only sufficient condi-

tions. We shall now present the precise conditions in which

such cost-equivalent realizations are obtained.

Proposition 8.	 The CCA algorithm using cost-decoupled

coordinates yields cost-equivaZent realizations of (32) if and

only if (a) r ,> k and (b) the undisturbable subspace of (AR,

DR) is unobservable.

Proof.	 For any pair (AR, DR), the transformation defined

in (70) exists. (If (AR , DR) is disturbable then I - T - Tl,

All = AR , Dl= DR , and C1 = CR .) Then from equations ( 70) and

(71), it can be seen that AR is not asymptotically stable.

Those eigenvalues of AR which are not asymptotically stable

are contained in the set of eigenvalues of A.21

I
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and this corresponds, to the undisturbable.nart of 	 D.

Hence, the undisturbable modes are the only ones that are not

asymptotically stable. Since the unstable (and undisturbable)

part of AR does not contribute to the cost V R [6), the model

(35) can be further reduced to yield

xl	 A11JC.1 + plw,

(72)
y  = C1xl.

such that

YR	 lim F 11Y
R ( t ) 112 = lim S^lyl ( t),112

t^	 t-0-W

Now from ( 71a) and (49) we have

VR tr C11	 tr TlCRQCRTl
(73a)

= tr CROCR - tr T2CRQCRT2,

where the orthonormal property of T(T1Ti + T2T2I ) is used.

From ( 66), (67a), and the partitioning of C in ( 55), it can be

seen that

r

tr CT0CR 	i I
aeT Tocex! 

.ic
i=1

Hence,

r

VR =	 Ai[eTTQCe.] - tr CT 0C2(73b)

i=1

where C2 Q CRT2 . Now, since Al2 = 0 from-(71b), considering

(70b) to be in observable canonical form [6], it can be said

that C2 = 0 if and only if condition (b) holds. Furthermore,

since the columns of T 2 span the undisturbable subspace of
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(AR, DR) (6), we have the following:

(i) if condition (b) holds (egpivalently if C 2 = O) then

r

Ai[e
Tic

	

TQCO.1 = V	 if r _> k	 (74a)

i=1
VR

r

	

J1i leXCTQCeX , < V	 if r < k	 (74b)

i=1

(ii) if condition (b) does not hold (i.e., C 2 # 0), then

r

VR 	XijeTic TQCe.] - a < v,

i=1

(74c)

where a Q tr CTQC 2 > 0. obviously a = 0 if (AR, DR) is dis-

turbable since IT  T2 ]	 [T1 ] = I and [C1 ] - [CRI implying

i
	 C2 4 0. Note, therefore, from,(74) that if condition (a) does

not hold, then VR < V and (35) is not a cost-equivalent

realization. 4

One obvious conclusion from proposition 8 is that the

order of the minimal CER is never less than k, the number of

independent outputs. It is of interest to classify those sys-

tems whose minimal CER is of order greater than k.

Proposition 9.	 For all systems (32) whose first Markov

Parameters is zero (CD = 0) the order of the minimal CER is

greater than k.

Proof.	 Let the system (55) be in cost-decoupled coordi-

nates and let r = k. Hence, assuming fly = I, from (66) we have

CRQCR CRQCT 	 r2 0	
0 0



ORIGINAL PSG f^
OF POOR QUALITY

r	 3L

where A2 a diag(A l [CTQCJ, A2 [CTQC),•••, Ak [CTQC0 . Now since

rank C - k, Ai [CTQC) 0 0, 1 - 1, 2,._., k. Hence, equating

CTRQCR A2 ,	 (75b)

CTQCT or (75c)

and recognizing that Q > 0, it can then be claimed that C  (of

dimension k x k) is square and of full rank and that CT - 0.

Now, since Markov parameters are invariant under similarity

transformation, we have

r

R j
CD - 0 ++ [CR 0)	 -CRDR-0.	 (76)

T

Equation (76) is satisfied if and only if DR - 0, since C  is

square and of full rank. In this event, the pair (AR, DR) is

obviously undisturbable. Furthermore, due to full rank of CR,

the pair (CR, AR) is completely observable. Therefore, the

undisturbable subspace of (AR, DR) cannot be also unobservable.

This violates condition (b) of proposition B. Hence the mini-

mal CER cannot be of order k. /

Nevertheless, a minimal CER of order r > k, can be con-

structed for the systems defined in proposition 9, by in-

creasing r until condition (b) of proposition 8 is satisfied.

C. THE ALGORITHM FOR COST-EQUIVALENT
REALIZATIONS (CER)

Cost-equivalent realizations (CERP,) are provided by the

CCA algorithm using coat-decoupled coordinates and the CERs

have all the properties of propositions 6 and 7. The two

steps of the basic CCA algorithm are described in Section IV

- ,I
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ayd the cost-decoupled coordinates are described in Section

VII.B. Combining these two ingredients leads to the following

CER algorithm.

The CSR algorithm

Stop 1. Given the model and performance objectives of (32)

and (33) :

(A, D, C, Q, W) where Q > 0, W > 0, A stable.

(Choose gy = I.)

Stop 2. Compute covariance X from

0 = XAT + AX + DWDT .	 (77)

Step 3. Compute 8x the square root of X2

X = 8x8X .	 ( 78)

Step !. Compute 8y , the orthonormal modal matrix of

BXCTQCeX . ; The component costs are

8y8XCTQC8x8y diaq{V1 , V2 ,..., Vk , 0,.... 0}. (79)

where the number of nonzero component costs are k = rank LC].

Step 5. Rearrange the columns of 8 y so that the V i appear in

order

V1 L V2 2 ••• > Vk . Set r = k = rank C.	 (80)

Step B. Then define 8R by

8y 	[8R, 8T) , 8R E Rnxr . 	 ( 81)

1 For effioisnt solution of the linear Liapunov equation,
use the algorithm in 1111.

2For effioient oalculation of 8x, sse the computer codes
in [121.

3For this task use singular value deooaposition [9) or use
an sigenvalue/sigenvoctor program speciatized for symmetric
matrioss.

N
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Stop 7. Compute AR = 8R8X1A8x8R

DR = 0 T8X1D 	 CER.	 (82)

C  = Cex0R

Step 8. Compute modal data for AR:

ARei = Ai
s
i t i - 1, 2,..., r

If 11CReill > 0 for any i such that R 
0 

A i - 0, where Re (-) de-

notes "real part" of (•), not r - r + 1 and go to step 6.

Otherwise stop.

Remark: The product C R e i is defined as the 
observability

veotor associated with mode 1 (5) (mode i in a nondefective

system is unobservable if and only if its observability vector

is zero). Hence, the purpose of step 8 is to check if the un-

stable mode (R .A i - 0) is observable. Since in cost-decoupled

coordinates the unstable modes of AR are also undisturbable,

step 8 amounts to checking if the condition (b) of proposition

8 holds.

This algorithm guarantees the construction of a CER. How-

ever, the construction of a minimal CER is guaranteed only if

the algorithm converges within the first two iterations, in

which case the CER is of order r - k or r - k + 1. For the

minimal CER of order k the triple (A R, DR, CR) is both dis-

turbable and observable and asymptotically stable. For any

other CER produced by the algorithm, the disturbable, observ-

able spectrum of (AR, DR, C R ) is asymptotically stable. Attar

the first iteration of the algorithm, the selection of the

best sequence of eigenvector calculations in step 5 has not

been determined and is under investigation.
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If the CER algorithm yields a CER of order r with an

unstable (and undisturbabie and unobservable) spectrum, then

the CER can be further reduced, as shown in (70) and (72), to

yield a realization of order lest than r. This smaller real-

ization is still a CER as is proved following proposition 8.

D. RELATIONSBIPS BETWEEN THE COST-DECOUPLED
COORDINATNS AND THE BALANCED COORDINATES
OF MOORE (7)

5

	

	 The balanced coordinates of Moore (7) are defined by the

transformation that diagonalizes the controllability and ob-

servability matrices (X and K in this paper). Singular value

analysis provides the efficient tools to compute the balanced

coordinates. As mentioned in the introduction, CCA can be

applied to any choice of coordinates, including balanced co-

ordinates. The most powerful results from CCA are obtained

with the use of the cost-decoupled coordinates defined in the

last section using the CER algorithm. Moore (7) introduced

balanced coordinates to reduce numerical ill-conditioning,

thereby making data more manageable in the computer. On the

other hand, the primary goal of CCA is specifically to tailor

the reduced model to the control or output response objectives

(36). It would be of interest to know whether there are cir-

cumstances under which balanced coordinates of Moore are cost-

decoupled.

To obtain balanced coordinates, a coordinate transforma-

tion is selected so that the new (balanced) coordinates have

the properties (see Eqs. (37) and (38) in (7)),

2
X = K = E = diag, 	 (83)
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where X is the disturbability matrix

m	 T
X A 

J 

eAt^Te
A t dt, W > 0	 (84)

0

satisfying

0 - XAT + AX + DWDT ,	 (85)

and K is the observability matrix

K Q (^ eATtCTWeAt dt, 0 > 0
	 (86)

J0

satisfying

0 = KA + ATK + CTQC .	 (87)

To obtain the cost-decoupled coordinates of Section VII.B,

a coordinate transformation is selected so that the new ^cost-

decoupled) coordinates have the properties from definition 6,

X = diag,	 CTQC = diag,	 (88)

To summarize these results from (83) and ( 88), proposition 10

specifies the condition under which cost-equivalent realiza-

tions can be obtained from balanced coordinates.

Proposition 10.	 If in balanced coordinates the state

weighting CTQC happens to be diagonal, then balanced coordi-

nates are cost-decoupled and hence have all the properties of

proposition 6.

Proof	 Cost-decoupled coordinates are defined by (88)

and balanced coordinates satisfy (83). The comparison of (83)

and (88) concludes the proof. #



VIII. SHOULD REDUCED !MODELS DEPEND
UPON THE WEIGHTS IN THE QUADRATIC COST?

The reader should be reminded of the fact that the state

weighting (CTQC] in the performance metric

V = lim EI+Y1+ 2 ' lim gxT[CTQC]x
t-*"	 Q	 t+ee

often contains parameters chosen in an ad hoc fashion. Why

then, one might ask, should one adopt a model reduction strat-

egy in which the reduced models depend upon the weight CTQC?

This question is briefly answered as follows. The selection

of a performance metric V reflects, to the best of one's

ability, the objective of the model analysis (to describe ac-

curately specific outputs y). Thus, it is important to keep

in mind that there are many problems in which the entire state

J	
weighting matrix CTQC is not arbitrary, but only the output

I	 weighting Q might be free to be manipulated. This notion of

}
penalizing only specific physical variables represented by y

j	 allows the number of free parameters in the n x n state

weighting CTQC to be reduced from n(n + 1) to k(k + 1), the
c

free parameters in Q. Thus, CTQC contains important informa-

1
	 tion by its very structure. For example, a certain spacecraftt

may have a mission to keep optical line-of-sight errors small

in a space telescope. These error variables, collected in the

vector herein labeled y, make up only a small subset of all

the state variables y - Cx. Alternatively, the same space-

craft may have a communications mission where one is interested

in the RMS deflections over the entire surface of a flexible

antenna. These two problems have entirely different modeling

(and control) objectives and it is precisely the weights CTQC

that distinguish between the two objectives. That is, the



reduced-order model that is best for the analysis (estimation,

control) of optical errors is different from the model that is

best for analysis of errors in the parabolic shape of the an-

tenna. To ignore these weights C TQC is to force a complete

and artificial separation between the control problem and the

modeling problem, a state of affairs which the authors believe

is not realistic. The authors' opinion is that one's ability

to evaluate the quality of any reduced model (obtained by any

method) is no better and no worse than his ability to choose

a precise performance metric. Of course, if one has no physi-

cal objective to motivate the choice of specific output vari-

ables y - Cx and if he instead arbitrarily chooses an equal

weighting on all balanced coordinates (CTQC - I), then the CCA

algorithm produces the same partial realization as balanced

coordinate methods of model reduction. A primary goal of this

1	 chapter is therefore to promote a systematic beginning for the

integration of the modeling and the estimation/control prob-

lems, to allow modeling decisions to be influenced by specific

quadratic control or estimation objectives, without relying

upon nonlinear programming methods.
i

It should also be mentioned that for scalar input-output

systems the reduced models produced by the CCA algorithm are

independent of the choices of the output weighting Q and the

noise intensity W. This can be realily verified by noting

that Q and W in (34) and also in (47) are scalars that are

common factors in every component cost Vi , and cannot there-

fore influence the cost ordering (36).

i



IX. STABILITY CONSIDERATIONS

Stability may or may not be an important feature of a

reduced model. In fact, several schemes for "improving" re-

duced models upon which state estimators are based include the

intentional destabilisation of the model as a means to reduce

or eliminate Kalman filter divergence. This means of im-

proving models is discussed in [15] and its references. Also

note that the technique of guaranteeing stability margins in

linear regulator problems by multiplying the state weight in

the quadratic cost function by exp(2at) causes the closed loop

eigenvalues to lie to the left of the line --a in the complex

plane [16). This method is also equivalent to intentionally

destabilising a stable plant model by replacing A by A + aI in

lieu of multiplying the state weight by exp(2at). It is not

our purpose to recommend necessarily such methods for esti-

mator or control design, but merely to point out that stabil-

ity is neither a necessary nor sufficient qualification for a

reduced model to be a "good" model of a stable system.

The model error index Q is finite if the observable modes

of (A, C) and the observable modes of (A R, CR) are stable.

Hence, stability is a sufficient but not a necessary condition

for the existence of Q. If stability is an overriding concern

in the selection of a partial realization, then one may choose

special coordinates for which the CCA algorithm guarantees

stability.

Presently, if the order of the partial realization is

fixed a priori, the only coordinates for which asymptotic sta-

bility of the partial realizations produced by CCA has been
i

A)guaranteed is modal coordinates. The modal cost analysis (MC
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of Section V produces stable models since the eigenvalues of

the reduced model are a subset of the eigenvalues of the orig-

inal (stable) system. However, since other coordinate choices

(such as the cost-equivalent coordinates of Section VII) may

produce better models, it is suggested that the CER be found

first and examined for stability. If stability of the reduced

model is required and not obtained from the CER, then obtain

the reduced model by application of MCA, which guarantees

stability. Note, however, that if both realizations (from CER

and MCA) of order r are stable, the authors have not found a

single example in which the CER failed to yield a smaller

model error index Q.

Furthermore, if the order of the partial realization is

not fixed a priori, then the CER algorithm always yields a CER

that is asymptotically stable.

i

X. CER EXAMPLES

The concepts are best illustrated with simple problems.

We begin with a second-order example.

Example 1.	 The CER for the system (32) with parameters

i

I:d
-0

A =	 , D

10	 70 1

C	 [1, -0.21,	 W = I

with transfer functions

y(s)	 G(s)w(0),

G(s) _ [(s + 1) (s + 10)) -1 [-13s - 4, 0.8s + 9.81 {

is

AR = -10.318,	 CR = - 2.867,	 DR = 14.534, -0.2791,
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which has the transfer function

y(s) - %(s)w(s),	 GR (s) _ [-13, 0.811(s + 10.33))-1.

The reduced-order model has an eigenvalue near the fast mode

(-10) of the original system as a consequence of the fact that

this mode is highly disturbable from w(t).

Example E. Several authors on model reduction have cited

the fact that there seems to ' be no simple way to say that

G(s)	
(s + 1.1)	 ^	 1

	

Ts +	 s +	 s + '

We consider a little more general sitbation: We find that for

G(s) =	 s + a

	

8 +	 s +

the minimal CER is

GR (s) _ s+ 1110 .
s + --

10 + a 
2

Table I provides the results for a variety of choices of a,

and the corresponding CER. The table illustrates ( for a = 1,

1.1, 10) the proper use of zero information in a near

F i

Table I.

a Example G(a) GR(a) of CSR

1 s + 1 1

(a + 1) (a +	 10 s + 10

1.1
s	 +	 1.1 1

(a + 1	 (a + 10) a + 9.8

10
a + 10 1

(8 +	 1)(8 + 10 a + 1

-10 a -	 10 1
(a +	 1) (8 + 10) 8 + 1

-	 1 a - 1 1

(8 +	 1) (8 + 10J a + 10

0
a 1

j

(e +	 1) (a + 10 a + 11
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pole-zero cancellation situation--& situation that frustrates

many model reduction schemes. The reader is reminded that for

scalar input-output systems, the CER parameters (A R, DR, CR)

are independent of the noise intensity W > 0 and output

weighting 0 > 0.

Example 3.	 Consider the following system whose first

Markov parameter is zero (i.e., CD - 0)

x=Ax+Dw, w — NO, 1)

y - Cx

where

-10 1 0	 0

A= -5 0 1	 D= 1	 C= [l0 01

1 0 0	 1

From proposition 9 a minimal CER of order 1 does not exist for

this system. However a CER of order 2 exists and is given by

xR = ARuR + DRw

yR = CRxR.

where

0	 0.7384	 0
AR	, DR=

-0.7384	 -8.166	 14.04131
CR = [0.335, 01.

This CER is asymptotically stable, disturbable and observable.

XI. APPLICATION OF CCA TO CONTROLLER REDUCTION

Given a model of high-order n > n c , the traditional

approach to designing a linear controller of specified order

n  is first to use model reduction methods to reduce the model

to order n  and then design a controller that is perhaps

optimal for the reduced model. There are at least two
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objections to this strategy. The first disadvantage is that

most model reduction techniques ignore the effect of the (yet

to be determined) control inputs, and it is well known that

the inputs (whether they be functions of time or state) can

have a drastic effect on the quality of the reduced model.

The second disadvantage is that optimal control theory applied

to a poor model can certainly yield poor results, often de-

stabilizing the actual system to which the low-order "optimal"

controller is applied.

The design strategy suggested for obtaining a controller

of order n  given a model of order n >> n  is as followst

A controZter-reduction algorithm

1. Apply CCA to reduce the model to order NR > nc , where

NR is the largest dimension of a Riccati equation that can be

reliably solved on the local computer.

2. Solve for the optimal controller of order N R, using

the _educed model of order NR.

3. Apply CCA to reduce the controller to order nc < NR

The purpose of this section is to show how to accomplish

step 3. The intended advantage of this algorithm over the

traditional approach (which skips step 3 and sets N R - nc) is

that more information about the higher order system and its

would-be optimal controller is made available for t' , s design

of the reduced-order controller.

The controller reduction can be presented as a restricted

model reduction problem as follows: Consider the plant,

x=Ax+Bu+Dw,

y - Cx,	 (89)

z - Mx +v,

1

J
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X e Rn ,	 u e Rm ,	 w e Rd,

y e Rk ,	 z e R t I	 rk (B) = m I n,

where w(t) and v ( t) are uncorrelated zero-mean white noise

processes with intensities W > 0 and V > 0, respectively. The

measurement is z, y is the output to be controlled, and u is

the control chosen to minimize

V = lim Ts(Ily,' Q + 11ull 2 ),	 Q > 0, R > 0.	 (90)
t-+m

Under the assumpticis that (A, B) and (A, D) are control-

lable, (A, C) and(A, M) observable, the optimal controller for

(89) takes the form

Xc = A c 
x c 

+ Fz	 x  a Rn,

(91a)
u = Gxc,

j

t	 where

f	 Ac	 A + BG - FM,	 ( 91b)

G -R lBTK, KA + A T K  - KBR 1BTK + CTQC = 0,	 (92)

F PMTV 1 , PAT + AP - PMTV 1MP + DWDT = 0.	 (93)

Augmenting the plant (89) and the controller (91) yields

the closed- loop system.

x	 A BG x	 D 0 w
_	 +	 (99)

xc 	FM Ac xc 	0 F v

[y]

	

C 0 11

 x
s	 .

u	 0 G xc

The cost V can be expressed as

V : tr X11CTQC + tr X22 GTRG,	 (95)



where
i

X	 AT	 MTFT11	 212  A	 BG	 X11	 X12

T	 ^	 T T	 T
X12	 X22	 G B	 Ac

^T	 ^FM	 Ac	 X12	 X22

(96)

DWDT	0

+	 = 0>

0	 FVFT

Now if the two "components" of (90) are defined as the plant

(with state x) and the controller (with state xc), then the

component costs for x and x 	 are denoted V° and VC,

respectively, where

V = V° + V (97)

and

V°	 tr R11CTQC, (98)

Vc	tr X22GTRG. (99)

=	 Since we desire to reduce the dimension of the controller and

not the plant, we further decompose V 	 into individual compo-

nent costs associated with controller states.

n

V = V° +	 Vi, (100)

i=1

where

Vi	 (X22GTRG)ii-	 (101)

Having defined the controller components, the controller

reduction can be shown to be a special "model reduction" pzub-

lem by simply interpreting (90) in the form of (32). That is,

!\

t
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substitute

XT , [XT x 
	 y 	

y  U 	
-

	

-,--- A BG	 D 0	 W 0

AJFM	
, D -► 	 , W^

	

 Ac 	0 F	 0 V

Q 0	 C 0
Q t	 ,	 C '

0 R	 0 G

Now with a very minor modification the standard CCA algorithm

can be applied to obtain the reduced-order model of dimension

NC = n + nc , where n  is the dimension of the reduced-order

controller desired. The minor restriction is that the plant

component of dimension n is not to be truncated, regardless of

the value of V°.

Motivated by the theory of cost-decoupled coordinates,CERs

and definition 6, we desire to transform the controller co-

{	 ordinates so that both X 22 and GTRG in (97) are diagonal.

The coat-decoupled controller (CDC) algorithm

Step 1. Given the model and performance objectives (A, B, D,

C, M, W, V, Q, R) .
i

Step 2. Compute the optimal controller (Ac , F, G) from (91)-

(93) and the covariances X11 and X22 satisfying (96).
A

Step S. Compute e 1 the square root of X22

T
Xi2	

e101

Step 4. Compute e2 the orthonormal modal matrix of 0TGTRGe1.

The controller component costs are

AT0TGTR,O l0	 diag ( Vi,	 V2,..., Vm, 0,... 0)

where the number of nonzero controller component costs are m =

!	 rank B.

ti
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Step b. Rearrange the columns of eZ so that the Fi appear in

order

yi > Vc >...> V 

Then define eR by

e2 = le R' (Y	 eR a Rnxm.
Step B. The reduced CDC is

xR = ARxR + FRz ' xR a Rm ►

u	 GRxRol

where

AR Q eR811Ace18R'

FR eRe11F,

GR GeleR,	 .

Additional properties of the CDC must be explored in

future investigations. Space limitations suggest this con-

venient stopping point in the presentation of the CER theory

and its application to both model and controller reduction.

XII. CONCLUSIONS

A summary of the ideas of cost decomposition is given to

aid in the determination of the relative cost (or "price") of

each component of a linear dynamic system using quadratic per-

formance criteria. In addition to the insights into system

behavior that are afforded by such a component cost analysis

i	 (CCA), these CCA ideas naturally lead to a theory for cost-

equivalent realizations.

X



Cost-equivalent realizations (CERs) of linear systems are

defined, and an algorithm for their construction is given.

The partial realizations of order r produced by this algorithm

have these properties:

1. a minimized model error index;

2. the model error index is zero (i.e., the original sys-

tem and the partial realization have the same value of the

quadratic performance metric), if r _> k, where k is the number

of independent outputs;

3. the algorithm does not require the computation of modal

data of the plant matrix A;

4. the method is applicable to large-scale systems,

limited only by the necessity to solve a linear Liapunov-type

algebraic equation;

S. the CER algorithm produces stable realizations of a
E

stable system.

The algorithm is based upon component cost analysis (CCA),

which is described for time-varying systems, for time-invariant

systems, and for systems for which accurate modeling is of
l

concern only over a finite interval of time. These component

costs are shown herein to be useful in obtaining the above

cost-equivalent realizations, but they are also useful in

closed-loop applications where controllers, rather than models,

are to be simplified.

Property 2 above reveals that cost-equivalent realizations

can be smaZZer than Kalman's minimal realization, which is

always of the dimension of the controllable, observable

subspace.
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Section VI is a point of departure for further research

using different model error criteria. Inetead of using the

difference of norms as in (48), an error criterion using the

norm of the differences can be studied much more extensively

than done in (5), where only input-induced component costs

were used. The model error criterion utilised herein, (48),

is chosen for its appropriateness to the reduction of optimal

controllers. Other uses of component cost analysis (CCA),

which warrant further research include decentralized control,

failure analysis, and system redesign strategies based upon

"cost-balancing."
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