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The so-called H-type mesh is used in a finite-element (or finite-volume) 
calculation of the potential flow past an airfoil. Due to coordinate 
singularity at the leading edge, a special singular trial function is used for 
the elements neighboring the leading edge. The results using the special 
singular elements are compared to those using the regular elements. It is 
found that the unreasonable pressure distribution obtained by the latter is 
removed by the embedding of the singular element. SUggestions to extend the 
present method to transonic cases are given. 
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In finite-volume calculations of the potential flow around an airfoil 
(Jameson and caughey, 1977), the physical space is mapped to a computational 
space in which the airfoil is mapped to a horizontal or vertical line segment 
and a rectangUlar mesh is created. The velocity potential in the rectangular 
element is then represented by a bilinear function of the computational 
variable for a two-dimensional calculation. This process assumes that the 
transformation from physical space to computational space is regular every­
where. Because of this assumption, the type of mesh one can use is restricted. 
For an airfoil calculation, a c-type or O-type mesh which wraps around the 
leading edge is commonly used, while the H-type mesh (see Figure 1) which has 
a transformation Singularity at the leading edge is usually considered not 
suitable for calculation. However, the latter has some advantages in the 
geometrical description of a complex three-dimensional configuration. An 
obvious ex~le is the canard-wing combination. In order to place the shed 
vortex on the prescribed surface, the wakes coming off the canard and the wing 
must be on mesh lines. It is impossible for a c-type or an O-type mesh to 
fulfill this requirement. For an H-type mesh, this requirement can be satis­
fied fairly easily. Since we know that the difficulty with an H-type mesh 
stems from the singularity of the geometrical transformation, there must be a 
way to "undo" this singularity. 

In this report, we represent the potential and the transformation function 
near the transformation singularity by a trial function which reflects the 
local singular behavior in the computational space. This singular behavior 
cannot be represented by the conventional bilinear trial function and has been 
the heart of the problem in using the H-type mesh. Since the problem we are 
dealing with is common in all Mach number ranges, we have chosen to work with 
incompressible flow. The method developed here can, however, be extended to 
the transonic case. 
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Figure 1. H-type Mesh 
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Consider the two-dimensional Laplace equation 

with the far field Dirichlet boundary condition at infinity and the Neumann 
boundary condition on the airfoil. Variational principle for this problem 
states that solving Equation (1) together with the boundary conditions is 
equivalent to minimizing the quadratic functional 

for appropriate functions f which are square integrable [i.e., the right-hand 
side of Equation (2) is finite] together with their first-order derivatives 
(Strang and Fix, 1973). 

(1) 

(2) 

In the following finite-element formulation, we first generate a mesh of 
quadrilaterals in the physical space. For each cell w, the mesh is then mapped 
to a unit square n in computational space by the transformation X = X(x, y) 
and V = vex, y). It is more convenient to estimate I(f) in computational 
space. Therefore, we shall need the following formula for the change of 
variable. Let f be any function on w and F be the correspooding function on 
n, i.e., F(X, V) = f(x, y). Applying the chain rule and the change of 
variable formula to Equation (2) we have 

1(f) ~ f [ (FxYy - FyYX)2 + (FyXX - Fx"v)2] h-
1 

dX df 

fI 

where h is the Jacobian 

The variational problem is now completely handled in the transformed 
space. The variation of F within the computational element n is represented 
by some trial function having four corner values (~, ~, OJ, a4) as para­
meters. The elements are divided into two groups: regular elements in which 
the function F can be locally approximated by a bilinear function and special 

(4) 
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elements in which F as well as the mapping (x, y) + (X, V) are singular and 
special flSlctional forms IIkJst be chosen. 

In the following, we shall deal with the interior elements first. 
Treatment of the bOlSldary elements is given in Section 3. 

Regular Elements 
A schematic representation of the transformation between the physical 

space and the computational space is shown in the following figure. 

y 

PHYSICAL 
SPACE Y 

3 
-% 

COMPUTATIONAL 
SPACE 

% 4 

% "', , y,) ____ +-____________ ~x 
0 

, % 2 -

Figure 2. Transformation Between Physical 
and Computational Space 

x 

The local relationship between physical and computational coordinates is 

x = ~ - X) ~ - V) Xl + ~ + X) ~ - V) x2 

+ ~ - X) ~ + V) X3 + ~ + X) ~ + V) x4 • 

A similar expression holds for y. 

(5) 

In general, a bilinear function on the square cell (1, 2, 3, 4) with corner 
values (a1 ' ~ , ~ , a4) has the form 

F = ~ - X) ~ - V) a1 + ~ + X) ~ - V) ~ 

+ ~ - X) ~ + V) ~ + ~ + x) ~ + V) a4 (6) 
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Using Equation (5), the expression for h in Equation (4) can be written as 
a linear function in X and Y: 

where 

and 

h = ho + hxX + ty Y 

ho = ~ (x2 - Xl + x4 - x3) (Y3 - Yl + Y4 - Y2) 

- ~ (x3 - Xl + x4 - x2) (Y2 - Yl + Y 4 - Y~ 

hX = (x2 - Xl) (y 4 - Y3) - (x4 - x~ (Y2 - Yl) 

hy = (x4 - x2) (Y3 - Yl) - (x3 - Xl) (Y4 - Y~ 

The finite-volume scheme of Jameson and caughey (l9n) approximates h by 
its value at the center of the cell. Here, we try to extend the accuracy one 
order higher by approximating h-l in Equation (3) with a linear function. 
This can be done easily by binomial expansion. 

(7) 

(8) 

(9) 

Using Equations (5), (6) and (7), the integral of Equation (3) in a regular 
element can be obtained as a quadratic functional of the corner potential values 
aI' a2, a3 and a4• By summing the integrals from all the elements, I(f) is approx­
imated by a quadratic expression of the potentials at the mesh points (Fij ). 
Minimizing I is equivalent to solving for a system of linear equations: 

(10) 

The coefficients of this set of linear equations form the so-called sti ff­
ness matrix. The general expression of this stiffness matrix is quite cumber­
some and will not be given here. For an identity transformation, the weight 
in the stiffness matrix is distributed as shown in the following figure. 
It is the sum of a five-point formula and a rotated (450 ) five-point forrula. 

-1 -1 -1 

-1 -1 
8 

-1 -1 
-1 

Figure 3. Stencil of Stiffness Matrix 
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The transformation from physical to computational space is set up to be 
analytic in the four cells at the leading edge except at the leading edge 
itself, and it transforms these cells to four squares of unit area. 

Figure 4. Transformation Near Singularity 

It is well known that a function which is regular in the physical space 
behaves as r l/2 in the transformed space. Thus, rather than using a bilinear 
function and packing the mesh densely at the leading edge to approximate the 
singular soluticln, we use four special elements. 

On the trianglE~ (1, 2, 4) shown in Figure 5, consider the function 

y 

3 
(0,1) 

4 
(1,1) 

(0,0) (1,0) 
----~~------~~-------,--~X 

Figure 5. Special Element 

(11) 

Clearly :uch a function attains the values OJ. , ~2 and Ct4 at corners 1, 2 
and 4; furthermore, it is linear on the edge (2, 4) which would assure 
continulty betwl3en special and regular elements. Al()ng edge (1, 4), two such 
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functions from neighboring triangles are identical so that continuity between 
special elements is preserved. Heuristically, xl/2 should pick up ~/2 
behavior and the variation of corner values Q2 and Q4 should reflect the 
angular variations. A similar formula with the reverse roles of X and Y 
can be applied to the triangle (1, 3, 4). 

Let f be the function in physical space corresponding to F, which is of the 
form of Equation (11). We now evaluate l(f). By analyticity, we have the 
Cauchy-Riemann equations: 

Xx = Yy , '1y = -YX 

Substituting these equations into the Jacobian expression given as 
Equation (4), Equation (3) can be written as 

(12) 

(13) 

Note that Equation (13) is similar to Equation (2) except that we have F in the 
integral on the right-hand side instead of f. 

The four special elements are broken into eight triangles, in each of which 
the trial function is assumed to be of the form of Equation (8). A calcula­
tion of the ol/oQ terms using Equation (13) for I gives the following 
expression for the contribution to the stiffness matrix from the element shown 
in Figure 5: 

01 3 3 1 
aal 

Ql 4~- 4~+ 2 Q4 

01 9 38 29 aa2 
- 12 Ql + rr~ - IT Q4 (14) 

01 9 38 29 ra3 
- I2Ql + I2~ - I2Q4 

aI 1 29 29 52 
OQ4 

2' Ql - !2 Q2 - !2 ~ + 12 Q4 

We can take advantage of the permutational symmetry of the special elements to 
obtain the contribution to the stiffness matrix by the other three. 

The element stiffness matrix for each cell is computed and the results are 
assembled to give the global stiffness matrix K. 
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Let t be a potential which satisfies Equation (1) together with the boundary 

conditions. Let t «I) = x COS a + y sin a be the undisturbed potential with flow 

angle a. Instead of solving for t, it is more convenient to solve for the 

reduced potential G = t - t «I). The boundary conditions on t nust be transformed 

to those on the reduced potential G. 

Far Field Boundary Condition 
The far field bCUldary condition is given iteratively as the potential 

vortex field generated by the lift. Consider the far field boundary cell 

(1, 2, 3, 4) shown in Figure 6. 

BOUNDARY 

304 

1 2 

Figure 6. Far Field Boundary cell 

Let edge (3, 4) be part of the bOlJ'ldary. In solving for the solution ai 
values, which are comer values of G, a., and a4 are given by the potential 

vortex obtained from the previous iteration. Hence, one assenDles the stiffness 
matrix for this bOlJ'ldary cell in the same way as for an interior cell. In can­
puting the solution, terms invol ving ~ and a4 are known quantities and are 
moved to the rig,t-hand side of the equation. 

Neunam Boundary Condition 
The Neunam bOt.l'ldary condi tioo on the airfoll for t is an t = 0, where h 

is the outward normal unit vector to the airfoil (See Figure 7). While the 
bCU'ldary conditioo for t is the so-called natural boundary condition in the 
variational method, that on G requires sane modification. The corresponding 

boundary condition for G is 

(15) 
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-n 

Figure 7. Cell With Neunann Boundary Condition 

Consider now a cell with the Neumann boundary condition on edge (1, 2). 
Then, Equation (15) together with the expression for ~= takes the form 

an G = - n1 cos a - n2 sin a 

where nl and n2 are x- and y-components of n [the outward normal of the line 
segment (1, 2)]. 

For a cell with the Neumann boundary condition as in Figure 7, we define 

(16) 

I(g). f (~+ ~)dX dy-+ 2 f{n1 cos ex + n2 sin ex)g <b (17) 
cell 

where f c:b is the integration on the 1 ine segment (l, 2). We next reproduce 
the well-known proof that if G is a function which minimizes I (g), then G 
satisfies Equation (16) (strang and Fix, 1973). Let E be a real number, then 

I(G + £H) = I(G~ + ~) dx dy + £2 I (~ + ~) dx dy 

+ 2£ I {Gxl\. + ~H~ dx dy + 2 f{"J. cos ex + "2 sin ex) (G + £H) <b 

= I(G) + 2£ f{G~x + G!i~ dx dy + 2£jcn1 cos ex + n2 sin ex)H <b 

+ £21g + ~)dX dy (18) 

Since G minimizes leg), the E term in Equation (18) must vanish, i.e., 

I{GxHx + Gl~ dx dy + f{n1 cos ex + n2 sin ex)H <b • 0 (19) 
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for any function H such that I(H) < 00. Integrating by parts, we have 

-f(C"" + ~yl H dx dy + f [(a;.; C) + (n1 cos a + ":2 5111 a) 1 H cb = o. (20) 

Since H is arbitrary except for the constraint that I(H) < 00, each integral 
in the above expression must vanish independently. The vanishing of the 
second implies Equation (16). 

Thus, cells with Neumann boundary conditions differ from interior cells 

only by the second term on the rig,t-hand side of Equation (17). Using the 
linear expression for G on the line segment (1, 2), this term can be estimated 

as follows: 

2 f (n1 cos a + ":z sin a)C cb 

j l/2 

= 2L (nl cos a + n2 sin a) [(~ - X) al + (! + X) a2JdX 
-1/2 

= L (nl cos a + n2 sin a) (al + a2) (21) 

where the first equality comes from Equation (6), and the second equality 

comes from a straightforward calculation. L is the length of the line segment 
(1, 2). 

For the two special elements with Neumann boundary conditions, we obtain 
resul ts similar to Equation (21) by using a hig,est order approximation. On 
the boundary of the special element cell, the analytiC mapping can be approxi­
mated by t = Lxl/2 as shown in Figure 8. 

\ \ 

\ 1\ ~ 
~ , 

\ ~/ L 
t--- \ 
\ \ ~ = L XYl , , ~ . .---------
\ , 

-r----

r- - --, 
I I 
I I 
I I 
I I 
I I 
o 1 

.. x 

Figure 8. Local Mapping of Boundary Near Singularity 
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00 = dE; = ~ LX-1/2 dX 

Using this together with Equation (11), we have 

2 f(nl cos a + n2 sin a) G dJ 

= L (nl cos a + n2 sin a) Jl [al + (a2 - all xll2] x-1/2 dX 

o 

(22) 

= L (nl cos a + n2 sin a) (al + ( 2) (23) 

The result is identical to Equation (21). 
Thus, for cells with Neumann boundary conditions, the calculation of 

al/aal gives an extra term of the form 

L (nl cos a + n2 sin a) • 

When solving for the ai values, this term is known and is moved to the 
right-hand side of the equations. 

(24) 
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The mesh is generated by the following procedure. The curvature K of the 
airfoil at the leading edge is estimated by using the leading edge and two 
adjacent data points. A parabola of the same curvature through the leading 
edge is fitted in the physical space z = x + iy. Next, the parabola is mapped 
onto a semi-infinite line (0, s) in t space (t = s + it) by the inverse of 

the analytic function 

z = i ~12 + K t 

We can now generate a mesh of rectangles in the ; space such that the four 
cells at the leading edge form four squares. The mesh in t space is mapped 
back to z space by relation (25). Finally, we use a shearing transformation 

to shear the parabola to the airfoil surface to obtain a body-fitted mesh 
system (see Figure 9). 

. \ I 

\\\\~~ 
1\\~\\\ 

~\\\\\~ 
1\\\\\' 1\\ 

~\ 1 .\ \ 
m\1Y\ 

a 
llJlli I 
flllil 

IIIlJJlHl '11I1ff 

WIIIJ 

1111111 

Figure 9. H-type Mediun Mesh 

(25) 
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After gathering the stiffness matrix, the solution to the linear equation 

system is obtained by a horizontal line relaxation scheme. The relaxation 

starts at the line extending from the leading edge to the upstream infinity. 
Since the leading edge is a mesh singularity, the mesh line extends downstream 

fran the leading edge aloog both the upper side and the lower side of the 
branch cut, I.e., aloog the upper and lower surfaces of the airfoil 
(Flgure 10). The potential values along this entire line are updated sinul­
taneously by a special solver. Then, the ordinary tridiagonal solver is used 

to relax the lines successively away from the airfoil. 

\ \ \ 

\ \ \ \ 
~ 
~ 

I / /1 

I' i I i I 

Figure 10. Une Relaxation 

In order to verify the accuracy of the code, a test case for flow past a 
N\CA 0012 airfoil is carried out with an angle of attack of 3 degrees and 300 

iteratioos for each of the coarse, medilJll and fine meshes. The results (see 
Figures 11-16) match those of FLO 26 for a C-type mesh (finite-vollJlle scheme, 

Jameson and caughey, 19n). For the calculation using an H-type mesh with 
leading edge cells treated as regular elements, the pressure distribution 

obtained exhibits an ooreasCl'lable "kink" near the leading edge as seen in 
Figures 12 and 13. This "kink" seems to persist as the mesh is refined. 
Figures 14 and 15 show the corresponding results using special elements in 
four cells neig,boring the leading edge. These results show that the 00-

reasCl'lable behavior of the pressure distributioo near the leading edge is 

renoved. For further ~ison we also include the result by a panel method 

(Figure 16). Again, the results agree extremely well with those obtained by 
the finite-element method with singularity embedding. 
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A few words can be given to the possibility of extending the present method 
to transonic cases. The best way seems to be adapting the artificial density 
concept. The conservation of mass can be written as 

iJ • fP iJ~) = 0 

where 

is the artificial density and PS6S is the upwind difference of the 
isentropic density. The nonlinear equation is solved iteratively as 

(26) 

(27) 

(28) 

where the superscript n denotes the nth approximate solution. For the (n+l)th 
approximation, pen) is a known function. The variational principle is then to 
minimize 

I ($(n+O) = f fP V$ • V$) dx dy (29) 

w 

To the degree of accuracy comparable to the existing finite-volume scheme, 
p in an element can be approximated by its value at the center of the cell. 
The singularity embedding method can be extended to the transonic case by 
multiplying the incompressible cell stiffness matrix by its cell artificial 
density. One also needs to modify Equation (17) for Neumann boundary condi­
tions. The rest of the method remains unchanged. One can try to obtain a 
more accurate result by approximating the isentropic density by a linear 
function in a cell and treating the added part (-~PS6S) as the difference in 
the center value. The stiffness matrix will be more complicated, but no 
essential difficulty is expected. 
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by the latter is removed by the embedding of the singular element. Sugges-
tions to extend the present method to transonic cases are given • 
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