
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA Technical Memorandum 84501

(NASA-TM-84501) ADVANCED RELIABILITY	 V82-30962

MODELING OF FAULT-TOLERANT CLAEUTEB-BASED
SYSTEMS (NASA) 33 p HC A03/MF A01 CSCL 09B

U DCld S
G3/61 28695

Advanced Reliability Modeling of
Fault-Tolerant Computer-Based Systems

Salvatore J. Bavuso

MAY 1982

V

ft*%Vk
National Aeronautics and
Space Administration

Langley Research Center
Hampton. Virginia 23665

ham-	 -	 -	 -••^ _-

ADVANCED RELIABILITY MODELING OF FAULT-TOLERANT

COMPUTER-BASED SYSTEMS

0V4G' ` -"'L	 Salvatore J. Bavuso
OF p00R 	 ` ;	 NASA Langley Research Center

Hampton, Virginia 23666/USA

SUMMARY

Digital fault-tolerant computer-based systems are on the verge of
becoming commonplace in military and commercial avionics. These . systems
hold the promise of increased availability, reliability, and maintainability
over conventional analog-based systems through the application of replicated
digital computers arranged in fault-tolerant configurations. Three tightly
coupled factors of paramount importance which will ultimately determine the
viability of these systems are reliability, safety, and profitability.
Reliability, the major driver, involves virtually every aspect of design,
packaging, and field operations as regards safety, maintainability, and'
invariably profit for commercial applications or rational security for
military uses.

The antithesis of promise for the digital computer is, however, the
Achilles' heel of the reliability engineer. The utilization of digital
computer systems makes the task of producing a credible reliability
assessment a formidable one. The root of the problem is embodied in the
very essence that makes the digital computer such an outstanding device for
use in a host of aplications, namely its adaptability to changing
requirements, computational power, and ability to test itself efficiently.
It is the intent of this presentation to address the nuances of modeling the
reliability of systems with large state sizes, in the "Markov" sense, which
result from systems : hat are based on replicated redundant hardware and to
discuss the modeling of numerous factors which can reduce reliability
without concomitant depletion of spare hardware. The diminishing factors
are captured by the popular "coverage" terminology. Advanced coverage
(fault-handling) models are described with supporting rationale. Methods of
acquiring and measuring parameters for these models are delineated, and some
recently measured latent-fault data are presented.

INTRODUCTION

It is the intent of this paper to report on the development of two
novel methodologies for the reliability assessment of fault -tolerant digital
computer-based systems: Computer -Aided Reliability Estimation III and Gate
Logic Software Simulation. Both technologies were developed to mitigate a
serious weakness in the design and evaluation process of ultrareliable

f	 .

ORIGINAL PAGE I3
OF POOR QUALITY

digital systems. The weak link is based on the unavailability of a
sufficiently powerful modeling technique for comparing the stochastic
attributes of one system against others. Some of the more interesting
attributes are reliability, system survival, safety, and mission success.

A long-term goal of the NASA Langley Research Center is the
development of this tool. The technology development process is shown in
figure 1. Historically, our interest in this subject commenced circa 1971.
At that time, two math models were identified as having potential for
filling the assessment gap. Figure 1 shows those models as CARE, Computer
Aided Reliability Estimation, a computer program generated at NASA's Jet
Propulsion Laboratory for application to long-lived, space-borne computer
systems; and TASRA, Tabular System Reliability Analysis, a computer program
due to Battelle Memorial Laboratories for application to the F-111 Pitch
Flight Control System (refs. 1 and 2).

The CARE computer program is a very powerful reliability assessment
capability for fault-tolerant system concepts that existed in the late
1960's. A major innovation in reliability modeling in CARE was the
incorporation of the stochastic concept of coverage due to Roth and
Bouricius, et ai. (ref. 3). Coverage, defined as the conditional
probability that a proper recovery occurs if a fault exists, was shown by
Bouricius and Carter, et al., to be a significant factor for achieving high
reliability in modular replacement systems (ref. 4). Prior to this
consideration, reliability analyses omitted the coverage parameter entirely
which caused math models to assume a unity probability of system recovery
given a fault occurrence, thereby forcing the reliability predictions to be
nonconservative and hence, inaccurate. Although powerful and innovative,
the CARE math model suffers from two major deficiencies, its inflexibility
to model the emerging multiprocessor-based systems and the lack of a model
for computing the coverage parameter.

The TASRA computer program, in contrast to CARE, utilizes the popular
"Markov" analysis method which allows a very flexible modeling technique but
lacks the vital coverage model as well.

Based on these findings, NASA-Langley participated in the
codevelopment of CARE II with the Raytheon Company (refs. 5 al;d 6). The
primary objective in creating CARE II was to develop a coverage model to
compute coverage for CARE. Figure 2 presents the coverage math model and
delineates the factors comprising the coverage computation. Although the
CARE II coverage model represents a quantum leap in coverage modeling, CARE
II still retains the original CARE system's architectural-description
inflexibility.

A gestation period ensued following the CARE II development that
involved Langley in numerous studies, depicted in figure 1 as square blocks,•
and the codevelopment of two nti reliability assessment methodologies, i.e.,
CAST (Combined Analytic Simulative Technique) and CARSRA (Computer-Aided
Redundant System Reliability Analysis). The coverage impact study
determined upper and lower bound values of coverage for a fault-tolerant
triplex flight control computer system utilizing state of the art hardware
(ref. 7). The CAST study made two important contributions to our program at
Langley: it emphasized the potential importance of transient modeling in

2

ORIGINAL P^ - ES
Of POOR QL A!_ITY

reliability predictions, and it introduced the notion of Combining an
analytical approach with computer simulation (ref. 8). By partitioning the
modeling of ultrareliable systems in this latter manner, an otherwise
intractable problem using either technique in toto. now becomes workable.
The CAST concept has become the mainstay of our approach to reliability
assessment since the completion of the CAST study, circa 1974.

CARSRA was a spin-off from a Boeing Company study on the design of an
Airborne Advanced Reconfigurable Computer System (ARCS)(ref. 9). The
development and application of CARSRA was our first comprehensive
involvement with the assessment of complicated aircraft flight control
systems. The complexity of flight control systems gave rise to the creation
of CARSRA in two important areas. Since CARSRA utilizes the Markov
approach, a state reduction technique was required, and it became clear that
the assessment technique must model stage dependencies in order to assess a
variety of system configurations which constitute continued mission
success. The most familiar example of this application is system survival.
In a redundant fault-tolerant system, there are many system configurations
which will effect the proper system output; however, there are other system
configurations that may be of interest in addition to system survival.
Boeing, in the ARCS study, defined the term "Functional Readiness.' It is
expressed as a time-dependent probability and is applied to missions
containing critical subtasks which will either be performed or not
performed, depending on the operational redundancy level at the time of
demand. Boeing cites, as an example, an aircraft automatic landing function
for which a certain:level of hardware redundancy is required before a
landing may be initiated in poor visibility and weather conditions. CARSRA
also benefited from its predecessors by incorporating a multi-coverage
parameter capability and an electrical transient modeling capability.

Transient modeling proceeded in two directions: the stochastic
estimation of intermittent failures of computer piece-parts and the modeling
of the effects of induced analog transients on digital circuitry (refs. 10
and 11). The latter study is ongoing work that relates an analog transient
source with a digital system's activity. The form of this relationship will
he a stochastic model for input to a system reliability assessment model.

Software reliability studies are an ongoing activity at Langley. The
most recent completed study suggests the possibility of estimating software
reliability through testing. Although still in the experimental stages, a
methodology has been proposed and demonstrated that estimates probability of
software error as a funct i on of execution time and test trials (ref. 12).

All of the activities depicted by figure 1 have culminated to form the
basis for the development of CARE III. CARE III was codeveloped by Langley
and the Raytheon Company and cosponsored by the U.S. Air Force Avionics
Laboratory at the Wright-Patterson Air Force Base (refs. 13, 14, and 15). A
summary of the salient features of CARE III is shown in figure 3.

3

ORIGINAL
OF POOR QUALITY

- A General-Puroose'Reliabil

CARE III was designed to model large ultrareliable replicated systems
incorporating digital electronics. Examples of such systems are shown in
figure 4 (refs. 16, 11, 18, and 19). The CARE III assessment process is
depicted ir. figure 5 and begins with an architectural description of an
ultrareliable system. That description may be based on a conceptual model
of the system, then CARE III is used as a design tool; or, the system jty be
well-defined so that CARE III is utilized as an analysis tool. In either
case, the analyst generates a set of failure rates and probability density
functions for the various failure and error mechanisms he wis ps to include
in the analysis. A partial list of failure and error models is delineated
in figure 12. The inclusion of any of these models will necessarily lower
the system reliability estimate. The need to include a model is of course a
function of the architectural structure, its fault-handling mechanisms, and
the magnitudes of the parameters in the model. The large choice of failure
and error models is provided to increase the realism and credibility of the
analysis. The models are user options in CARE III and may be omitted at the
discretion of the analyst. Usually he will omit certain models after
determining that they have a minimal effect. Some of this modeling
information is used to define the system fault-handling model(s) which is
required as a user input, indicated by the state diagram in figure S. The
remainder of the failure and error modeling data is entered as Fortran
NANIELIST statements - examples will follow.

Angther important step in setting up CARE III input is the generation
of the system configuration and success criteria. Fault-tolerant systems
are usually designed to have many hardware and functional combinations that
enable proper system operation. CARE III uses the powerful fault tree
language to describe system failure configurations. In large systems, the
rn,mb-r of success combinations can be very large, and for this reason CARE
II !_ises the "unsuccess" or failure combinations instead. In a properly
designed system, the number of failure combinations should be considerably
less than the number ofr system success combinations, thus easing the
computational task. The fault tree language provides an excellent medium
for delineating the system failure combinations.

Referring again to figure 5, the user-prepared data are initially
processed by the CARE III input subprogram, CAREIN, shown as the upper
disk. It is essentially composed of the fault tree language program. The
second CARE III subprogram, COVRGE, processes the fault-handling model(s)
data and puts them into the form required by the third subprogram, CARE3,
which performs the reliability computations. CARE III is written entirely
in the Fortran IV language and currently executes on the Digital Lquipment
Corporation POP-10 computer and on the Control Data Corporation CYBER 170
series computers. The CARE III output data take two forms, graphical or
tabular. In either case, the outputs of most interest are the total system
reliability or system survival as a function of time and tw^ vital
components: probability of system failure due to hardware tJundancy
limitations (exhaustion of spares) and probability of system failure due to
improper fault handling. In ultrareliable systems, the latter factor is the
predominate cause of system failure (ref. 20).

4

OR! 0,1 L PACE
OF POOR QUALITY

An example of the CARE III assessment process is given by figures d gad
7. Figure 6 is a sketch of an Ultrareliable Fault-Tolerant Multiprocessor
composed of 10 memory processor pairs which communicate with each other over
5 individual bus lines shown in the chart as a solid bus line. This system
survives if at least 2 computers and 2 buses are operational. The analyst
want.% to compute the probability of system survival at 10 hours of
mission time for this multiprocessor system and the probability of system
failure at 10 hours due to spare hardware depletion and dice to improper
system-fault handling. For this simple illustrative exampia, the analyst
creates two fault trees and a state diagram for system-fault handling as
depicted in figure 7. The System Fault Tree describes the system stage
configurations that cause system failure. The computer stage is comprised
of up to 10 computers, each having an identical failure rate. The bus stage
is composed of up to 5 buses, each having an identical failure rate, most
likely different than that of a computer. The OR gate in the System Fault
Tree means that the system fails if a computer stage fails or a bus stage
fails. A computer stage fails if less than 2 computers are operational, and
a bus stage fails if less than 2 buses are operational. These conditions
are described in the line beginning with "$STAGES". This statement is a
Fortran NAMELIST statement. It says there are two stages, (NSTGES=2),i.e.,
10 computers and 5 buses, (N-10,5), and the minimum for stage survival is 2
for each stage (M-2,2). The remainder of the line describes the fcrm of
output data requested. The fault tree description for "ARE III input is
shown under the heading, SYSTEM FAULT-TREE. It describes the gate
interconnections and the types of gates. There is another cause of system
failure that is implicit in the SYSTEM FAULT TREE and that is system failure
due to single-point failures in either stage. Details of this model are
discussed, later.

A unique modeling capability of CARE III is the incorporation of the
effects of synergistic pairs of failures. In fault-tolerant systems, the
system could contain many undetected (latent) failures which individually
would not cause system failure; however, certain groupings of failures-that
coexist may bring the system down. The CRITICAL-PAIR TREE enables the
analyst to specify the conditions under which synergistic paired failures
cause system failure. For this case, any two latent computer failures out
of ten computers or any two latent bus failures out of five buses cause
silstem failure. In practice, one would usually specify which paired
failures cause system failure. The CRITICAL-PAIR TREE is described by the
data 'isted under the heading, CRITICAL-FAULT PAIRS. The next step in the
CARE III input process is the description of the FAULT-HANDLING MODEL. This
simple state model is composed of two system states, active (A) and active
detected (AD). The active system state is entered when a failure occurs.
It is an undetected or latent state. If a fault detector is employed, d is
the rate at which failures are purged from the system. CARE III assumes
that if the system enters the active detected state and it has spare
hardware, it will reconfigure out the faulty module and the system
recovers. Note, as 6 increases, the probability of synergistic failures
occurring diminishes since there will be fewer latent failures present.
Line one, $FLTTYP, shows that therR is one fault model (NFTYPS-1) and
defines the value of 6 as 3.6 x 104 detections per hour. Line 3, $FLTCAT,
simply links failure rates denoted as RLM arrays to stages (JTYP). Line 5,
$RNTIME, specifies flight time of 10 hours. CARE III input data for this

5

example system is shown in figure 7 beginning with the statement $FLTTYP and
including all the statements that follow. The CARE III output is the total
system probability of failure, the system probability of failure due to
improper fault handling, and the probability of system failure due to spares
exhaustion.

User-Oriented Language for Describing Complex System Failure
Configurations (Fault Tree)

The multiprocessor example made use of a trivial application of the CARE
III fault tree language. A better example emphasizing the power of the
fault tree input is given by figures 8 and 9. Figure 8 shows a block
diagram of a proposed fault-tolerant flight -control system. Of particular
interest is the Pitch Augmentation Stability (PAS) short cycle function.
The system fault tree for this function is presented in figure 9. This tree
illustrates that not only hardware redundancy can be represented but
functional redundancy as well. The elevator math model is functionally
redundant to the secondary actuator:;. The melding of hardware and
functional redundancy is a common practice in aircraft design. The proper
entry of this fault tree into CARE III with the necessary failure rate end
fault-handling data would yield a prediction of the probability of loss of
PAS function as a function of mission time. For the uninitiated, figure 9
is read as follows: An output from logic OR gate 212 constitutes loss of
PAS function which can occur if an output from OR gate 211 occurs, or if an
output from gate 210 occurs, or both. Gate 210 yields an output if at least
3 out of 4 secondary actuators or actuator function (elevator math model)
fail. Secondary actuator A will fail if computer A fails, or actuator A
fails, or both. A similar description can be used to delineate failures due
Ao loss of computation or loss of sensors.

Fault-Handling Model Based on Probabilistic Description of Operative
Detection, Isolation, and Recovery Mechanisms

In figure 1, a simple fault-handling model of two states was
described. CARE III has both a single-fault model and a double-fault
mneel. The latter defines critically coupled, paired failures. The single-
`ault model is given in figure 10 and is shown in the dashed box. For
illustrative purposes, three additional states have been added so that the
state diagram is a Markov model of a 2 unit system. Initially, the system
is in state 0 and has experienced no failures. When a failure occurs, the
system enters state A, the Active latent state, given by the arrival
density,A(t). Depending upon the nature of the failure, i.e.,
permanent,transient, intermittent, etc., the fault-handling model will be
defined differently. For example, if the failure were intermittent, A(t)
would be the probability density function (PDF) for the arrival of an
intermittent, and states A and B define the intermittent model where a and S
are constant transition rates into and out of state B, respectively. When
the system is in state B, the Benign state, the failed unit appears to have
healed itself, i.e., the manifestation of the failure, a fault, vanishes;

6

ORIGINAL
 POOR QUALITY

however, when the failed manifestation is once again resumed (the fault
reappears), the system enters state A where at that point, the failure looks
like a hard failure. It could be detected by a self-test program with POF
6(t'), and the system would enter state AD, the Active Detected state; where
given that a spare exists, the system will purge the faulty unit and switch
in the spare. Or while in the active state, the fault could generate error%
with POF p(t'). The system then will enter the AE, Active Error state. The
intermittent.failure could manifest its intermittent state again so the
system would then enter state BE, the Benign Error state. Although the
failure is benign, the error may not be benin and may cause system failure
which is denoted by the BE to F transition [11-C)E(-r)]. The error detection.
density E(T) and I-C is the proportion of errors from which the system is
unable to recover. While in state BE, the error could be detected and
corrected. In this event, the system enters state BD (Benign Detected) by
transition cc(-[). At this puint, the system may choose to do nothing
further with the detected error and so move to the Benign state, or the
system may choose to reconfigure out the module containing the error and,
therefore, move to state 1. The other transition out of state AE is to
state F, the single point failure transition [(1-c)E(T)1. This transition
is similar to the BE to F transition. In a well-designed fault-tolerant
system, (1-0E(T) should be near zero in magnitude. If a(t) were the POF
for the arrival of a transient, a would be set to a value greater than zero
and 0 would be equal to zero. The POF 1(t) for the arrival of a permanent
failure would be defined so that a-6-0. The dashed arc going from state AD
to A, enables the analyst to include the effects of the system decision that
the detected fault which took the system from state A to AD was, in fact, a
transient. In this regard, the system would not reconfigure out a
non-failed module. A judicious choice of values for the single-fault model
affords the analyst a wide range of models. A dil" Brent fault model may be
assigned to each stage or several models may be assigned to a given stage to
cover the effects of different failure mechanisms such as transients,
intermittents, hard failures, etc.

The reader will note that the reliability model in figure 10 has three
measures of time associated with it which necessarily makes the model a
semi-Markov process. This added complexity is required because the behavior
of the system is dependent on the onset of the various fault-behavior
events.

LARGE REDUCTION OF SYSTEM STATE SIZE

The capability thus described comes at no small computational price if
state of the art techniques were employed. In fact,if one were to utilize
the popular "Markov" modeling technique on a nontrivial system such as the
flight control system shown in figure 11 (which is composed of 22 stages and
64 reconfigurable modules) coupled with a reasonable set of failure and
error models (some of which are delineated in figure 12), the number of
system states would be on the order of millions. For each state, a linear
differential equation is formed. Clearly the solution of millions of
differential equations is computationally intractable if not impossible with
today's technology. But CARE III was designed to assess these types of
systems. How does it do it?

I	 --.,.

ORIGI14AL PACs 4
OF POOR QUA-r"

To understand the CARE III state reduction method, it is expedient to
first examine how the state size build;-up occurs in the Markov method. A
Markov state is described as an ordered n-tuple. The components of the
n-tuple contain information about the number of failed reconfigurable units
in the system plus system fault-handling information for each module and
fault type (hard failure, transient, etc.). For the system shown in figure
11, the n-tuple has a minimum of 22 components, i.e., one for each stage.
For each stage, additional n-tuple fault-handling components are added to
describe the number of failed units that are system detected, the number
that are identified with a reconfigurable module, and the number that have
been recovered. A set of fault -handling components is included in the
n-tuple for each type of failure, e.g., transient, hard, intermittent, etc.
The total number of n-tuple components becomes very large. The product of
the n-tuple components gives the number of possible system states. In
contemporary practice, tractable analyses are accomplished by making
numerous assumptions about the system to reduce the state size to the order
of 1000. CARE III, on the other hand, retains a considerable amount of
detail without the burden of unmanageable state sizes. This feat is
accomplished in CARE III by separating fault-handling information from the
structure model, i.e., information about the number of failed units. Each
model is worked separately to a point and then recombined (ref. 21). An
example of this state reduction is depicted by figures 10 and 13. When CARE
III processes the fault-handling model of figure 10,. that information is
ma pped into time-varying transition rates,al(t), a2(t), as shown in figure
13. What might have been a stationary semi-Markov process for the system of
figure 10 will always become a nonstationary Markov process. For large
systems, state size reductions of at least 10,000 to 1 have been estimated.
The solution to the nonstationary process model of figure 13 is given by the
solution to the forward Kolmogorov equation depicted in figure 14. The
system reliability is computed by summing the probabilities, P 1(t), for the
allowable or success states. Numerically, it is more accurate to compute
tha probability of system failure in lie ,A of reliability (probability of
rysten survival). The user-defined fault trees specify the system failure
sates, so that, the probability of system failure is simply the sum of
".2(t) over 1, the set of system failure states. CARE III actually computes
the probability of system failure using the equation,

-^ a^(T)dT	 j;!R 3	 7	 3t	 ^'	 - dz
Qq (t)	 e 0	 J	 TX

Z	 nn) d

	

^,	 0

0

where the probability of system failure is given by the sum of Q 1(t) overt
the set of system failure states.

CARE III has entered the first stage of validation by undergoing

extensive testing at the computer program (debugged) and math model levels.
It is also being applied to several experimental ultrareliable design

concepts to evaluate CARE III modeling flexibility and the user-oriented
fault tree interface.

8

ORIGINAL PACE 19
OF POOR QUALITY

GLOSS-GATE LOGIC SOFTWARE SIMULATION

It is one thing to implement a very powerful reliability model and
quite another to make it useful. For all reliability evaluators, including
CARE III, a weakness lies in the unavailability of data for miarW of the
fault-handling parameters. The situation is not a total loss; however,
since reasonable engineering estimates can be made in many cases, and
furthermore, the sensitivity of the system reliability can be tested against
variations in the marginal data. A better way, of course, is to measure or
estimate the parameters based on some empirical observatitns.

LATENT-FAULT MODELING AND MEASUREMENT METHODOLOGY

Since system fault detection appears to be the most critical
fault-handling parameter, NASA-Langley in 1977 initiated a series !^f studies
10 investigate a methodology for measuring the fault latency of digital
computers (ref. 22). The methodology consisted of simulating a 1000
equivalent gate processor in a host CDC Cyber 173 computer. The simulated
processor was a paper design and is referred to as a "hypothetical"
machine. The hypothetical machine was simulated at the gate level.
Actually, two copies of the hypothetical machine executed identical code in
synchronism, where one machine received a stuck-at fault at the onset of the
computation. Detection or nondetection was determined after the nonfaulted
processor completed its execution. At that time, the computational results
of the two simulated machines were compared, bit for bit. Any difference
constituted detection. If no detection occurred, the code's input variables
were randomly altered, and the processes were repeated for the same fault.
This scheme was repeated for up to eight executions for the same fault, if
detection didn't occur. If a detection occurred in less than or equal to
eight repetitions, or no detection occurred after eight repetitions, then a

i trial began where another stuck-at fault was induced. This overall
process was repeated for up to 1000 randomly selected faults. The 1000
induced faults were selected as a function of piece-part failure rates and
were distributed equally across the nodes of the gates. The latency time,
1.c., time to fault detection is expressed in number of code executions or
repetitions. The time scale can easily be mapped into CPU seconds of code
execution, if desired.

The comparison of output data from two or more computers is often
referred to as a comparison-monitoring detector which is an important
detection mechanism employed in many operational fault-tolerant systems. In
the CARE III fault-handling model shown in figure 10, comparison-monitoring

detection is modeled by E(T)-

The results of the pilot study were both surprising and intriguing.
Using six different programs ranging from a very simple fetch-and-store
program to a very complex linear convergence scheme, the pilot study showed
that only 50 percent of the induced faults were detected after eight
repetitions for all six programs. Figure 15 depicts typical results. The

9

ORIGINAL PAM':

OF POOR QUALI

Implication that these results have on reliability assessment for highly
reliable systems is staggering. It suggests that highly reliable
fault-tolerant systems cannot be designed with comparison monitoring or
majority voting as the major stuck-at fault detector (ref. 7).

VERIFICATION OF LATENT-FAULT MEASUREMENT METHODOLOGY

It was with this concern that a series of further experiments to
investigate the validity of the pilot study results were designed at
NASA-Langley After all, it was not clear that similar results could be
obtained for a real processor executing practical software. The goals of
the follow-on work were to test the findings of the pilot study utilizing a
real avionic miniprocessor, to assess the significance of injecting faults
at the gate level and at the functional pin level, to evaluate an airborne
self-test program, and to account for undetected faults (refs. 22, 23 9 .241,
and 25). The methodology for gate level simulation, which was codeveloped
by NASA-Langley and Bendix, is called the GLOSS, Gate Logic Software
Simulator.

The pilot study results were tested in three phases using a gat4
simulation of the Bendix BDX-930 miniprocessor, a 5000 gate equivalent CPU.
Initially the same six pilot study programs were coded using the comparable
primitive instruction set of the hypothetical machine, i.e., load, store,
add, subtract, and branch. The next phase allowed the six programs to be
recoded using the rich instruction set of the BOX-930, and finally
comparison-monitoring detection was measured for flight control system code
in lieu of the six pilot study programs. The surprising outcome of this
experiment is typified in flqure 16 for all six programs. The percent of
nondetected faults is about the same for all the programs, instruction sets,
and two different machines, i.e., 50 percent. As the code becomes more
complex, the shape of the histogram bunches up so that virtually all the
detcction occurs in the first execution. The latency time decreases
somewhat with increased code complexity but nc;` the percent detected.

When the same set of experiments are repeated with the exception that
faults are induced at the register transfer or pin level in lieu of the gate
level, similar results shown by figure 17 appear.	 One notable difference,
'iowever, is that the level of detection significantly rises.

As an extension to the pilot study, the latent-fault measurement
methcdology was applied to an airborne self-test program consisting of 2000
BDX-930 instructions which executed in three milliseconds on the BDX-930.
While the simulator executed the self-test program, faults were induced at
the gate level and, in a separate experiment, at the pin level. The design
goal for the self-test program was 95 percent detection. Figure 18 presents
a si,mmary of the self-test detection values and the comparison- monitoring
dete:tion values. For the same level of fault inducement, the self-test
code shows the highest detection, but fell short of the 95 percent
requirement for gate-level faults. With considerable effort and expense,
the 87 percent self-test detection was increased to 94 percent, and appears
to be a practical upper bound on gate-level fault detection. Flight control
system code improved fault detection substantially but still fell short of 0
percent undetected for gate-level faults. For component-level injected
faults, the industry-assumed value of 0 percent undetected was achieved.

10

pr _
	 _ _.	

_Iw -

W__­ - - ._ - - - - -

ortIGINAL PAGA IS
OF POOR QUALITY

SOME PROI:OUNO RESULTS AND OBSERVATIONS

The wide dispersion of detection raises some confounding questions
about the method of fault injection and, hence, which detection parameters
to use in reliability assessments. The inducement of faults at the gate or
pin levels yields a wide dispersion of detection when all other factors are
equal. This concern is further exacerbated by the knowledge that the method
practiced by industry, pin-level fault injection, yields the hi 	 r
detection values. At our present level of understanding of fault.
propagation mechanisms, the pin-level detection values would appear to be
nonconservative and should be used with great caution, if at all. This
recommendation is based on our knowledge that the gate-level faults that
were not detected after eight repetitions are potentially detectable or
distinguishable, i.e., there exists some code or sequence of code execution
that will propagate a distinguishable fault.

In the process of investigating the reason why faults were not detected
after eight repetitions, it was discovered that there exists a class of
faults that can never have an effect on the system and, therefore, can
never be detected. This class of indistinguishable faults has been
estimated to comprise 16 percent of all faults. An example of an
indistinguishable fault is a stuck-at fault located at the unused output of
a flip-flop circuit. An important outcome of this discovery regards the
method of estimating detection coverage. The conserv ative approach, and the
correct one, is to delete the 20 percent indistinguishables from the set of
induced faults in the computation of detection coverage. The net effect is
to reduce the magnitude of detection coverage.

The lessons learned from these latent-fault modeling and measurement
studies are summarized as follows:

o Practical measurement of detection coverage for stuck-at faults is
possible and is a necessary aspect cf reliability assessment.

o Comparison-monitoring detection for typical application code is much
less than expected, which poses serious implications for highly
reliable systems.

o 95 percent gate-level self-test detection coverage is measureable and
achievable but expensive to accomplish.

o The industry practice of measuring self-test detection by inducing
faults at the pin level may not be conservative, and in view of the
fact that the reliability of highly reliable systems is very
sensitive to detection, further analysis of this practice is
requi red.

CONCLUDING REMARKS

The CART III and the GLOSS are presently in the developmental stages,
with CARE III clearly in the lead. The CARE III math model is embodied in a
Fortran IV computer program that has been receiving considerable national
scrutiny. The validation of CARE III is being conducted by industry, the

11

university community, and by the U.S. Government at NASA's Langley Research
Center and by the U.S. Air Force at Wright-Patterson Air Face Base. To
date, only minor correctable problems have cropped up; and, if this trend
continues, CARE III will be released within a year.

The development of a generally applicable GLOSS commiter progrem, which
embodies the GLOSS methodology, is currently underway. nitially, the GLOSS
will execute on the VAX-11, 700 series computers but will be written for
maximum computer po.•tability.

r

12

I

REFERENCES

1. N4thur, F. P.: Reliability Study of Fault-Tolerant Computers in
Supporting Research and Advanced Development. Jet Propulsion
Laboratory, Aug. 1969, Space Programs Summary 37-58, Voi.III, pp.
106-113.

2. Blazek, R. H., et al.: Demonstration of Combined Reliability
Prediction and Verification Techniques to a Typical Flight Control
System, Vol.I, Development and Application of Tabular System
Reliability Analysis to the F-111 Pitch Flight Control System.
Battelle Columbus Laboratories, AFFDL-TR-71-128, Vol.1, (Available from
AF Flight Dynamics Lab., Wright-Patterson AFB), Oct. 1971.

3. Roth, J. P., et al.: Phase II of an Architectural Study for a
Self-Repairing Computer. SANSO TR-67 -106, U.S. Air Force, Nov. 1967.
(Available from DDC as AD 825460).

4. Bouricius, W. G., et al.: Reliability Modeling Techniques and
Trade-Off Studies for Self-Repairing Computers. RC 2378, Res-Div., IBM
Corp., Feb. 1969.

5. Raytheon Company, Sudbury, MA: Reliability Model Derivation of a
Fault-Tolerant, Dual, Spare-Switching Digital Computer System. NASA
CR-132441, 1974.'

6. Raytheon Company, Sudbury, MA: An Engineering Treatise on the CARE II
Dual Mode and Coverage Models. NASA CR-144993, 1976.

7. Bavuso, S. J.: Impact of Coverage on the Reliability of a Fault
Tolerant Computer. NASA TN D-7938, 1975.

8. Ultra-Systems, Inc., Newport Beach, CA: Reconfigurable Computer
Systems Study. NASA CR- 132537, 1974.

9. Bjurman, B. E., et al.: Airborne Advanced Reconfi gurable Computer
System (ARCS). The Boeing Commercial Airplane Company. NASA CR-145024,
1976.

10. O'Neill, E. J.; and Halverson, J. R.: Study of Intermittent Field
Hardware Failure Data in Digital Electronics. Sperry Univac Defense
Systems, St. Paul, MN. NASA CR- 139268, 1980.

11. Masson, G. M.: Executive Summary - Intermittent/Transient Faults in
Computer Systems. The Johns Hopkins University. NASA CR-159229, 1979.

12. Nagel, P. M.: Software Reliability: Repetitive Run Experimentation
and Modeling. Boeing Computer Services Company. NASA CR-165836, 1982.

13. Stiffler, J. J., et al.: CARE III Final Report Phase 1, Vols. 1 and 2.
Raytheon Co., Sudbury, MA. NASA CR-159122 and NASA CR-159123, 1979.

13

14. Bavuso, S. J.: Trends in Reliability Modeling Technology for Fault
Tolerant Systems. AGARD Conf. Proc. No. 261 on Avionics Reliability,
Its Techniques and Related Disciplines, April 1979.

15. Stiffler, J. J.; and Bryant, L. A.: CARE III Phase II Report,
Mathematical Description. Raytheon Co., Sudbury, MA. NASA CR-3566,
1982.

16. Hopkins, A. L.; and Smith, T. B.: The Architectural Elements of a
Symmetric Fault-Tolerant Multiproccesor. IEEE Trans. on Computers,
Vol. C-24, No.5., 1975.

17. Osder, S.: The DC-9-80 Digital Flight Guidance System's Monitoring
Techniques. Sperry Flight Systems, Phoenix, AZ, AIAA Paper 79-1704,
1979.

18. O'Hern, E. A.: Space Shuttle Avionics Redundancy Management. Rockwell
International, AIAA Digital Avionics Systems Conference, April 1975.

19. Hensley, J. H., et al.: Design Study of Software-Implemented Fault
Tolerance (SIFT) Computer, SRI International, Menlo Park, CA. NASA
CR-3011, 1978.

20. Stiffler, J. J.: Fault Coverage and the Point of Diminishing Returns.
Journal of Design Automation and Fault Tolerant Computing, Vol.2,
No.4, Oct. 1978.

21. Trivedi, K. S.; and Geist, R. M.: A Tutorial on the CARE III Approach
to-Reliability Modeling. Duke University, Durham, NC. NASA CR-3488,
1981.

22. Nagel, P. M.: Modeling of a Latent Fault Detector in a Digital System.
Vought Corp., Hampton, VA. NASA CR-145371, 1978.

23. McGough, J. G.; and Swern, F. L.: Measurement of Fault Latency in a
Digital Avionic Miniprocessor. Bendix Corp., Teterboro, NJ. NASA
CR-3462, 1981.

24. McGough, J. G.; et al.: Methodology for Measurement of Fault Latency
in a Digital Avionic Miniprocessor, AGARD Conf. Proc. No. 303 on
Tactical Airborne Distributed Computing and Networks, June 1981.

25. Bavuso, S. J., et al.: Latent Fault Modeling and Measurement
Methodology for Application to Digital Flight Controls. Advanced Flight
Control Symposium, USAF Academy, Colorado Springs, CO, Aug. 1981.

14

L

W

.8
ig

i
PAGL

OF pooR QUALITY

Q CD W

w ce. icaooj

L3

^ J
«-. W

Q A E

ui
cc

Z Q

•^+ W
H
J

*a
CO
Q CIO LdL 7

cm co

O O O O
0
r-
M
1
Q^

V
^r+

0

O
C

0!

O!
LL.

W
V!

Q V^C; tL
N 0

H H

0 0H M

H a
M !?7

0	 n

A

H H
H `^
W

W

a Ha 0
z mH to
U ^+

w aA H

H O
E-4	 94

H aw 0̂

U

4 c0r^
^i H

a	 a

Ha
H

Wa

0H
v
H

A

aN
HH

A
n

s
EA

P4
EA

H

z
P

a

8

W

9
0H

m°
O
H

0
f„ i

►r. ,.4

aW
cc

U
a

N

w

H
E+

W'.

H

0u
•

H
H

0aa
a
0

a

X X
t o04 a x k a

O O O A O O O O O
i

t-
to.-%
or

v
H

r

Nv.
tit

811-^o
EWi

^•r3

•ri
x

c°^
to

a
r

•
^

•	 -
y

V•r!
Vx O

PAIL',
or poOR QUALM f

H

C	 y

ac

	

o	 F....
U9

cc

	

o	 o

J OC)
	 4a

.-.	 A	 ^-	 y	 c
~

ci
 J ce J	 ~

N
^--^	 i0
"''

	

	 l--^	 t^	 O W O	 H
cn

Q	 ..J	 d^ .~• U.. W UU- V	 H

cn co
t	 U	 .--^	 v	 W^^^ M

	

w	 O 1 ^.1	
i4J^'~~Ato~ w'^	 A	 V	 .

cn

	

N O	 o	 W	 ch
} 1*4	 A

^'. CO)
	

o
ô

•--• LTJ
d

9:2C C/)
	 LiJ	 W

	

V•-	 ^A

LUuj
0 ^O _Z	 J

	

A	 U-	 %.0
J cĉ

	

U.1 CD
	 ^

	

cc	 ca c^^-M
e © o	 e	 ^

..

H;:

N

v V

F ►r

c a C=7

Y tll1hOW0) W W y^1p^W0)
W w

e	 It r CDỳ1
^vld W J

o LL

i J

^ 2 H
o ^

w ^ C
C)

a
= O

C►
1

ORIGINAL PAGE
I SOF POOR Q

ce
CD
N
Nw
U

do--,
1'-
J

p
W

B f1 O

H
J

d
tL

N^
's

_oC W
w r
as <

N'^ N<v
	

.wZK	 O
t 	 O	 '^ <

	

O O ti	 W V

A rf

Wll=
^

V Q
td[[

r	 VIK

	

^i' 1 '1	
r Wr

^	 y r

^ M W
R	

J

I i	 v

t

I^—	
a

^ N^	 ^	 a

	

I I I I^ I	 F^^-^ H

WV

U.
G UW.
L 0-4

Nv y

J
^-r	 y

W ^_	 i

UP

N 0
1

w
dr
r
r

t

rt
Q1
r

b
V
r

a
Q
Id

H•

HI

w

d
CS

er

CI	 -
r

i

or	 co 'q
us

x
C3

5z
dH
e '• /

w H w

m V

44 W6

to

O
V v

U.

/Yw

C m
L9

V iH

N

N

d

V

1

y

OR►G^NA—QUALITY

AM OF POO

M f

H W =

rl N^
^ TVA I

f.
 it

O

y
w O

Q	 wC-0)cn

V

w
_o

Q	 8
^z

lu.!	 4

cs.	 cc F.

8-0 cc
co

L	 ..-1 wJ .wy.	 a
a^	 1-̂Wy	 d-C7	

AW aq

" P..	 Còo ^.1
c'$ W	 1
s ^' x̂

r y

0-4 h

s	 "W

r

9
Q

Y
nY

E..

to
H

VI

D
al

V

ORIGINAL PAGE 1$
OF POOR 01 ,1 1" ITY

2O

y
_ t-
	 f

Wi

//000,"

i

L
O
O

o^L
Q
48r

C
La
r-

r^

d
r+

M

w	 '^

' r

It

i

I
-
N

W

a.
H u4.

w

X
a

dJd5
F-

tj

J
cc

w

ORIGINAL PAGE IS
OF POOR QUALITY

co

t	
L

l	 S

r

	

H	 m

	

Y	 r

i

	

N to	 ;o•H •

	

r► N ,•.	
a

	

NH	 G

	

v7 mT	 '•1
9

 ow-H k F

	

,k N
	 co

LnHcum••r► 	 It-	 R:

^VM^	 ^^
vV

HHrlrlri

	

F'a^J 	 wCuo 11494r+NN0

" vt rl

I

ORIGIM%L PAGE 19

OF POOR QUALITY

	

^^	 r'~1	 ^tOrIM^ rMr^ MINA

ww w.-^ww,w^wJ

	

Ow^Mrw^.	 _ VT--	 ii
.	

E
	

NM1MiW 70	
• r.. w &*ask Q M .

	

aww ^....w	 mow,	 MrMM

	

r	 y	 fff.....^^^^ ___ ^www.= ^

►MNr

ASM •	 -J

2	 wNwr^.^ ,	 w ;	
e

1

Mv NWIMS

few

MPMP

To Mier" ACT anaM wA^ew

'	 ^ Ow1wr^ e^...N
. ^? orNwr aMM^ inMr up-" .

.	 Ae11w tMMM	 Nr^wt

PAS function equipment

Figure B. - Fault-tolerant flight controls stem - pitch augmented
stability function (PAS).

•	 w

ORIGINAL PAG^ ^ 18	
N

UALITY
OF POOR Q	 ^•, ^ S-3v.^

1

8
Y

4

1 y I N

f

f

^eQ

i.M
M

N
H
H

W
t

V

r

am

a-a
3-ais
-3-3

a-Nise-3

i --Nis
-2

uit)

a. F

tBI
ct(t)

PA^r ail

0V
p PooR QUALITY

'

010411P t	
D	 tt)

)A	
A	

t^
tl

1

t • global or mission
time

ti . time from entry to
state A

T = time from entry to
state AE

Figure 10. - Overall reliability
model of two-unit system.

0MGMAX. PASZ IS
or 1,00ft (JUAUTY

.--0

Figure 11. - Advanced reconfigurable flight control system.

QR1 P^4^ROf ^i

of

6

9
I.-OA

1

1.00A

1

a

arT
^b

Q
Y!

4

r

P

T
I'O

0

Nri

A
k

a2(t) vtt?

1

*ate' M
p lC1"l PI-

Q ^s^: 4

OF VOOR
QUp i:Xf

F i qure 13. - Ag^,r •egated reliability model for d two-unit system.

w

OMNAI* PAGE IS

OF POGrti ^'' 41.1TY

-j
^ (T^ t ^ Pj(Thjs(^)ajth)

PA(t) • e	 __..._.. _ d0

44 Xt(n)an
0	 e

r."^_ra

Pi(t) - .,robability of being in state it at time t

A3%(t) • transfer rate from state j to state t

^t(t) ^ ^ t^(t)
{

riot) coverage associated with a failure which. if coverage were perfect, woutd post a transferf►^a state 3 to state t

.I!*! system reliability is given by

R(t) n I Pt(t)

UL

`nr the set L of allowable states.

•

Figure 14. - CARE III state probability computation.

s^

z
0

CW
A

oR!G?%N1 AL PAGr. IS

OF POOR QUALITY	 FAULT
INJECTION

FAULT FREE	 FAULTED
PROCESSOR	 PROSOR

ERROR
DETECTION

LATENCY DATA

w 50Z OF KNOWN FAULTS"

;TED IN A SIGNIFICANT

TIME TO DETECT

Figure 15. - Latent-fault measurement.

71

rMLU

ORIGIS. M. PA(kt 0

OF POOR
^p1.CTY

CWARISOI-M NMRING

to

7	 -L	 ^	 e	 a	 o	 -	 -	 --	 --

TIME TO DETECT (aEPETITIO-US)

Figure 16. - Fault latency distribution - gate-level faults.

r

DETECT
FAILURI

i

I	 z	 3	 4	 5	 6	 7	 a	 •31	 10	 11

TIME TO DETECT (REPETITIONS)

Figure 17. Fault latency-distribution - cowfonent-level faults.

r
a

tica
b

o 2
o ^

cnv ^ 4=1
be cc

..

La ' cm y» ^

C07
^cz

^ tom-•

9

A
a^-a~

,•.̂^ w

C9

A p
j

ar
t3

gig

JAW

J~

s

X ^ o
C.0 C-C ate..

H------^

* .y..l cm
Ck- O_X

O to	 a
pppp^

69

^

0-
t3

ca..
IN

cov

w

e

ON

pRfGiNAL FAGS M
OF POOR. QUALIT)r

go	 2c

gW	
.

W 1- • 	AH
a H.Lg^a

	 y

S^"^	 • • ♦W..	

co

°Eze8-
H N

	GeneralDisclaimer.pdf
	1982023086.pdf
	0029A02.pdf
	0029A03.pdf
	0029A04.pdf
	0029A05.pdf
	0029A06.pdf
	0029A07.pdf
	0029A08.pdf
	0029A09.pdf
	0029A10.pdf
	0029A11.pdf
	0029A12.pdf
	0029A13.pdf
	0029A14.pdf
	0029B01.pdf
	0029B02.pdf
	0029B03.pdf
	0029B04.pdf
	0029B05.pdf
	0029B06.pdf
	0029B07.pdf
	0029B08.pdf
	0029B09.pdf
	0029B10.pdf
	0029B11.pdf
	0029B12.pdf
	0029B13.pdf
	0029B14.pdf
	0029C01.pdf
	0029C02.pdf
	0029C03.pdf
	0029C04.pdf
	0029C05.pdf
	0029C06.pdf

