
 

 

 

 

N O T I C E 

 

THIS DOCUMENT HAS BEEN REPRODUCED FROM 
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT 

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED 
IN THE INTEREST OF MAKING AVAILABLE AS MUCH 

INFORMATION AS POSSIBLE 



 

 

 

 

 

 

Based on the original Microfiche, multiple pages appear to be 

missing from this document 



ORIGINAL PAGE i:	 Space Opergtlons snd Rockwell
O POOR QUALITY	 satsllft Systems olvislon ^^^ International

Space Systems Group
±k

SAMPLE HANDLING AND ANALYSIS PLAN

1.	 INTRODUCTION 1

BACKGROUND 2

CHAUXTERIZATION PROCESS 6

3.1	 Flight Samples i

3.1.1	 Handling Procedure 8
3 " 1.2	 Tests and Measurements 8

3.2	 Flight Experiment Samples 10

3.2.1	 Handling Procedure 11
3.2.2	 Tests and Measurements 11

3,3	 Seauence of Characterization Process 14

.

SSDSI-0119

ii



r

l Spa* OpKstions/Integration &O, Rockwell
Satellite Systems olviston 	 Intematlonal

FOREWORD

This report is submitted by Space Operations/Integration and Satellite

Systems Division of Rockwell International to the National Aeronautics and

Space Administrations George C. Marshall Space Flight Center (MSFC) in

accordance with contract NAS8-32953. Prepared by R. A. 3appe, the Principal

Investigator a-.,A K. S. Kim, the repaf t covers the results of the investiga-

tion, "Containerless Preparation of Advanced Optical Glasses" performed for

the period from April 12, 1978 to February 28, 1982.
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SUMMARY

The Containerless Processing of Advanced Optical Glasses Project,

Nr,S8-32953t has been conducted in preparation for Space Shuttle MEA flight

experiments. The investigation consisted of three technical tasks, a ground-

based investigation, experiment/hardware coordination activities and develop-

ment of flight experiment and sample characterization plans.

In the ground-based investigation over 100 potential candidate glass 	 ^> A

materials for space processing have been screened and promising compositions

have been identified. In particular, the system of Nb 205-Ti02-4Sa0 has been

found to be very rich with new containerless glass compositions and an exten-

sive number of the oxides combinations has been tried resulting in a glass

formation ternary phase diagram. The frAquent occurrence of glass formation

by containerless processing among the compositions for which no glass forma-

tion had been previously reported indicated the possibility and an advantage of

containerless processing in a terrestrial environment.

A number of meetings and numerous discussions were held with the experi-

ment hardware developers to exchange information and to acquaint them with the

hardware requirements. The Acoustic Chamber Positioning Module (ACPM) developed

by Sat Propulsion Laboratory (JPL) and the Single Axis Acoustic Levitator (SAAL)

by Intersonics were each evaluated for the applicability to the particular flight

experiment. Yollowing the selection of the hardware developer, guidance and

technical information were provided to them, and assistance was provided to

NASA in their review of the contractor ' s work.

As for the experimental plans, a detailed Experiment Requirements and

Implementation Plan (ERIP) ( an original plus a revision) has been prepared

1
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describing the experiment samples, experimental procedures and sequences, etc.

A detailed Sample Handling and Analysis Plan (SHAP) has also been prepared

describing the characterization methods and procedures for the flight experi-

ment samples as well as the ground-prepared samples. The usefulness of these

plans extends beyond the particular flight experiment and samples for which

they were prepared, for they can be easily modified to meet the changing

needs of many future flight experiments.

The major portion of this report has previously been reported in various

forms to meet the reporting and documentation requirements during the project

period. The underlying theme of this report is to present a coherent picture

of the study accomplishments by weaving various reports together. Monthly

progress reports, RRIP and SNAP all contained the results of the investigation.

Especially, the information presented at the experiment review meetings is

invaluable to understand the progress, issues, problems and future plans of

the investigation at the time and presents a clear sense of art investigative

process. For this reason the entire set of briefing charts presented at the

three experiment review meetings are reproduced as Appendix A.

9
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INTRODUCTION

If the promise of containerless melting and cooling, made possible by,

space processing, is realized fully in the years that lie ahead, an important

new area of optical glasses will become a reality. In part, this new area

may be visualized by referring to the schematic of Figure 1. The ordinate

is the index of, refraction, and the abscissa, t#e Abbe number (v), an inverse

measure of dispersion. The higher Abbe numbers, to the left, of the diagram

indicate a low dispersion (i.e., a flatter slope of the index versus wave-

length curve). The lower Abbe numbers, to the right, have a high dispersion

(steep index versus wavelength curve). A century ago flint glasses were

developed. This permitted construction of the first achromatic, or coior-cor-

rested, multi-element lenses. Responding to the demands for better quality

lenses, the optical glass industry developed more glasses with properties

between those of the Crown and flint glasses. More recently glasses have

been developed to fill out the vertically fetched commercial glass area. The

trend has been to push the area up and to the left with glasses of complex

compositions.

If glasses beyond the reach of current terrestrial technology could be

prepared from the more reluctant glass forming oxides, the area of useful

properties could be expanded significantly. The expansion would occur by the

addition of apace-prepared glasses (horizontally hatched area of Figure 1) to

the terrestrial base.

3
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Figure ' l. u-v Diagram for optical Glasses

THE RATIONALE FOR SPACE PROCESSING

For most of the past decade, the Principal Investigator investigated,

4
possibilities for producing new optical glasses by containerless melting

and cooling utilizing the near-zero -gravity environment available in earth

9
orbit. The paragraphs that follow cover the technical thinking behind the

concept of containerless processing in space, a summary of experience to date,

and reasons for the interest in space processing of optical glasses.

When a molten oxide is cooled slowly enough to approach equilibrium

{
conditions, it crystallizes near its crystalline melting point. In the case

of the conventional glasses, usually based on oxides such as•Si0 2 , P203s or

Ge021 the viscosity of the molten glass is very high. With this high

.1
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viscosity, the molecular mobility is very low. Thus, when such substances

are cooled from the molten state, it is difficult for the molecules to.

rearrange themselves into the orderly state of the crystalline lattice.

Because of this sluggishness, the movement of the molecules into the crystal-

line lattice positions is incomplete on cooling with normal cooling rates.

In these cases, the semi -random molecular arrangement of the liquid state

is essentially preserved on cooling, and the substance remains amorphous,

the resulting product being called a glass.

The crystallization phenomenon may be considered to occur in two stages:

(1) nucleation and (2) crystal growth. in conventional glasses the sluggish-

ness effectively inhibits both of these processes, especially the latter.

Therefore, even if the substance manages to nucleate on cooling from the melt,

the crystal growth rate is so slow that the nuclei remain, for practical

purposes, undetectable in the glass. There are, however, only a few oxides

that have sufficiently high viscosities to permit glass formation under normal

circumstances.

For the past two decades, glasses have been made terrestrially in the

laboratory from some of the less viscous oxides. Invariably, the technique

used for preparing them involves extremely high cooling rats from the liquid

state. The familiar splat -cooling technique (Reference 1) is a case in point.

While such techniques yield valuable research information about the nature

of the glasses so prepared, their application for commercial purposes is

extremely limited. By the nature of the technique, only very thin films can

be prepared. With this technique the liquid, as a very thin layer, is cooled
n,

S
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in contact with a chill plate, usually of copper. While the copper provides

numerous nucleation sites, the very rapid cooling effectively suppresses

crystal growth.

Containerless melting in space offers the first practical oppovtunity to

prepare glasses in massive form from the large number of oxides whose liquid

viscosity* is not high. If nucleation can be prevented on cooling, then

crystal growth obviously cannot occur, and a glass should result.

r r+.r^rrr^ra..wrrrr—rr----r---..—rr—r —

* It is recognised that the slope of the viscosity versus temperature curve

below tare crystalline melting point (i.e., in the supercooled region) is

very important to the glass formation process. However no such data exist

for the oxides proposed here. It is probable that the general tendencies of

viscosity change in the supercooled region can be inferred from future

terrestrial and space studies.

6



ORIGINAL PAGE. S3
OF POOR QUALITY

Space oge►atbns/tnWsticn i
Satellite Systems DWISton

®	 Rockwell
^►°	 Intematlonal

It is generally recognized that there are two kinds of nucleations (1)

heterogeneous and (2) homogeneous. 'Heterogeneous nucleation results from

contact of the cooling liquid with crystalline material. Such a material

may be entirely different in chemical composition from the melt. Common con-,

tainer wall materials are cases in point. Of course, it can also be of the

same or similar composition, for example, unmelted portions of the bath or

cool seed crystals of similar composition deliberately introduced into the

cooling melt. In practice it is very difficult, or virtually impossible, to

eliminate heterogeneous nucleation sites with conventional, terrestrial

practice. Normally, a crystalline container must be used both for melting

and for cooling. .Further, the impingement of cool dust particles on the

cooling melt may be enough to cause heterogeneous nucleation, and if the

viscosity remains low enough in the supercooled liquid, crystal growth rates

will be high and the glassy state will not be obtained.**

** The presence of insoluble crystalline material in the melt could also

cause heterogeneous nucleation. Fortunately oxides are very good solvents.
r	 r	

411

It therefore follows that with enough melting time this.problem should be

held to a minimum.

°i

^t

+k

7

t



t	 ^.	
^z

OF POOR QUALITY
Space 0PMt1on=/1nt*WaU0n a1h Rockwell

SaW ite fy^sl m;: ` zkm	 Intematlona►

Homogeneous nucleation is another matter. Theoretical studies (Reference , ,

2) have shown that homogeneous nucleation rates for =ide glasses are much

slower than for heterogeneous nucleation. Experimentally, it is difficult to

determine whether nucleation is truly homogeneous. There are those who

believe that it may never truly have been observed in an oxide glass. Since

only a few molecules of a heterogeneous nucleator need to be present, the

detection of such a small amount is a formidable technical problem. Thus, the

assumption, a priori, that nucleation which occurs, for example, throughout

the mass of a cooling substance is homogeneous may be erroneous. One can

always argue that an undetectably small amount of a crystalline substance

was present at the nucleation sites. At any rate, if heterogeneous nuclea-

tion can be effectively prevented, it is probable that homogeneous nucleation,

if it can occur, will not occur unless the cooling rate is quite slow.

Over the past several years, the Principal Investigator successfully

prepared numerous approximately 6-mm diameter (about 3/4 gram) glass boules

of roughly spherical shape from seve r al oxide compositions that have low

viscosity in the molten state. That work is covered in detail in References

3 and 4. Among the compositions prepared are the gallia-calcia eutectic at

approximately 19 weight percent calcia, an alumina-calcia composition with

30 weight percent calcia, and a ternary, 40 weight percent lanthana -40 weight

percent alumina-20 weight percent calcia composition. The alumina-calcia

composition is well outside the reported glass-forming region based on 20 mg

melts (Reference S). The gallia-calcia composition had been reported to be a

glass former in the laboratory, but in sizes less than 40 mg (Reference 6).

8
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Furthermore, water quenching was required to achieve the glassy condition.

Thus the preparation of crack-free boules with 50 times the mass of those of

the earlier work represents a significant technical achievement. A glass of

the ternary composition, to the Principal Investigator's knowledge, had never

been reported in the literature.

The method for preparing the 6-mm boules is described in detail in

Reference 3. Briefly, the samples in contact with a silica (glass) sting are

suspended in a vertical air column. The energy for melting comes from a CO2

laser beam aimed at one side of the boule. The silica sting was found neces-

sary to stabilize tho motion of the melt and is a definite conweuience for

getting the process utarted. The oxide is transferred to the sting from a

laser melted area of well-mixed powders of the desired composition. While the

technique developed by the Principal Investigator is excellent for demon-

strating that new glasses can indeed be prepared with containerless melting

and cooling techniques, it does suffer from several limitations, as follows:

1. Because of the relationship among viscosity, surface tension, and

mass, 6 mm is very near the maximum sized boule that can be pre-

pared in this fashion.

2. The silica ating material continuously dissolves into the sample

during melting and holding at superheat temperature. Simultaneously,

the sample constituents as well as silica are boiled out of the

"hot spot" where the laser beam impinges. The end result is a net

increase in the silica content. In order to keep the silica content

as low as possible it is necessary to keep the melting time as short

9
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as passible (on the order of 30 seconds). As a consequence then,

good making is not obtained.

3. It is very difficult to eliminate dust in the air from the wind

tunnel. Thus the molten sample can be considered to be continually

bombarded by dust particles while it is cooling. For this reason

the technique may be unnecessarily restrictive compared with the

more favorable conditions Expected to accrue from space meltinS.

Space melting promises to eliminate or significantly reduce all three of

the shortcomings inherent in the air suspension/laser melting equipment.

Very large boules should ultimately be possible if enough power for melting

can be made available. The silica sting will net be required with the'acous-

tic positioning technique being developed by NASA. Since space melting can

be accomplished in a furnace with nearly isothermal conditions, the localized
ti

heating of the specimen intrinsic in the terrestrial laser melting technique

will not be experienced. Space melting can be accomplished in an essentially

static atmosphere, significantly reducing the possibilities for dust-caused

nucleation. It is entirely possible that some of the compositions that failed

to form glass in our terrestrial experiments may prove to be glass formers

under space melting and cooling conditions.

THE SOUNDING ROCKET PROGRAM

The Space Processing Applications Rocket (SPAR) program was considered a

precursor to the Shuttle and later manned orbital progzams. While conditions

were not ideal for glass melting aboard a sounding rocket, largely because of

the rather short melting ,'",m (less than five minutes) available, the program

10
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did afford a good opportunity to gain early experience with glass malting

within the limitations and, more impo:t.antly, with space glass melting equip-

ment -development.

The gallia-calcia composition mentioned in the previous section of this

report was originally chosen as a suitable composition for two sounding

rocket experiments and for early Shuttle experiments using the NASA-provided

Materials Experiment Assembly (MEA'. The composition is a eutectic between

the compounds CaO:Ga203 and Ca0:2Ga203 and its composition, under equilibrium

conditions, is approximately 19 wt. x CaO, balance Ga 203 (approximately 56

mol Z CaO). The phase diagram for the binary gallia-calcia system is shown

in Figure 2.

This particular composition was chosen for the following reasons:

1. It has the lowest melting temperature of any of the new optical glass

compositions studied by the Principal Investigator prior to the initiation

of the SPAR program.

2. It is a relatively good glass former in the k-inch (approximately 6mm)

(about 800 mg) size under terrestrial containerless melting conditions.

3. It potentially has optical properties of interest to the optics industry.

4. Prior to our terrestrial melting work, it had not yet been prepared in a

size exceeding 50 mg.

11
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Figure 2. The CaO - Ga203 Phase Diagram (From Reference 7)

Despite these advantages and uniqueness of the binary composition, both

SPAR VI and VIII glass experiments carried a silica-modified gallia-calcia

composition. The ternary 39.3 Ga203 : 35.7 Ca0:25 .0 Si02 ! in mol percent)

composition was chosen for the reason that this would provide more information

about the function of the flight experiment hardware than the binary. Namely,

in case of an incomplete melting, partial crystallization is expected of the

ternary because of its slow crystal growth rate, whereas complete crystalliza-

tion is expected of the binary composition. The results of the SPAR VI and

VIII experiments have been reported in References 8 and 9, respectively.
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THE SHUTTLE MEA PROGRAM

As a part of the NASA Materials Processing in Space (MPS) program, the

Shuttle MEA program is intended to provide an opportunity to conduct prelimi-

nary MPS experiments befZ,§.,e they can be scheduled for the operational Shuttle/

Spacelab missions. Its initial goal is to demonstrate the value of space

for materials work by achieving significant scientific results and/or develo-

ping specific useful materials and products. This program utilizes a self-

contained experiments system called Materials Experiment Assembly (MEA) which

Marshall Space Flight Center is developing. The MEA consists of systems and

apparatus developed for the Space Processing Applications Rocket (SPAR) pro-

ject and other projects. The sounding rocket 's most serious limitation is

the short, low gravity time available. While every attempt is being made to

prepare crystalline starting slugs of uniform composition on a macro scale,

micro inhomogeneities must exist because of the multiphase nature of the

composition. Therefore it is possible that some striae may be found in the

rocket melted specimens because not enough time is available for complete

mixing to take place by diffusion, the only significant mixing process pre-

dicted under near zero gravity conditions. In the Shuttle, by contrast,

much longer melting times are possible, virtually assuring an opportunity to

achieve homogeneous melts by diffusion. The longer melting time also permits

larger boules to be melted as well as makes possible the performance of many

experiments per mission.
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OBJECTIVES AND TASKS OF CONTAINERLESS PREPARATION OF ADVANCED OPTICAL GLASS
PROJECT

The ultimate objecti%% of this project was to pave the way for the Shuttle

MEA experiments to develop new or unique optical glasses by processing marginal

glass formers in a containerless low-gravity environment. The specific objec-

tives were to select, by ground-based containerless processing, promising

glass compositions that will be further investigated in the Shuttle experi-

ments, to coordinate the experiment/hardware development activities and to

develop the experimental plans.

The technical tasks included:

(1) Conduct preparatory ground-based research program leading to the selec-

tion of the candidar:e materials to be processed during the MEA flight,

(2) Perform experiment /hardware coordination activities.

(3) Prepare an Experiment Requirements and Implementation Plan (ERIP) and a

Sample Handling and Analysis Plan (SNAP).

(4) Prepare reports on experimental progress and findings.

4
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GROUND-BASED INVESTIGATION	 "

The purpose of this task was to select and understand the glasses and

processing variables to be used in the flight experiment. This required per-

forming an initial screening test on candidate materials{with melting points

below 16000C.

APPARATUS AND TECHNIQUES

The main features of the apparatus and the techniques used in the

ground-based experiments were the same as those used for the SPAR and an

earlier program (Refs. 3 and 4). Namely, the laser melting/air suspension

technique using a wind tunnel , a laser, w... o oa.saarj was employed.+_yeC{Lw. 	 L___The _0

set-up is shown in Figs. 3 and 4. A compacted composition melted by a high

power laser was suspended by a sting and further supported by a column-of

air from a vertical wind tunnel. To promote homogeneous melting the sting

was rotated. The following steps highlight the experimental technique:

(i) Screen powders (50 mesh)

(ii) Weigh charges

(iii) Mix-tumble (6 hours)

(iv) Cold press into,pellets (if possible)

(v) Laser malt on copper (or aluminum or steel) plate

(vi) Laser melt on sting with air suspension.

The laser used. in the experiment was a cw CO2 laser (10.6 um) with an

approximate output power of 1.5 kw. A raw beam of 9 cm-diameter was manipu-

lated by the use of a series of optical components (mirrors, lenses and beam-

splitter) to a narrow, slowly converging bean with an approximate diameter of

1 cm at the intersection of the beam and the sample.

15
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A silica sting with a candidate composition Bused to one of its ends

was chucked in a vertical direction on a slow speed motor. As the specimen

became molten on the slowly rotating sting, it was further supported by a

column of air from the wind tunnel.

The vertical wind tunnel was specially designed for the purpose of

supporting melts on the sting in the laser melt experiments. A detailed

description of the wind tunnel may be found in Ref. 3.

RESULTS

A total of 105 new oxide compositions were tested for glass formation

using the laser melting/air suspension technique. A great majority of

these compositions, namely 83 9 had been originally listed in the Master List

of Oxide Compositions (prepared in November 1978) as initial candidate com-

positions. This list was compiled from the oxide compositions that were

mostly eutectic, had smelting points blow 1600oC 9 and mostly had not been

previously reported for glass formation. In the course of the experiments

an auspicious tendency for glass formation was discovered for combinations of

Nb205 , TiO2 , and CaO. A Aeries of combinations of these oxides were tested	
It

in time making up the rest of-the 105 compositions. Table 1 shows-the

results of the tests on all the 105 compositions. The results for the system

of Nb205-Ti02-Ca0 are summarized in their ternary phase diagram (Fig. 5) with

the tentative containerless glass forming region indicated by the hatched

area. The portion of this region whose melting points are 15000C or lower is

shown in Fig. 6 again by the hatched area.

is
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• M

w o► t+'i •.r aff as ►̂ M

P4 V4 .1a P4
J

pw !MV N
CO aft

^ Q^ N r0P^+ M N
f+ O N

H ta► .ff N
^ ^

A
M

/\
aD

A
N

.I'^
fn

/'^
^D

V
ad ay ^.I

a^
fhj ! LM e•t rf M • M C^ V Uww ' 0.

0-% P
00

N
OD

co
N
^D

•• in M ON
•

'-^
in
co

r4
r...

ar d0

w.• a b M
•Y

ml ra ..t

a a^ d an N m "P'+ in M .e n aNO
H

H •-̂•a .VV̂ "4 N M M N  -A

.C4
in

x x Z ?. ! ? ZApt . co . O4. %n. .O ko. .A Go. cT• P.
co

2
A o P aQ tT O► ^A ^p an P. to

Allh Rockwell
WJW Intemational

aJ
u
0
O
L
O

W

^s

M
a
av

A
4

M
QN N

a
0!
PC

O M

•C ri va

O

ind M
$4 O O 

M

v z C v
C'• Ate..
E•4 E-+ N	 N N N N N tm M	 M M



0^ POOR Q" A i 9'	 AWYWUWWM Q Of

ORIGINAL	 t . 'ROCkWeII
Internatlanaf

f

•w v

a^i a ^ ^ `^_

y

w

p

a

E•+ ago ewo ego `^ n
pp
v

pp^^
OG

•^ .Nt ^ ^^
ca

.bi p r. .^ A

H *^ c CD .D rat ^ ^ ^ w

z

x
14

a
GG

0 a q
`^ +

a
': v

^tici
cn

a^

0
t+

0̂.
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pĉ7
'^i v Q

g

^1 L

H °t

D vr + r4%. ..

°OWaQ ^	 a ^ ^ ^ w aLO a w
V]

C
^- O ^	 C7 CI C9 U' C7 W V C,7 CJ

f!	 d
H

V
O

a a 4n ^ ^ ^

w

K M CA
a.

`0o a eh

U3 .o •
[-^ v r1 GO

!t
0

t0
rd
.0 q q

ao V 04
a

• . O

nT h m CON
q

ca E-4 r4
•t

apq2
*r In

U  MI 00 .7

VO VH en H Ci H c in N
V	

N r4 A r^1 U" N A A

Ln
O

O
z Z 64 z.

O "4 N&M

as °z
ca	 %o n co 01 O V4 EV m
F'+	 T 0.t %T %T in u1 u1 u1

a i

OF POOR QUALI t ,

.a

d
00

s

V
V
@C
Id

w

23



	

sae. opwadonsihmeafamon i 	 k Rocky

d	 ..	
UWAW SISW ►, OWW"	 lntemationai

r

I

ik7
E-4 

:o

H

i	N

	 M	 tf1	 % ^ co

is  i i i	 i i i

ci
w a

a ^ v v

C: u
"A

M ^•"
q1C^^A

a •>
Is

_ W Y a N %3 • f^

H X00 O pu Q W

+ u a .a
.pp+

C4 w M •

• W X00v sV1 v
O

to
ca

W G a01 .cif ,b7
O

OOpOr W
v %W	

lu •P4
W
C 00 to

p b "d m
to V4

x r .0 O O V L O
arG
m

qV

H

X0'0
+ v v .G rOi V G.

y

w w V

d b a m a d d a, i r4	 •
orS u •^ u a^ r u .. ar eo

4clo
92 10 V4

 I v Aj v 13 v is ,a

w 'W
tz02

C
m

e5 0^0 ^ w a5

i m a + .°
a
`

ca

O .•►

H K
M

►.7

K O
P4

• O O
^p

coW N ^o
•a .. .. + .. ..

0 0 ^a N

H
co
v

%0
v

_

v "
;^

^P►

V
N

a0
•

O 40 u 1
W1
N go b

Go ^ b
r

H v ^ m

O O m
^Err
AL u 1 ò°+ b
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EXPERIMENT /HARDWARE COORDINATION ACTIVITIES

The experiment hardware to be used in an-MPS, experiment must work as an

integrated system. Namely, the system must have integrated capabilities of

heating, cooling, injecting /retrieving, positioning, photographing, etc.,

samples in addition to recording data during the experiment. The develop-

ment /integration of such a system will be accomplished by a hardware

developer under a contract from NASA, and the Principal Investigator is

expected to provide guidance to the hardware contractor regarding the'hard-

ware requirements and to assist NASA in reviewing the adequacy of the con-

tractor's work.

An essential feature of the experiment hardware for containarless	
I

processing in the low•gravity environment is the levitation of a molten

sample. Jet Propulsion Laboratory (JPL) developed ACPM (Acoustic Chamber

Positioning Module) and Intersonics developed SAAZ (Single Axis Acoustic

Levitator) for this purpose, both under NASA contracts. The JPL's ACPM is

a levitation chamber in which triaxisi resonant acoustic waves are excited

and a sample is levitated at the intersection of,these waves. The

Intersonics' SAAL is an acoustic levitator (requiring no chamber) in which

a single vibrator excites an axial acoustic wave. The wave is reflected by

a reflector and a sample is levitated at a node of the resulting standing

wave .

Because of the different limitations imposed by these two levitators,

an investigation was conducted to assess and compare their capabilities in

terms of the experiment requirements. A number of meetings were held (4/78

at MSFC, 5 /78 at Rockwell, 9/78 at MSFC, 10/78 at JPL, and 1/79 at MSFC) in

which the feasibility of using the JPL's ACPM was discussed. Major issues
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raised in these discussions vere the maximm temperature amd the cooling rate

capabilities va requirements. Since the JPL's ACPM vas not able to meet

these requirements at the time' it was decided in the early part of 1980 that*

the Intersonics' SAAL be used in the flight experiments planned in the near

future.

Many discussions were held vith Intersonics before and since then

regarding the hardvare requirements and modification, and a visit was made

to them in May 1981 for an on-site discussion. Itims discussed included the

heating rate, maximum temperature, cooling rate, sample injection/retrieval

mechanism, motion picture, levitator failure zechanisms, number and type

of samples, ate.

35
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FLIGHT EXPERIMENT PLAN AND SAMPLE CHARACTERIZATION PROCEDURE

Detailed requirements and plans were provided for the flight experi-

ment and sample Characterization. These were designed to help each discipline

involved in the integration and the support of the experiment be familiar with

their respective objectives and requirements, and also form a basis for

discussion among them.

EXPERIMENT REQUIREMENTS AND IMPLEMENTATION PLAN (ERIP)

The purposes of this plan were: to describe the current status of the

experiment and update information in the proposal; to update experiment

requirements; and to provide program plans in the form of milestone schedules.

Specifically, the plan included experiment definition, description of

experiment specimens, prelaunch and flight operations, and flight and

experiment data acquisition requirements. The initial plan prepared in June

1978 (SD78-AP-0071) was superseded by a revised plan in July 1981 (SD78-AP-

E .	 0071 REV A). The revised plan in its entirety is reproduced in this report

as Appendix B.

SAMPLE •HANDLING AND ANALYSIS PLAN (SUP)

The basic objective of this plan was to perform an analysis of the

experiment samples that would help evaluate the accomplishment s of the.over-

all flight experiment. The plan was specifically developed to characterize

and compare samples produced under ground -based and flight conditions. It

included the methods and techniques to be used in analyzing the samples,

handling procedures, and a sequence of the entire characterization process.

In addition to this basic plan, another plan ( in a draft form) was

developed in which an extensive set of measurements were tentatively proposed

36
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to fully characterise the experiment samples, ground -based and space-produced,

to explore various application potentials. The basic SNAP prepared in-June

1981 (SSD81-0119) and the draft plan (prepared in May 1981) are attached to

this report as Appendices C and D, respectively.
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CONCLUSION

By uncovering many new containarless glass.compositions, the screening

experiments performed in this program has possibly opened the door to broad,

new types of glass which could become a reality through space processing.

Optical properties hitherto unobtainable (in terms of, e.g., refractive

index, dispersion, and absorption properties) could be obtained and made 	 , s

use of in designing optical components such as lenses, filters and windows.
r

The frequent occurrence of new glass formation found in the present

metallic oxide system suggests the possibility that new and unique glasses

could also be found by containerless processing in other systems such as

the halide and the chalcogenide systems.

In the present screening tests the melting points in most cases were

kept below 16000C. This temperature restriction imposed because of the

flight hardware requirements was au arbitrary one as far as glass formation

was concerned. In fact, preliminary glass formation was already observed

in the temperature range above 1600°C. Potential for glass formation above

1600°C appears very good, and work in that region should be encouraged.

Writing in the Physic Today (November 1981) on the development of optics

i, the past fifty years (or rather 20 years), Peter Franken, the director of

the Optical Science,Center of the University of Arizona, cited three emer-=

genes as being most responsible for the recent dramatic advances in optics:

laser, high-spied computer, and new materials. Space processing, when fully

understood, serving as an additional material processing parameter possesses

an immense value for development of new materials.

Ir`
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MŴ

m

t « Z

m + t U+Nf9 eo

T=s
'^ H m	 l"!

m m-	
U3

ca
y

«	
Z ^

Z

ca

t

♦ ® C:3	 Z
'm N

ZNSB } N98

fL!

ao

O

1



APPENDIX A

M

A

N
.Q

La

Z

4
V1

cc
im

ORIGINAL PAGE ISS

OF POOR QUALITY

9
ry	 ^ ^.r -

m

N

i

yr^T r

Y/

8

^ m
o

w

A

Q 0
^O N2z

a

U3

cc
to
N

1



4

ORIGINAL PTAw IS

OF POOR QUALITY
	

N

$	 X

Ca ^	 ^, g

.N
Q	

^o^_	 rasw^os^o

,,,t ,4

tin

r Q	 a

cn

Q	
^ O
ra

«04Nt!1' Gn

ii



APPENDIX A

ORIGINAL PACE 19
OF POOR QUALITY

Iry

C4

O
C4

0=Va0

0
I0

O

0,
N

Lo
0
N
cc

e

C49



I

jr- pooR QUAU`t Y
	 A

0
N
J

C

ca

M

s

ss sp_^
901jul

^	 lV

mw
^r'7.r^susZr ^

w

(

}J7 t	 ^ i ^ O

Q
tj'!	 w ^	 w ( e

to	 w .4.- t ^

oo

j ^ .s t	 * t 80	 1!1^

t IT

4 1+ M t N fz

w `^
t	 +	 SS 9041:,

~L o
^1

ca

V w 	 ^..	 ^. w.

2',



ORIGINAL F
OF POOR QUALITY

C)
h

c
o

n

11	 1

v xiaNsclav



O

i0
ca

0RIGIiIAL p e ^a

OF POOR QUALIV

z

q

m NO
h ^

O
w h

Bn^s ^ ^n
pp

tocuvs
w

s^1.s a

al 3
v c3

a
m A
3
C3

^011Z^ A

S	 S
2

n



\ 0	 Lo
N Q_

` + m
N,j

N : cq —
RJ N

NC

O	 :2 91
oo
tp

f
4

't

ORIGINAL PAwa b'i
	 APPENDIX A

OF POOR QUALITY	
N

O

I
M

N	 "°

cr

 N 3
C7 94

.i	 i•,

J	 t0	
N NO OW	 t	 V o

O	 I H N

o	
w

O
et N

J	
cn	

t i

2310°
J



p

lk:

ORIGINAL PF '2. E

OF POOR QUALITY

O
cc

O
v'I

x
^	 3	 ^ EOZ^ + is 9^

M

^	 ^VVV777

j	

ca

^ 3_

YO	 „'

AJ+H^	 H'

O^ W

H^ R

+	 t

Q
(Q̂p

^ _ ^ + ^V qqr
^	 8	 Y

V

e7



APPENDIX A

^e
N
a_

0

a

0N
Q
0
t'9

I

+

J ^
NJN

N a+o ^
°o

c3 + `wh v'T

+ r
a +

a

rte__

Qey
N

J

y+
^"!

y

CM

^^a

v XIQNaaav

	 J

.

cl
O
C,

R

7r.

cn

M
I

er'

L1

.	 M
W

mks

z
m
a
M
W

CL

OF po®6i QUALIV
	

M

v



UY
c	

N

0N
QRN ^
0

w

V ^

P

_

1-. -

{	 l	 6

ORIGINAL PAGE IS
OF POOR QUALITY ^	 1

'o

i



APPENDIX A

ORIGINAL PACE 15
OF POOR QUALITY'

ppi
U mr

^; 'b!1 o8tfrt c^

U
CiL

+
1

^ `
P

^a
WQ

;g	 J g

•NL
g	 ^ p

t0..	
N
U.

c3 KI

— 

\
3

.o --	
i= o.r

1i e.

J
t
N

ON

O

8
1b

^ ~

f

1

^" 1

R
r

.i
;c
I!

s

fi

ti

E`

t^
ii
iz



a	 ^

t

n
rt

ORIGINAL PAGE is
OF POOR QUALITY

CA

O W

Q9r
M

"^
n
j

v

Lu

>
Lis

O

a
c 9
Lu W

2 cc
Lit

Q.
W

cn

Lu

N
cc
W

a

® W NZ
^

^

^

W

^;a

f"

aO

^

z

¢

Q

X

ae r o^ q
s



APPENDIX A

ORIGINAL
OF POOR QUALITY	 4

z

aOJ
W
W

W6

_
a

J

V
_a
JJ
C7

C=7

Q
ui

W
f^
G
O

H
z

W
[^f
z

p
U.

O

Wd

W'
H

O

cc
w

^rrv^
W

U
O

yF-

J
U.

e
uj
g

Q:

aUJ

 ^'
z
W

a

W

J

Q
^
J

O

H

C
<
LL

a
ŷ
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1. INTRODUCTION

This document describes, from the Principal Investigator's (PI's) point

cat view, the implementation of one HEA flight experiment. If the flightp

experiment is completely succe4sful, three 0.6cm (; inch) diameter boules

of new glass compositions with potential optical applications will have been

prepared and a solid sphere levitated for 5 minutes. The glass samples con-

sist of two ternary mixtures (39.3 Ga203 :35.7 C.W: 25..SiO 2 (mol ))and a

eutectic binary composition (56 Ga203 :44 CaO (mol %)). An alumina sphere

bas been chosen as the solid sample for purely levitational purpose. How

this glass experiment fits into the overall space glass program is described

in the next section.

1	
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2. BACKGROUND

The combination of circumstances attending the melting of materials in

ap.ace presents the possibility of making glasses from substances that, to

date, have been observed only in the crystalline condition. A solid con-

tainer is not needed during the melting and superheating portion of the

matufacturing cycle. The only contact of the melt with its surroundings can

therefore be a gaseous atmosphere or, if so desired, a vacuum. Thus, it is

;^ asible to melt many high-melting-point materllAls that heretofore could not

ae successfully melted because of reaction with the crucible material. This

d-taoe alone might permit the preparation of new substances as glasses i f1-11

thei r viscosity becomes sufficiently high on cooling to suppress crystal

growth.

In addition, space melting permits cooling without the use of a solid

mold. Thus many of the usual crystal nucleation sites are eliminated. Unless

a given material can spontaneously nucleate on cooling, undercooling below

the normal melting point will occur. If a sufficient: amount of undercooling

is accompanied by a sufficient increase in viscosity, crystallization will be

avoided entirely and glass will result.

Studies of space glasses by the PI to date have been confined to oxide

glasses. It is felt that many of the principles that will evolve from a study

of oxide glasses, which can be melted in air, permit a more direct approach to

nonoxide materials in the future.

During the course of terrestrial research conducted by the PI over the

past several years (NASA contracts NASB-28014 and NAS8-28991), it has been

shown that new glasses with potentially interesting optical properties can be

2
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prepared using a containerless melting technique. The technique most recently	
h

wend for terrestrial research consists of suspending a molten drop of oxide

vls.terial on a laminar flow air stream. The energy for melting is supplied by

a 1^ kW outpilt CO2 laser. The molte,;i sample is steadied in the air stream

by contacting it with a fused silica (glass) probe, or sting. The details of

the techniques used and the results obtained are given in References 1 and 2.

Using the techniques described, several new optical glasses have been

prepared in the 0.6cm ( inch) diameter size. Among them is the gallia-cal--

cia glass, which is one of the flight specimens described in this document.

2.1 RATIONALE BEHIND THE OVERALL APPROACH TO GLASS MAKING IN SPACE

The concept of glass making in space is of interest for the following

reasons:

.1. There is a strong possibility that oxides such

Nb205 , Al203 , Ga203 , and Y203 , and some of the

can be prepared as glasses in spherical boules

ful sizes through space melting and cooling.

2. Glasses produced from such oxides or combinati,

oxide additions should have optical properties

as La203 , Ta205,

rare earth oxides

of commercially use-4

Dns of them with other

not obtainable in the

conventional silicate-, borate-, and phosphate-based glasses.

3. The combination of optical properties projected for such glasses

should make them suitable for use in advanced optical systems.

4. The spherical shape of glass boules that would result naturally from

space production is quite suitable for the making of lenses and

windows.

3	 SD 78-AP-0071
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5. The production of glass, gA-, ,en a well-engineered space facility,

should be well within the capabilities of the astronauts after a

suitable brief training period, the more technically and skill-

oriented operations being performed terrestrially before and after

flight operations.

6. A well-directed research and development program leading to the pro-

duction of useful space glasses should yield much valuable scientific

information on she nature of glass formation, nucleation theory,

etc.

It is envisioned that the process described need not be limited to oxide

glasses. Perhaps other compounds, such as carbides, nitrides, and chalco-

genides, will ultimately be producible as glasses by space processing,

2.2 APPLICATIONS - OPTICAL GLASSES

An Abbe diagram, familiar to lens designers, is shown in Figure 1. The

index of refraction in sodium D light is plotted on the ordinate and the Abbe

number, an inverse measure of dispersion, is plotted on the abscissa. The

higher Abbe numbers to the left of the diagram indicate a low dispersion (i.e.,

a flatter slope of the index versus wavelength curve), and the lower Abbe

numbers to the right have high dispersion, or a steeper index versus wave-

length curve. A century ago, the flint glasses were developed. This permit-

ted the designing of the first achromatic, or color-corrected, multi-element

lenses. Responding to the demands for better quality lenses, the optical

glass industry developed more glasses with properties between those of the

crown and flint glasses. More recently, glasses have been developed to fill

4
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Figure 1. Potential Space-Produced Optical Glasses
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out the area labeled "commercial glasses" in Figure 1. The trend has been to

po. h the area up and to the left, and many of the glasses have very complex0
compositions. It also should be noted that because lens design is an iter-

&Live process, isolated glasses with unusual combinations of properties are

f

	

	 rarely of value. The lens design process requires that small shifts in

optical properties from those initially selected be available.
h

If glasses could be prepared from oxides beyond the reach of current

ahnoingy, the area of useful properties could be more than doubled, as is

E
L_	 nhntan in the area labeled "nntunt-al 	alannnell in F1611MA 7 : 7F

the promise of space production can be realized by the preparation of simple

compositions with properties falling roughly in the circles marked 1, 2, and

3, it should be possible, by combining the compositions, to fill in the areas

shown in the figure. Thus, efforts to date have been largely devoted to

attempts to prepare simple compositions with glass properties falling roughly

within the three circles in Figure 1.

Additionally, there is another important area of application that new,

space-produced, optical glasses might fill. Space production offers an oppor-

tunity to prepare new families of glasses free of the usual base oxides, SiQ2,

B203 , and P 205 . Noncross-bred glasses should open possibilities for the lens

designer for correcting "secondary spectrum." Reference 3 covers this sub-

ject in more detail.

It is expected that the compositions selected for the experiment described

in this document fall into the area designated "1" in Figure 1. While they

have optical properties of potential interest they were selected for a number

6
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of important and practical reasons as detailed in Section 3. It must be

onphasized that the area of applications is large and the compositions to be

a wn are represen ative of that large area.*

Table 1, which has been abstracted from an applications study performed

by the Perkin-Elmer Corporation (Reference 4), lists some of the specific

types of systems in which space glasses might find application. The reader

is referred to Appendix I of Reference 4 for a comprehensive treatment of

,igplications for space optical glasses.

Table 1_ pnt&P4AIt Aft"1.t.. . ti -- a_-•^rr- ..—r---W •va
Space-Produced 05.asses

Hon-Imaging

Host materials for 1.06 micron lasers

Raw materials for coatings

Imaging

Microscope objectives

Low light level lenses

Long focal length lenses

Anastigmatic ;photo objectives
Aplanats

Lower curvature lenses

Zoom spectrometers
Monochrometers
Polarizing microscopes
Sigh sped, large lenses

.Oil immersion microscope objectives

Fiber optics bundles

*For a listw* of oxides that -ate andtdates for the other two areas or Figure 1. the reader is referred to Appendtx 1 of
Reference 1

7
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`kk 	 As an example of the type of application possible with space -produced

k^
Pl ass, ?, telephoto lens for a 35-mm still camera can be considered. By sub-

simtuting a space glass for conventional glasses in one or more elements of,.

let us say, a seven-element telephoto lens, it may be possible to maintain

f the same image quality and increase the aperture from, says f /2.8 to f/1.4.

Such an increase would expand the range of application for such a lens sig-

nificantly. Under most circumstances in which telephoto lenses are used$
t.

Cie photographer has no control of lighting, the distant subjects being beyond

the range of flash, or other, illumination from the camera position. The

availability of such a lens would make it possible, for example, for the

photographer to increase the shutter speed by a factor of four, a significant

advantage in using a hand-held telephoto lens or where the subject is in

motion.

iti
9
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3. EXPERIMENT DEFINITION

3.1 DESCRIPTION OF THE FLIGHT EXPERIMENT

The primary objectives of the first MEA flight experiment are to study

this a rfQrmance of the experiment hardware, especially the single-axis acoustip

levitator and the automated multi-sample processing unit, under actual flight

conditions and to di..z l_n new glasses. Sptcifically, the experiment can be

considered to consist of three subtaskst

1. Levitate four samples (one unmelted, three melted) in the furnace

for specified periods of time in sequence,

2. Operate the automated multi-sample processing unit, and

3. Produce three new glass spheres.

Levitation of an unmelted sphere is to facilitate evaluation of the

acoustic levitator performance. Two of the three glass spheres to be produced

are of a gallia-calcia-silica composition and the third a gallia-calcia comp-

osition. Alumina has been chosen as the solid to be levitated because of its

melting point being higher than the highest temperature the furnace can

attain. The number of samples, the compositions, and the duration of soaking

at high temperatures have been determined on the basis of the objectives

stated above with particular constraints being imposed on the first MEA

experiment that the total experiment time should not exceed 90 minutes, the

power available is limited, and the furnace $:Rd other automated mechanisms

have their characteristic respo ,ase times.

3.1.1 Gallia-Calcia Experiment

The composition of approximately 56 Ga 203 :44 CaO (mol %) has been chosen

as one of the compositions for the glass experiment. This is the composition

originally chosen for the two sounding rocket experiments but later replaced

9
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by the ternary gallia-calcia-silica for both experiments for reasoi. ,J given

is the Zection 3.1.2. The binary composition is near a euteutic in the

jhase di agram and the eutectic temperature is approximately 1323°C (See

F.gure 2). This composition is chosen for the following reasons:

b. It has the lowest melting temperature of any of the new optical

glasses studied by the Principal Investigator to date.

2n It is a relatively good glass former ir, the 0.6 cm (; inch, 0.8 gm)

size under terrestrial, containerless, melting conditions.

3. It potentially has optical properties of interest to the optics

industry.

4. Prior to the terrestrial containerless melting work mentioned above,

it has not been prepared in a size exceeding 50 mg.

One sample will be of this composition and soaked at high temperatures

for 9 minutes.

3.1.2 Gallia-Calcia-Silica Experiment

The composition of 39.3 Ga203 :35.7 CaO:25.0 SiO 2 (mol %) has also been

chosen as one of the compositions for the experiment. This is the composition

that was actually used in the previous two SPAR experiments in lieu of the

binary composition.

Th,, primary reason for selecting the silica-modified gallia-calcia is to

facilitate the evaluation of the equipment performance. Namely, the ternary

has a much higher tendency to form a glass than the binary gallia-calcia by

virtue of its higher viscosity, and so a glass would result even when it is

partially melted and/or-:melted and cooled in contact with a container. Thus

10
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the degree of glass formation will indicate the extent to which the sample

has melted. The performance of the furnace and the acoustic levitator can be

evaluated from this. The 25 mol 2 silica content was chosen since that was .:

found from previous experiments to be the lowest in silica among the ternary

gallia-calcia-silica compositions that yielded a significant amount of glass.

Two samples will be trade of this composition and will be soaked at high

temperatures for 9 vinutes, each.

3.1.3 Alumina Experiment

Addition of this material to the group of samples to be processed in

space is mainly for the purpose of evaluating, the performance cf the acoustic

11

SD 78-AP-0071
REV A



ORIGINAL PAGE 63

OF Pt,,CR QUALITY,

C,

Space operations and^^ Rockwe ll
Satellite Systems 171vision	 Intemational

Space Systems Group

levitator. Alumina has a melting point of 2045 0C and therefore will stay
k

ool,id at the highest temperature the furnace attains ( 1600oC) during the

rfight experiment. If the acoustic levitator fails to perform properly and

the specimen touches the cage, there is a much greater probability for a

solid specimen to return to the sonic well and be captured there than for

a molten one to do likewise. This will permit study of long term performance

of the levitator. This sample will be levitated at the same high temperatures

ca the other specimens for 5 minutes.

.c	 OBJECTIVES

The specific objectives of the flight experiment include the following:
a

1. Gain experience with the performance of the flight experiment hard-

ware; more specifically:

0 Determine the effectiveness of the acoustic levitator in pre-

venting contact of the melts with the furnace walls and holding 	 I

the melts in the center of the furnace hot zone at high tempera-

tures.

0 Determine the effectiveness of the furnace, the cooling shroud,
'i

and associated hardware.	 i

0 Determine the effectiveness of the automated multi-sample'inser

tion/retrieval and storage unit and associated hardware.

2. Gain insight into the degree of equipment complexity required to

prepare glasses in zero gravity.

3. Determine whether the longer melting time available, on a Shuttle

flight can result in a significantly more homogeneous glass than was

12

SD 78-AP-0071
REV A



Space Operations and Al® Rockwell

	

Satellite Systems Division 	 intr national

ORIGINAL PAGE IS	
Space Systems Group

OF POOR QUALITY

possible during the earlier rocket flights.

4 Determine the characteristics of zero -gravity-prepared glass samples.
L

L^. S. Attain a position that will permit the determination of accurate

optical properties of the new glasses.

	

3.3	 PREFLIGHT ( CHARACTERIZATION) TESTS

The flight starting materials (except alumina) will be characterized by

the Pr incipal Investigator in terms of cor'itainerless melting glass -forming

h.c:ndez.Mies, apparent density, chemistry, and freedom from bubble formers. A

' gnificant portion of the flight sample characterization effort will be

devoted to cinematography studies of the heating and cooling of the flight

sample compositions, using a laser melting/air suspension containerless

melting technique with a silica probe. The films will be analyzed to deter-

mine critical temperatures arid, with appropriate scaling, times for use in

programming the flight experiments. The alumina sample will be characterized

for density, etc., as detailed in Section 5.

	

3.4	 FLIGHT EQUIPMENT TESTS

Suitable flight equipment tests will be specified by Intersonics and

executed by Intersonics and NASA. The Principal Investigator will review the

test programs and results to assure that experiment requirements are being met.

	

3.5	 POSTFLIGHT EVALUATION

The Principal Investigator is responsible for conducting postflight

evaluation of the flight results. The evaluation will consist of two princi-

pal activities;

13
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1. Examination of flight equipment. It is anticipat^d that this will

be conducted jointly with Intersonics and NASA.

2. Evaluation of the flight experiment samples and comparison with

preflight test results and with the earlier sounding rocket (SPAR)

flight samples.

3.6	 FLIGHT EQUIPMENT DESIGN AND INTEGRATION

The Principal Investigator will perform consulting services in connection

,it:h tl!e design of the flight equipment. He,will also participate in all

equiprwint reviews by NASA and will determine the acceptability of flight

hardware $ ground test results, and flight program. He will maintain cogni-

zance of all design and flight program changes as they occur and will deter-

mine their acceptability.

14
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4. DESCRIPTION OF EXPERIMENT SPECIMENS

4.1	 COMPOSITION

41.1 Gallia-Calcia

In order to maximize the possibilities for obtaining a homogeneous glass,

the starting material will be prepared in an essentially 100 percent eutectic

structure. Such a structure is free of a primary phase and is the finest

Dtructure obtainable in this type of system. The composition of the material

t?--M ;, slightly different from that corresponding to the eutectic compo-

r l'qPion in the binary Ga203-CaO phase diagram. Experiments for the SPAR pro-

m.= have Ahow-gi that the atttantit_ Cornnnwi-tinn nh -fen to n hioher sail-i-n

content with rapid cooling, namely to a composition near 61 Ga203 :39 CaO

(mol x). This phenomenon is known as "modification of the eutectic"

(Reference 6); and the starting material will be of this composition.

4.1.2 Gallia-Calcia-Silica

Lacking a ternary phase diagram for the Ga203-Ca0-SiO2 systems, it was

as4umed that a eutectic valley existed in the ternary system which extended

Or= the 56 mol Z gallia eutectic composition in the binary gallia-calcia

system to the 62 mol % silica eutectic.' Out of the eutectic composition

range the 29.3 Ga203 :35.7 CaO 25.0 SiO2 (mol %) composition will be used, as

before, to produce loaf castings. The SPAR program showed that loaf casting

was a very effective method to prepare a homogeneous structure of this

material. The method of preparing the loaf castings was described in detail

in the SPAR VI EXPERIMENT REPORT (Reference 7).

4.1.3 Alumina

This is a pure aluminum oxide (A! 203 ), and a commercially available

15
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pressed powder sample will be used.

r any	 SHAPE AND SIZE

For convenience for suspending its the acoustic levitator during the
f

flight experiment, all flight samples will have a (roughly) spherical share

i
with the diameter approximately h inch (0.6 cm).

r
i

t	 4.3	 RAW MATERIALS

All flight samples will be prepared, except the alumina sample,from

.gohnsn^!-Matthey, Grade 1, oxide powders (99.999 + Z pure) or equivalent. The

alumina sample will be obtained as pressed powder.

4.4.	 FABRICATION

4.4.1 Gallia-Calcia

The gallia-calcia sample will be prepared using the technique of air

suspension with a silica probe. Preparing a loaf casting with this material

inevitably will result in crystallization of the material and creation of

vacancies. These vacancies tend to impede the process of homogenization of

the molten material during the flight experiment and thereby prevent forma-

tion of a glass. Specimens with an excessive amount of vacancies cannot be

accepted-as flight specimens. The air suspension technique provides an

opportunity to prepare the material in a glass structure terrestrially. The

only problem with this method, at present, is dissolution of silica from the

silica sting to the material, resulting in a 2 -5Z silica content. A technique

of cooling the sting with water to minimize the dissolution is being developed,

and the flight samples to be delivered to NASA are expected to contain, if

any, very little silica. The samples will be devitrified without melting

16
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terrestrially before they are used in the flight experiment. It should be

c% ed tuaat the devitrification at temperatures well below the melting point

^;^5 not result in creation of an excess ve amount of vacancies.

4.4.2 Gallia-Calcia-Silica

The ternary composition, silica-modified gallia-calcia sample, will be

devitrified spheres cut from loaf castings, which will be prepared from

pressings.

Starting pressings will be prepared by the Haselden Company of San Jose,

Califvazia. High-purity graphite tooling will be used exclusively. Haselden

will supply the Principal Investigator with a report describing the processing

of the pressings, including mixing of the powders, chemical analysis of the

tooling, pressures used, temperatures achieved, apparent density achieved,

etc.. Starting castings will. be prepared by the Principal Investigator. All

details of the fabrication of the loaf castings and subsequent operations,

which will be a close duplication of the earlier procedures for the SPAR

samples (reported in Reference 7), will be recorded as a matter of course

in the laboratory notebook.

4.5	 QUANTITY SUPPLIED AND PACKAGING

A minimum of five samples, each, of the ternary and the binary samples,

and three alumina will be supplied to NASA prior to flight.

All three types of samples are known to be quite stable in normal room

atmosphere,as evidenced in the SPAR, program and therefore no unusual care will

be required in handling the samples. Past experience has shown that the ternar;*

and the binary compositions are impervious to moisture for over a year.

17
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However, there is some evidence that the performance of the acoustic levi-

fiator is significantly affected by the presence of water vapor in the

;evitator environment.	 Because of this, each flight sample container will be

air-tight and contain a desiccant.	 Each container will bear a serial number

traceable to the PI's records.	 y
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5. PREFLIGHT (CHARACTERIZATION) TESTS OF FLIGHT SAMPLES

The following properties will be determined on representative examples

, u o . t;i^,, ternary and the binary flight samples:

1. Density, dimensions, weights

2. Chemical analysis, if necessary

3. Impact resistance

4. Resistance to deterioration when exposed to a nondssiccated air

atmosphere

5. Devitrification temperature

6. Glass forming tendency

7. Critical temperatures and times

The alumina sample will be examined for Test No. 1. For details of the

test method/description, the Sample Handling and Analysis Plan should be

referred to.
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6. PERFORMANCE OF FLIGHT EXPERIMENTS

	

6.1	 PRELAUNCH OPERATIONS

It is expected that the majority of the prelaunch operations required

will be covered elsewhere by the equipment contractor, Intersonics, Inc.

The only requirements envisioned by the PI at this writing are:

1. The specimens after installation within the levitator assembly must

not then be inserted into the furnace hot zone before the hot zone

reaches 12500C, for the levitator is not activated until that temp.

`?. The rpeci,mens must not be exposed to shock conditions.

3. Care must be exercised to prevent contamination of the specimens by
	 ..

dust or oils that may be picked up in handling (no handling with

bare hands).

	

6.2	 FLIGHT OPERATIONS

The flight operations are described by the timeline chart shown in

Figure 3. They consist of levitation of the alumina sphere, and Welting,

soaking at high temperatures, and cooling of the other three samples indivi-

dually, all operations in sequence. Namely:

1. The furnace is turned on at time zero and when its hot zone reaches

12500C the alumina sample is inserted into the hot zone, and simul-

taneously the acoustic levitator is activated. When it reaches

16000C the temperature will be held constant at that temperature

for 5 minutes, at which time the heater is turned off and the cooling

shroud inserted. The sample remains suspended for 2^ minutes for

cooling. At the end of this period the cooling shroud is removed and

the sample is retrieved by the multi-sample processing mechanism.

20
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P

As soon as the sample leaves the furnace the heater is turned on.

2n The process described above will be repeated for Sample No. 2, one

r	
of the ternary samples. The entire process is identical to that

for the alumina sample except that the soaking at 1600 0C is 9

minutes as compared to 5 minutes for the alumina sphere.

3, The operations for Sample Nos. 3 & 4, the binary and the ternary

samples, respectively, are identical to that for Sample No. 2.

In addition to the temperature cycling and the mechanical operations

,,?quired, the following points should be noted:

1. The samples must not make physical contact with any crystalline

material during the cycle. Examples of such prohibited crystalline

material include metals and ceramics, such as furnace walls, heating

elements, sample cage and dust particles. Any of these may serve as

nucleating agents and prevent the attainment of a glassy state in

the finished specimen. The period from the beginning of the cooling

cycle to the attainment of the glass transition temperature (ti8000C)

is critical in this respect. The above requirement does not apply to

the alumina sample.

2. The samples must be cooled as rapidly and uniformly as possible.

Radiation cooling to an initially cooled copper shroud (less than

about 2500C) should achieve the desired rapid cooling. Rapid

cooling is required to maximize the possibilities fnr glass for-

mation. Again, this requirement does not apply to the a`.:vmina

sample.
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7. POSTFLIGHT ANALYSIS

The requirements for much of the data described in the following subsec-

^>on are based on the assumption that the Principal Investigator will not be
r..

r,ermitted to oversee the operations at the launch site.

7.1	 PREFLIGHT DATA REQUIRED

The Principal Investigator shall receive, within seven days of Shuttle

landing, copies of all pertinent preflight data obtained. Examples of such

esta. include:

1. Time (date, hour, minute) specimen removed from desiccated container

supplied by the PI.

2. Complete description of the specimen environment from the time

removed from desiccated container to time that a temperature of

1000C (2120F) is achieved in the flight furnace. This description

should include ambient temperatures ({ 10C), relative humidities

(¢ 5x), dust conditions, accidental contact of the specimen with

other than prescribed handling devices, etc. Motion picture coveraE,e

(100%) of the ttpecimens from removal from the desiccated container

through closing of the flight package would be highly desirable.

3. Records of furnace temperature (± 300C), both at the hot zone center

and at the specimen location, if different, versus time from the

time of furnace power turn-on to experiment shutdown. All hold

periods should be indicated on the records.

4. All data on furnace atmosphere obtained, such as relative humidity

or dew point.
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7.2	 FLIGHT DATA REQUIRED

The P1 shall receive, within 14 days of Shuttle return, copies of all

,tight data acquired relevant to his experiment. Examples of such data

include:

1. Records of the furnace hot zote (maximum) temperature and the

tamperaturi near the furnace wall ( !' 300C), if different,

versus time, starting with power turn-on through experiment shut-

down.

2. Accelerometer data during entire experiment run.

3. Time of specimen insertion into high heat zone of the furnace.

4. Record of specimen axial position in the furnace (± 1 cm) from	 -

immediately after specimen insertion into the high heat zone through

activation of the retrieval device relative to the center of the	 j

high heat zone. Position versus time should be recorded.

5. Record of specimen radial position in the furnace (± 0.5 cm) from 	 -+

immediately after specimen insertion into the high heat zone through

activation of the retrieval device versus time.

5. An indication of the specimen holding and insertion mechanism posi-

tion after specimen insertion. (That is, has it retracted as

planned?)	 a

7. The time of cooling shroud insertion and an indication of its position

after insertion. (That is, did it insert fully, or did it hang up at
	

1

some intermediate position?)

7y
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8. The time of retrieval device activation, and its position after

activation.
t

9. Repeat steps 3-8 for each sample.

10. The time of furnace shutdown.

11. Pressure inside the canister ( t '50 mm of Hg) versus time for the

entire duration of the flight.

12. The undeveloped film from the motion picture camera (see next

subsection).

n3	 MOTION PICTURE COVERAGE

The motion picture camera should be mounted in such a manner that the

following data are recorded on one

1. Axial position of the specimen with respect to the furnace hot zone.

2. Motion of the specimen in the sonic well.

3. Approximate radial position of the specimen.

4. Time of incipient melting.

5. Time of complete melting (and assurance that complete melting did,

indeed, occur).

6. Time intervals between Items 4 and 5 and between Item 5 and the

attainment of maximum superheat temperature.

7. Time of insertion of the cooling shroud and its position after

insertion.

8. Activation of the retrieval mechanism and its position after acti-

vation.
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9. Appearance of the specimen versus time in the critical region between

the solidus and superheat temperature. Since crystallization, if it

should happen to occur, is an exothermic reaction, there is a sig-

nificant brightening of the specimen at this time. If the specimen

is observed when cooling, thd'rime of crystallization could be

determined.

In the event the specimen crystallizes, Items 5, 6, and 9 would be

,n ortz:nt for determining what to do differently in subsequent flights to

i.crease the chances of glass formation.

The camera will be loaded with the same film (supplied by the PI) used

for the characterization tests (see Subsection 5.3) and using the same filter

as used for characterization photography. If it should prove desirable to

obtain temperatures from the film (i.e., the returned flight specimen is

obviously not 1002 glassy), a second roll from the same lot of film could be

exposed to laser melted oxides of known melting temperature by the PI using

the flight camera, filter, and settings. The two rolls of film could then
a

be developed under identical conditions in an automatic film processor.

	

Densitometer readings of the ground-exposed film could be compared with those 	 Al

from the flight film to obtain critical flight temperatures of the specimen.

The camera presently planned to be used in the first MEA flight experi-

ment has a film magazine carrying a maximum 200 ft long film roll. The limited

length necessitates a careful planning of the use of the film. Taking advan-

tage of the software capability to control the frame rate (i.e., number of

frames per second), the following frame rate timeline, as shown in Figure 4,

26
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io suggested:

1, The camera is turned on for Sample No. 1 (alumina sample) simulta-

neously as the acoustic levitator, with a frame rate of 5 frames/

sec., and turned off (zero frame rate) simultaneously again as the

levitator.
	 w.

2. The camera is turned on for Sample No. 2 when it reaches 16000C,

with a frame rate of 0.5 frame/sec. The camera stays on for 8

Minutes with this frame rate, at which time the rate increases to 5

frames /sec. The camera is turned off simultaneously as the acous-

tic levitator.

3. The filming operations for Samples Nos. 3 & 4 are identical to that

for Sample No. 2 as far as the frame rates and the (relative) time of

camera on/off are concerned.

It is to. be noted that the above timeline for filming operations requires

7920 frames, which is within 1% of the total number of Fwailable frames

(8000 frames = 200 ft), and therefore close following of the plan is

mandatory.

7.4	 ANALYSIS OF FLIGHT EQUIPMENT

The PI will be present to witness the opening of the flight canister.

Following the opening, a detailed examination will be conducted under the

direction of the PI. A NASA-provided still photographer will be available

for color or black and white DikeLography as needed. Examples of items that

will be looked for and reco^:^,ad photographically include:
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1. Location and codition of experiment specimen.

2. Location and quantity of condensed vapor inside the canister.

3. Location, quantity, and particle size of particulate matter origi-.

nating from the canister contents.

4. Condition of the furnace, sonic generator, and other gear.

5. Condition of the flight battery and electrical connections.

U is anticipated that an Intersonics representative also will be avail-

,At:;le to assist in the examination and will have a list of items to look for.

".5	 ANALYSIS OF FLIGHT EXPERIMENT SPECIMENS.

The PI will furnish appropriate packaging for the flight experiment

specimens. After receiving the flight s pecimens, the PI will conduct a

postflight analysis.

The analysis consists of the following tests/measurements:

1. Dimensions and weights

2. Bubbles

3. Surface crystals

4. Density

5. Internal stress

6. Homogeneity, striae

7. Refractive index

8. Absorption spectrum

9. Hardness

10. Devitrification temperature

11. X-Ray diffraction
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12. Spectrographic analysis

1?. Mt chemical analysis

alumina sample will undergo Test No. 1. For details of the test

method/description/plan, the Sample Handling and Analysis Plan should be

re erred.to . Following the analysis, a comprehensive report will be prepared

describing the Pl e s activities and findings, starting with the beginning of

the contract through the completion of the postflight analysis. Appropriate

VwqL,pari ons of MA flight information with SPAR flight information will also

iW included.

i
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8. MILESTONE SCHEDULE

Figure 5 shows a tentative schedule of activities and milestones. The

edule has been developed in reference to the experiment flight time. The

post-flight analysis may involve some outside laboratories and therefore the

indicated time is reserved to allow for individual lab test/reporting

schedules.

MONTHS AFTER MEA-1 FLIGHT
-10 -8 -6	 -4	 1	 -2	 0	 2	 4	 6	 8	 10

SAMPLE PREPARATION
AND CHARACTERIZATION

DELIVERY OF FLIGHT
SAMPLES TO MSFC Q

MEA-1- FLIGHT Q

FLIGHT EQUIPMENT
EVALUATION seas

POST-FLIGHT
ANALYSIS

POST-FLIGHT
REPORT ss®mow

FIGURES. TENTATIVE SCHEDULE OF ACTIVITIES AND MILESTONES
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1. INTRODUCTION

Thin document describes a plan to characterize and evaluate both flight and

971ght experiment samples. The former refer to those that Are to be flown

, Z procctssed in space and the latter those that have been flown and re-

turned to earth.

The flight samples will be analyzed mainly to determine their suitability

four flight experiments and the flight experiment samples to verify the

;c„'w1hm^nts of the experiment objectives and characterize these unique

In the next section is given the background of the overall apace glass

experiment, which will be followed by sections on characterization process

for flight and flight experiment samples, respectively. The sequence of
1

t	 the characterization process is given last.

1
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2. BACKGROUND

The combination of circumstances attending the melting of:materials in space

;roseuts the possibility of making glasses from substances that, to date,

as been observed only in the crystalline condition. A solid container is.

not needed during the melting and superheating portion of the manufacturing

cycle. The only contact of the melt with its surroundings can therefore be

a gaseous atmosphere or, if so desired, a vacuum. Thus, it is possible to

malt many high-melting-point materials that heretofore could not be success-

fnily malted because of reaction with the crucible material. Tbsis advantage

alone might permit the preparation of new substances as glasses if their

viscosity becomes sufficiently high on cooling to suppress crystal growth.

In addition, space melting permits cooling without the use of a solid mold.

Thus many of the usual crystal nucleation sites are eliminated. Unless a

given material can spontaneously nucleate on cooling, undercooling below the

'j	 normal melting point will occur. If a sufficient amount of undercooling is

accompanied by a sufficient increase in viscosity, crystallization will be

avoided entirely and glass will result.

1

k

During the course of terrestrial research conducted by the PI over the past

several years (NASA contracts NAS8-28014 and NAS8-28991), it has been shown

that new glasses with potentially interesting optical properties can be pre-

pared using a containerless melting technique. The technique most recently

used for terrestrial research consists of suspending a molten drop of oxide

material on a laminar flow air stream. The energy for melting is supplied by

a 1 ^ kW output CO2 laser. The molten sample is steadied in the air stream

2
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by contacting it with a fused silica (glass) probe, or sting. The details of

the techniques used and the results obtained are given in References 1 and 2.

The concept of glass making in space is of interest for the following reasons:

1. There is a strong possibility that oxides such as La 203 , Ta205,

Nb205 , 11203 , Ga203 , and Y2031 and some of the rare earth oxides

can be prepared as glasses in spherical boules of commercially use-

ful sizes through space melting and cooling.

2. Glasses produced from such oxides or combinations of them with other

oxide additions should have optical properties not obtainable in

the conventional silicate-, borate-, and phosphate-based glasses.

It is envisioned that the process described need not be limited to oxide

glasses. Perhaps other compounds, such as carbides, nitrides, and chalco-

genides, will ultimately be producible as glasses by space processing.

If glasses could be prepared from oxides beyond the reach of current tech-

nology, the area-of useful properties could be more than doubled, as is shown

in the area labeled "potential space-produced glasses" in Figure 1. If the

promise of space production can be realized by the preparation of simple

compositions with properties falling roughly in the circles marked 1, 2, and

3, it should be possible, by combining the compositions, to fill in the areas

shown in the figure. Thus, efforts to date have been largely devoted to

attempts to prepare simple compositions with glass properties falling roughly

within the three circles in Figure 1,

3
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Additionally, there is another important area of application that new, space-

produced, optical glasses might fill. Space production offers an opportunity

20 prcj^are new families of glasses free of the usual base oxides, Si02, B203,

and P205 . Noncross-bred glasses should open possibilities for the lens

designer for correcting "secondary spectrum." Reference 3 covers this sub-

ject in more detail.

5
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3. CHARACTERIZATION PROCESS

The characterization process covers two types of samples, the flight samples

and the flight experiment samples. The former refer to those prepared

17t_*7restvially for the purpose of flight experimentation and may come in the

form of hot pressed, cast, or laser-prepared specimen. The latter refer to

those prepared under the zero-gravity..condition in orbital flights and

presumably are of all glass structure.

Different samples pray be handled differently according to their physical and

ehamical characteristics. Only through proper handling can the samples be

preserved and their characteristics be maintained. In the particular case

of the first MEA flight samples, past experience has shown that they will

present no difficulty nor Tequire unusual care as far as handling them is

concerned.

The flight specimens will be analyzed mainly for properties that may signi-

ficantly influence the results of the flight experiments. That is, tests on

these samples will check the starting material requirements, determine the

variables with which the flight experiments should be conducted, and determine

also the proper procedure for handling the flight and the flight experiment

samples. On the other hand, tests on the flight experiment samples will

mainly verify the accomplishments of the flight experiment objectives, namely,

production of unique glasses..

6
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3.1 Flight Samples

In the first HEA flight experiment four samples have been scheduled to

bo investigated: a high melting point sample, two ternary samples

(identical), and a binary sample. The high melting point sample is

included in the group of the samples to be investigated for the pur-

pose of studying the performance of the acoustic levitator. It has a

melting point higher than the high temperature capability of the fur-

nace and so it will remain solid during the entire furnace cycle. It

has been chosen to be alumina. Levitation of this sample will provide

information regarding ,the performance of the acoustic levitator in

terms of levitating solid vs liquid (molten) material. The ternary

samples are a silica-modified gallia -calcia and the binary a gal lia-

calcia composition. ( See ERIP for the details of the compositions)

,

7
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3.1.1 Handling Protedure

All three 'types of samples are known to be quite stable in

normal room atmosphere. The silica -modified gallia-calcia and.

the ga 'llia-calcia compositions have been proved, through

experiments for the SPAR program, to be very stable in normal

air for over a year. #.lumina is well known to be stable.

Therefore no unusual care will be required in handling the

samples. Storage in a clean, impact-mitigating environment,

and avoidance of contact with bare hands are most notable

features in the handling care.

Even though the samples are known to be impervious to moisture

it is believed that the performance of the acoustic levitator is

not. Therefore as a part of the effort to keep the levitator

environment free of moisture the sample environment will be kept

free of moisture as well so that mixing of the two will not

result in a moist environment for the levitator. The sample

packaging will contain a desiccant, and will be provided by the

P.Y.

3.1.2 Tests and Measurements

The following properties will be determined on representative 	 -,

examples of the ternary and binary flight samples. The alumina

sample will be examined for Test No. I.

8
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1. Density, dimensions, weights

V-/;asure these properties using standard tools and instru-

meats.

2. Chemical analysis, if indicated oa the basis of laser melting

tests.

3. Impact resistance

Determine this by dropping the sample approximately 3 feet

on a steel plate or concrete floor.

4 a Ban4st-An— to dstoriorition when exposed to a nondesiccated

air atmosphere

Check, if necessary, surface condition every 24 hours while

exposing the sample to a normal room atmosphere. This will

determine the nature of the proper atmosphere for sample

preservation. As mentioned previously, the three types of

samples for the first MF.A flight are expected to be stable

and do not require this test.

5. Devitrification temperatures

Since the flight samples are devitrified, the divitri£ic+s

tion temperatures have to be known. This will be measured by

heating the sample at a given temperature in the oven for

3-4 minutes and examining crystallization as indicated by

opacity. The temperatuge will be raised in 5-10 degree steps.

6. Glass forming tendency

Terrestrial laser melting tests employing the technique of

9
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air suspension with a silica probe will be performed on

representative examples of the flight samples. The primary

purposes of these tests are:

i. To assure that the flight samples are capable of

forming glass in the 0.6 cm ( fit inch) size under con-

tainerless melting and cooling conditions.

ii. To assure that the samples are free of gas formers

that could cause excessive bubble formation during

the flight experiment.

iii. To determine whether the purity level achieved in the

samples is sufficiently high to yield colorless glass.

iv. To check the surface of the samples (compared with the

interior) to determine whether a significant contami-

nation exists.

7. Critical temperatures and times (cinematography study)

The method of determining critical temperatures was discussed

in Section 6.3 of Reference 4.	 In all likelihood, the

maximum temperature used for one of the SPAR flights will

also be used for the first IAA flight.

3.2 Flight Experiment Samples

These are the samples that have been returned from the orbital flights.

One of four samples is a solid with a high melting point, which is ex-

pected not to have undergone any significant change in its material

characteristics, and therefore will not be extensively analyzed for
11
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:.._characterization purpose. On the other hand, the ternary and the binary

cocpositions will have been melted and cooled contairerlessly in space
l

and are expected to have become glasses and hence warrant extensive

analysis of their.characteristics.

There will be three new glass spheres: two ternary and one binary.

These will be fhe first space -produced glasses, and hence every effort

will be made to preserve as many or as much of each sample as possible

in their snace••nroduced stmts. This w411 nraearva Pho nnt^ nn fnr f++t.+..o

examination of these space artifacts. It is expected that approximately

a half of the binary and the ternary sphere, respectively, will be used

in the post-flight analysis, and the remainder (ore hemisphere of binary,

one sphere and one hemisphere of the ternary) will be preserved.
i

3.2.1 Handling Procedure

The four'.flight experiment samples are expected to ponsess suite
F

similar physical and chemical characteristics as the flight

samples, and therefore the handling procedure for these will be

the same as that for the flight samples. Desiccation of the

sample environment inside the container is not necessary, unlike

the flight samples.

3.2.2 Tests and Measurements

The following is a list of tests that will be conducted on the

flight experiment samples. All the samples except the alumina

sample will undergo Teets 1 -5. The alumina sphere will be

11	 '
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examined for Test No. 1. Tests 6-13 will be conducted with a

half of the ternary and the binary sphere. The primary purposes

of these tests are to determine if defect-free glasses of anti-

cipated size have been obtained and to characterize the samples

in terms of some basic.-characteristics.

AS.SPAM-YRODUCED (SPHERICAL) SAMPLES

Dimensions and weights

These will be measured using standard tools.

2. Bubbles

Theme will be visually examined for using a microscope.

3. ' Surface crystals

SEM (scanning eiietron microscope) analysis will give quali-

tative compositions of surface crystals, tM matrix,

and the nucleator t it any.

4. Density

A standard technique will be employed.

5. Internal stress

This will be measured using a crossed-polarizer technique.^

RECTANGULAR PRISMS PREPARED FROM SPHERICAL SAMPLES

(The samples will be stress-relieved prior to being cut into

prisms)

6. Hi=geneity, striae

Both will be visually examined.--' Inhamogencit*;Fill manifest

itself through areas of unequal refractive index, unequal
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absorption characteristics, or unequal scattering characteris-

tics, etc., and striae through areas of unequal refractive

index. If the sample is homogeneous and free of striae its

photographs would be featureless.

7. Refractive index

This will be measured at three wavelengths, and the dispersion

will be calculated.

8. Absorption spectrum

The absorptance will be measured over a range of wavelengths,

0.33p to 0.8p. The measurements will be made on the same

samples as weed in Test 7.

9. Hardness

.o standard tool will be used for this.

10. Devitrification temperature

The method for dstermining this is given in Section 3.1.2.

PULVERIZED SAMPLES

11. X-ray diffraction

The X-ray diffraction pattern will show the structure of the

samples in terms of glassy or crystalline condition, and, if

crystalline, the crystal type and the number of major phases

present.

12. Spectrographic analysis

Pulverized samples will be placed between two electrodes and

high voltages will be applied. The resulting sparks have

characteristic patterns indicative of the major and minor

13
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elements present. A semi-quantitative analysis can be made

from this.

13. Wet Chemical analysis

The chemical compositions are analyzed quantitatively through

this analysis.

3.3 Sequence of Characterization Process

3.3.1 Flight Samples

All samples except alumina will undergo All t̀he testa ii.aieu	 i.ii

Section 3.1.2 in the order presented. The alumina sample will

be measured for Test No. 1.

3.3.2 Flight Experiment Samples

The taets listed in Section 3.2.2 will be conducted approximately

in the order presented. However, since Tests 6-8 and Tests

9-13 may use different parts of a sample, they may be conducted

concurrently.

1
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The terrestrially prepared samples and the one prepared in the space environ-
ment will both be investigated for the properties listed in the following
pages. The many measurements and tests required 9f the terrestrial samples
are warranted by virtue of the uniqueness of the oomples despite their non-
space nature.

Vte list of the properties has been intended to be quite extensive in that it
includes most of the characteristics pertinent to studying materials processing
in space and/or to evaluating the applicability of such materials to practical
needs. It , ias with the latter objective in mind, namely the less likelihood
of application, that a number of material properties were omitted. Among them
were many low (or cryogenic) temperature properties (especially low temp. expansion
coefficient, thermal conductivity, heat capacity, bulk modulus, refractive index,
absorption, magnetic susceptibility), magneto-optic constants, and piezo-electric
effect.

The majority (over 20 items) of the tests are believed to be beyond the capability
of principal investigator's organization and therefore subcontracting seems
inevitable. Because of the large quantity and the specialized nature of the
tests, some ten to twenty laboratories are expected to be involved, which may
present a potentially overwhelming logistics problem let alone the cost.

It is proposed therefore, that a DRFP to measure all the above mentioned proper-
ties be sent to a number of laboratories encouraging them to respond at least to
a part of the tests, and thereby the capability and the availability of the
laboratories can be evaluated. The final list of the properties will be made
after sufficient consideration is given to scheduling, the duration of the test,
the cost, the type of the test (destructive/nondestructive, required size of the
sample), etc.

3
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DRAFT REQUEST FOR PROPOSAL TO CONDUCT

TEST/MEASUREMENTS ON SPECIAL GLASS MATERIALS

Rockwell International, under a contract from NASA, is carrying out a project
to prepare special glass materials without a container. A glass sphere con-
s sting of Ga203 and CaO will be prepared terrestrially using a wind tunnel
e,}id in the Space Shuttle. Both samples are expected to exhibit a number of
unusual characteristics.

As is well known, the above composition does not form a glass when prepared
terrestrially in a conventional manner: nucleation occurs from the container
and rapid crystallization ensues because of its low melt viscosity. By
eliminating the container and impurities, however, we have been able to prepare
terrestrially a glass sphere of t" diameter from this composition. Since this
is the first time that the material has been prepared in a glassy state in k"
diameter size, it is eminently proper to fully characterize this unique material.
This will help understand the science of glass formation and crystallization,
and the physics of this material, and evaluate its usefulness.

-:t is expected that only one sample each will be available from the terrestrial
and the Space Shuttle experiments. Measurements No. 1 to No. 3 will be done on
a fit" (6.35mm) di>aiseter sphere and measurements No. 4 to No. 30 on a cube of
2mm x 2mm x 2mm. To evaluate your capability and willingness to perform measure-
ments and finalize the measurement plan, your response is requested regarding the
following questions:

1. What measurements do you propose to perform?

2. Are the above sizes adequate for your measurements? If not, what
is the minimum size?

3. If you cannot meet the temperature requirements, at what temperatures
can you make measurements?

4. Will the sample maintain its original shape, size and internal
structure after the measurements?

5. How long will it take to make measurements? How long to analyze the
results?

6. How much will it cost?

1. Weight, Shape, and Dimensions

Measure/describe these for a spherical sample.

2. Cracks, Bubbles, Striae, and Surface Crystals (Rosettes)

Investigate for these using an optical microscope, etc., and if dis-
covered, describe them as quantitatively as possible.

3. Internal Stress, Homogeneity, and Internal Structure (Gross)

By immersing the specimen in an appropriate liquid and using the crossed
polarizer technique, investigate for internal stress and homogeneity.
Determine also the gross internal structure in terms of glassy or
crystalline state. 1
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4. Hardness

Measure this at room temperature using a standard hardness tester.

S. Optical Rotation,_Dichroism, Birefringence, and Optical Anisotropy

The possession of any of these optical characteristics by the specimen can
be checked in a straightforward manner using the crossed polarizer
technique.

6. Chemical Composition and Corrosion-resistant Characteristics

Chemical composition will be analyzed in terms of percent distribution
of Ga203 and CaO employing the wet chemical analysis technique. Corrosion
resistance will be evaluated through a standard method.

7. Devitrification Temperature (Crystallization Temperature)

Determine this by melting the sample and letting the melt crystallize
upon cooling_

B. Internal Structure (Detailed)

Using the powder X-ray diffraction method, determine the structure of the
glassy state and that of the crystalline state. The atomic arrangements
can be determined from the glass X-ray diffraction pattern, and the crystal
structure from the crystal diffraction pattern.

9. Refractive Index and Dispersion (or Abbe Number)

The refractive index will be measured with the accuracy of 1 x 10
-4 or

better at three wavelengths (4861A, 5898A, and 6563A), and the Abbe number
representing the dispersion will be calculated using the standard formula.

10. Absorption Spectrum

The absorption spectrum will be measured over a range of wavelength from
infrared to ultraviolet not only to determine the absorption characteristics
but also to measure the band gap.

11. Variation of Density (or Volume Expansion Coefficient)

The variation of the density will be measured as a function of time at an
appropriate temperature or as a function of temperature with an appropriate
heating rate, in order to determine the degree of departure of the density
from its equilibrium value and thereby infer the cooling rate. The sample
will be eventually heated to 13000C and then slowly cooled to room temperature.
at which time the density will be measured. The sample will be slowly re-
heated to 130GOC and this time highly quenched. The density will be again
measured and compared with the previous value and that of the virgin sample.
The density can be measured through the refractive index.
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12. Bulk Modulus

Measure the variation of the volume or the density as a function of
mechanical stress at room temperature.

13. Effects of Pressure on Density

Measure the density (or refractive index) after a pressure is applied and
removed noting the residual change in the density. Determine the pressure
at which a significant residual change in the density occurs.

14. Viscosity

Measure the viscosity as a function of temperature between 300 0C ti 13000C.

15. Heat Content (i.e., Change in Enthalpy)

Measure the phange in enthalpy (at constant pressure) as a function of
temperature between 3000C and 13000C using the differential thermal analysis
technique or by some other method. This will provide information on the
gross internal structure and the cooling rate.

16. Heat Capacity (Cp or Cv)

Measure this at constant pressure or at constant volume at room temperature
and as a function of temperature between 6000C and 13000C.	 ;}

17. Thermal Conductivity

Measure at room temperature and as a function of temperature between
6000C and 13000C.

18. Infrared and Raman Spectra

Obtain these spectra using a broad range of infrared light to identify the
defect groups and their transition modes.

19. Electro-optic Constants

Determine the Kerr and Pockels constants by applying high electric stresses
(> 10KV/mm).

20. Stress-optic Constant (Photoelastic Constant or Brewster's Constant)

Determine this using a standard method.

21. Effects of Colorants

Select one, most interesting color center for this specimen, add it to the
sample, and measure the absorption spectrum.

it
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22. Dielectric Loss Properties

Measure both the real and imaginary parts of the dielectric constant as
a function of frequency (0 to 1 MHz or above) at room temperature and
2000C and two other temperatures between the two.

23. Dielectric Strength

Measure the dielectric breakdown strength (60Hz, ramp voltage) at room
temperature.

24. DC Conductivity

Measure do conductivity as a function of time (for up to 30 minutes) at
selected temperatures (room temperature, 2000C, and two intermediate
temperatures). DC conductivity will also be measured as a function of
temperature for temperatures between 600 0C and 13000C.

9S_ Charge Str.aewe ff.s awtwa: ea:ww^. V..Y^6w YdY6o/.R •IMYr Y\rbGVi0ViV0

Conduct TSC (thermally stimulated currant) experiment and others, and
determine the charge trap density, trap level, etc.

26. AC Conductivity

Measure ac conductivity as a function of frequency in the rf range.

27. Mechanical Loss Properties

Measure modulus (bulk, Young's or shear) as a function of frequency at
frequencies from below i Hz to 1 MHz. Perform these experiments at room
'temperature, 2000C and two intermediate temperatures.

28. Mechanical Strength

Determine the mechanical strength (i.e., modulus of rupture) at room
temperature.

29. Electron _ Paramagnetic Resonance and Nuclear Magnetic Resonance

Perform EPR and NMR experiments on the virgin and irradiated samples to
determine the spin configurations of the host and the impurities ( g values)
before and after irradiation. Make the measurements with varying dose of
gamma ray or fast neutrons.

30. 2^ajnetic Susceptibility_

Measure the magnetization or the magnetic induction as a function of magnetic
field at room and a lower temperature.

1
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31. Cooling Rate and Devitrification Teairature*

Determine these for the flight sample by analyzing the temperature-sensitive
flight photos.

*	 Applicable to the flight sample only.
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