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FOREWORD

The research described herein, which was conducted at Georgia Institute of
Technology, was supported by NASA Grant No. NAG 3-96. The work was done under the
management of the NASA Project Manager, Bert R. Phillips, Wind and Stationary Power
Division, NASA-Lewis Research Center.
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ABSTRACT

A theoretical analysis and an experimental investigation were conducted to assess
the feasibility of developing a spinning wave heat engine. Such an engine would utilize a
large amplitude traveling acoustic wave rotating around a cylindrical chamber, and it
should not suffer from the inefficiency, noise, and intermittent thrust which characterizes
pulse jet engines. The objective of this investigation was to determine whether an
artificially driven large amplitude spinning transverse wave could induce a steady flow of

air through the combustion chamber under cold flow conditions. In the theoretical analysis

the Maslen and Moore perturbation technique was extended to study flat cylinders
(pancake geometry) with completely open side walls and a central opening. In the parallel
experirnental study, a test model was used to determine resonant frequencies and radial
pressure distributions, as well as oscillatory and steady flow velocities at the inner and
outer peripheries. The experimental frequency was nearly the same as the theoretical
acoustic value for a model of the same outer diameter but without a central hole.
Although the theoretical analysis did not predict a steady velocity component,
simultaneous measurements of hotwire and microphone responses have shown that the
spinning wave pumps a mean flow radially outward through the cavity. This conclusion has
been verified by flow visualization using both a sensitive tufted wand and smoke as flow
tracers. These results indicate that further development and testing of the spinning wave
engine concept is warranted,
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INTRODUCTION

This report is a summary of work conducted under NASA Grant No.
NAG3-96 during the period September 8, 1980 through September 7, 1981.
This project is entitled "Development of a Spinning Wave Heat Engine" and
the NASA Technical Officer is B. R. Phillips at the Lewis Rejearch Cenfer.

The purpose of this research program is to provide basic information
needed for the development of a spinning wave heat engine originally
conceived by M. F. Heidmann at the NASA Lewis Reséarch Center. The
spinning wave heat engine concept is based on the presence of a large
amplitude traveling acoustic wave rotating around a cylindrical chamber.
The spinning wave engine is conceptually similar to the pulse jet engine,}but
fundamental differences between the two engines suggest that the spinning
wave concept can eliminate or alleviate the problems of inefficiency, noise,
and intermittent thrust that caused the demise of pulse jet engine

development. On the other hand, the spinning wave engirie retains the

characteristics of simplicity, low cost, low weight and absence of rotating -

parts that stimulated the development of pulse jets in the early 1950's.

As a propulsive unit by itself, a spinning wave engine is not a
competitor of current engines for commercial CTOL and V/STOL aircraft.
Effective pressure ratio is relatively low (less than 5:1) and, theretore,
specific fuel consumption for such applications would be relatively high. The
concept, however, remains attractive for many applications such as military,
powered glides, auxiliary power, precompression stage for other engine
cycles, and ground-effect vehicles. Within its pressure ratio range, the cycle

efficiency of a spinning wave engine can be higher than that of other cycles
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because heat is essentially added at constant volume.

In order for the spinning wave engine to function, the spinning
acoustic wave must induce a steady flow of air through the combustion
chamber, Such a steady flow is a property of nonlinear waves (i.e., large
amplitude) in which the oscillating flow in one direction is greater than that
in the opposite direction and a net through flow results. In the nonlinear

l, large amplitude standing and traveling

analysis by Maslen and Moore
acoustic waves in a closed circular cylinder were studied using a
perturbation technique. Maslen and Moore's results indicate that a small
depression of mean pressure occurs at the center and a small elevation of
mean pressure occurs at the periphery when a large amplitude traveling first
tangential (IT) wave is present. However, no net through flow can occur for
this geometry because there are no inlet and outlet openings. When viscosity
is included in the analysis, a steady wheel flow is predicted which rotates in
a direction opposite to the direction of wavc travel for low order modes.
This wheel flow, however, does not contribute to a net flow through the
chamber. |

In order to obtain a steady flow through the combustor, an inlet and
outlet must be provided. The results of Maslen and Moore for the spinning 1T
mode appear to imply that if openings are provided at the center and at the
periphery of the cylinder, a net inflow will occur at the center and an
outflow will occur at the periphery. Providing the openings, however, will
modify the boundary conditions at the center and the periphery so that
Maslen and Moore's analysis no longer applies. In the most extreme case the

side wall of the cylinder is completely open and the boundary condition’ at

A v 2




the wall requires (approximately) that the pressure oscillations vanish there
(in contrast to the closed cylinder in which the radial velocity component
vanishes at the wall). Similarly, providing a central inlet Is expected to
modify the structure of the spinning transverse modes.

In this investigation the acoustic generation ¢f a steady through flow
in the absence of combustion is determined by extending the Maslen and
Moore analysis to include the effects of inlet and outlet openings. This work
is divided into two parts. In the first part the Maslen and Moore technique is
used to study flat cylinders (pancake geometry) with completely open side
walls and a central opening. In the second part an experimental apparatus is
used to verify the analytical results, The remainder of this report

summarizes the analytical and experimental work done under this project.
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THEORETICAL ANALYSIS

The objective of the theoretical analysis described herein is to
determine whether a large amplitude spinning acoustic wave can pump a
steady flow through a flat cylindrical chamber which is open on the
periphery and at the center. Such an annular pancake cavity is formed by
two parallel, closely spaced annular disks as shown in Figure 1. To minimize
losses due to acoustic radiation and to ensure a two-dimensional acoustic
solution, the spacing h between the disks must be small compared to the
outer radius b; that is h/b <<l. Under these conditions the pressure at the
open boundaries is approximately equal to the ambient pressure; that is, as a |
first approximation the pressure perturbation must vanish at the outer edge
(r" = b) and inner edge (r* = a) of the annular plates, This is analogous to the
open-end boundary condition used in the analysis of organ pipes. In contrast,
the nonlinear analysis of Maslen and Moore“) was applied to hard walled
cylinders for wnich the radial velocity component must vanish at the outer
boundary (there is no inner boundary in this case). In fact for the first
tangential spinning mode, the maximum pressure fluctuation occurs at the
hard walled boundary in the Maslen and Moore analysis.

Although the boundary conditions are different, the governing
differential equations are the same for both geometries:. Therefore the
approach taken in this analysis is to follow closely the Maslen and Moore
procedure, substituting the appropriate boundary conditions where
necessary. This leads to some serious difficulties, which have not been
satisfactorily resolved. Nevertheless it is believed that the solutions

obtained in this manner are instructive and shed some light on the expected
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Figure 1. Annular Pancake Geometry and Coordinate System.
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behavior of the spinning wave engine. The exploration of alternative

methods of analysis, such as the Method of Weighted Reslduals,(z's") was

beyond the scope of this one-year project.

Moditication of Maslen and Moore Analysis

Basic ?ro;_gdure. In the Maslen and Moore analysis it is assumed that

the flow is isentropic and irrotational so that a velocity potential, ¢, #xists

14

such that W = u. The energy and state equations yield the isentropic flow

relation, P =Y. The continuity and momentum equations yield the

following equatios; ior the velocity potentials

vZe ~0,, =WV + Y—;iw ®ve) v 2w+% VO e V(Vp e V)
2
+ (v=1) @, Vo (1)
where v is the specific heat ratio and the pressure is related to ¢ by:
Y=l
1-2 Y = (y-1) [wc-f-% Ve e th] (2)

The above equations involve only dimensionless quantities defined as follows:

»
P = nondimensional pressure, P /P0
Y * ‘
t = nondimensional time, Wt
u,v,w = nondimensional axial, radial, and tangential velocities
o . » * *
(cylindrical coordinates), u /co, Y /co, w /co
* ¥ [ ‘* -
u =  nondimensional velocity vector, u /co
. , *
X = nondimensional axial coordinate, wx /c

. . . *
o = nondimensional radial coordinate, wr /co




O —— 'S

8 = #igle in cylindrical coordinates
o =z nondimensional density, p./p o

where y Is the angular frequency (dimensional), N is the velocity of sound in
the ahsence of the wave, the subscript o refers to dimensional flow
properties in the absence of the wave, and the superscript* refers to
dimensional properties,

In the perturbation procedure used by Maslen and Moore the velocity
potential and pressure are expanded in terms of an amplitude parameter ¢ ,

thus

® = com + c’v‘z’ + c’ca") + o (3)
and P=1+ CP“) + c’ZP(Z) + 039(3) + ooe ®)

Substituting Egs. (3) and (4) into Egs. (1) and (2), collecting and grouping
terms according to powers of ¢ , and equating the resulting coefficients of
each power of € to zero gives equations to be solved successively for the

first, second and third order potentials and pressures.

First Order Solutions. Equating the coefficient of ¢ in Eq. (1) to
(1)
s

zero gives the wave equation for the first order potential ¢

(1) _oll
o el el g ()

while Eq. (?) yields:

P“) ==Y9 (tl) (6)

P PN P T
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Spinning wave solutions of Eq. (5) were obtained by the method of
separation of variables anc were required to satisfy the boundary conditions
pll) . 0at r' =a (inner) and r" = b (outer) boundarles. These acoustic

solutions for the velocity potential ¢ ) have the form:

¢(1’={J,,(ﬁnkr) - [;—(vv;—k,)-] Y (B kr)} sin(t+n8) (7)

n " nk

where I and Yn are Bessel functions of the first and second kinds,
respectively, of order n. The parameter Vv is the ratio of inner radius to
outer radius, v = a/b, and the eigenvalue P nk is the k™ solution of the

equation
I Y (vx) - ¥ ()3 (vx) =0, (8

The velocity potential ep(” is expressed in terms of the dimensionless radius
r= r*/b, the angular coordinate 8, and the dimensionless time t. The actual

frequency £ is then related to the eigenvalue by
cO
The acoustic pressure is then given by

P“) vay Rn(d) cos(t+nd) (10)
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where Rn(d ) is the radial acoustic eigenfunction given by

Jn(vpnk)
Rn(a)=3n(d) - DR Yn(oz) (11)

' n( vank)

* *
and o =gt /co= Bnkr /b= Bkt

Detailed calculations of the radial eigenfunctions, eigenvalues and
pressure fields have been carried out for the principal mode of interest, the
spinning first 'tangential mode (n = I, k = 1). A plot of the eigenvalue B 1138
a function of v Is shown in Figure 2, which implies that the frequency
increases as the diameter of the central opening increases. For v< 0.1
Figure 2 also shows that the frequency is close to the value ( B T 3.83171)
obtained when no central opening is present (i.e., two closely spaced disks).
The radial dependence of cpm is shown in Figuré 3 for v = 0, 0.1, and 0.2,
For the case of no central opening ( v = 0) the coefficient of Y, vanishes
(Y l((.?'} = = @) and the solution becomes cp(l) =] l( 91 lr) sin (t +0 ). Figure &4
shows the pressure field (isobars) for the case v = 0 (no central opening),

while Figure 5 shows isobars for v = 0.2,

Second Order Solutions. Setting the coefficient of 62 in Eq. (1) equal

(2)

to zero yields the following equation for the second orde: potential ¢

A2 [ o WO ()
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where only the known first order solutions appear on the right hand side.
Following Maslen and Moore, Eq. (12) is assumed to have a solution of the

form

o Lan2(tene) [R2(a)-0 1)t ()] (13)

Substituting Eq. (13) into the left-hand-side of Eq. (12) and the first order
solution given by Eq. (7) into the right-hand-side of Eq. (12) yields the

following inhomogene=us Bessel equation for f( o ):

" () + 4 (@) v 4 (1- %) 20 = R2) (19

Qh)l :N

where the primeé indicate differentiation with respect to «.

Equating the coefficient of ¢

(2)

in Eq. (2) to zero gives the following

M and

relation for P

@),

in terms of the first and second order potentials o

@ . [6@, L oo®, oo, L(D)"] (15)

Substituting the first and second order potentials (i.e. Egs. (7) and (13)) into

Eq. (15) gives the solution for p( a5

PP - v[ P,y (@)cos 2(2+n8)+ Pyy(a) ] (16)

where

2 2
on(a')=-,l;(3+2—i>kr2‘(d)-%(:l!;‘(°’)] -(ve DKy

14

Lo
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and Py, () = } [R(a)] L R%a) (1- 9—;) (18)

R

The second order contribution to the pressure is thus seen to consist of a
double frequency component (i.e., on(d) cos 2(t + n6)) and a steady
component (i.e., P,,( @),

In order to complete the second order solutions, the function f(o)
must be obtained by solving Eq. (14). Since this is a second order differential
equation, the solution for f(a) will contain two arbitrary constants. These
and outer radii; namely, that the pressure perturbations vanish there. This is
not as straightforward as it at first might seem, because the relationship
between the dimensionless radial coordinate o and the dimensional radial
coordinate r* involves the angular frequency y . Since the frequency is
usually dependent upon amplitude for nonlinear systems, the application of
the boundary conditions becomes complicated. Therefore the determination
of the frequency dependence upon amplitude and the application of the
boundary conditions will be deferred until after the third order solutions

have been derived. The solution for f( o ) is given in Appendix A.

Third Order Solutions. Equating the coefficient of ¢ in Eq. (1) to

zero yields the following equation governing the third order potential @3:

I S e e B A
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+(v-!)2v(tl) vf" "‘tlt) + [2 wl. o .

+ (y -l)’(tl)w(tz) +(y -1) VQ“) . V¢“)’(tl) (19)

where only the known first and second order solutions appear on the right
hand side. As in the Maslen and Moore analysis, this equation is assumed to

have a solution of the form:
cp(a);Fi(a)sin 3(t+n8)+ Fs(a)sin (t+nd) (20)

where the functions F l(o/) and F,(oz) satisfy the following inhomogeneous

Bessel equations:

F'+ LE/ 49 LAY R/ a) (21)
1*aF ,,,z) 1= &
. L ey ) n F. = Ra) (22)
sta st Ptz )5 s

The inhomogeneous terms Rl(a) and R 5’(a ) appearing in Egs. (21) and (22)
are determined by substituting the first and second order potentials (i.e.,
Egs. (7) and (13)) into Eq. (19), and they are given in Appendix B.

)

Also the third order pressure contribution was derived by

applying the perturbation analysis to the nonlinear relation between pressure

16
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and velocity potential (Eq. (12)) to obtain:
P(g)--v[¢§3)+ v"(l) . v’(z)_¢$!)¢£2)_ %Q(tl) v Q(l) . VJl)

A3
2%y (.1
cBE )]
(23)
Substituting the first, second, and third order potentials into Eq. (23) gives

the solution for P(a) as:

P(3)=-yP30c033(t+ne)- yP3“cos(t+ne) (24)

where

Pagtad =+ (5 )rig o (240) {1- D)yt

+ ;ﬂ {-3®)?+ [3;‘—; . 1y0]p2 } (25)
Pyl = Fs- (131) Re' s (138 (s 3':‘) Rpf

R_ - 2
n 142 n 2
cel? [ G -ve ] r?} (26)
The third order contribution to the pressure is thus seen to consist of a third

harmonic component (i.e., P30 cos 3(t + n©)) and a correction to the

fundamental (i.e., P, cos (t + n 6)).

i 5455
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In order to complete the third order solutions the radial functions
F,(@) and Fg(e) must be obtained by solving Egs. (21) and {22) subject to
the boundary conditions applied at the inner and outer radii. This depends on
the amplitude dependence of the frequency which will be considered in the
next section. The solutions for F (o) and F,(a) are given in Appendix B.

In both the second and third order solutions, the expressions for cpm,

o)

) on(oz). st(d), P30(oz), and ,PM( a) as well as the differential
equations governing f(a), F (@) and F.(@) agree with their counterparts

in the original Maslen and Moore analysis if one replaces R, (@) with 3. @)

Boundary Conditions and Dependence of Frequency Upon Amplitude.
The perturbation technique of Maslen and Moore also requires that the

frequency varies with amplitude according to the expansion

W= W+ eW + c2w2+ c3w3+... (27)

where w o is the acoustic frequency. This is equivalent to expanding the

eigenvalue B = by /co, thus

B = B, + ¢By+ c262+ e By + wue (28)

In the remaining discussions the subscripts denoting the tangential and radial
mode numbers n and k for the eigenvalue Bnk will be dropped.
In order to determine the coefficients 8,, Boy e in Eq. (28), the

pressure was required to satisfy the boundary condition P -1 =0 at the

18
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outer radius o =B and at the inner radius o = vB , thus
[ P(l)( B ’e ,t) + 02P<2)( ﬁ ’e ,t) * c3P(3)(a » 9 ’t) = O (29‘)

ePDiys,e,0+ 2P vp 0,0+ PNvp,0,0=0  (29)

Substituting the expansion of § given by Eq. (28) into Egs. (29), expanding
each term in a Taylor series about the acoustic value ﬁo or \’ﬂo. and
equating the coefficients of each power of ¢ to zero yield the Loundary
conditions for the second order function f(a) and the third order functions
F (a) and Fg(a)

In particular, equating the coefficient of ¢ to zero yields Rn( P o’
= Rn( v Bo) = 0 which is already satisfied from the definition of P o'

2

From the coefficient of ¢“ one obtains the following expressions:

Bl R;‘( so) cos(t+ng)+ on( 50) cos 2(t + ng ) + PZB(E o) =0 (30a)

V8, R'n(vso)cos(tq-nehl’zo( VB)cos2(t+nB)+Pyy(vE)=0

(30t)
Equations (30) must be satisfied for all values of t and 6, thus each term
must separately vanish. The first term is zero only if Bl vanishes, since
the derivatives of the eigenfunctions R;‘( p o) and R"‘(\) B,) are not zero at
the boundaries (see Figure 3). The other two terms require that the second
order pressure functions on( @) and P23(°f) vanish at @ = VB o and @ =

P o' Thus the first order correction to the eigenvalue P 1 is zero which

19
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agrees with the well-known result from linear acoustics that the frequency
is independent of amplitude. From Eq. (17) the boundary conditions on
on(a) yield the following boundary conditions to be satisfied by the second
order function f(o )

2l 2
(6 o) = vy L aPo’ ] (31a)
l [} 2 U
() = 'wr;m[kn(v’o)] (31b)

On the other hand, Eq. (18) and the boundary conditions on st(ot) require
that R"‘( B, and Rf"( VB ) vanish, whick is impossible since the
derivatives of the eigenfunctions R, are finite at the boundaries. This
implies that the condition that the pressure perturbation vanish at the inner
and outer boundaries cannot be satisfied in the framework of the Maslen and
Moore theory.

The failure of the second order solutions to satis{ the boundary
conditions is the difficulty mentioned previously. This residual pressure
perturbation (P - 1), which is independent of time and angle, is given to
second order by (using Egs. (29), (16) and (18)):

PAB,) = -1,;:[ Rpl B'o)]z (32a)

- el ! 2
pi(vB )= L8[ Ra(VPT] _ (32b)

e AT T st an s ta e e el S e . e v fe o e e een e e e T
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where P’ is the dimensionless pressure perturbation P-1, These boundary
residuals appear to arise from the nonlinear terms in the relatlonshi‘p
between pressure and velocity potential (i.e., Eq. (2)). It is possible that
these boundary residuals are an inherent error assoclated with the Maslen

and Moore analysis when one attempts to satisfy pressure boundary

conditions with a perturbation analysis based on a velocity potentlal. In the
original Maslen and Moore analysis for a cylinder with rigid boundaries, one
required the normal velocity component to vanish at the boundary. Since the
velocity is linearly related to the velocity potential, the boundary residuals
did not appear in the original analysis. Further analysis of this probiem has
not yielded a method of satisfying the pressure boundary conditions to
second order, Therefore the approach to be taken in the remainder of the
analysis will be to accept these boundary residuals as part of the error
incurred by using an approximate perturbation analysis. |

Returning to the Taylor series expansion of Egs. (29), setting the

3

coefficients of €~ equal to zero yields:

[32 R;( so) + Pau( so)] cos(t + no ) + 930( ﬁo) cos3(t+n6)=0 433a)

[ By R;( vao) + PB“(\) B o)] cos(t +n8) + PBO( vBo) cos3(t+nB)=0

(33b)
where B = 0 has been used. Again each term must vanish separately. The
second term, along with Eq. (25), yields the followir{g boundary conditions to
be satistied by F (o)

Fi(p)= 2 Ricpye(s) (34a)

e

21
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Py w8 )= L) RAwB ) () (34b)

The first term and Eq. (26) give the boundary conditions for F,(Ol) in terms

of the second order correction to the eigenvalue 62 as follows:

Fo(B) = TELRAB (B - BRI(B) (35a)

Fy(vB )= LER(VE ' (VB ) - VB,R(VB)  (35b)

.The eigenvalue correction Bz can only be obtained after the
inhomogeneous Bessel equation for F5(°") (l.e., Eq. (22)) has been solved,
This analysis is given in Appendix B and yields the following expression for
Py

;- i [RA(BM (B = R8I (vB)]-Fy(p)

R'n(ao) - vo R:‘ (vﬁo)
(36)

where o = J (B )/ (VB ) and F5P(d ) is the particular solution of Eq.

(22) given in Appendix B.

Total Solutions. In order to obtain numerical solutions relevant to the

spinning wave engine, expressions for combining the first, second, and third
order solutions given in the preceding sections are needed. These are based
on the expansions of the velocity potential and pressure given by Egs. (3) and
(4) where the dependence of frequency upon amplitude is accounted for by

the Taylor series expansion procedure used in the previous section. Since we

:
i
i
i
]
5

e
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are interested in interior points as well as boundary points, the Taylow
expansion is performed about o = B r where o =(8 + 2 B,)r.
The pressure perturbation P’ is thus obtained from Eq. (4) using a

Taylcr expansion about ﬁor to give:

P'(r,0,t) = ¢ Pu)( Bl 8,t) + e P(Z)( Bof© t)

¢ {0,004 8 2 0r00} (37)
Using Egs. (10), (16), and (24) in Eq. (37) yields
P = - v{eZP”(d) +[c R (a) + c3P3,‘(a)+ ¢? @l R (o )]cosétme)
v ¢2Pygla)cos At +ne)+ Pyola)cos At +n0)}  (38)

where Cz = 52/;3 o and computations are made using the acoustic
eigenvalue B  in determining & (i.e., using o = B r in Eq. (38)).

The acoustic velocity components are also of considerable interest in
the spinning wave engine analysis, since they are nceded to deiermine the
acoustic pumping of a steady flow through the engine. The radial velocity v
and tangential velocity w are determined from the definition of the

velocity potential and Eq. (3) as follows:

(1 (2) (3
) 2 3 3
Y = 20 = € -&{,- + € ﬁ' + 33 -5%- (39)
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w =é =§ { ,%.%.(l) . ‘2 a (2) . ‘3 3’} (40)

where again o = (B + ¢ Byr. Performing the Taylor series expansion

about B ,f and neglecting terms higher than third order in ¢ gives:

0 2 (1) (2)
oo, = {38 (g + 2o 227 (8 }s 235-(8 1)
t)
y & -g-!aa (B0 (1)
(0 @ 3
e = {e 2. 2327 (80 o[ 380

O
(1) a2 (1)
G55 (B + By - o]} 42

Introducing expressions for the velocity potentials from Egs. (7), (13), and
(20), performing the indicated differentiations, and grouping like harmonics

together yields:

/ 2
v(a,6,t) = {e R,"(a)+ é [F;(a)- ¢y R;\(d)- Cp (l- -'li)Rn(a )] } sin(t+ng)
o

+ ez[nn(a)R;(a) - L;-‘-f'(o, )] sin 2(t +ng)

v e Fi(o ) sin 3(t + ng ) (43)




wlw,0yt) = '3 { ¢R (o) + e’[ F5(°/ )+ Cz(otR"l(d)- Rn(oz))] }cos(tme)

+ g gz[ Rlz‘(oe)- (y+i)(a) ] cos 2(t + nQ)

"%9 é Fi(a)cos 3(t +n ) (44)

These expressions can be used to determine the magnitude of the
steady flow driven by the spinning wave. Since only the radial component
contributes to a through flow, only Eq. (43) for v is of concern here, The
steady through flow is obtained by taking the time average of v over one
period of oscillation. Since the radial velocity consists entirely of terms
which are sinusoida! in {t + n6) (fundamental with second and third
harmonics), the time average of v is zero. There is no steady or time-
independent term. Thus the Maslen and Moore analysis predicts no steady
flow generated by nonlinearities in the wave motion when the pressure
perturbation is required to vanish at the boundaries. This result appears to
be independent of the difficulty in satisfying the boundary conditions for the
second order solutions.

Typical Numerical Solutions. The expressions derived above for the

pressure perturbation P’ (Eq. (38)) and the velocity components v and w
(I‘gs. (43) and (44)) were used to obtain numerical solutions for a typical
“pinning wave engine configuration. In these calculations an annular panciake
Zeometry was assumed with the ratio of central hole diar;ieter to disk
diameter , of 0.2. The working fluid was assumed to be air with a specific

heat ratio vy of 1.4, since combustion is not considered in this analysis.
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Finally a first tangential (i.e,, n = I, k = 1) spinning mode was assumed with

an amplitude parameter ¢ of 0.3.

Before the acoustic pressure and velocity can be calculated the
following functions are needed: the radial eigenfunction Rn(cv) and its
derivative, the second order function f(a) and its derivative, and the third
order functions Fl(a) and Fj(oz) and their derivatives. The radial
eigenfunction for the first tangential mode has already been shown in Fig. 3
where B = 4.2357. The second order functions f(«) and f'(«) are shown
in Fig. 6 for V=202 and Y = L4 From these and the radial
eigenfunctions, Egs. (17) and (18) yield the second order pressure functions
on(a) and P23( a) which are plotted in Fig. 7. In order to obtain the third
order functions F («) and F5(a), Eq. (36) was used to yield g, =

~49254. The function F,(a) and the corresponding pressure function

P30(a) (obtained from Eq. (25)) are shown in Figure 8, while Figure 9 shows
Fs() and the function Py (o) + a ¢, Rr;(a) (obtained from Egq. (26) and
(38)).

Pressure waveforms for the spinning first tangential mode were
computed using Eq. (38) for two radial stations: r = 0.56 where Rl(a) has
a maximum (pressure antinode) and r = 0.8. These waveforms are plotted in
Fig. 10 for both second order (e:3 terms neglected) and third order ( e
terms retained) approximations with ¢ = 0.3, At r = 0.56 the second order
waveforms are only slightly distorted from a sinusoidal shape since on(oz )is
relatively small, while at r = 0.8 the second harmonic distortion is readily

apparent for here on(a) attains nearly its maximum magnitude. Adding
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the third order terms tends to flatten the peaks at r = 0.56 and smooth out
the minima at r = 0.8, At the boundaries r = 0,2 and r = 1.0 the
oscillatory component of the pressure vanishes, however a time independent
component or mean pressure shift remains. This bouncary residual which was
discussed previously (Egs. (32)) amounts to about - 2% of the ambient
pressure at the inner boundary and about - 0.3% of the ambient pressure at
the outer boundary for ¢ =0.3.

The radial velocity waveforins were calculated using Eq. (43) at the
boundaries where they attain their maximum amplitude. These waveforms
are shown in Figure 11 for both second order and third order approximations.
The principal effect of nonlinearities on the velocity waveforms is to
steepen the rising portion of the curve and flatten the descending branch
while preserving symmetry about zero velocity. This is more apparent at the
outer boundary r = 1. Due to this symmetry, there is no steady flow through
the system,

The effect of amplitude upon frequency is determined from Eq. (27)

ass

-fg—z I+ ¢ 02 (“5)
o 2

For the present case, 32 = - 49254 for which C2 = - .11628. Thus
frequency is seen to decrease as the amplitude parameter is increased. A

similar variation of frequency with amplitude was calculatad by Maslen and
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Moore for the hard-walled cylinder with {p=- 0.084, For ¢ = 0.3 the
frequency shift is quite small, giving a frequency only about one percent less

than the acoustic frequency.

Analysis with Steady Potentlals

The straightforward application of the perturbation technique of
Maslen and Moore to the open annular cavity does not yield an acoustically
driven steady througii flow as shown by Eq. (43). In this analysis the solutions
(1) e;,(2) (3)

assumed for ¢'/, ’ and ¢’ were patterned after the solutions
assumed by Maslen and Moore which did not explicitly contain a steady flow
term. In this problem, however, a steady flow term is permissible since the
boundaries are open. In an attempt to predict acoustic pumping, the Matslen
and Moore approach will be modified by including a steady potential in the

D @ g O,

solutions for ¢
The analysis is modified by adding a steady potential to each of the

unsteady potentials used previously. Thus the velocity potential becomes

¢ = e[wm+ 5“)] + ¢ [¢(2)+ 5(2)] N [¢(3)+ 5(3)]'*---
| (46)
®

where the steady potentials # " are functions of « andk 6 and the sum of

i, =)

the potentials¢ "’ + &% must satisfy Egs. (5), (12), and (19). The existence

of & (1)

, however, implies the existence of acoustic pumping in the first
order or linear regime (small amplitude). Since ac:o';stic pumping is expected
to arise from the nonlinearities of the system, it will be postulated that the
first order steady pot‘ential is zero. Thus the first order solution for the
velocity potential is still given by Eq. (7) and the first order pressure is still

given by Eq. (10).
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The second order solutions are determined by replacing (,(2) in the
left-hand-side of Eq. (12) with zp(z) '(2) and using Eq. (7) in the right-
hand-side for npm This yields cp(z) as given by Eqs. (13) and (14) while ¢ @

must satisfy Laplace's Equation:

v26@ . 7)

Due to syinmetry considerations the steady flow driven by a spinning
acoustic mode is expected to be independent of the angular coordinate © .
Solutions of Laplace's Equation which satisfy this criterion are the potential
source or sink which is a purely radial flow and the potential vortex which is
a purely tangential flow. Although only the radial flow component can
contribute to a mean flow through the annular cavity, there is no apparent
physical reason to exclude the vortex flow component. Since the acoustic
wave rotates around the chamber, it is quite likely that a vortex flow is
generated. Since Laplace's Equation is linear, superposition of solutions is

5(2)

permitted, and the steady potential ©'“’ will be assumed to be a linear

combination of source and vortex flows given by:

§P . k_tne +K 8 (48)

where K s and Kv are constantS to be determined.

The second order contribution to the pressure P(z) is obtained by

(1 @, ;@

substituting ¢’ and o into the right-hand-side of Eq. (15). Since

tpm contains no steady component and cp(z) = 0 (by definition) the
{2) (2)

expression for P'“’ is unaffected by the second order steady potential ¢

St gt b
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Thus P(Z) is still given by Egs. (16), (17) and (18). From this result it is seen
that including the second order steady potentials does not remedy the
ditiiculty in satisfying the pressure boundary conditions to second order.

The third order solutions are obtained by introducing Eq. (7) for @Pm
and @ 4 3@ given by Eqs. (13) and (48) into the right-hand-side of Eq.
(19). Expanding the right-hand-side, collecting terms, and using q;m + 5(3 )

in the left-hand-side yields the solution for o> as:

epm = Fl(a ) sin 3(t+n0 ) + Fq(u) cos(t+nd ) + Fs(cx) sin(t+n 0)
(49)

where F () satisfies Eq. (21) as before, but, F,‘( ) and F 5( a) are solutions

of the following inhomogeneous equations:

2 2K ’
v, L g Ve - 8 g (30)
Fl&*O/FltHl'aZ)F‘#" = Rn(o/)
2 2nK
70 O . N v
Fg + zF5+ (1- 2 JFg= Rya)- :—f-Rn(a) (51)

Ly
vthere R 5( ) is given by Eq. (B-16) as before. The steady potential % (3
must also satisfy Laplace's Equation:

#eP =0 (52)

The third order contribution to the pressure is obtained from Eq. (23)

using Egs. (7), (13), (48) and (49) to yield:

P(” =y { P3o(a ) cos 3(t+n o) + P”(at ) sin(t+ng )

+ By, (o) cos (r.+'n6)} (53)
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where P,,(a) is given by Eq. (25) as betore, while Py,() and Py, a) are

given by:
K
Pyy(@) = - Fyla) + 2R () (54)
nKv ,
P3¢(d) = GS(Q') + F—Rn(d) (55)

where G (@) is the right-hand-side of Eq. (26).

It is seen from the above analysis that including a steady term in the
second order potential 5(2) affects only the third order contribution to the
pressure through the new térm P33( &) sin(t+n 8 ) and by modifying P%(d )
This effect can be viewed as shifting the phase and changing the amplitude
of the third order pressure component which oscillates at the fundamental
frequency. A similar effect occurs in the third order potential through the
new function F,( o) and a modification of F5(°’)-

The boundary conditions are applied using the Taylor series
expansions as before with the eigenvalue g expanded according to Eq. (28).
Again the first order correction B, vanishes and the boundary conditions on
f( @) are again specified by Egs. (31). The third order function F,(a) also
satisfies the same boundary conditions as derived previously; namely, those
given by Egs. (34). The boundary conditions on F5(d) are also the same as
before, since the contribution of the vortex flow to P34(af ) vanishes at the
boundaries (see Eq. (56)). Thuus the boundary conditions for F 5(61) are given
by Egs. (35) in terms of B,. However the solution for F () depends upon
the vortex flow K through the additional term on the right of Eq. (51). The

pressure boundary conditions also require that P”( \)eo) = P33( 8 o’ =0

e et L i e
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which from Eq. (54) yields:

K 1
F(B) = 9;! R (B,) (57a)
(ve) 5 ‘(vg ) (57b)
FylvB, =v'B:Rn V8o 7

Solutions for F (&) and F(a) are given in Appendix C. It is also
shown in Appendix C that the boundary conditions do not provide enough
information to uniquely determine the frequericy correction B 2 the steady
flow parameters Ks and Kv' and the constants of integration appearing in
the functions Fq(a) and F5(°')- Furthermore, it is shown that there is no
value of K for which Egs. (57) are satistied.

From the above analysis, it appears that adding steady flow terms to
the Maslen and Moore analysis does not provide a means for predicting
whether a large amplitude spinning wave can generate a steady flow through

an open annular cavity.
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TEST MODEL ".ND INSTRUMENTATION
Test Model 4
An illustration of the spinning wave engine test model is in Figure 12, \

The assembled model is shown in the photographs of Figure 13. Two parallel,
61 cm (24") diameter discs are used to form the cylindrical cavity for the
spinning wave., The cavity is open to the environment around the entire
periphery and at central ports 12.2 cm (4.8") in diameter ( v = 0.2). The
spacing between the discs is variable via the four threaded support rods
located outside the cavity, One disc is fabricated from 2.5 cm thick,
transparent plexiglas to allow flow visualization. The other disc is fabricated
from 1.25 cm thick aluminum plate. Four acoustic drivers, at 90° intervals,
are mounted to the aluminum disc with the active surface flush with the
internal surface. The model is equipped with ten ports for flush mounting 2.5 -
cm microphones. Three of these, which are clearly visible in the
photographs, are along a radial line on the plexiglas disc. Seven are on the
aluminum disc along a radial line and at three circumferential positions at
90° intervals. The radial location of these circumferential microphone ports
and the acoustic drivers coincides with the pressure antinode predicted by
the acoustic solution. Also shown in the photographs, but excluded from the

illustration of Figure 12 for the sake of clarity, are five static pressure taps

along a radial line on the plexiglas disc.
Figure 14 presents a plan view of the apparatus and shows locations
of the various instrumentation and the corresponding nomenclature used

herein. The four drivers are indicated as DI A’ DlB, D2,, and D2,,. The

A B
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Figure 14. Schematic of Driver, Microphone, and Hot-Wire
Locations.
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microphones, M1, M2, and M3, are shown at the primary locations for the
spinning wave trists. The static pressure ports indicated by Pl through P5 are
equally spaced along a radial line. Py is located on the surface opposite to
that of DZB. Finally, six locations .used for the constant témperatue hot
wire measurements are shown as W! through W6. These cover one quadrant
of the flow field with spacings at 45° intervals at both the inner and outer

radius of the cavity,

Instrumentation

Four 75 watt University drivers, Model ID-75, were usad to excite the
oscillatory flows. In most cases, the four drivers were operated in pairs with
DI A and DlB as one pair and D2 A and DZB as the other, Each pair was
powered by a single Krohn-Hite 50 watt amplifier, Model DCA-50R, and 50
watt matching transformer, Model MT-56. The two drivers of a pair were
excited 180° out of phase by reversing the polarity of input leads. A
Hewlett Packard Model 203A two-channel, variable phase function generator
was used to provide simple harmonic input signals to the two amplifiers.
Operation with any combination of from one to four drivers was possible by
connecting or unconnecting input leads.

Three B & K condenser microphone cartridge type 4134 were used for
measuring the oscillatory pressures. The microphones could be relocated to
any of the ten microphone ports shown in Figures 12 and 13 by interchanging
microphones and cylindrical plugs. Microphone outputs were measured by a B

& K type 2606 amplifier with frequency range from 2 to 200,000 Hz.
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Hot-wire measurements were made wit™ a TS| single channel hot-
wire anemometer system consisting of a constant temperature anemometer
module, a monitor and power supply module, and a signal linearizer Vwi,th a
4th degree polynomial curve fit. A tungsten platinum coated hot wire with a
sensor diameter of 5u , sensor length of 1.25 mm, and upper frequency
response of better than 200 kHz was used. Hot-wire outputs were measured
both with an averaging voltmeter and a true RMS voltmeter.

Input .and output AC signal wave forms were observed and
photographed using a Tektronix type 549 oscilloscope equipped with a
Polaroid camera attachment. Furthermore, phases between the various AC
signals were measured with a Wavetek phase meter Model 740.

Mean or DC static pressures were measured using a highly stable and
accurate Datametrics Barocel Electronic Manometer with a 10 mm Hg
variable capacity pressure transducer. Measurements are accurate to 1% of

reading over the range from about 95 to 175 dB.

Calibrations

The microphones were calibrated with the standard B & K
Pistonphone type 4220. The hot-wire calibration of voltage output versus
flow velocity was provided by TSl. This calibration, which was made using
their low velocity, steady flow calibrator, covered the range of from 0 to 6
m/s. The calibration data was fitted to a fourth degree polynomial of
velocity versus voltage within a velocity accuracy of better than 1% for all
test conditions reported herein. The analog circuitry of the anemomei:er

linearizer were set using the coefficients of the polynomial so that the

A
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output voltage was equal to the velocity. Thus, assuming quasi-steady flow
over the wire, as is the practice for turbulent flow measurements, the
linearizer output yields a faithful representation of the velocities and
velocity wave forms.

Since the drivers are mechanical devices with inertia the output and
input signals cannot be perfectly in phase. Of more importance, differences
in the mechanical drivers will cause differences betweéen the phases of the
output and input signals. Checks of the drivers used in this investigation
indicated that the output signals from the various drivers could be out of
phase by as much as 59 for the same input signal. This is relatively small in
comparison with the 90° and 180° phase shifts used for the tests reported
herein. Nevertheless, it does mean that it was not possible to obtain a
perfect spinning wave, but, instead, the superpositioning of a predominant
spinning wave on a weak standing wave was obtained. However, the
existence of a superimposed weak standing wave does not alter the meaning

or conclusions from the tests.
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EXPERIMENTAL RESULTS AND DISCUSSION

The experimental Investigations inciude measurements of the
resonant frequencies within the cylindrical cavity, phase changes for
transition from standing to spinning wave modes, radial distributions of the
oscillatory (AC) and mean (DC) pressures, and simultaneous hot-wire and
microphone data. In addition, flow visualization studies were made as a
qualitative verification of the hot-wire results. The results are presented
and discussed in the following sections. It is important to point out that
exploratory studies yielding meaningful qualitative rather than more exact
quantitative results were emphasized in order to maximize the benefits for

the time available,

Resonant Frequencies and Transition from Standing to Spinning Waves

Natural frequencies of oscillations in the cylindrical cavity are
indicated by the results of Figure 15 which presents plots of the RMS
pressures measured by two microphones as a function of driver frequency.
Results are shown for two power levels. For each power !evel, the driver
input power was maintained while the excitation frequency was varied.
Resonance occurs where the RMS pressures peak.

Figure 15a shows results for the standing-wave mode of oparation
excited by the single driver DI A (see Figure 14 for driver and microphone
nomenclature and locations), The first harmonic occurs at a frequency of
692 Hz. The second and third harmonics are at frequencies of 1065 Hz and

1275 Hz, respectively.
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Figure 15b shows results for the spinning wave mode of operation.
Data are included for the spinning wave excited both by the two drivers DI A
and D2, and by all four drivers (Dl A Dlgi D2,, and DZB). In both cases,
D2, is set to lag DI A by 90°. Also, when using the four drivers, DI B lags
Di A by 180° and DZB lags D2 A by 180° since, as discussed before, the input
leads for these pairs of drivers are reversed. The resonant frequencies are
the same as those of Figure 15a for the standing waves. This is to be
expected since these spinning waves represent the superpositioning of the
two standing waves oscillating 90° out of phase.

Additional results verifying the natural frequencies are presentied in
Figure 16, This tigure shows power spectra computed from the outputs of
microphones M1 and M2 when white noise is used to excite driver D2 A’
These results were obtained by feeding the real time microphone outputs
directly to a Hewlett Packard Fourier analyzer and are based on an
ensemble of 100 data strips and a frequency band width of 20 Hz, Because of
a slight error in the plotting scale factor the frequencies are shifted slightly
toward the higher values (e.g., the cutoff frequency should be precisely
2500 Hz rather than the indicated value of about 2575 Hz). Accounting for
this slight shift, the resonance frequencies for the first three harmonics, as
indicated by the peaks in the power spectra, are about 700, 1070, and 1275
Hz, in excellent agreement with the results of Figure 15. Also plotted on
Figire 16 are computed curves of the magnitude and phase of the transfer
function which relates the outputs of M1 and M2. These results show that

the two microphones respond in phase and with nearly a one-to-one
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relationship (the magnitude of the transfer function is slightly greater than
1.0 due to differences in the microphones). This and the similarities in the
power spectra attest to the quality and symmetries of the model and
instrumentation.

The experimental value of 692 Hz for the fundamental frequency is
significantly different from the theoreticai acoustic value of 760 Hz for v =
0.2. This cannot be attributed to higher order effects, At the highest
pressure level for resonance (RMS pressure = 157 dB) the value of the
amplitude parameter ¢, as used in the perturbation analysis, is only 0,025,
At the Jowest pressure level for resonance at the fundamental frequency the
value of the amplitude parameter is less than 0.01. Thus, second and higher
order terms must be small. It is noted, however, that the experimental
frequency is nearly the same as the theoretical acoustic value for a model of
the same outer diameter but without a central hole (i.e., v = 0). This might
indicate that the constant-pressure boundary condition is not satisfied at the
inner boundary.

Figure 17 is included to illustrate phase changes within the cavity for
transition from standing to spinning wave modes of operation. Thesebresults
were obtained using drivers D1 A and D2 A? only, and with D2 A lagging D1 A
by 90°. Similar results were obtained using all four drivers but the results
were not completely documented. The phase lag between the output of Ml
and M2 is plotted against the ratio of the input power to D2 A to that of DI A
The power input to DI A Was held constant while the power input to D2 A Was

varied, With a power ratio of zero a standing wave exists and the theoretical
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Figure 17. Transition from Standing to Spinning Wave Modes.
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phase lag is 150°

. As the power ratio increases two standing waves 90° apart
and 90° out of phase are superimposed to produce combined spinning and
standing waves. For a power ratio of unity a pure spinning wave is obtained
and the theoretical phase between the two microphones, is 90°,
corresponding to the angular displacement of 90°. Also shown on Figure 17 is
the theoretical curve for the phase lag derived by superimposing standing
waves, It can be shown that this theoretical phase lag is the arc-cotangent

of the power ratio. The agreement between the theoretical and expe-imental

results shown on Figure 17 is good.

Radial Distributions of Pressures

Figure 18 presents radial distributions of the RMS value of the
periodic cornponent of pressure for the spinning wave mode of operation.
The pressur¢s are normalizzd by the value at r = 1.0 in order to facilitate a
comparison with the theoretical solution. Included in Figure 18 is the
acoustic sciution which is appropriate for these experimental data since the
maximum value of the amplitude parameter ¢ is less than 0.0l. As shown
by Figwe 18, the experimental pressures are in good agreement with the
acoustic solution for 0,33 <r< 0.87 and it seems that the periodic pressure
will decay to zero at the open boundaries where r = 0.2 and 1.0. However,
the constant pressure boundary condition is not adequately confirmed, and,
in retrospect, the test mode! should have been equipped with microphone

ports nearer these open boundaries.
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Figure 19 presents radial distributions of the difference between the
mean or steady component of pressure, p, and the ambient pressure, Por
These time-averaged pressure differentials were measwed using a slow-
response (i.e., high volume) pressure transducer. The five data points in the
central region of the cavity from r = 0,35 to r = 0.85 were measured using
the static pressure taps labeled P | through P in Figure 14. The two data
points indicated by the triangular symbols were measured at the open
boundaries (r = 0.2 and r = 1.0) using a 0.15 cm static pressure probe.
These are the only data that indicate negative pressures. The accuracy of
these two data points is questionable since crossflow over the probe due
either to oscillatory motion or boundary layer streaming would reduce the
pressure readings. Thus, the actual pressure at these open boundaries may be
slightly higher than that indicated by these data points. Regardless, the
mean pressures at the boundaries are nearly ambient,

In the upper portion of Figwe 19 the pressure differentials aré
normalized by the amplitude of the oscillatory pressure, p’, measured at r
= 0.6 (i.e,, nearly the maximum value of the oscillatory pressure). In the
lower portion the pressure differentials are normalized by the ambient
pressure. Results are shown for the spinning wave driven both by 4 and 3
drivers. The reason for including the case of 3 drivers is that driver DZB is
located along the radial line of the static pressure taps on the disc opposite
these taps. It was thought that this driver might have a direct effect upon
the pressures and, thus, driver DZB was not used in the tests with 3 drivers,
As shown by the results of Figure 19, driver D?.B does significantly change

the pressure magnitudes, but it does not change the qualitative nature of the
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data.

There are two important points to be made concerning the results of
Figure 19. First, the oscillatory motion associated with the spinning Wavé is
accompanied by a radial distribution of mean pressure. The theory also
predicts a steady component of pressure superimposed on the oscillatory
pressure. The magnitudes of the theoretical values of the steady component
of pressure (i.e., (p - Po)/po ==Y Py, ¢2) on the boundaries at r = 0.2 and r
= 1.0 are about the same as the maximum value within the cavity (see Figure
7). Also the theory predicts that the steady component of pressure is greater
than ambient near the mean radius, less than ambient at the open
boundaries, and equal to ambient at about r = 0.38 and r = 0.78. However,
in contrast, the experimental results show that the mean pressure is greater
than ambient for the entire cavity except perhaps very near the open
boundaries where it may be slightly less than ambient. The second point is
that the pressure differential p - p o is small in comparison with the
amplitude of the oscillatory pressure p’. As shown by the upper portion of
Figure 19, the ratio of these pressures is of the order of 10'2. The value of
the theoretical amplitude parameter ¢ for these tests was of the order of

1072

also. Therefore, since p’ arises as a first order term, p- p o Must
enter as a second order term. This is as predicted by the theory which shows
that thé steady component of pressure first arises as a second order term.
The amplitude paramcter based on p’ = 161.3 dB for the tests with 3 drivers
is about ¢ = 0,03, Using this in the second order theory (i.e., in the equation

G - po)/po = -y Py, ¢d yields a maximum theoretical value of (p -

po)/po = 0.9 x 1%, This is in fair agreement, but slightly lower than, the

.




maximum value of 1.25 x 10°* for the correspondir:g results in the lower

portion of Figure 19.

Hot Wire Results

The response of a hot wire in oscillatory flows and the experimental
methods used in obtaining the hot-wire data will be considered first to aid in
understanding and interpreting the hot-wire results. Figure 20 shows
idealized responses of a hot wire in oscillatory flows. Figure 20a presents
the case for a pure sinusoidal motion with zero mean flow velocity. The flow
velocity u for one cycle of motion is shown in the upper plot. The lower
plot shows the corresponding velocity Uy, that would be measured by a hot
wire assuming a faithful, quasi-steady response to the flow. For all results
reported herein, this represents the idealized output voltage since the
anemometer signals were linearized and scaled by the analogue circuitry so
that the output signal was equal to the velocity in accordance with a steady
flow calibration. Because the hot wire is insensitive to flow direction the hot
wire yields a rectification of the actual velocity curve, as shown in the
figure. This gives rise to an apparent mean velocity u W which can be
evaluated as the average or DC component of the output voltage.

Figure 20b presents the case in which a mean flow velocity u is
superimposed upon the oscillatory velocity. The rectified signal from the hot
wire is altered so that the maximum velocity for the two half-waves, Ut
and Uyo o and the half-wave lengths, A and A o are now different.
Furthermore, the indicated mean velecity u W and the RMS value of the AC

component of the output signal change with u. For this case the mean flow
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b) With mean flow

Figure 20. Idealized Hot-Wire Response.
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velocity is given by

u = (uwl - WWZ),Z
Also, it can be shown that U is determined by Gw and the RMS value of the
AC component of the output signal. As will be shown later, the hot wire does
not reproduce the rectified velocity curve, Apparently the quasi-steady
condition is not sufficiently valid and, thus, the output signal is distorted,
particularly during the time period near flow reversal when flow conditions
change most rapidly. Nevertheless, asymmetries in the output signal like
that shown in Figure 20b is a useful measure of the existence of a mean
flow.

The asymmetries shown in Figure 20b reveal the existence of a mean
flow velocity but not the mean flow direction. For the tests reported herein
the mean flow direction is determined by the phases between the hot wire
and microphone signals. This is illustrated in Figure 21 which considers the
signals from microphone M2 and the hot wire at location WI1. For this
presentation it is assumed that the wave spins clockwise in the orientation
of Figure 14. Also note that W1 is located 90° clockwise from M2, Figure
21a shows the time-dependent output voltage E for M‘Z. This represents a
reference trace for the lower plots. Figure 21b shows the pressures at M2
corresponding & the microphone output trace. Because of the electronics
the pressure is 180° out of phase with the microphone output. The radial

component of velocity, u,, at the inner open boundary (r = a) and at the
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a) Voltage output from microphone M2
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b) Alternating pressure component at M2
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e) Idealized response of hot wire at location W1

Figure 21. Illustration of the Relation between Microphone
Output and Hot-Wire Response.
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angular position of M2 is shown in Figure 21c. This velocity wave as shown
leads the pressure wave of Figure 21b in accordance with theory. For the
sake of illustration, it is assumed also that the oscillatory velocity is
superimposed upon a positive mean flow velocity (i.e., there is a net inflow
rate at r = a). Since the wire location W1 is displaced 90° in the spinning
direction from M, the oscillatory velocity u, at W1 lags that of Figwe

2lc by 90°. Figuwe 21d shows u_ at location W], Finally, Figura 2le

a
presents the rectification of this velocity at WI1 and, thus, the idealized
response of t'se hot wire, The important point of this illustration is the
relation between the measurable hot wire and microphone signals which can
be displayed simultaneously on an oscilloscope. As shown for this case of
inflow at r = a the phase lag between the maximum velocity Uwi and the
maximum microphone output E_ is 135° (311/2). The corresponding phase
lags for the hot wire located at W2 or W3 are 180° and 225°, respectively.
On the other hand, if the mean flow velocity ﬁa was negative each of these
phase angles would change by 180° since the locations of Uy and Uy
would be interchanged. Thus, the phase between E., and Uy Can be used
to esiablish whether Da is positive or negative.

A typical set of oscilloscope traces from the spinning wave tests is
shown in Figure 22, Operation is with all four drivers at the fundamental
frequency of 693 Hz. Because the camera was set for a shutter speed of 0.1
sec each trace shown on these photographs represent the superpositioning of
about 70 sweeps across the oscilloscope trace. Since the band widths of the

superimposed traces are small the signals ure stationary. Figure 22a provides
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the zero voltage references for the two channels. Figure 22b shows the
simultaneous traces of the output signals from microphones M2 and M3
which have zero reference traces 02 and 03, respectively. This shows that
the wave spins clockwise from M2 to M3 with the proper phase lag of 90°
from M2 to M3, Figure 22c shows the simultaneous traces for M2 and the
hot wire located at W\, This corresponds to the case depicted in Figure 21,
The zero references for M2 and W1 are 02 and 03, respectively, Note first
that the hot wire signals are always positive and, thus, present a
rectification of the flow velocities, However, the minimum indicated
velocity is not zero and, in contrast with the idealized response shown in
Figure 2le; the valleys in the traces are well rounded. This is attributed to
the failure of the quasi-steady flow calibration for these regions where the
velocities change most rapidly and flow reversal occurs (during flow
reversal the wake flows back across the wire). The important point from
these results is that the successive peaks in the hot-wire traces are
different, indicating a mean flow velocity superimposed on the oscillatory
flow. Furthermore, the maximum voltage signal from the hot wire lags the
maximum value of the microphone signal by about 135° indicating a net
infiow as discussed in the previous paragraph. For reference, the locations

for u, and u, based on the microphone trace are shown on the
max min

figure.
Figure 23 preserits simultaneous trac:s of the output signals from M2
and the hot wire for all six hot wire locations. The zero voltage references

are the same as in Figure 22a. The upper row of traces is for the hot wire on
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the inner boundary r = a and the lowsr row presents corresponding traces
for the outer boundary r = b, Figure 23a is a repeat of Figure 22¢, The

locations of u, ana u, and of u, and u, are displaced in
max min max min

increments of 45° corresponding to the 45° increments between hot-wire
locations, as discussed earlier. As shown by the upper row of traces the hot-
wire output is in phase with the radial velocity component and there is a net
inflow rate at each location on the inner open boundary. The rudial velocity
components at the outer open boundary is 180° out of phase with that at the
inner boundary and, thus, the locations of the maximum and minimum
velocities for the lower row of traces are interchanged with respect to those
of the upper rows. But the hot-wire signals have also changed so that the
maximum and minimum hot-wire outputs occur around u, and Uy
max min
respectively. Since ubmax corresponds to outflow these traces show that
there is a net mass outflow rate at the outer open boundary. The important
point is that these results are consistent and show that flow is pumped
through the cavity by the spinning wave and that the mean flow is radially
outward from the inner open boundary to the outer open boundary.
Additiona! hot-wire measurements were obtained with the standing
wave mode of operation driven using DIA and D2B (180° out of phase with
DI1A). These results were simply recorded from the oscilloscope screen and
not photographically documented. The results were as expected and
consistent with those for the spinning wave mode. Along the radial line

through D1A the hot-wire signals indicated a mean flow from the inner

boundary at W! to the outer boundary at Wi, The mean flow rate
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decreased as the wire location was rotated around the periphery to W2 and -

WS5. Finally, alung the radial line normal to that through the drivers (i.e., at
W3 and Wé), where there must be a pressure node, there was no measurable
hot-wire signal.

Results extracted from the photngraphs of Figure 23 were used to
compute the maximum and minimum flow velocities, Uy and Uy and

the mean flow velocity as given by

The results are based on the steady flow calibration of velocity versus
voltage output and, thus, assume quasi-steady flow over the wire during the

measurements of uy and Uy . The velocities were obtained by measuring
2

the displacements of ihe hot-wire traces from the zero reference traces and
then applying a calibration factor for the oscilloscope deflection which was
acquired from a separate test. The results are tabulated in part a) of Table
i, For these results the wire was located midway between the upper and
lower disc at y = 0 (see the sketch at the bottom of Table 1) and the mean
of the RMS pressures measured by M2 and M3 was 155.3 dB. This was
about the highest possible power level without driver induced distortions. As
shown in the table, the average values of u at the inner and outer open
boundaries are 0.34 and 0.13 m/s. These are very small fo’.r this low power

level. Each of these is about 15% of the corresponding amplitude of the

oscillatory velocity evaluated as (uwl + Uy )/2 and also listed in the table.
2

TN -

Ny e

- * b
i N A M i o 5 i




~
CRIGIAL PAGE i .
OF POOR QUALITY
Table 1, Hot-Wire Results, £ = 693 Hz.
a) y=0
+ -
Wire P v - uw W ‘ e ?
Location RMS \41 uwz s --1-2-——2 Ruﬁs
dB m/s m/s m/s m/s m/s m/g
w1l 155,3 2,9 2,2 0.36 2,6 0,72 1,7
w2 155,3 2.7 1.9 0.39 2.3 0.62 1.5
w3 155.3 | 2,1 1.5 | 0,27 | L8 | 0.70 1.7
Averages 2.6 1,9 0.34 2.2
w4 155.3 1.1 0.80 0.16 0.97 | 0.24 0,66
W5 155,3 0.81 0.66 0.08 0.73 | 0.19 0.57
W6 155.3 | 1.2 0,88 | 0.5 1,03 | 0,30 0,72
Averages 1,0 0.78 0.13 0.91
b) Wire Location W1
ST, M a |
cm_ m/s m/s m/s m/s m/s ] w/s
-0.5 3.3 2,5 0.43 | 2.9 0.82 | 2.0
0 2.9 2,2 0.36 2,6 0,72 1,7
0.5 2.9 2.1 0.41 | 2.5 0.79 | 1.9
0.9 ~1l.7 ~1,7 a0 ~1l.7 0.52 1.3
Plexiglas y
Disc T
'L 1.25 cm
JE Aluminum Disc T

e A iR B s Asteneatrakh e o e tee— PRI ST S

LT e,

R TR



The amplitude parameter ¢ is about 0.02 for these tests at the RMS
pressure of 155.3 dB. This indicates that the acoustic solution should be a
good approximation for these test conditions. However, the amplitudes of
the oscillatory velocity at the inner and outer open boundaries as predicted
by the acoustic solution for 155.3 dB at the pressure antinode are 6.0 and 3.1
m/s. These are about a factor of three higher than the mean values of 2.2
and 0.91 m/s listed in the table. Also, it is important to point out that the
ratio of U at the inner and outer boundaries is about 2.5 whereas the flow
area ratio is 5. These differences cannot be explained, but perhaps are due
to a combination of things such as inadequacy of the steady flow hot wire
calibration, asymmetries, and viscous effects. Nevertheless, it is felt that
the qualitative behavior is correctly represented. The mean velocity T.lw and
the RMS value of uy, are listed in Table la also since they were evaluated
separately from the oscilloscope data using an integrating voltmeter and a
true RMS meter. These data are entirely consistent with those obtained
from the oscilloscope traces.

Part b) of Table 2 tabulates results for the hot wire at W1 and four
values of y. The corresponding photographs of the oscilloscope traces are
shown in Figure 23c, for y = 0, and Figure 24, fory = + 0.5and y = 0.9 cm.
For the three locations within the 1,25 cm gap (i.e., y = 0 and y = + 0.5 cm)
the velocities are  ssentially the same. At y = + 0.5 cm the band width of
the superimposed .7aces has incredsed very slightly relative to that aty = 0.
At y = 0.9 the wire is located cutside the gap and the oscillatory signal is not

stationary as evidenced by the multiple traces. However, it appears that on
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the average the peaks a/id valleys in the traces are the same and, thus, there

is oscillation with no mean flow.

Flow Visualization

Flow visualization was employed to support the hot wire predictions
of a mean flow radially outward through the cavity. Smoke and a tufted
wand were used. A very sensitive tufted wand constructed with very fine
strands of fiberglas showed without question that ther= was inflow around
the complete periphery of the inner open boundary. Outflow was indicated at
the outer boundary but, because of the very low velocities superimposed on
the oscillatory motion, these results were not so conclusive,

It was not possible to use a steady flow smoke trail to visualize the
flow since the velocity of the smoke source was significant compared with
the mean flow velocity. However, prior to starting oscillations it was
possible to fill the cavity with smoke which becomes stationary and diffuses
very slowly. Thus, the cavity could be filled with smoke and, after a short
settling time, the driver quickly excited to produce the spinning wave. Tests
of this type showed that the smoke was rapidly exhausted through the outer
open boundary once the spinning wave was excited, Thus again the existence

of a mean flow frem the center outward was verified.
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CONCLUDING REMARKS

In order to assess the feasibility of the spinning wave engine concept,
the acoustics of an annular cavity was investigated using a theoretical
analysis and an experimental model., The primary objective of the
investigation was to determine whether a spinning wave excited in the
cavity could pump flow through the cavity, which was bounded on the sides
by two parallel discs and open to the environinent at the inner and outer
peripheries.

The theoretical analysis developed under this project was an
extension of the nonlinear analysis of Maslen and Moore to study the case of
an annular pancake cavity with open boundaries. This analysis involves a
perturbation scheme in which the velocity potential and pressure are
expanded in terms of an amplitude parameter. Solutions were obtained to
third order in this amplitude parameter, These solutions yielded a steady
contribution to the pressure perturbation which was second order in the
amplitude parameter and did not vanish at th¢ inner and outer boundaries as
required by the open boundary conditions. Furthermore the analysis did not
predict a corresponding steady velocity component; that is, the analysis
could not predict the acoustic pumping of flow through the cavity.

The spinning wave engine concept has been tested experimentally
using acoustic drivers to excite oscillatory motion in an annular cavity. The
spinning wave was achieved by superimposing orthogonal standing waves
deiven 90° out of phase. The major thrust of the experiinents was to

determine if the spinning wave pumped flow through the cavity. Also some
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iests were rnade to assess the theory.

Simultaneous measurements of hot wire and microphone responses
have shown that the spinning wave pumps a mean flow radially outward
through the cavity. This conclusion has been verified by flow visualization
using both a sensitive tufted wand and smoke as flow tracers. Measured
radial distributions of the amplitude of periodic pressures were in good
agreement with the theoretical predictions. Also, the experiments showed
that the spinning wave gives rise to a radial distribution of mean pressure
which is of second order, as predicted by the theory. In contrast with the
theory, however, the measurements indicated that these mean pressures
were positive throughout the entire cavity. Furthermore, the experimental
value of the fundamental frequency was about 10 percent below that
predicted by the theory. Perhaps these discrepancies between theory and
test results are associated with the difficulties encountered in satisfying the
boundary conditions with the theory.

To further evaluate the potential of the spinning wave engine, tests
at higher power levels are needed. Because of driver limitations, the results
reported herein were essentially at the acoustic level, In fact, the maximum
value of the amplitude parameter was about 0.025. Furthermore, the
accuracy of mean flow velocities measured by hot wires in such a flow field
which Is dominated by oscillatory motion is open to question. Thus, for
accurate mean velocity data additional hot wire calibration tests are needed
or the velocities must be measured by a more reliable instrument such as a

laser velocimeter.
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In spite of the limitations of the theoretical analysis and the
experimental measurements, the primary objective of this research project
has been met. The experimental detection of a radial mean flow driven by
the spinning wave at relatively low acoustic amplitudes has demonstrated
the feasibility of the spinning wave engine concept. It is anticipated that
this acoustic pumping will increase as the square of the acoustic amplitude
giving much larger mean flow velocities at the larger acoustic amplitudes
expected in a spinning wave engine. Thus further development and testing of

the spinning wave engine concept is definitely warranted,
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Appendix A
Solution for Second Order Function #(a)

The second order function f(a) is described by the inhomogeneous
second order differential equation:
" | l}z 2
@)+ S 1) + 4(1-25) f(a) = Ry (@) (A-1)
d -
where Rn(af) is given by Eq. (7). Inspection of this equation reveals that the

change of variable z = 2« wili transform this equation to a Bessel equation.

Thus Eq. (A-1) becomes:

2 2
d°f  1dt (2n) _ n2 ;
pe i A e (-2

The homogeneous version of Eq. (A-2) has the general solution:

fh(z) = Clgzn(z) + CZYZD(Z)

which implies that the homogeneous solution of the original equation (Eq.
(A-1)) is given by:
f, (@)= Cy3, (20) + C,Y, (2u) (A-3)

The complete solution is the sum of the solution of the homogeneous

equation fh( «) given by Eq. (A-3) and the particular solution fp( o). Thus

b
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(5)

Thus the general solution of Eq. (A-1) can be written as follows:

2
Y, (22) R (o) do

2
J, (2a) R (w) da

where W(x ) is the Wronsician given by
- / /
Wla) = 21, ) Yy (2a) - 2Y, (20)3) (20) (A-5)

and primes denote differentiation with respect to the argument.

The indefinite integrals in Eq. (A-4) may be replaced by definite
integrals by making a suitable adjustment in the constants C 1 and C2 .
Choosing the lower limit of integration at the inner boundary o = v By the

general solution becomes:

fo) = [cl-Kz(d)] 3,29 ) + [czml(a)] Y, (20)

(A-6)
where
% 3, (2 Ri(x) dx
Kl(cv) = f T (A-7)
vBo
%y, (2x) R2(x) dx
2
Kple) = f T (A-8)
vao

ey
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The unknown constapts C 1 and C2 are determined from the
boundary conditions imposed upon f(«) as given by Eqs. (31). Applying the

boundary condition at o = VB gives:
C, 3,(2v8 ) + C.Y, (2v8) = =y R )]2 (A-9)
1 92n'18VBo) + Ca¥an'2VBy! = JT+ L RaVBy -

since K (VB )= Ky(VB)=0 from Egs. (A-7) and (A-8). The boundary

condition at @ = Eo gives:
C, 9, (28) 4 C,¥, (2B ) = o2 LR’(&)]2
“1 V20" P! Y T2V ol T O HYA L n' o

+ K(B )3, (28 )-K (8 )Y n(26,)

(A-10)
Solving Eq. (A-9) for C, gives:
=L (R ) - .3, (238 )
c 4y+1)L"n"Fo 1 2n 0 (A-11)
2 YZn(ZVBo)

Substituting Eq. (A-11) into Eq. (A-10) and solving for C | then yields:
C, =] - b 1{¥, (298 )[R'(B 1% - ¥, (28 )[R'(vB)]?
1 Goy+1) | Yan(BVR LR, (B, 2n (%P LRn (VB

- Y2n(2vao)£p(ﬁo)]/[JZn(zao) an(z\’ao) - JZn(szo)YZn(zao)]

(A-12)

N .
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where Ip( By = Ki(B) Y (2 B - K,(B 0)32,,(23 o

For given values of ¥ , v and n (tangential mode number), the eigenvalue
Po
(A-12) can be calculated, Equation (A-12) Is first evaluated to obtain C,

is readily determined and the quantities appearing in Egs. (A-11) and

which is then substituted into Eq. (A-11) to obtain Cp Forv =02, v =14
and B 0" 4,23575, the constants of integration become Cl == 0,36495 and
CZ - 0004275.

Once the constants of integration are obtained, Eq. (A-6) is used to
calculate £(@). In this process, u numerical integration technique must he
used to evaluate K,(@) and K,(@ )

In computing the third order quantities, the derivative £'(a) is also

needed, Differentiating Eq. (A-6) gives:
)= 2[c -k )T 3, 2a)+ 2[Cy+ K ()] Yy (29)
- Ky( @3, (2) + K{(@)Y, (2¢) (A-13)

where Ki(u) and K'z(d) are simply the integrands in Eqs. (A-7) and (A-8).
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Appendix B
Solution for Third Order Functions F 1 and F 5

Solution for F 1( o)

The third order function F l(a') is described by the inhomogeneous

second order differential equation:

F/ 4 L p 1“2F R () 1)
pra e 2\ 7 )F = Ryle (B-

where
aare Hie? o [i3es(2:L) s 2] R @2
AR PR A 2 22| n'n
2 4 2
n® .2 4 n -1 n 3
- R/ R -[;—,;+ <1z+5 [YT])?MY-I)(WS)] R,

2
+ [12( ) &5 +s(y2-1)] R f - 6(y +1)R'nt'f (B-2)
o

The change of variable 2z = 3o will transform Eq. (B-1) into an

inhomogeneous Bessel equation given by

d“F dF 2
O Bl (3n) \
zdz [l- —;’2“]!‘1 = HI(Z/B) (8-3)

The homogeneous version of Eq. (B-3) has the general solution given by:

Fip(@ = Cj 35,(2) + C ¥, (2)
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and returning to the original variable o yields the homogeneous solution of

the original equation as;

Fiple) = €, 133,02) + CjaY3,(30) (B-4)

Adding to this the particular solution F IP( @) yields the following solution
of the inhomogeneous equation(j) (Eq. (B-2)):

Y3n(3a)ﬁ,l(a)da )
Fila) = 3, (a) 1Cy, / W e J

Jan(B Q’)Rl(d)da
+ Yy 32) |Cpy + / Wila) ] (B-5)

where W l(c:r ) is the Wronskian given by:

Wi(a) = 33, Ba)Y, B3a) -3Y, (30)1; (3z) (B-6)

and primes denote differentiation witi respect to the argument.

Replacing the indefinite integrals in Eq. (B~-5) with definite integrals

and adjusting the constants of integration gives:

(8-7)
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where
o -
I, () = f J3n‘i") lexwx,
’ Wl(x, (B-8)
\JBO
£ Y, (308,004
Y 5 (3R, (x)dx
3n 1\*/d:
“2(&’) = f Wl(x) (5-9)
\)60

The constants Cll and C,, are obtained by applying the bouniary
conditions imposed upon Fl(a’ ) as given by Egs. (34). This yields the

following equations to be solvad for C“ and C 128

Cy 133398 ) +C Y5 (3B ) = - L= (v+ R/ (ve (VB ) (B-10)

+ !lz(ﬁo)JBn('iﬁ ) - l“( ﬁQ)YBD(BﬁO)
(B-11)
Solving Ec. (B-10) for Cyp yields:
jltl.)gl(vso)fz(vao) 11 3 (3va ) ®-12)
Y3n(3vﬁo)
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Substituting Eq. (B-12) into Eq. (B-11) and solving for Cyy 8lves:

Cu = 3 ) (l%) [R’n(eo)t'( B anl2VB o) - Ry(vB o)t (VB )Y, (36 °)]

- Y3, (398 F | ( B) / [J,,,(a B)Y3n(3V8 ) - 35 (3VB )Y, (3 e°>]

(B-13)

where

Flp( B = 1“(50) Y3,88) - 1),(8) I3,38 )

Once the parameters ¥ , Vv and n ure specified and the second order
functions are computed, all of the quantities in Eqs. (B-12) can then be
calculated. Equation (B-12) is first, solved for C12 which is next substituted
into Eq. (B-13) to obtain Cyyr For v =02, vy=14 and B, = 423575,
the constants of integration become Cyy =0.13464 and C, =~ 0.01078, :

After the constants C;, and C,, are obtained, Eq. (B-7) is used to
calculate Fl(a). The functions I l(cx) and Ijz(d) are obtained by

numerical integration.

In cornputing the radial velocity by Eq. (43) the derivative Fi(cx) is

also needed. Differentiating Eq. (B-7) yields:

Fla)= 3[C| -1,,(a) 135 B+ 3[Cp,+1;(e) ]Y] (Bx)

e

- liz(a) 1, (30) + ‘fl(“)Yan(”) (B-14)

i AL Covie i fue e . U e - P - S e e ams SO i s i ki s AN
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where ll' l( @) and I l’ 2«;(& ) are simply the integrands in Egs. (B-8) and (B-9).

Solution for 8, and Fs(a)

The third order function Fg(«) is described by the inhomogeneous

Bessel equation:
F/e & Fl+ (1 n’ Fg = R () (B-15)
57@ U5 2)5 5

where

(B-16)

2 .
. [4(-v+1) Lova2(y®- 1)] R.f+2(v+DR £
a

The general sclution of the homogeneous equation is

Adding the particular solution to Eq. (B-]7) yields the solution of the
(5)

inhomogenecus equation as™™’s

Fo(@)= [Cyy - 150 ] 3 (a)+[ Cgy 415 (DT Y (@) (B-13)

BT IRERP “APRICT IS S SUR A TSP SUNPCINTAE ¢ A SOOI N L ST

L s 5 bbb i b
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where
o
J,(x) R 5(x)dx
(@) = | Pyl (B-19)
V@ o
o
Ie(a) = Yoo 500 ®-2
sple) = '—'—'v‘,;b-‘y‘- 0)
veo

and W 5( «) is the Wronskian given by:

Wy(@) = 3 (@)Y (@) - Y ()3 () (8-21)

The constants of integration CSI and C52 must be determined
using the boundary conditions given by Egs. (35). Substituting Eq. (B-18) into
Eqs. (35) yields:

CiIplvB )+ Ci¥p(vB) = [ 'vp ) - ve, | RA(VE Y

(B-22)
Cy 3 (B + CspY(B,) = [{—ﬂ t08,)- 8 ]R‘n(a o
+ 150 B )3 (B )~ 15,(BIY, (B (B-23)

Unlike the corresponding equations obtained for f( o) and F l(ar ),

Egs. (B-22) and (B-23) contain an additional unknown parameter, the second

i Tk TG M R AR A AR TR LAY L
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order eigenvalue correction 52. Thus an additional relationship is needed

to obtain 52, Cyy and Cyo
If B, were known, the right hand sides of Egs. (-22) and (B-23)

could be calculated. Denoting these quantities by r 1 and r, we have:

Jn(vao) Csy + Yn(vﬁo)C” =)

(B-24)

Sn(BQCsy + Yp(B)Csp = 1y

This is a linear system of two equations in two unknowns which can be solved

for C5 1 and C52 if the determinant of the system is nonzero. The

determinant A is given by

A = 3 (VBJY (B)- Y, (vB)I(B,) (8-25)

Comparing Eq. (B-25) with Eq. (8), which was used to determine B o’ shows
that A = 0, since Bo is precisely the value that causes the right-hand-
side of Eq. (B-25) to vanish. This implies that Egs. (B-24) is either
inconsistent (i.e., no solution exists) or that the system is indeterminate

(i.e., infinitely many solutions exist). The condition A =0 also implies that

in(v B, _ Y (VB )
ACIAR A ¢ (B-26)

o AR TRy S BRI S 33 R S e et

PR S
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and the system is indeterminate if r l/r'2 is also this ratio, otherwise no
solution exists. This provides a method of determining g, by requiring

that solutions for C 51 and C 52 exist, thus we require that:

o Jn(vBo)
l'2 ) Jn[ Bo’

or that
[12_1_ fl(vﬁo) - vBAJ Rr'l(vso) i Jn(\’so)
[y‘z‘i fl(go) - ﬁz_] ‘erl(ao) - Fsp(go) Jn(ﬁo)
(B-27)
where
Fsp(Bo) = 15 (BIYL(B ) - 15p(8 )3 (B ) (B-28)

Solving Eq. (B-27) for B, and introducing o = J,( Bo)/Jn( v so) yields Eq.

(36) which is used to calculate Bye

With B, given by Eq. (36), Egs. (B-22) and (B-23) become an
indeterminate system; that is, there are infinitely many solutions for CS 1
and C52 . In order to obtain a unique solution for F5(°’)’ an additional
relationship between fc5 1 and ¢ 52 must be found. This can be done if one

states more precisely what is meant by the amplitude parameter ¢ .

ety o e g et

B
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Until now, the amplitude parameter ¢ was used in the perturbation
analysis only as an ordering parameter and was not precisely related to a
physical quantity such as pressure amplitude. In order to relate the
theoretical calculations to experimental measurements, a more precise
definition of ¢ is needed. Since the Maslen and Moore perturbation scheme
Is based on the velocity potential, the amplitude parameter ¢ is most
conveniently related to the amplitude of the velocity potential. Accounting
for the variation of frequency with amplitude, the expression for ¢

including all terms through third order is given by:
@ = 3 eR (a)+ e’ [Fj(a) + CZGR:\( a)] % sin(t+no)
2 o2 3
+ G[RE@)- (v +Dt(a)] sin 2t +ne)+ ¢ (adsin 3t +ng)

(B-29)

The parameter ¢ cannot represent the zero-to-peak amplitude of ¢ since
this quantity includes terms proportional to e2 and e3 . For the same
reason € cannot represent the amplitude of the first harmonic term since
this quantity includes terms proportional to e3. A more restrictive

definition of € Is therefore necessary.

In the analysis to follow, ¢ will be required to represent the
amplitude of the term in the velocity potential with the time and space
dependence of the first order solution, that is, R _(a) sin (t + no).

Considering the coefficient of sin{t + ng ) in Eq. (B-29), there are three

Rt e E
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terms: € Rn(‘d), J FS(O'), and € -C?OI R:\(Ol ). The last term clearly does
not have the same radial dependence as Rn( @) and does not need to be
considered further. The term containing FS(OI) needs to be examined
further since the homogeneous part of FS( a) 'is composed of the same
linearly independent functions Jn(d ) and Yn(d) that cornpose the radial
acoustic eigenfunction Rn(o' ). This occurs because both F,h(oz) and

Rn( @) are solutions of the same Bessel equation of order n.

The homogeneous part of F 5(0) can therefore be expressed as the
sum of two parts, one of which is proportional to R_(« ). Thus F,h(al )can .

be written as

Y (VB,)

where Qn(ot) is a linear combination of J (¢} and Y n(or).

Substituting Eq. (B-30) back into Eq. (B-29) yields the following coefficient

of the acoustic solution Rn( a)sin(t + ng )

3 Yn(vao)
A=zc¢+ ¢ le- WC” (B-31)

Since we desire that the amplitude of the acoustic solution A be equal to

3

the amplitude parameter ¢ , the coefficient of ¢ in Eq. (B-31) must

vanish, which gives the following relation between C 51 and C 52}

3 (v8,) |

TR s i § -
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This is the additional relationship needed to uniquely determine F5m)’
Equation (B-32) can be substituted into either Eq. (B-22) or Eq. (B-23) to
eliminate one of the constants. For instance, substituting Eq. (B-32) into Egq.

(B-22) and solving for C yields

R (v8,)
Y+l - 0
Csy = [—f"f'“’%) "pz] B, (8-33)

For given valuesof y , v , and n, 52 is first calculated using Eq.
(36). Then Cg, iscomputed using Eq. (B-33) and is substituted into Eq.
(3-32) to determine Cype For a first tangential spinning wa'. (n=1) and
with v = 1.4, v = 0.2 one obtains 62 = - 49254, Cqy =- 0.04460 and
C52 = 00018613

After the constants Cg, and Cg, are determined, Eq. (B-18) is used
to calculate F5( o). The functions I l(oz) and l,z(a) are determined by
numerical integration.

In computing the radial velocity by Eq. (43) the derivative F's(a) is

also needed. Differentiating Eq. (B-18) yields:

- 15'2(01 I (@) + 15’ @)Y () (B-34)

where 15'1(01) and I;Z(Or) are simply the integrands in Eqs. (B-19) and
(B-20).

88
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Appendix C.
Third Order Functions for Analysis wlth Steady Potentials

Using the same techniques employed in Appendix B, the solutions of
Egs. (50) and (51) can be written as the sum of homogeneous and particular

solutions as follows:

Fyle) = [Cyy - 2K, ()] I (@) + [c,‘2+ 2K 1, (@) ]Y ()

(c-1)
Fy(a) =[Cg) - Is(@) + 2K Qqp(@)]3 (a)
+ [Cyp+15a)- Z"KVQSI(C')] Yo(@) (C-2)
where o
/' Jn(x)R,;(x)
I’H(a) = W dx (C-3)
\)So
o
Y,n(x)R'n(x) ‘
lqz(d) = W dx (C-")
vﬂo
a
3,08 5(x)
151(0) = —WI’—J——— dx (C-S)

o
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P YR (x)
l’z( a) = f B dx (C-6)
vﬁo

R

Jn(x)Rn(x)

(o)
syl W (%)

dx (C-7)

<
w
e}

"

Q,z(a )

T Y 00R () . o
-T—..———- X -
v[ x“W(x)

0

and g 5(0,! ) is given by Eq. (B-16) and the Wronskian W(a) is given by
'3 /
W) = 3 (@)Y (@)-Y (a)1 (a) (C-9)

To complete the solution the constants of integration C,' 1’ C#Z’ C 517 and

C 52 must be determined.

Applying the boundary conditions on Fq( @) given by Egs. (57) yields:

K
Cy1InlB,) + Cya Yo(vey) =v"5'f R/ (vp,) (c-10)

N i
Cuy I(By) + Cya Yo(B,) = K, [Bo R/ (B ) 2F4P(50)]

(C-11)

e ST TR TR RS 1 T T I L i R
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where
FuplBo) = Iy (BIY (B ) - 1,(B)3 (B ) (c-12)

while the boundary conditions on Fy(or) given by Egs. (35) yields

C,lJn(vB o) + C,zYn(vao) = [—Y—Z—l- f’(vao) - vaz:l R;‘(\) Bo)

(C-13)
Cs (B + CsY (B) = [—‘{;ﬂ (g o) - 92] R.(8,)
- Fsp( Bo) + 2nK Fs (g ) (C-1%)
where
FaplB ol = I5)(B JY (B) - I5y(B )3 (8) (C-15)
Fso(Bo) = Q5 (BIY (B ) - Qq(B I (B ) (C-16)

Equations (C-13) and (C-14) contain four unknown quantities: the
constants of integration CSl and Csp0 the second order eigenvalue

correction B,, and the vortex constant Ky As shown in Appendix B the
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' determinant of this system is zero, therefore for solutions to exist the

following relation must be satistied:

XL ¢rup ) - vB, | RLOB) 3,089) |
LY-*i £,) - ]-R (By) = Fs(B,) + 20K Fo (B)  “n TG,

(Cu17)

Equation (C-17) reduces to Eq. (B-27) for K, = 0. It K, is known,
Equation (C-17) can be used to determine g, Using the method of
Appendix B where ¢ is required to represent the amplitude of the term in

the velocity potential proportional to Rn(a)sln(t + n8), an additional

* relation between 05 1 and C 52 is obtained. This relation is the same as Eq.
(B-32), that is
J (vs )

With B, and K satistying Eq. (C-17), Eq. (C-18) and either one of Egs.
(C-13) or (C-14) give three equations for the four unkrown quantities Cg,
CSZ' 52 and Kv' Thus the boundary conditions do not provide a method
of uniquely determining B, and F,(d) when the vortex cornponent of

the acoustically driven steady flow is unknown.
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Equations (C-10) and (C-11) are two relationships between the
i, IOWNS C,‘ 1 qu, and Ks’ The determinant of this system Is also zero,
snd for solutions to exist the following condition must be satisfied:

J (v8.) i R"‘(vBo)/ R'(ﬁo)
By T

. 1 Sl * M
T ()

(('::-19)

In deriving Eq. (C-19), the steady potential source strength Ks cancels
leaving a rela*ionship between fixed quantities which is probably not
satisfied, Furthermore, even if Eq. (C-19) is satisfied, the boundary

conditions do not provide a means for determining Ks'

72
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