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AN APPLICATION OF THE BRAUNBEK METHOD TO THE
MAGGI-RUBINOWICZ FIELD REPRESENTATION

ABSTRACT
The Braunbek method is applied to the generalized vector potential associated with the Maggi-
Rubinowicz representation. Under certain approximations, an asymptotic evaluation of the vector
potential is obtained. For observation points away from caustics or shadow boundaries, the field
derived from this quantity is the same as that determined from the geometrical theory of diffraction
on a singly diffracted edge ray. The paper concludes with an evaluation of the field for the simple
case of a plane wave normally incident on a circular aperture, showing that the field predicted by

the Maggi-Rubinowicz theory is continuous across the shadow boundary.
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AN APPLICATION OF THE BRAUNBEK METHOD TO THE
MAGGI-RUBINOWICZ FIELD REPRESENTATION

INTRODUCTION

The Maggi-Rubinowicz (M-R) representation(l’3) for the field is derived by means of Stokes’
theorem which transforms an open surface integral, the integrand of which has zero divergence, into
a line integral around the boundary of the surface and certain singular contributions interior to this
boundary. This type of field representation is usually applied under a physical optics approxima-
tion, which, in the case of diffraction by an aperture, is taken to denote the approximation by
which the actual field within the aperture is replaced by the unperturbed incident field. There is

nothing in the theory, however, that requires this assumption.

Another common high frequency approximation is the Braunbek method(4'5), which takes the ficld
near an edge point as that which would exist if the edge were replaced by a half plane oriented in
the plane of the aperture with its edge lying along the tangent vector at the iaoint of interest. An
application of this method to the various surface integral representations for the field has been
shown to produce resuits that closely resemble those predicted by the geometrical theory of diffrac-
tion (GTD)(6 -7). Since the M-R theory is, in a sense, only a restatement of certain surface integral
representations, there is reason to expect that the Braunbek method should also serve to illuminate

the relationships between the M-R theory and GTD

In this paper, the Braunbek method is applied to the generalized vector potential of M-R(1), Under
certain approximations, a closed form expression for this quantity is obtained. With this vector
potential, an asymptotic evaluation of the field is carried out for observation points away from
caustics and shadow boundaries. It is found that the expression for the field is identical to a result
derived by Keller et al.(6)_ In the last section of the paper, an explicit calculation of the M-R field

is carried out for a simple case. showing that the field is continuous across the shadow boundary.




THE RAYLEIGH INTEGRAL REPRESENTATION

Consider a thin screen in the z = 0 plane with an aperture A. The tangent to the rim of the aperture
is taken to be continuous. If the sources of the incident field are located in the z < 0 half space,
and if the field is zero on the screen, then the Rayleigh representation for the field in the z > 0 half
space is(8)
u@=2{ux)v'G 2as ()
A

The region of integration is the aperture; x, X' are, respectively, the position vectors of the observer
and of a “source” point in the aperture. The primed derivatives are to be taken with respect to the

“source coordinates”. The quantity G is the Green’s function, where, for an e~'“’! time convention

G =ikt amr 2
and
V'G=-t(k=-1/)G 3)
r=(x-xVx-x'l 4)
r=|x-x'| (5)

The quantity k in (2) and (3) is the wavenumber which equals 2w/A where A is the wavelength of the

incident field.

The M-R analogue of (1) is(8) .
ux) =W -Wp - Lad'+) sW-Raw (6)
i

The path of integration of the first term, the boundary diffraction integral, is taken in a counter-
clockwise sense (when viewed from z > 0) around the rim of the aperture. The second term repre-
sents the integrations around the singularities of W, taken in a clockwise sense. Following Miya-
moto and Wolft!? the singularities of W are assumed to be isolated poles, finite in number. A
corresponding term that accounts for the singularities in Wy is absent in (6) because W/ is never

singular over the apermre(m.
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The generalized vector potentials for the observation point and its image, W, Wi, are given by(l)

W=-Gix (e v u + B dt+ ¥, Q)
[+)
Wy==Gix § ekt v u’+tidt+ W)y | ®)
[+]
where
i=-f ©)
G=-f=8-28-2)2 (10)

The end point contributions to the vector potentials, W_ and (W) are defined by Miyamoto and
wolf(1). In this paper they will be neglected. The effect these additional terms might have on the

solution is discussed later on.

Sirce the Braunbek method is valid only in the vicinity of the edge, it is applied only to the first
term of (6). For the second term of (6), the vector potential corresponding to the physical optics

approximation will be used.

APPLICATION OF THE BRAUNBEK METHOD TO THE VECTOR POTENTIAL

For aperture diffraction, the physical optics approximation takes the field in the aperture to be
equal to the unperturbed incident field. For the same problem, the Braunbek method assumes the
field near a point £ on the aperture rim as that which would exist by replacing the edge by a half

plane oriented in the plane of the screen with its edge aligned along the tangent vector at &.

In this paper, the incident field, u,, is approximated in the vicinity of an edge point ¢ by
uy =A®) ekV®  The phase Y(R) is assumed to satisfy the eikonal equation

vy vy=1 (1)
so that a unit vector p can be defined by ¢’y = p. Again, following Keller et al.((’), the incident

field at € is associated with a plane wave propagating the direction p with an amplitude A(?).

The solution to this half plane prohlem, with u = 0, on the plane, can be written in the form

e an e el

e A e
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\ . u=ul_ul'

i I
uf = 7% A@)KV@TI4)eK[ocos(#70,) sindo = 2 c0so] g _ (o p

ap==elyy

@ ==€
¥y = (2k p sind )% | cos 14(6%6,) | (16)

2
i
€’ = sgn (cos ¥(¢F¢,)) an
+1x>0

= 18
sgn (x) ~1x<0 (18)

F.(x)= Seitz dr
x
The notation follows that of James(®) and is defined in the Appendix.

To use (12) through (17) in (7) and (8) it is convenient to first express the above formulas in terms
of quantities independent of a particular coordinate system. At each point £ on the rim, we choose
the orthogonal vectors (2, 1, 2) where £ is the tangential unit vector of the rim at 2 (in a counter-
clockwise sense when viewed from z > 0) and i is the unit vector from £ directed into the aperture.
Defining E to be a unit vector from £ to an arbitrary point and t the associated distance along the

vector to this point, then

§ 2= sinf sing | (19) d
£+ i = = sind cosp (20) i

£+ 2=cosd @n
p * 2=sind sing, (22) !
p* fi=sind cosp, (23) !
pel=cos, (24) |

and

p = tsinf (25
2=t cosd (26) |
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where i
p=v'y (a7 :
Expressing the variables in (12) through (17) in terms of the quantities £, p, £, A, 2, t, then |
j
Wik, 1) = 1% A eilcyT4) gk tp oLt £ F, (@) 28)
uE ) =17 A V) gk tp LY F (ey) (29)
where
1= +nn+22 (30)
i=Q0+nn -2z 31
« E 0= @r ED (32)
CaEo=e®ndéo (33)
7 G 0= k% @B =D L D (34)
v, & 0= 0% @@ -p - L - D 35)
e (B=senm fsan (6 ) (L DA -E 0P @ L B+« )" 59
(L DA Lo 0% D %)
with
TE =0 L - dE L H* a7
L=1-% (38)
L=i-% (39)

To compute the ¥ 'u appearing in the integral of (7) and (8), a spherical coordinate system is chosen
with the origin at a point ¢ on the rim with the polar axis in the ¢ direction. In this sytem, the argu-
ments of ©'u. X'+t §and x" + t §; can be written as té with £ evaluated at $ and §;, respectively.
However, we will continue to write the arguments of u as £, t since these quantities do not

always appear together. In spherical coordinates

u. 19du, 1 du.
g — 4

. i)
' .t)":-— A ____0 (40‘
Tlug ot E*t 00 t sing 0o
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where 8 is the polar angle measured from the § vector to £ and ¢ is the azimuthal angle measured

between the —f direction and the projection of £ onto the fi—Z plane. For an observer on the 2

axis, a positive ¢ angle is measured in a cqur{terclockwise sense from the —f axis, Note that these
are the same angles as defined by (19)+(21). Equation (6) shows that only the 2 component of
. . 2= sind,

(W-Wp)is needed to compute the field. Since EXE=0,EX0+2=0and§X ¢ + § =sinf, then

for the vector potential W,
. ' - l_ ?l“iéa t)
[EXV ucg, 0 2= % (41)
so that
ekt
v Q=-GS Bu(E, Do at 42)
A similar simplification can be carried out for Wy Therefore
ou .z ..
W-Wp - == cj‘ - (8 22 60 e =50 €0y ) et 43
In computing a-aau , the following reiationships are used
9 . s s
' 'a;(i) I'H=p- XY & 44
9 R
5@ L b= XD 3 (45)
) . e (B, .
Zath=S2p @ XD (46)
“~1
r
2 GLIP N @7

-5; az(tE) = 20,

which give .
S =t A elkv -4 {kt [B(E) kPO F (o) =Cd) ¥ W F (a,) ] (48)

e o))

e

sk

K (; U
L {.B_(_"-’l okt PE) + iad cichy - =)
2 1M Y3
with
P=p-L-& (49) |
6
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Qh=p-i-§
B)=p (I X £
CE=p-(, x0-& (52)

In finding the integrand of (43) from (48), a considerable amount of simplification is possible by

using the following relationships between § and §1

f"l'§=f"l'§l;f".—!—°§l=f"j_-'§ (53) ¥
B XD sm=p XD ipp @ XD sy==p (XD s (54) {
e (§)=—e (§) (55) ]
eEP=-¢® (56)
o) (§,t) == ay (5p,t) 7
o) Gpb) =~ (3,0) (58) ;
Then (43) becomes }
-, - is ﬂ'%Aei‘1(r¢/+r)e-i1r/4. { » f ekt [B(3) ek PO) F (a) :
- 0@ ¢kt QO Fay))dt + ko 5 oKt [%:) ekt PO) + iof cicq) (59)

. 97(_:2 okt Q@ + ia} er(g)] t } j

where

X -
F(x) = S' eit? dt (60)

oo >

- - - - o £
P(s), Q(s) B(s), C(s), are given by (49){53) with § replacing &. In (59) the arguments of o and )

are s and t. Therefore @y and a, can be evaluated from (32)-36) by replacingé with s.

[t is worth mentioning that the application of the Braunbek method here is somewhat different

than in Keller et al.(8) where the method was used to obtain an approximation of the field near the

edge in the plane of the aperture. Here, the method is also used to approximate the field near the

edge. but the vector potential requires that the field be evaluated along the path of the vectors §

and él. These vectors will be in the z = 0 plane only for observation points on the aperture or
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screen. One consequence of this difference is the retention of the el and € quantities in (59). In

Keller et al.(6) , ¢l = 1 and €f = —1, irrespective of the location of the observer.

To find a closed form expression for the vector potential (W — W) ¢ %, (59) is evaluated by using
the first term in an asymptotic expansion for large k. Since the Braunbek approximation is valid
only in the vicinity of an edge (i.e. near t = 0), the upper limit in the integrals of (59) will be
ignored. In fact, ignoring the upper limit is more than just a matter of convenience since the first
two terms of (59) do not converge. This problem is not necessarily a deficiency of the M-R theory
but perhaps a consequence of having ignored the Wa and (W.); contributions to vector-potential.
The results obtained by Miyamoto and wolf(1) for a convergent spherical wave (which is similar to
the Braunbek method in the sense that neither satisfies the Sommerfeld radiation condition in
three dimensions) suggest the possibility that the full expression for the vector potential would
converge and even admit an evaluation of higher order terms in the asymptotic series. Since we
have not been able to compute Wa and (Wa), we obtain an expression for the first two terms by an

integration by parts, evaluating the result only at the lower limit, and using the formula(6: 10)

ok h@) % g(o) kN0 + in/4

(61)

The last two integrals of (59) are of the same form as (61) and can be evaluated immediately.

From the results of the calculations and simplifications, the vector potential can be written

k(Y@ + 1) L,
A®e (1+T(§)+(f)-2)(§-2))%
. 4nr (62)
[ e'(s)p-%xﬁwg e’(§)i>'(;é>(§)°§

T®=p L 92 (A+p L9 TO=-p L 9*U+pLr9

W-wp-i=

This formula can now be compared with the first term in the asymptétic expansion of (W = W) L

under the physical optics approximation,(28)

A kWO +DMexpef & Xpel
Al A (63)

(W=-Wp)*Upg =
¥=¥p * Lpo. 4mr L+8+p 143 P

a2 e
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| The comparison is made easier by noting that

o pe XD 3=ExXD) R (64)
1 prd XD 3= XD R (65)
- -
Lt (A+pelH=1+p-3 (66)
e L where “’
L e . A . ae a j
g §i=8§—-2(38-2)Z (10) 4
Therefore, the first terms in (62) and (63) differ by the factor €l (3) {{ 1+TR)+® D G+ D1/ :
(TO-p L §1}V‘; the second terms by the factor €' () {[1 +T () + (B * HE-DITE- :
B lt . §]}%~ !
COMPARISON OF M-R AND GTD 1
As a check on the vector potential given by (62), the boundary diffraction term of (6), ug, is evalu- 1
N v ated for large k when the observer is not close to a shadow boundary or caustic, i.e. %
up® = § (W -Wp) + 2d’ (68)
o where (W — W) + £ is given by (62).
& o
; Recognizing that the saddle points of (68) occur when
S d i
i o . — +1)= 9
, . . y
then since 3y /92’ = & + p and 3r/d%¢ = § * R the saddle points are given by points on the rim £ = £ ‘J
- for which R *+ p =~ + §. Using the formula for an isoiated first order saddle point gives(“) )
(2m)# ¢in/4 sgn W'+ W-Wp)* ) {
u (X ~ " "o B 70)
,, B"Z[ k19 +1 DA (
e ety !
where i
) 3%y + 32r |
"y —t —_— 7
VTS a2 7D |
‘ '"f" e To compare (70) with the result of Keller et al.(6), (W=-W)- % is evaluated at § + p=—Q * $and the |
“: result is expressed in terms of the angles ¢, ¢.8,,, A defined by (19) - (27). In making this trans-
9

Qs iyl i i | ke N * -
s Pt i )
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formation, it is important to note that the vector £ in (19) - (21) is taken to be f, the unit vector

from the rim to the observer, where t =—§.

This procedure gives

. A eik(tp +1) i
W-Wp)-2= [€}(8) sgn(sina(p,—9)) sec ¥a(¢8;)
4nr (72)
+ €1(5) sgn(sin (¢, +9)) sec Ya(d+é,)]

where both sides are evaluated at fep=-R-s

Since only observation points in the z > 0 half space are considered, it is not diff cult to show that

el(s) sgn (sin¥a(p,—9) =~ 1 (73)
€1 (8) sgn (sin Y(@y ) = | (74)

To account for a different convention used by Keller et al.(6), letg, =+ 7/2 and ¢ = 0 + /2.
Substituting these equations into (72) and using (73), (74) gives

{ o k(Y +1) lld @ + 1)
uB(Z‘.) - 2 (2‘"}, I wu 1" D%

[sec Y4(6—) + csc l/2(0-1-131)]1 (75)
/

This is the same expression obtained by applying the Braunbek approximation directly to th2 Ray-

leigh representation and is also the field predicted by GTD on rays singly diffracted from an edge(6).

ASYMPTOTIC EVALUATION OF THE M-R REPRESENTATION FOR A SIMPLE CASE
Although we have been uaable to show in general that the vector potential given by (62) leads to
fields that are continuous across the shadow boundary, there are special cases where this continuity
can be shown explicitly. It should be mentioned that under a physical optics approximation, Otis,
et al.(12) and Takenaka et al.(13) have obtained asymptotic evaluations of the M-R representation
for an on-axis gaussian beam incident on a circular aperture. Their work has shown the f jeld to be
everywhere well behaved. Here we will treat the simpler case of a plane wave normally incident on

a circular aperture of radius a, but use the vector potential given by (62).

For a normally incident plane wave of unit amplitude, (62) reduces to

10
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. clkr \ F X2 el (=D
W e fm Sar e A
W=l - b= (1@ D) (G L DR+t (1~502)

(F X2+ R) e (=)
NCOREX +i~l-2)%(l—f|'2):|

where § = ~f and f'l=f'—2(f “2) 2.

The total field in the x-z plane is

ux) = § (W-Wp - 242’ + e [U(x + a) - U(x ~ a)}

(76)

an

where the second term represents the geometrical optics field. The boundary diffraction integral

can be written as the sum of I, and Iz,
I+, = (W-Wy)*2de'
where

3n/2
--ES ““mmrxz 4y

1=f-2
1,=3f “"f(«b)—l-—— d¢’
—n/2 R 2

and

-

$=2

=D+ ¢ L - HPA
r((f L DA +Ee )R
(=1 (1 + (], * D)%
P((F ], s DR 48 e )R

f1(¢')=

f2(¢') =

el-i) = |

The expression for [, can be evaluated by means of the standard formula for an isolated saddle

(78)

(79)

(80)

(81

(82)

(83)

(84)

point. The saddle points are determined from the equation ¢ * ¢'r==¢ + = 0. Since ¢ = -« sin¢’

+ ¥ cos¢’ and = (X(x—a cos¢’) — ¥ a sing’ + 22)/r then saddle points occur at ¢s, =0 and ¢52 =7

Noting that e[~ (¢51 )] = sgn (a=x) and €[~ f(¢52)] = sgn (a + X), a straightforward calculation

e SAmcaada o
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gives
1 7avifekn +in/d g p g ekr2—im/4 |- x|
2 \mk/ |(x (r;=2)" (1) *2) (x (ry2))* (1 +2)
with
ry = ((a— x)2 + 22)5‘2 (86)
r,=((a+ x)? +22)% ¥))

By expanding (85) about the small parameter x¥a, it can be shown that 12 is continuous across the

shadow boundaries at x = t a.

Turning to the expression for I, it can be shewn that the steepest descent path may be close to the
pole att * 2= 1. Therefore, the standard formula no longer applies(ll). In the following develop-
ment we make use of the fact that the field is symmetric about the z-axis. Therefore, it is sufficient
to consider only observation points in the x-z plane for which x > 0. Since the saddle points of I
are the same as for 12, then ¢s1 =(0and ¢s2 = . In the complex ¢-plane, the steepest descent path
(SDP) which passes through ¢ is given by Im (i r (¢)) =Im (ir (¢g)) where Im denotes the

imaginary part. Graphs of the steepest descent paths are given by Takenaka et al?”

Solving the equation T + 2= 1 for ¢ yields poles at

=i -1
¢P1 iCosh ' q (88) |
= - -1 '
¢p2 iCosh™ q (89) |
where
q= (x2 + az)/?.ax (90)

Because of the presence of r in the denominator of the integral, I, also has algebraic singularities at
¢p; = *iCosh q’ (91)

Q' = (x? + a2 +2%)/2ax (12) ]

For z >> a, these contributions can be ignored.

2
U
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In the deformation from the original integration path to the steepest descent paths, no poles are
crossed so the contributions from the residues that occur for the case of a gaussian beam! 13) are
absent in this case. Furthermore, the poles can be located only in the vicinity of the SDP, (since
we have chosen x > 0). The integration along SDP: therefore can be evaluated in the same manner

as 12.

Using the formula derived by Felsen and Marcuvitz(11) (with a modification to account for the

presence of two poles) then

. d
4“ Il ~ =21 eﬂ\'l(¢gl){ izz l:sgn(lm bl)za‘&"% e"k bf Q("l bi k% sgn (Im bi)) + R_l (_71:_)
=1,

b;

() hy f, (m(f i‘)% } 93)

_ael'kl@’sz)(l\) hy ) Wa, X2 é)

N:

-fe 2
%,
where
Q(x) 94
o
The quantity R, is the residue of f l(«p)(rxz @)/(1-f+2) at the pole ¢pl (i=1,Dand
= (il (@h*  i=1,2 (95)
= [ - %o )
by = 1i (@ ) = 1o, )] i=1,2 (96)

where the argument of b, is to be chosen the same as the argument of the quantity (¢pi - ¢51 )hy

as ¢pi approaches ¢51 an

To compute R;, the following result is used!¥) for the residue of t(p)/p(g)

(1) _ '
Res <;‘T¢T)>J = t(¢p)/p (¢p) 97

®p

—

k.
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where t and p are analytic at ¢p and t(¢p) #* 0, p(q)p) = Qand p'(¢P) # 0. This gives

R, =isgn(x~a)/a (98)
Ry=—isgn(x = a)/a (99)
The results for by, bz are
by =elm (100)
b, =—ei4 o (101)
where
= - 14 .
n=[r(dg ) =1 (¢p)] (102)

We have written r(¢p) since r(qbpl) = r(¢p2).

The substitution of these results into (93), shows that two terms of the summation are identical and

equal to

- sgn (x~ a)[ 2 ¢kn? (ﬁ n(l-i)A/?.') - e*"/“/ﬁ'?z] (103)
a

Using the fact that(11)
Q [\/F ﬂ(l-i)/\/T.]= e-i"/""i& eitz dt (104)
n .

and evaluating the remaining terms of (93), then

v - : 1
I~ 5_8_‘1%_’;”3) [2‘?&2—“/4}/;6“2 dt-—,‘w’; ekn ‘”“/4]

n

(105
1 /a\4 eikrl +in/d4 a-—x el'krz - in/4 a+x
- — + .
2 (wk) (x(r + 2)? ( ry —z) (x(ry +20? <r2 - z>
where r ., ry are given by (86) and (87) and n by (102).
From (78), (85), and (105) the total field, forx > 0, is
wy ~ I +1, + k2 (Ux +a) - Ux = a)] (106)

To refer to the four terms ot (109), let ll = lla + llh + llc + Ild' As a check on ¢ 106, notice that

14

et s e e e hee e
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as x approaches a, i.e., as the observer approaches the shadow boundary, Liy* L= 0 and as the

. observer crosses the shadow boundary, the discontinuity in I, exactly cancels the discontinuity in
the geometrical optics field. Since I, and the remaining term of I, are continuous, this implies that
the total field is continuous across the shadow boundary. For points away from the shadow

boundary (kyz n>> 1), 1, 1, is o(k'%) and the I, and the remaining terms of I yield the
la ib 2 1

standard asymptotic result.

Points on the z-axis, i.e. the axis passing through the center of the aperture, correspond to caustics
of the diffracted field and equation (106) is not valid on or near such points. For such points, the

procedure described by Takenaka et a1.(13) could be followed. However, we will not pursue the

problem here.

Sk
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CONCLUSIONS

In an attempt to establish a correspondence between the M-R and GTD theories, an approximate

form of the vector potential has been derived through the use of the Braunbek method. For the

aperture diftraction problem, the two theories predict similar results for observation points away
from caustics and shadow boundaries. To examine the behavior ¢f the MR ‘results near the shadow
boundary an explicit calculation was performed for the simple case of a plane wave incident upon a
circular aperture. That the M-R field was continuous across the shadow boundary in this case,

suggests that the vector potential given by (62) might yield reliable results near a shadow boundary

for a more general incident wave,
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Appendix: Diffraction from a half-plane

It an incident plane wave of the form
uz) = A o k¥ okp cos(g-¢,) sinf, oIkz cosfg (AD
is incident on a half plane the edge of which is aligned with the z-axis and oriented in the x-z plane

(x > 0), and if the total field, u, on the screen is zero, then the field at a point x is

u=ul—yf (AD)
where
ul = U(ei) uf) + ufj (Ad)
ul = Ueeh ug +uf (A9)
and
i . i ' 1 wr .
uj=-A oKV or l\Z_[(.)kpsinoo)M [ cos=(¢F¢,) 1] ¢ Ik lesinb, + z cosdy] (AS)
:‘\ i
1 ) ‘1
€ =sgn [ cos= (@ F )] (A6)
K_(p= (i)%ei"’ S: eIt gy (A7)
- o )
U={'¥>0 A3)
= 1ox<o (

An &“! time convention is used to obtain these results. Apart from some slight modifications —
in particular, the addition of the factor A e ¥ which provides an amplitude and phase reference

for the Braunbek method — the above formulas were obtained from James(9),

From equation (A1), the direction of the incident wave, p. is
p == cosp, sinf, X —sing, sind v + cosd, 2 (A9)
The azimuthal angle @, is measured in a counterclockwise sense trom the x-axis to the projection of
the vector =p onto the x-y plane. The polar angle 8, is measured between the z and p vectors. On
the other hand. the coordinates of an observation point x with respect to an origin on the edge of
the halt-plance is
XNZTpCosg X +osingy + 27 (ATO)
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where

p=]|x|sind

z=|{x|cosf

x onto the x-y plane; @ is the angle between z and X.

From (A3) and (A7)
ui=A e-jkd: eik[p cos(¢—po) sinf, — z cosdy ] [ U(ei) —g % el ej1r/4 S' e-jt2 dt]
71

where 7, is given by fhe argument of K_ in (A5) using the upper sign.
Since

1 =% /4 fe"itz dt
the expression in the brackets of (A13) can be rewritten as

a7 ¢4 S‘e‘jtz dt
a,

where
=€y
so that
yim A eV + i gklosodggo) sndg =z o) ('3t gt
&4
Similarly
Uf = A g% ¢kV + j/a oK [pcos ($+65) sindo =2 cosfo] S‘ it gt
a,
where

a‘\=-er72

and where v, is the argument of K_ in (A5) using the lower sign.
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(All)

(A12)

The angle ¢ is measured in a counterclockwise sense from the x-axis to the projection of the vector

(A13)

(Al14)

(A15)

(A16)

(A17)

(A18)

(A19)




o To account for the &t convention used in the text, we substitute j = =i into (A17) and (A18).

This gives equations (13) of the text.
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