
I 

NA:Y--) - Cfl, - )0'7, qL/<6 

NASA-CR-167948 
19820023633 

NI\SI\ 

ION BEAM MICROTEXTURING AND ENHANCED 

SURFACE DIFFUSION 

PREPARED FOR 

LEWIS RESEARCH CENTER 

NASA CR-167948 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

GRANT NAG 3-43 

11\\111\1 \1\\ IIII \\11\ 1\\11 1\\11 \\11\ \111 1\\1 
NF02706 

Final Report 

February 1982 

Raymond S. Robinson 

Department of Physics 
Colorado State University 

Fort Collins, Colorado 80523 

/ 

_, II~ r; '\ 1082 . ~ u ) (, '"' _ 

LANGLEY RES::ARCH CENTER 
LIEJRlI.HY. NASA ~ 

HN.~?TCN, VIR31NIA ~ 



1 Report No I 2 
Government Accession No 3 RecIpient's Catalog No 

CR-167948 

4 Title and Subtitle 5 Report Date 

Ion Beam Mlcrotexturing and Enhanced Surface Dlffusion (U) 
February 1982 

6 Performing Organization Code 

7 Author(s) 8 Performing Organization Report No 

Raymond S. Robinson 
10 Work Unit No 

9 Performing Organization Name and Address 

PhYS1CS Department 
11 Contract or Grant No Colorado State University 

Fort Collins, CO 80523 NAG 3-43 

13 Type of Report and Period Covered 
12 Sponsoring Agency Name and Address Contract Report 

National Aeronautics and Space Administration 14 Sponsoring Agency Code 
Washington, DC 20546 

15 Supplementary Notes 
Grant Manager Maris A. Mantenleks 

NASA Lewis Research Center 
Cleveland, OR 44135 

16 Abstract 

Work under this Grant has been primarily in the area of ion beam lnteractions with 
solid surfaces with particular emphasis on microtexturing induced by the dellberate 
deposltion of controllable amounts of an impurity material onto a solid surface while 
simultaneously sputtering the surface with an ion beam. Experimental study of the 
optical properties of microtextured surfaces is described. Measurements of both 
absorptance as a function of wavelength and emissivity are presented. The behavlOr 
of a quasi-llquid coating that develops on the surface of a cone is also described. 
This coating develops during sputtering and simultaneous seeding and lts properties are 
lmportant ln understanding the processes of cone formation, development, and removal. 
Ion beam enhanced surface dlffusl0n is discussed in which the impacting ions are 
responslble for a large lncrease ln adatom mobility on the surface above the mobility 
due to equillbrium thermal effects. A computer code is described that models the 
sputtering and ion reflection processes lnvolved in microtexture formatlon. 

17 Key Words (Suggested by Author(s)) 18 Distribution Statement 
Texturlng Ion Beam 
Sputtering Ion Source Unclassified, unlimlted 
Mlcrotexturing Seedlng 
Dlffusion Surfaces 

19 SecUrity Classlf (of this report) 20 Security Classlf (of this page) 21 No of Pages 22 Price" 

• For sale by the NatIOnal Technical Information Service, Springfield, Virginia 22161 

NASA·C-168 (Rev 10-75) 



TABLE OF CONTENTS 

I. INTRODUCTION. • • • • • . . • • • • • • • • • • . . . . . • • • • • . • • • • • . • . • . • • • . • • • • • 1 

II. APPARATUS AND PROCEDURE..................................... 4 

III. OPTICAL PROPERTIES OF TEXTURED SURFACES..................... 8 

IV. QUASI-LIQUID BEHAVIOR OF CONE COATINGS ...................... 13 

V. ION IMPACT ENHANCED SURFACE DIFFUSION ....................... 22 

VI. COMPUTER MODELING OF ION BEAM SPUTTERING IN TWO 
DIMENSIONS ....••••.•..•••••.•••.••..•..••••••.•••••••••••••• 38 

VII. CONCLUDING REMARKS ••••••••••••••..•••••••••••.••••.••••••••. 45 

REFERENCES. • • • • • • . • • . • • • • • • . . • • • • . . . • • • . • • • • • . • • • • • • . • • • • • •. 47 

DISTRIBUTION. . • • • • • • . . • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • • • •. 51 



Fig. 1. 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 5. 

Fig. 6. 

Fig. 7. 

Fig. 8. 

Fig. 9. 

Fig. 10. 

Fig. 11. 

LIST OF FIGURES AND TABLES 

Schematic of experimental apparatus for 
microtexturing. The seed source is movable •..••......•. 6 

Examples of micro textured surface topography 
exhibiting high optical absorption ••..•..•..•.•.•••.•••• 9 

Absorptance as a function of wavelength of incident 
light for W induced structures on Ni •.••••..••..•...•••. 11 

Carbon induced cones on copper.......................... 14 

Carbon induced cones on copper exhibiting quasi-liquid 
coa ting behavior........................................ 15 

Tantalum induced structures on copper, 500°C, 1 x 1019 

ions / cm2 . . . . . . . . . . . . . • . . . . . . . • . . . . . • • . . . . . . . . . . . • . . . . . .• 17 

Cones bent by heating from one side during ion 
bombardmen t. . . . . . • . . . . . . • • . • . . . . . • . . . . . . . . . • . . . . . . • • • • .• 19 

Effect of current density at constant ion dose on 
surface microtexture development. Carbon induced cones 
on copper. 420°C, 1000 eV Ar+ ........•...••............ 24 

Average cone spacing as a function of ion beam current 
density. Sample: Mo induced cones on Cu, 300°C .•....•• 28 

Average cone spac.ing as a function of ion beam current 
density. Sample Ta induced cones on Cu at 200, 300 and 
400°C .....•..............•..•.•...........•••...••.•..•. 29 

Calculated time development of sputtered surfaces 
without ion reflection •.••.•••.•.•• ~ ••..•.•••.•.••••.••• 42 

Fig. 12. Calculated time development of a sputtered cone-like 
shape with and without ion reflection •......•........... 43 

Table 1. Optical Measurements for Ion Beam Microtextured 
Surfaces. . • • . . . . • . . . • . . • • . . . • . • . • . . . . • . . . . . . • . • • • . . . • • •• 10 

Table 2. Slopes at high current densities of the Average Cone 
Spacing Versus Ion Current Density Data ........••....... 30 

Table 3. Induced Jumps Per Incident Ion .•••••••••••.••...••.••••• 34 

Table 4. Effective Temperatures for Mo on Cu •.....•••....•.••••.• 37 



I. INTRODUCTION 

Work under this Grant has been primarily the study of ion beam 

interactions with solid surfaces with particular emphasis on micro-

texturing induced by the deliberate deposition of controllable amounts 

of an impurity material onto a solid surface while simultaneously 

sputtering the surface with an ion beam. 1- 3 

Ion beam microtexturing is not only a useful means of obtaining 

information about some of the basic processes on surfaces that are 

related to ion beam texturing but has a number of areas of practical 

application as well. Textured surfaces obtained by using other methods 

4 have been used as radiant energy absorbers. Texturing has been used to 

prepare surfaces for biomedical applications involving intimate contact 

'h' 5-8 Wlt tlssue. Textures have also been applied to heat transfer 

9 ,10 11 surfaces and electron emltters. ' 

, 4 12-14 The techniques for producing textured surfaces lnclude CVD, , 

h '1 h' 15 d ,11,16-18 c emlca etc lng an sputterlng. The first two techniques 

are limited in application due to material constraints. At present, 

work on CVD techniques has centered on Wand Rh dendrites on sapphire, 

W, and stainless steel. This method is generally limited to substrates 

that can be "wetted" by W. The chemical etching process has only been 

demonstrated in Si. By taking advantage of the crystal structure,small 

pyramids can be etched into the surface with suitable etchants. 

The sputter-texturing technique has several advantages over these 

other techniques. The most prominent of these is the ability to use a 

wide range of substrates. At least 26 different materials have been 

demonstrated to texture, and most vacuum compatible materials would be 

expected to texture under the proper conditions. Another advantage of 
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the sputter texturing technique is relative purity. The impurity 

seeding levels are typically 0.2 + 2% of the bulk concentration. This 

means that, for example, a copper textured surface is mostly copper and 

has for the most part thermal conduction and expansion coefficients 

characteristic of copper. A third advantage is the lack of a separate 

film layer on the surface. The cones are actually etched into the 

surface; they cannot later peel off as a deposited layer might. 

Finally, the texturing can be formed over a range of temperatures. 

In this report various properties of sputter-textured surfaces 

are presented. The absorptance and emissivity of various textured 

surfaces (see Table 1) were measured. 

Detailed observations have been made of the quasi-liquid behavior 

of the coatings that develop on sputter cones. The observed properties 

of these coatings depend on the presence of both the deposited impurity 

and the continual bombardment by the primary ion beam. 

Impact enhanced surface diffusion during impurity induced sputter 

cone formation was studied as a function of the incoming ion beam 

current density. 

Work has also progressed on a computer code that models the 

development of a sputtered surface, taking into account the variation 

in both sputter yield and ion reflection with angle of ion beam inci-

dence. This model is capable of presenting a time development of 

various prescribed initial surface topographies in two dimensions. 

E I , d k d h' G 19,20,21 f d' 'I ar 1er reporte wor un er t 1S rant ocuse pr1mar1 y 

on two experimental studies. The first experimental study involved the 

detailed time development of impurity seeded sputter cones in which the 

formation and long-term development of individual cones was observed. 
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An overlying coating was discovered on cones that is apparently a 

combination of seed and substrate materials that exhibits a depressed 

sputter yield relative to the bulk substrate material. Another subject 

of considerable experimental study was the measurement of surface 

diffusion activation energies as they relate to impurity-induced cone 

density. Activation energies were interpreted according to a thermo-

. 22 23 dynamic model of surface texturing developed ear11er.' Measure-

ments were made on 29 different combinations of impurity seed and solid 

substrate materials. 

Additional observations were made of the apparent crystal structure 

of the bases of cones in contact with a solid substrate. Both hexagonal 

and rectangular structures were observed, sometimes on the same sample 

but on different crystal grains. A correlation was also found between 

the critical temperature for the onset of texturing on a variety of 

materials and the bulk sputtering rate of the substrate. 

Experimental work under this Grant including operation of the 

scanning electron microscope has been carried out primarily by 

Stephen M. Rossnagel, a physics graduate student at Colorado State 

University. Mr. Rossnagel also carried out the digital simulations 

of ion beam sputtering. 
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II. APPARATUS AND PROCEDURE 

The apparatus and procedure used to carry out the experiments were 

essentially the same as previously used19 and are included here for 

completeness. 

Textured surfaces can be generated by simultaneously sputtering a 

surface at high energy while seeding it with impurity atoms at low 

energy. A broad-beam ion source is used that produces a low energy (50-

1500 eV) high intensity (0-2.7 rnA/cm2) beam which was neutralized using 

a thermionic filament immersed in the beam. This system allows a high 

degree of beam control and a moderately low background pressure (~10-5 

Torr) in the sputtering region. High vacuum was obtained using a 

closed-cycle cryopump for an oil-free environment (~10-8 Torr no load 

pressure). Argon was used as the source gas at a typical ion energy of 

2 500 eV and at a current density of 1.0 rnA/cm. The beam diameter was 

5 cm at the ion optics and no beam defining apertures were used. There 

have been other reported studies which find sputtered aperture material 

to be an additional impurity at the surface, itself capable of initia-

. f' 24 tlng cone ormatlon. The samples were mounted normal to the beam at a 

distance of 25 cm from the source. They were mounted on a temperature 

controlled copper holder with a thermocouple mounted directly behind the 

sample. The sample and the holder were both polished and clamped 

tightly together. The holder'was constructed in such a way that the 

sides of the holder sloped away from the sample, reducing possible 

contamination effects seen by others. 25 

The impurity or seed source consists of a target of the chosen seed 

material placed in the edge of the ion beam between the ion source and 

the sample. This target was placed at an angle to the beam such that 
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some of the atoms sputtered from its surface impinged on the sample 

surface (Fig. 1). The magnitude of the impurity seed flux can be 

controlled by the amount of the target exposed to the beam and the 

positioning of the impurity target in the beam. Because the impurity 

2 2 source was large compared to the sample (20 cm vs. 1 cm ), and the 

target and substrate were typically separated by a few centimeters, the 

impurity flux to the sample can be considered uniform over the sample 

area. Strong gradients in seed flux have been treated earlier. 2 The 

magnitude of this flux depends on the materials tested and has been 

experimentally measured to be from 0.2 to 3 percent of the ion beam 

flux. 

The samples to be textured were either foils or thin sheets and 

2 
were cut into 1 cm squares. All of the samples for each metal substrate 

used were cut from a single piece, thereby assuring the thickness and 

purity to be the same. All samples, as well as impurity materials, were 

at least 99.95% pure and were po1ycrysta11ine. No attempts were made to 

determine the crystal structure or to use single crystal samples. 

The thicker samples were polished mechanically to an approximate mirror 

finish, and all samples were then ultrasonically cleaned in Alconox, 

acetone, then ethanol. The samples were then immediately mounted on the 

-7 sample holder, evacuated to at least 10 Torr, and heated to the 

desired temperature in vacuum. The subsequent exposure to the ion beam 

and seed flux varied, depending on the type of experiment. For studies 

of impact enhanced diffusion, the beam current density was varied from 

2 
0.1 to 2.7 rnA/cm . 

Additional procedures include the use of a Beckman spectrophotometer 

operating in ref1ectometer mode to measure reflectance from textured 
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Pig. 1. Schematic of experimental apparatus for microtexturing. 
The seed source is movable. 
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samples as a function of wavelength. The absorptance was then calculated 

by subtracting the reflectance from unity. When average values are 

quoted, the averages were taken over the measured wavelength interval. 

A thermocouple arrangement was used to monitor the vacuum cooling of 

samples to determine the emissivity. The emissivity can be measured by 

the rate of cooling in vacuum. Textured samples were suspended by fine 

thermocouple wires in a vacuum oven. After heating at 700 o e, the 

samples were removed to a cold part of the vacuum chamber to cool. From 

the cooling rate, the emissivity was deduced. 
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III. OPTICAL PROPERTIES OF TEXTURED SURFACES 

Textured surfaces have been found suitable as radiant energy 

absorbers. The optical properties of these textured surfaces obtained 

by various methods have been described by other investigators. The 

present study was directed toward measuring the absorptance and emissivity 

of various ion-beam textured surfaces. Six different substrate materials 

were textured to produce high absorption. Examples of such textured 

surfaces are shown in Fig. 2. The absorptance was measured with a 

Beckman 2-D spectrophotometer over the range 0.35-2.25 ~m. The emis

sivity was measured by the rate of cooling in a vacuum. The results 

of the measurements of optical properties of ion beam textured surfaces 

are shown in Table 1. Absorptance values were found to vary between 

0.95 and 0.98 for all textured surfaces except Al substrates. Aluminum 

textured with Fe and Mo yielded absorptances of only 0.90. A typical 

example of absorptance measured as a function of wavelength over a 0.35-

2.25 ~m range is shown in Fig. 3. The measured values of absorptance 

are in good agreement with those obtained by other workers. 4 ,26 It is 

probable that the absorption is a result of multiple reflections in the 

closely-spaced texture. If the spacing of the texture is on the scale 

of the incident light the absorptance can be quite high. 

In one case, the Si substrate, the absorptance was measured also 

as a function of incidence angle of light from 0 to 60°. No change in 

absorptance was observed. 

Emissivity is also an important parameter for solar absorbers. 

Low emissivity in a solar absorber can prevent the loss of a great deal 

of the incident energy when the absorber is hot. Ion beam textured 
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(a) Dense Cu induced structure on Si. Ar+, 500 eV, 
1 x 1019 ions/cm2 . 

(b) Wavelike formations, W induced structures on Cu. Ar+, 
1000 eV, 2 x 1018 ions/cm2 . 

Fig. 2. Examples of microtextured surface topography 
exhibiting high optical absorption. 
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Table 1. Optical Measurements for Ion Beam Microtextured Surfaces. 

Impurity Absorptance (0.35-2.25 llm) Substrate Emissivity 

W 0.96 Cu 0.2-0.3 
Mo 0.96 0.2-0.3 
Fe 0.96 
S.S. 0.96 

W 0.97 Ni 0.2-0.3 

Si (0-60°) Cu 0.98 
Mo 0.96 
Ta 0.95 
Fe 0.95 

Brass Fe 0.95 

Al Fe 0.90 
Mo 0.90 

Graphite Fe 0.97 



I .0 

0.9 

Q) 

0.8 0 
c 
c -0-
~ 

0 
U) 

0.7 l .c 
« 

0.6 

0.5· I 

-I 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25x 10 m 

Wavelength, X 

Fig. 3. Absorptance as a function of wavelength of incident light for W induced structures 
on Ni. 

I-" 
I-" 



12 

surfaces of suitable dimensions also offer favorable emissivities as 

well as high absorptance. The measured emissivities of eu and Ni 

substrates were found to be 0.2 - 0.3 (Table 1). The measured emissiv-

ities are in good agreement with those obtained for metallic dendritic 

absorbers measured by similar techniques. 4 The values are, however, 

26 lower than those measured by Hudson et. a1. on ion beam textured 

surfaces. 
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IV. QUASI-LIQUID BEHAVIOR OF CONE COATINGS 

Upon careful observation of cone features, particularly during the 

cone formation and growth, a coating has been observed on the surface 

20 
of the cones. This coating is related to cone stability as well as 

20 9 growth. The coatings are generally 100-2000 A thick, and have been 

shown via AES and EDAX to have low levels of the added impurity «2% 
'V 

atomic) with no apparent concentration gradient across the cone surface. 

In particular, no pure clusters were found at the top of the cones. The 

areas between the cones have much lower impurity levels «0.2% atomic). 

The absence of the pure cluster complicates the simple model developed 

I , 22 
ear 1er. The coatings are clearly observed with several seed-substrate 

combinations but are not detectable with scanning electron microscopy 

when some other material combinations are used. However, when observed, 

the coating is clearly directly related to the development and subsequent 

failure of the cone. The type of impurity has some effect on the extent 

of the observed liquid-like properties. Some systems, such as C on Cu 

and Al on Cu have a much more evident coating, and the liquid-like 

features are more prominent. Some evidence of the coating and the 

liquid-like features were observed on other substrates such as AI, Pb, 

Au, and Ni during the course of our experiments. 

A feature often seen in the early development of the impurity-

induced cone structures is a droplet structure, a ball on a thin pedestal 

extending from the surface (Fig. 4). These structures can be quite 

small, with balls of 2000 A diameter and pedestals down to 100 A in 

diameter at their thinnest point. These droplet structures are also 

seen later in the cone development (e.g., Fig. 5) protruding from the 
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(a) 420°C, 1 x 1019 ions/cm2 , Ar+ 1000 eV, 2 mA/cm2. 

(b) 420°C, 9 x 1018 ions/cm2 , Ar+ 1250 eV, 1 mA/cm2 . 

Fig. 4. Carbon induced cones on copper. 
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Fig. 5. Carbon induced cones on copper exhibiting 
quasi-liquid coating behavior. 
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tops of much larger cone structures. At the bases of the droplet 

structures, what appear to be wetting angle effects are observed as in 

Fig. 4b or 5b. 

The coating often has the appearance of a "viscous liquid,,,20 even 

at temperatures as low as 300°C on Cu even though the actual melting 

point is 1083°C. This "quasi-liquid" behavior is evidenced by the 

"dripping" and "rippling" in the coating on the cone sides (Fig. 5). 

Another apparent surface tension effect is in the sequence of events 

during cone failure. 20 The coating on the cone develops an opening at 

the cone apex. This opening forms not as the coating is simply worn 

away, but the coating apparently tends to pull away from the tip, 

forming a distinct edge in the coating. Another feature that implies 

liquid-like behavior is the production of wave-like or winding struc-

tures often seen while sputtering in the presence of impurities (Fig. 

2b). These structures are produced at certain combinations of tempera-

ture and seeding density. At lower temperatures, or lower seeding 

fluxes, the same system that will develop wave-like structures (e.g., Ta 

on Cu) will produce separated cones. The production of these structures 

appears to require flow or agglomeration of the coating material between 

adjoining cones although the dynamics of such a process have not been 

observed directly. This is demonstrated to some degree by certain 

structures having an intermediate appearance (Fig. 6). The effect can 

be seen to some extent on single cones late in their development. Once 

the coating has opened, exposing the underlying tip of the bulk material, 

the coating may form a circular ring of second-generation cones around 

20 the top. These can partially flow together to form the "hollow" cones 

first described by Wehner. 3 



Fig. 6. 
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Tantalum induced structures on copper, soooe, 
1 x 1019 ions/cm2• 
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The bulk temperatures reached in these observations are well below 

the bulk melting points or the individual system eutectics. Typical 

values are 2S0-S00°C for various impurities on Cu and 100-400°C on Au. 

2 The ion beam produces a power flux in the range 0.1 to 2 watts/cm which 

causes moderate temperature increases in bulk temperatures of lO-lSoC at 

300°C. At higher temperatures (SOO°C) this flow or quasi-liquid effect 

is reduced. Because of the moderate temperatures, melting does not 

appear to be involved. In the absence of conventional melting, "quasi-

liquid" has been used to describe the apparent mobility and flowing 

observed. 

The bulk temperature, although not high enough to produce melting, 

does have an effect on the resultant cone size and shape. On Cu at low 

temperatures (2S0-300°C) the structures tend to be broad-based pyramids. 

At intermediate temperatures (3S0-4S0°C), the structures are narrower at 

the base, with occasional quasi-spherical structures on the tips. At 

high temperatures, (>4S0°C), the resultant form is narrow based with a 
~ 

narrow neck and large droplet structures on the tips (Fig. S). 

One additional observation that may be related to these liquid-like 

features is the occurrance of cone bending. This can range from minor 

deflection at the tip, to dramatic bending of the upper two-thirds of 

the cone (Fig. 7). The bending can be induced by placing a hot filament 

near the surface of the sample for a few seconds while the ion beam is 

on. Bending does not occur in the absence of the ion beam. The esti-

mated power flux at the cone due to this radiant heating is ~2-S 

2 watts/cm. The cones generally bend away from the heat source. It 

should be noted that the experimental conditions for texturing were not 

identical in Figs. 7(a) and 7(b). 
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(a) Carbon induced cones on copper heated from the 
right. 

(b) Carbon induced cones on copper heated from the 
left. 

Fig. 7. Cones bent by heating from one side during ion 
bombardment. 
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Each of the effects described; the dripping and rippling, the 

droplets, the wetting angle and surface tension effects, the winding 

structures, the cone failure mode, and the cone bending, seem charac-

teristic of some sort of macroscopic motion in the coating on the cone 

surface. Many of the resulting structures cannot be explained by means 

of simple sputtering, reflection and redeposition. The winding or 

wavelike structures and the droplets seem specifically indicative of 

flow of the coating. These structures are much too complicated, or too 

fragile, to be developed by variations in the sputter yield with angle, 

which is the basis for non-impurity cone theory. The bending of the 

cones clearly indicates that the structures are plastic, not simply 

products of sputter erosion. However, these effects are observed at 

temperatures far below the system melting point. 

F h I 'd ' 28 h' f ' , , rom t erma conS1 erat10ns, t e 1mpact 0 an energet1c 10n 1n 

this energy range may induce local temperature increases of 1000-3000°C. 

The lifetime of these thermal enhancements is short, in the range of 

-10 10 seconds. The ion flux in this case to this enhanced area (~104 

92) '104 -1 h' h 1 I' 1 f h ' i h A 1S sec, w 1C eaves 1tt e memory 0 t e preV10US on w en 

the next one arrives. In a thin film, particularly on such a localized 

scale, some thermal enhancement might be expected due to differing 

thermal properties between the film and the bulk allowing for phonon 

reflection at the interface as well as from the lateral boundaries of 

the film. 

A contributing factor in the appearance of these liquid-like 

effects may be the presence of dislocations, particularly those induced 

by the ion beam. Observations from FIM work, indicate that at ion 

energies in the range used in this work, damage can be induced to a 



Q 29 
depth of 110 a. 
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From the dislocation theory of melting, viscous flow 

might be expected in the presence of large numbers of dis1ocations. 30 

This usually occurs at temperatures approaching melting, but in this 

case may happen at lower values due to the increased dislocation density 

caused by the ion bombardment. Understanding the quasi-liquid behavior 

of ion bombarded material may be significant where ion beam sputtering 

is used for high resolution patterning. It may also be important in 

developing a more thorough understanding of non-equilibrium processes on 

surfaces undergoing ion bombardment. 

, 
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V. ION IMPACT ENHANCED SURFACE DIFFUSION 

Low energy ion bombardment of surfaces is used in numerous areas of 

thin film processing and surface analysis. The basic process of interest 

is sputtering, which is used for cleaning of surfaces, deposition of 

films, depth profiling, and etching of various patterns on micron or 

submicron scales. The ion bombardment also induces diffusion of bulk or 

31-33 . 34 35 impurity atoms on the surface or in near-surface reglons. ' 

This induced diffusion is in addition to the normally occurring thermal 

diffusion and, depending on experimental circumstances, can be the 

dominant process. Enhanced surface adatom mobility has been reported 

31 during ion bombardment of Ag on glass substrates, and of W atoms on W 

field emission tips.32,33 

The present experiment utilized the formation of impurity induced 

sputter cones on Cu and Al substrates during Ar+ ion bombardment as a 

measure of the surface ada tom diffusion. The formation of these cones 

is attributed to the enhanced surface diffusion and resulting nucleation 

f · . d h f 22 o lmpurlty a atoms on t e sur ace. The magnitude of this enhanced 

diffusion is related to the current density of the incoming ions. The 

spacing of the resulting diffusion leading to lower areal densities of 

cones. 

The ion source sputtered the sample with Ar+ at 1000 eV and a 

current density variable from 0.1 to 2.7 mA/cm2 . The samples were 

typically 1 cm
2 

in size with a temperature set point from 50°C to 600°C. 

Any sample heating due to increased power flux at high current density 

was taken into account by reducing the power to the sample heater. 

When the incoming ion current density was varied at constant tem-

perature, and the sputtering time adjusted to yield a constant dose, 
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the dependence of the cone spacing on current density is determined. 

Figures Sa and Sh are a series of micrographs showing density reduction 

with current density. Some of the measurements on similar samples are 

shown in Fig. 9, for the case of Mo adatoms on Cu at 300°C. Here, 

particularly at the higher current densities, the cone spacing was 

approximately proportional to the ion current density. The sample 

temperatures are measured quite easily and any sample heating due to 

the increased power flux at high current density was taken into account 

in setting the power to the sample heater. The dependence of cone 

spacing on current density was determined for other impurity species on 

Cu (Fig. 10 and Table 2). In addition, a similar effect has been seen 

on A1 substrates. 

As the sample temperature increased, the strength of the dependence 

of the cone spacing on ion current density also increased as shown in 

Fig. 10 and Table 2. This behavior would be expected because impacts 

would provide more enhancement to a more thermally active surface. It 

should be noted that the data at 400°C in Fig. 10 do not follow the 

expected trend below about 1.3 mA/cm2 although the slopes of the upper 

regions of the three curves are ordered as the temperatures. 

An additional experimental observation that should be noted is the 

variation in cone size with current density at constant ion dose shown 

in Fig. 8. As the current density was varied from 0.1 to 2.7 mA/cm
2 

and 

the time of sputtering adjusted to provide a constant ion dose, the size 

of the resultant cone also varied. At the lower values of current 

density, the cones were droplet-shaped (Fig. Sa). This shape has been 

described earlier, and is characteristic of the quasi-liquid coating 

often observed on cone surfaces. As the current density was increased, 
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2tJ -
2 (a) 0.1 rnA/cm , 500 min. 

'(b) 0.35 rnA/ cm2 , 142 min. 

Fig. 8. Effect of current density at constant ion dose 
on surface microtexture development. Carbon 
induced cones on copper. 420°C, 1000 eV Ar+. 
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(c) 0.5 mA/cm2 100 min. 

(d) 0.8 mA/cm2 , 62.5 min. 

Fig. 8. Continued 
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(e) 1.0 mA/cm2 , 50 min. 

(f) 1.5 mA/cm2 , 33.3 min. 

Fig. 8. Continued 
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(g) 2.0 mA/cm2, 25 min. 

(h) 2.7 mA/cm2, 18 min. 

Fig. 8. Continued 
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Table 2. Slopes at High Current Densities of the Average Cone Spacing 
Versus Ion Current Density Data. 

Sample Temperature Slope 

C on Cu 400°C 2.1 x 10-4 3 em /mA 

Mo on Cu 300°C 7.2 x 10-4 3 em /mA 

Ta on A'i 400°C 2.2 x 10-4 3 em /mA 

200°C 10-4 3 Ta on Cu 1.3x em /mA 

300°C 8.7 x 10-4 3 Ta on Cu em /mA 

400°C 1.5 x 10-3 3 Ta on Cu em /mA 
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the size of cones also increased, and the structure appeared more 

cone-like, although the protective coating was still evident (Fig. 8e). 

At the highest current densities, the cones were much larger and the 

coating is much less evident (Fig. 8h). 

Clearly, from the results given in Figs. 9 and 10 and in Table 2, a 

significantly greater diffusion flux on the surface is being observed 

than would be expected from thermal diffusion alone. For purely thermal 

diffusion, impurity ada toms diffuse on the surface of the sample with a 

22 
characteristic length 

where Ed is the activation energy for surface diffusion, and ro is 

given as 

where m is the ada tom mass, 0 its sputtering cross section, N the bulk 
o 

atom density, and R the incoming ion current density. These diffusing 

ada toms can form stable clusters which are then associated with the 

sputter cones that form with continued sputtering. The spacing between 

clusters can be identified with twice the characteristic length described 

22 above. According to this model, holding the temperature constant and 

-1/2 varying the current density should produce an R dependence in the 

cone spacing. A much different dependence is observed experimentally 

(Figs. 9 and 10). The dependence at higher ion current densities is 

approximately linear. 
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The interpretation placed on the observed behavior is that ion 

impacts are enhancing the diffusion of ada toms along the surface by 

inducing more jumps or steps in the adatom's random walk. The thermal 

diffusion model did not include this mechanism for motion on the surface. 

If the observed diffusion of an adatom on the surface is viewed as 

the result of a random walk, the average path length is related to the 

number of single-site jumps or steps N by 
s 

<r> a ~ 
o s 

where a is the average spacing between adsorption sites. It should be 
o 

noted that N refers to the number of steps of size a that result in a 
s 0 

net average translation of <r>. If a were varied, a smaller number of 
o 

larger steps could yield an equivalent result. 

The total number of jumps under consideration is the sum of the 

ordinary thermally induced diffusion jumps activated at the equilibrium 

substrate temperature plus any jumps induced by ion impact, thus 

where NT is the number of thermal jumps and NI is the number of ion 

impact induced jumps. Both processes would be summed over the average 

lifetime T of an adatom on the surface. The number of thermal diffusion 

. . 22 Jumps 1S 
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where v is an attempt frequency. If each incident ion is assumed to 
o 

generate N. single-step jumps on the average, under specified conditions, 
1 

then the total number of ion impact induced jumps experienced by an 

ada tom during its lifetime is given by 

N.Rt/n 
1 

where n is the density of ada toms on the surface and R is the ion arrival 

rate per unit area. The magnitude of n for typical conditions is found 

both from combination measurement and calculation to be about 0.1 to 2% 

20 
of a monolayer. The average lifetime for a single diffusing adatom is 

t = liRa 

where a is a cross section for removal that incorporates the sputter 

yield of the isolated adatom. Ni will, in general, be some function of 

the ion current density. From the rough linearity of the average cone 

spacing with current density at high current densities found in Figs. 9 

and 10, the number of induced jumps per ion appears to be proportional 

to the square of the current density. In the limit of very low current 

densities, however, such a nonlinear relation would clearly fail. 

would also logically be dependent on some of the other fundamental 

N. 
1 

parameters such as ada tom density, ion energy, substrate type and tem-

perature, and adatom species. 

Using the technique outlined, the number of induced jumps per 

incident ion can be calculated from the experimental data. For the data 

plotted in Fig. 10, the calculated numbers of induced jumps are given in 

Table 3. 
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Table 3. Induced Jumps Per Incident Ion. 

R Nt 

rnA/cm 2 200 0 e 300 0 e 400 0 e 

0.30 115 199 

0.50 141 320 18 

0.75 169 

1.00 217 1120 928 

1.25 320 1470 1470 

1.50 4160 4470 

2.00 9600 19200 
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The number of induced adatom jumps at the lower current densities 

are of similar magnitude to those found in field emission studies of 

d Off 0 33 1 uSlon. This work was concerned with self-diffusion, however, so 

the values correspond to the numbers of displaced surface atoms rather 

than dissimilar diffusing adatoms. 

The strong nonlinearity in the dependence on R shown in Table 3 is 

possibly indicative of cooperative processes in which the surface 

movement of adatoms from one ion impact depends on the spatial or 

temporal proximity of other ion impacts. 

In the wake of an ion impact on the surface, there will be some 

resulting time-dependent distribution of the deposited energy in the 

substrate. For the study of surface diffusion, attention can be focused 

on a circular area of the surface centered on the impact site. If only 

the simplest model is considered, the circular area can be viewed on the 

average as being a zone of thermal enhancement that dissipates abruptly 

after a characteristic time. This approach is similar to that of 

Th d N 1 . h 0 0 k 36 ompson an e son ln t elr sputterlng wor . Such an approach is not 

satisfactory for detailed calculations but can provide some measures of 

typical times and temperatures involved in the enhanced diffusion 

process. 

For enhanced surface diffusion, the probability of an ada tom 

jumping to a new site is proportional to exp(-Ed/(kT + ET)) where ET 

represents the local thermal enhancement of the impacting ion or ions. 

As current densities increase, cooperative effects become more probable 

in which the effects of one ion impact have not fully dissipated before 

another impact occurs in the affected area. The overlap of two areas o'f 

ion impact thermal enhancement would have a probability proportional to 
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2 R ; thus, for a given temperature, the number of ion impact induced 

jumps in such regions would be proportional to R2 

It is often instructive to consider this impact enhanced diffusion 

as an effective temperature averaged over the surface. This has been 

done in other studies as a measure of the enhanced surface diffusion 

either in condensation3l or in field emission cases,32,33 or as a 

f h . . 1 ... d d" 37,38 measure 0 t e epltaxla temperature ln lon asslste vapor eposltl0n. 

The effective temperature is found simply by setting the experimentally 

determined diffusion coefficient, or in this case the random walk path 

length, equal to the theoretically determined relation using thermally 

activated diffusion only and solving for the temperature. This effective 

temperature will obviously be a function of current density. The 

results for the case of Mo impurities on eu at 573°K are shown in Table 

4. These temperatures, particularly at the higher current densities 

where the effective temperature approaches the melting point are not 

physically achievable values, but merely a means of estimating the 

magnitude of diffusion under ion bombardment conditions. The fact that 

the effective temperatures for diffusion can approach the melting 

temperature gives a rough quantitative agreement with the observation of 

quasi-liquid behavior. 

The experimental data appear to confirm the existence of ion impact 

enhanced surface diffusion. Although an adequate model has not been 

developed to include both thermal and impact enhanced diffusion, one is 

required if data are to be properly interpreted at current densities 

2 greater than a few tenths of rnA/cm . 
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Table 4. Effective Temperatures for Mo on Cu. 

2 R (rnA/cm ) T Teff 0 

.3 573°K 580 

.5 573 633 

1.0 573 798 

1.5 573 1012 

2.0 573 1241 
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VI. COMPUTER MODELING OF ION BEAM SPUTTERING IN TWO DIMENSIONS 

When surfaces undergo ion bombardment, changes in the surface 

topography are noted. This has been the subject of numerous experi-

mental and theoretical studies. The most dominant effect in the forma-

tion of topography changes during sputtering is the dependence of the 

sputtering yield on angle of incidence of the ion. This effect is 

relatively small at angles near perpendicular, but rises smoothly to 

several times the perpendicular values at angles in the range of 50-70 0 

from perpendicular, then falls to zero at grazing incidence (90 0
). From 

this dependence, several models of topography development have been 

formulated. Stewart and Thompson39 showed how triangular facets could 

erode by the motions of intersecting semi-infinite planes. From this 

early analytic model, Cantana, et al. 40 developed a digital, interval 

model that broke the surface into individual intervals which were then 

sputtered separately. This model was not very successful and the 

interval approach was dropped in most subsequent models. Barber, Frank, 

41 et al. developed a model based on Frank's theory of crystal dissolu-

tion. This model is graphical and uses an "erosion slowness" curve t,o 

follow the development of the surface. Other, similar analytic methods 

have been applied by Carter, et al. 42 and by Kelly and Auciello. 43 

Computer-based analytic models have been developed by Ducommon, et 

1 44,45 a . In the second of these articles, computer-modeled topography 

was compared to experimental results in the erosion of a step with good 

agreement. 

These models are based only on sputtering and are two-dimensional. 

Smith and Walls46 have developed a three-dimensional form of these 

models, and Lehman, et al. 47 have included redeposition in a computer 

simulation. 
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The coning process involves numerous features of ion-surface 

interaction. Dominant among these probably is the angle dependent 

sputtering yield described above. But also the processes of ion 

reflection, redeposition of sputtered material, surface diffusion 

(thermal and enhanced) and possibly "quasi-liquid" motion of the coating 

on the cones have to be considered. 

Presently, a computer model has been developed to describe the 

sputtering and reflection process of any arbitrary surface shape. This 

model is in digital, or interval format, unlike the above-described 

analytical, and computer-analytic models. This model describes the 

surface two-dimensionally, as in a cross section of the surface viewed 

from the side. The surface is then divided into 270 intervals. The 

intervals are of equal length in the x direction only. This allows use 

of a simple sputtering rate, without having to multiply in the cosine of 

the surface inclination angle to take into account the reduced effective 

current density onto a steep surface. The modeling is as follows: one 

of the 270 intervals is selected at random, the slope of this interval 

is determined, the relative sputtering yield is then determined by 

calculating the angle between the incoming ion and the interval, using 

the chart of sputter yield vs. angle, and subtracting from the interval 

the appropriate amount. The total process then repeats at another 

randomly chosen interval. After 5,000 to 20,000 steps (20-80 per 

interval), the resulting surface shape is displayed. This is typically 

not the final result, but an indication of the type of changes the 

surface is undergoing. Generally 200,000 to 1,000,000 steps are needed 

to completely "develop" the final topography. The reason for the large 

number of steps is that, due to the relatively small number of hori

zontal intervals on the surface, the relative amount subtracted from 
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each needs to be very small. Otherwise, artificial angles will develop 

at the subtracted points. Usually some smoothing is also needed for 

this same reason. The smoothing used presently is a 3-pt average. This 

ideally smooths the surface on a microscopic scale and does not affect 

large-scale developments. 

Additionally, reflection of the incident ions can be added to this 

model. Once the angle of the surface with respect to the ion beam is 

determined, the ion can be allowed to reflect from the surface at that 

same angle. This ion can then be followed until it intersects with the 

surface (if it ever does) at some other point. At this other point it 

has some probability of sputtering. The amount of sputtering is gauged 

by the reflection coefficient (which is between 0 and 1). The reflection 

coefficient can be estimated from the literature,48 although values for 

configurations of interest are difficult to find. Generally, the 

reflection coefficient is equal to 0 for angles from 0 to 30-40°. It 

then increases to 1 at ~85-90o. A simplified version is used in the 

present model. The reduced energy function is related to the loss of 

energy by the ion during the reflection. This will cause the sputtering 

yield of the reflected ion (atom) to be effectively reduced. The 

energy reduction function will be close to 1 in the present case (little 

energy loss) because the sputtering yield is relatively insensitive to 

energy in this range (500-1000 eV). The effect of energetic sputtered 

particles43 will be ignored here, also due to the low energy range for 

incident ions. 

With the present model, any initial shape can be followed as it 

undergoes sputtering and the associated reflection sputtering. In the 

past, the analytic models have had to rely on simple, geometrical 

h f ' d 'b h . . . 1 f 40-45 s apes, 0 ten Slne waves, to escrl e t e lnltla sur ace. 
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These shapes, although not really characteristic of physical surfaces, 

led to reasonable conclusions about the final topography. Numerous 

shapes have been chosen and simulated, from simple lines (flat planes) 

to very rugged, rapidly varying shapes. Only the relatively simple 

shapes are shown here. Figure lla shows the development in time of a 

simple ridge. The top line is the initial unsputtered surface. The ion 

flux is incident from the top of the figure and the bulk material is 

below the line. Successive iterations or intervals in sputtering time 

lead to the successively lower contours. The array of lines follows the 

surface with time. Figure 11 was generated in the absence of reflection 

and shows simply the effect of primary sputtering. The two main factors 

are: (a) the ledge quickly becomes a wall of angle equal to the maximum 

yield of the sputter yield vs. incident angle relation. This wall 

"moves" with time into itself, and (b) the plane below the wall does not 

completely flatten out after the wall has "moved away" but retains a 

gradual slope for a long period of time. Figure llb shows two closely 

located edges which, in cross-section, at times looks somewhat cone-like 

in appearance. Figure 12 shows the contribution of reflection to the 

problem. Starting with a cone-like shape, the successive sputter

iterations are seen in Fig. l2a without any reflection. In Fig. l2b, 

reflection is included with a unit reduced energy function (i.e., = 

1.0). This is the maximum allowed effect for reflection in this case. 

Values for the reduced energy function of less than 1 lead to inter

mediate behavior, although below 0.90, the structures apparently always 

erode away with time. It is not clear at present whether the topography 

of Fig. l2b will eventually erode. 
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(a) Single edge. 

(b) Double edge. 

Fig. 11. Calculated time development of sputtered surfaces 
without ion reflection. 
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: 

(a) Without ion reflection. 

(b) Including ion reflection. 

Fig. 12. Calculated time development of a sputtered cone-like 
shape with and without ion reflection. 
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Numerous other shapes have been modeled with this program: pits, 

square wave shapes, planes, spikes, convoluted, rugged shapes, and 

others. The general results are as follows: without reflection the 

final shape for almost all initial topography is a flat plane. The 

partial exceptions to this are an infinite ridge, which will form a wall 

of angle 8 equal to the maximum sputter yield angle which moves with 

time, and a sharp feature, which will produce an area of angle approaching 

o (flat plant), but will take a very long time to actually do this. 

This is due to the small slope of the sputter yield versus angle curve 

as the angle approaches zero. 

With reflection, the final topography shapes are similar to the 

case without reflection if the reduced energy function is <0.90. Above 

0.90, it is possible that non-planar topography may be semi-stable, or 

may even enlarge with time. This latter case is evident in numerous 

experimental studies of non-impurity coning. Here, initial small 

asperities or bumps form into cones much larger than the original 

asperity or bump. Without reflection this is not possible. Any shape 

would become smaller not larger. With reflection, enlargement is 

possible, although it may only be temporary. 
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VII. CONCLUDING REMARKS 

The main areas of study during the final phase of this work 

include: optical properties of microtextured surfaces, quasi-liquid 

behavior of surface material under ion bombardment, ion impact enhanced 

surface diffusion and computer simulation of the development of surface 

topography under ion beam sputtering. 

Ion beam micro textured optical absorbers have been generated and 

tested. Because the texture has dimensions of the order of the wave

length of visible light, these surfaces can be highly absorbing. Of the 

structures studied, the wave-like formations seem to be the most 

efficient absorbers. 

Optical absorptance has been measured for a number of textured 

surfaces. Absorptances from 0.90-0.97 have been measured for the 

wavelength range 0.4-2.2~. Total emissivities measured by vacuum 

cooling were in the range of 0.2-0.3. Liquid-like properties have been 

observed on surface structures developed by means of ion beam micro

texturing. The structures include cones, pyramids, or wave-like forma

tions. The observed liquid-like effects are droplet formation, the 

apparent flow and coalescence of closely packed structures, wetting 

angle and other surface tension effects, and the bending of cones by 

additional heating. The substrate temperatures are in the range of 50-

600°C and therefore cannot explain the presence of the "quasi-liquid" 

effects. These effects are also seen to some extent on Cu, AI, Au, Pb, 

and Ni substrates. 

Ion impact enhanced surface diffusion has been observed in several 

systems undergoing Ar+ ion bombardment over a current density range from 
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2 
.3 to 2.7 rnA/cm. The magnitude of this effect is often greater than 

the magnitude of the normally occurring thermal surface diffusion, and 

the effect can be described in terms of an effective surface temperature 

and possible cooperative effects of multiple ion impacts in a localized 

region. In addition, differences have been observed in the size of 

sputtered structures as a function of current density at constant dose. 

A computer program has been written to model the development of 

sputtered topography. This two-dimensional model basically follows the 

pattern of earlier programs except that ion reflection has been incor-

porated. This more realistic simulation yields developing structures 

that bear a striking resemblance to the cross section of a sputter cone 

surrounded by a trough. 
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