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1. Introduction

The purpose of this grant is to investigate the use and implementation

of Ada (a trade mark of the US Dept. of Defense) in distributed environ-

ments in which the hardware components are assumed to be unreliable. In

particular, we are concerned with the possibility that a distributed system

may be programmed entirely in Ada so that the individual tasks of the sys-

tem are unconcerned with which processor they are executing on. and that

failures may occur In the underlying hardware.

Over the next decade, it Is expected that many aerospace systems will

use Ada as the primary implementation language. This is a logical choice

because the language has been designed for embedded systems. Also. Ada

has received such great care in its design and implementation that it is

unlikely that there will be any practical alternative in selecting a program-

ming language for embedded software.

The reduced cost of computer hardware and the expected advantages of

distributed processing (for example, increased reliability through redundancy

and greater flexibility) Indicate that many aerospace computer systems will

be distributed. The use of Ada and distributed systems seems like a good

combination for advanced aerospace embedded systems.

Our work under this grant up to this point indicates that the situation

Is not as good as expected. There seem to be numerous aspects of the
t

language which make its use on a distributed system somewhat difficult.

The issues are not raised directly from efforts to implement the language

but from the desire to be able to recover, reconfigure, and provide contin-

ued service In the presence of hardware failure.

Our work so far has consisted of:



(1) A formal definition of the Ada tasking semantics.

(2) An examination of the language (July 1982. version 9) to thoroughly

understand the various features.

(3) The generation of a mo,del of the assumed underlying hardware system

and the failures of that system which will be tolerated.

(4) An examination of the Ada language with regard to its use and Imple-

mentation in the assumed environment.

(5) The design of an experimental system that can be used to investigate

the algorithms we expect to develop for the implementation of Ada.

Each of these topics are discussed In the sections below.

2. Formal Semantic Definition of Ada

In order to be able to Implement a language, it is imperative that a

precise definition of the language semantics be available. Semantic defini-

tions of programming languages are relatively uncommon because existing

methods for semantic definition are difficult to use and in some ways

inadequate. A semantic definition of Ada has been prepared for the Ada

Joint Program Office (AJPO) using denotational semantics. This definition is

quite difficult to read but its biggest problem is that the tasking and excep-

tion semantics of Ada are totally absent from the definition. The reason is

that denotational semantic methods are not sufficiently powerful to describe

tasking.

Previous work at the College of William and Mary produced a semantic

definition using H-graph semantics. Since that report, the Ada language

has changed somewhat and the H-graph definition methodology has been

revised considerably. The new definition which we have undertaken is a



revision of the earlier work at William and Mary using the latest versions of

both Ada and the H-graph method. The current version of the definition is

attached as appendix 1.

3. Examination of the Language - General

As a part of the activities under this grant, we participated as a

volunteer review group for the July 1982 Ada definition. This effort was

coordinated by AdaTEC as an attempt to generate comments from the

United States about the revised language before the final version (which

would be used for the ANSI canvass) was printed. We found the revised

language definition document to be very different from the July 1980 version

and chose to put all of our effort Into reviewing the tasking definition

thoroughly rather than review the entire language definition superficially.

The result of our review was a set of 35 questions which were dis-

cussed at the meeting of the volunteer reviewers at the AdaTEC conference

In Boston (June 1982). Our comments were well received and many were

found to have substantial content. These were to be passed on to the Ada

design team for consideration. A brief examination of the July 1982 Ada

reference manual (denoted version 16) indicates that our comments were

either not received in time or were not acted upon since most of the

language difficulties still exist. A copy of our questions is attached as

appendix 2.

In general our concerns about Ada are to do with time. Some exam-

ples are:

(1) The conditional entry call does not define •immediately" and so we

have no way of knowing how the call Is supposed to be implemented.



There are several ways which are entirely different based on the

current language reference manual definition.

(2) The timed entry call does not define when the time for the call is to

begin. There are again several different Interpretations. Worse how-

ever, is the fact that the timed entry call does not provide a useful

facility for the programmer in its current form given any definition. The

problem which it should address Is the need to be able to time out

easily once a rendezvous has begun rather that before it has begun.

These issues demonstrate why a formal definition of Ada is so important.

We cannot decide exactly what is supposed to be Implemented given the

current language definition which is in English and therefore ambiguous,

imprecise, and Incomplete. Unfortunately, the issues with the conditional

and timed entry calls, and with other language elements, are actually much

more serious In a distributed system.

4. Underlying Hardware Model

Initially, we assume that communication between processors on a distri-

buted system will be implemented using layers of software that conform for

the most part to the ISO standard seven layer Reference Model. The

hardware topology that Is used for a distributed system need have very little

impact on the programming, of the system at the application layer level. In

principle, provided the implementation knows how tasks are distributed to

processors and how communication Is to be achieved, the various tasks can

synchronize and communicate at will with no knowledge of their location.

To discuss implementation and recovery In the context here, we found

It necessary to have an underlying hardware model. Our model assumes



that a set of processors are connected to some sort of communications bus

system which we do not define. The bus system could be a ring, multiple

rings, a crossbar switch, etc. Peripheral equipment such as sensors and

actuators are also assumed connected to the bus system, and the connec-

tion Is assumed to be provided by a microprocessor dedicated to the Inter-

face.

The kinds of hardware failure that we are concerned with are not

addressed by the ISO protocol. The ISO protocol Is concerned with minor

communications failures such as dropped bits caused by noise, etc. Also,

situations such as a processor "slowing down" or Incorrectly computing

results are not of interest here (though they are important never the less).

We assume that such events are taken care of by hardware checking within

the processor or similar. The only class of faults not dealt with elsewhere

Is the sudden total loss of a processor or bus and these are the difficulties

we will attempt to deal with.

We feel that this hardware model and associated failure model is

directly relevant to avionics systems but also seem very relevant to space-

craft systems. Sophisticated unmanned spacecraft frequently make extensive

use of computers (e.g. Galileo) but are unable to pay the weight and power

costs of extensive redundancy (such as In quad redundancy or SIFT).

Reconfigurable distributed systems designed to cope with processor or bus

failure is an attractive alternative. If the design Includes higher processing

power than Is absolutely needed, and tasks exist which are not essential to

mission success, then some loss of hardware followed by reconfiguration

may allow the mission to continue successfully.



5. Ada on Unreliable Distributed Systems

We are examining the Ada tasking facilities to see which ones can be

supported and which ones have to be abandoned in the programming of

distributed systems on unreliable hardware. The restrictions have to be

Imposed because of the need to reconfigure following hardware failure.

A key problem area is the association of processors with tasks nested

within other tasks. Failure of a processor containing a parent task whose

children are running on another processor leaves the children as 'orphans*.

Such orphan tasks present a difficult problem for reconfiguration because if

the parent is to be restarted on a different processor, the children will be

recreated as the parent is elaborated.

Another difficult problem area is detection of hardware failure. The

hardware may not know that It has failed. The only proposal that seems

feasible at the moment is the use of software heartbeats within each pro-

cessor that are software monitored In other processors.

6. A System For Experimentation

The confirmation that algorithms developed for use and implementation

of Ada are valid is best achieved by experimentation. We propose to con-

struct an experimentation facility for distributed systems using our depart-

mental VAX 11/780 computer. In the overall design, we Intend to have the

VAX function as a programmable switch to which several smaller computers

will be connected. The VAX will be programmed to simulate any bus struc-

ture that is desired for connecting the smaller computers. In addition, the

VAX can systematically and repeatedly inject faults into the simulated com-

munications and monitor the handling of the faults. In this way bus and



processor failure can be simulated easily. At present, we are at the early

design stage of the overall system and the switch software.

7. Remaining Grant Activities

During the remaining grant period, we are going to complete our study

of the use of the language so as to provide a complete set of guidelines

for writing Ada programs in the context of interest. At present, we antici-

pate that the list of restrictions will be quite substantial.

Once we have completed that study, we are going to look closely at

implementation. This effort may be easier than at first thought. If software

heartbeats are used, the responsibility for error detection and management

of the reconfiguration will be at the level of the application software layer.

The implementation can be fairly standard except for those primitives used

to provide reconfiguration services.

If software heartbeats are not used, the implementation will be much

more involved because it must provide all the major aspects of the required

fault tolerance.



Appendix 1

An operational model of Ada tasking has been developed using an

H_graph notation developed in. 'H_Qraph Semantics', T.W.Pratt. Technical

Report Department of Applied Mathematics and Computer Science. University

Of Virginla.Sept 1981.

In the model each task is assummed to be running on a separate pro-

cessor: communication between processes (and hence between processors)

is by remote calls to kernel procedures. The run time state is described

by an H_graph grammar (A). Every instruction will ultimately be defined as

a transformation of the run time state.

The transform COMPILE (B) translates an Ada text into an intermediate

form consisting of a list of declarations and a list of executable statements

(ie transformations of the run time state). Execution of the intermediate

form proceeds in two steps. First elaboration of the declaration list, and

second, execution of the statement list.

An example of Ada text (C) and the intermediate form obtained by the

application of COMPILE (D) is included.



network ::=

[ [NETWORK]

-<node_id>-> network_node

{-<node_id>-> network_node )

I

network_node ::=

[ tNETWORK_NODEl

-name-> [ <node_id> 1

-processor-> processor

-communicatlons_interface-> t [COMM]

-proc_export-> proc_info

-proc_import_qiieue-> *piq: QUEUE( proc_info

1

-kernel_proc_code-> [ [KPCODEI

-<kproc_name>-> code

{-<kproc_name>-> code )

1

-process-) process

processor ::=

[ [PROCESSOR]

-next_instruction-> lnstruction_pointer

-tlmer-> t-[TIMER_HARDWARE ]



-set-> t <tlmer_status> 1

-delay-> t <tlme> 1

-transfer_address-> instruction_pointer

1

-flags-> t CFLAGS1

-user_pgm_suspended-> [ <boolean>

-lnhlbit_tlmer-> [ <boolean> ]

-inhib!t_abort-> [ <boolean> ]

-lnhibit_exception-> t <boolean> ]

-check_lmmedlate_rendezvous-> [ <boolean>

1

-network_node-> [ network_node I

-kproc_lnfo-> proc_lnfo

lnstructlon_pointer ::= [ [IP]

-Instruction-) [ code_node 1

-code_block-> [ code 1

proc_lnfo ::=

t [ PROCJNFO 1

-to-> [ <node_ld> 1

-from-> [ <node_id> ]

-kproc_name-> [ <name> I



-parameters-> KEYED_LIST( <lnteger>.arb_node )

1

code ::= LIST( code_node )

code_node ::= instruction_node ! branch_node ! LISTC code_node )

instructlon_node ::= [ [INSTRUCTION_NODEI

-transform-) [ <transform_id> 1

-arguments-) KEYED_LIST( <lnteger>.arb_node )

1

branch_node ::= [ tBRANCH_NODEI

-condition-) function_node

-alternatives-) KEYED_LIST( <lnteger),code )

1

function_node ::= C [FUNCTION_NODE1

-function-) [ <function_id> 1

-arguments-) KEYED_LIST( <integer>.[ arb_atom ]

-result-) [ arb_atom ]

1

process ::= [ [PROCESS]

-process_ob|ect-> process_object



-proc_lmport_queue-> **piq

process_object ::= [PROCESS_OBJECTI

-next_instruction-> . lnstruction_pointer

-actlvation_record_stack-> STACK( activation_record

-load_module-> [ load_module 1

activation_record ::= task_activatlon_record ! subprogram_activation_record ! package activation record

task_actlvation_record ::=

[ ITAR]

-user_data-> user_data

-system_data-> system_data

-elaboration_data-> elaboration_data

1

user_data ::=

[USER_DATA1

-locals-> — allocated by elaboration

-non_locals-> KEYED_LIST( <name>.[<nesting_level>I

system_data ::=

[ [SYSTEM DATA]



-my_phone_#-> processlng_unit

-state-> [ <state> I

-context-) [ [CONTEXT!

-ref_stack-> [ display 1

-with_list-> [ 1

-use_list-> [ ]

1

-exception_llst-> LIST( <exception_name> )

-governor-) processing_unit

-dependent_task_list-> LIST( dependent_task_info )

-#dependent_tasks_not_terminated-> [ <integer> ]

-#nolsy_tasks_in_dependent_task_tree-> [ <integer> ]

-entry_called-> [ <entry_nanie> I

-entry_list-> KEYED_LIST( <entry_name>.entry_list_node

-llst_of_handlers-> handlers_list_node

-ready_to_rendezvous_list-> LIST( entry_name )

-nestlng_level-> [ <lnteger> ]

display ::= KEYED_LIST( <nestlng_level>.processlng_unlt )

dependent_task_lnfo ::=

[ [ DEPENDENT_TASK_INFO1

-processor-) processing_unit

-terminated-) [ <boolean> ]

-tree_qulet-> [ <boolean> I



entry_list_node ::=

[ [ENTRY_LIST_NODEI

-state-> t <state> 1

-transfer_address-> [ lnstruction_pointer

-queue-> QUEUE( entry_queue_node )

1

entry_queue_node ::= tENTRY_QUEUE_NODEl

-processor-) processing_unit

-parameters-> KEYED_LIST( <lnteger>.arb_node

1

handlers_list_node ::=

[ [HANDLERS_LIST_NODE7

-in_handler-> [ boolean ]

-list-> KEYBD_LIST( <exception_name>.instructlon_pointer

1

processlng_unlt ::=

[ tPROCESSING_UNITI

-network_node-> [ <node_id> 1

-tar-> [ task_actlvatlon_record

I



elaboration_data ::= [ [ELABORATION_DATA]

-task_activation_data-> task_llst_node

-allocator_execution_data-> task_list_node

task_list_node ::= [ [TASK_LIST_NODE1

-#_non_allocated_tasks-> t <lnteger>

-#_non_active_tasks-> [ <integer> I

-llst-> KEYED_LIST( <task_name>.task_info )

1

taskjnfo ::= f CTASKJNFO]

-name-> full_id

-processor-) [ processing_unlt ]

-allocation_completed-> [ <boolean>

-actlvatlon_completed-> [ <boolean> ]

-load_module-> [ load_module 1

1

subprogram_actlvatlon_record ::=

[ [SARI

-ld-> full_id

-context-) display

-user_data-> user_data

-body-> subprogram_body

-return_address-> lnstructlon_polnter



-dependent_task_list-> LIST( dependent_task_info )

-#_dependent_tasks_not_terminated-> [ <integer> 1

-task_activation_data-> task_llst_node

-allocator_executlon_data-> task_llst_node

load_module ::=

[ [LOADJVIODULEl

-module_ld-> fuU_id

-entries-> LIST( entry_node )

-body-> task_body

-context_of_body-> display

-governor-) processing_unlt

-activator-> processlng_unit

1

entry_node ::= [ [ENTRY_NODE]

-name-> full_ldent

-range-> range

-formal_params-> formal_part

range ::= [ [RANGE!

-low-> t <lnteger>

-h!gh-> t <integer>

J



fulljd ::= [ [FULLJDENTI 1

-ld-> [ <ldentifler> ]

-level-> t <nesting_level> 1

1

body ::= subprogram_body

!task_body

subprogram_specification ::= t [SUBPROGRAM_SPECIFICATION]

-ld-> T <identifier> ]

-level-> t curr_level ]

-params-> formal_part

1

formal_part ::= LIST({parameter_specification) )

parameter_speciflcation ::= [ [PARAMETER_SPECIFICATION]

-ld_llst-> identlflerjlst

-level-> [ <lnteger> 1

-mode-> mode

-type-> type_mark

-value-> code

1



mode ::= [IN] ! [IN OUT] i [OUT]

subprogram_body ::= [ [SUBPROGRAM_BODY]

-speclflcations-> subprogram_specification

-declaratlons-> declaratlve_part

-statements-) code

-exceptions-) LIST( (except!on_handler) )

1

task_body ::= [ [TASK_BODY]

-name-> full_ld

-declarations-) declarative_part

-statements-) code

-exceptions-) LISTC exceptlon_handler )

1

exception_handler ::= [ [EXCEPTION_HANDLER]

-name_llst-> LIST( exceptlon_choice

-handlers_code-> code

exceptlon_choice ::= [ exceptlon_name I i [ OTHERS ]

QUEUE(X) ::=



[ [QUEUE!

-first-> [ QUEUE_ELEMENT( X ) ]

-last-> [ QUEUE_ELEMENT( X ) ]

1

QUEUE_ELEMENT( X > : : = [ # J I

I [QUEUE_ELEMENT]

-head-> t X ]

-rest-> [ QUEUE_ELEMENT( X ) ]

1

KEYED_LIST( <KEY>.MEMBER ) ::=

t # 1 I [ [KEYED_LIST]

-<KEY>-> MEMBER

{ -<KEY>-> MEMBER }

1

LIST( MEMBER ) ::= [#] ! [ [LIST]

[ —> MEMBER }

STACKC KIND ) "= [#] ! [ [STACK]

-head-> [ KIND 1

-tall-> [ STACK( KIND ) ]

1



<node_id> ::= <ldentifler>

<name> ::= <identlfier>

<kproc_name> ::= <ldentlfler>

<entry_name> ::= <ldentifler>

<transform_id> ::= <identifier>

<function_id> ::= <identifler>

<tlmer_status> ::= ON ! OFF

<time> ::= <lnteger>

<boolean> ::= TRUE ! FALSE



transform [COMPILE]
— > *ftDA_TEXT: in [ <subprogramJxxJy> ]
— > *MAIN_BODY: out subprogram_body

var

*COMPXm_TIME_INFO: compile_time_info := 0 [#]

compile_time_info : :«= [ [COMPIIiE_TIME_INFO] ]

-level-> [ <nesting_level>

-context— > context

context ::= KEYED_IiIST( { 1 .. n},name_table )

name_table : := LIST( name_table_item )

name_tal)le_item : :- [

-type_name— > type_name

-declaxation-> [ basic_declaration

full̂ id : «- [ [FDLÎ ID] ]

-id-> [ < identifier) ]

-level-> [ <nesting_level>

<nesting_level> : :«= < integer >

type_inark — see productions
basic_declaration — in the pair grammar



KEXED_LIST( { <KEY> } .MEMBER ) : :=*

[f] | [ [KEIED_LIST]

-<KEY.>-> MEMBER

{ -<KEY>-> MEMBER }

LIST( MEMBER )::=[#]! [ [LIST]

{ — > MEMBER }

— > [*]

]

— curr_level represents an integer with value *COMPrLE_TIME_INFO/ . level*

begin

parse

*flD2V_TEXT:[ <subprogram_JxxJy> ]

generate

*MAIN_BODY: subprogram_body#l

*COMPrLE_TIME_INFO : subprogranLjx>dy#2

pair grammar

basic_declaration : :-

object_declaration

| type_declaration

| subprogram_declaration

| task_declaration

| except ion_declaration



basic_declaration ::=

object_declaxation

| type_declaration

| subprogram_declaration

|tasX_declaration

|exception_declaration

object_declaration : »•»

identifier_list : [constant] subtype_indication [:- expression]

object_declaration ::= #1 *a:[ [OBJECT_J>ECLftRATION]

-id_list-> identifier_list

-type-> subtype_indication

-level-> [ curr_level ]

—value—> expression

-allocated-) [ <boolean> ]

1

#2 add_name_to_name_table( curr_level,identifier_list,subtype_indicatio

identifier_list ::- identifier {, identifier }

identifier̂ list ::- LIST( s:{[ <identifier) ]} )



s =» { identifiers in RHS of IflS production }

type_declaration ::=

type identifier [discriminant_part] is type_definition

type_declaration ::=• #2 *a: type_definition

add_najne_to_name_table( curr_level, identifier, type_definition, [*a] )

type_definition ::= access_type_definition

definition ::= access_type_definition

sxabtype_indication ::=« type_mark [constraint]

subtype_indication ::= [ [SUBTYPE—INDICATION]

-type_info-> type_mark

-constraint-> constraint

1



type_mark ::« type_name | subtype.name

type_mark :: •» type_name j subtype_name

if type_name = pdtype then

type_jnark ::= [ [PREDEFINED]

-pdtype-> [ <pdtype>

1

else

*tn := LOCATE( type_name )

type_jnark : := *tn/type_info

endif

access_type_definition ::= access subtype_indication

access_type_definition : := [ [ACCESS_TYJ?E_DEFINITION]

-type_info-> type_mark

-constradnt-> constraint

—defining_unit-> curr_unit

1

declarative_jpart ::- {basic_declarative_item){later_declarative_item}



declarative_j>art : := [ [DECLW»TTVE_PMer]

-basic_items-> LIST( { basic_declarative_item

-later_items-> LIST({ later_declarative_item

1

! [ [ # ] ]

basic_declarative_item ::= basic_declaration

basic_declarative_item : :•= basic_declaration

later_declarative_item ::=

body

|subprogram_declaration

|task̂ declaration

later_declarative_item ::=

body

| subprograni_declaration

|task_declaration

body ::- subprogram_body



I tasKJbody

body : := subprogramjx>dy

|tasK_Jbody

name :: =
simple_name

|indexed_component

|selected_component

name ::=
fulX_id

|indexed_component

|selected_component

task̂ simple_name_l ::= simple_name

task_simple_name_l ::-

tasK_simple_name_2 ::- simple_name



task_simple_name_2 : := #1 full_id

t2 curr_level := curr_level + 1

add_entry_info_to_name_table( curr_level, full_id )

name_table

— add entry names and parameter specifications
— from the task specification to the

simple_name : :

full_id :

identifier

-id-> [ <identifier

-level-> [ n ] — n is the level found by searching
— the surrounding contexts for the

— identifier.

indexed_component : := name( expression {, expression } )

indexed_component ::= [ [INDEXED_COMPONENT]

-name-> name

-indices-> KEYED_LIST( {< integer >}, expression )

1



selected_component : :=» name.selector

selected_component ::= [ [SEI£CTED_COMPONENT]

-name— > name
»

-selector-> selector

selector :: = simple_name

| all

selector ::= full_id

| [Mi]

allocator ::= new type_mark

allocator ::= [ [ALIiOCATOR] —>

[ REF( type_mark ) ] fit —>

[ ALLOC( fit ) ] &ptr'—>



sequence_of_statements :: = statement { statemant }

sequence_of_statements :: = LIST( { statement } )

statement ::= simple_statement

|compound_statement

statement ::= simple_statement

|compound_statement

simple_statement :: = nuH_statement

|assignment_statement

|delay_statement

|raise_statement

| procedure_caH_statement

|return_statement

j entry_caH_statement

|abort_statement

simple_statement ::= nulX_statement

|assignment_statement

|delay_statement



Iraise_statement

|procedure.call^statement

| retum_statemant

J entry_call̂ statement

|abort_statement

compoundLstatement accept_statement

|select_statement

compoundLstatement : :< accept_statement

|select_statement

nulX_statement ::= null;

nulLstatement ::«» [ [NOLI<_STaTEMENT] —>

[ HOOP ] —>



assigrunent_statement • • = variable_name := expression;

assignment_statement : := [ [ASSIGNMENT_STATiMENT] —>

f REP( variable.name ) ] fiz —>

expression &e —>

f ASSIGN< &z,fie ) ] —>

[#]

return_statement t :** return [expression];

return_statement : t=» [

expression se — >

[ RETURN( fie ) ] — >

subprogram_declaxation ::« subprograouspecification;

subprogram_<3eclaration ::= subprogranuspecification;



subprogram_specification_l : := procedure identifier [ fonnal_part ]

subprogram_specification_l : := #1 *a:[ [SUBPROGR2UMLSPECIFICATION]

-id-> [ <identifier> ]

-level-> [ curr_level ]

-params-> formal_part

1

#2 add_name_to_name_list(curr_level,identifier,subprogram,[*a])

subprogram_specification_2 : := #1 [ [SUBPRDGRAH_SPECIFICATION]

-id-> [ <identifier> ]

-level-> [ curr_level ]

-params-> formalj>art

1

#2 curr_level := curr_level + 1

::« (parameter_specification {; parameter_specification}

formal_part ::= LIST({parameter_specification} )

parameter_specification ::<• identifier_list : mode type_mark [:= expression]



parameter_specification : := *1 *a:[ [PM»METER_SPECIFICATION]

-> identifier_list

l-> [curr_level + 1]

-mode-> mode

-type-> type_mark

-value-> expression

#2 add_name_to_name_list ( curr_level-H , identif ier_list , [ *a] )

mode ::= [in] j in out | out

mode : := [IN] 1 [IN OUT] | [OUT]

subprogram_body ::-

subprogram_specification_2 is

[declarative_part]

begin

sequence_of_statements

[exception

except ion_handler
{exception_handler} ]

end [designator];



subprogramJaody : := #1 [ [SUBPROGRMLBODY]

-specif icat ions- > subprogram_specifications

-declarations-) declarative_part

-statements- > [ prelude — >

overture — >

sequence_of_statements — >
•*-,

epilog — >

-exceptions-) IiIST( {exception_handler} )

1

f2 curr_level := curr_level - 1

procedure_caH_statement : := procedure_name [ actual_parameter_part ]

procedure_call_statement : :=

actuaX_parameter_part fiparams — >

f REP( procedure_name ) ] &p — >

[ CALL( &p,&params ) ] — >



actual_parameter_part ::= (parameter_association {, parameter_association}

actual_parameter_part : := lilST( parameter_association )

parameter_association : := [formal_parameter =>] actual_parameter

parameter_association ::= [ [PAKaMETER_ASSOCIATIOW] —>

actual_parameter —>

tadd_to_paranieter_list(parain_info,param_id, mode, type)] —> — param_id
filled in from ,

— corresponding formal parameter

[#]

1

formal_parameter ::= parameter_simple_name

formaX_parameter ::= parameter_simple_name

actuaL_parameter ::- expression

|variable_name



I type_jnar Jc ( var iable_name )

actual_paraineter : := [ [VM.] — >

expression &e — >

[fill_in_paranL.info( &e, 'VRLDE' , null)] — >

[#]

]

| [ [KEF] ~>

C REF( variable_name ) ] &n — >

[fill_itx_param_info(Sn,iaDDR',null)] — >

[ [REFT] — >

[REF( variable_name ) ] &n — >

[REF( typejnark ) ] st — >

[ f ill_in_param_info( fin, ' TADDR' , fit ) ] — >

tasfc_declaration : :•= tasK_specification;

tasK_declaration ::= tasK_specification;



t declarative_part ]

begin

sequence_of_statements

[exception

exception_handler

(except ion_handler }

end [tasK_siinple_naine];

taskjbody ::= #2 *body: [ [TASK_BODY]

-name-> task_simple_name_2

-declarations-) declarative_part

-statements-) [prologue — >

overture — >

sequence_of_statements

epilog — >

-except ions- > I»IST( except ion_handler )

1

find_in_name_list( task_siniple_name_2 , *n )

*n/body' := taslOxjdy1

curr_level :- curr_level - 1

entry_declaration :im



task_specification ::=

task [type] identifier [is

{entry_declaration}

[representation_clause}

end [task_simple_name]]

load_module_template : := #2 *a:[

-module_id->

-id-> [ < identifier) ]

-level- > [ curr_level ]

-entries-> I.IST( {entry_declaration}

-body-> [#]

-context_of_Joody-> [ft]

-governor-) [#]

-activator-> [#]

add_name_to_name_list( curr_level, identifier, task, [*a] )

taskjxxiy :: =

task body task_simple_name_2 is



entry identifier [(discrete_range)] [ forma Impart ];
*

entry_declaration : := #1 [ [ENTHY_pECLARATION]

-id-> identifier

-level-> [ curr_level ]

-range- > range

-fornaJL_part-> fonnal^part

#2 add_name_tp_name_list(curr_level, identifier, entry )

entry_cali_statement_l ::= entry_name[actuaX_parameter_part];

entry_calX_statement_l ::= [ [ENTRT_CALIi] —>

[KEF(entry_name) ]£E,&pssr —>

actual_paraio^part sparams —>

[ entry_caH_proc( &pssr,£E,&parains ) ]

[#]

entry_caH_statement_2 ::- entry_name[actual^parameter_part];



entry_call^.statement_2 t := C [EHTRT_CRIJi] —>

[REF(entry_name) ]£E,&pssr —

actuaXjparanupart Sparams —>

[#]

1

accept_statement_l : t •*

accept entry_simple_name [(expression)] [formaXj>art] C

sequence_o£_statements

end [entry_simple_name] ];

accept_statement_l: t=* f [ACCEPT_STATEMENT] —>

[REP( entry_simple_name) ] &n —

expression &e —>

[REP(fonoaXj»art)] & f — >

[ accept_proc(6e,Sf,fin) ] —>

sequence_of_statements —>

t end_of_rendezvous ] —>



accept_statewent_2 : := accept_part_l accept_part_2

accept_part_l : := entry_simple_name [ (expression) ] [ f ormaX_part ]

accept_part_2 : := [ do sequence_of_statements end [entry_siinple_name] ];

accept_statement_2 : := accept_part_l accept_part_2

accept_part_l: :=» [ [ACCEPT_JPAKr_l] — >

[KEF( entry_simple_name ) ] &n — >

expression &e — >

£brmal_part &f — >

m

accept_part_2: := [ [ ACCEPT_PART_2 ] — >

[ accept_proc(&e,&f,&n) ] — >

sequence_of_statements — >

[ end_o£_rendezvous ] — >

[#]

delay_statement_l ::= delay simple_expression;

delay_statement_l ::= [ [DELAY_STATEHENT_1] —>

\

simple_expression &d —>

[ set_timer ( &d,*a ) ] —>

[ 3tate_becomes( ' suspended:at delay ' ) ]



delay_statement_2 ::= delay simple_expression;

delay_statement_2 : := [ [DEIAY_STATEMENT_2] —

simple_expression &d —>

[#]

1

select_statement ::= selective_wait

|conditional_entry_call

|timed_entry_call

select_statement ::= selective_wait

|conditionaX_entry_call

|timed_entry_call

selective_wait ::-

select



select_alternative

{or

select_alternative}

else

sequence_of_statements

end select;

selective^wait ::= [ [SELECTrV5_WAIT_STATEMENT] —>

[ set_up_temp_data_str ] —>

IiIST({ select_altemative} ) —>

[ [BRANCH]

-condition-> [check^_if_any_open_guard]

-alternatives-> [ [KETED_LIST]

-true-> [ perfornuselect ]

-false-> sequence_of_statements

1

] —>

[ release_temp_data_str ] —>

**end_of_select:[#]

1

selective_wait :z"

select

select_alternative



{or

select_alternative)

end select;

selective_wait ::= [ [SELECTIVE_WAIT_STATEMENT] —>

[ set_up_temp_data_str ] —>

XiIST( { select_alternative}) —>

[ [BRANCH]

-condition-> [check^if_any_open_guard]

-alternatives-> [ [KEYED_LIST]

-true-> [ perform_select ]

-false-> [ RAISEJ3CCEPTION( ' SELECT ERROR1 ) ]

1

] — > . . .

[ release_temp_data_str ] —>

**end_o£_select:[#]

1

select_alternative ::= [ when condition => ]

selective_wait_alternat ive

select_alternative ::= [ [SELECT_JU/TERNATIVE] —>

[ [BRANCH]

-cond it ion-> condition

-alternatives-> [ [KEYED_LIST]



-true-> selective_wait_alternative

-false-> [#]

[#]

select ive_wait_alternative accept_alternative

| delay_alternat ive

| terminate_alternat ive

selective_wait_alternative : := accept_alternative

| delay_altemative

| tezminate_alternative

accept_alternative ::= accept_statement_2 [sequence_of_statements]

accept_statement_2 : := accept_j>art_l accept_j?art_2

accept_alternative ::=• [ [ACCEPT.JVLTERNATIVE] —>

accept_ part_l &n &e &f —>

*a



*b: accept_part_2 —>

sequence_of_statements —>

* *end_of_select

*a:[put_on_open_guards_list( &n,&e,&f,*b ) —>

delay_arternative_l ::= delay_statement_2 [sequence_of_statements]

delay_alternative_l ::= [ [DEIAY_ALTEKNATIVE] —>

delay_statement_2 &d —>

*a

*c:sequence_of_statements —>

* *end_o£_select

*a:[ update_smallest_open_delay( &d,*c ) ] —>

m
1

tenninate_alternative ::= terminate

terminate_alternative :s- [



[ set_open_terminate_flag ] —>

t#l

conditional_entry_call ::=

select

entry_calX_statement_2

[sequence_of_statements_l]

else

sequence_of_statements_2

end select;

conditionaX_entry_call : := [ [CONDITIONAI4_ENTKY_CAI«Ii] —>

entry_call̂ statement_2 &E,&pssr,&params —>

[ request_rendezvous (&E,&pssr,$params) ] —>

[ [BRANCH]

-condition-> [ rendezvous_jpossil>le( ) ] —>

-alternatives-> [ [KEYED_LIST]

-true-> sequence_of_statements_l

-false-> sequence_of_statements_2

]

1 —>

[#]

1



timed_entry_call : : =

select

entry_call̂ statement

[sequence_of_statements_l]

or

delay_statement_2

[ sequence_o£_statements_2 ]

end select;

timed_entry_call : t= [ [TIMED_ENTRY_CAIiIi] —>

delay_statement_2 &d —>

*b

*a:sequence_of_statements_2

*end "

*b:[ set_timer( &d,&a ) ] —>

entry_call̂ statement_l —>

sequence_of_statements_l —>

*end:[#]

1

abort_statement ::= abort tasK_name {,task̂ name};



abort_statement ::= LIST( {ABOKT_TASK(task_name)

ABOKT_TASK(X) : := [ [ABORT] —>

[KEF(X) ] &n —>

[ abort_exec( fin ) ] —>

[*]

exception_declaration ::= identifier_list : exception;

exception_declaration ::= [ [EXCEPTION_DECLARATIOIO

-id_list-> identifier_list

-type-> [EXCEPTION]

1

exception_handler ::=

when except ion_choice {|exception_choice } =->

sequence_of_statements

exception_handler ::=• [ [EXCEPTION_HANDLER]

-name_list-> LIST( exception_choice )

-handlers_code-> sequence_of_statements



exception_choice ::= exception_naine

|others

except ion_choice : :«=• [ except ion_name ] | [ OTHERS ]

raise_statement ::= raise [exception_name];

raise_statement : := [ [RAISE-STATEMENT] —>

[REF( except ion_name ) &n — >

[ raise_exception ( &n ) ] —>

[*]

1

end COMPILE



c
.procedure FIRST is

task type SIMPLE is

entry X( I: in integer );

end SIMPLE;

task type COMPUTE is

entry Y ( I: out integer );

end COMPUTE;

S:SIMPLE;

C:COMPtJTE;

I:integer :=6;

task body SIMPLE is

A:integer :=1O;

B:integer;

begin
*

accept X (I:in integer);

B := A + I;

end X;

print(B);

end SIMPLE;

task body COMPUTE is

C:integer :=3;

begin

S.X(C);



accept Y(I:out integer);

I :- C + 2;

end Y;

end COMPUTE;

begin — FIRST

C.Y(I);

I :- I + 5;

PRIWT(I);

end FIRST;



[SUBPROGRAM_BOD7]

-specif icat ions- > [ [SUBPROGRAM-SPECIFICATION]

-id-> [FIRST]

-level-> [0]

-parans-> [#]

-declarations-> [ [LIST] — >

[OBOECT_DECLARATION]

-id_liSt-> [ [LIST] — > [S] — > [#] ]

-type-> [ [ SUBTYPE_IHDICATION ]

-type_info-> *lmt SIMPLE

-constraint-> [#]

]

-level-> [1]

-value-> [#]

[OBJECT_DECLARATION]

-id_list-> [ [LIST] — > [C] — > [#] ]

-type-> [ [SDBTYPE_INDICATION]

-type_info-> *ltmCOMPUTE

-const raint-> [#]

]

-level-> [1]

-value- > [#]



[ [OBJECT_DECLARATION]

-i<i_list-> [ [MST] — > [I] — > [#] ]

— type— > [

-pdtype-> [INTEGER]

1

-level-> [1]

-value- > [#]

-statements-) [ [LIST] — >

prologue — >

overture — >

[ [ENTRY_CALL] — >

[ KEF( C,1),(Y,1)] &pssr,&£ — >

[REF( 1,1 ) ] fiparams — >

[entry_call̂ proc( &pssr , &E , fiparams ) ] — >

[ASSIGSMENT_STATEMENT] — >

[ REF( (1,1) ) ] Saddr — >

[ [EXPRESSION] — >



[REF( (1,1) ) ] &a — >

[KEF( 5 ) ] fib — >

[ADD( fia,fib )] &C — >

[ ASSIGH( &addr,&c

[*]

1 — >

[BEF( 1,1 ) ] fiOUt — >

[PRINT(fiout) ] — >

epilog — >

t#]

1

-except ions-> [#]

1

•IntSIMPLE: [ [LOAD_MODDLE_TEMPLATE]

-module_id-> [ [FOL1>_ID ]

-id-> [SIMPLE]

-level-> [1]

]

-entries-> [ [LIST] —>

[ [ENTRY_DECLARATION]

-id-> [X]

-level-> [2]



-range-> [#]

-fbrmaX_part-> [ [LIST] — >

[ [PMaMETER_SPECIFICATION]

-idLlist-> [ [LIST] — > [I] — > [#] ]

-level-> [2]

-mode-> [IN]

— type— > [ [PREDEFINED]

-pdtype-> [INTEGER]

-value->[#]

[#]

[#]

-body-> *task_Jbody_sijnple

-context_ofJx>dy->

-governor- > [#]

-activator-> [#]

•ImtCOMPOTE: [ [LOflD_MODUI£_TEMPLATE]

-module_id-> [ [FULL_ID ]

-id-> [COMPOTE]

-level-> [1]



-entries-> [ [LIST] — >

[ [ENTKX_PECIARATION]

-level-> [2]

-range-> [#]

-formal_part-> [ [LIST] — >

[ [PARRMETERJSPECIFICATION]

-id_list-> [ [LIST] — > [I] — > [#] ]

-level- > [2]

-mode-> [OOT]

-type-> [ [PREDEFINED]

-pdtype-> [INTEGER]

-value->[#]

1 — >

[#]

-body-> *tasIOx>dy_compute

-context_of_Jxx3y->

-governor-> [#]

-activator-> [#]

*taslOxx3y_siinple:[ [TASKJBODY]



-name-> [ [FULL_ID]

-level- > [2]

1

-declarations-> [ [LIST] — >

[ [OBJECT_DECLMW.TION]

-i4_list-> [ [LIST] — > [A] — > [#] ]

-type-> [integer]

-level-> [2]

-value-> [10]

3 — >

[ [OBJECT_DECLARATICOT]

-id_list-> [ [LIST] — > [B] — > [#] ]

-type— > [ [PREDEFINED]

-pdtype-> [INTEGER]

1

-level-> [2]

-value- > [#]

1 — >

-statement s- > [ [LIST] — >

prologue— >

overture — >



[ [ACCEPT_STA.TEMENT] — >

[REF( X,l ) ] &n — >

[REF< 1,2 ) ] &f — >

[accept_proc(&f ,&n) J — >

T ] — >

[REF( 3,2 ) ] Saddr — >

[ [EXPRESSION] — >

A, 2 ) ] &opl — >

1,2 )] &op2 — >

[ADD( opl,op2 ) ] &e

[ASSIGN( &addr,&e ) ] — >

[#]

1 — >

[end_of_rendezvous] — >

[f 1

1 — >

[REP ( B,2 ) ] fiout — >

[PRINT( &out ) ] — >

[#]

-except ions->[#]

1



*taslO>ody_coinpute : [

-name-> [ [FULL_ID]

-id-> [C]

-level-> [2]

3

-declarations-> [ [LIST] — >

[ [OBOECT_DECLM»TICW]

-id_list-> [ [LIST] — > [C] — •> [#] ]

-type-> [ [PREDEFINED]

-pdtype-> [INTEGER]

]

-level- > [2]

-value- > [3]

1 — >

statements-> [ [LIST] — >

prologue — >

overture — >

[ [ENTRY_CAIiL] — >

[REF( S.1),(X,1)] &pssr,&E — >

[REF( C,2 ) J&params — >

[entry_calX_proc( fipssr, &E, &params ) ]

1 — >



[ [ACCEPT_STBTEMENTJ — >

[REF( Y,l ) ] fin — >

[REF( 1,2 ) ] fif — >

[accept_proc(fif, fin)] — >

[ [ASSIGNMENT_STATiMKNT]

[REF( 1,2 )] fiaddr — >

[ [EXPRESSION] — >

[HEF( C, 2 ) ] fiopl — >

[REF( 2 ) ] &op2 — >

[ M)D( opl,op2 ) ] fie — >

[#]

1 — >

[ASSIGN( &addr,&e ) ] — >

C#l

] — >

[end_of_rendezvous] — >

[#]

] — >

epilog — >

[#]

-except ions- > [ # ]



Appendix 2

Questions on the Ada '82 Language Reference Manual.



Questions and comments about wrong, confusing, unclear, and incomplete
parts in the tasking sections (mainly chapter 9 but some of chapter 11) of
intra-canvass Ada Reference Manual.

(1) General •
The examples appearing in the 1982 reference manual are no more
than those in the 1980 version. Most are examples of proper statement
syntax only. There are places in the manual where even a simple
example would clarify more than the volume of text. The reference
manual needs more examples: at least one for each language feature.
Where an example refers to or uses a previous example, an explicit
reference should be given.

(2) Chapter 9. page 1. paragraph 1. line 1
It is stated that the execution of a program which contains no task
precedes according to the rules described by the manual less chapter
9. In a multiprogrammed system, main programs look remarkably like
tasks executing independently. Is the main program a task (with no
entries) or not?

(3) ' Chapter 9. page 1. paragraph 1. line 4
•The effect of ... a program is defined in terms of a sequential execu-
tion of its actions in some order..." What does "some order" mean?
We realize that the intended order is that traditionally found in Imple-
mentations of Algol-descended languages with rearrangements and
optimizations restricted as in chapter 11. However, the manual does
not specify that, it says "some order."

(4) Chapter 9. page 1. paragraph 2. line 4
We know that two tasks are synchronized at the beginning and end of
a rendezvous, and that tasks are synchronized with their declaring
parent at their activation, but are there other places? For instance,
are tasks "synchronized" during execution of an ABORT statement since
in that case they are not operating independently. This is the first
occurrence of the term "synchronize." It Is a technical term in the
definition of Ada semantics. It must be precisely defined.

(5) Chapter 9, page 1. paragraph 4. line 3
There are three kinds of program units of which programs can be
composed according to chapter 9 but four according to chapter 7.

(6) Chapter 9, page 1, paragraph 4. line 3
What Is the Intent of a program unit (the term is not defined)? If I
write a program unit which consists solely of a task unit or generic
unit, what can I do with it? (Dare we ask "What is a main program?")

(7) Chapter 9. page 2 section 9.1 paragraph 3
"task [type] identifier [is ... end [simple_name]]" What is the distinction
that is being made between an identifier and a simple_name? Is the
reference manual alluding to the symbol table operation and to the
relationship between the lexical analyzer and parser of a particular
compiler?



(8) Chapter 9. page 2 section 9.1 paragraph 5
'...the body can ... be used for the execution of tasks designated by
objects of the ... task type." From reading descriptions elsewhere in
the manual it seems to us that the term "values of objects' would be
more appropriate here. The continuation of the fiction that a task object
and its value are somehow different when we are told that tasks behave
as constants, seems silly. It does provide consistency with the descrip-
tions of other kinds of objects and their values but can add confusing
verbiage to an already confusing chapter (besides, it contributed to this
mistake in the manual itself).

(9) Chapter 9, page 3 section 9.1 paragraph 1
We had an argument about when or whether it would be legal for a
task to refer to itself, especially by its type identifier. We eventually
came up with several valid cases, but the point here is that the
manual slips the capability in and certainly does not expand on it. The
material explaining now a task type name serves as a task name is
very cryptic and could do with some elaboration. A separate notation
for self reference would be nice.

(10) Chapter 9, page 4 section 9.2 paragraph 1
We were under the impression (and the first note in the designated
section seems to support this) that task types could be passed as gen-
eric actual parameters at instantiations of generic units, yet this sec-
tion, besides the note, ignores such usage. Was it ever decided
whether omission in the reference manual constituted a prohibition?

(11) Chapter 9. page 5 section 9.2 note 1
The business of modes allowed and disallowed for generic parameters
whose types are task types Is very confusing. This note needs elabora-
tion or It needs to be moved to an appropriate place in the chapter
on generics. Why are tasks not allowed as actual parameters
corresponding to generic formal parameters with mode IN since tasks
by definition are "constant"?

(12) Chapter 9. section 9.3
The manual is very explicit about when task objects declared in a
declarative part get activated (not before and not after the following
BEGIN), and about when task objects created via an allocator get
activated. When do task objects created via an allocator in the initiali-
zation of an object of an access type In a declarative part get
activated? This is Important In terms of understanding what is com-
pleted and what is terminated should an exception occur during the
activation of one of these tasks. We do not understand when these
tasks get activated! We are also concerned about the apparent incon-
sistency in the fates of declared and allocated tasks which experience
exceptions during their activations.

(13) Chapter 9 section 9.3
In 9.3 activation is defined to be the elaboration of the declarative part
of a task body. When does a task proceed after Its activation has been
completed? NOTE: In July 1980 Ada. section 9.3 states. ' Each task
can continue its execution as a parallel entity once its activation is



completed.' Why was this omitted?

(14) Chapter 9. page 21 section 9.11
Why is task synchronization between activator and activatee only men-
tioned in shared variables? We need a definition of synchronization.

(15) Chapter 9. page 7 section 9.3
References at the end of section 9.3 (and probably elsewhere) still have
"?" in them. Will they be replaced?

(16) Chapter 9. page 6 section 9.3 paragraphs 1 & 4
When tasks are being activated after a begin, if the activation raises an
exception the task becomes completed. On the other hand paragraph 4
states that if a task has been created by the execution of an allocator
.and an exception is raised during Its activation then the task becomes
terminated. Are the cases really different and if so why? NOTE: Ch 11
p8 sll.4.2(d) says that the task would be completed in both cases.

(17) Chapter 9. page 6 section 9.3 paragraphs 1 & 4
"other tasks are unaffected" Does this include dependents or does it
refer back to 'these tasks' - the tasks being activated? This is not
clear.

(18) Chapter 9. page 8 section 9.4 [paragraph 2 ... Example!
Use of "unit" vs. "task" is extremely confusing. Text should replace
'certain unit' by 'parent unit'. The meaning here can be completely
missed very easily (some of us did on first reading).

(19) Chapter 9. page 7 section 9.4 paragraph following (c)
The new definition of dependency needs further explanation. We suggest
adding a note explaining that because of the definition of termination
and the rules about leaving subprograms and blocks, only tasks defined
In a unit or contained in an inner package need be checked for termi-
nation.

(20) Chapter 9. page 8 section 9.4 Example
Example is not clear because we don't know where G.ALL was activated.
We suggest that comments should be ammended to read "await termi-
nation of G.ALL if it was ever activated no matter where,"

(21) Chapter 9. page 10 section 9.5 (last paragraph before the
example)
This needs to be rewritten more clearly. Chapter 11 section 11.5 con-
tains a clear explanation of the situation which could be copied or
referenced.

(22) Chapter 9, page 11 section 9.5 note 2
What if an entry has OUT parameters but the accept has no statements
— what happens if you use the parameters?

(23) Chapter 9, page 12 section 9.6
Typo in PACKAGE CALENDAR: 2009 should be 2099



(24) Chapter 9. page 13 section 9.6 note 1
Heed your note and make the correction (we would have liked to have
seen this explanation).

(25) Chapter 9. page 14 section 9.7.1 paragraph 2. line 1
The line: 'A selective wait must contain at least one alternative ... *
should read: "A selective wait must contain at least one select alterna-
tive ... " since that Is the non-terminal used in the syntactic definition.

(26) Chapter 9. page 14 section 9.7.1 paragraph 2
Parenthesized comments in this paragraph specifying the combinations of
terminate, delay and else parts allowed in a select statement should not
be parenthesized — they are too Important. They should be separately
stated and elaborated.

(27) Chapter 9. page 15 section 9.7.1 dashed paragraph 1
When does the delay start? Is It safe for the programmer to assume
that the total amount of time required for the select statement if no
rendezvous is posssible. is no greater than that given in the delay
statement or is the time needed to evaluate any guards not included in
the execution time of a select statement?

(28) Chapter 9, page 16 section 9.7.2 paragraph 1. line 1
Use of the word immediately is confusing. A conditional entry call may
take an arbitrary amount of (communication) time to execute even if no
rendezvous occurs.

(29) Chapter 9. page 17 section 9.7.3
What does the delay include in a timed entry call? Is it the time on
the entry queue only, or does it include "message transmission* time
to/from caller from/to callee? If the latter, how do we implement this
when one task is on Earth and the other on Mars (this Is not a flip-
pant question)? Also, if no scheduling algorithm is assumed by the
language definition, how can the "correct" execution be guaranteed?
We assume a timed entry call with delay 0 really means the program-
mer Is prepared to wait 0 seconds on the entry queue. It is clearly
impossible to have any other meaning because an entry call always
takes some time. Thus we assume delay i means wait for a duration of
I on the queue. Is this correct?

(30) Chapter 9. page 18 section 9.8 rule
The word "sensibly" Is not appropriate in this context. It. is far too
ambiguous for a document puporting to be a language definition.

(31) Chapter 9, page 18 section 9.8 last paragraph
If two tasks rendezvous, one with priority 5 and the other without
defined priority, is it a valid implementation for the rendezvous to
always occur with priority PRIORITY'LAST+1?

(32) Chapter 9, page 20 section 9.10
It is Impossible to guarantee that a task named in an ABORT statement
will not proceed beyond an accept (etc.) after the aborting task thinks



the aborted task has been marked abnormal. If the tasks were running
on different physical processors the communication time for the abort
message could be arbitrarily long, is It legitimate for a task that has
been marked abnormal to execute an ABORT statement? The manual
Implies 'yes'. .

(33) Chapter 9. page 20 section 9.10
What happens to the caller/callee In a rendezvous when the
callee/caller is aborted? (This is explained in Chapter 11 but should be
In section 9.10 also)

(34) Chapter 9. page 21 section 9.11
This section as a whole and the usage of the
SHARED_VARIABLE_UPDATE procedure in particular is not at all clear
— we need an example. Also you should point out that use of shared
variables makes programs non-portable because this facility may not
cover all types in an implementation.

(35) Chapter 9, page 20 section 9.10 (general)
Can the task below be terminated by an ABORT statement once the
rendezvous has begun?

TASK TRAP IS
ENTRY X;

END;
TASK BODY TRAP IS

BEGIN
ACCEPT X DO

LOOP
NULL-

END LOOP:
END:

END;




