General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

-

NASA Technical Memorandum 84501

(NASA-TM~84501) ADVABCED BELIABILITY
MODELING OF FAULT-TOLERANT CCBEUTER-BASED
SYSTEMS (NASA) 33 p HC AO3/MF AO1 CSCL 09B

Advanced Reliability Modeling of
Fault-Tolerant Computer-Based Systems

Salvatore J. Bavuso

MAY 1982

NASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

G3/61

N82-30962

Unclas
28695

ADVANCED RELIASILITY MODELING OF FAULT-TOLERANT
COMPUTER-BASED SYSTEMS

QR\G‘aﬂ*’*L P“E ‘-g Salvatore J. Bavuso
oF POOR Qb+~ NASA Langley Research Center

Hampton, Virginia 23665/USA

SUMARY

Digital fault-tolerant computer-based systems are on the verge of
becoming commonplace in military and commercial avionics. These systems
hold the promise of increased availability, reliability, and maintainability
over conventional analog-based systems through the application of replicated
digital computers arranged in fault-tolerant configurations. Three tightly
coupled factors of paramount importance which will ultimately determine the
viability of these systems are reliability, safety, and profitability.
Reliability, the major driver, involves virtually every aspect of design,
packaging, and field operations as regards safety, maintainability, and
invariably profit for commercial applications or raticnal security for
military uses.

The antithesis of promise for the digital computer is, however, the
Achilles' heel of the reliability engineer. The utilization of digital
computer systems makes the task of producing a credible reliability
assessment a formidable one. The root of the problem is embodied in the
very essence that makes the digital computer such an outstanding device for
use in a host of aprlications, namely its adaptability to changing
requirements, computational power, and ability to test itself efficiently.
It is the intent of this presentation to address the nuances of modeling the

" reliability of systems with large state sizes, in the "Markov" sense, which

result from systems .nat are based on replicated redundant hardware and to
discuss the modeling of numerous factors which can reduce reliability
without concomitant depletion of spare hardware. The diminishing factors
are captured by the popular “coverage" terminology. Advanced coverage
(fault-handling) models are described with supporting rationale. Methods of
acquiring and measuring parameters for these models are delineated, and some
recently measured latent-fault data are presented.

INTRODUCTION

It is the intent of this paper to report on the development of two
novel methodologies for the reliability assessment of fault-tolerant digital
computer-based systems: Computer-Aided Reliability Estimation III and Gate
Logic Software Simulation. Both technologies were developed to mitigate a
serious weakness in the design and evaluation process of ultrareliable

LR

ORIGINAL PAGE I3
OF POOR QUALITY

digital systems. The weak link is based on the unavailability of a
sufficiently powerful modeling technique for comparing the stochastic
attributes of one system against others. Some of the more interesting
attributes are relfability, system survival, safety, and mission success.

A long-term goal of the NASA Langley Research Center is the :
development of this tool. The technology development process is shown in
figure 1. Historically, our interest in this subject commenced circa 1971.
At that time, two math models were identified as having potential for
filling the assessment gap. Figure 1 shows those models as CARE, Computer
Aided Reliability Estimation, a computer program generated at NASA's Jet
Propulsion Laboratory for application to long-lived, space-borne computer
systems; and TASRA, Tabular System Reliability Analysis, a computer program
due to Battelle Memorial Laboratories for application to the F-111 Pitch
Flight Control System (refs. 1 and 2).

The CARE computer program is a very powerful reliability assessment
capability for fault-tolerant system concepts that existed in the late
1960's. A major fnnovation in reliability modeling in CARE was the
incorporation of the stochastic concept of coverage due to Roth and
Bouricius, et ai. (ref. 3). Coverage, defined as the conditfonal
probability that a proper recovery occurs if a fault exists, was shown by
Bouricius and Carter, et al., to be a significant factor for achieving high
reliability in modular replacement systems (ref. 4). Prior to this
consideration, reliability analyses omitted the coverage parameter emtirely
which caused math models to assume a unity probability of system recovery
given a fault occurrence, thereby forcing the reliabiiity predictions to be
nonconservative and hence, inaccurate. Although powerful and innovative,
the CARE math model suffers from two major deficiencies, its inflexibility
to model the emerging multiprocessor-based systems and the lack of a model
for computing the coverage parameter.

The TASRA computer program, in contrast to CARE, utilizes the popular
"Markov" analysis method which allows a very flexible modeling technique but
lacks the vital coverage model as well.

Based on these findings, NASA-Langley participated in the
codevelopment of CARE II with the Raytheon Company (refs. 5 aid 6). The
primary objective in creating CARE II was to develop a coverage model to
compute coverage for CARE. Figure 2 presents the coverage math model and
delineates the factors comprising the coverage computation. Although the
CARE 11 coverage model represents a quantum leap in coverage modeling, CARE
IT still retains the original CARE system's architectural-description
inflexibility.

A gestation period ensued following the CARE II development that
involved Langley in numerous studies, depicted in figure 1 as square blocks,
and the codevelopment of two ney reliability assessment methodologies, {.e.,
CAST (Combined Analytic Simulative Technique) and CARSRA (Computer-Aided
Redundant System Reliability Analysis). The coverage impact study
determined upper and lower bound values of coverage for a fault-tolerant
triplex flight control computer system utilizing state of the art hardware
(ref. 7). The CAST study made two important contributions to our program at
Langley: it emphasized the potential importance of transient modeling in

e ¥

ORIGINAL P52T 1§
OF POOR QUALITY

reliability predictions, and it introduced the notion of combining an
anmalytical approach with computer simulation (ref. 8). By partitfoning the
modeling of ultrareliable systems in this latter manner, an otherwise
intractable problem using either technique in toto. now becomes workable. .
The CAST concept has become the mainstay of our approach to reliability
assessment since the completion of the CAST study, circa 1974.

CARSRA was a spin-off from a Boeing Company study on the design of an
Afrborne Advanced Reconfigurable Computer System (ARCS)(ref. 9). The
development and application of CARSRA was our first comprehensive
involvement with the assessment of complicated aircraft flight control
systems. The complexity of flight control systems gave rise to the creation
of CARSRA in two important areas. Since CARSRA utilizes the Markov
approach, a state reduction technique was required, and it became clear that
the assessment technique must model stage dependencies in order to assess a
variety of system configurations which constitute continued mission
success. The most familiar example of this apnlication is systen survival.
In 2 redundant fault-tolerant system, there are many system configurations
which will effect the proper system output; however, there are other system
configurations that may be of interest in addition to system survival.
Boeing, in the ARCS study, defined the term "Functional Readiness.” It is
expressed as a time-dependent probability and is applied to missions
containing critical subtasks which will either be performed or not :
performed, depending on the operational redundancy level at the time of
demand. Boeing cites, as an example, an aircraft automatic landing function
for which a certain:level of hardware redundancy is required before a
landing may be initiated in poor visibility and weather conditions. CARSRA
also benefited from its predecessors by incorporating a multi-coverage
parameter capability and an electrical transient modeling capability.

Transient modeling proceeded in two directions: the stochastic
estimation of intermittent failures of computer piece-parts and the modeling
of the effects of induced analog transients on digital circuitry (refs. 10
and 11). The latter study is ongoing work that relates an analog transient
source with a digital system's activity. The form of this relationship will
ha a stochastic model for input to a system reliability assessment model.

Software reliability studies are an ongoing activity at Langley. The
most recent completed study suggests the possibility of estimating software
reliability through testing. Although still in the experimental stages, a
methodology has been proposed and demonstrated that estimates probability of
software error as a funct on of execution time and test trials (ref. 12).

A1l of the activities depicted by figure 1 have culminated to form the
basis for the development of CARE [II. CARE III was codeveloped by Langley
and the Raytheon Company and cosronsored by the U.S. Air Force Avionics
Laboratory at the Wright-Patterson Air Force Base (refs. 13, 14, and 15). A
summary of the salient features of CARE III is shown in figure 3.

N

ORIGINAL P..GE 8
OF POOR QUALITY

CARE IIl - A General-Purpose Reliability Analysis and Design Tool for
» ault-Tolerant Systems

CARE III was designed to model large ultrareliable replicated systems
incorporating digital electronics. Examples of such systems are shown in
figure 4 (refs. 16, 17, 18, and 19). The CARE III assessment process is
depicted ir figure 5 and begins with an architectural description of an
ultrarelfable system. That description may be based on a conceptual model
of the system, then CARE IIl is used as a design tool; or, the system may be
well-defined so that CARE III is utilized as an analysis tool. In either
case, the analyst generates a set of failure rates and probability density
functions for the various failure and error mechanisms he wishes to include
in the analysis. A partial list of failure and error models is delineated
in figure 12. The inclusion of any of these models will necessarily lower
the system reliability estimate. The need to include a model 1s of course a
function of the architectural structure, its fault-handling mechanisms, and
the magnitudes of the parameters in the model. The large choice of faflure
and error models is provided to increase the realism and credibility of the
analysis. The models are user options in CARE III and may be omitted at the
discretion of the analyst. Usually he will omit certain models after
determining that they have a minimal effect. Some of this modeling
information is used to define the system fault-handling model(s) which is
required as a user input, indicated by the state diagram in figure 5. The
remainder of the failure and error modeling data is entered as Fortran
MAMELIST statements - examples will follow.

Another important step in setting up CARE III input is the generation
of the system configuration and success criteria. Fault-tolerant systems
are usually designed to have many hardware and functional combinations that
enable proper system operation. CARE IIl uses the powerful fault tree
languag2 to describe system failure configurations. In large systems, the
n'mbar of success combinations can be very large, and for this reason CARE
LI1 uses the "unsuccess" or failure combinations instead. In a properly
designed system, the number of failure combinations should be considerably
les5 than the number of system success combinations, thus easing the
computational task. The fault tree language provides an excellent medium
for delineating the system failure combinations.

Referring again to figure 5, the user-prepared data are initially
processed by the CARE III input subprogram, CAREIN, shown as the upper
disk. It is essentially composed of the fault tree language program. The
sacond CARE 1!l subprogram, COVRGE, processes the fault-handling model(s)
data and puts them into the form required by the third subprogram, CARE3,
vhich performs the reliability computations. CARE III is written entirely
in the Fortran IV language and currently executes on the Digital tquipment
Corporation POP-10 computer and on the Control Data Corporation CYBER 170
series computers. The CARE III output data take two forms, graphical or
tabular. In either case, the outputs of most interest are the total system
reliability or system survival as a function of time and tw~ vital
components: probability of system failure due to hardware (cJundancy
limitations {exhaustion of spares) and probability of system failure due to
improper fault handling. In ultrareliable systems, the latter factor is the
predominate cause of system failure (ref. 20).

ORIGINAL PAGE 15
OF POOR QUAL\TY

An example of the CARE III assessment process is given by figures 6 and
7. Figure 6 1s a sketch of an Ultrareliable Fault-Tolerant Multiprocessor
composed of 10 memory processor pairs which communicate with each other over
5 fndividual bus 1ines shown in the chart as a solid bus 1ine. This system
survives if at least 2 computers and 2 buses are operational. The analyst
wants to compute the probability of system survival at 10 hours of
mission time for this multiprocessor system and the probability of system
failure at 10 hours due to spare hardware depletion and dwe to improper
system-fault handiing. For this simple {1lustrative exampi2, the analyst
creates two fault trees and a state diagram for system-fault handling as
depicted in figure 7. The System Fault Tree describes the system stage
configurations that cause system failure. The computer stage {s comprised
of up to 10 computers, each having an identical failure ratle. The bus stage
is composed of up to 5 buses, each having an identical failure rate, most
Tikely different than that of a computer. The OR gate in the System Fault
Tree means that the system fails if a computer stage fails or a bus stage
fails. A computer stage fails if less than 2 computers are operational, and
a bus stage fails if less than 2 buses are operational. These conditions
are described in the line beginning with "$STAGES". This statement 1s a
Fortran NAMELIST statement. It says there are two stages, (NSTGES=2),i.e.,
10 computers and 5 buses, (N=10,5), and the minimum for stage survival is 2
for each stage (M=2,2). The remainder of the line describes the fcrm of
output data requested. The fault tree description for CARE III {nput is
shown under the heading, SYSTEM FAULT-TREE. It describes the gate
interconnections and the types of gates. There is another cause of system
failure that is implicit in the SYSTEM FAULT TREE and that is system failure
due to single-point failures in either stage. Details of this model are
discussed. 1ater.

A unique modeling capability of CARE IIl is the incorporation of the
effects of synergistic pairs of failures. In fault-tolerant systems, the
system could contain many undetected (latent) failures which individually
vould not cause system failure; however, certain groupings of failures-that
coexist may bring the system down. The CRITICAL-PAIR TREE enables the
analyst to specify the conditions under which synergistic paired failures
cause system failure. For this case, any two latent computer failures out
of ten computers or any two latent bus failures out of five buses cause
system failure. In practice, one would usually specify which paired
failures cause system failure. The CRITICAL~PAIR TREE is described by the
data listed under the heading, CRITICAL-FAULT PAIRS. The next step in the
CARE 111 input process is the description of the FAULT-HANDLING MODEL. This
simple state model is composed of two cystem states, active (A) and active
detected (AD). The active system state is entered when a failure occurs.
It is an undetected or latent state. If a fault detector is employed, § is
the rate at which failures are purged from the system. CARE Ill assumes
that if the system enters the active detected state and it has spare
hardware, it will reconfigure out the faulty module and the system
recovers. Note, as & increases, the probability of synergistic failures
occurring diminishes since there will be fewer latent failures present.
Line one, $FLTTYP, shows that ther% is one fault model (NFTYPS=1) and
defines the value of & as 3.6 x 10¢ detections per hour. Line 3, $FLTCAT,
simply links failure rates denoted as RLM arrays to stages (JTYP). Line 5,
$RNTIME, specifies flight time of 10 hours. CARE III input data for this

e

o=
-

1844
pL PR
oo o

example system is shown in figure 7 beginning with the statement $FLTTYP and
including all the statements that follow. The CARE III output is the total
system probability of failure, the system probability of fatlure due to
imgrope: fault handling, and the probability of system failure due to spares
exhaustion.

User-Oriented Language for Describing Complex System Failure
Configurations (Fault Tree) '

The multiprocessor example made use of a trivial application of the CARE
111 fault tree language. A better example emphasizing the power of the
fault tree input is given by figures 8 and 9. Figure 8 shows a block
diagram of a proposed fault-tolerant flight-control system. Of particular
interest is the Pitch Augmentation Stability (PAS) short cycle functfion.
The system fault tree for this function is presented in figure 9. This tree
illustrates that not only hardware redundancy can be represented but
functional redundancy as well. The elevator math model is functionally
redundant to the secondary actuatorz. The melding of hardware and
functional redundancy is a common practice in aircraft design. The proper
entry of this fault tree into CARE III with the necessary failure rate and
fault-handling data would yield a prediction of the probability of loss of
PAS function as a function of mission time. For the uninitiated, figure 9
is read as follows: An output from logic OR gate 212 constitutes loss of
PAS function which can occur if an output from OR gate 211 occurs, or if an
output from gate 210 occurs, or both. Gate 210 yields an output if at least
3 out of 4 secondary actuators or actuator function (elevator math model)
fail. Secondary actuator A will fail if computer A fails, or actuator A
fails, or both. A similar description can be used to delineate failures due
to loss of computation or loss of sensors.

Fault-Handling Model Based on Probabilistic Description of Operative
Detection, Isolation, and Recovery Mechanisms

In figure 7, a simple fault-handling model of two states was
described. CARE III has both a single-fault model and a double-fault
mocel. The latter defines critically coupled, paired failures. The single-
fault model is given in figure 10 and is shown in the dashed box. For
illustrative purposes, three additional states have been added so that the
state diagram is a Markov model of a 2 unit system. Initially, the system
is in state 0 and has experienced no failures. 4Yhen a failure occurs, the
system enters state A, the Active latent state, given by the arrival
density, A (t). Depending upon the nature of the failure, i.e.,
permanent ,transient, intermittent, etc., the fault-handling model will be
defined differently. For example, if the failure were intermittent, A(t)
would be the probability density function (PDF) for the arrival of an
intermittent, and states A and B define the intermittent model wherea and g
are constant transition rates into and out of state B, respectively. When
the system is in state B, the Benign state, the failed unit appears to have
healed itself, i.e., the manifestation of the failure, a fault, vanishes;

o 1S
INAL PAGE |
OQR;‘GPQOR QUAL\‘N

however, when the failed manifestation is once again resumed (the fault
reappears), the system enters state A where at that point, the failure looks
like a hard failure. It could be detected by a self-test program with POF
§(t'), and the system would enter state AD, the Active Detected state; where
given that a spare exists, the system will purge the faulty unit and switch
in the spare. Or while in the active state, the fault could gemerate errors
with POF p(t'). The system then will enter the AE, Active Error state. The
intermittent .failure could manifest its intermittent state again so the
system would then enter state BE, the Benign Error state. Although the
failure is benign, the error may not be benign and may cause system failure
which is denoted by the BE to F transition [(1-C)e(r)]. The error detection
density e(t) and 1-C is the proportion of errors from which the system is
unable to recover. While in state BE, the error could be detected and
corrected. In this event, the system enters state BD (Benign Detected) by
transition ce(t). At this puint, the system may choose to do nothing
further with the detected error and so move to the Benign state, or the
system may choose to reconfigure out the module containing the error and,

- therefore, move to state 1. The other transition out of state AE is to
state F, the single point failure transitfon [(1-c)e(1)]. This transition
is similar to the BE to F transition. In a well-designed fault-tolerant
system, (1-C)e(t) should be near zero in magnitude. If A(t) were the PDF
for the arrival of a transient, awould be set to a value greater than zero
and B would be equal to zero. The PDF A(t) for the arrival of a permanent
failure would be defined so that a=3=0, The dashed arc going from state AD
to A, enables the analyst to include the effects of the system decision that
the detected fault which took the system from state A to AD was, in fact, a
transient. In this regard, the system would not reconfigure out a
non-failed module. A judicious choice of values for the single-fault model
affords the analyst a wide range of models. A diffsrent fault model may be
assigned to each stage or several models may be assigned to a given stage to
cover the effects of different failure mechanisms such as transients,
intermittents, hard failures, etc.

The reader will note that the reliability model in figure 10 has three
measures of time associated with it which necessarily makes the model a
semi-Markov process. This added complexity is required because the behavior
of thz system is dependent on the onset of the various fault-behavior
events.

LARGE REDUCTION OF SYSTEM STATE SIZE

The capability thus described comes at no small computational price if
state of the art techniques were employed. In fact, if one were to utilize
the popular "Markov" modeling technique on a nontrivial system such as the -
flight control system shown in figure 11 (which is composed of 22 stages and
64 reconfigurable modules) coupled with a reasonable set of failure and
error models (some of which are delineated in figure 12), the number of
system states would be on the order of millions. For each state, a linear
differential equation is formed. Clearly the solution of millions of
differential equations i¢ computationally intractable if not impossible with
today's technology. But CARE III was designed to assess these types of
systems. How does it do it?

GE 13
RIGINAL PAGE
gp POOR QUALITY

To understand the CARE III state reduction method, it is expedient to
first examine how the state size build-up occurs in the Markov method. A
Markov state s described as an ordered n-tuple. The components of the
n-tuple contain information about the number of failed reconfigurable units
in the system plus system fault-handling information for each module and
fault type (hard failure, transient, etc.). For the system shown in figure
11, the n-tuple has a minimum of 22 components, i.e., one for each stage.
For each stage, additional n-tuple fault-handling components are added to
describe the number of failed units that are system detected, the number
that are identified with a reconfigurable module, and the number that have
been recovered. A set of fault-handling components is included in the
n-tuple for each type of failure, e.g., transient, hard, intermittent, etc.
The total number of n-tuple components becomes very large. The product of
the n-tuple components gives the number of possible system states. In
contemporary practice, tractable analyses are accomplished by making
numerous assumptions about the system to reduce the state size to the order
of 1000. CARE III, on the other hand, retains a considerable amount of
detail without the burden of unmanageable state sizes. This feat is
accomplished in CARE III by separating fault-handling information from the
structure model, i.e., information about the number of failed units. Each
model {s worked separately to a point and then recombined (ref. 21). An
example of this state reduction is depicted by figures 10 and 13. When CARE
111 processes the fault-handling model of figqure 10, that information is
mapped into time-varying transition rates,Aj(t), A>(t), as shown in figure
13, Uhat might have been a stationary semi-Markov process for the system of
Tigure 10 will always become a nonstationary Markov process. For large
systems, state size reductions of at least 10,000 to 1 have been estimated.
The solution to the nonstationary process model of figure 13 is given by the
solution to the forward Kolmogorov eguation depicted in figure 14. The
system reliability is computed by summing the probabilities, Pa(t), for the
allowable or success states. Numerically, it is more accurate to compute
the probahility of system failure in lieu of reliability (probability of
aystenm survival). The user-defined fauit trees specify the system failure
states, so that, the probability of system failure is simply the sum of
Po(t) over 2, the set of system failure states. CARE III actually computes
tha probability of system failure using the equation,

[

T)
/-4 -
j;ég‘.Qj(ﬂ + Pj(ﬂcjltﬂ]_il"(tl_.dr
'3
e';{ AL(n)dn

t

..j: A (T)dT /

()p(t) = e

o/
0

where the probability of system failure is given by the sum of Q2(t) over %,
the set of system failure states. '

CARE I11 has entered the first stage of validation by undergoing
extensive testing at the computer program (debugged) and math model levels.
1t is also being applied to several experimental uitrareliable design
concepts to evaluate CARE IIl modeling flexibility and the user-oriented
fault tree interface.

2oemagre, ST CIRERSE T, i e ar PRSI T G e R BRI e SO, e L g e Mt e s — - [

ORIGINAL PACE IS
OF POOR QUALITY

GLOSS-GATE LOGIC SOFTWARE SIMULATION

It is one thing to implement a very powerful reliability model and
quite ancther to make it useful. For all relfability evaluators, including
CARE I11, a weakness lies in the unavaiiability of data for many of the
fault-hand1ing parameters. The situation is not a total loss; however,
since reasonabie engineering estimates can be made in many cases, ana
furthermore, the sensitivity of the system reliability can be tested against
variations in the marginal data. A better way, of course, is to measure or
estimate the parameters based on some empirical observatiins. . :

LATENT-FAULT MODELING AND MEASUREMENT METHODOLOGY |

Since system fault detection appears to be the most critical
fault-handling parameter, NASA-lLangley in 1977 initiated a series nf studies
to investigate a methodology for measuring the fault latency of digital
computers ?ref. 22). The methodology consisted of simulating a 1000
equivalent gate processor in a host CDC Cyber 173 computer. The simulated
processor was a paper design and is referred to as a "hypothetical®
machine. The nypothetical machine was simulated at the gate level.
Actually, two copies of the hypothetical machine executed identical code in
synchronism, where one machine received a stuck-at fault at the onset of the
computation. Detection or nondetection was determined after the nonfaulted
processor completed its execution. At that time, the computational results
of the two simulated machines were compared, bit for bit. Any difference
constituted detection. If no detection occurred, the code's input variables

vere randomly altered, and the processes were repeated for the same fault. |

This scheme was repeated for up to eight executions for the same fault, if
detection didn't occur. If a detection occurred in less than or equal to
cight repetitions, or no detection occurred after eight repetitions, then a
n~y trial began where another stuck-at fault was induced. This overall
process was repeated for up to 1000 randomly selected faults. The 1000
induced faults were selected as a function of piece-part failure rates and
ware distributed equally across the nodes of the gates. The latency tima,
j.e., time to fault detection is expressed in number of code executions or
renetitions. The time scale can easily be mapped into CPU seconds of code
exezution, if desired.

The comparison of output data from two or more computers is often
referred to as a comparison-monitoring detector which is an important
detection mechanism employed in many operational fault-tolerant systems. In
the CARE III fault-handling model shown in figure 10, comparison-monitoring
detection is modeled by e(r). _

The results ¢f the pilot study were both surprising and intriguing.
Using six different programs ranging from a very simple fetch-and-store
program to a very complex linear convergence scheme, the pilot study showed
that only 50 percent of the induced faults were detected after eight
repetitions for all six programs. Figure 15 depicts typical results. The

(.

e msm ey,
"

. - 3

Cha T TR,

ORIGINAL PAGE :"
OF POOR QUALITY

implication that these results have on reliability assessment for highly
reliable systems is staggering. It suggests that highly reliable
fault-tolerant systems cannot be designed with comparison monitoring or
majority voting as the major stuck-at fault detector (ref. 7).

VERIFICATION OF LATENT-FAULT MEASUREMENT METHODOLOGY

It was with this concern that a series of furthar experiments to
investigate the validity of the pilot study results were designed at
NASA-Langley After all, it was not clear that similar results could be
obtained for a real processor executing practical software. The goals of
the follow-on work were to test the findings of the pilot study utilizing a
real avionic minfprocessor, to assess the significance of injecting faults
at the gate level and at the functional pin level, to evaluate an airborne
self-test program, and to account for undetected faults (refs. 22, 23, 24,
and 25). The methodology for gate level simulation, which was codeveloped
by N?SA-Langley and Bendix, s called the GLOSS, Gate Logic Software
Simulator.

The ptiot study results were tested in three phases using a gate
sfmulation of the Bendix BDX-930 miniprocessor, a 5000 gate equivalent CPU.
Initially the same six pilot study programs were coded using the comparable
prinitive instruction set of the hypothetical machine, {.e., load, store,
add, subtract, and branch. The next phase allowed the six programs to be
recoded using the rich iastruction set of the BDX-930, and finally

comparison-monitoring detection was measured for flight control system code

in lieu of the six pilot study programs. The surprising outcome of this
experiment is typified in fiqure 16 for all six programs. The percent of
nondetected faults is about the same for all the programs, instruction sets,
and two different machines, i.e., 50 percent. As the code becomes more
complex, the shape of the histogram bunches up so that virtually all the
dotection occurs in the first execution. The latency time decreases
somewthat with increased code complexity but nc* the percent detected.

Hhen the same set of experiments are repeated with the exception that

faul*s are induced at the register transfer or pin level in lieu of the gate

loval, similar results shown by figure 17 appear. One notable difference,
howaver, is that the level of detection significantly rises.

As an extension to the piiot study, the latent-fault measurement
methcdology was applied to an airborne self-test program consisting of 2000
BNX-930 instructions which executed in three milliseconds on the BDX-930.
While the simulator executed the self-test program, faults were induced at
the gate level and, in a separate experiment, at the pin level. The design
goal for the self-test program was 95 percent detection. Figure 18 presents
a summary of the self-test detection values and the comparison-monitoring
deteztion values. For the same level of fault inducement, the self-test
code shows the highest detection, but fell short of the 95 percent
requirement for gate-level faults. With considerable effort and expense,
the 87 percent self-test detection was increased to 94 percent, and appears
to be a practical upper bound on gate-level fault detection. Flight control
system code improved fault dctection substantially but still fell short of 0
percent undetected for gate-level faults. For component-level injected
faults, the industry-assumed value of 0 percent undetected was achieved.

10

GlICINAL PAGE 1S
OF POOR QUALITY

SOME PROFOUND RESULTS AND OBSERVATIONS

The wide dispersion of detection raises some confounding questions
about the method of fault injection and, hence, which detection parameters
to use in reliability assessments. The inducement of faults at the gate or
pin Tevels yields a wide dispersion of detection when all other factors are
equal. This concern is further exacerbated by the knowledge that the method
practiced by industry, pin-level fault injection, yields the hi?hor
detection values. At our present level of understanding of fault
propagation mechanisms, the pin-level detection values would appear to be
nonconservative and should be used with great caution, if at all. This
recommendation is based on our knowledge that the gate-level faults that
were not detected after eight repetitions are potentially detectable or
distinguishable, {.e., there exists some code or sequence of code executfion
that will propagate a distinguishable fault.

In the process of investigating the reason why faults were not detected
after efght repetitions, it was discovered that there exists a class of
faults that can never have an effect on the system and, therefore, can
never be detected. This class of indistinguishable faults has been
estimated to comprise 16 percent of all faults. An example of an
indistinguishable fault is a stuck-at fault located at the unused output of
a flip-flop circuit. An important outcome of this discovery regards the
method of estimating detection coverage. The conservtive approach, and the
correct one, is to delete the 20 percent indistinguisiiables from the set of
induced faults in the computation of detection coverage. The net effect is
to reduce the magnitude of detection coverage.

The lessons learned from these latent-fault modeling and measurement
studies are summarized as follows:

0 Practical measurement of detection coverage for stuck-at faults is
possible and is a necessary aspect ¢f reliability aysessment.

o Comparison-monitoring detection for typical application code is much
less than expected, vhich poses serious implications for highly
reliable systems.

o 95 percent gate-level self-test detection coverage {s measureable and
achievable but expensive to accomplish.

o The industry practice of measuring self-test detection by inducing
faults at the pin level may not be conservative, and in view of the
fact that the reliability of highly reliable systems is very
sensitive to detection, further analysis of this practice is
required.

COMCLUDING REMARKS

The CARZ II! and the GLOSS are presently in the developmental stages,
with CARE III clearly in the lead. The CARE IIl math model is embodied in a
Fortran IV computer program that has been receiving considerable national
scrutiny. The validation of CARE III is being conducted by industry, the

11

L%

university community, and by the U.S. Government at NASA's Langley Research
Center and by the U.S. Air Force at Wrigni-Patterson Air Force Base. To
date, only minor correctable problems have cropped up; and, if this trend
continues, CARE III will be released within a year.

The development of a generally applicable GLOSS coagmr grogm‘. which
embodies the GLOSS methodology, is currently underway. Inftially, the GLOSS
will execute on the VAX-11, 700 serfes computers but will be written for
maximum computer po-tability.

12

-

1.

2.

3.

4.

5'

10.

11.

12.

13.

e i wrms e i S e ST AR, st BT tae

REFERENCES

Mathur, F. P.: Reliability Study of Fault-Tolerant Computers in
Suggorting Research and Advanced Development. Jet Propulsion

La ragory, Aug. 1969, Space Programs Summary 37-58, Vol.1lI, pp.
106'11 »

Blazek, R. H., et al.: Demonstration of Combined Reliability
Prediction and Verification Techniques to a Typical Flight Control
System, Vol.1, Development and Application of Tabular System
Reliability Analysis to the F-111 Pitch Flight Control System. ..
Battelle Columbus Laboratories, AFFDL-TR-71-128, Vol.1l, (Available from
AF Flight Dynamics Lab., Wright-Patterson AFB), Oct. 1971.

Roth, J. P., et al.: Phase II of an Architectural Study for a
Self—Repa1ring Computer. SAMSO TR-67-106, U.S. Air Force, Nov. 1967.
(Available from DDC as AD 825460).

Bouricius, W. G., et al.: Reliability Modeling Techniques and
Trade-0ff Studies for Self-Repairing Computers. RC 2378, Res-Div., IBM
Corp., Feb. 1969.

Raytheon Company, Sudbury, MA: Reliability Model Derivation of a
Fault-Tolerant, Nual, Spare-Switching Digital Computer System. NASA
CR-132441, 1974, '

Raytheon Company, Sudbury, MA: An Engineering Treatise on the CARE II
Dual Mode and Coverage Models. NASA CR-144993, 1976.

Bavuso, S. J.: Impact of Coverage on the Reliability of a Fault
To\erant Computer. NASA TN D-7938, 1975.

Ultra-Systems, Inc., Newport Beach, CA: Reconfigurable Computer
Systems Study. NASA (R-132537, 1974.

Bjurman, B. E., et al.: Airborne Advanced Reconfiqurable Computer
System (ARCS). The Boeing Commercial Airplane Company. NASA CR-145024,
1976.

0'Neill, E. J.; and Halverson, J. R.: Study of Intermittent Field
Hardware Failure Data in Digital :lectronics. Sperry Univac Defense
Systems, St. Paul, MN. NASA CR-159268, 1980.

Masson, G. M.: Executive Summary - Intermittent/Transient Faults in
Computer Systems. The Johns Hopkins University. NASA CR-159229, 1979.

Nagel, P. M.: Software Reliability: Repetitive Run Experimentation
and Mode11ng. Boeing Computer Services Company. NASA CR-165836, 1982.

Stiffler, J. J., et al.: CARE IIl Final Report Phase 1, Vols. 1 and 2.
Raytheon Co., Sudbury, MA. NASA CR-139122 and NASA CR-159123, 1979.

13

F
E
:
3

14.

15.

16.

17.

18.

19.

20.

21.

22'

23.

25.

Bavuso, S. J.: Trends in Relifability Modeling Technology for Fault
Tolerant Systems. AGARD Conf. Proc. No. 261 on Avionics Relfabflity,
Its Techniques and Related Disciplines, April 1979.

Stiffler, J. J.; and Bryant, L. A.: CARE III Phase Il Report,
lil;ggemtical Description. Raytheon Co., Sudbury, MA. NASA CR-3566,

Hopkins, A. L.; and Smith, T. B.: The Architectural Elements of a
Symmetric Fault-Tolerant Multiproccesor. IEEE Trans. on Computers,
VO]. C-ZQ, NOOSO, 19750

Osder, S.: The DC-9-80 Digital Flight Guidance System's Monitoring
Techniques. Sperry Flight Systems, Phoenix, AZ, AIAA Paper 79-1704,
1979.

0'Hern, E. A.: Space Shuttle Avionics Redundancy Management. Rockwell
International, AIAA Digital Avionics Systems Conference, April 1975.

Wensley, J. H., et al.: Design Study of Software-Implemented Fault
Tolgrance éngT) Computer, SRI International, Menlo Park, CA. NASA
CR-3011, 1978.

Stiffler, J. J.: Fault Coverage and the Point of Diminishing Returns.
Journal of Design Automation and Fault Tolerant Computing, Vol.2,
No.4, Oct. 1978.

Trivedi, K. S.; and Geist, R. M.: A Tutorial on the CARE III Approach
to Reliability Modeling. Nuke University, Durham, NC. NASA (R-3488,
1981. '

Magel, P. M.: Modeling of a Latent Fault Detector in a Digital System.
Vought Corp., Hampton, VA. NASA CR-145371, 1978.

McGough, J. G.; and Swern, F. L.: Measurement of Fault Latency in a
Digital Avionic Miniprocessor. Bendix Corp., Teterboro, NJ. NASA
CR-3462, 1981.

McGough, J. G.; et al.: Methodology for Measurement of Fault Latency
in a Digital Avionic Miniprocessor, AGARD Conf. Proc. No. 303 on
Tactical Airborne Distributed Computing and Networks, June 1981.

Bavuso, S. J;, et al.: Latent Fault Modeling and Measurement

Methodoloqy for Application to Digital Flight Controls. Advanced Flight
Control Symposium, USAF Academy, Colorado Springs, CO, Aug. 1981.

14

. *III TWv) 03 Guppesy juswdopescp LedjBoLouydd) - °T dunbid

ONIT300KW 'NE3Y 3 LInv4 WS O
ONIT300W LINV4 INIISHWYL o©
- INIWss3ssy €34 o

LOVJWI SINTTHIV 3 I/ © | IN3WSS33SY 30
IN3S3ud | LL6T © | . m%w.m

,, SITANLS]
2% . | ALITIGVINEY
U< Y
23 ~ JYYML0S
< m)
EL: . svaoN |
56 INIISNVYL 1s%2 EHLa)

11 34

LoV o |
JOW3A0 ViSYl

RS

*Lspow S6v4SA0d IT YWD - 2 84nbl .

SIVY NOITOITIC IAIIIITANOD
ALITIGVEONE ANIAODTY
ALVY NOIIVIOST

.ﬂm HIIM QIIVIDOSSY AIITIIEVHOUd NOIIWIOSI

EW AIITIGVAONE NOILOILIAA SATIIIIAWOO-NON
_mn.mw SWIL ISAL IINN TWVdS
Nm..uomm. ATITIEVEONE NOIIOIIIA JUVAS FAIICHIZA
8% AWIL NOIINTIOST

JWIL NCITOITIG.

WYL TOWVYIA0D

o 0.0 _
121920, 272) T2 (oL o) Ty e T .\..\,...”m?nxm%m = (£ %
® o ¢

t TYIHM

"$8IN393; JUSLLES 11 YD ~ ‘¢ sunbyy

. | (3L 1IV) VINILIY)
SS309NS ONY SNOILVYNSIINGD WALSAS XT1HOD ONIEINISIA ¥04 I9VNONY] CILNDINO-¥ISH ©

i

S1NYd IN3LVT
SYOYY3 FYYML0S
SLINv4 N9IS3a
JNILLTWYHALNI
INIISNWIL
ININVWY3d
(AYYNOLLVLSNON NV AUYNOILYVLS) ST300M ¥OY¥3 ONY LIAV4 40 ALIIMVA ©

Gu i®
QUALITY

PIGINAL PA
OF POOR

0

: | SWSTRYHIIW AYIA0IR anv
‘NOILYI0SI “NO1.19313Q <0 NOILdI¥IS3Q JILSITIAYEOYd NO (3SYE 200N ONITANVH-LINV4 o

3ZIS 31YLS 40 NOILONG3Y 39y o
SW3LSAS INVYTI0L-170V4 Y04 001 NOISIA GNY SISATWNY ALITIEVITI 3S04YNd-Tvyan3g o

[1] ¥

| ‘ . ‘ o "SWRYSAS Juea3d|03-3|Ney d|qe}a4 ALybiy ajqedidde 111 3yy) < p 3unbiy

ﬂ , (L41S)
m IINVHII0L LINV4 0IINIWITNI FUVMLAOS
M _

W31SAS JTLINHS 3DVdS

w ¥3LndWOY 3Isodynd IvEINID, h
,. o S¥311001W02
€ v21uswWn Onnoys| [swvsnsam| fsaviesia AYOW I azwnﬂu..w...m
_, ﬁ w SNILSO08 L3%d0¥| | -GvOIAVe L9 [IAvianatas ssyw SYOsNIS
w3 PR =A |
" M w (aatvioae s |- | | [
i ‘O3avhs £2) ‘
|] [
2 Sasng 1 0 T
z m viva 1 T { RAll
nlu. Ivigas 11 . 1 17
s it]
XXXE) Llﬂ}.'m--li. it Jaiiee ‘ILI'I.L
[s 299] [0 2d9] [€ 2d9] [2 249 [,0d9
et I i !

WILSAS JINVAIND LHOIT4 TVLIOIA 08-6-20

S$INVLO873 OGNV SIOYINOD LNdino-[]
$2IN0¥1 2313 Quy SyOSNIS »:..x_._...mu

At Y0SSIN0UAILINW INVY3T0L -11NV4
2 -
4y 0y M g E-“ Eﬂ
: P oG
[_J

rwaass N \ganed
iy AANSA N
* x”\\ .ﬂJ ’, x PR
PR KA e
S B Rl ORI o1
— £5ST
[Jiggil}

ST vt

— | el

? 99975

Y Y31N¢WO) jegl
!
|

.
:
]
x

1

) Poioa Lo o e el

e o

| . 1INVYOAH @
431ndwos JINOY1I313 @
$SV19
QL1 ¥391) |

SINIIShVHL
/SINILLIWY3LN] @
ONIYOLINOW

Q 0STHVaH0)e
g

S1ndNT
ONIIONVH-LnV4 o

334 1nvde

SASIa
- Wvyooud
111 38v)

(111 3¥v9)

<l

Lammnx..z_ 4650 I11 VD - ‘G anbiy

3391 L70V3
73769 Suniva

NI1S30 WILSAS
TNLdION0I/INILSIXS

=

W3ILSAS INVYI10L
~1IY4 318VI13Y AWMOTH

Q35v8 ¥3LNH03 WLIDIQ Ay —(Lnewr)

NOILVWILST ALITIGYIIIY GIQIV ¥3indwon

HORSEI0AI3 100 3uniaLo3-3 ey e1qRs(asniaLn - 9 sunsyy

ASYL LiINn
AlNMVd Jo
. ANIINDISS YR ,

A/8 3M1N23X3 48 NOISITZ0-
NOLLYYN9I INOD3Y

ORIGINAL PAGE IS
POOR QUAUITY

OF

ORIGINAL PAGE 1S

oF POOR QUALITY

P et

IEwaperesewRr SPIRSE PSS S A

14085300,y LA JUBAS{03-31NR} OLTUHLOTIILH L0 30t} 111 '3EVD = *L SR}

21 9T 0 81
ST BT ET 2T 1T 2 L3
o1 68L9S8bEETREIT

ST 17 &

o1 1 1
BT 9T ST T

SATVd LUWS-TWOLLINO

/ 210¢

. Eees

. 33UL-11NV3 WILSAS

. $ ‘OT=ld ILNS
$5-30° T=(2 ' TIWIN 30" T=(T TIWIY

‘T3S TIdALL T T'TIJALL ' TX2=SLIUOIMN Jud1148

SLoLONd R ‘=0 INI ‘2 2=’ S OToN'2=STILSN SIIVLSS

$ 239°E-13A’TeSIALAN dALLLSS

T00W ONITANVH-LT0v4 331 YIVd-WIILIYD LTV WIISAS

sasng S¥31NdWOD

s/z 01/2 . 39V1S 39V1S
SN8 HILNWOD

. .

. S TSI
S : K34SAS

.._.!‘é

ORIGINAL PAGE I8 \
~ OF POOR QUALITY

e o ‘ . ‘QMAETW. welaces
[Ovibosrs taparons
. Outboird sleram, inrer seyment
' L 3 “hmmm

‘ PAS function equipment

Figure 8. - Fault-tolerant fl1ight control system - pitch augmented
stability function (PAS{. o

*W0J3ouNS Svd 40 Induj Sou3 31NR) IIT ILVD = '6 SLnb)

g-yIs
y-uIs
V-3

Quds
f— a3
87

il

) on , . vl | vl |
W o W.. o . g €02)1 202 |t 102 }i 002
. o g > ’ ﬂu ..J— .
o 3> ’ o’ ‘
I 1l - 1 - - L ‘
N (02 902 ¥ _ v
p | 502 02
1 C '}]
: 1L 135
| HOLVILOY | | HOLVLOY et YOSN3S
,) []
180y "
) _
otz € . | | . |
suolvaLY| -
YLVG
R Y0LvAI3 ATk
. [A u y — d
., o<
i3
{ -t O
23
w O o o
_ 5 o - | noL1ound

[(340ys)SVd

At

t = global or mission
time

t‘ = time from entry to
state A

t = time from entry to
state AE '

- Overall reliabiiity model of two-unit system.

Figure 1Q.

T a————C

.|proC. &

MEMORY

ILS

YAY

RATE .

LAY

NORM

COMPASS
COUPLER

ACC

LONG

ACC

comp

Y6

Y

CONTR.

FORCE }

66bdbdbdddd

.1 n/p &

- | RAM

L

_ o
“II PITOT
DADC STATIC

e

ROLL .

YYY

e
o—

WATCH

DOG

MPX

SERVO [F

o/an I

1

\

HYDR.,

YANW

oooé'

SERVO

SuUPPLY

A‘“V

PITCH-
SERVO

Figure 11. - Advanced reconfigurable flight control system.

OR\G\NN. PR
OOR QUN.’\“ﬁ’ A!

Of P

Figure
12, -
. = D3alinaat

{on ¢
of hardware and softw
are failu

' re and erro
r nodels

B L

B L e S AL S, »

Figura 13. - \geregated reliability model for a two-unit system.

‘ PAGE 1S
w& ~ AL\TY'

£ ratoree [0 3 rgtrygton e
Py(t) = ¢ A

- &
.j; 2y(n)dn
(1] e
thare

Pa{t) = ‘robadility of betng fn state £ at time t

Ajz(t) = transfer rate from state J§ to state 2

M(t) = Y agylt)

J

'ci'z(t) = coverage associated with a faflure which, 1f coverage were perfect, would cause a transfer

* from state § to state 2 :

The system relfadbility is given by

R(E) = 3 Py(t)
2el

frr the sot L of allowable states.

Figure 14. - CARE III state probability computation.

e g e e

L b e el S A A .

B R L kb X R - A e s e o

RGINAL PAGE 1S '
" OF POOR QUALITY FAULT
- INJECTION
FAULT FREE -R— FAULTED
PROCESSOR : PROCESSOR
a3
ERROR
| DETECTION
f ~ LATENCY DATA
!
\
]
21t
5
5 ~ ONLY ~50% OF "KNOWN FAULTS”
& DETECTED IN A SIGNIFICANT
OTIME -
L |

R S T TR

TINE TO DETECT

Figure 15. - Latent-fault measurement.

TIME TO DETECT (REPETITIONS)

Figure 16. - Fault latency distribution - gate-level faults.

- ¥ é
LGE
GINAL PAG
8‘;‘ pOOR QUALTY
e COMPARISON-MONITORING
m
. ot COMBINED GATE-LEVEL FAULTS 3=
3 . T
u.guun;:m;ra’:.
T
" FALURES |
. 3%
200 -
1 .
100 - i
Y 5.5% !
;
0] ; J ‘ % :)
1 2 3 4 s & 1 % 8 w0

T e

ORIGINAL PAGE IS
OF POOR QUALITY

COMPARISON-MONITORING

-
& COMBINED COMPONENT-LEVEL FAULTS Lo
“‘ - -,;
L) ; * .,
. B .|) K 2
1% ‘
2004~ - - L
DETECTED | . +
FAILURES]
L 28% UNDETECTED AL
100+
ot 9.0% ——
Lo o3 : L -
‘ D-a"'égsss 0.25% 0.25% 0.25%
0 } T e T < 3 { {
1 2 3 4 5 6 1 8] 10 11
B TIME TO DETECT (REPETITIONS)
Figure 17. - Fault latency distribution - component-level faults.

- —

(g5) AULSNONI Ag

.uupzmoL pue Alguung « g1 auanb}y

“SL10Vd ITBYHSINONIISIONI -
- 39T ¥04 031934400 LOM &

(%0) AYLSNANI Ad
anSsy QNS
1831-413s -momﬁa% < NOT193130 40 3dAl
| - . _ NOI193rNI
1iaNodiio) - 3ly9 1N3NOdW0) v < L4 40 33
20 \\ur WZ g3 ¢ ang %0 $24 .
= ST g ¢ usT
. 3] . o cN
o b '$904d o
v 3 'S$Tddy
M nnw. ¥ XH m ~
. M m | | 4 0Oh
mw 'S904d.
o. 'STddY |
KISy 4 o
(SNOILIL34TY 8)
*031930Y0) .
¥V VIV ¥3HI0 TV

@31J313aN0%

	GeneralDisclaimer.pdf
	1982023086.pdf
	0029A02.pdf
	0029A03.pdf
	0029A04.pdf
	0029A05.pdf
	0029A06.pdf
	0029A07.pdf
	0029A08.pdf
	0029A09.pdf
	0029A10.pdf
	0029A11.pdf
	0029A12.pdf
	0029A13.pdf
	0029A14.pdf
	0029B01.pdf
	0029B02.pdf
	0029B03.pdf
	0029B04.pdf
	0029B05.pdf
	0029B06.pdf
	0029B07.pdf
	0029B08.pdf
	0029B09.pdf
	0029B10.pdf
	0029B11.pdf
	0029B12.pdf
	0029B13.pdf
	0029B14.pdf
	0029C01.pdf
	0029C02.pdf
	0029C03.pdf
	0029C04.pdf
	0029C05.pdf
	0029C06.pdf

