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EXECUTIVE SUMMARY

Clusters of metal atoms are of importance as models of substrates

in studies of Chemisorption on metal surfaces and of catalysis of chemical

reactions; they are also of increasing interest as novel molecular species

in their own right that, surrounded by certain ligands, are possibly a whole

new class of catalysts. Moreover, clusters of metal atoms are useful as

prototype atomic-level host systems for the development and testing of models

on interatomic forces. These interatomic forces are a basic ingredient to

the much more complex atomic modeling of the mechanical properties of metals

that are used to address important materials problems such as the effect of

hydrogen on crack propagation.

The approach we have taken to the study of metal atom clusters is

based on the application of ab initio quantum mechanical approaches. This

final report discusses our current research effort in the application of

these methods. Because these large "molecular" systems pose special practical

computational problems in the application of the quantum mechanical methods,

there is a special need to find simplifying techniques that do not compromise

the reliability of the calculations. Our current research is therefore

directed towards various aspects of the implementation of the Effective Core

Potential (ECP) technique for the removal of the metal atom core electrons

from the calculations. This final report discusses our recent progress in

this area.
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INTRODUCTION

The goal of this research is to gain quantitative fundamental

understanding about the properties of clusters of metal atoms. The in-

creasing interest in these novel "molecular" species stems from their use

to model substrates in the study of chemisorption, and from the prospects

	

i	 that such studies will yield the long-sought understanding of the mecha-

nisms of heterogeneous catalysis of chemical reactions. Moreover, these

metal atom clusters surrounded by carbonyl groups, are indeed being thought

of as new types of catalysts in their own right. In every case, however,

there is still very little known yet about these interesting new molecular

species. Since the atomic level properties of these clusters are not yet

readily available from experiment, the most reliable approach to their

	

F	 determination lies in the development and application of predictive ab initio

quantum mechanical approaches.

This final report describes our current research effort designed

to continue the development of a reliable, more accurate, and more efficient

quantum mechanical method necessary for the calculation of the properties of

clusters of metal atoms. The method deals with the important simplification

in the quantum mechanical calculation of metal atom clusters of the removal

of the metal atom core electrons from the calculations. The method is the

Effective Core Potential (ECP) approach to simulate the effect of the core

electrons on the valence electrons.(l)

i
SCIENTIFIC PROGRESS

A New Theoretical Analysis of the ECP Method

A long standing issue in the Approach of Effective Core Potentials

	

(	 (ECP's) has been the absence of a theoretical analysis on the basis of which
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the properties of the ECP's could systematically be improved, a theoretical

analysis that would unify the evolving but seemingly disparate proposed

improvements to the approach. We have succeeded in finding this needed unify-

ing theoretical analysis for the ECP approach, and a paper describing this

work will be appearing in the International Journal of Quantum Chemistry. (2)

A preprint of this paper is found in Appendix A of this final report.

We summarize here the background to this theoretical development.

As is well known, the first ECP's were based on valence pseudo-orbitals con-

structed from linear combinations of atomic orbitals of the same orbital

angular momentum. While these first ECP's led to some excellent comparisons

with molecular all electron calculations, they also led to some perplexing

failures. An ad-hoc remedy was proposed by Hay et a1, (3) based on the dis-

covery of the sensitivity of the molecular potential energy curves to the

long-range properties of the ECP's. Whereas the ad-hoc remedy was found to

lead to molecular potential energy curves that were in much better agreement

with all electron results, a fundamental explanation was lacking. A funda-

mental understanding of the problem was found in the recognition of the

charge redistribution that was unwittingly being introduced in the valence

pseudo-orbitals by the linear-combination-of-atomic-orbitals aspect of its

definition. The improper long-range behavior of the ECP's was in retrospect

only a symptom of this more fundamental deficiency in the valence pseudo-

orbitals. The result has been the development of the "shape consistent"

valence pseudo-orbitals. Whereas it appears that a number of workers dis-

cussed this idea. (4-8) Christiansen et a1 (6) were,the first to demonstrate

the important implications of "shape consistency" for the reliable calcula-

tion of molecular potential energy curves. Moreover, the practical proce-

dures of the Christiansen et al approach for the construction of "shape"

consistent" valence pseudo-orbitals appear to be the most widely adopted

presently.

Notwithstanding the practical success of the "shape consistent"

approach, a common concern has been not only that the core segment of the

valence pseudo-orbital is arbitrary except for the single condition of

normalizatian, but that no physical criteria had been established to decide

even in principle just what additional conditions the core segment of the

valence pseudo-orbital should satisfy. This concern has been heightened

by the observation in practice of unexpectedly sharp spatial characteristics
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in the "shape consistent" ECP's. In the absence of a comprehensive theoret-

ical analysis it has been difficult to decide whether these properties of

the ECP are physically important properties or merely artifacts of the in-

sufficient physical definition of the core segment of the valence pseudo-

robital.

Through the valence pseudo -orbitals and the ECP one is, of course,

attempting to simulate as closely as possible the parent atomic all-electron

Hartree- Fock solution. Indeed, Rappe et al (9) have proposed that the core

segment of the valence pseudo-orbital also be required to minimize the error

in the valence-valence interactions. Their approach, named the "hamiltonian

and shape consi-tent" approach, points to an important additional physical

criterion on the basis of which to remove some of the arbitrariness left in

the definition of the core segment of the valence pseudo-orbitals. The

minimization of the valence -valence interactions is a global property of the

orbitals and, notwithstanding its importance, is a quite disparate property

of the parent all electron Hartree - Fock orbitals than the normalization condi-

tion. Moreover, the details of the valence -valence interactions are closely

dependent on the particular electronic state, and change from one atom to the

next in a complicated manner.

Our solution to these important issues in the ECP approach is de-

scribed in detail in Appendix A. We point out here the main properties and

conclusions of this novel development. (2)

(1) A new set of attributes of the atomic orbitals is

found that alone determine the valence -valence inter-

actions fully. These new physical measures of orbital

characteristics are found in the "moment accumulation"

functions defined as

r%	
(r) _ I T ^z1 t% (t) it	 , o r < co

I.	 K^

where 
Pnt 

and Pn , t , are atomic radial functions.

(2) Since these "moment accumulation" functions determine

the valence-valence interactions, the minimization of

the error in these orbital properties in turn mini-

mizes the error in the valence-valence interactions.
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The latter is shown to be equivalent to the require-

ment that the core segment of the the valence pseudo-

orbital satisfy the conditions

f wi 	 %	 _	 i t^ S ' y►^EV 1l^•(^E^
l a	 I (r,4)  - Q	 ^(q, , ^'It-t l,^ , r	 N	 N*`oxt	 o N!

The point at which the core and valence segments of

the valence pseudo-orbital are joined is denoted as r 

In the above the superscript tilde indicates the

terms constructed from valence pseudo-orbitals

rather than the parent valence Hartree -Fork orbitals.

The set of valence orbitals is denoted as V.
ti

(3) The previous sole requirement of normalization is found

now to be onlv one of the new conditions. The new requirements,

however, are also shown to be discrete individual condition: on

the orbitals of the same succint nature as the

normalization condition. Since the satisfaction

of these conditions minimizes the error in the

valence -valence interactions, the "Hamiltonian

and shape consistent" condition is, through these

conditions, shown in fact not to be a disparate

set of conditions from the normalization condition.

Moreover, the satisfaction of the "Hamiltonian and

shape consistent" condition is hereby extricated

from the complexities of the state dependent atomic

energy expressions.

(4) Indeed, it is possible to extend the required set

of conditions systematically to attain an ever in-

creasing simulation of the orbital characteristics

(that, in turn, determine the interactions among

electrons) without being limited by the difficulties

of finding some pertinent model energy expression.

There is, of course, a limit to such a generaliza-

tion imposed by our overriding goal to project out

core states through the requirement of nodelessness

in the valence pseudo-orbital, as well as our prac-

tical requirement of obtaining valence pseudo-orbitals

that are "smooth" over the core region.
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(5) A novel expression for the ECP is obta•

of the "moment accumulation" functions that allows

us to prove that the residual in the valence-valence

interactions strictly vanishes for r > rM if the

valence pseudo-orbital satisfies the "hamiltonian

and shape consistent" conditions. This explains in

large measure the extremely sharp behavior already

observed in "shape consistent" ECP's around r w rM.

Whereas the residual in the valence-valence inter-

actions is present for r < rM , the residual is forced

to vanish for r > rM by virtue of the conditions

built into the core-segment of the valence pseudo-

orbital. This effect takes place at whatever value

rM is given, and, therefore, explains the observed

change in the shape of the ECP's with changes of rM.

In summary, this new theoretical analysis yields understanding of

previously observed yet unexplained properties of the "shape consistent"

ECP's, it unifies the previous "shape consistent" approach with the more

recent "shape and hamiltonian consistent" approach, it shows that the orbital

attributes that control the valence energy are the "moment accumulation"

functions, it affords an analysis of the long-range behavior of the ECP in

terms of the "moment accumulation" function, and it provides a foundation

for the future construction of systematically improved ECP's.

Evaluation of Matrix Elements of the ECP

In the semiannual progress report of October 23, 1981, we presented

the reformulation of the integrals over cartesian gaussian basis functions

(GTO) of the molecular ECP so that the shell structure of the GTO's could be

exploited. A computer program that yields all the terms in these formulae

shell by shell has been prepared and a copy is given in Appendix B. This pro-

gram yields all the unique non-zero terms, and is thus the replacement for the

ENCODER routines of the current SPDF ECP integral program. The other major in-

put to these formulae are the radial integrals, I n,t and Jn;,e,,t,. The routines

that calculate these latter integrals are the same ones that are already

present in the current SPDF ECP integral program.
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Whereas the calculation of the ECP integrals over shells is likely

to yield a large computat'?onal savings, there are other efforts under way by

workers at the National Bureau of Standards that have promise to improve

the efficiency of the evaluation of the radial In,t and Jn;eye integrals.

This work aims at the direct numerical calculation of the integrals over i

the ECP on a grid of points. This approach may find advantages in the i!iter-

change of the sum over terms with the sum over quadrature points. Another

goal of the latter work is to bypass the step of fitting the numerical ECP

with GTO's. This step has become one of increased difficulty as a result

of the very sharp approach to zero of the "shape consistent" ECP's as r

approaches rM ; this property of the ECP can be expected to remain in the

"hamiltonian and shape consistent" approach on the basis of the analysis

presented above in terms of the "moment accumulation" functions.

There remain, thus, well defined technical problems in the imple-

mentation o` various ideas for the improved efficiency of the ECP integral

calculation. The prospects are goon, however, that these will be solved,

and that thereby the use of the ECP approach will be extended from a research

tool to a bonafide "engineering" tool for chemical research.
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ABSTRACT
t

A one-component approach to molecular electronic structure is

discussed that includes the dominant relativistic effects on valence

electrons and yet allows the use of the traditional quantum chemistry tech-

niques. The approach starts with one-component Cowan-Griffin relativistic

orbitals that successfully incorporate the effects of the mass-velocity and

Darwin terms present in more complicated wavefunctions such as the Dirac-

Hartree-Fock. The approach then constructs "relativistic" effective core

potentials (RECP's) from these orbitals, and uses these to bring the

relativistic effects into the molecular electronic calculations. The use

of effective 1-electron spin-orbit operators in conjunctinn with these one-

component wavefunctions to include the effects of spin-orbit coupling is

discussed. Applications to molecular systems involving heavy atoms and

comparisons with available spectroscopic data on molecular geometries and

excitation energies is presented. Finally, a new approach to the construc-

tion of RECP's encompassing the Hamiltonian and shape consistent approach

is presented together with a novel analysis of the long-range behavior of

the RECP's.



1. INTRODUCTION

This paper reviews various aspects of a practical but nontraditional

approach to molecular relativistic electronic structure calculations. Where-

as it is traditional to approach relativistic electronic structure in terms

of four-component(1-3) , or even two-component (4 ' S) , wavefunctions, the
	 H

present approach is based on one-component wavefunctions familiar from the

nonrelativistic theory. It appears, moreover, that the relativistic contri-

butions to molecular properties of chemical interest are being reliably calcu-

lated in all cases examined by this approach despite the approximations from

which the simplicity of the approach derives.

2. APPROACH

This one-component approach to molecular relativistic electronic

structure calculations has two basic ingredients. These are:

(1) One-component Cowan-Griffin relativistic

atomic orbitals (6)	 .

(2) "Relativistic" effective core potentials (7)

We review the essential properties of these two ingredients to the present

approach next.

2.1 Relativistic Atomic Orbitals

The one-component relativistic atomic orbitals that are the basis

of this approach are obtained from the Cowan-Griffin equations. (6) The

k	 o



latter may be derived qualitatively from the local potential approximation

to the Dirac-Hartree-Fork equations

PX ^- K p +^^E - Vol t i^ aK	 (1)r K L	 t

a' _	 ^VEr j - El p + K QK	 (2)
K	 Z	 K	 r

where PK and QK are the "large" and "small" components, respectively,

where a - 1/137.036 is the fine-structure constant, and where

K	 if	 t	 e " i	
(3)

K=	 if	 ^: +,^^	 (4)1

Solving Equation (1) for QK and QK, inserting these in

Equation (2), and averaging the explicitly J-dependent K term,

in	 ,	 ♦1 	 (5)
Ito

K c- E (l'f^^ K a- 1
i =
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one obtains an equation that in its form is the Cowan-Griffin equation.

The actual Cowan-Griffin, or relativistic Hartree-Fork (RHF), equation is

NNR f 
NNv } H

D Q^
4

(r) a 6 Q^ (r)	 (6)

where 
"NR 

contains the non-relativistic terms found in the Hartree-Fock

equation,

W + 1)
H	 "=  +

art ? +d	 ^	 V	 (7 )t

whereas HMV and HD are the relativistic terms known as the mass-velocity

and Darwin terms, respectively,

r
AMY ' - L I E^t - V I (r) I .

w
L	 ..

	

[(	 u	 lI	 (	 )	 (9)

D	 4 (to	 *t	 xt	 d r ar r

The potential Vni in Equation (7) contains the usual nonlocal Hartree-Fock

potential. However, the analogous potential in Equations (8) and (9) is

replaced by a "local exchange" potential, (6.8)VnL(r)•

FI

t

(8)

1n
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The atomic orbitals obtained from the RHF equation show the

typical qualitative contraction of low t quantum number orbitals and the

expansion of the high t quantum number orbitals when compared to the non-

relativistic orbitals. This is illustrated in Figures 1 and 2 where the

comparisons are for the 7s and 5f orbitals of Uranium atoms, respectively.

One also finds good quantitative agreement between the orbital properties

obtained from the average of Dirac-Hartree-Fock (DHF) and RHF orbitals.

This is illustrated in Table 1 for both orbital radial characteristics and

orbital energies in the Uranium atom. Moreover, virtually identical

excitation energies are shown in Table 2 for the DHF and RHF calculations

on the Au atom, whereas the nonrelativistic results predict even the

incorrect ordering of the states for the 5d ^ 6s and 6s -b-6p  transitions.

2.2. "Relativistic" Effective Core Potentials

The second ingredient to the approach is the use of Effective

Core Potentials (ECP's) to bring the relati-vistic effects on the valence

electrons from the atomic calculations into the molecular calculations. The

ECP approach was first developed to serve as a device to bring into a

molecular calculation the effects onto the valence electrons of the

chemically inert core electrons. Since the sources of the relativistic

direct and indirect effects on the valence electrons also are localized

about the atomic nucleus, the role of the ECP's was expanded to bring the

relativistic effects from the atomic calculations into the molecular calcu-

lations as well. In this expanded role the ECP became an "relativistic"

ECP or RECP.(7)
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Table 1. Comparison of Orbital Sizes and Energies for the Uranium
Atom. (Ref. 6 )

RFa	RRFb	 DRFc	 DRT
(average)

<r2 > (bohr2)

1.94 2.57 2.61
5f; 2.67

647+ 9.63 12.4 13.7 13.7

7s 28.8 21.5 21.8 21.8

6p- 4.11 3.73
3.13 3.76

6p+ 4.08

Orbital Energy (a.u.)

-0.634 -0.331 -0.352 -0.320
5f

6d+
-0.267 -0.188 0.172 -0.166

7s -0.167 -0.201 -0.199 -0.199

6p+
-1.04 -1.086 -1.094

-0.959

D
onrelativistic Hartree-Fock.

Relativistic Hartree-Fock (Cowan-Griffin).
cDirac-Hartree-Fock.
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Table 2. Excitation Energies for the Au Atom. (Ref. 9)

Excitation Energy (eV)

Iw E11F (DR)	 Expt

X10	 6a 1( 2S) 0.00 0.00 0.00	 0.00
5d9	6a2 ( 2D) 5.13 1.86 1.86	 1.74
5d 10	 ipI ( 2p) 2.71 4.24 4.24	 4.95
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We review the basic properties of the RECP's next, and for this

purpose confine the illustrative example to a nonrelativistic case. Con-

sider for the sake of illustration an atom with a single valence electron

such as the Li atom. The atomic equation for the valence orbital is written

schematically as

&	 O	 Af	
s	 ,	 (10)t t	 rdry 	 L r

where U physically represents all the interactions with all other electrons

which, in this illustration, are the core electrons. This equation is

assumed to have been solved. We define a local potential to simulate the

effect of the nonlocal Uby(10)

A

LOCAL

U	 tr) s -u-----	 (11)
P

with the property that it ensures by construction that, given G and P,
Equation (10) is simulated by

it dr	 art 	 r

We show in Figure 3 a nodeless valence orbital (P/r) corresponding

to the ?s orbital in Li atom. (10) This figure also shows another choice
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for the 2s orbital which contains a node. We want to gloss over the

important complications of the various other choices of P here and focus

on the nodeless one in order to maintain the simplicitv of the discussion.

Using the nodeless 2s orbital one obtains the potential shown labeled as

Us in Figure 010) Indeed a different potential is obtained depending on

whether the valence orbital is the 2p or 3d orbital, etc., and this yields

the other potentials in Figure 4 labeled as U p and 
Ud,(11) 

It is found

that each such potential is the appropriate one for the spectrum of states

of its own angular momentum as is schematically illustrated in Figure 5.

This points out the important angular momentum dependence of the local

potentials, and it explains the construction of the net ECP in terms of

these local potentials combined with angular momentum projection operators

as in(11)

ESP	 A . j	 LML

V a	 1 ^^^ 11 ^r^ ` tom I
	

(13)
too W1

The effects onto the valence electrons embodied in the ECP's are	 {

brought into the molecular calculations via the effective valence electron

molecular hamiltonian, 	 -

VAL.

	

[--Lvt+  
	 Et1'	 I
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Apart from the ECP, all other operators in Equation (14) are the usual non-

relativistic operators, and they range only over the valence electrons.

Thus, the only new element in carrying out a molecular calculation with

ECP's is the evaluation of integrals of the ECP in a molecular basis. Com-

puter pr..grams to calculate these new integrals routinely are found inte-

grated in various quantum chemistry packages. Whereas in special cases

(e.g., diatomic molecules) it is efficient to evaluate the integrals using

the ECP in its numerical form 
(11). 

for polyatomic calculations in a gaussian

basis this direct approach has as yet been found prohibitively inefficient.(")

It is found, however, that if the ECP is first fit with analytical gaussian

forms such as

i

then the multicenter integrals can be efficiently calculated. (12) Therefore,

polyatomic calculations with ECP's presently use the above noted expansions

of the ECP's.(13)

A direct comparison of the valence molecular orbitals resulting

from all-electron (AE) aid valence-electron (VE) calculations for the

molecules LiH X I E+ and L1 2+ X2Eg+ was possible since the AE and VE orbitals

could be calculated from directly comparable. generalized Valence Bond wave-

functions ( " ) . This comparison is shown in Figures 6 and 1 for the U H and

1i 2+ molecules, respectively. The comparison shows the AE and VE molecular

orbitals to be virtually identical thereby establishing confidence in the

validity of the basic ECP approach-OM

F
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The relativistic ECP's,or RECP's, are based on the one-component

Cowan-Griffin (RHF) equation. The RHF equation for a valence orbital Pn,

is assumed to have been solved, and to have the form

r ^	 1041 )	 eK ,+ Rol.  iMl•

r	 *t	 ^dr	 tr	 ^ t

where PRE consists of the interactions with the core electrons, UREA con-

sists of the relativistic mass-velocity and Darwin terms, and 
OVAL 

consists

of the interactions with the other valence electrons. To construct the RECP

from this starting point, one seeks to obtain a new valence orbital (pseudo-

ti
orbital), Pnr , and a local potential, U,(r), that combine to satisfy the

equation

L
__d t	 __ + Uc	 U	 p =( P	 (17)i	 ^	 a^ tr

The local potential is defined as (7,14)

--	 -- - -

dr	 trt 	r	 r!
u{Crl 

as tut	
x	 (18)

T^

VAL
The	 term differs from the UVAE term of Equation (16) in that, where

appropriate, the valence interactions are constructed from the valence pseudo-

ti
orbitals, Pn O rather than the original valence orbitals, PnQ.
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The detailed properties of the valence pseudo-orbitals, Pnt , in

Equation (18) are of critical importance in determining the reliability of

the RECP's. The RECP itself may be thought of as a device for the embedding

of the valence orbital properties. We shall discuss some of these orbital

properties in greater detail in a subsequent section. Here we only point

out three broad desired characteristics in constructing the valence pseudo-

orbitals(12,13):

(1) Nodelessness

(2) Maximum similarity with the parent valence orbital,

Pnt

(3) Minimal special characteristics in the core region.

A schematic comparison of the parent valence orbital, PnR , with two possible
ti

choices for the valence pseudo-orbitals, Pn V is shown in Figure 8.
3. SPIN-ORBIT COUPLING

The one-component approach to molecular relativistic electronic

structure calculations reviewed here does not include the effects of the

spin-orbit coupling operator. The important effects of spin-orbit coupling

have to be obtained in a subsequent calculation in which the energies EI

and states T I obtained from the RECP calculations are used to set up a net
hamiltonian matrix

c	 1
HIS = SIB ^I +C I ^vs. ^>	 (19)
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The hamiltonian matrix is then diagonalized to obtain the molecular energy

A

in the presence of the spin-orbit operator, VSO'

Three levels of decreasing sophistication but also of

decreasing computational difficulty have emerged in recent years for the

calculation of the spin-orbit matrix elements, s\T IIVSO I
,
#^^ These are:

(1) Use of the rigorous spin-orbit interaction of the

Breit-Pauli hamiltonian requiring the computation

of one-electron and two-electron multi-center

integrals

(2) Use of an effective one-electron operator of the

form

A	 ••^	 .a

t A	 A	
j	 (20)

where is sum is over the nuclear centers,A .

(3) Use of the "atoms-in-molecules" method.

3.1. Atoms-In-Molecules

The computationally simplest and quickest approach to obtain some

semi quanti tati ve measure of the effect of spin-orbit coupling on the

molecular states calculated using the RECP's is the atoms-in-molecules

approach. (15) The approximation is valid when the molecular states retain

the same spin-orbit coupling as the parent atomic states. The spin-orbit

matrix element^ IF I I
A
VSOI^r^) are assumed to depend on the spin-orbit splittings

of the constituent fragments, and remain constant as the atoms are brought

together to form the molecule.
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To illustrate this approach we consider the XeF molecule.(16)

The potential energy curves calculated with an RECP but prior to including

spin-orbit coupling are shown in Figure 9. The atonic ionic limit splits

upon introducing spin-orbit coupling

Xi ('P) t F S) <	 tz>>
(ISO

Let a be half of the spin-orbit splitting between the Xe+ ( 2P1/2 ) and Xe♦(2
P3/2)

states. The atoms-in-molecules approximation yields the net hamiltonian

matrix.(17)

E tt(9)	 -1r,	 0
zE

•	 _ QQ +	 0	
(22)zn

LV

The molecular states obtained by diagonalizing this matrix are

shown in Figure 10. In turn, the emission wavelengths to the ground states

calculated from these curves are given in Table 3. (16) This table shows

that the correspondence between the calculated and the experimentally ob-

served emission wavelengths is unambiguous. The ready assignment of the

emission wavelengths that follows in this example shows the usefulness of

a
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Table 3. Emission Wavelengths (nanometer) in XeF Molecule.a

TRANSITION 	 CALCULATED	 EXPERIMENT

]UPIZ j 	 340	 352

]y'IL ---P j,h	 249	 264

^^^—' I3I2	 422	 450

z2Zt	 22t	
307

2 1-1 1 --- 1 2 TC	 368

a W. R. WADI, P. J. HAY, L. R. KAHN.. J. CHEM. PHYS. 6L
1152 (078)

r
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this simple approximation in giving a quick broad guide to the effects of

spin-orbit coupling. Note that the emission wavelengths prior to including

the atoms-in-molecules spin-orbit effects, also giver in Table 3, provide no

correlation with the experimental emission wavelengths.

3.2. Effective One-Electron Spin-Orbit Operators

The most rigorous approach to the inclusion of spin-orbit effects

is the use of the full molecular spin-orbit term in the Breit-Pauli hamil-

tonian(18), 4L 1 z	 ?^ ^	 A• • 6

rki 

•	 t	 (23)rig
This is also the computationally most difficult approach since it requires

the computation of multicenter integrals of both one-electron and two-electron

integrals. Although such molecular computations are now feasible (19-22)

they remain the exception rather than the norm because of the associated

computational difficulty. There is therefore a need to find reliable

approximations to Equation (23) that go beyond the atoms-in-molecules approach

in dealing with the changes that occur as the atoms are brought together,

and that yet remain computationally practical.

The increasingly large numbers of chemically inert core electrons

as one moves down the periodic table are an even larger computational obstacle

to the use of the rigorous molecular spin-orbit interaction, Equation (23),

i1



TU

It F. [_ f r
V

-^ + 1T -K
r,, 	 c

+ E z -=. 1
(25)

	

26	 ORIMI JA `
OF

than they are for the calculation of the nonrelativistic molecular energy.

The problem lies in the presence of the two-electron spin-orbit operators.

There is, however, good reason to think that the dominant contribution of

these two-electron spin-orbit operators is contained in the interaction

between core and valence electrons mediated by this operator. Indeed,

examination of values of all integrals needed for the evaluation of the

matrix element <%ksol' rg for the oxygen molecule, for example, shows
the core-valence two-electron spin-orbit integrals to be one order of

magnitude larger than the valence-valence two-electron spin-orbit integrals. (21)

It is possible to isolate the specific form of the two-electron

core-valence spin-orbit interaction. We take as example the manner in which

the analogous problem has been solved in the nonrelativistic case. 
(23) 

It

is well known that the two-electron core-valence nonrelativistic interactions

can be expressed as a net potential due to the core Electrons,

	

E [ is w X?	 (24)

C

acting on the valence electrons (the sum in Equation (24)) is over all core

orbitals). This potential is combined with remaining valence operators to

yield the nonrelativistic effective valence-electron hamiltonian,
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where the operator indexes range only over the valence electrons. (23)

Applying the same approach to the rigorous spin-orbit interaction,

Equation (23), we start by partitioning the many-electron wavefunction. We

divide the all-electron one-component wavefunction into a Cowan-Griffin set

of core orbitals, {oc}, and an unspecified valence wavefunction orthogonal
to these core-orbitals, ® 

rw
9

t ^( % L	 t VAL.

1^►

where Q stands for the antisymmetrizer. Integrating the rigorous spin-
orbit interaction, OSQ , over the core-electrons and combining the resulting
core-valence terms with the valence-valence terms, we find the following

effective valence-electron spin-orbit interaction: (24)

1% VAL. tt I F 	 Z
s.

	 [V	 t E	 ^l Ap	 b 
A ] A

Z ^ 

a

+^^

where the operator indexes range only over the valence electrons. The

remaining core-core terms are all zero.

Ll___
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The core electrons are shown by Equation (27) to formally

contribute to the effective valence-electron spin-orbit interaction via

the gradient of the potential

a

} 	 (28)
c

Since this potential is of opposite sign to the nuclear potential, the

core electrons can be said to "shield" the nucleus in the spin-orbit inter-

action analogously as in the nonrelativistic energy. On the basis of the

localized atomic nature of the core orbitals, the potential in Equation (28)

may be expressed as a superposition of atomic potentials each centered on

one of the nuclei. Combining these atomic potentials with the nuclear

potentials to obtain a net potential on each nucleus. 
veff, 

one may reexpress

Equation (27) as

V VAL.,
	 '^`	 J	 4"" ^ L ^ V ^' It t	 V'

so	 L	 'V A	 A	 f
J

^'	 ^1►' (29)

where again the operator indexes range only over the valence electrons.

The bare nuclei one-electron spin-orbit terms are found in practice

to be two orders of magnitude larger than the valence-valence two-electron

spin-orbit interactions. The effective one-electron spin-orbit terms in
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Vs0 Equation (29) in turn contain the "shielded" bare nuclei terms. These

or*-electron terms are expected to be thus at least an order of magnitude

larger than the two-electron spin-orbit interaction remaining in Equation (29).
a

On this basis, it is reasonable to expect approximate one-electron spin-orbit

operators to account already for most of the chemically important molecular

properties.

Whereas one-electron operators of some sophistication have been

described recently in the literature,
(25,26)

 we wish to illustrate here how

well even simpler one-electron approximation appear to work. (17) This

simplest of approximations is based on letting

r	
(30)

to obtain the following approximation to Equation (29),

V^	 —1 
tA0 ^^	

(31)
Z	 rA'^

Zeff 
is a parameter adjusted to match either theoretical or experimental

atomic spin-orbit parameters. Moreover, in molecular calculations all but

the one-center integrals of Equation (31) are neglected. The latter con-

dition can probably be removed by allowing the parameter Z
eff 

to have a

radial dependence reflecting the increased shielding at larger distances

from the nucleus. Table 4 shows spin-orbit parameters calculated for states 	 "
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Table 4. Comparison of Silicon atom spin-orbit constants (in cm l)
calculated by Stevens and Krauss (SK) (ref. 26) and by the
effective one-electron one-center spin-orbit operator.
(ref. 27)

State	 VE	 SK	 SK(3+)a	 Expt
(5s7p)

Si [ 3J3p2] 3p	 148.9	 157.8	 152.7	 148.9

SI+ [ 3s 3p1 ] 2P	 179.9	 201.4	 196.3	 191.3

Si+ [ 3J4p 1 ] 2P 	 32.7	 36.9	 36.6	 40.0

Si
3+[3p1 ] 2P	

250.2	 --	 310.1	 306.9

aSame as SK except that th spin-orbit operator is derived from
Si(3+) with the (ls: 2s^ P) core orbitals frozen as in Si ( P).

M
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S

of silicon atom wherein the valence 3p orbitals undergoes large changes.

A reasonable comparison is still shown in Table 4 with the more sophisti-

cated ore-electron approximation as well as with experiment for all states

(except S1 3+), notwithstanding the extreme simplicity of this effective

one-electron approximation. Surprisingly good agreement with spin-orbit

coupling matrix elements using the full Breit-Pauli hamiltonian between

electronic states of the rare gas oxides ArO, KrO, and XeO as a function of

internuclear distance is obtained by Langhoff (22) and shown in Figure 11.

4. REPRESENTATIVE APPLICATIONS

We briefly review next some representative molecular applications

of the one-component approach to relativistic structure calculations slis-

cussed here.

To illustrate the relativistic effect on chemical bonds, we

compare relativistic (R) and nonrelativistic (NR) calculations of the

potential energy curves of the AuH and AuCY in their X'E + ground states. (9)

The potential energy curves are compared in Figure 12 and Tables 5 and 6.

It is observed that the equilibrium bond length is predicted to be smaller

by the relativistic calculations in both cases. In AuH, for example, a bond

contraction of 0.3 A is predicted that yields a bond length differing by only

0.01 A from the experimental value of 1.52 R.

Since it has been traditional to correlate binding characteristics

directly with orbital properties, we have interpreted (9) this bond contrac-

tion as originating in the relativistic contraction of the Au 6s bonding



32

OF Pa_: A:

•o

	

3Z- _ 1=.	 o

	

30	

1=*

	

> t	 70 -

_30Ar0

-N
1.0	 13	 2A	 23	 3.0	 &S

1t. A

1i0

0

-260

^ •500

.750

• 1000
to	 is	 2.0	 as	 1A	 3.5

R. A

vw

0 3Z-. 1=*

-t00

3 - t=*
•!00

•300

KrO

•goo
1.0	 1i	 2.0	 as	 3.0	 33

!t. A.

FIGURE 11. SPIN-ORBIT COUPLING MATRIX ELEMENTS BETWEEN ELECTRONIC STATES
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FIGURE 12. THE POTENTIAL ENERGY CURVES FOR THE GROUND STATES OF AuH AND
AuCI OBTAINED USING A NONRELATIVISTIC (NR) AND RELATIVISTIC
(R) ECP AND A GENERALIZED VALENCE BOND WAVEFUNCTION
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Table 5.	 Spectroscopic Properties of Aull molecule 

AuR	 111 J Re(A) De(ev) we(c 1)

]ionrel. EQ
ffi 1.763 0.99 1387
G97-1 1.820 1.52 1203
POL-4Z 1 . 807 1.57 12.17

sel ECT
ffi 1.508 1.55 2014
GV3-1 1.514 2.14 1891
TQIrCl 1.522 2.23 1871

8nptl 1.5237 -3.37 2305

1-Center Dirac-Fock
Nonrel. 1.745 -- 2296
Rel. 1.659 -- 2178

a P. J. Hay, W. R. Wadt, L. R. Kahn, F. W. Bobrowicz, J. Chem. Phys.,
64, 984 (1978).
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Table 6.	 Spectroscopic Properties of AuC? Molecules

♦uCl (Xll♦) Ra(1► )_ De(ev) Wa(cs 1)

Nonrel. LCP
CVs-1 2.447 2.58 277

Rel. ECP
GVB-1 2.283 1.96 298
FOL-CI 2.291 2.39 306

Eaptl — 3.5 1 0.1 382

a P. J. Hay, W. R. Wadt, L. R. Kahn, F. W. Bobrowiez, J. Ches.
Phya., 69, 984 (1978)
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orbital (`r > 6s is reduced from 3.7 Bohr to 3.0 Bohr). Ziegler, Snijders

and Baerends (28) , however, have established that the bond contraction first

has its origin in the relativistic mass velocity and Darwin terms prior to

their effect on the Au 6d orbital. It is indeed reasonable, in retrospect,

that the same relativistic terms that would further attract the Au 6s orbital

to the Au nucleus, and cause its relativistic contraction, should also

attract the approaching hydrogen is orbital, the other bonding orbital, and

thereby lead to the bond contraction.

The decrease in the binding energy in AuCl, an ionic molecule, is

interpreted to be a result of the deferral to smaller internuclear distances
(g)

of the onset of the admixture of the ionic configuration Au+CI - .	 The

delay of this onset is the result of the increased energy of the Au + + C1 -

asymptote relative to the covalent neutral atoms asymptote; it is caused

by the relativistic energy stabilization of the Au fps orbital.

Some of the important and exciting research problems for the

applica,ion of relativistic molecular methods lie in the chemistry of

transition-metal complexes. (29) We illustrate the applicability of the

present one-component approach to these types of molecules with some results

by Hay 
(30) 

on the PtC1 3 (C2H4 ) - complex (Zeise's salt). Figure 13 shows good

agreement in a comparison of the calculated geometric parameters of Zeise's

salt computed using a Pt RECP, and the geometric parameters ettained from

neutron diffraction experiments. Moreover, the perpendicular orienta:*Pon of

the ethylene ligand relative to the PtC1 3 plane is correctly predicted to

be the stable form with the coplanar configuration lying 15 kcal/mol higher

in energy. Finally, the bending of the CH 2 groups away from the Pt atom is

also predicted by these calculations.

f
M
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SERVED VALUES (IN PARENTHESES)
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Actinide compounds have important roles in nuclear fuels, and

recent attempts to develop more efficient methods to enrich uranium using

lasers have focused attention on UF6. In this connection, we carried out

calculations on UF6 to expand on the fragmentary knowledge about the nature

of chemical bonding in actinide compounds. (31) We illustrate here how some

of the calculated properties compared with their experimentally observed

values. The bond length of UF 6 in the ground state 
1Alg 

configuration was

optimized. The predicted value of 3.70 bohr was found in good agreement (31)

with the experimental value of 3.777 Bohr.

In Table 7 we compare the calculated excitation energies in UF6 ,

after introducing spin-orbit coupling using the simple approach defined by

Equation (31), with the experimentally determined energies. The comparison

is quite favorable, with the theoretical values only 0.1-0.2 eV higher in

energy. (31) Table 8 compares experimental vertical ionization potentials of

UF6 with orbital energies calculated using Koopman's theorem. The orbital

energies shown in this table overestimate the experimental ionization poten-

tials by nearly 3.9 eV. Shifting the calculated values by 3.9 eV brings the

calculated levels into harmony with the experimental photoelectron spectrum.

Similar experiences have been found in all electron ab initio calculations

on SF6 , for example. The problem is well known; it lies in the inadequacy

of the delocalized molecular orbitals of the neutral molecule for describing

the relaxation effects associated with the "localized hole states" of the

ionized molecule. Since relaxation effects appear to alter only the

absolute positions of the states of UF6+ , an assignment could be made of the

,iotoelectron spectrum by use of the shifted results in Table 8. The first
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Table 7.	 Excited States of UF6- .	 Comparison of Theoretical and Experimental Results

(Ref. 31)
t:

Excitation energy (eV)

Exptl Rel. EC F DVM Xa -SO
State (Ref. a (Ref. 31) (Ref. b) (Ref. c

r,M 0.00 0.00 0.00 0.00

rew 0.57 0.67 1.00 0.85

0.86 0.97 1.13 1.06
1.58 1.80 2.51 2.53

rs^ 1.77 1.95 2.69 2.50

AM. J. Reisfeld and G. A. Crosby, Inorg. Chem., 4, 65 (1965).
I

ba. D. Koelling, D. E. Ellis, and R. J. Bartlett, J. Chem. Phys., 65, 3331 (1976).

cA. M. Boring and J. H. Woad.
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Table 8. Comparison of Experimental Vertical Ionization Potentials of UF6

with calculated orbital energies(Koopmans' theorem).	 (ref. 31)

R el . H F ]Rel. H F with spin-orbit coupling Exptlb

4t iv 18.43 8u 17.88 (13.98)& 13.9
6u 19.11 (15.21) 15.35

its, 18.56 8g 18.55 (14.65) 14.8
6g 18.57 (14.67)

lt2s 19.64 7u 19.63 (15.73) 15.98
Su 19.65 (15.75)

3a u 19.73 6g 19.73 (15.83)

3t 1v 20.11 8u 20.09 (16.19) 16.58
6u 20.16 (16.26)

lt2t 20.58 7g 20.55 (16.65) 16.85
t 8g 20.59 (16.69)

2e 20.74 89 20.74 (16.84) 17.30

2t iv 37.76 8u 35.20
6u	 41.95

2a 1.	 44.50 6g 44.50

lei	 44.71 8g 44.71

lt i„	 46.44 8u 46.04
6u 48.56

la l,	 70.92	 6g	 70.92

aREL. HF WITH SPIN-ORBIT COUPLING RESULTS SHIFTED BY -3.9 eV.
bL. KARLSSON. L. MATTSSON, R. JODRNY. T. BERGMARK. AND K. SIEGBAHN.
PHYS. SCR. 14. 230 (1976).

G
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peaks then coincide, and the remaining peaks lie no farther than 0.6 eV

from a predicted ionization potential.(31)

5. SYNOPSIS

We close this part of this paper by listing the main character-

istics of the method discussed here.

(1) This approach to the calculation of molecular relativistic

electronic structure is based on one-component wavefunc-

tions familiar from the nonrelativistic theory. The two

principal ingredients to this approach are: (a) Cowan-

Griffin relativistic Hartree-Fock atomic orbitals(6),

and, (b) "relativistic" effective core potentials.()

(2) The relativistic effects on molecular properties of

chemical interest such as the relativistic effects on the

bond lengths and on the energy ordering of states appear

from all cases examined to be reliably obtained by this

method. The molecular wavefunctions and energies are first

calculated including only the relativistic mass-velocity

and Darwin terms. If the effect of spin-orbit coupling

is expected to be important, then the results of the first

calculation are combined with the calculation of the spin-

orbit matrix. The latter is calculated using an effective

one-electron spin-orbit interaction approximation. The net

interaction matrix obtained in the end is diagonalized to

obtain the final molecular states.
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(3) This approach allows the molecular cal . .itions to be

performed by direct application of the tull range of

the traditional quantum chemistry techniques, including

NCSCF and CI, to include electron correlation in ob-

taining the ground and excited states of molecules. All

computational aspects of the approach that pertain to the

RECP's have been tested and implemented ivi standard quan-

tum chemistry programs.(13,32)

(4) This approach is applicable to polyatomic molECUles of

arbitrary geometry. (33) Gradient assisted RECP searches

for the critical points of the potential energy surfaces of

a transition metal complex have recently been reported. (34)

(5) Large computational simplifications over traditional all- 	 -

electron treatments are obtained via the "relativistic"

effective core potentials in their role as a device to

reduce the molecular problem to Just the valence electrons.

6. CRITICAL ASPECTS OF THE CONSTRUCTION OF RECP's

The reliability of the RECP's for molecular calculations rests

ti
on the properties given to the valence pseudo-orbital PnL through its

definition, and the details thereof are thus of critical importance. Indeed

every improvement in the approach has been associated with a revision of the

properties of the valence pseudo-orbital.
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5.1. Linear Combination of RHF Orbitals

The traditional definition of a valence pseudo-orbital has been

to take it first as a linear combination of the core and valence orbitals

of the same orbital angular momentum, (35,36,12,13)

N	 ri

1►t	 ^k^ C

U
 ^^	 O	 (32)

k•t^l

The coefficients 
Ckt,nt 

were chosen to satisfy the broad criteria given in

Section 2.2. These criteria pre indeed satisfied almost optimally by

requiring, in the following order, that:(13)

(a)""	 f /r 1	
o

-^ t %I^ o
N

(b)I to normalized

(c)Pat 
maximize a functional of the "smoothness" of the orbital.

The major deficiency of this definition has been found to lie in the restric-

tion of the pseudo-orbital to the expansion given by Equation ( 32). Since
ti

the valence pseudo-orbital Pnt is normalized, the expansion by necessity has

less amplitude Shan the original valence orbital 
Pnt 

at large radial distances.

The net effect is to introduce a charge redistribution into the valence space

that is unphysical and can seriously impair the reliability of calculated

potential energy curves. A comparison between the Hartree-Fock valence

orbital and the valence pseudo-orbital is shown in Figure 14 that illustrates

the charge redistribution for the case of the silicon atom 3s orbital.



A

m

N
AN

A
!7

I.L,1

^ o

^- o

J

n_

N
1

Lei
K
f

1

OD
Pf
n

i

O
O
O

44

e

.000	 .420	 .839	 1.259	 1.679	 2.098	 2.519

Radial Distance, Bohr

FIGURE 14. COMPARISON OF THE HARTREE-FOCK VALENCE ORBITALS WITH THE VALENCE
PSEUDO-ORBITALS OF THE "LINEAR-COMBINATION-OF-ATOMIC-ORBITALS"

APPROACH AND THE "SHAPE CONSISTENT" APPROACH FOR THE CASE OF THE

3s ORBITAL OF SILICON ATOM IN THE 3P STATE
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6.2. Shape-Consistent RHF Pseudo-Orbitals

The remedy to this deficiency has been found to lie in abandoning

the traditional expansion, Equation (32), as a part of the valence pseudo-

orbital definition. Instead, motivated by the importance of preserving the

charge distribution characteristics of the original valence RHF space, the

valence pseudo-orbital is first defined as identical to the RHF valence

orbital over the valence segment of the orbital, (37-41)

N

xe t P^	 r >, RM	 (33 )

where RM is a radial distance larger than the outermost node of Pn1' yet

not much larger than the radius of the outermost valence maximum. The defi-

N
nition of Pnt in the core segment of the orbital, 0 < r < R M, is based in

turn on satisfying at least the requirements of:

(a) Nodelessness

(b) Matching of end-point (at r=0 and r=RM) continuity

conditions on the orbital and its derivatives (up

to the third derivative at r=RM)

(c) Normalization.

The core segment of Pnt is expanded in polynomials (39) , or even exponential

functions!
38 ' 41)

 However, only as many parameters are introduced in these

expansions in practice as are required to fulfill the above listed require-

ments. The criterion of smoothness has not been used explicitly in this

approach. Only the choice of RM has loosely been connected in practice

with the desired ultimate smoothness of P
nV (39)
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The valence pseudo-orbitals obtained by this definition are

referred to as "shape-consistent" pseudo-orbitals. A typical "shape-

consistent" valence pseudo-orbital is compared with the previous pseudo-

orbital obtained from the linear-combination-of-atomic-orbitals defini-

tion in Figure 14 for the case of the silicon atom 3s orbital. The

restoration of the proper amplitude in the valence region is shown in

Figure 14 to be accompanied by a commensurate adjustment in the amplitude

over the core region. Whereas the "shape-consistent" definition of valence

pseudo-orbitals has been discussed by a number of workers, Christiansen,

Lee, and Pitzer were the first to demonstrate the implications of the "shape-

consistent" ECP's for the reliable calculation of potential energy curves.(39)

One of their conclusive results for the case of the potential energy curve

of the C1 2 X'E 9+ molecule is shown in Figure 15. The result of the "shape-

consistent" ECP is shown in this figure to be in excellent agreement with

the comparable all-electron (AE) result. In contrast, the previous ECP

clearly led to a much poorer comparison. (13) Figure 15 also shows another

potential energy curve in reasonable agreement with the all-electron result.

This other potential energy curve was obtained by an intermediate remedy

to the problem (42) that has now been superseded by "shape-consistent"

approach.

6.3. Hamiltonian and Shape Consistent RHF Pseudo-Orbitals

The replacement of the RHF valence orbitals by the valence pseudo-

orbitals in the valence-valence interactions causes a modification in the

interactions commensurate to the modification in the orbitals. There is a
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FIGURE 15. COMPARISON OF THE ALL-ELECTRON POTENTIAL ENERGY CURVE FOR THE

CAIFENCE
MOLECULE IN THE X ' F, + STATE ( CALCULATED WITH A GENERALIZED

 BOND WAVEFUNCTI^N) WITH THE CORRESPONDING VALENCE

ELECTRON RESULTS USING ECP's FROM THREE DIFFERENT APPROACHES:
THE "SHAPE -CONSISTENT" APPROACH (CHRISTIANSEN, LEE, AND PITZER;
REFERENCE 39), THE OLD "LINEAR-COMBINATION -OF-ATOMIC-ORBITALS"
APPROACH, AND THE "INTERMEDIATE -FIX" APPROACH.
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change in these important interactions even in the case of the "shape

consistent" definition of the valence pseudo-orbitals. In this case,

although the "shape-consistent" psuedo-orbital is identical over the valence

segment with the RHF orbital, the core segment of the pseudo-orbital only

satisfies the normalization condition among all the important other orbital

properties that determine the valence-valence interactions. Rappe, Smedley,

and Goddard have proposed to enhance the definition of the core segment of

the valence pseudo-orbital so as,to minimize the remaining error in the

valence-valence interactions. (43) This enhanced definition of the valence

pseudo-orbitals is referred to as the "hamiltonian and shape consistent"

approach.

6.4. The Method of Moment-Accumulation Functions: A New Approach

The minimization of the error in the valence-valence interactions

supplies important additional conditions for the definition of the core

segment of the valence pseudo-orbital. However, the relationship between

the satisfaction of this criterion and the requisite characteristics of

the individual core segments of the valence pseudo-orbitals is complex and

indirect. We show below a new approach whereby the specific orbital proper-

ties that affect the minimization of the error in the valence-valence inter-

actions can be isolated from the peripheral intricacies of the energy inter-

actions. 
(44) 

In fact, these new specific orbital properties are found to

constitute a set of conditions on the individual orbitals of the same

simplicity as the normalization condition.(44)
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The sum of the valence-valence interactions is contained in the

atonic valence energy. The atomic valence energy is given by (45)

	

VAL, = E O'St	 SE 

VAL.

^tEV

2141 A
+	 F

rt6 v 	 ^,	 401 Xis

+ZE

Z+j'

  w f	 E X 1	
(34)

dw

The terms in this expression range only over the set of valence orbitals

{ Pnt }, denoted as ^. The orbital occupation numbers are denoted Qnt' while
the A	̂ coefficients are the Roothaan vector coupling coefficients (46)

the latter are simply related to the Clebsh-Gordan coefficients. The Inx

terms are one-electron integrals of the effective one-electron operator

containing the REM The term 6EVAL stands for the deviation of the multiplet
energy from the average energy of configurations. This energy contribution

introduces only additional combinations of the type of interactions already

present, and its detailed structure is therefore of no importance here.

The two-electrons interactions among the atomic valence orbitals

are given by the well known F and G integrals. These interactions are

defined by (45)

F^` *t r►'t') =	 P (ri p tr) = P trt P, ,cr'I dr dr'
c	 1 !	 141 TAI >^ 1

0 0	
>"t	 r)

(35a)

and	 4

G^'(^►t,x t'1= 	? (r) P, (r') r-=-- p (r')  (r)P	 drdr'
V^
,,	

(35b)0 o xl ^l	
r>
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In this traditional form, the properties of the core segment of the valence

pseudo-orbital are interwoven in the intricacies of the energy expression,

EVAL, and no discrete succinct measures of the valence pseudo-orbital

characteristic can be seen to relate to the minimization of the error in

the valence-valence interactions.

We show next a new expression for the formula of the F and 6

integrals that does indeed bear out through these integrals the dependence of

the valence-valence interaction on a set of discrete succinct measures of orbital

characteristics. We define the function

i	
t

q%
	Cr) !f 1 f (t) t'P 	 p ^(t) at r 0 r	 (36)

We shall name this orbital characteristic the "moment accumulation" function.

These functions become the various A-order transition moments of the valence

set of functions as the radial distance from the nucleus approaches infinity.

The special case of the function Qo
t,nR

( r) describes the physical increase in

the amount of charge deriving from the P n,(r) orbital as the radial distance

from the nucleus increases; we refer to it as "charge accumulation" function.

In particular

^^	 0

U, R ` (r) = 1	 ( 31)
IL--+ 00	 tb 1*1



M

because of the normalization of the radial functions. Analogously,

(38)

r-. a

because of the orthonormality of the radial functions.

The function Qo
R,ni

(r) first serves to clearly bring out the

nature of the improvement of the orbital properties brought about by the

#shape consistent" pseudo-orbital definition. Figure 16 shows a comparison

of the 
Q3s,3s(r) 

function deriving from the Hartree-Fock valence orbitals

with those deriving from the valence pseudo-orbitals for the case of the 3s

orbital of silicon atom. Apart from an expected small discrepancy in the

core region, the "shape consistent" 3s pseudo-orbital leads to an exact match

with the Hartree-Fock charge distribution over the whole valence region. The

overall improvement in the charge distribution over that obtained from the

older pseudo-orbital deriving from the linear-combination-of-atomic-orbitals

definition is shown in Figure 16. The latter pseudo-orbital yields a charge

distribution that differs from the Hartree-Fock distribution not only over

the core region but over a large part of the valence region.

We note, as a digression, that the "charge accumulation" function,

Q3s,3s(r), serves also to give a measure of the onset of the physically meaning-

ful valence segment of a valence orbital. The outermost maximum of the 3s

orbital is shown in Figure 14 to be at about r=1.26 Bohr. This point might

perhaps be interpreted as already in the midst of what one would call the
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FIGURE 16. COMPARISON OF THE CHARACTERISTICS OF THE " CHARGE ACCUMULATION"
FUNCTION OF THE HARTREE-FOCK 3s ORBITAL OF SILICON ATOM, AS A
FUNCTION OF RADIAL DISTANCE, WITH THE "CHARGE ACCUMULATION"

FUNCTION OBTAINED FROM THE VALENCE PSEUDO-ORBITALS OF THE "SHAPE-

CONSISTENT" APPROACH AND THE OLD "LINEAR-COMBINATION-OF-ATOMIC-
ORBITALS" APPROACH
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physically meaningful valence region. We note, however, that Figure 16

shows the amount of charge accumulated up to this outermost maximum, at

r-1.26 Bohr. to be only about .05, 5% of the total charge.

The properties of the "charge accumulation" function are also

directly related to the basic electrostatic interactions among the electrons.

The traditional expression for the Coulomb potential with the 3s orbital density

as its source is

i

	

Jtr) _ —'--.	 dr

	

41	 r - r' 0	
(39)

Carrying out the angular integrations yields the well known formula

1 rt	
0 

b	
^{1 P^ Ct) dt + 1 P M — d	 (40)

r 	 ♦ 	 r • t

The contribution of the P 
3 

orbital is spread out over two distinct terms

in this expression. Integrating by parts, however, we find that both terms

can be consolidated into a single term that depends concisely on P3s

through the "charge accumulatiori" function, Q3s,3s (r) . We obtain

•

^a )AIM it
(41)

r

The asymptotic expansion of the above expression for the Coulomb potential

for large r yields the well-known poin" :harge-like expression
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Cr)

tale r	 r
	 (42)

This illustrates the central role that the -rbital properties contained in

the charge accumulation function have in the basic electrostatic interactions

among electrons.

Figure 17 shows a comparison of the Coulomb potentials resulting

from the three different "charge accumulation" functions shown previously in

Figure 16. The Coulomb potential deriving from the "shape-consistent"

valence pseudo-orbital is seen to agree perfectly in the valence region with

the potential derived from the Hartree-Fock orbital. In contrast, the

pseudo-orbital deriving from the linear-combination-of-atomic-orbitals

definition yields a Coulomb potential that, consistent with the corresponding

"charge-accumulation" function shown in Figure 16, is too repulsive even in

the valence region of the valence orbital.

Indeed, the F and G integrals themselves may be reexpressed in

terms of the "moment accumulation" functions. Starting from the definition

given by Equations (35a) and (35b), and integrating by parts repeatedly,

we find that

1	 ^t

	

1

F t* *^^^ = t^1^1 1) Q 	 ^t^ Q^ ^ ^ ^^^ v►t ^ it
^'	 ^	 t xl

0
^	 >k	 (43a)

and

	

tw o

A 	

^^^ it

	

p	 *^,>AZ	 t	 (43b)
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FIGURE 17. COMPARISON OF THE CHARACTERISTICS OF THE COULOMB POTENTIAL, AS
A FUNCTION OF RADIAL DISTANCE, OBTAINED FROM THE DENSITY OF THE
HARTREE-FOCK 3s ORBITAL OF SILICON ATOM WITH THE COULOMB POTEN-
TIAL OBTAINED FROM THE VALENCE PSEUDO-ORBITALS OF THE "SHAPE
CONSISTENT" APPROACH AND THE OLD "LINEAR-COMBINTATION-OF-AT014IC-
ORBITAV APPROACH
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This proves that through these expressions for the F and G integrals, the

valence-valence interaction in E SA', Equation (34), depends on the valence
pseudo-orbital properties embodied in the set of "moment accumulation"

functions.

It follows that minimization of the error in the valence-valence

interaction is equivalent to the requirement that the core-segment of the

valence pseudo-orbitals in the "shape consistent" definition satisfy the

Hartree- Fock values of

art,*t
	

(44a)

This set of conditions contains the normalization conditions,

(RM) t 	 vt6VJAV4

as a subset. The replacement of the single condition of normalization by

the above "moment accumulation" set of conditions appears to provide the

most natural transition from the "shape-consistent" into the "hamiltonian

(45)
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and shape consistent" approach. Indeed, the increase of the required set

of "moment accumulation" functions beyond Equation (44) provides a systematic

procedure rur the definition of pseudo-orbitals that increasingly tend to the

original Hartree-Fock valence orbitals and is independent of the availability

of a pertinent energy expression. The limit is, of course, inconsistent with

the desired criterirn of nodelessness in the definitions of valence pseudo-

orbitals, and is, therefore, primarily of interest as a generalization of the

approach.

The transition from the , "normalization" condition to the "moment

accumulation" conditions in the "shape-consistent" approach requires an

extension of the form of the expansion of the core segment of the valence

pseudo-orbital. Rather than simply expand in a single continuous polynomia',

of increasingly higher degree, it appears to be preferable to expand in a

large numler (p^ssibly simulating a complete basis) of piece-wise continuous

polynomials such as, for example, cubic splines of finite support. Moreover,

the condition of "smoothness" of the valence pseudo-orbital can simply be

added to determine all degrees of freedom in the expansion not fixed by the

"moment-accumulation" conditions. This provides a systematic procedure

for obtaining valence pseudo-orbitals wherein the final form of the resulting

RECP's is independent of constrainr5 on its shape that may result from an

expression for the core segment of the valance pseudo-orbital with just

a minimal set of parameters. Finally, we note that the "moment accumulation"

conditions include conditions that couple the various valence pseudo-orbitals.

The satisfaction of the "moment accumulation" conditions hence requires that

all the valence pseudo-orbitals be solved simultaneously. In contrast, the

old "shape-consistent" procedure allowed each valence pseudo-orbital to be

obtained independently since no recognition was given to the interdependence

of these orbitals.
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1. THE LONG-RANGE BEHAVIOR OF THE RECP: A NEW ANALYSIS

The characteristics of the long-range segment of the RECP's have

been shown to be an important factor in the reliability with which molecular

potential energy curves can be calculated using the RECP's. (42) This inter-

dependence is not surprising in view of the large overlap between the long-

range segment of the RECP's and the electron densities of neighboring atoms

at equilibrium internuclear distances. Atomic calculation!, in contrast,

provide almost no test of the long-range properties of the RECP's because

of the small overlap o' the atomic charge density with the long-range segment

of the RECP.

We present next the first detailed analysis in terms of moment

accumulation functions of the characteristics of the long -range behavior

of RECP's. Starting from the expression for the RECP given in Equation (18),

and using the properties of the P nz orbitals, one obtains

CDK

u Cry = u-14 14 +

^Nt

f UY^`^ P	 ^^` pl .- C xt	 NZ N! )

P..t
(4b)

for r > RM. The first term is the local core-valence interaction. anJ the

second term is the local residual in the valence -valence interactions. These

terms consist of radial Coulomb and exchange potentials, the general form

of which is traditionally given in terms of the Y functions. The latter are

defined as

,fir) = ^^ ,^	 tt) t P, , C^1 it + r 1 P tt)	 , ^°, ^ ^t^ at	 (47)^t,a't	 Nl	 w1	 r kt	 t	 Ifs l
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We first obtain an alternative expression for the Y functions in terms of

"moment accumulation" functions,

y	 try 	 Q	 to	 ^,^	 ,

by integration by parts.

We first analyze the residual of the valence-valence interactions.

Using the expressions for the Coulomb and exchange potentials in terms of

the "moment accumulation" function, we obtain

VAL a

t0,^^11Q	 Q	 lz At
T	 ^l,,^!	 xtlot	 t

^Z M+11 A RIO r
.^^t 1 	 1	 ^^^^1	 1ll,M!	 Uti

^'^,!►

	

	 t	 t
a

^^ Y	 ^Z^^	 ht^l	 t^^E w	 r	 >	 >

at
011

?a
(11+0 A R) r	 1 jQ M Q	 (01 Aft	 ()

XBRAL

The residual of the valence-valence interactions is seen to depend on the

difference between the "moment accumulation" functions calculated from the

valence RHF orbitals and from the valence pseudo-orbitals (indicated by a

superscript tilde). We have restricted the expression for the valence-valence

interaction to the case of the average-energy-of-configurations since it

suffices to illustrate the long-range characteristics of the REM
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The core segment of the valence pseudo-orbital of the "shape-

consistent" approach satisfies the normalization condition

'	 (1,) = (R„)	 >A^i V	 (50)
kt,t^j

Consequently, in the "shape-consistent" approach the first and third terms

of the residual in the valence-valence interaction, Equation (49), are zero.

However, the remaining terms in the residual of the valence-valence inter-

actions are not equal to zero for "shape consistent"-only orbitals. In the

"moment accumulation" formulation of the "hamiltonian and shape consistent"

approach, we require that the core segment of the valence pseudo-orbital

satisfy the full set of conditions

N IL	 1.

Q*t tit 	 Q rt 	 ^
=o,Z,...,zt ; rC 6 ^	 ( 51 a)

(51b)

It follows from Equation (49) that in the "hamiltonian and shape consistent"

approach the full residual in the valence -valence interactions vanishes for

r > RM , i.e.,

t
t
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u""`p u,^
Pat w^ = 0	 r ) RM 	 (52)

4i►^

The RECP is therefore reduced to the local core-valence interaction,

on

r) _ ^"-- t --"^	 t Ruc 	 (53)t 
?W

provided the moment accumulation conditions given by Equation (51) are satis-

fied. Expressing the Coulomb and exchange interactions in terms of "moment

accumulation" functions, we obtain for r > RM

ao

U (r^^	 ss	 (it 1+0 	 t a	 ...d q, , , , , Ct^	 y
 it

p't^6 C	 r	 >A^^at	 {
N
1

^,tl^ ^^ ^rt ^ r "Q—	 1 1 
t^)	 d^ (54)

^^^ t^L	 '1i►` r hl^b^ t

The set of all core orbitals is denoted as ^.

Finally, we discuss the long-range behavior for r>>RM. The
asymptotic expansion of the Y functions for large radial distances yields

Y
^ Cry	—	 , ,(r^	 r» "M (55)

^,r'^'	 r	 ^t,^.c
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In turn, the asymptotic expansion of the RECD for large radial distances is

M) qddr(rl twe..
F - F.

.t	 rvec C	 Xxit f lotto 	
Pit

under the assumption that the residual in the valence-valence interactions

is zero. The leading term is the point-charge potential N c/r where Nc is

the number of core electrons. This is indeed in accord with what is expected

on physical grounds. If the core segment of the valence pseudo-orbital only

satisfies the normalization condition, then the residual in the valence-

valence interactions unfortunately also contributes a term to the long-range

interaction. We find in that case that, for r>>RM,

V	 —AL	 "' Vk

VNt Pa Ust ?P1	 _
	

Cr)_	 r)

?at	
4t ^,^L	 r	 4hr

O''vit
This long-range contribution, however, is clearly an artifact of the

insufficient definition of the valence pseudo-orbital.
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FIGURE CAPTIONS

Figure 1. Comparison of the non-relativistic (NR) and relativistic (R)

Hartree-Fock 7s orbitals in uranium atom.

Figure 2. Comparison of the non-relativistic (NR) and relativistic (R)

Hartree-Fock 5f orbitals in uranium atom.

Figure 3. A nodeless 2s orbital in lithium atom, mGl , and the corre-
2s

sponding nodeful 2s Hartree-Fock orbital.

Figure 4. The s, p, and d local effective core potentials for the

lithium atom.

Figure 5. Schematic representation of the one-electron orbital spectrum

associated with the s, p, and d local effective core potentials

for the Lithium atom,respectively.

Figure 6. Comparison of a valence molecular orbital for LiH X'E+ obtained

from the valence electron (VE) ECP calculation and a comparable

all-electron (AE) calculation.

Figure 1. Comparison of the valence molecular orbital for Li 
2+ X219

obtained from the valence electron (VE) ECP calculation and a

comparable all-electron (AE) calculation.
ti

Figure B. Schematic comparison of two possible valence pseudo-orbitals, Pnt ,

with the parent Hartree-Fock valence orbital, Pnt.

IV

Figure 8. Schematic comparison of two possible valence pseudo-orbitals, Pnk

Figure 9. Comparison of the nonrelativistic (NR) and relativistic (R)

valence electron (VE) potential energy curves for the low-lying

electronic states cf the XeF moleculerp for to the inclusion

of the spin-orbit effects.



FIGURE CAPTIONS (Contined)	 2

Figure 10. The relativistic (R) valence electron (VE) potential energy

curves for the low-lying electronic states of the XeF molecule

including spin-orbit effects (using the atoms-in-molecules

approximation).

Figure 11. Spin-orbit coupling matrix elements between electronic states

of the rare gas oxides computed by Langhoff (Reference 22)

using the full Breit-Pauli hamiltonian (solid lines) and the 1-

electron 1-center effective spin-orbit operator (circles and

crosses)

Figure 12. The potential energy curves for the ground states of AuH and

AuCI obtained using a nonrelativistic (NR) and relativistic (R)

ECP and a generalized valence bond wavefunction.

Figure 13. Geometrical and energetic parameters calculated by Hay (Reference

30) for Zeise's salt, and comparison with experimentally ob-

served values (in parentheses).

Figure 14. Comparison of the Hartree-Fock valence orbitals with the valence

pseudo-orbitals of the "linear-combination-of-atomic-orbitals"

approach and the "shape consistent" approach for the case of

the 3s orbital of silicon atom in the 3P state.

Figure 15. Comparison of the all-electron potential energy curve for the

C1 2 molecule in the X'E9 state (calculated with 4 generalized

valence bond wavefunction) with the corresponding valence

electron results using ECP's from three different approaches:

the "shape-consistent" approach (Christiansen, Lee, and Pitzer;

Reference 39), the old "linear-combination-of-atomic-orbitals"

approach, and the "intermediate-fix" approach.



FIGURE CAPTIONS (Contineud) 	 3

Figure 16. Comparison of the characteristics of the "charge accumulation"	 .;

function of the Hartree-Fork 3s orbital of silicon atom,as a

function of radial distance,with the "charge accumulation"

function obtained from the valence pseudo-orbitals of the

"shape-consistent" approach and the old "linear-combination-

of-atomic-orbitals" approach.

Figure 17. Comparison of the characteristics of the Coulomb potential, as

a function of radial distance, obtained from the density of the

Hartree-Fock 3s orbital of silicon atom with the Coulomb poten-

tial obtained from the valence pseudo-orbitals of the "shape

consistent" approach and the old "linear-combination-of-atomic-

orbital" approach.
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OF PQt---.--)t Q,.. L I T Y

PROGIAM SHELL(INPUT,.OUTPUT)
C

UINENSION LABL141
DATA LA9L/1MS.1MP91M0.lHF/

C
CAL. ZTAR
CALL FTAB	 — — ----- -- --- — — — -- -- — ---- 	 -----C

C...LOOP OVE'a SHEi.LS
00 240 NS n 1.4
DO 230 NSP=irNS

C
PRINT 400

C..-.LOOP OVE2 COMPONENTS OF THE SHEL.S
00 220 LS*1•NS
MSMAx•2•LS-1
00 210 MSs1.NSMAX92

C

00 2io0 LSPn 1*NSP
MSPMAX n2*LSP-1
OO 190 MSPvi9MSPMAx92

C
NX=_(MS-11 /2- -	 -	 Nr:12^L5•MS•11/2 ----	 -------	 -	 -----

NZ=N4-LS
C

NXPN(MSP-1)/2
NfF• (2 •LSP-MSP-lJ /2
NZNsNSP-6SP

PRINT 5009LABLINSI.LABL(NSPI
PKIN7 SiCoNS-1rLS-1.MS-LSgNX94Y.NZ.NS ►-I9LSP-lonSP-LSP.MxPoNYP;NZP

C
C
C ... LOOP OvER TILE TERMS IN A PARTICULAR INTEGRAL

CALL INKINDINS•LS.Ma	 ASP) --- -- — -	 -----
C

190 CONTINUE
230 CONTINUE

C
210 CONTINUE
220 CONTINUE	 -- - - ----- - -	 ------- --------- _ ._-

C
230 ONEINUE
i.40 CONTINUE

C
STOP

40J FOP".MAT I1H1t
500 FOAMATIIM0.//r12X9A193X•A1./1
510 FOaMMT(2X.Z(SX.1H(93I[.1H).SH/t1M(,3I291H111

END

OL,

1



OF POOR Q:: Li7Y,

FUNCTION DC0(LvM.!;X9(Y9KZ*LPvMP)
C'...THIS ROUTINE EVALUA?ES tHE ANGULAR MOMENTUM COUPLING .ONSfiANTS

; 0MM 0r!/F t A BC M/ FPQ2 l 139 13 q 13)
COMMON/ZTASCM/LrF(4919LML(4919ZLM(1301#LMX(130)9LMY(13019LMZ(130I

C
IO=L'(L+i)–M+!
IMN=LMFIIO)
IMx=LMLtI01 - --- 	

--------------	 ----

C
JO=LP+(LP+i)–MP+1
JMN=LMFI JD)
JMn=LML(JD)

C
SUMI=6.QEQ
00 20 •=IMN9IMX
SUMJ=0.OEC
DO 10 J= JMNIJMX
JX = LMX (I1 +KX+LMX (Jl +1
JY_=LMT (I I+KY+LM Y (J) +1

–	 JZ=LMZ (Ii +KZ+LMZIJl-1 —^ 	 ----
10 SUMJ=SUMJ + Z6F':J)'FPQF(JX,JYtJZJ
2P SUMI=SUMi + ZLM(I)•SJMJ

C
DCO=SUMI
RETJRN



OF POOR QUALITY

FUNCTION LCO(KXtKYtKZoLtMtKXPtKfPtKZPI

C,OMMUN/7TABt;M/LMFI49)tL"LI49itZLM11301,PLMX(13019LMY(13019LMZ(130)
6O"MONoFTA8l;M/FPQR(13913t13)

lDzL•IL+L)—M+1
IMNz6MF(ID)

IMX't&-ML(LO)
C

SUMBLi.aso
00 10 lzIllNtIMX
,LX=KX+LMX(I)+KXP+l
IYsKWfLMV(I)+KYP41

SUMsSUM+ZLM(iJ•FPQR(lXvIY•IZ)
10 CORTINUE

C
ECOzSUM
RETJRN

E N,)

4



Oki' ` i =:..:_
OF P .: r	 .i iY

SUBROUTINE FTAB
C...TNIS tOUTINE SETS UP 1 TABLE OF F-FUN;fION VALUES
C

INTEGER PtQ.R
COMMON/FTA6C W F31QR(13913913)
DATA PI/3.141592653509$EO/

C
C... ZEriO-OJT THE WU

DO 30 Ps1913
00 2C Qsl913
00 10 Rs1913

10 FPQ2(P#Q.RIs0.0EO
20 CONTINUE30 CONTINUE--------__—,--

C
G ... RECURSIVELY GENERATE THE NON-ZERO ENTRIES TO THE TABLE

FPQR (1.1• i) s4.0E0+PI
00 60 P=ir1392

_	 r ►^sP - i

Go 70 Q=191392 ---_ ----	 -- ---------	 --

QO=Q-1
30 60 R2191392
RicsR-1

C
IF (P.E7.1) GO TO 40	 _	 _	 _	 _
FPQ1(P,Q,RI s (PP-I.OE0I +FFQR(V-2 9 Q.R)

_
%(PP+p^iRR+1

_

.CE01	 --- —
GO TO 60

40 IF ( Q.LQ.l) GO TO 50
FPQR (P,Q. RI s (QQ-1.OE01 •FPQR (P. Q-2r R) / (PP+QQ+RR+i. iYEO )
GO TO 60

50 IF 4R.E0.11 GO TO 60
FPp R(P.Q.(Cls(RR• 1.QEOI'FPQ2'IP^Q. 6 -21 %IPPiQ4ifcR+1.0E0I --------- --

C
60 CONTINUE
70 CONTINUE
50 CONTINUE

C
K'_ VU2N	

- - --	 ---	 --- ----	 -
END



s

(.I Pur -t .., .

SUBROUTINE ZTAB
C ... THIS ZOUTiHE SETS UP PNE REAC SPHERIC-AI HARMONICS IN 7ME f0ii 0f

_
 LINi Ik

G...COMBINATIONS OF CARTESIAN PRODUCTS-1L9M1:LtL4i1-M+1
COMMON/ZTABCM/LMF(49),LML14919ZLMt139I,LMX11301,LMft13019LMZ(1301

DATA FFI/12.566370614359E0/
DATA LW/1 9 2 9 3 9 4 9 5 9 7 9 8 9 10 9 11,12, 14916 9 18 9 209 229 23925 928,349349369 _

X39.41 9 43, 45941.50953197r61 9 6^961 970 9 129769I8981*8498799399791039 -
X1^6,110,113.1169120.1249127/
CATA LML/192,3.496,7.9910.1191391591791992192292492?929933935,38•

x40942944946.49952956960963966969971.75,77960,83986992996910291059
X1099112.115.119912391269130/

DATA	 _	
3

	

LMX/891r .0.092,091-9 0 9 Qs0ri939i	 9r2*891190.090.0s19290949290.3r
93 X1929090,2,19190,0.6909691.irir 0.1. 5, 3. 190, 2.49,19193,2r09290r1r

X1919091i3O90,0.Osl•1.2,2r090.3919492,095.3,j1959391,492909492,09391•
X1,392,ijr2,0,290,1.191.Or09D9U,4.O90.19191929i79290.3.193,1r4.290.69
X49290/
DATA LMT/09090,1,Os2,0,0,0.1,1,092.0.2.0.0,09091,1.1.193909294909

X 29 0 92,2,1!r090,09Q,091_919_19191939193rO92ry,492.C90,29 2909 0 9 290r290,
XO,Or09C9Urirlsl,lr191,is3r3.1,3.1939591939590929490929',9092949092,
X2909092,0,290,2,0,0.0909090.0.19191,191919193,1,39193,193.1.395,09
X 2.4, 6/
DATA LMZ/U•0.1.0.0,0,1.2.0,1.0,6,091,1.2,0,3.1.2.0.1,090,0.0.0,1•
X1•?9290.Or39194r2rOr3r1.2.•rl.l•0.0.0,09O,1r1r1,2,2r090r3 ► 3,1,194,
X2 9 6 9 59 3 9 1 94 9 29U 9 39192,092909191909090909010.1.1,1,29292.0909093,39
X lrl• 4 9 M r292.Or0,593t19 FE, 492909 S9isi9 yr29Gr3939191.2r2r6-	 -9-1-9-4,
XUsOrO/

ZLM111=SQPT(I.OEO/FPII
ZLM(21=SORT13.OEO/FPI)
ZLM131=ZLM(2)
ILM(4l =2LAi21 - - - - ---	 -------	 — -	 —
ZLMl5)=SQRTl15.0E3/FPII/2.OE0
ZLM161=-ZLM(5)
ZLMt7)-2.OEU+ZLM(5)
ZL4(8)=3.OEO+SQIT(5.JEO/F^I1/2.OE0
ZLM191=-ZLMl8)/3.0E0
ZLM(10/=ZLM(71	 - -- ------ --	 --	

_	
-

ZLM111)=ZLM(7)
ZLM(12)=SQRT(35.OE0/(B.OEO+FPI11
ZLM113):-3.JEu+ZLM1121
ZLM(14)=SORT(145.OE0/14.OEO+FPII)
ZLM(151=-ZLMt141
ZLMt161=S.OEO+SQRT(21.OE0/18.0E0+FPII ►
ZIMt 17 )9i-ZLM (16) /5.O E0
ZLMl181=5.JEO+SQR'rl7.CE0/FPII/2.0_0
ZLM(19)=-3.OE7+ZLMt13 ► /5.OEO
ZLM(20)=Z!-Mt 16)
ZLM(2t)=ZLM(17)
ZLM122l=2.OE0 + ZLMli41	 -- -
ZLA(23)=-ZLM(il)
ZLM124)=-ZLM(121
ZLM(25) =SORT 1315aCE0/464.OEC+FPII ►
ZLM126)=-6.0E0•Z6Mt25)
ZLM(271=7LM1251
ZLM(28)=SQKT(315.OEJ/18.OEO+FPII ►
ZLM(291=-3.9E0sZLM(28)



M

OF F-Ct "	 ;^,yl ^^

TEMP=SQRT (45.OEO/FPI)/4.OEO
ZLMl301s1.GE0•T,M'P	 - ---- -- - -
ZLM(31)=-ZLM(30)
ZLM1321 n TEMP
ZLM(33)=-TEMP
TEMPsSQQ1(45.OEO/(8.OEO*FPI11
ZLM(34)=7.OEG•TEMP

TEMP:SOaT MOEOfFPI) /8.OEO
ZLM/36)=35. OLD *TE14P
ZLM(37)= 3u.OE0•TEMw
ZLM(38).3.OE0•TEMP
ZLM(39)=ZLM134)
ZLM1401=tLM1351 - - --- --- -- - ^---^
TEMP=S0Rt(45.OEO/(4.@EO•FPI)1
ILM141)=7.OEO*TEMP
ZLM(42) n -TE4P
ZLM143)=-ZLM(29)
ZLM144)=-ZLMt281
ZLM( 451 =SOtiT (315. O:I / (4. 0E0•FPI11
ZLM(46)=-ZLM1451
ZLM(47)=SQRT(693.OE0/(12$.OEO*FPI11
ZLM(481=-10.GE0`ZLM(41)
ZLM1491=5.OEO*ZLM(47)
ZLM1501=SQRT(3465.ts?0/(6 4.O E0 • FPI) 1
ZLM(51)=-6.9EO*ZLMt501	 -- --
ZLM(52)=ZLM1501
TEMPsSORT1395.0=0/t126.dE9*FPI11
ZLM(53)=9.OE0•TEMP
ZLM(54 ) a -27. OEO*TEMP
ZLMt551=3.OEC*T -c MP
ZLOMI -TEMP	 -----	 --"
TEMPzS QRT (1155.OE0/FPI )/ 4.OEO
ZLM1571=3.GE0`T=MP
ZLM(58)=-ZLM(571
ZLM(59):-TEMP
ZLM1601=+TEMP
TEMP=SORil165.0c0/Fofl%8.OE0
ZLM(61)s21.GEO*TEMP
ZLM(62)2-14.OE0'TEMO
ZLM(63)=TEMP
TEMP=SQRT (i1.0E)/FPI)/8.OEO
ZLM(64):63.f)El*tEMP
ZLM165)=-tO.JE0 • TEMi	 -- --	 —
ZLM(66)=15.JcO*tEMP
ZLM(67)=ZLM(611
ZLM(68)=ZLM(62)
ZLM(69)=ZLM(63)
TEMP=SQ?T(1155.J;-0/FPI)/2.CEO
ZLM(70)23.u'EO*TEMP
ZLM(71)=-TEMP
ZLM(72)=-ZLM(541
ZLM(73)=-Z,.M(55)
ZLM(141=-ZLM(53)
ZL14(751=-ZLM(561

ZLM(76)=50RT(5465.0: f)/FPII/Z.OE-
7LM(77)=-ZLM(76)



- e

J.%

OF POOH?

ZLM(78)=ZLM(49)
ZL4(791=ZLM(48)	

- -	 - —	 - --- -	 -

ZLMt8C)=ZLM(47)
TEMP=SO4T 13003.0EO/1512.OE0 + FPII )
ZLM(81)=6.OEG'TEMP
ZLM(82)=-2G.OE0*TEMP
ZLM1531=ZLM(81)
ZLMto41=SORT(9009.OE0/1128.OE04FFI1)
ZLM(851=-10.GEO*ZLM(14)
ZLMlb61=5.OE0"Z6M(84)
TEMP=SQRT(019.OEG/1256.CE0•FPI)1
ZLM(87) n 31.9E0•TEMP
ZLM(88)=-66.CEOFTEMP
ZLM(89)=ZLM(87)
ZLM(90)=-TEMP
ZLM(911=6.OE0•TEMP
ZLM4921=-TEMP
TEMP=SORT(1365.OEO/(128.OEO*FPI11
ZLM193)=11.OE0•TEMP
7LMt 941 = -33.CIE 06 TEMP ^-- -	 -- --	 --	 —
ZL005)=9.OEU"T:MP
ZLM(35i=-3.OEO*TEMP
TEMP=SoRT(1365.0EOf(512.0E0*FPI11
ZLM(97)=33.OE0•TEMP
ZLM08)=-ZLM(97)
ZLM(99)--L8.OEC•TEMc ------ -- ---- ---- 	 ---	 -
ZLM(100)=*18.OE0+TEMP
ZLM(101)=TEMP
ZLM(102)=-TEMP
TEMP:SORT(273.QE0/FP1)/8.OEC
ZLMIIu31a33.DE0•TEMP
ZLM1104)=-30.OE0 • TEMP - --	 - -- ----^--	 --
ZLM(105)=5. CEO *TEMP
TEMP=SORt(13.OEC/FPI)/16.OE0
ZLM(1061=231. DEC* TEMP
ZLM11071=-315.0_O*TEMP
ZLM(108)2105.OEO*TEMP
ZLMt1091=-5.OEO^TEMP	 —____---^--
ZLM(1101sZLM11031
ZLM1111)=ZL M(104)
ZLMt112)•ZLM1105)
TEMP=SOPI(1365.OEO/(128.OEO41FPI11
ZLM1113)=33.0E0•TEMP
ZLMt1141=•18.0E0•TEMP_----_-------- ---- -- ---- ------- - --
ZLM(115)=TEMP
ZLM(i16)=-ZLM(94)
ZLM(1171=-Z6MI93)
ZLM(11E)=-ZLMt951
ZLM(119)=-Z0d(96)
TEMP=S00 T(819.OEC/F p I)/4.OE0 -
ZLM11201=i1.OE0•TEMP
ILM11211=-ZLM(120)
ZL411221 =-TEMP
ZLM(123)=TEMP
ZLM(1241=ZLM186)
ZLt'1125):ZLM(85)	 -
I4-M(126)=ILM(S41

ZLM(127)=SORT(3003.0=0/(512.OE0•FPI)1
ZLM(1291 s -15.O W Ly(lit1
ZLM(129)=-ZLM11281
ZLN(13U)=-ZLM(1271
KETUdN

END
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M

SUBROUTINE EXPANDIOSPLSPMSPl1PNT*NTPPNS ► PLSPPMSPI
C...6ENERATE THE TRANSLATION INDUCED EXPANSION TERMS FOR THE ECP INTEGRALS OF
C...THE FIRST KIND
C

IFLAGoO
C

LTMIN•MAXOtOv4T+LS-NS-11+1
LTMAX nMINOILS-IPNT-11+1
DO 50 LT•LTMINPLTMAX
MTMIN*MAXO(-LT+IPMS-2•LS+LT)
MTMAX•MIN0tLT-1#MS-LT)
MTMAXmMTMAX-MTMIN+1

00 40 MT•1PMTMAXPZ-- -------- -------- ---- —	 --------- ---
C

NXT•ILT+MT+ATMIN-2112
NYT-(LT-MT-MTMIN)12
NZT•NT-LT

C
C

LTPMIN n MAXO(OPNTP+LSP-NSP-11+1
LTPMAX nMINO(LS ►-I#NTP-11+1
DO 30 LTP+LTPMINPLTPPAX
MTPMIMeMAXO(-LTP+IPMS ►-2*LSP+LTP1
MTPMAX•MINO(LTP-1PMSP-LTP)

_ ____MT ► MAX n MTPMAX-MTPMIN+_l
DO 20 MTP •loNTPMAXi2 ^

C
NXTP•(LTP+MTP+MTPMIN-2112
NYTP•(LTP-MT ►-NTPMIN)12
NZTP•NTP-LT ►

C-	 - -- - --	 - -- --- --	 ----
C

JFLAG-0
MlMAX•2•L1-1
DO 10 M1 n 1PMIMAX

C	 "
TEMP •ECO(NXTPNYTPNZTPLI-IPMI-LIPNXTP.PNYT-PPNZT.P)_ _	 __-
IF (ASS(TEMP).LT.1.OE-10) 60 TO 10

C
IFLAG•IFLAG+1
IF IIFLA6.6T.11 60 TO 5
PRINT 520PL1-ItNT-IPNTP-1

5 CONTINUE	 -	 - -- -	 _. - - -- - --- - --------- —
C

JFLAGoJFLAG+1
IF (JFLA6.GT.1) GO TO T
PRINT 530PNT-IPLT-1.MT+MTMIN-lPNXTPNYToNZT#NTP-1PLTP-1P

1	 MTP+MTPMIN-1PNXIPPNYTPPNZTP
T CONTINUE

C
PRINT 5409M1-LIPTEMP

C
10 CONTINUE

C
20 CONTINUE
30 CONTINUE

C

40 CONTINUE
50 CONTINUE

C
RETURN

C
520 FORMAT(lHOilOXr3HLl•PI2P2XP3HN1•PI2P2XP3HN26PI21
530 FORMAT(15XiSXrlHti3I2v3Ml/(P3I2PIH)P3ZXP3XPIH(P3i2 ► 3Hl^(P312P1H)l.
540 FORMAT(42XP2HM•PI2P3XPE15.01

END

OFr'u::^^:



OF P00k Q-.; " s .^.

!UBROUTINE INKINDIHSPIS P HSPNSPPLSPPNSPI _
C ... LOOP OVER THE TERMS IN THE ECP INTEGRALS OF THE FIRST KIND
C

LlHAX•NS+NSP-1
DO 30 L1.1PLINAX

C
00 20 NT•1PNS

C
DO 10 NTP•1PNSP

C
C
C...GENERATE THE TRANSLATION INDUCED EXPANSION TERMS

CALL EXPANDtNSPLSPMSP LIP NTP_HTPPNS ► PISPPMSP_1
C

10 CONTINUE
20 CONTINUE
30 CONTINUE

C
RETURN	 -- ----	 -	 - ---- ----^

C
END



R

_SUBROUTINE EXPA40IN1,L5,MSrL,Ll,_12,NT.NTP,NSP,LSPrMSP)
G --- dtNEkATE THE TRAKSLiffON ^NDUCeO-= xPANSfON T=Oiif^^O^fNE	 I'N1€fi$^L3 OÈ -
C.9.OF THE SECOND KV4
C

IFLAG=0
C

LTMINsMAX0(0 9NT+LS-N5-I) ♦1
LTMAX : MINO(LS-19NT-1) ► 1 - —	 -
JO 70 LT=LTMIN9.tMAX
MTMIN = M4XO( -LT#19MS-2*LS#LT)	 ()RIGI VAL ^t nw c J

MTMAX = MTMAX`	 LT)MTMIN+i	 F P^.°i.'=? ^`TALITY

00 60 MT=L 9 MTMAX 9 2	 -_- -	 C - -	 -	 --	 -- --- .__. 

NXT n (LT ► MT+MTMI4-2)/2
NYT8(LT-MT-MT14IN)/2
NZTzNT-LT

C
C

LTPNINsMAXOtOrNfiP^LSP=NSP-il^i
LTPMAXsMINO(LSP-igNTP-L1+1
DO 50 LTP:LTPMIN9LtP4AX
MTPMIN=MAXO ( - LT'+19NSP -2*LSP+LTP)
MTPMAXzNINOtLTP-1•MSP-LTP)
MTPMAX=MTPMAX-MTPMIN+1
00 4N MTP=1 9MTPMAX 92 ---	 ----	 —	 --

C
NXTPzILTP+MTP+MtPMIN-21/2
NYTP=(LTP-MTP-MTPMIN)/2
NZTP:NTP-LTP

JF#.AGzO
C

M1MAXz2fL1-1
00 3C M1z1 ► M1MAX
N2MAXz2*L2-1

---------- ---- ----
jO 24 M2 z 19M2MAX ---
MMAXz2•L-1
JO '.T Mzl9"(MAX

C
TENT 1 z uC n (L1-1941-L19NXT 9 NYT 9 NZT 9L- 19M -L1
TEMN22GCO(L2-1.M2-L29NXTP.NYTP9NZTP9L-19M--1
IF ((A6S ( TEMPI I. LT. 1.bE-s0). OR. IA§titEMP21 . 1f.1.3€=i^li^ib

IFLAGzIFLAG+l
IF IIFLAG.GT91) GO TO 5
PRINT aOJ9L-L9LL-19.2-19NT-L9NTP-1

5 ONTINUE

JFLAG=JFLAG+L
aF (JFLAG.GT.1) GO TO 7
PRINT 5099NT-19-T-194T*MT'TIN-194XT9'4YT9NZT94TP-19LT-"-19

1	 MTF+yTPMI4-1,NXTR.NYTP9NZTP
7 CONTINUE

V	 pF.LNT 5109M1-L19M2-L29M-LrTEMP197_MP2

C	 --	 -
10 CONTINUE
2C CONTINUE
30 :ONf L NUE

C
C

40 CONTINUE
50 CONTINUE

C
C

60 ;ONTINUE
TO CONTINUE

C	 -	 - -
RETU2 N

C
400 FOKMaTl 1HJ910X92H,=RI292X93HL1z92292X93ML2291292X93HN1:9I292X9

1	 3HN2z9I2)
5:C FO4iMAT(15X95X91N(931293H1/(93I2,1H)932X93X91H(9312tlHl/(93I291M))

51 0 FOR MAT 4_3OX93MM1 n 9129ZX93MM2=92292X92HMz912939tE15.S93X9_LSoSl	 —

ENO



OF POOR QUALITY

SUE20UTINE INKINOINSgLSrM_StNSPr:SPgMSP1
G...LOOP onk THE TERNS IV THE E^. P ^ AtEr^R^LS 0^ ^HE S^L̀ ON^ KIND
C

00 50 L=1.4
C

LiMAKsL*NS-1
00 40 L1=1.L1MAK

LZMAx n L+NSP-1
00 So L2219L2MAK

C
DO 20 NT=i•NS

C
DO La NTP:1 9 NSP	 -	 --- ---- --

C
CALL tXPANDINSrLS9MSoL9L1tL29NTtNTPgNSPoLSPtMSP1

C
10 CONTINUE
20 CONTINUE_
30 CONTINUE---------------
40 ^ONTINUE
50 CONTINUE

V
RETUIN

C
END_
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