
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



#	 W'qw

NASA Contrac or Report 165611

(,,,i n -Ct , - lbribII)	 L.VLLt,t'! 4o 	 A iii Ib11NG
•Ada HEAT BNGINt Final a3Pott (ueoryia
ust. Of &'Web.)	 1UU E Nc A05/dP AU1

CSCL 21L

N8s-31326

Uuclas
Gs/U7	 28^i ± i

DEVELOPMENT OF A SPINNING WAVE HEAT ENGINE

t

BY	 ^^^,^ n

B. T. Zinn, E. A. Powdil and J. E. Hubbartt 	 CC)
	 a
^y W UN WC

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Lewis Research Center

Under
Grant NAG3-96

August 1982
wo

GEORGIA INSTITUTE OF TECHNIOLO(31Y
A UNIti OF THE UNIVERSITY SYSTEM OF GEORGIA
SCHOOL OF AEROSPACE ENGINEERING
ATLANTA, GEORGIA 30332



NASA Contractor Report 165611

DEVELOPMENT OF A SPINNING WAVE HEAT ENGINE

B. T. Zii,in, E. A. Powell and J. E. Hubbartt

Georgia Institute of Technology

School of Aerospace Engineering

Atlanta, Georgia 30332

August 1982

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Lewis Research Center

Under Grant NAGS-96

A.-



VUKCWORU

}

k
t

}

The research described herein, which was conducted at Georgia Institute of

Technology, was supported by NASA Grant No. NAG 3-96, The work was done under the

management of the NASA Project Manager, Bert R. ;Phillips, Wind and Stationary Power

Division, NASA-Lewis Research Center.

1	 I

Y

Vt

ii



i

3

ABSTRACT

A theoretical analysis and an experimental Investigation were conducted to assess
the feasibility of developing a spinning wave heat engine. Such an engine would utilize a
large amplitude traveling acoustic wave rotating around a cylindrical chamber, and it
should not suffer from the inefficiency, noise, and intermittent thrust which characterizes
pulse jet engines. The objective of this investigation was to determine whether an
artificially driven large amplitude spinning transverse wave could induce a steady flow of
air through the combustion chamber under cold flow conditions. In the theoretical analysis
the Maslen and Moore perturbation technique was extended to study flat cylinders
(pancake geometry) with completely open side walls and a central opening. In the parallel
experimental study, a test model was used to determine resonant frequencies and radial
pressut-e :distributions, as well as oscillatory and steady flow velocities at the inner and
outer peripheries. The experimental frequency was nearly the same as the theoretical

w acoustic value for a model of the same outer diameter but without a central hole.
Although the theoretical analysis did not predict a steady velocity component,
simultaneous measurements of hotwire and microphone responses have shown that the
spinning wave pumps a mean flow radially outward through the cavity. This conclusion has
been verified by flow visualization using both a sensitive tufted wand and smoke as flow

tracers. These results indicate that further development and testing of the spinning wave
engine concept is warranted.
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This report Is a summary of work conducted under NASA Grant No.

NAGS-96 during the period September 8, 1980 through September 7, 1981.

This project is entitled "Development of a Spinning Wave Heat Engine" and

the NASA Technical Officer is B. R. Phillips at the Lewis Re:tearch Center.

The purpose of this research program Is to provide basic information
k

needed for the development of a spinning wa ge heat engine originally

conceived by M. F. Heldmann at the NASA Lewis R.esoarch Center. The
s

spinning wave heat engine concept is based on the presence of a large

amplitude traveling acoustic wave rotating around a cylindrical chamber,

The spinning wave engine is conceptually similar to the pulse jet engine, but

fundamental differences between the two engines suggest that the spinning

wave concept can eliminate or alleviate the problems of inefficiency, noise,	 N

and intermittent thrust that caused the demise of pulse jet engine

development. On the other hand, the spinning wave engine retains the

characteristics of simplicity, low cost, low weight and absence of rotating

parts that stimulated the development of pulse jets in the early 1930's.

As a propulsive unit by itself, a spinning wave engine is not a

competitor of current engines for comn;erdal CTOL and V/STOL aircraft.

Effective pressure ratio Is relatively low (less than 5:1) and, therefore,

specific fuel consumption for such applications would be relatively high. The

concept, however, remains attractive for many applications such as military,

powered glides, auxiliary power, precompression stage for other engine

cycles, and ground-effect vehicles. Within Its pressure ratio range, the cycle

efficiency of a spinning wave engine can be higher than that of other cycles
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because heat is essentially added at constant volume.

In order for the spinning wave engine to function, the spinning

acoustic wave must Induce a study flow of air through the combustion

chamber. Such a steady flow Is a property of nonlinear waves (I.e., large

amplitude) in which the oscillating flow in one direction is greater than that

In the opposite direction and a net through flow results. In the nonlinear

analysis by Maslen and Moore l , large amplitude standing and traveling

acoustic waves in a closed circular cylinder were studied using a

perturbation technique. Maslen and Moore's results indicate that a small

depression of mean pressure occurs at the center and a small elevation of

k mean pressure occurs at the periphery when a large amplitude traveling first

tangeiitial (1T) wave is present. However, no net through flow can occur for

this geometry because there are no inlet and outlet openings. When viscosity

is Included in the analysis, a steady wheel flow is predicted which rotates in

a direction opposite to the direction of wave travel for low order modes.

This wheel flow, however, does not contribute to a net flow through the

chamber.

In order to obtain a study flow through the combustor, an inlet and

outlet must be provided. The results of Maslen and Moore for the spinning IT

mode appear to imply that If openings are provided at the center and at the

periphery of the cylinder, a net inflow will o(.cur at the center and an

outflow will occur at the periphery. Providing the openings, however, will

modify the boundary conditions at the center and the periphery so that

Maslen and Moore's analysis no longer applies. in the most extreme case the

side wall of the cylinder is completely open and the boundary condition at
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the wall requires (approximately) that the pressure oscillations vanish there

(in contrast to the closed_ cylinder In which the radial velocity component

vanishes at the wall). Similarlyo providing a central Inlet Is expected to

modify the structure of the spinning transverse modes.

In this Investigation the acoustic generation of a steady through flow

in the absence of combustion is determined by extending the Maslen and

Moore analysis to Include the effects of inlet and outlet openings. This work

is divided into two parts. In the first ;.art the Maslen and Moore technique Is

used to study flat cylinders (pancake geometry) with completely open side

walls and a central opening. In the second part an experimental apparatus is

used to verify the analytical results. The remainder of this report

summarizes the analytical and experimental work done under this project.



THEORETICAL

The objective of the theorcticai analysis cescrioea nerein is co

determine whether a large amplitude spinning acoustic wave can pump a

steady flow through a flat cylindrical chamber which is open on the

periphery and at the ceter. Such an annular pancake cavity is formed by

two parallel, closely spaced annular disks as shown In Figure l;. To minimize

losses due to acoustic radiation and to ensure a two-dimensional acoustic

solution, the spacing h between the disks must be small compared to the

outer radius b; that is h/b <<I,. Under these conditions the pressure at the

open boundaries is approximately equal to the ambient pressure! that Is, as a

first approximation the pressure perturbation must vanish at the outer edge

V b) and inner edge (r* a) of the annular plates. This is analogous. to the

open-end boundary condition used in the analysis of organ pipes. In contrast,

the nonlinear analysis of Maslen and Moore(l) was applied to hard walled

cylinders for wolch the radial velocity component must vanish at the outer

boundary (there is no inner boundary in this case). In fact for the first

tangential spinning mode, the maximum pressure fluctuation occurs at the

hard walled boundary in the Maslen and Moore analysis.

Although the boundary conditions are different, the governing

differential equations are the same for both geometries. Therefore the

approach taken in this analysis is to follow closely the Maslen  and Moore

procedure, substituting the appropriate boundary conditions where

necessary. This leads to some serious difficulties, which have -not  been

satisfactorily resolved. Nevertheless it is believed that the solutions

obtained in this manner are instructive and shed some light on the expected
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behavior of the spinning wave engine. The exploration of alternative

methods of analysis, such as the Method of Weighted Residuals (2,3pO was	
1

beyond the scope of this one-year project.

Modification of Maslen and Moore An.

Basic Procedure. In the Maslen and Moore analysis It is assumed that

the flow is isentropic and irrotational so that a velocity potential,q), exists

such that W	 u. The energy and state equations yield the Isentropic flow

relation, P = pY . The continuity and momentum equat ions yield the	 l

following equatice, xar the velocity potential: 	 {

v2CP ^ _to - 2vep - v:ot + ^(v 0 • vCP) p 2 CO +Z Ve • a(p ^ • vto)

+ (Y-1) (Pt v (P	 (1)

where Y is the specific heat ratio and the pressure Is related to cp by:

(2)
1 - P Y	 (y -1) lo t + 2 p ep . pep,

i

ti
The above equations involve only dimensionless quantities defined as follows:

P	 nondimensional pressure, P*/Po

t	 nondimensional time, w t*

u,v,w	 nondimensional axial, radial, and tangential velocities

(cylindrical coordinates), a*/cop v*/cop w*/co

=	 nondimensional velocity ector, U' /CY	 / o

x	 = nondimensional axial coordinate, wx*/co

ce	 nondimensional radial coordinate, fur /co
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7

0	 X ap.gle in cylindrical coordinates

P	 Z nondimensional density, p */p o

where 0) is the angular frequency (dimensional), cQ is the velocity of sound in

the absence of the wave, the subscript o refers to dimensional flow

properties in the absence of the wave, and the superscript* refers to

dimensional properties.

In the perturbation procedure used by Maslen and Moore the velocity

potential and pressure are expanded in terms of an ,amplitude parameter c

thus

4P = R m(l) + e cp (2) 
+ e3 

fp(3) + ...	 (3)

and	 P 1 + 6P
(1) + e 2P(2) + 4

3 P(3) + ..•	 (4)

Substituting Eqs. (3) and (4) into Eqs. (1) and (2), collecting and grouping	 f

terms according to powers of e , and equating the resulting coefficients of
E

each power of a to zero gives equations to be solved successively for the

first, second and third order potentials and pressures.

First Order Solutions. Equating the coefficient of a in Eq. (1) to

zero gives the wave equation for the first order potential c0(l)s

V (tt = 0	 (S)

while
"

Eq. (2) yields:

P(l) - YAP (1)
	 (6)

t
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Spinning wave sole,+dons. of Eq. (S) were obtained by the method of

separation of variables and were required to satisfy the boundary conditions

PM a 0 at r* = a (inner) and r* s b (outer) boundaries. Thase acoustic

solutions !or the velocity potential cp (1) have the form:

i

V (1) _ ^ 3n ( O nkr) "	 TYn( llnkr)^ sin (t + ne ) (7)
n nk

where 3n and Y  are Bessel functions of the first and second kinds,

respectively, of order n. The parameter v is the ratio of inner radius to

outer radius, v = alb, and the elgenvalue 0 nk Is the kth solution of the

equation

.

P

in(x)Yn( v x) - Yn(x)Jn ( v x) 0.	 (a)

The velocity potential ro (1) is expressed In terms of the dimensionless radius

r = r*/b, the angular coordinate 9 , and the dimensionless time t. The actual

frequency f is then related to the eifenvalue by

C

f - 2^ nk	 (9)

The acoustic pressure is then given by

PM _ - Y Rn(a) cos (t + n8 )	 (10)

0

It
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where Rn(a ) is the radial acoustic elgenf unction given by

J
}	 Rn( a) = 3 ( a ) -	 n 

v^nk) 
Yn( a )t	 Y^ v ^k)

and a = w r'*Ico = Onk r*fib = 0 nkr.

Detailed calculations of the radial eigenfunctions, eigenvalues and

pressure fields have been carried out for the principal mode of interest, the

spinning first tangential mode (n 1, k = 1). A plot of the eigenvalue S11 as

a function of v is shown in Figure 2, which implies that the frequency

increases as the diameter of the central opening increases. For v < 0.1

Figure 2 also shows that the frequency is close to the value ( 0 11 = 3.83171)

w obtained when no central ;opening is present (Le,, two closely spaced disks).

The radial dependence of cp (1) is shown in Figure 3 for v 0, 0. 1, and 0.2.

For the case of no central opening ( v 0) the coefficient of Y 1 vanishes

(Y 1 (Q) - -) and the solution becomes tp (1) = 3 1 ( O il r)  sin (t +0 ). Figure 4

shows the pressure field (isobars) for the case v = 0 (no central opening),

while Figure S shows isobars for v = 0.2.

Second Order Solutions. Setting the coefficient of e2 in Eq. ( 1) equal

to zero yields the following equation for the second ordeK potential ep (2)

02 CP(2)_ (2) _ (' Q 1) . ".(1) + ^ (-(1) / it1
tt 	 L	 2	 t 

	 (12)

0-9

i

i.
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Figure 2, Radial Eigenvalues for Open Annuli for n 1.
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where only the known first order solutions appear on the right hand side.

Following Maslen and Moores Eq. (12) is assumed to have a solution of the

,form

1;(2) = 2 sin 2 (t + ne) CR2 (a ) - ('Y + 1) f (a )^	 (13)

Substituting Eq. (13) into the left-hand-siae of Eq. ( 12) and the first order

solution given by Eq. (y) into the right-hand-side of Eq. (12) yields thin

following lahomogenerus Bessel equation for f(a )s

f it (0)+«f^(a)+4 (1- -n 22)f(«}=R2(a)	 (14)
rx

A

where the primes Indicate differentiation with respect to a .
C	 x+4

Equating the coefficient of e2 in Eq. (2) to zero gives the following
E	

relation for P(2) in terms of the first and second order potentials cp (1) and	 s

I	 (2).
P(2) = Y^^t2)+ 2 v^(1). v^(1)- 

2v
^tl)^

z`I	 (ls)

Substituting the first and second order potentials (i.e. Eqs. (7) and ( 13)) into

Eq. (15) gives the solution for P( 2) as;

(2) _ -	 ^'(P - Y 1P20  (a )cos 2 (t + n 8) + P23(a) J	 (16)

where

(21	
2

P20 	 \ 3+ n2 / R2(a)- 4 CR'	 ] -('Y+ Of(a) (17)
a
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and P ( °f) " 4 ` Rn(^ ) J Z " I It2() l ` 
n )
a

The second order contribution to the pressure Is thus seen to consist of a

double frequency component (i.e., P 20(a ) cos 2(t + n6 )) and a steady

component (i.e., P23( a)).

In order to complete the second order solutions, the function 001)

must be obtained by solving Eq. (14) Since this is a second order differential

equation, the solution for f ( a) will contain two arbitrary constants. These

constants must be obtained by Imposing the boundary conditions at the inner

and outer radii; namely, that the pressure perturbations vanish there. This is

not as straightforward as it at first might seem, because the relationship

between the dimensionless radial coordinate a and the dimensional radial

coordinate r* involves the angular frequency w . Since the frequency is

usually dependent upon amplitude for nonlinear systems, the application of

the boundary conditions becomes complicated. Therefore the determination

of the frequency dependence upon amplitude and the application of the

boundary conditions will be deferred until after the third order solutions

have been derived. The solution for f( ot ) is given in Appendix A.

Third Order Solutions. Equating the coefficient of e 3 in Eq. (1) to

zero yields the following equation governing the third order potential V3.
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+ Y-1)2(1) 9(1) ^(tt+ 	 C2 vy (1) • 742) +

+ (y -1)(t) tpt2) + (Y -1) v90) • '7400)(04)

t

where only the known first and second order solutions appear on the right

hand side. As In the Maslen and Moore analysis, this equation Is assumed to

have a solution of the form:

i
(3) F l (a) sin 3 (t + rte ) + NO sin (t + tie) 	 (20)

where the functions F 1 ( a) and FS(a) satisfy the following inhomogeneous

Bessel equations:	 _	 }

i
2

F1+ IF1+9 r1 n2 F1^ R,l a)	 (21)
\	 a

2

FS + —al F's + 1 - 2 Fs	 R3(a)	 (22)
a ) 

x

The inhomogeneous terms 91 (a) and RPv ) appearing i n Eqs. (21) and (22)

are determined by substituting the first and second order potentials (i.e.,

Eqs. (7) and (13)) into Eq. (19), and they are given in Appendix B.

Also the third order pressure contribution P(3) was derived by

applying the perturbation analysis to the nonlinear relation between pressure

i

16

(19)
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and velocity potential (Eq. (12)) to obtains

r•	 1

i.

f

6
J

{	 I

f
1

13

t

Y

y'.

f
4	 ]

P(3). -y 1PM + 741) . V9(2) - W (1)^ 2) - 2 
CtU v ro(1) v^1)

(Cp(l) /3
t

(23)

Substituting the first, second, and third order potentials into Eq. (23) gives

the solution for P(3) as:

13(3) = y P30 cos 3 (t + n g) - yP34 cos (t + n g)	 (24)

where

P30(a) = 3F 1 + C 4 
l R

nf {' ` 21 -
1 

Rnf

+ Rn j _ 3(R, )2 
+ C 

3 n2 _ y +10] R2	 (23)$- l	 n	 L ô 	 n

2
1'340) ° FS	 Y4`) Rnf' + Y-21 1 (1 - n21 Rnf

E	 a

R2 	 lr	 + 8n { 3(Rn)2 +^ 02 -(y +2)]   Rn J	 (26)
t	 a

The third order contribution to the pressure is thus seen to consist of a third

harmonic component (i.e., P30 cos 3(t + n 8 )) and a correction to the

fundamental (i.e., P34 cos (t + n e))•

t

i

f

a^
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In order to complete the third order solutions the radial functions
s	 .

F l(a) and Fs(a) must be obtained by solving Eqs. (21) and 22) subject to

the boundary conditions applied at the Inner and outer radii. This depends on
i

the amplitude dependence of the frequency which will be considered In the

next section. The solutions for F l( a) and FS( a) are given In Appendix B.

In both the second and third order solutions, the expressions for y2),

$3)^ 
P20 ( 00 )' P23 (a), P30 (a),), and P34( a) as well as the differential

equations governing f(a ), F l (a) and F 00 agree with their counterparts

in the original Maslen and Moore analysis if one replaces R, (a ) with 3n(a ).

Boundary Conditions and Dependence of Frequency Upon Amplitude.

The perturbation technique of Maslen and Moore also requires that the

frequency varies with amplitude according to the expansion 	 x

W	 wo + ewl + c2 w 2 + e 3 w
3 +...	 (27)

	 1

a

where w o is the acoustic frequency. This is equivalent to expanding the 	
l

eigenvalue = bw /co, thus

d : g o + 6 01 + c2 02+  6 03+"'	 (28)

In the remaining discussions the subscripts denoting the tangential and radial

mode numbers n and k for the eigenvalue 0 nk will be dropped.

In order to determine the coefficients 010 020 ... in Eq. (28), the

pressure was required to satisfy the boundary condition P 1 = 0 at the
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outer radius a 0 and at the Inner radius a vii , thus

c P(!)(O f e ,t) + c 2P(2)( p to Ot) + c3p(3)(0 9 rt) = 0	 (29a)

C P(1)( v 010 ,t) + 92P(2)(vp , 0 ,t) + 3p(3)(  v 0 , 0 ,t) = 0	 (29b)

Substituting the expansion of 0 given by Eq. (2E) into Eqs. (29)0 expanding

each term in a Taylor series about the acoustic value ^o or v ^o, and

z	 equating the coefficients of each power of c to zero yield the bcxindary
Y

conditions for the second order function f(a) and the third order functions

F 1 ( a) and F3( a).

In particular, equating the coefficient of c to zero yields R0 o)
l

!tn( v P0) 0 which is already satisfied from the definition of So

From the coefficient of e 2 one obtains the following expressions:

S 1 111 4 o) cos (t + n g) + P20( p o) cos 2(t + n g) + P23( d o) = 0	 (30a)
9

via WO p o)cos(t+ne)+P2Q( vdo)cos2(t+.n0)+P23(vOo)=0

(30b)

Equations (30) must be satisfied for all values of t and 0, thus each term
k

must separately vanish. The first term Is zero only if 0 vanishes, since

the derivatives of the eigenfunctions IQ 0o) and R'(v S o) are not zero at

the boundaries (see Figure 3). The other two terms require that the second

order pressure functions P24( a) and P23 (a ) vanish at a _ vP o and a

r	 0o. Thus the first order correction to the eigenvalue d 1 is zero which

--L.J

F



agrees with the well-known result from linear acoustics that the frequency

Is Independent of amplitude. From Eq. (17) the boundary conditions on

P20(0 yield the following boundary conditions to be satisfied by the second

order function f(o k

1	 2

f(P o)	 T 
Rn^ o) 	(31a)

2
f( va o) =	 ^`^"^Rtvpo)^	 (31b)r

On the other hand, Eq. (18) and the boundary conditions on P 23( a) require

that R'( 0o) and Rn( vP o) vanish, which Is Impossible since the

derivatives of the elgenfunctions Rn are finite at the boundaries. This

implies that the condition that the pressure perturbation vanish at the Inner

and outer boundaries cannot be satisfied in the framework of the Maslen and

Moore theory.

The failure of the second order solutions to satisf,,# the boundary

conditions Is the difficulty mentioned previously. This residual pressure

perturbation (P 1)f which Is Independent of time and angle, is given to

second order by (using Eqs. (29), (16) and 0 8%

P^( i3)	
- 

s ' Rn( ^o) 	(32a)

z	 2

P'( vo o) = 4	 Rnt v ^o	 (32b)

V
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where P' Is the dimensionless pressure perturbation P-1. 'These boundary

residuals appear to arise from the nonlinear terms in the relationship

between pressure and velocity potential (i.e., Eq. (2)). It Is possible that

these boundary residuals are on Inherent error associated with the Maslen

and Moore analysis when one attempts to satisfy epr ssure boundary

conditions with a perturbation analysis based on a velocity`patential. In the

original Maslen and Moore analysis for a cylinder with rigid boundaries, one

required the normal velocity component to vanish at the boundary. Since the

velocity is linearly related to the velocity potential, the boundary residuals

did not appear In the original analysis. Further analysis of this problem has

not yielded a method of satisfying the pressure boundary conditions to

second order, Therefore the approach to be taken In the remainder of the

analysis will be to accept these boundary residuals as part of the error

Incurred by using an approximate perturbation analysis.

ReAurning to the Taylor series expansion of Eqs. (29)9 setting the

coefficients of s3 equal to zero yields:

[ 2 R' (P o) + P34( ^o)] cos(t + n6) + p,0( P 0) cos 3(t + n0) = 0	 ;33a)

L +00 2 Rn( v^o) + P34(v o
)]
 cost + n e) + P30( VPo) cos 3(t + n e) = 0

(33b)

where i3 1 = 0 has been used. Again each term must vanish separately. The

second term, along with Eq. (23), yields the following boundary conditions to

be satisfied by I= 1( a h

Fl( 00) = -(Y. ± 1) Rn( 00) f ( 00)	 (34a)

a	 k

— 49
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F 1 ( vO'o) C Y + 0
 R'(v P o) f ( vO o)	 (34b)

The first term and Eq. (26) give the boundary conditions for F3{ a) in terms

of the second order correction to the elgenvalue 0 2 as followss

F3( 4) 4 R^{ o)i^ { i3 o) - 02R^( o)	 (3a)

F3{ v o) 4 Rn{ v i^ o)f {v o) - v A 2Rn( v p o) (33b)

The  eigenvalue correction	 0 2	 can only be obtained after the

t	 inhomogeneous Bessel equation for F3( a) (I-e, Eq. (22)) has been solved.

R This analysis Is given in Appendix B and yields the following expression for

02.
[R(Pn o)f r ( i3 0) - a lt' v O o)f' { ^ P o)^- F3p( 0 0)

R'( 0 o)	 v a R' {v d o)
(36)

where a = 3n( P o)/an(v 0 o) and F3p( a) is the particular solution of Eq.

(22) given in Appendix B.

Total Solutions. In order to obtain numerical solutions relevant to the

spinning wave engine, expressions for combining the first, second, and third

order solutions given in the preceding sections are needed. These are based

on the expansions of the velocity potential and pressure given by Eqs. (3) and

(k) where the dependence of frequency upon amplitude is accounted for by

the Taylor series expansion procedure used in the previous section. Since we kj

9
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are Interested In Interior points as well as boundary points, the Taylor

expansion is performed about a 0 = 10r where a _ ( 90 + C2 02)r.

The pressure perturbation P' is thus obtained from Eq. (4) using a

Taylor expansion about P0r to gives

P l (r, o ,t) = e P0)(00 r, Opt) + f2 P(2)( 0 or' o ►t)

`3{p(3)( i^0r, e,t) + 02r
(1

( or, ,t) }	 (37)

Using Eqs. ( 10), (16), and (24) in Eq. (37) yields

P	 - Y le 2P23(01 ) + C s R n( a) + c3P34( a) + 63	 2 R' (a ), cos(t+n o )

0	 + e2 P20 (at) cos 2(t + n. A) + s3 P30 (a) cos 3(t + no )} 	 (38)

t
^	 where	 2 =	 2/ i} o and computations are made using the acoustic

f	 eigenvalue 0 o in determining a (i.e., using a	 for in Eq. (38)).
4	 t

The acoustic velocity components are also of considerable interest in

}	 the spinning wave engine analysis, since they are needed to determine the

,E acoustic pumping of a steady flow through the engine. The radial velocity v

and tangential velocity w are determined from the definition of the
r	 }j	 y

velocity potential and Eq. (3) as follows:
f^

PT
(1)	 2 !2)	 3 a4P(3)

V aka -	 T + ^ a a + s "371	 (39)

r

i
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^	 j	 (1)	 ^(,2)	 (3)

where again a = ( H o + s2 p 2)r. Performing, the Taylor series expansion

about Por and neglecting terms higher than third order In ` gives:

	

a (1)	 2	 2190)
	 2 a,0(2)

V(01 ,t) = t	 ( 0or) + c ^2r	 2	 ( 0 or) + c F- ( or)
a

	

+ e3 
-0 ( 

0 or)	 (41)

! a go{1)	 2 ao(2)	 3	 aq(3)
w( a, 8 ,t) _ !o r s	 (^ or + s ^`S" (' Oor) + E t	 H° (for)

C 60 (1) ( 
0 r) + 0 r ^ 2 m(1)

(0 or)	 (42)

	

2 - —re—	0	 2 aclae -

Introducing expressions for the velocity potentials from Eqs. (7), (13), and

(20), performing the indicated differentiations, and grouping like harmonics

together yields:

v(a t A,t) _ {e R'(ci) + s [F'(a) - 2 R'( a) - 2 « 1- n2 )Rn(a ), I sin(t+n g )
a I

	

+ s2 
I nR(a) R'(Q')	 f (c^ )l sin 2(t + ng )

+ s3 Fl(oi ) sin 3(t + ng )
	

(43)
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w(a	 c Rn(a) + ej FS(a) + C 2( aR f ( a) - Rn(a ))^ } cost+n8

+ a 92[
R2(a) - ( y + )f(a)]cos2(t+no)

+3n e3 F 1 ( a) cos 3(t + n 9)
	

(44)

These expressions can be used to determine the magnitude of the

steady flow driven by the spinning wave. Since only the radial component

contributes to a through flow, only Eq. (43) for v is of concern here. The

steady through flow is obtained by taking the time average of v over one

period of oscillation. Since the radial velocity consists entirely of terms

which are sinusoidal in (t + n A) (fundamental with second and third

	

,;	 harmonics), the time average of v is zero. There is no steady or time

independent term. Thus the Maslen and Moore analysis predicts no steady

flow generated by nonlinearities in the wave motion when the pressure 	 J
perturbation is required to vanish at the boundaries. This result appears to	

,a

be independent of the difficulty in satisfying the boundary conditions for the

second order solutions.

Typical Numerical Solutions. The expressions derived above for the

pressure perturbation P' (Eq. (38)) and the velocity components v and w

M-qs. (43) and (44)) were used to obtain numerical solutions for a typical

spinning wave engine configuration. In these calculations an annular pancake

geometry was assumed with the ratio of central hole diameter to disk

	

{	 diameter v of 0 .2. The working fluid was assumed to be air with a specific
d

heat ratio y of 1.4, since combustion is not considered in this analysis.a
i

..
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Finally a first tangential (i.e., n = I t k = 1) spinning mode was assumed with

an amplitude parameter s of 0.3.

Before the acoustic pressure and velocity can be calculated the

following functions are needed: the radial eigenfunction R n(a) and its

derivative, the second order function f(a ) and its derivative, and the third

order functions F l(a ) and F5(a ) and their derivatives. The radial

eigenf unction for the first tangential mode has already been shown in Fig. 3

where 0 o = 4.2357. The second order functions f(a) and f'(a) are shown

in Fig. 6 for v = 0.2 and Y = 1.4. From these and the radial

eigenfunctions, Eqs. (17) and (18) yield the second order pressure functions

P20( a ) and P23(a) which are plotted in Fig. 7. In order to obtain the third

order functions F l ( a) and F5(a ), Eq. (36) was used to yield p2 =

.49254. The function F 1 (a) and the corresponding pressure function

P30( a) (obtained from Eq. (25)) are shown in Figure 8, while Figure 9 shows

F5 (a) and the function P34(a) + a C2 R'(a) (obtained from Eq. (26) and

(38)).

Pressure waveforms for the spinning first tangential mode were

computed using Eq, (38) for two radial stations: r = 0.56 where 'R 1 (a ) has

a maximum (pressure antinode) and r = O.S. These waveforms are plotted in

Fig. 10 for both second order ( e 3 terms neglected) and third order ( e 3

terms retained) approximations with e = 0.3. At r 0.56 the second order

waveforms are only slightly distorted from a sinusoidal shape since P20(a ) is

relatively small, while at r = 0.8 the second harmonic distortion is readily

apparent for here P 20 00 attains nearly its maximum magnitude. Adding



j	 y
i

4t
t

OF POOR QJAl..ITY
PI

t ^ 	 t

0.6

0.4

0.2

0

-0.2

y	 1.4, v - 0.2

-0.4

I. .

27

-0•Q 0	 0.2	 0.4	 0.6	 0.8	 1.0 u

Dimensionless Radius, oc/So

i
Figure 6. Second Order Function 01) and Its Derivative for the

Spinning IT Mode.

r;
n



0.2

4

i

0

P23(m)

0.6

,

28

t^C: ANAL PAGE IS
OF POOR QUALITY.

i

a

P20(a)

0.4

-0.2

-0.4

J

a

-0.6

Q	 u.z	 0:4	 0.6	 0.8	 1.0

Dimensionless Radius, a M o

Figure 7. Second Order Pressure Functions for the Spinning IT Mode.



ORIGIN"AL R*
OF POOR QUALITY

0.2I	 '*

0

-0.4
II

-0.8

29

0

0.2

-0.2
	 1.4

0.2	 0.4	 0.6	 0.8	 1 0
Dimensionless Radius, (%/O 

0

0

P 30 ( 0)

0.4

Dimensionless Radius, of /0O

Figure 8. Third Order Function F I (a) and corresponding Pres6ure
Function P 

30 (01) for Spinning 1T Mode.

is



F5(a)

v 0.
Y IA

0	 0.2	 0.4	 0.6	 0.8	 1.0

Dimensionless Radius, a/go

D

ORIGINAL PAl2Z
OF POOR QUALITY

0.2
1 11	 *

Dimensionless Radius, a/J90

Figure 9. Third Order Function F (a) and Corresponding Pressure

Function 34a for Spinning 1T Mode.P (

LA



31

IL

the third order terms tends to f latten the peaks at r = 0.56 and smooth out

the minima at r = O.S. At the boundaries r = 0.2 and r = 1.0 the

oscillatory component of the pressure vanishesp : however a time Independent

component or mean pressure shift remains. This bound-iry residual which was

discussed previously (Eqs. (32)) amounts to about - 2% of the ambient

pressure at the Inner boundary and about - 0.3% of the ambient pressure at

the outer boundary for c = 0.3.

The radial velocity waveforms were calculated using Eq. (43) at the

boundaries where they attain their maximum amplitude. These waveforms

are shown in Figur e I I for both second order and third order approximations.

The principal effect of nonlinearities on the velocity waveforms Is to

steepen the rising portion of the curve and flatten the descending branch

while preserving symmetry about zero velocity. This is more apparent at the

outer boundary r = 1. Due to this symmetry, there is no steady flow through

the system.

The effect of amplitude upon frequency is determined from Eq. (27)

as:

jL_ = 1 = j _ = I + 6 2 0 2 or
W 
0 fo	 0 0	P 0

f - = I+ C C 
2

f 0	 2

For the present case, P 2 = - .49254 for which C 2 = - .11628. Thus

frequency is seen to decrease as the amplitude parameter is increased. A

similar variation of frequency with amplitude was c4ilculated by Maslen and

(45)

I
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Moore for the hard-walled cylinder with C 2 - 0.084. For c = 0.3 the

frequency shift is quite small, giving a frequency only about one percent less

than the acoustic frequency.

Analysis with Steady 'Potentials

The straightforward application of the perturbation technique of

Maslen and Moore to the open annular cavity does not yield an acoustically

driven steady throug)i flow as shown by Eq. (43). In this analysis the solutions

assumed for cp( l ), tp(2), and ep(3) were _patterned after the solutions

assumed by Maslen and Moore which did not explicitly contain a steady flow

term. In this problem, however, a steady flow term is permissible since the

boundaries are open. In an attempt to predict acoustic pumping, the Maslen

and Moore approach will be modified by including a steady potential in the

solutions for 9 (1), cp (2) and tp(3)»

The analysis is modified by adding a steady potential to each of the

unsteady potentials used previously. Thus the velocity potential becomes

(i)	 (l)1	 2	 (2)	 (2)1	 3	 (3)	 (3)^tp	 e ^ + tP	 + c	 V+ m ,
JJ 

+ s	 ^ + ^0	 + ...

(46)

where the steady potentials -^ (1) are functions of 0 and 6 and the sum of

the potentialscp (i) + gyp(') must satisfy Eqs. (S), (12), and (19). The existence

of ^ (1) , however, 'implies the existence of acoustic pumping in the first

order or linear regime (small amplitude). Since acoustic pumping is expected

to arise from the nonlinearities of the system, it will be postulated that the

first order steady potential is zero. Thus the first order solution for the

r	
velocity potential is still given by Eq. (7) and the first order pressure is still

given by Eq. (10).

F
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The second order solutions are determined by replacing v(2) in the

left-hand-side of Eq. (12) with tp (2) + ; (2) and using Eq. (7) in the right-

hand-side for CP0). Thin yields cp(2) as given by Eqs. (13) and (14) while j (2)

must satisfy Laplace's Equations

172i(2) = 0	
(47)

Due to symmetry considerations the steady flow driven by a spinning

acoustic mode Is expected to be independent of the angular coordinate e .

Solutions of Laplace's Equation which satisfy this criterion are the potential

source or sink which is a purely radial flow and the potential vortex which is

a purely tangential flow. Although only the radial flow component can

contribute to a mean flow through the annular cavity, there Is no apparent

physical reason to exclude the vortex flow component. Since the acoustic

wave rotates around the chamber, it is quite likely that a vortex flow Is

generated. Since Laplace's Equation is linear, superposition of solutions Is

permittedo and the steady potential i (2) will be assumed to be a linear

combination of source and vortex flows given bys

c0 (2) = Ks kna + Kv6	 (48)

where Ks and K  are constants to be determined.

The second order contribution to the pressure P (2) is obtained by

substituting co(l) and cp (2) + i(2) into the right-hand'-side of Eq. (13). Since

cPW contains no steady component and c 2̂) = 0 (by definition) the

expression for P(2) is unaffected by the second order steady potential cp (2).

,1{
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Thus P(2) Is still given by Eqs. (16), (17) and (la). From this result it Is seen

that Including the second order steady potentials does not remedy the

difficulty in satisfying the pressure boundary conditions to second order.

The third order solutions are obtained by Introducing Eq. (7) for (P(l)

and cp (2) + m(2) given by Eqs. (13) and (48) Into the right -.hand-side of Eq.

(19)• Expanding the right -hand-sides collecting terms, and using 4,(3) + ^(3)

In the left-hand-side yields the solution for cp (3) as:

cp (3) = F l (a ) sin 3(t+n 8 ) + F 4(at) cost+n 0 ) + F3(a ) sin(t+n 0)

(49)

where F 1 (a) satisfies Eq. (21) as before, but, F4( a) and FS( a) are solutions
r

of the following Inhdmogeneous equations:

2	 2K	 (SO)F4 + ^ F4 + (1 - Viz) F4 = as R^( a )
a

F^^ + ^ F5 + f 1 - n 2 )F = EtS(o) -

 2nK
	 (S1)

	

Ci
S	 a	 S

where R S( a) is given by Eq. (11-16) as before. The steady potential i (3"

must also satisfy Laplace 's Equation:

02 (3) 0	 (32)

The third order contribution to the pressure is obtained from Eq. (23)

using Eqs. (7), (13), (48) and (49) to yield:

	

P(3)	 Y P30(a) cos 3(t+n e ) + P3 401) sin(t+n0

+ P34 00 cos (t+n0)	 (33)

®J
I

1
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1.

where P30 (a) is given by Eq. (23) as before, while P33 (at)and P34( a) are

given by:

P(cv)	 F4(0) + s E (a )	 (S4)33	 4	 n	 4

nKv
P34 (01) = G3(ce) + - — Rn(01)	 (53)

where G 3 (01) is the right-hand-side of Eq. (26).

It Is seen from the above analysis that including a steady term in the

F
second order potential W (2) affects only the third order contribution to the

pressure through the new term P 33( a) sin(t+n 8 ) and by modifying P 34ta ).

This effect can be viewed as shifting the phase and changing the amplitude

of the third order pressure component which oscillates at the fundamental a
i

frequency. A similar effect occurs in the third order potential through the

new function F4( a) and a modification of FS(a).

The boundary conditions are applied using the Taylor series

expansions as before with the eigenvaiue 0 expanded according to Eq. (28).
1	 y

Again the first order correction 0 1 vanishes and the boundary conditions on,

V a) are again specified by Eqs. (31). The third order function F 1 (a) also

F satisfies the same boundary conditions as derived previously; namely, those

given by Eqs. (34). The boundary conditions on FS(a ) are also the same as

before, since the contribution of the vortex flow to P34 (a) vanishes at the

bud ie (s e E (56)) Thus the boundar conditions for F ( a) are ivenonars.e q.	 y	 5	 g

by Eqs. (35) in terms of P2. However the solution for FS(a) depends upon

the vortex flow Kv through the additional term on the right of Eq. (31). The

pressure boundary conditions also require that P33( v 0 o) ` P33(P o) ` U
to
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t
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1

which from Eq. (34) yields:

F4( do)	 Rno)	 (37a)
0

F4( v h o) = ^s R'(v d o)	 (57b)
Q

Solutions for F4 ( 01) and FS( a) are given in Appendix C. It is also

shown In Appendix C that the boundary conditions do not provide enough

Information to uniquely determine the frequency correction 0 2, the steady

flow parameters Ks and K v, and the constants of Integration appearing in

the functions F 4 (a) and FS(a ). Furthermore, it is shown that there is no

value of Ks for which Eqs. (57) are satisfied.

From the above analysis, It appears that adding steady flow terms to

the Maslen and Moore analysis does not provide a means for predicting

whether a large amplitude spinning wave can generate a steady flow through

an open annular cavity.

i

x

r
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TEST MODEL `J4D INSTRUMENTATION

i

Test

An illustration of the spinning wave engine test model is in Figure 12,

The assembled model is shown in the photographs of Figure 13. Two paraliel,

61 cm (2411 ) diameter discs are used to form the cylindrical cavity for the

spinning wave. The cavity is open to the environment around the entire

periphery and at central ports 12.2 cm (4.811 ) in diameter ( ^a = 0.2). The

spacing between the discs is variable via the four threaded support rods

located outside the cavity. One disc is fabricated from 2.5 cm thick,

transparent plexiglas to allow flow visualization. The other disc is fabricated

from 1.25 cm thick aluminum plate. Four acoustic drivers, at 90 0 intervals,

are mounted to the aluminum disc with the active surface flush with the

internal surface. The model is equipped with ten ports for flush mounting 2.5

cm microphones. Three of these, which are clearly visible in the

photographs, are along a radial line on the plexiglas disc. Seven are on the

aluminum disc along a radial line and at three circumferential positions at

900 intervals. The radial location of these circumferential microphone ports

and the acoustic drivers coincides with the pressure antinode predicted by

the acoustic solution. Also shown in the photographs, but excluded from the

illustration of Figure 12 for the sake of clarity, are five static pressure taps

along a radial line on the plexiglas disc.

Figure 14 presents a plan view of the apparatus and shows locations

of the various instrumentation and the corresponding nomenclature used

herein. The four drivers are indicated as DI At DI B, D2 A , and D2B. The

41
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Figure 13. Test Model Assembly.
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microphones, M 1, M2 t and M3, are shown at the primary locations for the

spinning wave tests. The static pressure ports indicated by P 1 through PS are

equally spaced along a radial line. P3 is located on the surface opposite to

that of D2 B. Finally, six locations-used for the constant temperature hot

wire measurements are shown as W1 through W6. These cover one quadrant

of the flow field with spacings at 450 intervals at both the Inner and outer

radius of the cavity.

Instrumentation

Four 75 watt University drivers, Model ID-75, were used to excite the

oscillatory flows. In most cases, the four drivers were operated in pairs with

DI  and D I B as one pair and D2  and D2  as the other. Each pair was

powered by a single Krohn-Hite 50 watt amplifier, Model DCA-50R, and 50

watt matching transformer, Model MT-36. The two drivers of a pair were

excitfd 1800 out of phase by reversing the polarity of input leads. A

Hewlett Packard Model 203A two-channel, variable phase function generator

was used to provide simple harmonic input signals to the two amplifiers.

Operation with any combination of from one to four drivers was possible by

connecting or unconnecting input leads.

Three B do K condenser microphone cartridge type 4134 were used for

measuring the oscillatory pressures. The microphones could be relocated, to

any of the ten microphone ports shown in Figures 12 and 13 by interchanging

microphones and cylindrical plugs. Microphone outputs were measured by a B
i

& K type 2606 amplifier with frequency range from 2 to 200,000 Hz.

1

i

i
t
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Hot-wire measurements were made wit, , a TS1 single channel hot-

wire anemometer system consisting of a constant temperature anemometer

F module, a monitor and power supply module, and a signal linearizer wf,th a

4th degree polynomial curve fit. A tungsten platinum coated hot wire with a

sensor diameter of S p , sensor length of 1.25 mm, and upper- frequency
a	 response of better than 200 kHz was used. Hot-wire outputs were measured

both with an averaging voltmeter and a true RMS voltmeter.

Input , and output AC signal wave forms were observed and

photographed using a Tektronix type 549 oscilloscope equipped with a

Polaroid camera attachment. Furthermore, phases between the various AC

signals were measured with a Wavetek phase meter Model 740.

Mean or DC static pressures were measured using a highly stable and

accurate Datametrics Barocel Electronic Manometer with a 10 mm Hg

variable capacity pressure transducer. Measurements are accurate to 1% of

reading over the range from about 95 to 175 dB.

Calibrations

The microphones were calibrated with the standard B Qc K

Pistonphone type 4220. The hot-wire calibration of voltage output versus

flow velocity was provided by TSI. This calibration, which was made using

their low velocity, steady flow calibrator, covered the range of from 0 to 6 r

m/s. The calibration data was fitted to a fourth degree polynomial of

velocity versus voltage within a velocity accuracy of better than 1% for all

test conditions reported herein. The analog circuitry of the anemometer 	 s

1	 R

linearizer were set using the coefficients of the polynomial so that the

r

k

J/
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output voltage was equal to the velocity. Thus, assuming quasi-steady flow 	 i ?
{	 I	 F	 J

over the wire, as is the practice for tur bulent flow measurements, the

linearizer output yields a faithful representation of the velocities and

velocity wave forms.

Since the drivers are mechanical devices with inertia the output and

input signals cannot be perfectly in phase. Of more importance, differences

in the mechanical drivers will cause differences between the phases of the

output, and input signals. Checks of the drivers used in this investigation

indicated that the output signals from the various drivers could be out of
a

phase by as much as 50 for the same input signal. This is relatively small in

comparison with the 900 and 1800 phase shifts used for the tests reported

herein. Nevertheless, it does mean that it was not possible to obtain a

I perfect spinning wave, but, instead, the superpositloning of a predominant

spinning wave on a weak standing wave was obtained. However, the

existence of a superimposed weak standing wave does not alter the meaning

or conclusions from the tests.

a

{

i g
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EXPERIMENTAL RESULTS AND DISCUSSION

The experimental Investigations Include measurements of the

resonant frequencies within the cylindrical cavity, phase changes for

transition from standing to spinning wave modes, radial distributions of the

oscillatory (AC) and mean (DC) pressures, and simultaneous hot -wire and

microphone data. In addition, flow visualization studies were made as a

qualitative verification of the hot-wire results. The results are presented

and discussed in the following sections. It is important to point out that

exploratory studies yielding meaningful qualitative rather than more exact

quantitative results were emphasized in order to maximize the benefits for

the time available.
..a

k

	 Resonant Frequencies and Transition from Standing to Spinning Waves

Natural frequencies of oscillations in the cylindrical cavity are

indicated by the results of Figure 13 which presents plots of the RMS

pressures measured by two microphones as a functlon of driver frequency.

Results are shown for two power levels. For each power !evel, the driver

input power was maintained while the excitation frequency was varied.

Resonance occurs where the RMS pressures peak.

Figure 15a shows results for the standing-wave mode of opzration

excited by the single driver DI  (see Figure 14 for driver and microphone

nomenclature and locations). The first harmonic occurs at a frequency of 	 3

692 Hz. The second and third harmonics are at frequencies of 1065 Hz and

1275 Hz, respectively.
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Figure Ob shows results for the spinning wave mode of operation.

Data are Included for the spinning wave excited both by the two drivers D I A

and D2  and by all four drivers (DI At D.I B, D2 At and D2B). In both cases,

D2  Is set to lag D I A by 900. Also, when using the four drivers, D1 B lags

DI  by 1800 and D2  lags D2  by X800 since, as discussed before, the Input

leads for these pairs of drivers are reversed. The resonant frequencies are

the same as those of Figure 15a for the standing waves. This Is to be

expected since these spinning waves represent the superpositioning of the

two standing waves oscillating 90 0 out of phase.

Additional results verifying the natural frequencies are presented in

Figure 16. This figure shows power spectra computed from the outputs of

microphones M1 and M2 when white noise is used to excite driver D2 AO

These results were obtained by 'feeding the real time microphone outputs

directly to a Hewlett Packard Fourier analyzer and are based on an

ensemble of 100 data strips and a frequency band width of 20 Hz. Because of

a slight error in the plotting scale factor the frequencies are shifted slightly

toward the higher values (e.g., the cutoff frequency should be precisely

2500 Hz rather than the indicated value of about 2575 Hz). Accounting for

this slight shift, the resonance frequencies for the first three harmonics, as

Indicated by the peaks in the power spectra, are about 700, 1070, and 1275

Hz, in excellent agreement with the results of Figure 15. Also ;plotted on

Figure 16 are computed curves of the magnitude and phase of the transfer

function which relates the outputs of MI and M2. These results show that

the two microphones respond in phase and with nearly a one-to-one
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relationship (the magnitude of the transfer function is slightly greater than

1.0 due to differences in the microphones). This and the similarities in the

power spectra attest to the quality and symmetries of the model and

Instrumentation.

The experimental value of 692 Hz for the fundamental frequency is

significantly different from the theoretical acoustic value of 760 Hz for v w

0.2. This cannot be attributed to :higher order effects. At the highest

pressure level for resonance (RMS pressure = 137 dB) the value of the

amplitude parameter e. , as used In the perturbation analysis, Is only 0.025.

At the lowest pressure level for resonance at the fundamental frequency the

value of the amplitude parameter is less than 0.01. Thus, second and higher

order terms must be small. it is noted, however, that the experimental

frequency is nearly the same as the theoretical acoustic value for a model of

the same outer diameter but without a central hole (i.e., v = 0). This might

indicate that the constant-pressure boundary condition is not satisfied at the

inner boundary.

Figure 17 is included to illustrate phase changes. within the cavity for

transition from standing to spinning wave modes of operation. These results

were obtained using drivers D1  and D2A, only, and with D2A lagging D'A

by 900. Similar results were obtained using all four drivers but the results

were not completely documented. The phase lag between the output of MI

and M2 isi plotted against the ratio of the input power to D2A to that of D I K

The power input to DI A was held constant while the power input to D2 A was

varied. With a power ratio of zero a standing wave exists and the theoretical
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phase lag is 1800. As the power ratio increases two standing waves 900 apart

and 900 out of phase are superimposed to produce combined spinning and

standing waves. For a power ratio of unity a pure spinning wave is obtained

and the theoretical phase between the two microphones, is 900,
N

corresponding to the angular displacement of 90°. Al-so shown on Figure 17 is

the theoretical curve for the phase lag derived by superimposing standing

waves. It can be shown that this theoretical phase lag is the arc-cotangent

of the power ratio. The agreement between the theoretical and experimental

results shown on Figure 17 is good.

Radial Distributions of Pressures

Figure 18 presents radial distributions of the RMS value of the

periodic component of ;pressure for the spinning wave mode of operation.

The pressure,,,,,s are normalized by the value at r 1 .0 in order to facilitate a

comparison with the theoretical solution. Included in Figure 18 is the

acoustic solution which is appropriate for these experimental data since the

maximum value of the amplitude parameter a is less than 0.01. As shown

by Figure 18, the experimental pressures are in good agreement with the

acoustic solution for 0 .33 < r< 0.87 and it seems that the periodic pressure

will decay to zero at the open boundaries where r 0.2 and 1.0. However,

the constant pressure boundary condition is not adequately confirmed, and,

in retrospect, the test model should have been equipped with microphone

ports nearer these open boundaries.
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Figure 19 presents radial distributions of the difference between the

mean or steady component of pressure, p , and the ambient pressure, p .

These time-averaged pressure differentials were measured using a slow-

response. (i.e., high volume) pressure transducer. The five data points in the

central region of the cavity from r ;: 0.35 to r = 0.85 were measured using

the static pressure taps labeled P 1 through P5 in Figure 14. The two data

points indicated by the triangular symbols were measured at the open

boundaries ( r = 0.2 and r = 1.0) using a 0.15 cm static pressure probe.

These are the only data that indicate negative pressures. The accuracy of

these two data points is questionable since crossflow over the probe due

either to oscillatory motion or boundary layer streaming would reduce the

pressure readings. Thus, the actual pressure at these open boundaries may be

slightly higher than that indicated by these data points. Regardless, the

mean pressures at the boundaries are nearly ambient.

In the upper portion of Figure 19 the pressure differentials are

normalized by the amplitude of the oscillatory pressure, p' , measured at r

0.6 (i.e., nearly the maximum value of the oscillatory pressure). in the

lower portion the pressure differentials are normalized by the ambient

pressure. Results are shown for the spinning wave driven both by 4 and 3

drivers. The reason for including the case of 3 drivers is that driver 02  is

located along the radial line of the static pressure taps on the disc opposite

these taps. It was thought that this driver might have a direct effect upon

the pressures and, thus, driver D2  was not used in the tests with 3 drivers.

As shown by the results of Figure 19, driver D2  does significantly change

the pressure magnitudes, but it does not ch-Ange the qualitative nature of the

I *



U

.4	 0 . .0

2

P-po

	

	 4x 10
Po

1

0

f

55

ORIGINAB. PAGE IS

In

	 OF POOR QUALITY.

4
1.0

P-po	 2--T X10
P

0.5

0

I

4 Drivers
p^- 158.9 dB

3 Drivers
p^= 161.3 dB

d

0.2	 0.4	 0.6	 0.8	 1.a

Normalized Radius, r

t

3

9



r

M

56

data.

There are two important points to be made concerning the results of

Figure 19. First, the oscillatory motion associated with the spinning wave is

accompanied by a radial distribution of mean pressure. The theory also

predicts a steady component of pressure superimposed on the oscillatory

pressure. The magnitudes of the theoretical values of the steady component

of pressure (i.e., (p - po)/po = - Y p23 c 2) on the boundaries at r = 0.2 and r

= 1.0 are about the same as the maximum value within the cavity (see Figure

7). Also the theory predicts that the steady component of pressure is greater

than ambient near the mean radius, less than ambient at the open

boundaries, and equal to ambient at about r = 0.38 and r = 0.78. However,

in contrast, the experimental results show that the mean pressure is greater

than ambient for the entire cavity except perhaps very near the open

boundaries where It may be slightly less than ambient. The second point is

that the pressure differential p - po is small in comparison with the

amplitude of the oscillatory pressure p' . As shown by the upper portion of

Figure 19, the ratio of these pressures is of the order of 10 -2. The value of

the theoretical amplitude parameter 0 for these tests was of the order of

10-2 also. Therefore, since p' arises as a first order term, p - po must

enter as a second order term. This is as predicted by the theory which shows

that the steady component of pressure first arises as a second order term.

The amplitude parameter based on p' 161.3 dB for the tests with 3 drivers

is about c	 0.03. Using this in the second order theory (i.e., in the equation

(p - po)/po - Y P23 
a 2) yields a maximum theoretical value of (p

PO )/po = 0.9 x 10-4. This is in fair agreement, but slightly lower than, the
L

f^
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I

maximum value of 1.25 x 10 for the corresponding results In the lower

portion of Figure 19.

Hot Wire Results

The response of a hot wire in oscillatory flows and the experimental

methods used in obtaining the hot-wire data will be considered first to aid in

understanding and Interpreting the hot-wire results. Figure 20 shows

idealized responses of a hot wire in oscillatory flows. Figure 20a presents

the case for a pure sinusoldal motion with zero mean flow velocity. The flow

velocity u for one cycle of motion is shown in the upper plot. The lower

plot shows the corresponding velocity u  that would be measured by a hot

wire assuming a faithful, quasi-steady response to the flow.. For all results

reported hereiny this represents the idealized output voltage since the

anemometer signals were linearized and scaled by the analogue circuitry so

that the output signal was equal to the velocity in accordance with a steady

flow calibration. Because the hot wire is insensitive to flow direction the hot

wire yields a rectification of the actual velocity curve, as shown in the

figure. This gives rise to an apparent mean velocity u w which can be

evaluated as the average or DC component of the output voltage.

Figure 20b presents the case in which a mean flow velocity u is

superimposed upon the oscillatory velocity. The rectified signal from the hot

wire is altered so that the maximum velocity for the two half-waves, uwl

and uw2 , and the half-wave lengths, %I and X 2, are now different.

Furthermore, the indicated mean velocity u w and the RMS value of the AC

component of the output signal change with u . For this case the mean flow

7

i

i	

^.:



58

u 0

U 
w 0

* t%,44: 4
OF POOR QUALITY

w

2TT	 3TTTT 

a) Without mean flow

-4

U 0 3rr2TT

wl u
w

	

w2-	 . ....... ..

u 
W

0	 T

TI	
x	

_ 2TT	 3TT- I
2

b) With mean flow

Figure 20. Idealized Hot-Wire Response.



59

velocity is given by

u = (uw l _ ww2)/2

Also, it can be shown that u Is determined by ^w and the RMS value of the

AC component of the output signal. As will be shown later, the hot wire does

not reproduce the rectified velocity curve. Apparently the quasi-steady

condition is not sufficiently valid and, thus, the output signal is distorted,

particularly during the time period near flow reversal when flow conditions

change most rapidly. Nevertheless, asymmetries in the output signal like

that shown in Figure 20b is a useful measure of the existence of a mean

flow.

The asymmetries shown in Figure 20b reveal the existence of a mean

flow velocity but not the mean flow direction. For the tests reported herein

the mean flow direction is determined by the phases between the hot wire

and microphone signals. This is illustrated in Figure 21 which considers the

signals from microphone M2 and the hot wire at location W1. For this

presentation it is assumed that the wave spins clockwise in the orientation

of Figure 14. Also note that WI is located 900 clockwise from M2. Figure

21a shows the time-dependent output voltage E for M2. This represents a

reference trace for the lower plots. Figure 21b shows the pressures at M2

corresponding -1. ,ci the microphone output trace. Because of the electronics

the pressure is 1800 out of phase with the microphone output. The radial

component of velocity, ua, at the inner open boundary ( r a) and at the

...I
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.0 angular position of M2 is shown in Figure 21c. This velocity wave as shown

leads the pressure wave of Figure 21b In accordance with theory. For the
1

sake of Illustration, it is assumed also that the oscillatory velocity Is

superimposed upon a positive mean flow velocity (i.e., there Is a net Inflow

rate at r = a). Since the wire location W 1 is displaced 900 in the spinning

direction from Ml, the oscillatory velocity u  at W! lags that of Figure

21c by 90°. Figure 21d shows u a at location W1. Finally, Figure 2le

presents the rectification of this velocity at WI and, thus, the idealized

response of the hot wire. The Important point of this illustration Is the

relation between the measurable hot wire and microphone signals which can

be displayed simultaneously on an oscilloscope. As shown for this case of

inflow at r = a the phase lag between the maximum velocity u WI 
and the

maximum microphone output Em is 1350 O TT/2). The corresponding phase

lags for the hot wire located at W2 or W3 are 180 0 and 22500 respectively.

On the other hand, if the mean flow velocity ua was negative each of these

phase angles would change by 1800 since the locations of u W 1 and u W 2

would be interchanged. Thus, the phase between E m and uW 1 can be used

to es' ablish whether ua is positive or negative.

A typical set of oscilloscope traces from the spinning wave tests is

shown in Figure 22. Operation is with all four drivers at the fundamental

frequency of 693 Hz. Because the camera was set for a shutter speed of 0.1

sec each trace shown on these photographs represent the superpositioning of

about 70 sweeps across the oscilloscope trace. Since the band widths of the

superimposed traces are small the signals ure stationary. Figure 22a provides
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the zero voltage references for the two channels. Figure 22b shows the

simultaneous traces of the output signals from microphones M2 and M3

which have zero reference traces 02 and 03, respectively. This shows that

the wave spins clockwise from M2 to M3 with the proper phase lag of 900

from M2 to M3. Figure 22c shows the simultaneous traces for M2 and the

hot wire located at W I. This corresponds to the case depicted in Figure 21

The zero references for M2 and W1 are 02 and 03, respectively. Note first

that the hot wire signals are always positive and, thus, present a

rectification of the flow velocities. However, the minimum indicated

velocity is not zero and, in contrast with the idealized response shown in

Figure 21e; the valleys in the traces are well rounded. This is attributed to

the failure of the quasi-steady flow calibration for these regions where the

velocities change most rapidly and flow reversal occurs (during flow

reversal the wake flows back across the wire). The Important point from

these results is that the successive peaks in the hot-wire traces are

different, indicating a mean flow velocity superimposed on the oscillatory

flow. Furthermore, the maximum voltage signal from the hot wx .re lags the

maximum value of the microphone signal by about 135 0 Indicating a net

inflow as discussed in the previous paragraph. For reference, the locations

for ua	and ua	based on the microphone trace are shown on the
max	 min

figure.

Figure 23 preserots simultaneous tracks of the output signals from M2

and the hot wire for all six hot wire locations. The zero voltage references

are the same as in Figure 22a. The upper row of traces Is for the hot wire on
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the inner boundary r = a and the lower row presents corresponding traces

for the outer boundary r b. Figure 23a is a repeat of Figure 22c. The

locations of ua	ana ua	and of ub	and ub	are displaced in
max	 min	 max	 rn.^n

increments of 450 corresponding to the 430 incremer. fi:s between hot^wire

locations, as discussed earlier. As shown by the upper row of traces the hot-

wire output is in phase with the radial velocity component and there Is a net

inflow rate at each location on the inner open boundary. The mdlal velocity

components at the outer open boundary is 180 0 out of phase with that at the

inner boundary and, thus, the locations of the maximum and minimum

velocities for the lower row of traces are interchanged with respect to those

of the upper rows. But the hot-wire signals have also changed so that the

maximum and minimum hot-wire outputs occur around u b	and ub
max	 min

respectively. Since u b	corresponds to outflow these traces show that
max

there is a net mass outflow rate at the outer open boundary. The importan-e

point is that these results are consistent and show that flow is pumped

through the cavity by the spinning wave and that the mean flow is radially

outward from the inner open boundary to the outer open boundary.

Additional hot-wire measurements were obtained with the standing

wave mode of operation driven using DIA and D2B (180 0 out of phase with

DIA). These results were simply recorded from the oscilloscope screen and

not photographically documented. The results were as expected and

consistent with those for the spinning . wave mode. Along the radial line

through DIA the hot-wire signals indicated a mean flow from the inner

boundary at W1 to the outer boundary at `iV4. The mean flow rate

j
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decreased as the wire location was rotated around the periphery to W2 and

W5. Finally, along the radial line normal to that through the drivers (i.e., at

W3 and W6), where there must be a pressure node, there was no measurable

hot-wire signal.

Results extracted from the photographs of Figure 23 were used to

compute the maximum and minimum flow velocities, 11W  and uW21 and

the mean flow velor.=ty as given by

B = (uW I - uW2)/2,

The results are based on the steady flow calibration of velocity versus

voltage output and, thus, assume quasi-steady flow over the wire during the

measurements of uW
1 

and uW 
2* 

The velocities were obtained by measuring

the displacements of the hot-wire traces from the zero reference traces and

then applying a calibration factor for the oscilloscope deflection which was

acquired from a separate test. The results are tabulated in part a) of Table

1. For these results the wire was located midway between the upper and

lower disc at y = 0 (see the sketch at the bottom of Table 1) and the mean

of the RMS pressures measured by M2 and M3 was 155.3 dB. This was

about the highest possible power level without driver induced distortions. As

shown in the table, the average values of a at the inner and outer open

boundaries are 0.34 and 0.13 m/s. These are very small for this low power

level. Each of these is about 15% of the corresponding amplitude of the

oscillatory velocity evaluated as (uW 1 
+ u )/2 and also listed in the table.

W2

7
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'gable 1. Ho t-Wire Results, f 693 Hz,

a) yy0

location

W1
W2
W3

Averages 2.6 119 0.34 1.2

W4 155.3	 111 0.80 0.16 0.97 0.24 0.66
W5 155.3 0.81 0.66 0.08 0.73 0.19 0.57
W6 155.3 1.2 0.88 015 1r03 0.30 0172

Averages 110 0.78 0.13 0.91

b)	 Wire Location W1

.4.	 / \	 ..

u MI
	 w, w

RMS,UWy RMS12
cm dB ms mS ms mS ms mS

-0.5 155,3 3.3 2.5 0.43 2.9 0.82 2.0
0 155.3 2.9 2.2 0.36 2.6 0.72 1.7

0.5 1.55.3 2.9 2.1 0.41 2.5 0.79 1.9
0.9 155.3 , 1.7 --1.7 p0 p,1.7 0.52 1.3

RMS
dB

Wire	 +
"W1
m/S

2
m/s m/s

z RMS
m/s m/s

-
m/S

155.3 2,9 2,2 0.36 2.6 0.72 1,7
155.3 2.7 1.9 0.39 2.3 0.62 1.5
155.3 2.1 1t5 0.27 18 0.70 1.7

c

3	 ^

l
a

b

a
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The amplitude parameter a is about 0.02 for these tests at the RMS

pressure of 155.3 dB. This indicates that the acoustic solution should be a

good approximation for these test conditions. However, the amplitudes of

the oscillatory velocity at the inner and outer open boundaries as predicted

by the acoustic solution for 155.3 dB at the pressure antinode are 6.0 and 3.1

m/s. These are about a factor of three higher than the mean values of 2.2

and 0.91 m/s listed in the table. Also, It is important to point out that the

ratio of u at the inner and outer boundaries is about 2.5 whereas the flow

area ratio is 5. These differences cannot be explained, but perhaps are due

to a combination of things such as inadequacy of the steady flow hot wire

calibration, asymmetries, and viscous effects. Nevertheless, it is felt that

the qualitative behavior is correctly represented. The mean velocity W and

the RMS value of u  are listed in Table la also since they were evaluated

separately from the oscilloscope data using an integrating voltmeter and a

true; RMS meter. These data are entirely consistent with those obtained

from the oscilloscope traces.

Part b) of Table 2 tabulates results for the hot wire at W 1 and four

values of y. The corresponding photographs of the oscilloscope traces are

shown in Figure 23c, for y = 0, and Figure 24, for y + 0.5 and y 0.9 cm.

For the three locations within the 1.25 cm gap (Le., y 0 and y 0.5 cm)

the velo6ties are sentially the same. At y = + 0.5 cm the band width of

the superimposed K aces has increased very slightly relative to that at y = 0.

At y = 0.9 the wire is located outside the gap and the oscillatory signal is not

stationary as evidenced by the multiple traces. However, it appears that on
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the average the peaks wid valleys In the traces are the same and, thus, there

is oscillation with no mean flow.

Flow Visualization

Flow visualization was employed to support the hot wire predictions

of a mean flow radially outward through the cavity. Smoke and a tufted

wand were used. A very sensitive tufted wand constructed with very fine

strands of fiberglas showed without question that there was inflow around

the complete periphery of the inner open boundary. Outflow was indicated at

the outer bovndary but, because of the very low velocities superimposed on

the oscillatory motion, these results were not so conclusive.

It was not possible to use a steady flow smoke trail to visualize the

flow since the velocity of the smoke source was significant compared with

the mean flow velocity. ,However, prior to starting oscillations it was

possible to fill the cavity with smoke which becomes stationary and diffuses

very slowly. Thus, the cavity could be filled with smoke and, after a short

settling time, the driver quickly excited to produce the spinning wave. Tests

of this type showed that the smoke was rapidly exhausted through the outer

open boundary once the spinning wave was excited. Thus again the existence

of a mean flow from the center outward was verified.

t
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CONCLUDING REMARKS

In order to assess the feasibility of the spinning Wave engine concept,

the acoustics of an annular cavity was investigated using a theoretical

analysis and an experimental model. The primary objective of the

investigation was to determine whether a spinning wave excited In the

cavity could pump flow through the cavity, which was bounded on the sides

by two parallel discs and open to the environment at the inner and outer

peripheries.

The theoretical analysis developed under this project was an

extension of the nonlinear analysis of Maslen and Moore to study the case of

an annular pancake cavity with open boundaries. This analysis Involves a

perturbation scheme in which the velocity potential and pressure are

expanded in terms of an amplitude parameter. Solutions were obtained to

third order in this amplitude parameter. These solutions yielded a steady

contribution to the pressure perturbation which was second order in the

amplitude parameter and did not vanish at that inner and outer boundaries as

required by the open boundary conditions. Furthermore the analysis did not

predict a corresponding steady velocity component; that is, the analysis

could not predict the acoustic pumping of flow through the cavity.

The spinning wave engine concept has been tested experimentally

using acoustic drivers to excite oscillatory motion ,in an annular cavity. The

spinning wave was achieved by superimposing orthogonal standing waves

driven 400 out of phase. The major thrust of the experiments was to

determine if the spinning wave pumped flow through the cavity. Also some

L'".
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tests were made to assess the theory.

Simultaneous measurements of hot wire and microphone responses

have shown that the spinning wave pumps a mean flow radially outward

through the cavity. This conclusion has been verified by flow visualization

using both a sensitive tufted wand and smoke as flow tracers. Measured

radial distributions of the amplitude of periodic pressures were In good

agreement with the theoretical predictions. Also, the experiments showed

that the spinning wave gives rise to a radial distribution of mean pressure

which is of second order, as predicted by the theory. In contrast with the

theory, however, the measurements Indicated that these mean pressures

were positive throughout the entire cavity. Furthermore, the experimental

value of the fundamental frequency was about 10 percent below that

predicted by the theory. Perhaps these discrepancies between theory and

test results are associated with the difficulties encountered In ;satisfying the

boundary conditions with the theory.

To further evaluate the potential of the spinning wave engine, tests

at higher power levels are needed. Because of driver limitations, the results

reported herein were essentially at the acoustic level. In fact, the maximum

value of the amplitude parameter was about 0.025. Furthermore, the

accuracy of mean flow velocities measured by hot wires in such a flow field

which Is dominated by oscillatory motion is open to question. Thus, for

accurate mean velocity data additional hot wire calibration tests are needed

or the velocities must be measured by a more reliable instrument such as a

laser velocimeter.
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In spite of the limitations of the theoretical analysis and the

w experimental measurements, the primary objective of this research project

has been met. The experimental detection of a radial mean flow driven b;

the spinning wave at relatively low acoustic amplitudes has demonstrated

the feasibility of the spinning wave engine concept. It is anticipated that

this acoustic pumping will increase as the square of the acoustic amplitude

giving much larger mean flow velocities at the larger acoustic amplitudes

expected in a spinning wave engine. Thus further development and testing of

the spinning wave engine concept is definitely warranted.

..
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Appendix A

Solution for Second Order Function f(a )

The second order function f(a) is described by the Inhomogeneous

second order differential equation:

2
I" (a )+ 1 f'(a) + 4(1- 11 i)f(a)= R2 (a)	 (A-1)

CY	 a	 n

where Rn(a) Is given by Eq. (7). Inspection of this equation reveals that the

change of variable z = 2 a will transform this equation to a Eessel equation.

Thus Eq. (A-1) becomes:

2	 2d 
2 + 

zaf + 1 - (2n) f = Rn(z/2)	 (A,-2)
dz	 z

The homogeneous version of Eq. (A-2) has the general solution:

fh(z) = C 132n(z) + C2Y2n(z)

r
4	 ,

0-1

L

which implies that the homogeneous solution of the original equation (Eq.

(A-1)) is given by:

f 11 (a) = C 1 32n(2a) + C2X2n(2,w)	 (A-3)

The complete solution is the sum of the solution of the homogeneous

equation fh( a) given by Eq. (A-3) and the particu`
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Thus the general solution of Eq. (A-1) can be written as followst(s)

Y2(a)
	 %2(a) da+

(^)	 `t2n(2a) C l - f	 W (a)

J2n (2a) Rn2 (a) da
+ Y2n(2a) 2 +fWOO

(A-4)

where W(a ) is the Wronskian given by

WOO 232n(2a ) Y' Oa) - 2Y2n(2ci W (2a)	 (A-S)

and primes denote differentiation with respect to the argument.

The Indefinite integrals in Eq. (A-4) may be replaced by definite

Integrals by making a suitable adjustment In the constants C 1 and C2

Choosing the lower limit of integration at the inner boundary a 	 v 00 the

general solution becomes:

f (a) ° [Cl - K2(a)] 32n(2a ) + 1C2 + KI(a)I 
Y2n(201 )

(A-6)

where
a J2n(2x) Rn(x) d K I (a)	 f	 W(x}

Vso

a 
Y2n(2x) R2(x) d K 2(a) i f	 W(x)

VP0
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The unknown constar +- C ( and C2 are determined from the

boundary conditions imposed upon f(a) as given by Eqs. (300 Applying the

boundary condition at a : vpo gives:

2
C I 32n(2vo 0) + C2Y2n(2 voo) = - -*1--^--( R(yo o) ]	 (A-9)

since K l ( vP o) A K2( v Po) = 0 from Eqs. (A-7) and (A-8). The boundary

condition at a	 00 gives:

2

C1 '12n^2 0o) ' C2Y2n(2 o)	 !+ Y +l	 Rn( o)

+ K 2( 00)12n(2 0 o) - K 1(00 )y 2n (2 0o)

(A-10)

Solving Eq. (A-9) for C2 gives:

	

4(v+i)Rn(vpo)]2 - C1J2n (2v^o)	
(A-11)

C2 ^
	 YZn(2voo)

Substituting Eq. (A-11) into Eq. (A-10) and solving for C 1 then yields:

Cl	
4(Y+1) ^ Y 2n (2vpo)[Rn (0o)]2 Y2n(2po)[Rn(voo)]2

- Y2n(2vo0)Fp(P0)	 J2n(2p0) Y2n (2vo0) 
J2n(2vp0)Y2n(20

 
0)]

(A-12)

7
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where f p ( 0 0) - K1( 0o) Y2n(2 So) - K2(0 o)32n(2 0 o)

For given values of Y , v and n (tangential mode number), the elgenvalue

0 o Is readily determined and the quantities appearing in Eqs. (A-11) and

(A-12) can be calculated. Equation (A-12) Is first evaluated to obtain C1

which Is then substituted Into Eq. (A-1 1) to obtain C2. For v 0.2, Y = 1.4

and 0 o = 4.23373, the constants of Integration become C 1 - - 0.36495 and

C2	0.04273.

Once the constants of Integration are obtained, Eq. (A-6) is used to

calculate f((x )• In this process; numerical Integration technique must be

used to evaluate K 1 ( a) and K2(a ).

In computing the third order quantities, the derivative f'( a) is also

needed. Differentiating Eq. (A-6) gives:

,1'(a)° 
2[C1" ,K 2(a)1 3, (2o)+2[C2 +K 1(a)j '2 (2a)

- K2( a)32n(20, ) + K 1 ( a )Y2n(20t )
	

(A-13)

where K 1(a) and K2(a) are simply the integrands in Eqs. (A-7) and (A-8).

a
r

u

1 17

w

ia
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Appendix B

Solution for Third Order Functions F 1 and F.

Solution for F1(a)

The third order function F i(cr) is described by the inhomogeneous

second order differential equations

F +	 F l + 9 1 -
 n2 )p,
	 1( rx)	 (B- 1)

a

where

2	 -
R 1 ( at) - 4	 (R')3 + ^13+5 r ''2 l l + nZ Rn(Rn)2

1	 /	 cu

2	 4	 2
n3 R^Rn - "	 125	 (1)( 5 R4 + 	 +	 +Y-y+) n}	

J

2
C 12( y+!) n2 + 6( y2-1) Rd 6(Y +1)Rnf	 (H-2)
L	 a

The change of variable z r 3 a will transform Eq. (81-1) into an

inhomogeneous Bessel equation given by

d^F 1	 1 dF i	 (3n)^	

f

dz2 + z di + 1 - 2 -F 1 °1(Z/3)	 (B-3)
z

The homogeneous version of Eq. (s-3) has the general solution given by

F1hW C11T3n(z) + 
C12Y3n(z)
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and returning to the original variable of yields the homogeneous solution of

the orighnal equation ass

F 1h(a) CI133n(3cr ) + C 12Y3n0a )	 (B•4)

Adding to this the particular solution F lp( at) yields the following solution

of the inhomogeneous equation(3) (Eq. (B-2)):

Y3n(3cx) 6^ 1 (a )da
FI (a) 33n MY 	 C11

'33n(3 a) P. I (a) dci
Y3n(3a) C 12 +	 W I (a-

where W I (a ) is the Wronskian given by:

i

i

i

W l ( a ) = 333n CVa )Y3n(3 a) - 3Y3n(3 a )33n(3a )

and primes denote differentiation with respect to the argument.

Replacing the indefinite integrals in Eq. (&5) with definite Integrals

and adjusting the constants of integration gives:

171(a) - ^C 11 ` 1 	 J3n(3a) + rC 12 + I 11 (a ) Y3n(301)
L

(&7)
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a
a3n(3x) R1(x)dx.

voo

cx

Y3n(3x)Rl(x)dx
112(0) -	 —W.^ix--

Vs0
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ti

The constants C 11 and C 12 are obtained by applying the boundary

conditions imposed upon F 1 (0 as given by Eqs. (34). This yields the

following equations to be solved ,for C 11 and C 12'

C 11 33n(3v A o) + C12 Y3n (3 v ^o) - - 12 (Y +1 )Rn(V 
p 0)f' (v o o)	 (B-10)

C 1133n(3 d o) + C 12Y3n(3 A 0)=- Tf (Y +l)R^(P o)f (O o)

+ 112(0 0)33n 3'P o) - I 11 (_ 0 0)Y3n(3 0 0)
	

y

(B-11)

Solving, Eq. (B-10) for C 12 yields:

J
- 

1^2 / R'(ypo)f'(ypo ) - C11J3n`3vPo)C 12 =	
Y3re(3v^o)

i

1
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Substituting Eq. (8-12) into Eq. (8-11) and solving for C 11 gives:

C 11	 -
 (-YL—+I
	 R'(P o)f'(p o)Y3n(3 vd o) - Rn(vP a)f (vil o)Y3n(3 P o) l

J

- Y3n(3 vPo) F1p( 
00)	 33n(3 00)Y3n(3 

vPo)-j 3n(3v  Pow 3n(3 PQ)

(B-13)

where

F l p( Oo) = 1 110 o) Y3n(3 Q - I 12( 0 o) '33n(3 P o)

Once the parameters Y , v and n are specified and the second order

functions are computed, all of the quantities in Eqs. (B-12) can then be

calculated. Equation (8-12) is first solved for C 12 which is next substituted

into Eq. (8-13) to obtain C 11. For v = 0.2 0 Y = 1.4 and 00 4.23575,

the constants of integration become C 11 0.13464 and C 12 - 0.01078.

After the constants C I I and C 12 are obtained, Eq. (8-7) is used to

calculate F I (a). The functions I I I(a) and I 12(a) are obtained by

numerical integration.

In computing the radial velocity by Eq. (43) the derivative Fi(a ) is

also needed. Differentiating Eq. (B-7) yields:

Fl(«)= 3[CSI-I12(«)]Jn(3a)+3[G12+i1`1(a)'Y3n(3'a)

-,11 2( «) 3n(3a)+I' l( a ) Y3n(3 a )	 (B- t4)

1

ei
w-4

x

st:_F
f

i
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where 11 1(x) and	 are simply the Integrands in Eqs. (") and (B-9).

Solution for 0 2 and FS(a )

The third order function F 5( a) is described by the Inhomogeneous

Bessel equation:

2

FS + a FS + 1 - - FS = R ( a )	 W15)7
where

f^

C	 R-s(a)	 (= a R^)3 + r^ 7 + 2 + ^ kh(Rn)2
(	 L	 rr

t

2	 4	 /	 2

c R
n Rn -^ a4 + i 4+ 5 C+(Y2 - 1) Rn

p

+ [4( v+1) 22 +2( Y 2_ 1) Ri	 (Y +f + 2I)R'f'	 (B-16)
a 

1
J

The general solution of the homogeneous equation is

F5h(01	 C51 in a0 + CSZ Yn( a)	 (8-17)

i

	

	 Adding; the particular solution to Eq. (B-17) yields the solution of the

inhomogeneous equation as(5):

FS(a) " ^C51-152( a)' in( a ) + CS2 + 151 ( ) Yn( a )	 (B- Is)

E	 d

l	 l

i

4
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where

a

J (x) (x)dx
Isl a ) =	

^ ws 
x --	 (8.-19)

vp.o

a

Y (x) i' (x)dx
1S2(a)	

n W5(x)
S 	 (11-20)

Voo 

and W 5( a ) is the Wronskian given by;

W S( 0,	 :1n( 01 )Y1( a ) - Yn( a )J ( a)	 (B-21)

The constants of Integration C.1 and C:S2 must be determined

using the boundary conditions given by Eqs. (33). Substituting Eq. (8,48) into

Eqs. (35) yields;

C51 Jn(v d o) + C Yn(v 0	
L 4

+l f --(v 0 o) - 
v P2 1 Rn(v 

po)

4	 •J	 (B-22)

C51 3n( p o) + C52Yn0) _ ^-T 1 f t Po) P2 J Rn(P o)
L.

+ 152( Oo)an(0 o) - 1S1 ( 00)Yn( 00)	 (B-23)

Unlike the corresponding equations obtained for f( a) and F 1 (a ),.

Eqs. (3-22) and (8-23) contain an additional unknown parameter, the secon

4

_1	 d

e
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order eigenvalue correction 0 2
0
 Thus an additional relationship is needed

to obtain 0 2 1 C31 and CS2.

if 02 were known, the right hand sides of Eqs. (H-22) and (B-23)

could be calculated. Denoting these quantities by r 1 and r2 we haves

Jn( v>3o) C31 + Yn( V P0) C32	 rl

(8-24)

Jn(PO)C51 + Yn(P o) CS2 = r2

This is a linear system of two equations in two unknowns which can be solved

for C51 and CS2 If the determinant of the system is nonzero. The

determinant A is given by

= Jn(v p o)Yn( p o) - Yn( v Po)Jn( 0 o)	 (B-25)

Comparing Eq. (B-25) with Eq. (8), which was used to determine $ o, shows'

that Q = 0, since o is precisely the value that causes the right-hand

side of Eqf (B-25) to vanish. This implies that Eqs. (B-24) is either

Inconsistent (i.e., no solution exists) or that the system is indeterminate

(i.e., infinitely many solutions exist). The condition A = 0 also implies that

Jn(v A o)	 Yn( v 0o)

	

J^o - Y Y	 (B-26)
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and the system is indeterminate If r 1/r2 is also this ratio, otherwise no

solution exists. This provides a method of determining 02 by requiring

that solutions for C l and CS2 exist, thus we require that:

r l	 in(v,0o)

r2 ^ 3n( -0-63

or that

	

Y+1 f  ( V
Po ) - v^2 , RI ojg3 )	 1n (V8o)

a

	

^^ f (0o) 
^2 J 

R/ (P - F P(8^)	
Jn(0n)

(B-27)

where

i

F(^ ) = I (^ )1' (^	 I ( 0 )3 (8 )	 (B-28)Sp o	 51 o n o	 32 o n o	 y

F
Solving Eq. (8-27) for S2 and introducing a = 3n( ^oV3n( ^ So^ yields Eq.

(36) which is used to calculate P2.

i

With	 82 given by Eq. (36), Eqs. (B-22) and (&23) become an

indeterminate system; that is, there are infinitely many solutions for C'51

and C 5 . In order to obtain a unique solution for F5(a), an additional

relationship between ^ "S1 and C 
3 

must be found. This can be done -if one

states more precisely what is meant by the amplitude parameter e

i
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Until nowp the amplitude parameter c was used in the perturbation

analysis only as an ordering parameter and was not precisely related to a

physical quantity such as pressure amplitude. In order to relate the

theorefical calculations to experimental mea3urementsp a more ^wecise

definition of e Is needed. Since the Maslen and Moore perturbation scheme

Is based on the velocity potential, the amplitude parameter C 13 Most

conveniently related to the amplitude of the velocity potential. Accounting

for the variation of frequency with amplitude, the expression for 0

including all terms through third order Is given by:

V	
-7	

(R'( a)] sin (t + no= j e Rn(a) + 0" [F5(cy) + C 2 a n

+ ' 2 [R 2
(a) _ (Y +I)f( 

a) sin2(t+ne)+ c 
3 
F Wsin 3(t + ne

2	 n	 I	 I

(B-29)

The parameter e cannot represent the zero-to-peak amplitude of P since

this quantity includes terms proportional to e 
2 
and e 

3. 
For the same

reason e cannot represent the amplitude of the first harmonic term since

3
this quantity includes terms proportional to e	 A more restrictive

definition of e Is therefore necessary.

In the analysis to follow, e will be required to represent the

amplitude of the term In the velocity potential with the time and space

dependence of the first order solution, that is, R 
n 
(a ) sin (t + n a).

Considering the coefficient of sin(t + nE) ) in Eq. (&29), there are three

.-I

0
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terms: a Rn(a ), c3F5( a), and E3 C cv R1(a ). The last term clearly does

not have the same radial dependence as Rn( a) and does not need to be
w

f	 considered further. The term containing FS(a) needs to be examined

further since the homogeneous part of FS( a) is composed of the same

linearly independent functions 3n 00and Yn(a) that compose the radial

} acoustic eigenfunctl3n It ). This occurs because both F5h(a) and

!	 Rh( a) are solutions of the same Bessel equation of order n.

' !

	

	 The homogeneous part of F 501) can therefore be expressed as the

sum of two parts, one of which is proportional to R n(a ). Thus F%(a ) can
i

be written as

Y (iii )
F5h(a) - C5l 3n ^ o C52 Rn(a) + V a)	 (8-30)

k	 where Qn(a) is a linear combination of 3 n(a) and V00.

Substituting Eq. (8-30) back into Eq. (8-29) yields the following coefficient

of the acoustic solution R n(a)sin(t + ne ):

1	 1

3	 Yn(vpo)A e + e C51 - 3n Vo - C52. (8-31)

Since we desire that the amplitude of the acoustic solution A be equal to

the amplitude parameter e , the coefficient of e 3 in Eq. (8-31) must

vandsh, which gives the following relation between C 5 and C52:
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This Is the additional relatlonshlp needed to uniquely determine F 3((Y )•

Equation (8-32) can be substituted Into either Eq. (B-22) or Eq. (5-23) to

eliminate one of the constants. For instance, substituting Eq. (B-32) into Eq.

(R.22) and solving for CS I yields

It/ (
,J

P )
n o

C31	
Y+1
4 f (v0o) - v 02 ^(^7	 (B-33)

For given values of y , v , and n, ^ 2 is first calculated using Eq.

(36). Then CS1 Is computed using Eq. (B-33) and is substituted into Eq.

(3-32) to determine C S2. For a first tangential spinning wa- :^ (n_l) and

with Y = 1.4, v = 0.2 one obtains S 2 = - .492349 C51 = 0.04460 and

CS2 = 0.01861.

After the constants C 5 and C 5 are determined, Eq. (B-18) is used

to calculate F5 (a). The functions I51 (a) and I52 (a) are determined by

numerical Integration.

In computing the radial velocity by Eq. (43) the derivative I"5 (a) is

also needed. Differentiating Eq. (5-18) yields-.

F'(a)	 [ CS1 - IS2( a) ] 3'( a) + L CS2 + IS1 (01 ] V(00

- I5
I2(a )3n (a ) + 1 I (Cl )Yn(a )	 (B-34)

where 1' ( a) and I'52 (a) are simply the integrands in Eqs. (B-19) and
51

(B-20).

R

i



FS(a) = [ C 3 - 132(0 + 2nK VQS2(01) ] 3n( a)

+ [ C52 + IS1 (a) - 2nK vQ31 (a )a Yn(a )

where	 a
J (x)R '(x)n	 n

141(x) f xW x	 dx

vPo

C1

Y (x)R' (x)
142(01

n	 x n	 dx
v0Q

a
3n (x) R s(x)

1	 )	 -51 (01 --W7-x)—  dx
v 0 

(C-3)

(C-4)

(C-2)
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Appendix C.

Third Carder Functions for Analysis with Steady Potentials

Using the same techniques employed in Appendix B, the solutions of

Eqs. W) and (51) can be written as the sum of homogeneous and particular

^olutlons as follows:

F4( a) = [ C41 - 2K5142(a) 1 Jn(a) + [ C42 + 2Kslk l(a) ] Yn(0 )

(C-1)
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5

^	 M

Yn(x) a s(x)
52(01)

	

	 --	 x -.-.-  dx	 (C-6)
vi3Q

a 
Jn(x)R ^(x)

Q^ 1(cr) _

	

	 dx	 (C-y)

voo 
x W(x)

01 Yn(x)R^(x)
QSZ(a ) =	 ,^------ dx	 (C-g)

x W(x)
V o

m

i	
^	

3

i

and	 (a) is given by Eq. (8-16) and the Wronsklan W(a) is given by

1	 W(01) _ 3n(01 )Y1(01) - Y^(003 ,0)	 (C-9)
,E

To complete the solution the constants of Integration C
41 C420 C lP	 g	 , 	 S , and

CS2 must be determined.

Applying the boundary conditions on F a y	 ^( )given by Eqs. (37) .yields:.
N

K
C41 3n(vOo) + C42Yb(J0o) _ o R R(vp o)	 (C-10)

Ei
C41 ^n( ^o) + C42 Yn(s o) = Ks [ .

I R'	 o) - 2F4p(0 o)
0

(C-11)
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where

F4p( p 0)	 14100 )Yn( 0 Q) - 142( 00)1n( 0 0)	 (C-12)

while the boundary conditions on F3(a ) given by Eqs. (33) yield:

C31 3 ( vo o) + C32Y^( v Po) 	 Y41 f I(VPo) - v02 WOO o)

(C-13)

GS1 Jn( ^ o) + C S2Yn(^ 0) _	 1 f'(0 o) - 0 2 R^( po)

- F3p( o o) + 2nKYF5v(o 0)	 (C-1^,)

where

Fsp( p 0) 1 S10 o)Yn( 0 Q) - 1 52 o)Jn( P o)	 (C- 15)

Fsv(S o) = QS1 ( Po)Yn(o o) ' Q52( O o)3n( il o)	 (C-16)

Equations (C-13) and (C-14) contain four unknown quantities: the

constants of integration C51 and CS21 the second order eigenvalue

correction 0 2, and the vortex constant K v. As shown in Appendix B the

F

t

J

j

e

;r

lij	 1

#^	 7
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determinant of this system Is zero, therefore for solutions to exist the

following relation must be satisfleds

	

f l (vp0) V02 R1 n (	 (n IV .

f ( ) -	 R1(0	 - F (0 ) + 2nK	 (^)	 Jn(^o)0	 2 n o	 5p o	 v5v o

(0,17)

Equation (C-17) reduces to Eq. (B-27) for K v = 0. If Kv is known,

Equation (C-17) can be used to determine 0 2. Using the method of

Appendix B where c is required to represent the amplitude of the term in

the velocity potential proportional to R n(o')sln(t + no), an additional

relation between C51 and C32 is obtained. This relation is the same as Eq.

(8-32), that is

3n(vo 0)
C52	 Yn(	 C51	

(C-18)

With 
02 and Kv satisfying Eq. (C-17), Eq. (C-18) and either one of Eqs.

(C-13) or (C-14) give three equations for tha four unknown quantities CS11

C52, 02 and Kv. Thus the boundary conditions do not provide a method

of uniquely determining P, and F s(a ? when the vortex component of

W

i
w^'
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Equations (C-10) and (C-11) are two relationships between the

+s_°',nowns C41 , C420
 and Ks The determinant of this system Is also zero,

r.nd for solutions to exist the following condition must be satisfied:

i

RJn (v^o) _ Rn(v^o )	 no)
f	 Jn(Po)	

yoo	
00	

- 2F4p(So)

(C-19)

In deriving Eq. (C-19)0 the steady potential source strength K s cancels

leaving a relationship between fixed quantities which Is probably not

3atisfled. Furthermore, even If Eq.* (C-19) is satisfied, the boundary

conditions do not provide a means for determining Ks
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