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SECTION 1

INTRODUCTION

1.1 SCOPE

Thia report describes a systematic investigation into various concepts

for generating flash/bang/smoke cues that are suitabie for use in a simulated

battlefield scenario to indicate the impact of indirect fire or as a cue for

'	 mines. This development effort was conducted under Contract No. 956058 for

E the Jet Propulsion Laboratory in support of their investigations into

simulation methods for area effects weapons for the U.S. Army Program Manager

'Draining Devices.

The needs for more realistic and cost-effective training techniques are

becoming increasingly important in times of decreasing resources and increas-

^' ing weapon complexity. Modexr. technology has a3vanced the effectiveness of

training techniques for military personnel in the simulated battlefield

scenario, but the area of indirect fire cueing or simulation remains to be

developed into an effective training tool. 	 Indirect fire weapons include

mortar and artillery that use a relatively high angle of fire and tan not be

simulated by laser pairing techniques used for small arms fire.

1.2 BACKGROUND

	

Indirect fire is a very effective method for suppressing troop activity 	
is

on the battlefield, but the current training practices do not include a

realistic simulation or cue of these weapon types. Frequently the effects of 	
It

this weapon category are introduced into the training scenario by a referee or

observer throwing a smoke grenade at the desired impact point. While this

method can place a flash, bang, and smoke cue at the point where the indirect

fire was directed, it lacks the realism and surprise that is necessary for

effective suppression.	
k

Any device used for the training of personnel must regard the safety of

the players. Typically an indirect fire weapon may contain several pounds of

high explosives that may be d charged upon impact with the ground or at some

prescribed distance above the ground. In no way can a true simulation of this 	 v
a	

effect be considered safe to personnel in the immediate area. 	 For this

1	
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reason, the terminology of a cue is used instead of simulation for tho effects

of the explosion of the projectile. The level of these flash, bang, and smoke

cue signatures must be balanced between the safety considerations of the

players, realism, surprise, and the requirements for long range visibility.

A unique method for deploying indirect fire cues was proposed by the

Georgia Tech Engineering Experiment Station in 1977. This indirect fire

cueing concept delivers a flash/bang/smoke cue via a lightweight projectile

launched from a pneumatic cannon. The feasibility of this concept was

demonstrated under a research and development program for the U.S. Army Combat

Development Experimentation Command (USACDEC) under Contract No. DAAG0B-73-C-

0191. This research effort developed a cueing projectile and launch device

that was capable of launching a flash, bang, and smoke cue to ranges in excess

of 200 meters. The impact energy of the projectile was similar to that

experienced in sports like tennis or softball and posed minimal threat to

training personnel in the area of blunt trauma. The Flash/Bang/Smoke cue

developed for the projectile had a high degree of personnel and range

safety. The cue was developed around a flashbulb technology that triggered on

impact and released a cloud of inert smoke material.

The experience gained by Georgia Tech personnel in the development of

this remote launched cueing concept served well in the investigations reported

in this technical report. Additional experience in this area was obtained

under a previous investigation for USACDEC (Contract No. N00014-75-C-0320)

that involved methods for generating FBS cues for ground emplaced simulators.

1.3 PROBLEM DESCRIPTION

The cue development effort described in this report addresses the

specific need for defining the flash, bang, and smoke cue characteristics of

candidate cueing technologies. The experiments and analyLes performed with

candidate cueing concepts were directed toward the definition of cue signature

size as a function of cue payload. The range and personnel hazards of each

cueing concept were observed to define the safe operating limits of each

system approach. The goal of this investigation is to allow a cue payload to

be defined on the basis of the various signature size requirements that are to

be met. Guidelines for the selection of the cueing concept will depend upon

the application (i.e., ground burst versus air burst).

V
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The cue concepts considered for this study are potentially usable in a

projectile delivery system, but are not limited to that single application.

` The cue package configurations are not optimized for enclosure in a projec-

tile, but are considered to be adaptable to this end use. The design data

obtained from this analysis are applicable over a significant range of

applications in the training area of interest.

A series of Flash, Hang, and Smoke cueing goals was net Forth (see Table

1) as a guide For this study. The philos6phy of this investigation recognized

that all three cue signatures may not be present in all of the cueing

concepts. A similar argument holds that all three cue signatures may not be

required for all applications. Therefore, the design of a specific cue device

may be considered to be a combination of one or more cueing concepts that have

been tailored to meet specific signature requirements. This approach allows

the individual signatures to be measured and considered independently.

A large number of experiments (cue test firings) were performed in the

definition of the cue concepts and packaging configurations. A total of 344

of these experiments were recorded with instrumentation photography to allow a

quantitative analysis of the smoke cloud to be made as a function of time.

These analyses were predominantly made using a short range test site at the

Georgia Tech Research Facility in Cobb County, Georgia. Supplementary long-

range visibility tests were conducted at Lake Sidney Lanier, Georgia, to

insure the required visibility of the flash and smoke signatures as set forth

in the statement of goals in Table 1. Finally, representative cueing devices

meeting these goals were delivered to JPL for demonstration and testing before

a representative user group from the U.S. Army.

1.4 SUMMARY OF CONCLUSIONS

The cue tests demonstrated th-it the smoke and flash visibility are fairly

easy to meet if no limitations of personnel or range safety are considered.

Two generic approaches were used for the generation of smoke cues. The first

involved pyrotechnic cue compounds that generated the smoke through a burning

process.	 :he second generic approach generated a smoke cue through the
It

deployment of an inert powder or dust.

r
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TABLE 1. GOALS FOR FLASH, SAND, SMOKE CUES

The Flash, Sang, ftoke task shall meet the following goals:

Flash Visibility:
i

Normal Daylight: Visible at 200 meters when poking at the

expected burst point.

Hazy	 Day:	 Draw	 attention	 at	 200	 meters	 through

approximately 300 peripheral vision.

Smoke Color:

Airburst Simulation: Off-white to light gray

Groundburst Simulation: Dark gray

Smoke Cloud Size; Adequate to be easily visible at 3 km

Smoke	 Persistence:	 3 seconds minimum under conditions of winds

less than 10 MPH

Personnel Safety:

Meet applicable Surgeon General requirements

Will not cause third degree burns when exposed skin is within 20 cm

of the simulated shellburst

Range Safety: Will not start fires when burst in grassy areas

4



r
a

Y

A standard .flash powder proved to be a very efficient cue concept of the

first generic category, but has safety limitations due to the fireball at the

time of ignition and the relatively high acoustic signature. Some of these

hazards can be tolcratod if the application is restricted to a minimum

distance from personnel (as might be the case of an air burst).

A commercially available preparation of potassium bicarbonate (sold under

the trade name of Purple-K) is normally used as the powder in dry chemical

fires extinguishers. This material demonstrated cloud signatures that were

adequate for the long range visibility requirements and offered a greater

degree of man safety. While not as an efficient payload as the flash powder,

the increased man safety was sufficient to all( d a device of this design to be

hand held while being activated. The smoke and the flash cue signature were

previously demonstrated as being visible for a distance of 2.5 kilometers in

normal daylight to the unaided eye.

Different cueing signature levels were demonstrated that ,followed the

predicted design information. This design data was developed for each cue

concept on a normalized basis. 	 Smoke cue payloads can be adjusted for

p
	 different signature requirements (such as smoke cloud volume or area).

The acoustic signature generally presents a problem of reducing the level

to a point where exposure to personnel does not mandate the use of hearing

protection devices (such as earplugs). Cueing concepts that do not develop

the acoustic cue as a primary function of the cue combustion must frequently

be aided by the rupture of the container or a diaphragm. This approach was

used in the design of some of the cue units tested.

The flash requirement was easily met by the use of a simple photographic

fla&hbulb. This device contains the burning process in a glass enclosd oxygen

atmosphere to develop a very bright flash that is easily visible for a

distance of 2.5 kilometers in normal daylight with the unaided eye. The

contained flash does not have the hazards of flash burns to personnel nor the

hazard of starting a grass fire. Conventional combustion of the flash powder

cues also provides a satisfactory flash signature, but the hazard of the

a
	 fireball must be considered in the final application of this technology.

5
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This levelopment effort has identified two basic cueing concepts for	 •

meeting the basic goals set forth in Table 1. The flash powder cue concept is

a very efficent material, but has associated hazards in the fireball. The

inert powder cue concept when associated with the flashbulb flash signature

generator is a less efficient cue payload, but has demonstrated the ability to

meet the cueing goals for long range smoke and flash visibility while provid-

ing a high degree of man and range safety.

6



SECTION 2

TECHNICAL DISCUSSION

2.1 OVERVIEW

The objective of the invevtigation described in this report was to

develop a flash, bang, and smoke (PUS) cueing simulation for a remote-launch

indirect-fire cueing system that meets the goals listed in Table 1. The

effort focused on the chemical and related technology required to develop

state-of-the-art simulation of PBS cues, and the definition of the technology

that will provide the maximum effect per unit vol lmne. Although PBS cues

expected to be used in a small simulated projectile were the primary

consideration in determining the cue configuration, the program was conducted

in a manner that will allow the results to be applied to simulation of a

variety of weapons such as simulated artillery shells or mines.

This program was based on the premise that effective training can be

accomplished using cues (man/environment - safe levels of the real influences)

in place of the full scale levels of the real influences of flash, bang, and

smoke (PUS), each of which may be hazardous and even lethal. Once the minimum

cue magnitudes of each cue influence is known, the individual cues can be

combined to provide satisfactory PBS cues for specific applications. The

technical aspects considered in developing the individual flash, bang, and

smoke cues are discussed in the following paragraphs.

2,2 FLASH CUE TECHNICAL CONSIDERATIONS

Flash cues are generated by high temperature particles that radiate in

the visible and infrared bands of the electromagnetic spectrum. The primary

performance parameters considered in developing the flash cue were:

1. The flash intensity will not damage the eye.

2. The flash incensity will not be sufficient to ignite dry grasses in a
desert-like environment.

3. The flash intensity will not cause third-degree burns to exposed
flesh within 20 cm of a simulated shell burst.

4. The flash will be visible at two hundred meters when looking directly
at the expected burst point.

r
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5. On a hazy day, the flash will draw attention to the burst point
through approximately 30 degrees of peripheral vision.

Methods; considered for generating the flash cue included ,photoflash

bulbs, photoflash powder, a powder mixture, and a British PBS unit. In

general, the contained combustion of zirconium wire or foil in an enclosed

oxygen atmosphere such as in a photoflash bulb is not of sufficient intensity

k
to damage the eye, cause flash burns nearby, or ignite dry grass. 	 The

flashbulb contains the products of the reaction. But if these products were

* free as in an uncontained reaction, they could easily burn the flesh and

readily ignite grass on contact. The 5500 degree Kelvin color temperature

associated with the AG1 flashbulb appears to be a safe level of temperature

for the contained reaction.	 Table 2 lists the characteristics of several

flashbulbs that were considered as candidates for the flash cue matrix.

TABLE 2. FLASHBULB CHARACTERISTICS

p

Flashbulb

-	 _

Total Peak Diameter

Type Lummen-seconds Lummens Millimeters (Inches)

AG1B 5300 250 K 11.9 (15/32)

AG1 7200 450 K 11.9 (15/32)

M3B 10 K 550 K 21.4 (27/32)

M3 16 K 1000 K 21.4 (27/32)

P25 21 K 1600 K 38.1 (1	 1/2)

Type 2 70 K 4200 K 60.3 (2 3/8)

Type 3 110 K 6000 K 73.0 (2	 7/8)

Twri pyrotechnic powder mixtures were considered. One powder mixture was

a combination of phosphorus and potassium perchlorate with whiting (finely

ground calcium carbonate) as a diluents in some configurations, a conventional

small arias propellant was used to expell the burning flash powder from the

flash cue container. This powder had proven to be very effective during

previous FBS cue research for USACDEC. The other pyrotechnic powder mixture

8
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considered was phatoflash powder. The photoflash powder mixtures considered

for generating the flash cue are listed in Table 3.

TABLE 3. PHOTOFLASH POWDER MIXTURES TESTED

Weight of Shotgun Weight of

Propellant Shell Size Photoflash

(gm) (gauge) Powder (gm)

0.5 12 0.5

0.5 12 1.0

0.5 12 2.0

1.0 12 0.5

1.0 12 1.0

1.0 12 2.0

2.0 12 0.5

2.0 12 1.0

2.0 12 2.0

1.0 8 1.0

1.0 16 1.0

The pyrotechnic mixtures considered for generating the flash cue may be

represented by the following equations:

4Mg + KC104 + 4MgO + KC1	 (1)

8A1 + 3KC1O4 + 4Al2 0 3 + 3KC1	 (2)

1.49A1 + 0.15BaNO 3 + 0.22KC1O4 +

0.39Al 2O3 + 0.15BaO + 0.22KC1 + 0.69A1 + 0.075N2	(3)

i

4
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The flash powder using aluminum flake or very fine particulate (10 to 15

micron diameter) and represented by Equation (2) appears to be the most

effective flash producer. This powder burns extremely fast, and consequently

is conducive to producing a significant bang. The aluminum oxide and

potassium chloride products in this reaction are extremely finely divided and

produce an excellent white cloud. Reactions represented by Equations (1) and

(3) also produce excellent flash, are fast burning and produce a good cloud

signature. But the aluminum mixture of Equation (2) appears to be the more

reliable, readily ignitable mix.

A British FBS unit, a commercial device that was tested in the previous

USACDEC investigation, was considered only as a reference because the cue

levels are much larger than the cue levels specified in the requirements for

this study. The safety hazards of this device are far beyond the acceptable

limits of the applications considered in this investigation.

2.3 BANG CUE TECHNICAL CONSIDERATIONS

The bang cue i ,	 •-.	 7	 the r^^id rele-Mei
s in general (pyrotechnically ) caused by h	 .t.

of a quantity of comptossed gasses. This rapid release can be that associated

with a plug leaving the end of a shotgun shell or the rapture of a diaphragm

or casing caused by excessive gas pressure. The only limitation on the

magnitude of the bang is the safety limitation imposed by the U. S. Army

Surgeon General (Technical Bulletin TB MED251) concerned with noise and the

conservation of hearing. This restriction limits the peak impulse source

pressure level to 140 dB (re 0.0002 dynes per square centimeter) at the ear.

The use of sound protective devices could alleviate the requirement, but the

bang impulse is, and will remain, a severe restriction for a ground type burst

which may land within one foot of a person's head. For airburst applications,

the bang cue could be limited to occur 10 to 20 meters or more away from the

ear--significantly reducing the magnitude of the impulse at the ear and, thus,

reducing the severity of the problem. The requirement for airburst does

increase the complexity of the cue by requiring a timing device. The generic

bang cue configurations considered included: (1) shotgun shell with wads - M6X

propellant, 0.5 gin, (2) impact primer, (3) electrical primer, (4) shotgun

shell (12 gauge) with a powder mixture of phosphorus and potassium chlorate

with whiting, and (5) British FBS unit.

10
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The shotgun shell with wads is discussed further below. The impact and

electrical primers were slightly different, but they did not provide a

significantly different bang signal. The mixture of phosphorus and potassium

perchlorate with whiting and the British FBS unit were briefly described in

the flash cue discussions in Paragraph 2.2.

Configurations considered for the bang cueing concept using the expulsion

of the wad from the tube of a shotgun shell are listed in Table 4. Note that

the number of wads used affects the degree of confinement of the propellant.

More confinement results in a higher gas pressure at the time of release and,

generally, a faster release rate that produces a louder bang.

TABLE 4. WAD EXPULSION BANG CUE CONFIGURATIONS

Propellant	 Shotgun

Weight	 Shell Size	 Number of

(9m)	 (gauge) 	 Wads
a

0.5 12	 1

1.0 12	 1

2.0 12	 1

1.0 8	 1

1.0 16	 1

1.0 12	 2

1.0 8	 2

1.0 16	 2

1.0 12	 3

The other configuration mentioned above involves using the heat from a

•	 photoflash bulb to ignite a priming black powder charge that in turn ignites a

propellant in a sealed tube. The rupture of the tube produces the bang. The

I

i

J

^i
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two main variables in controlling the bang from this type of unit are the

quantity of propellant and the thickness of the tube wall, as measured by the

number of layers of kraft gaper used in the tube. The tubes can be construct-

ed on a simple jig that allows the thickness to be controlled by the number of

layers of kraft paper used in the fabrication process. The flashbulb-tube

configurations considered for generating the bang cue are listed in Table S.

TABLE 5. FLASHBULB-TUBE BANG CUE CONFIGURATIONS

a

Propellant	 Wall Thickness

Weight (gms)	 (layers of paper)

	

0.2	 3

	

0.4	 3

	

0.8	 3

	

0.2	 5

"	 0.4	 5

	

0.8	 5

	

0.2	 7

	

0.4	 7

	

0.8	 7

2.4 SMUKE CUE TECHNICAL CONSIDERATIONS

Smoke, as applied to signalling and cueing, is an assembly of small

particles (0.01 to 10 microns diameter) of liquid or solid material dispersed

in the atmosphere. Particles of this size have settling velocities on the

order of 0.01 to 2 centimeters per second and, hence, should have sufficient

"staying" capability. The primary criteria considered in developing the smoke

cue can be summarized as follows:

12



1.	 Air burst - white

Ground burst - gray

2. Thrue second persistence for wind velocities less than 10 mph

3. Claud size large enough to be seen by the naked eye at a distance of

3 kilometers

4. Assumed to be non-toxic to man or environment.

The smoke visibility requirements for cueing a player of nearby indirect

G fire are minimal to the smoke generator concepts tested. The limiting

requirement of smoke eue is the long range visibility requirements whore a

forward observer is required to visually detect the cue from a distance of 2

to 3 kilometers. A list (see Table 6) of known resolution references was

assembled as a benchmark foi determining the required cloud size needed in the

demonstration rounds to meet the long range smoke visibility specifications.

The majority of the items in this list are the bull's eye size of known

targets extrapolated to a 3 kilometer range. From these values, an estimation

of a 5 meter by 2 meter cloud size was made for this requirement. This size

estimation may be converted to an area threshold value by using the diamond

area model illustrated in Figure 1, A value of 5 square meters (54 square

feet) was selected as being the required minimum cloud size for the 3

kilometer visibility requirements.

Table 7 outlines the different generic smoke cue configurations evaluat-

ed. Note that black powder is listed primarily to provide a baseline for a

simple smoke cue. The manner in which black powder burns is dependent upon

its confinement. Some of the black powder loads evaluated for use as the

smoke cue are listed in Table 8.

For a relatively light confinement, the reaction representing combustion

of 100 grams of black powder is:
;j

K0.737N0.736C 1.19' 1'0.218O2.23 S0.316 + i

0.193C0 + 0.507CO 2 + 0.0588H 2 + 0.05H2O + 0.26K2CO3 + 0.368N2

® 0.0485K2 so + 0.06K2S + 0.207S + 0.231C s	(4)
i

The reaction is rapid, of the order of 3.2 millimeters (1/8 inch) per second,

and develops 1.18 gmols gaseous products (and 0.807 gmols solid products).

13



r,

TABLE 6. VISUAL RESOLUTION BENCHMARKS

Reference Size
at 3 km

o Eye Resolution

- Point sources approximately 1 minute apart 0.87 meters

- (Rule-of-thumb) 0.1 mm apart at 25 em from eye 1.20 meters

0	 500 Yard Riff ► Target

- Bull's-eye size 40.6 cm diameter 2.70 meters

0	 300 Yard Rifle Target

- Bull's-eye size 30.5 cm diameter 3.30 meters

0	 200 Yard Rifle Target

- Bull's-eye size 30.5 cm diameter 4.90 meters

Estimation of Rec{uired Cloud S ize

(for three kilometers visibility)

5 meters

by

2 meters

(diameter, width, or height)

14
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1	 4

5 meters

Cloud Area	 2	 (Area of Triangle)

2	 B *H)

2	 2.0 * 2.5)

2.0	 2.5

Cloud Area	 5 m2

Cloud Area	 53.8 ft 2

Since cloud area is an easy number for comparing

smoke cue size, then a cloud area of 5 square meters

or 54 square feet is proposed as being the tentative

threshold estimate for 3 kilometer visibility.

Figure 1. Assumed diamond shaped cloud with proposed maximum
dimensions.
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TABLE 7. SMOKE `:UE CONFIGURATIONS

1. Black powder (FFFFg) in a shotgun shell with 1 wad

2. Black powder (FFFFg) with carbon as a diluent to intensify the
cloud (loaded in a shotgun shell with 1 wad)

3. inert powder expelled from a shotgun shell by a propellant (no
wad or sabot used)

4. Inert powder expelled from a shotgun shell by a propellant
(sabot used to separate the inert powder from the propellant -
to give a better height to diameter ratio i,i the resultant
cloud)

5. Anthracene and potassium chlorate (used as smoke cue and
propellant)

6. Anthracene and potassium chlorate with an inert powder
(anthracene and potassium chlorate used as propellant)

7. British PBS unit

8. Phosphorus and potassium perchlorate with whiting as a diluent
(same charge as FBS cues)

TABLE 8. BLACK POWDER (FFFFg) SMOKE CUE LOADS

Powder	 Shotgun
Weight	 Shell Size	 Number
(gm)	 (gauge)	 of Wads	 Diluent

1	 12	 1

2	 12	 1

A	 12	 1

2	 8	 1

2	 16	 1

2	 12	 1	 2 gm carbon black
(mixed with propellant)

2	 12	 2

a	 2	 12	 3

16
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a The relatively large amount of sulfur in the products produces an undesirable

gas - smelling somewhat of rotten eggs. The 0.007 gaols solid products create

the smoke associated with black powder. Approximately 560 cal/ gm of heat is

released in this combustion reaction; this heat coupled with its ease of

ignition, contributes to the use of this reaction as a booster, igniter, and

heat source.

For comparison purposes, the smokeless propellant used is typical of a

doublo base ( nitrocellulose/nitroglycerine) commercial propellant and its

burning reaction is approxir ,ted by Equation ( 5) (for 100 grams iaterial).

C2.137113.000603.498111.089 +

0.2098CO + 0.99CO2 + 1.30781120 + 0.1965H2 + 0.937Cs + 0.5445112	(5)

producing 2.7 gmols of gaseous products ( estimated average molecular Weight

32.9) and releasing 1740 cal /gm. Note that the solid particulate material in

the combustion products subsequently burns with atmispheric oxygen. These

materials require somewhat more energy to initiate combustion than does black

powder.

The inert smoke concept has hl ,gh potential for producing a man-safe smoke

cue (see Figure 4). Inert materials such as finely ground calcium carbonate,

sodium bicarbonate aad potassium bicarbonate were the primary inert powders

evaluated. Most were expelled with a smokeless propellant so that the effect

of the inert material could be quar 4- ified. Table 9 outlines the inert powder

smoke cue configurations evaluated. In general, the use of a sabot with an

inert powder produced a shorter and wider cloud than that produced without a

sabot, probably because of the likelihood of channeling when no sabot was

used.

2.5 CUE DEPLOYMENT CONCEPTS

The experiments surrwarized in the preceding tables can be grouped into

three basic packaging configurations: bulk burning of pyrotechnic materials,

surface burning of pyrotechnic materials, and inert materials. The configu-

ration for bulk burning of pyrotechnic mixtures is shown diagramatically in

Figure 2. in this conventional cue design, the cue material is contained in a

*

	

	 confined case with the ignition device. A diaphragm used to seal the tube not

only aids the combustion process but also allows the cue to produce an

r
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TABLE 9, INERT POWDER SMOKE CUE CONFIGURATIONS

Propellant	 Shotgun
Weight	 Shell Size	 Number
(gm)	 (gauge)	 Of Wads	 Description

0.5 12 1 3 gm inert powder with sabot

1.0 12 1 3 gm inert powder with sabot

2.0 12 1 3 gm Inert powder with sabot

1.0 12 1 6 gm inert powder with sabot

1.0 12 1 6 gm inert powder without sabot

1.0 8 1 3 gm inert powder with sabot

1.0 12 2 3 gm inert powder with sabot

1.0 12 2 3 gm inert powder without sabot

TABLE 10. ANTHRACENE/POTASSIUM CHLORATE SMOKE CUE CONFIGURATIONS

6W

Propellant	 Anthracene
Weight	 Potassium Chlorate	 Number
(gm)	 (gm)	 Of Wads

0.5 3	 1

1.0 3	 1

0.5 6	 1

0.5 3	 2

1.0 3	 2

0.5 6	 2

18
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Seal

Pyrotechnic
FBS Cue Material

Booster charge
(if necessary)

!r (or squib)

Figure 2. Diagram of pyrotechnic bulk burning cue container.

1

?yrotechnic
ke Generating
Material

ster Material
necessary)

Primer (or squib)

Figure 3. Diagram of cylindrical burning pyrotechnic smoke
cue generator.
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acoustic signature as the container or diaphragm ruptures. This cue deploy-

ment concept may produce a fireball and the discharge of burning particles if

combustion is not complete at the time of rupture. The magnitudes of the

flash cue and the acoustic signature are dependent upon the weight of the

pyrotechnic cue material used, the degree of the confinement provided by the

container, the burning rate of the cue material, and the total amount of

s.inergy released by the cue material. This deployment concept appears to

present burn hazards to personnel (both exposed skin and clothes) at close

ranges, fire hazards to dry grass, and high acoustic levels.

The packaging for surface burning of pyrotechnic material is based on the

use of a container design utilizing a cylindrical burning configuration (see

Figure 3). For this design, the cue generating material was typically placed

around the inside of the container tube. The material was ignited by a small

booster charge at the center and allowed to burn from the center outward while

the smoke material was released from the open end. This cueing approach can

be combined with flash and bang generators to meet the desired FBS

performance. The cueing effectiveness of surface burning depends upon the

burning rate of the smoke generating compound. Fast burning materials ejected

burning powder particles. This cue deployment approach offers some degree of

player and grass fire safety over the bulk burning technique discussed above.

The third cue deployment method developed was for the inert powder smoke

cue materials. The inert powders were investigated to determine their cueing

effectiveness as well as their potential for providing improved safety for

personnel and reducing the probability of range fires. The simplest method of

ejecting the cloud material appears to be to use a small propellant charge.

In the interest of man-safety, this charge should be no greater than necessary

to eject the cue material. The diagram in Figure 4 presents the basic concept

for this cue deployment design. A fast bulk burning propellant charge is used

so that all of the combustion occurs within the tube. This cue technique can

be complemented by an auxiliary flash cue to provide a complete FBS device.

The acoustic cue can be incorporated in the design by using a rupture

diaphragm to seal the end of the tube. The peak acoustic level can be

controlled by the amount and type of propellant and the thickness of the

diaphragm. in the demonstration units developed for the inert powder cues,

the propellant was adjusted to give a good cloud; the thickness of the rupture

20
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Figure 4. Diagram of inert powder Bang/Smoke cue container.
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diaphragm was then adjusted (by varying the number of layers of paper used) to

give a good bang cue.

An anthracene and potassium chlorate mixture was also evaluated for

possible use as a smoke cue generator. This mixture can be used by itself as

a smoke generator, or it can be used as a propellant. Table 10 defines the

configurations evaluated for this powder mixture. The propellant for theme

experiments was MGX.

The combustion reaction of anthracene with potassium chlorate may be

written as (depending on the ratio of the components to each other)

11KC103 + C 14H 10 + 11KC1 + 5F12  + 14CO 2	(6)

5KC103 + 3C 14H 10 + 5KC1 + 15H2O + 42Cs	 (7)

The reaction indicated by Equation (6) produces primarily gaseous products

(little Mack smoke) and is somewhat hard to start. The reaction indicated by

Equation (7) produces much better smoke and carbon particulate, and is easier

to start, but burns relatively slowly. Therefore, equal parts by weight of 30

percent of black powder was added to anthracene and potassium chlorate to

provide a good gray cloud, rapid burning, and easy ignition.

The phosphorous mixture referred to previously is defined in Appendix C

and may be adproximately represented by the reaction

0.674P + 0.209CaCO 3 + 0.475KC1O4 +

0.337P2O5 + 0.10802 + 0.475KC1 + 0.209CaO + 0.209CO2	(8)

although the P2O5 product shown is probably a mixture of P 20  and P2O5 . This
mixture liberates more than 1000 cal/gm on burning and produces a very good

smoke cloud from the 1 gmol of very finely divided solid products for each

1.35 gmol of reactant. Combustion is very rapid, producing an excellent

report as it splits a 12 or 8 gauge shotgun shell casing.

The concept of u3ing a standard flashbulb with black powder attached* to

the surface for an igniter is unique. The flashbulb is not overly sensitive

*This is accomplished by dipping the standard AG-1 flashbulb in acetone for 10
to 15 seconds - then rolling in black powder (FFFg or FFFFg), and then hanging
the unit free to dry.

22
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to static or radio-frequency (RF) energy, but can be ignited by approximately

300 milliamperes (AC or DC) from a nominal 3 volt source. This provides a

nominal current level for ignition, a high enough no-Eire current to be safe,

and yet provides reliable ignition to the pyrotechnic mixture. The

combination of an AG-1 flashbulb and the black powder attached to the surface

of the bulb proved to be a reliable igniter at temperatures as low as 5

degrees Fahrenheit (the lowest limit tested).

.

5

23



r

SECTION 3

INSTRUMENTATION AND DATA REDUCTION

3.1 OVERVIEW

A main goal of this development effort was to quantify the cueing

signatures of different cueing concepts. The test program described in this

report recorded the signature effects of a large number of PBS cue events.

Documentation of these tests included recordings of the flash phase of the

cue, measurements of the peak acoustic level of the bang signature, and

measurements of the smoke cloud size as a function of time. This section of

the report describes the unique instrumentation and data reduction facilities

developed and assembled for this research effort.

3.2 SHORT RANGE TEST INSTRUMENTATION

The majority of the experiments for evaluating FBS cue techniques were

conducted at short ranges (less than 100 meters) at the Georgia Tech Research

Facility in Cobb County, Georgia. The purpose of these short range tests was

to gather data on a large number of cue designs in a cost effective and

routine manner for the data reduction. Instrumentation cameras were used as

the primary method for recording the flash and smoke signatures of the

individual cue devices. The basic instrumentation is shown in Figure 5 and

briefly described below.

Master Timing Control Unit. The FBS cue devices were initiated by a

master timing control unit that synchronized the operation of all instrumen-

tation used for recording the test device cue signatures.

Instrumentation Cameras. Separate 35-mm Flight Research Mod IV instru-

mentation cameras (capable of remote control operation) were used for

recording the flash and smoke cue signatures. The cameras function in either

a single frame mode or operate in a continuous (cine) filming mode as selected

by an electrical command. This ability to change the recording mode elec-

tronically was used to great advantage for evaluating the smoke cue cloud

characteristics.

The Mod IV camera uses a single frame 35-mm movie format. This camera is

driven by a solenoid operated clutch connected to an electric motor through a
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Figure 5. B1n^k diagram of basic instrumentation for FBS investigations.
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gear train. The gear ratio and motor speed determine the maximum cine rate of

the camera. Single frames at rates less than the cine rate are recorded by
^OP

activating the solenoid clutch with a pulse having a duration leas than the

time between two frames at the cine rate.

The smoke cloud recording camera had a cine rate of 10 frames per second

with an effective shutter speed of approximately 1/500 seco^.. The camera was

started in the cine mode by the master timing control unit for a period of 0.8

to 1.5 seconds. Approximately 0.5 seconds after this camera was started at,
E

the 10 frames per second rate, the cue device being tested was activated (see

the timing diagram in Figure 6). This ensured that the initial deployment of

the smoke, cue was recorded with high time resolution. After the cine period

was over, the master timing control unit switched the camera mode to a pulsed

operation of one frame per second for a period of approximately 10 seconds to

record the relatively slow dispersion phase of the smoke cloud. This dual

photographic rate gave a film strip format of each events the high speed

frames were identified by marking them with a data light in the camera. The

picture frame containing the first cue activity was used as the time t - 0 for

E a
	 the data analysis.

The Mod 1V camera uses a rotating disk shutter, and the high shutter

speed (narrow slit in the disk) for the smoke cloud recordings prevented a

complete photographic frame from being exposed at the same instant. Since the

total frame was not exposed during the open shutter pulse from the camera, the

open shutter pulse could not be used to trigger the cue device.

A second Mod TV camera was used to record the flash of the test cue
i

device. This camera used a shutter speed of 1/10 second and a cine rate of 5

frames per second. This combination provided an open shutter over the entire
	 t,

frame and allowed the open shutter pulse to be used to activate the device

under test. This shutter and cine filming rate allowed the short duration

flash event to be simultaneously recorded over the entire exposed frame. The

master timing control unit initiated the flash recording camera and, conse-

quently, activated the test device approximately 0.5 seconds after the start

of the smoke recording camera. Figure 7 illustrates a typical flash event as

recorded by this camera.

Reference Background Stand. A reference background was included in the

field of view of the smoke recording camera to provide a standard background

26
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Figure	 Example of open burning FBS cue with fireball - 12/30/1
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for size and contrast. Four different contrast cards were placed on this unitf

(see Figure 8) to provide a subjective reference in each test recording.{ i

`	 Reference markers attached to the side of this screen provided a 3.05 meter 	 }

	

(10 foot) reference distance that was used to calibrate the data processing 	 it

program. A clock was also included to give a reference time of each test run.

	

Test ID. The test runs were identified by photographing a test ID number 	 {^

in the foreground of each camera. The test ID number was coded for the month,

day, and cue test run number for that day. For example, the fifth cue 4evice

#

	

	 fired on October 5 would be given the identificAtion number 10-5-E. This	 R

nomenclature was used in all of the test records given in this report.

	

Cue Ignition. Two methods of activating the test cues were used during 	 { ^

	

the experiments described in this report. Since many of the tests were to 	 j
I

quantify the signatures of various amounts and types of cue compounds,

standard shotgun shells were used for holding the FBS cue material. The

majority of these tests were initiated via standard primer caps. The fixture

shown in Figure 9 was used to trigger the cap for 16 gauge. 12 gauge ; and 8 i

gauge shells. The test cue was fired when electrical power was applied to a

solenoid that pulled a sear from a spring loaded firing pin. 	 1

	

The alternate method of discharging test cue devices was to use a squib 	 f
1

or flashbulb igniter device.	 These units were triggered from a six volt

battery through a relay. Cue test units having this type of igniter were held

in a simple manner such as being fastened to a stake. 	 e

Acoustic Measurements. Acoustic impulse levels of the bang signature

were monitored by a General Radio Model 1981 sound level meter designed to

capture the peak level of sound filtered through a standard A-weighted

frequency spectrum. The values recorded are in the data logs in Appendix B of
i

this report.	 j
i

The acoustic measurements recorded in this report were made at a

reference distance from the cue device as specified with the tabulated data.

6	 This distance was changed occasionally during the course of the experiments to

accommodate drastically different levels in the expected bang signature. The

r	 reference measurement distance was also modified during the course of the
f'	 Q

experiments to compensate for a saturation characteristic discovered in the

audio metering system. The graph in Figure 10 illustrates this effect that

occurs at levels above 113 dBA. The data in this graph were obtained by
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Figure 8. Flash/Rang/Smoke short -range cue test setup.

Figure 9. Shotgun shell cue testing device for impact

primers.
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firing 22 caliber blanks at fixed distances from the sound Tavel meter and

,recording the acoustic impulse level. The dashed line represents the

theoretical slope as a function of distance from the sound level meter. The

individual shots at each measurement distance produced good groupings.

The experimental data in Figure 10 clearly indicate that the measurement

data for levels above 113 dB are not accurate, even though they are still

within the design range of the meter. After this analysis identified the

saturation effects within the acoustic instrumentation, the measurement

distance was adjusted in an attempt to keep the expected readings within the

linear range. This was not always successful, and acoustic readings in the

saturatir n region of the meter were obtained for some of the cue tests.

Therefore, values above about 113 dBA for the bang signature as recorded in

the data logs (Appendix B) merely represent lower limits for the actual

signature.

Fire Test Fixture. The requirement that the cue shall not start grass

fires was monitored in a large number of test firings with the cue placed

above the fire test fixture shown in Figure 11. The fire test fixture

consisted of a four by four foot section of plywood with a surface made of dry

hay affixed with staples.

3.3 LONG RANGE TEST INSTRUMENTATION

The requirement for smoke cloud visibility at ranges of 3 kilometers

required that a different test location be established. Visibility over

ranges of th'.s extent in the local area is difficult due to the heavy stands

of timber. This factor limited the selection of test sites to three basic

scenarios: (1) locate an open field the appropriate distance from an access- 	 s

ible mountain top, (2) get permission to operate along side of an airport

runway of suitable length, or (3) operate across the open water of a lake. 	 j

t

The latter scenario proved to be the easiest to meet and the long range

smoke cloud visibility tests were conducted at Lake Sidney Lanier, Georgia,

with the permission of the U. S. Army Corps of Engineers. The selection of

the test site and the observation site was made with a criteria of a
i
f

separation distance between 2 and 3 kilometers. Since the Corps of Engineers

only controls a few sites along the shore of the lake, the separation distance
r	 E

of exactly 3 kilometers could not be easily met with the test and observation
E

i

A 1
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c

i
sites being on publicly owned land under control of the Corps of Engineers.

Figure 12 shows the location of the test site and observation site on a map of

the Lake Lanier area near the dam. The separation distance was approximately

2.5 kilometers. Two field experiments were conducted at these facilities

prior to the delivery and testing of the demonstration cueing units to JPL.

The basis; instrumentation was reconfigured for the long range smoke

visibility tests. The basic limitations were imposed by the absence of

convenient power at either site. Battery power sources were assembled for the

cue test firing location to operate the Mod IV camera formally used for the

flash event recording. This camera was used for both the flash and smoke

cloud recording during the long range tests. The time format was modified to

allow this camera to operate in the cine mode and record 5 frames per second

for the duration of the test run. Figures 13a and 13b illustrate the test set

up at the cue firing site. The instrumentation included the test stand and

the sound level meter.

The observation site was instrumented with a 16-mm movie camera with a

telephoto lens and a 35-nun still camera with a telephoto lens. The site was

connected to the firing site by radio and the movie camera was started at a

film rate of 18 frames per second approximately 3 seconds before the cue was

activated. The still camera was operated approximately 2.5 seconds after the

cue was operated. Firing times were taken from a countdown given over the

radio. The observations of the personnel were also recorded as part of the

tests. Figure 14 illustrates the observation site.

The primary data from the long range smoke visibility tests were the

photographic recordings made at the observation site. The telephoto lens was

used to maximize the image size on the film. Figure 15 defines the relation-

ships for both cameras based on the focal lengths of the lens used on the two

cameras. These equations define the scale factors for the two cameras so that

absolute measurements can be obtained from the film.	 The derivations in 	 a

Figures 16 and 17 develop the viewing requirements for both the still pictures

and the movies to restore the angular perspective that existed to the unaided

Gaye at the observation site. Figure 18 illustrates an example of the still

camera recordings. 	 The scale factor was developed from the equations

presented in Figures 1G and 17.
s
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Figure 13. Cue test site for long range smoke visibility tests.

(a) Top - Instrumentation lavout

(b) Bottom - View of observation range
	 0

36



r

ORIGINAL rxnr
BLACK AND WHITE PriU I'OGRAPH

Figure 14. Observation site for long range smoke visibility

tests.

'r

s
37



of FV.	=61'

Lene

Image

lie fight

Image	 Object Distance

Distance

Object Heig ht 	 Image Hei ht

Object Distance	 Image Distance

For the 16-mm Movie Camera

Image Distance - Focal Length - 120 mm

Image Height	 - Frame Height - 7.6 mm

Let Object Height - Vertical Field of View

(Image Height) )(Object Dis tance)
(Image Distance)

(0.0076 m)(2500 m)
(0.120 m)

Vertical Field of View - 158.3 meters

For the 35-mm Still Came ra

Image Distance - Focal Length	 - 300 mm

Image Width	 - Horizontal Width - 34 mm

Let Object Width = Horizontal Field of View

(Image Width) Object Distance)
(Image Distance)

(0.034 m)(2500 m)
(0.300 m)

Horizontal Field of View = 283.3 meters

Fivure 15. Derivation of camera scale factors for long range

visibility tests.
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Object
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Observer

Observing Angle	 Field of
View

Observer Distance 2. 5 lai

Observing Angle m Field of View
Observer Distance

For the 16-mm Movie Films

Observing Angle	
158.3 ni	 0.0633 radians2500 M

T
Observer

Projected
Viewing Angle Image

Projector

Viewing Distance

Viewing Angle = Prolected Image Size
Viewing Distance

For Original Observer Viewing Angle and a 0.305 meter Image

Viewing Distance	
Projected Image Size

Viewing Angle

0.305 meters
0.0633 radians

Original Perspective

Viewing Distance	 4.8 meters	
and

0.305 meters
Vertical Image

0

Figure 16. Derivation of formulas for viewing scale factors for
long range visibility tests.
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For the 35-mm Still Camera

Observing Angle - Field of View
Observer Distance

283.3 m (horizontal).	
2500 m

G 0.1133 radians

Viewing Distance o Image Size
Viewing Angle

For Figure 18

If Image Width	 0.23 meters

	

Correct Viewing Distance	
0.23 meters

0.1133 radians

2.1 meters

For Projected Slides

If Image Width	 0.61 meters

	

Correct Viewing Distance 	
0.61 meters

0.1133 radians

5.4 meters

K	 Figure 17. Viewing scale factors for long range visibility

j_	 test pictures.
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3.4 SHORT RANGE TEST DATA REDUCTION

The primary analysis of the short range cue tests was to evaluate the

area and the volume of the smoke cloud an a function of time. The relative

size of the smoke cloud is a function of the time after ignition, the surface

wind velocity, tho amount of particulate material in the cue, the force with

which the cue is ejected, and the net temperature of the gasses in the

cloud. A principle goal of the measurements and data reduction was to

quantify the affective signature as a function of the amount of cueing

material used.	 The photographic recordings of each cue test provide the

medium for measuring the smoke eloi:d area and volume. Figure 19 presents an

overview of the test area during a 15 second period of a cue test. This view

was made from a tower approximately 200 meters from the cue device.

The philosophy of the smoke cloud data reduction was to project the

photographically recorded images onto a computer display screen and use the

co^tiputer to reduce the data. The TV monitor display has a movable cursor

programmed so that the cloud ;stay be outlined when the picture image is

superimposed over the computer display screen. The combining process was

accomplished by building a simple fixture shown in the block diagram in Figure

20. Inside the box, the film strip recording of the cue test was projected

upon a ground glass rear projection screen. A half-silvered mirror was used

to present a combined view of the TV monitor and the projected picture to the

operator at the viewing port. Care was taken to eliminate error due to

parallax.

An Apple II Plus computer was used for the data reduction program. The

standard game paddle inputs allowed the cursor to be positioned on the TV

monitor with a resolution of 279 by 179 pixels. Typical scale factors used

For the majority of test measurements produced a resolution of approximately

3.4 centimeters per pixel which was sufficient for the accuracies desired in

the final data. This method provided a ver y cost effective method of

digitizing the cloud pictures.

Smoke clouds produced by the cues usually have very irregular shapes. in

general, it may be assumed that the cue cloud will be in an elongated shape

originating at the cue test device. For the purpose of this analysis, it was

assumed that the cloud may be represented by a group of thin cylindrical discs

as shown in Figure 21. The locations of these discs were assumed to be moved

by the wind so that each disc may be offset from the adjacent ones.

42
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The cloud was viewed by the operator and the apparent boundaries were

marked at fixed vertical levels (representing the center height of the assumed

cylindrical discs). The smoke cloud data reduction program allowed for up to

two separate discs to be designated at a given height since many cloud y may be

double humped. The outlinikg process was done from the top of the cloud to

the bottom) the test cue wens designe%ed as a reference point. Two other

reference markers that were a known distance apart were also designated once

during each test run to provide a reference calibration for the computer, so

that the computer could be used to evaluate the cloud measurements in absolute

units.

The cloud data reduction program computed the cloud area, the X and Y

centroid location relative to the cue test device, the cloud volume, the rate

of change of the volume and the area, and the rate of drift of the cloud

rentroid. The film strip record was entered into the computer by designating

the cloud edges of each picture in turn in the record sequence. The data were

summarized in a printout sheet for each run as shown in Figures 22 and 23.

This tabulated data as a function of time was combined with other cue runs to

obtain an average result of a number of tests of the same cue material.

The combining of data from several runs allowed some of the random

r variables to be averaged out. The source of these random disturbances was

attribu'ed tc. :he resolution of the digitizing process, operator errors in

defining the edges of the cloud, the nor:-circular cross section of the smoke

cloud disc elements, and effects of the wind. Since the main goal was to

quantify the signature effects of each cue concept so that the signature size

can be scaled for different requirements, the data were normalized according

to the weight of the cueing material used.

The basic smoke cue may be divided into different phases as shown in the

graphs in Figures 24 and 25. The deployment phase for the gradual burn cue

concept is much slower than that for an explosive release design. The

explosive release may be divided into the deployment phase, the expansion

phase (where wind and turbulence effects predominate), and the dispersion

phase (where the cloud thins to the point that it becomes undefined). The
k

gradual burn release characteristics apply to cue concepts where the smoke

generating material is burned relatively slowly in the container in a manner
s

such as the cylindrical burning configuration (Figure 3)• This smoke profile
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Figure 22. Sample computer print -out of smoke cloud data
reduction program.
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Figure 23. Computer summary of smoke cloud data reduction run.
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has an ignition phase due to the b

expansion of the aloud during the generation phase and the expansion and

dispersion phases seen in the previous example.

The normalization process combined the results of all test measurements

of each cue firing having the same design and material. The model used for

normalization assumed that the cloud volume was proportional to the weight of

the cue generating material. This assumption led to the normalization of the

data based on the cloud volume, since cloud area would vary nonlinearly with

cue weight. Since cloud area was the measure that was directly related to the

smoke cloud visibility, a method of relating the normalized data to cloud area

was defined. For this transformation, the smoke cloud was assumed to be

spherical in shape. The volume of the spherical cloud was defined as

	

V = 3 ^rR3 	(9)

and the apparent area was defined as

	

A = nR2	(10)

if these expressions are solved for the common term, the radius (R), and

equated, the relationship

A = 1.209V2/3
	

(11)

can be used to obtain normalized area data directly from the normalized cloud

volume data.

The normalized cloud volume was found by dividing the absolute cloud

volume by the weight of the cue material. Since many values of volume were

obtained as a function of time for each cue test, a tabulation was made as a

function of time for all cloud pictures computed by the data reduction program

(for a given smoke cloud generating material). After the normalized cloud

volume was measured and tabulated for each test of the same cue concept, the

normalized volumes were averaged for each time slot. A best fit straight line

was calculated by the least square method for these data points to define the

normalized smoke cloud volume as a function of time (see the example in

Figure 26).
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A similar graph for the normalized cloud area is shown in the bottom

graph of rlgure 26. These data were assembled in an identical manner to the

volume computations described above. The area data entered into the averages

was obtained from the normalized volume data through the relationship

expressed in Equation (11). The best fit straight line is displayed as an

area versus time plot in Figure 26.

These normalized data were developed to enable the definition of cues

that cover a range of sizes in areas or volumes. The data can be extended to

cues of different signature sizes by multiplying the results by the weight of

smoke generating material. included in the cue. Figure 27 compares measured

cloud volume and area data (solid lines) for two cue weights with the

signature effects predicted from the normalized curves. The measured data in

these examples are considered to be in reasonable agreement with the predicted

results.
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1	

3.5 LONG RANIGE TEST DATA REDUCTION

Analysis of smoke cloud data obtained during the Long range visibility

tests differed from that described for the short range tests. 	 The data

	

^i
	

I
reduction for the Mod IV camera at the cue test site was identical to the data

	

'j-	 reduction of smoke cloud data used during the short range tests. However, the

	

j'
	 long range cloud measurements were recorded with a much smaller image despite

the use of a telephoto lens. A different analysis model was defined to allow
1

the smoke cloud to be measured as a function of time from the 16-mm film. The

 cloud image was projected onto a screen, and the height and width of the smoke

cloud were measured at 0.5 second intervals in absolute units. The first

	

j	 frame with detectable activity was termed the time t 	 The cloud area was

taken from the formula developed in Figure 28. .Although this approximation is

not as accurate as the cor-puter analysis developed for the short range tests, 	 }

I t is adequate for the measurement requirements of this analysis. Figure 29

	

`

	

	 illustrates a comparison example of the cloud area measurements from the Mod
r

IV camera and the results from the 16-mm camera located 2.5 kilometers away.

{E u	 The differences are attributed to the different algorithm for determining
i;

cloud area, the different angle from which the pictures were taken, and the

different visibility conditions introduced by the atmosphere.
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SECTION 4

BXPERIMENTAL EVALUATION

4.1 QVERVISW

The purpose of this investigation was to test and evaluate a number of

clie designs to determine a concept or concepts that appear to meet the

,; ,.jnatiirn level requirements set forth in Table 1 while retainin
g a high

de(jreo of man-safety. The testing program outlined previously defines a large

test matrix for evaluating a number of cueing approaches at several levels of

intensity. Tho analys
i
s presented in this section represents data from botl;

the short range test program conducted at the Georgia Tech Research Facility

in Cobb County and the Long Range Visibility Tests conducted at Lake Lanier,

t.;eorgia. The data loga for all teat shots discussed in this report are

included in Appendix B.

The test actJV 4tieS of this project are summarized below to indicate the

number and types of mater
i
als 

i
ncluded in the investigation. A large number

of experiments were perfor ,ned for this effort of which a total of 344 were

photographically recorded for data analysis. 	 The types of experiments

involved are given in Tables 11 through 13.

4.2 FLASH CUE EXPERIMENTAL EVALUATION

A series of experiments was conducted early in the program to determine

I f the flashbulb cue concept would be adequate for the short range flash cue

requ
i
rements. Early experiments using both the AG1 bulb and the magic cube

-lemonstrated that the flashbulb was easily visible at 200 meters when looking
	 t I

I n the direction of the expected flash. The long range tests performed at

Lake Lanier further demonstrated that the flash cue was visibile to ranges of

2.5 kilometers under clear daylight conditions.

The early flash experiments also demonstrated that the flash would draw

attention at peripheral vision angles of 30 degrees at distances of 200

0
	 meters, The requirement for the peripheral vision as specified in Table 1 is

for a hazy day; th
i
s requirement was interpreted in the early test in the

0
	 photographic sense as a day with overcast sky so that the contrast lighting

was low. Haze between the viewer and the flash cue might also be interpreted
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TABLE 11. TYPES OF EXP13RIMENTS3 DOCUMENTED

Cue Number
Container Documented

8 Gauge 63

12 Gauge 203

16 Gauge 16

No. 5 Flashbulb 5

M-3 Flashbulb 3

AG-1 Flashbulb 29

Flashcube 6

76.2 mm by 25.4 mm (3 in. by 1 in.) dia. pipe 1

152.4 mm by 25.4 mm (6 in. by 1 in.)	 dia. pipe 14

304.3 mm by 25.4 mm (12 in. by 1 in.)	 dia. pipe 4

'total Number of Experiments 344



TABLE 12, INERT SMOKE POWDERS TESTED

Powders Tested Range of cue Weights Tested Number of Tents

Purple K 6 to 130 gm GS

NatiCC 3 3.8 to 14 gm 10

CaCO 3 7.2 to 83 gm 32

Plaoter of Paris 6.3 to 9.5 gm 4

Acacia 5.d	 to 7.7 gm 6

KHCO 3 12 to 25 gm 17

Coal Duet/CaCo. 10 to 20 gm 4

Coal Dust 5.6 to 24 gm 17

Carbon Black 1.76	 to	 1.83 2

Carbon Black,' 3 to 4 gm 7
4F black Powder

Carbon Black/CaCO 3 5.6 to 7.7 gm 2

Tinted CaCO 3 6.5 to 9 gm 7

TABLE 13. PROPELLANTS TESTED

Bullseye Pistol Powder

4-F Black Powder

4-F Black Powder/Coal Dust

2-F Black Powder

2-F Black Powder/Coal Dust

Black Powder/Anthracene/KCLO3

Al/Anthracene/HC

Phosphorus Mix
i

Low Temperature Smoke Material

British Simulator

Flash Powder
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to mean smog or fug; these conditions seldom exist in the vicinity of the

Georgia Tech facilities. ^i

The extreme intensity of the light from a flashbulb, when falling
i^

directly on the retina, seems to override normal background lighting 	 ;I

conditions. The short flash has the ability to attract the attention of the

observer. The flash intensity in all of the short range tests was not

sufficient to be detected by the human observer as a change in the light level

on surrounding objects. Detection of the flash cu p: wan by direct vision of

the cue device.

4.3 BANG CUE EXPERIMENTAL EVALUATION 	 {

Bang cueing techniques were evaluated using the acoustic instrumentation

described in Section 3. The primary bang cue parameter measured was the ,peak

acoustic level of the bang signature in dB relative to 0.0002 dynes per square

centimeter. The sound level meter measured and hold t' neck level which was

recorded in the data logs (along with the reference measurement distance) for

each Lest firing.	 jf
i

A nonlinearity was discovered in the meter readings during the course of
V	 I	 ^

the experiments. This nonlinearity is documented in the result of a net of

experiments described in Figure 10. This plot shows that the acoustic level
w

readings above 113 dB are inaccurate. All readings below this value are

considered accurate. Values above 113 dB can be considered only as above this

threshold value.

The measurements of each cue test shot were entered into the data legs

included in Appendix B. A representative number of readings are shown in the
A'

graph in Figure 30 along with the sound levels from four common impulse noise

sources. The slope of the dashed lines through each source follows the fall-

off of the sound intensity with distance from the source. The sound levels 	 }

were transitory in nature, and the spread in the dB levels for each source

cautiod a clustering of the data points. The measurements above the 113 dB

level are not to be considered accurate and probably represent a much higher

level.

•	 After the nonlinearity in the sound level meter was noticed, the	 !{

reference measurement distance for the remainder of the cue tests was changed

to 9.75 meters (32 feet). This distance was still not adequate to enable

{
i
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accurate acoustic measurements for the higher level bang cues provided by the

pyrotechnic cue generators. Further movement of the sound level meter from
•

the test site was not always practical due to the ambient background noise and

the somewhat unpredictable level for a cue-to-cue test basis.

The small firecracker gives a corcunon reference to an impulse noise that

would extrapolate to the 140 dB limit at a distance of approximately 15 cm

(0.5 feet) from the ear.

4.4 SMOKE CUE EXPERIMENTAL EVALUATION

A large number of data points or curves for each test cue was derived

from the smoke cloud data recordings. These data for each test run include

many effects that are hard to interpret due to variable wind conditions,

different weights of cue generating material, etc. The data reduction

technique allowed the characteristics of a given smoke generating material to

be averaged over a number of test firings of different weights. The averaging

method provided normalized data that are useful in designing cue signatures

meeting different cloud visibility and cloud size requirements. These

normalized curves can be used to establish the cue payload for a given cloud

size requirement.

Figure 31 illustrates a number of curves taken from the smoke cloud data

ro ,luction showing the cloud area as a function of time.

Figure 32 illustrates the normalized results for all data using Purple-K

smoke material. This curve represents the averaged results of 29 cue tests

using inert powder weights of 6 grams to 130 grams. The propellant charges

were adjusted to be roughly proportional to the weight of inert powder. The

best fit straight line matches the averaged cloud volume data points with a

correlation factor of 0.995. Due to the very wide range of cop material

weights used, the averaging process produced slightly different curves when a

subset of the data covering the range of 6 to 30 grams was analyzed. These

data (presented in Figure 33) are more .relevant to the range of smoke cues

delivered as demonstration units.	 The normalized data in these graphs

represent the average of 9 test shots.

A comparison of cloud volumes and area for three weights of the Purple-K
,S

material is shown in Figure 34. The continuous curve represents the measured

results as determined from the photographic test recordings. The dashed lines 	 y
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represent the predicted performance from the normalized data curves

in Figure 33 and described in Section 3. The measured data represented by

these three curves are considered to be In reasonable agreement with the

predicted results. Figure 35 compares the test results for a weight of 130

grams of Purple-K material with the two normalized data curves presented

above. The cloud volume appears to follow the slope represented by the larger

data base curve (see Figure 32, during the earlier portion of the smoke curve,

then deviate to the predicted volume developed around the lower weight model

(see Figure 33). The curve for cloud area appears to be in better agreement

with the lower cue weight subset over the duration of the smoke cloud. The

larger weight of cueing material may have contributed to slightly different

results due to the change in aspect ratio of the launching tube (the same 25.4

millimeter (1 inch) diameter tube was used for the cue weights of 30 grams and

above). The conclusion of the Purple-K analysis is to use the normalized data

presented in Figure 33 for developing cue devices in the range of the devices

delivered as demonstration units. This set of curves (area and volume) also

appears to be the better choice for units with weights between 30 and 130

grams.

The data for all major smoke cueing concepts was averaged to produce the

normalized curves similar to that presented previously for the Purple-K inert

powder cue and for the flash powder cue. Normalized data sheets are presented

in Appendix A for the smoke cue concepts shown in Table 14.

Three types of flash powder were tested using diferent combinations of

materials. The standard flash powder produced the best cloud volume as shown

in the nomalized curves in Figures A-1 ti ough A-3 (see Appendix A). The

aluminum material used in this powder was very fine flake aluminum paint

pigment. This material was testel without an oxidizer and produced a good

flash cue, but was ineffective in producing a smoke signature (see Figure A-

4). The magnesium compound used in mixtures no. 1 and no. 3 was not as finely

ground as the aluminum powder, which attributed to less efficient cominus-

tion. A more finely ground magnesium powder should give results similar to

those experienced with the aluminum in the standard flash powder.

The standard flash powder appears to be a very efficient FBS cue

material. However, the combustion process contains hazards in the fireball

and burning particles emitted and in the acoustic impulse level generated.
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8	 3 to 16 gm

6	 0.5 to 10 gm

4	 1 to 10 gm

6	 3 to 5.8 gm

6	 4.2 to 12.8 gm

6	 3.7 to 27 gm

63.6 to 10.1	 gm

8	 4.8 to 11.3 gm

5	 2.9 to 6.4 gm

29	 6 to 130 gm

8	 12 to 25 gm

6	 7.2 to 83 gm

f

i
a

TABLE 14. SMOKE CUE CONCEPTS EVALUATED

Number of	 Range of
Cue Material Tested	 Shots Averaged	 Cue Weights

Pyrotechnic Smoke Cues

1. Standard Flash Powder

(34.2 % Al -65.8 % KC1O4)

2. Flash Powder Mixture No. 1

(21 $ Mg - 9 8 Al -

35 $ BaNO3 - 35 % KC103)

3. Flash Powder Mixture No. 3

(37 % 'rig - 63 % KC10 3 )

4. Aluminum Flake Powder

5. Black Powder (Cylindrical

Burning Configuration)

G.	 4F Black Powder/Anthracene/KC10 3

(2-1-1 Mixture)

7. 4F Black Powder/Anthracene/KC10 3

(1-1-1 Mixture)

8. 4F Black Powder/Anthracene

(2-1 Mixture)

9. Low Temperature Smoke compound

Inert Smoke Compounds

10. Purple-K (KHCO3)

-Dry Chemical Fire Extinguisher Powder

11. Potassium Bicarbonate (KHCO3)

(Chemical Grade)

12. Calcium Carbonate (CaCO3)
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The anthracene mixtures wera explored as being fast burning materials

that were readily ignitable. The different mix ratios were used to develop a

carbon rich smoke cloud that would have a gray color. The black powder in the

mixture increases the density of the smoke cloud and gives it some increased

darkness. Open burning of these mixtures produced visible carbon particles in

the atmosphere. The normalized results of these experiments are presented in

Figures A-6 through A-8 of Appendix A. These materials were easily adaptable

to the cylindrical burning configuration deployment concept. The burning

process was slow enough that fire was spewed from the container and burning

particles were n-±t infrequently expelled. This material can produce a gray

cloud, but the apparent darkness of the cloud is not as distinct as

desired. The 2-1-1 and the 1-1-1 mixtures were nearly equal as smoke cloud

generators and proved to be much better than the mixture without the

oxidizer. The safety hazards of this material stem from the burning products

that are not easily confined to the cue containe•.

A limited number of experiments were performed with a low-tt-aperature

burning proprietary compound for producing a smoke signature. The composition

of the sample material was not known, but it is reported to be similar to a

smoke generating material manufactured by Wallops Industries Limited. This

compound was used in the cylindrical burning configuration by cutting thin

slices from a block of the sample and affixing them to the inside surface of a

shotgun shell. The material was ignited by a primer and a small booster

charge of 4F black powder. This material was primarily designed for creating

smoke screens but can be ground to obtain smaller grain sizes. As the grain

size decreases, the burning rate of the material increases, but care must be

taken not to reduce the total amount of material or a corresponding reduction 	 a`

in smoke cloud volume will result. A thick grain size of this material was

used in this cue development effort, and consequently the material exhibited a 	 j

relatively long burning time as compared to the other pyrotechnic materials

tested. A slow burning rate typically causes the cloud to be strung out

horizontally if there is any wind. This would preclude the use of a thick

grain of this cueing material for an airburst since the slow deployment over a

period of seconds would cause a smearing effect. This slow burning rate could

be increased, possibly to acceptable levels, by using a finer. grain of the

material. This cue concept produced a good smoke cloud with minimal fire
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hazard to pe•:sonnel and graco environments, open burning of this cue material

produces no flash or bang signature.

A major fire hazard was associated with the use of combustible wadding

material. This was corrected by substituting plastic sheet material for the

soft paper material previously used. Paper powder cups used with the inert

smoke cue designs did not show a tendency to ignite.

A number of experiments were performed with inert powder material in an

effort to define a smoke generating concept with a significantly greater man

and range safety. Calcium carbonate, commonly used as a paint pigment

(whiting), was used for thi smoke cue in the feasibility demonstration under

the previous USACDEC research effort. This material produces a good smoke

cloud with minimum hazard by deploying the inert powder by means of a small

charge of pistol powder. Calcium carbonate is only slightly soluble, but the

small amounts of it that might be accidentally ingested by a nearby player are

sufficiently soluble in body fluids so that they can be ejected from the body

via normal bodily processes.

Potassium bicarbonate was also investigated as an alternate to the

calcium carbonate since it is much more soluble. Two preparations of this

material were included in the test firings. A commercially available chemical

grade material was tested that had no special treatment. An alternate form

sold under the trade name of Purple-K is commonly used as the powder in dry

chemical fire extinguishers. This material is ground to be very fine and

treated to improve its free flowing characteristics and to be less hydro-

scopic. The potassium bicarbonate proved to be a good smoke cue generator,

but the Purple-K has slightly better cue producing properties. The deployment

technique used (see Section 3) provided a low hazard level for good man

safety. This cue concept was capable of generating a bang signature by

confining the initial deployment with a rupture diaphragm. The normalized

curves for the inert smoke cue materials are shown in F gures A-10 through A-

12 of Appendix A.

Two long range visibility tests were conducted at Lake Lanier (see

Section 3 for instrumentation description) to evaluate cueing concepts for the

demonstration units to be delivered. Summaries of these experiments are given

in Tables 15 and 16. The observer comments and a description of the cue

device being tested are included in these tables.
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The long range visibility testa allowed the observers to be looking at

the expected cue firing and to receive a countdown of the event. This is not

too dissimilar to the forward observer since he has requested that fire be

directed to a given location and is looking for the event. As an example,

good visibility was reported by the observers on cue test 11-6-U (5 grams of

standard flash powder) at the viewing range of 2.5 kilometers. A check of the

close range photographic recordings showed a cloud area of 5.1 square meters

(55 square Peet) at 2.5 seconds after cue activation. Figures 36 and 37

compare the average of the normalized volume and area data for the standard

flash Powder and the Purple-K cues fired during the 6 November test at Lake

Lanier. The normalized area curves were derived from the measured normalized

volume data using the spherical cloud model described in Section 3. The data

for the flash powder shows reasonable agreement for both methods of

observation. The data for the Purple-K inert material demonstrated a lower

effective cloud area for the long range recordings than for the close range

recordings. This was attributed to the high aspect ratio (height divided by

width) of the Purple-K cloud. The relatively narrow width of the cloud

developed by the inert powder was more subject to measurement errors than the

larger more symmetric flash powder smoke 4 ouds.
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SECTION 5
I

DEMONSTRATION CUE UNIT EVALUATION

5.1 OVERVIEW

Several demonstration cueing devices were specified as deliverable items

in the contract. A Technical Direction Memorandum from JPL dated 12 November

1981 directed Georgia Tech to deliver the demonstration rounds described

below:

a. Eight each Flash/Bang/Smoke (FBS) cues using fine ground KHCO3 that
are small, medium and large using a flash bulb as an initiator, and a
flash bulb as the flash cue.

i
b. Eight each FBS cues using the GIT Al/KC10 a flash powder that are 	 j

large and small.

e. The two small cues are to have the same size smoke cloud.

This memorandum directed that the inert components of the units described

above be delivered to JPL by 30 November 1981. This was necessary since
i

shipment of the completed demonstration rounds by commercial carrier would not

allow the accelerated test schedule to be met. The memorandum also directed

that the FBS cues be assembled at JPL by 2 December 1981 and that preliminary

test firings be supported at the Edwards Test Station (ETS) during the week of

3 to 8 December. This phase was accomplished by Mr. Jack Kinney and the

initial tests were satisfactory. 	 Additional support was required for the
i

final demonstration firings before the Army Study Advisory Gro •ip on 9

December. Mr. Frank Williamson attended this demonstration. All FBS units

performed satisfactorily at this demonstration.

i

5.2 CUE ASSEMBLY DESCRIPTION i

5.2.1 GENERAL DESCRIPTION

Demonstration units of two basic types of flash-bang-smoke (FBS) cue

devices having characteristics that are desirable for indirect-fire cueing

ware constructed. The cueing concept proposed for operation near personnel is

based upon the use of a fine inert powder as the smoke cue. The flash cue in

this relatively man-safe cueing device is a simple flashbulb. The acoustic

cue in this device is provided by a simple diaphragm rupture.
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The second cueing concept used in these demonstration units is based upon

a flash powder formula of aluminum powder and potassium perchlorate. 	 This

material is not considered as safe for operation near personnel due to the

open burning of the flash material.	 However it represents an efficient FBS

cueing material and can possibly be used in an airburat configuration.

All	 of	 the	 cueing	 demonstration	 units	 were	 ignited	 by	 a	 flashbulb

squib.	 This device is considered to be reliable and to have less chance of

j accidental discharge due to static electricity than some conventional squib

devices.	 The flashbulb squib was constructed around an AG-1 flashbulb. The

AG-1 has convenient wire spring electrodes that can be easily connected to a

wire lead.	 The heat flash from the flashbulb will ignite a coating of black	 J!

powder on the surface of the bulb to provide a hot flash suitable for igniting

other propellant material.

The	 flashbulb	 squib was	 prepared	 by	 soaking the bulb in acetone	 for

approximately	 15	 seconds	 to	 soften	 the plastic coating on tha glass bulb.

This operation was performed after affixing the proper leads. 	 Excess acetone
I

L was removed from the bulb by shaking the unit.	 Then the bulb was rolled in 4F	 -J

Fr t

black powder while the surface of the bulb was still soft.	 Excess powder was

j. then removed from the bulb surface by gently tapping the bulb with a small
r.

tool or pencil.	 This unit was then allowed to dry completely before being

assembled in the cueing device.

The specifications for the materials used in these cue devices are listed

in Appendix C.	 The formula for the flashp owder is also defined in Appendix

C.

5.2.2	 PUFPLE-K SMOKE CUES

The	 demonstration	 cues	 use	 three	 size	 charges	 of purple-K	 (potassium

bicarbonate) that are packaged in appropriately sized containers. 	 These cues

will be described in the order of descending cue loads. 	 These cue packages

are intended as demonstration units and do not necessarily represent suitable
J

configurations for a cueing projectile. 	 This type of cueing device uses an

external	 flashbulb for &,	 flash	 cue	 since there	 is no	 flash from the small

powder charge from the material used to expell the finer; smoke cue.



5.2.2.1 Large Inert Powder FBS Cue

This cueing unit was mounted in a rolled paper tube having a one inch

inside diameter. A sketch of this device is given in Figure 38. One and of

the tube was sealed with a wooden dowel that was glued to the paper tube. The

flashbulb squib was positioned at the bottom of the cue device with the top of

the flashbulb pointing downward. The leads of the flashbulb squib pass

through this wooden Mug and are sealed with hot-glue.

A propellant :charge of approximately 1.3 cc of Bullseye pistol powder was

used with this cue device. To insure good burning, an additional booster

charge of 0.5 cc of 4F black powder was added to the charge of pistol

powder. This was in addition to the black powder coating on the flashbulb

squib.

The propellant charge was covered with a folded wad of 3 mil clastic

under a paper powder cup. The powder cup forms a seal to keep the purple-k

from mixing with the propellant charge. A charge of 30 grams of potassium

bicarbonate was loaded in the tube with the tube being tapped or vibrated to

settle the powder and remove excess air.

The end of the cue tube was sealed with either a single layer or a double

layer paper seal to provide the rupture diaphragm for the bang generator. The

cue device aas coated with a clear spray to seal the porous tube against

moisture.

The flash cue was added to the smoke-bang cue at the bottom of the wood

plug as shown in Figure 38. The flash cue was provided by a simple flashbulb

connected in parallel with the internal flashbulb squib. The flash cue was

physically mounted inside of a plastic tube for mechanical protection.

5.2.2.2 Medium Size Inert Powder PBS Cue

The construction of this cue demonstration unit was similar to that

described above with the exception of the container. The smoke-bang cueing

portion of the unit was placed in an eight gauge shotgun shell as illustrated

in Figure 39. The load of inert powder was approximately 16 grams and the

propellant was proportionally smaller. A charge of approximately 0.7 cc of

Bullseye pistol powder was placed around the flashbulb squib. A single wad of

plastic was used between the propellant and the paper powder cup as before.

. l
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The bang cue was produced by the diaphram seal on the end of the shell as

before. The seal was sprayed to protect against moisture.

5.2.2.3 Small Size Inert Powder FBS Cue

The small size demonstration cue was identical. in construction to the

medium size unit except a 12 gauge shotgun shell was used as the container. A

weight of 6 grams of purple-k was used as the smoke cue. The propellant

charge was composed of 0.5 ec of Bullseye pistol powder. 	 The method of
s

sealing the unit was identical to that used in the previously discussed

units. The flash cue was provided by the flashbulb connected in parallel with

the internal squib.

5.2.3 FLASH POWDER FBS CUES

The second type of cueing concept contained in the demonstration units

makes use of a flash powder mixture of aluminum powder and potassium

nerchlorat.e. This cueing content differs from the technology previously

described. The smoke and flash cues are generated by open burning of the

combustible material. This approach has a higher risk to nearby players and

to the possibility of starting grass fires.

This FBS technology is an efficient cueing payload but care must be taken

to insure that ..he cue is never ignited within some minimum distance to the

ground or a player. This minimum distance is somewhat dependent upon the

actual charge weight of the combustible material. Two charge weights of this

type of FBS material have been included in these demonstration units. The

packaging of the two units differs and is outlined in the descriptions given

below.

5.2.3.1 Large Flash Powder FBS Cue

This demonstration cue was packaged in a ^2 gauge shotgun shell and

ignited by the flashbulb squib described above. The shotgun shell has been

reduced in length to just accommodate the squib and the flash powder load.

This cue contains 5 grams of the flash powder mixture. The black powder

coating of the squib was sufficient to ignite the flash powder material

directly. The flash powder in this unit was loaded directly in contact with

the squib as shown in the diagram in Figure 40.
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This cue requires no external flash cue since a bright flash occurs with

the discharge of the flash powder. A rupture seal covers the powder charge in

the same manner as that used in the previous charges.

5.2.3.2 Small Flash Powder PBS Cue

This demonstration unit was developed to demonstrate a minimum cueing

level for this flash powder cue technology. The small quantities involved in

this demonstration unit required that the combustible material be in direct

contact to the flashbulb squib. The black powder coating was attached to the

flashbulb as before and allowed to dry. The prepared squib was then briefly

dipped in acetone to wet the surface of the black powder coating and then

rolled in the flash powder mix. The wet surface will cause the powder to coat

the bulb but does not provide an adequate adhesive property. To overcome the

fragile property of this coating, the unit was allowed to dry and was sprayed

with a coating of a clear acrylic enamel ( Trade name Utilac, manufactured by

i
	

Benjamin Moore & Co.).

This demonstration c"e was complete in the coated flashbulb. Since there

was ..o confinement of the combustion in this form there was no bang cue. The

roughness of the powder coating on the flashbulb may also prevent an effective

moisture seal on the material with the spray coating. To overcome these

limitations, these units have been housed in a large diameter plastic tube

that was sealed at both ends with a simple diaphragm. This seal can provide

an acoustic signature as well as providing protection against moisture. The

clear plastic tube around this flash device provides some containment of the

burning products of the cue.

This cue device contains approximately 0.3 grams of 4F black powder in

the first coating on the flashbulb squib. The second coating of the flash

powder mixture ranges from approximately 0.25 grams to 0.4 grams.

5.3 DEMONSTRATION UNIT TESTS

The inert powder cues were selected with cue wei ghts of 6, 16, and 30

grams for the small, medium, and large demonstration units, respectively. The

flash powder cues were selected with flash powder weights of 5 grams and

approximately 0.3 grams (0.25 to 0.4 grams) for the large and small

demonstration units. Figures 41 and 42 illustrate tiae cloud volume and cloud
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Figure 41. Smoke cloud measurement data of two sample Lie units using
30 grams of Purple-K inert powder.
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4
area for two examples of the 30 gram inert rowder demonstration cue and for

two examples of the 5 gram flash powder demonstration cue. The differences

between the smoke cloud signatures of similar cue devices in these two figures

can be attributed to a number of random variables. The most influential of

these variables io wind, which can vary considerably between cue test

firings. Other vandom processes that contribute to differences between the

curves within Figure 41 and Figure 42 are differences in the but^king

characteristics that will be found between different loads of the same cue and
d

the operator's subjective definition of the cloud edge during data

e	 reduction. The peak sound level measurements for the demonstration cues are

listed in Table 17. The 117.6 dB reading was in the saturation region of the

sound level meter (see discussion in Section 4). These values have been

plotted for comparison in Figure 43 in a format similar to the general

measurements given in Figure 30.

TABLE 17. PEAK SOUND LEVELS

Cue Description	 Test ID	 Sound Level (dB)
(at Test Distance of 9.75 Meters)

Purple-K Charge:

	

30 gm	 12/30/A	 100.7

	

16 gm	 12/30/11	 102.0	
ea

	

6 gm	 12/30/N	 94.2

Std. Flash Powder Charge:

	

5 gm	 12/30/BA	 117.6

Coated Squib	 12/30/GG	 79.7

A

A
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SECTION 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

A number of cueing concepts to produce flash/bang/smoke cue signatures to

simulate a shell burst were systematically investigated. The concept

definitions were formulated with the objective of developing cue technology

that will be suitable for delivery through a remote-launched projectile to

F

	

	 simulate an impact of indirect fire. The cue concepts are also considered

applicable to other training devices such as mines.

The cue goals listed in Table 1 were used as guidelines for developing

and evaluating the cueing techniques. These goals were primarily directed

toward the smoke visibility, the flash visibility, and the safety of personnel

and ranges. Specifications of the acoustic signature were limited only by the

existing safety levels. These investigations were designed to quantify the

cue signatures of the different cue concepts so that the maximum effect per

unit volume of cue material could be defined. This approach allows the final

cue design to be modified to meet changing cue requirements and to be extended

to other training devices such as mines.

The cue tests and experiments indicated that the smoke cue and the flash

cue requirements are fairly easy to meet in terms of the long range visibility

goals if there is no limitation on personnel or range safety. These hazards

restrict the cue design concepts to those that have a very high degree of

safety in terms of fire danger and toxic products.

The primary cue evaluated during the long range and the short range tests

was the smoke cue. Two basic approaches were used for generating the smoke

cue signature. The first method involved the pyrotechnic compounds that

produced smoke through a burning process. The second method produced a cloud

signature by deploying an inert powder or dust. Some of the smoke cue

concepts tested also produced a bang and flash cue as a by-product to the

smoke signature.

Several cueing concepts were explored during the course of this

investigation. Many properties (other than safety and the cue signatures)

were considered, including those that would interact with other systems in the

r
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simulated battlef ield. Two basic applicationa were considered for the cue

devices. The f irst application is in a ground burst where the close proximity

of personnel and f ire hazards such as grass are assumed. The second

application is in an airburst where the distance from players and grass can be

controlled by either a proximity or a time fuze. A matrix was constructed to

allow comparisons to be made between the various cueing concepts. A separate

matrix is presented for the case of the ground burst and the airburst

applications in Tables 18 and 19. A numbering system (ranging from 0 to 5) is

included in parentheses in each of these tables as a numerical estimation of

the value of eaah property considered in the matrix (with 5 as the maximum

value). Some of the categories in these tables include more than one powder

mixture (for example, three basic flash powder formulas having similar

properties were tested).

A basic goal during the evaluation of each cue concept was to establish

design criteria that could be used for scaling the cue designs to different

signature requirements. This scaling was primarily done for the smoke

signature since this is the most visible quantity at the long ranges required

for observation by a forward observer or other troop elements. Normalized

curves for the smoke cloud area as a function of time were developed. A cloud

area of approximately 5 square meters was derived from a model as being an

appropriate cloud area for visibility at 3 kilometers. Table 20 compares the

cue payload weights that are necessary to generate a 5 square meter smoke

cloud area 3 seconds after cue Ignition based on the normalized design curves

presented in Appendix A of this report.

	

The flash signature is relatively simple to develop, and the long range	
ik I

tests verified that a simple photographic flashbulb could easily be seen at

observing distances of 2.5 kilometers in normal daylight. Bulbs with greater

intensity did not produce significantly brighter results to the observer.

Flash powder fireballs were known to be larger in size, but also did not

produce a subjective responie in the observer that was significantly different

from the simple flashbulb. The flashbulb is considered adequate for the flash

cue, and the inherent safety of the contained combustion process presents no

danger of flash burns to personnel and no danger of starting grass fires.

The acoustic signature generally presents a problem of reducing the level

to a degree where accidental exposure of personnel at close rangas does not
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TABLE 20. COMPARISON OF WEIGHT OF SMOKE CUE MATERIAL

FOR 5 SQUARE METER CLOUD AREA

Weight of Material Needed to Satisfy

Long-Range Visibility Requirements

Cue Material	 (5 square meter cloud) (at 3 seconds)

P

S

Standard Flash Powder 3.1 grams

Flash Powder Mix No. 1 4.1 grams

Flash Powder Mix No. 3 12.3 grams

Aluminum Flake Powder 10.0 grams

Black Powder
(Cylindrical Burning Configuration) 9.0 grams

4F/Anthracene/KC1O3
(2-2-1 Mix) 7.8 grans

4F/Anthracene/KC103
(1-1-1 Mix) 8.3 grams

4F/Anthracene (2-1 Mix) 14.4 grams

Low Temperature Smoke
Compound 7.2 grams

Purple-K 12.3 grams

Potassium Bicarbonate 33.8 grams

Calcium Carbonate 9.6 grams

L,.
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require the use of hearing protection devices (earplugs). Cueing devices that

do not develop a bang signature as a by-product of the combustion process must

frequently be aided by the rupture of the container or a diaphragm. This was

necessary in the design of many of the units that were tested. When a

diaphragm rupture is used, the acoustic level can be modified by changing the

burst strength of the diaphragm material.

Two types of demonstration units were constructed and delivered for

testing and evaluation by JPL. These deliverables represented both airburst

and ground burst cueing concepts. The unit sizes were based on long range

tests that verified that the cue goals listed in Table 1 could be met. The

deliverables also included cue sizes that provided signatures (primarily

smoke) below the desired threshold of •risibility.

A standard flash powder proved to be a v-,ry efficient cue concept and

represents the first method or approach for smoke signature generation. This

generic cue device has safety limitations due to the fireball that occurs at

the time of ignition and is usually accompanied by a significant acoustic

cue. The dangers to personnel and grass fires can be somewhat controlled by

limiting the application of this cue type to a minimum distance from personnel

(as in the case of an airburst).

Inert powder smoke cue studies centered around a commercially available

preparation of potassium bicarbonate (sold under the trade name of Purple-

K).	 This material is usually used as the powder in dry chemical fire

extinguishers. Test firings with this material demonstrated that cloud

signatures were adequate for the long range visibility requirements and that a

higher degree of man and range safety could be obtained than with other cue

concepts tested.

These two cueing concepts were represented in the -ue designs delivered

and tested before the user representatives from the U.S. Army at the December

1981 presentation. A detailed description of these cue designs is included in

Section 5.

The different cueing signature levels that were demonstrated followed the

predicted design information. Design data were developed for each cue concept

on a normalized basis. Smoke cue payloads can be adjusted for different

signature requirements (such as smoke cloud volume or area).
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The degree of confidence in the man-safety of the inert powder cue design

is shown in Figure 44 where the 30 gram cue design was hand-held while being

activated. No 111 effects were experienced from this event. The cue was held

around the flash unit and no burns were produced. It has been demonstrated

that the smoke and flash signatures of this cue model are sufficient to be

seen in normal daylight to a distance of 2.5 kilometers. This cue concept is

recommended by GIT/EES as meeting the stated cue goals and as having a very

high degree of man-safety and range-safety.

This development effort has identified two basic cueing concepts for

meeting the basic goals set forth in Table 1. The flash powder cue concept is

a very efficient material, but has associated hazards in the fireball. The

inert powder cue concept, when associated with the flashbulb flash signature

generator, is a less efficient cue payload, but has demonstrated the ability

to meet the cueing goals for long range smoke and flash visibility while

providing a high degree of man and range safety.

6.2 RECOMMENDATIONS

The cue configurations used in the tests were similar to what might be

used in an actual projectile configuration. Additional tests with the

delivered cue concepts packagp i in an actual projectile would enable

refinement of the basic designs. Testing in a fired projectile, instead of a

fixed test stand, will provide a dynamic test of the cue triggering and

deployment mechanisms that have not been addressed in this study. A multiple

exit nozzle for the inert powder, illustrated in Figure 45, shows promise for

generating cloud signatures that have a greater width to height ratio.

Additional testing of actual cue configurations for projectiles

(particularly in a dynamic mode) is the main recommendation made by GIT/EES.
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Figure 44. Demonstration of man -safety of 30

MAC

 gram inert powder
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Cue Material	 FFFFg Blackpowder/Anthracene
Mixture	 2:1 parts by weight
No. of Shots Averaged	 8
Range of Cue Weights Tested 	 4.8 to 11.3 grams
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anthracene (2-1 mixture).
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smoke compound.
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MATERIAL SPECIFICATIONS

Aluminum	 MIL-4-512A

Type 1, Grade B, Class 1

Black Powder	 MIL-P-2238

Class 7

Anthracene	 MIL-A-2028

Class 2

Potassium Bicarbonate 	 MIL-P-3173

Mass Median Taiamptpr 10 mfnrons

Potassium Chlorate	 MIL-P-150C

Grade B, Class 6

Potassium Perchlorate 	 JAN-P-217

Class A

Calcium Carbonate	 MIL-C-293A

I [

n l



FORMULAS

GRAY SMOKE

KC103	35.9%

Anthracene	 34.1%

FFFFg Black Powder 	 30.0%

WHITE SMOKE, FLASH

Aluminum	 34.2%

KC10 4	65.8%

I4HITE SMOKE

a	 Phosphorus	 20.9%

CaCO 3	20.9%

KC10 4	58.2%

t 3
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