General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



(NASA-CR~169283) NONEQUILIBEIUM MATERIAL Ng82-31533
EFFECTS ON THE BEHAVIOR OF ECLYMERIC a Q}

COMPOSITE MATRICES AND THEIR BELATED
Unclas

COMPOSITES Final Report (Virginia
Polytechnic Inst. and State Univ.) 37 ¢ G3/27 32318

FINAL REPORT

NASA CONTRACT NAG-1-78
NONEQUILIBRIUM MATERIAL EFFECTS ON THE BEHAVIOR OF POLYMERIC COMPOSITE
MATRICES AND THEIR RELATED COMPOSITES

Submitted By

Garth L. Wilkes

Department of Chemical Engineering
Virginia Polytechnic Institute and State University
Blacksburg, VA 240€1-6496

April 2, 1982

o it



T Ty~ T

Abstract

A brief review of the effects of physical aging on the material
properties of some linear and network macromolecular glasses is presented.
The free volume concept is used to describe this behavior. The effect
of physical aging on properties of some unfaxial graphite/fiber epoxy
resin composites is investigated using stress-relaxation in both tensile
and flexural modes. The matrix polymers used for this study were
Hercules 3501 and NARMCO 5208 resins both of which are based on 2
4,4' -methylenedianiline derivative of epichlorohydrin with diamino-
diphenyisulfone (DDS) as the curing agent. The matrix resin, as
used in the practical application in composites, was found to be not
fully cured and the glass transition of the network was found to be
dependent on the curing schedule. The physical aging of the bulk
crosslinked epoxy was found to depend on the sub-Tg annealing temperature,
Ta’ and the Tg of the resin. The physical aging of the composite,
monitored by the stress relaxation method, was found to be dependent
on the testing direction. When the test direction was perpendicular
to the fiber direction (series model), the composite showed a considerable
amount of stress relaxation in that it displayed a significant change
in the percent stress relaxatiun with time. However, the value of the
percent stress relaxation was found to be Tower than that of the bulk
resin. No aging effect was observed when the test direction was parallel
(paraliel model) to the fiber. Thus although the matrix does display
changes in properties with time, the composite, depending on the test

direction, may or may not provide evidence of physical aging.
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INTRODUCTION

In principle any material that can undergo vitrification is susceptible
to the later process known as physical aging. This phenomenon arises due
to the simple fact that when a system is cooled from the liquid or rubbery
state into the glassy state, it is difficult for the molecular system to
mintain equilibrium as vitrification proceeds (1). This occurs because
of the increase in viscosity as the glass temperature is approached
which in turn limits the mobility of the molecules and their ability
to acquire equilibrium packing and their lowest energy conformational
states.

In essence it is possible that both an excess free voiume (volume
over and above that of the Van der waal's radii) as well as an excess
enthalpy (due to nonequilibrium conformational states and excess volume)
exist immediately following the vitrification process. The presence
of this nonequilibrium state leads to the process of what is often
called physical aging. While we will be addressing thts process with
regard to polymeric substances, it should be stated that it is not
unique to only macromolecular systems. Indeed it is widely accepted
that inorganic glasses physically age as do many of the low molecular
weight organic systems which can also show vitrification. We will,
however, focus our remarks on macromolecular systems where it has been
within the last decade or so that considerable attention has been
given to the physical aging process. More specifically,
following this introduction, we will address the prominence of physical
aging in high strength fiber-reinforced composites utilizing two epoxy

matrix resins.
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Early on, 1inear amorphous polymers such as those of pulystyrene
(1, 2), polymethylmethacrylate (3), polyvinylacetate (4),
amorphous polyethylene tarephthalate (PET) (1,5), and polycarbonate
(6) have been demonstrated to display phytical aging. More
specifically physical aging can often be recognized as occurring
by following the time-dependent changes within mechanical,
sorption or dielectric properties. For example, Figure 1 presents
the stress-strain curves for several amorphous PET samples that
have undergone sub-Tg annealing at 23°C following rapid quenching. The
sub-Tg annealing times range from 10 to 70,000 minutes (7, 8).

From this figure it is clear that as aging progresses, the modulus,
yield stress and characteristic draw behavior change considerably,
thereby imparting an entirely new set of properties to the
material.

Similar though not as dramatic changes have been observed
in semicrystalline PET as weil (9). The smaller change in behavior
with sub-i’g annealing, however, arises from the fact that there
is less amorphous material present to undergo physical aging as
that particular component restores its equilibrium state.

The stress-strain behavior ¢f 1inear high molecular weight
epoxies also paralliels those of the more common linear systems
adlready denoted. Trends discussed earijer can be seen in Figure 2
which displays the stress-strain curves for one linear epoxy resin

(AEP-6) that has been investigated by the authors (10).



Epoxy resins are more commonly crosslinked and these network
glasses also undergo physical aging as has been first systemetically
demonstrated by work from the authors' laboratory (11). Epon 828
resin cured with nadic methylanhydride (NMA) is one such system.

The two stress-strain curves for this material shown in Figure 3

indicate the very pronounced effect of a 56 day sub-T_ annealing

carried out at room temperature (11). The data cla?ﬂy

indicate a significant difference in the deformation behavior.
With specific regard to this paper, it should be recognized

here that it is similar epoxy-based resin: that serve as the
matrix for many of the high strength resin composites of industrial
interest.

Increases in moduli are rather consistently noted in materials
undergoing the physical aging process. Consequently, aside from
comparing entire stress-strain curves, one can generally demonstrate
the physical aging process by plotting the modulus versus sub-Tg
annealing time. Figure 4 displays an example of such a plot for
a crosslinked epoxy resin (10). In additfon, it shows that the
effect of moisture on aging is rather insignificant for this
particular system since the sup.T

both in the dry and wet states.

o annealing was carried out
Returning to the origin of this nonequilibrium phenomenon,

it should be realized that the excess volume and enthalpy addressed

earlier will influence the given properties of the system at any

given time. As indicated in Figure 5, as the system is cooled

into the glassy state, the rate of cooling will influence the



degree of nonequilibrium character and therefore the driving force
for the system's approach to equilibrium (1). However, other factors,
such as the sub-Tg annealing temperature, are important variables in
regard to the rate at which a system may approach equilibrium. It

is this time dependent shift toward equilibrium that produces changes
in properties of the system due to the fact that both the enthalpy
and the excess volume (free volume) is decreasing with time.

Selecting the variable of free volume as being indicative of
physical aging one can demonstrate changes in free volume through
absorption experiments. For example, Figure 6 shows a plot of
the percent weight gain of methyl ethyl ketone (MEK) versus sub-Tg
annealing time for samples of Epon 828 cured with NMA (11). It is
noted from these weight gain data that the rate of MEK absorption is
greatest for the samples with the smallest degree of sub-Tg annedling
time thereby indicating a higher available free volume.

Stress relaxation tests can also be used as a means of monitoring
the physical aging process. This concept can be understood simply from
the fact that at a given temperature, a system will relax under an
applied load at a rate that will be coupled to the available free volume
(8, 12). The type of data that can be obtained from such an experiment
is shown in Figure 7 along with the means of calculating the percent
stress relaxation. Within our own laboratory, we have employed the
method of stress relaxation to monitor physical aging (9-11). The
stress relaxation duration that has been utilized is that of 10 minutes

in contrast to the total stress relaxation curve. This time window is,



of course, convenient but it does not provide the total picture of the
time dependent changes in properties that may occur as has been discussed
in previous papers (9-11). Such an approach, however, does yield a
self-consistent body of data. For example, Figure 8 displays the

percent stress relaxation occurring in 10 minutes versus the logaritim of
sub-Tg annealing time for a particular crosslinked resin. These data
were obtained on materials similar to those utilized in Figure 4 and
again it clearly indicates that the effect of moisture plays a small

role at best in terms of the physical aging process when contrasted

to dry samples.

Finally Figure 9 presents some additional stress relaxation data
for the same system but in this case the variable of sample thickness
was investigated (10). It is noted that the data are independent of
sample thickness and that again there is a linear behavior when this
data is plotted as a function of the log of the sub-l’9 annealing time.
Had internal stresses been the cause of the change in the properties
with time one would have expectad to see differences for these samples.
This is not to say, however, that internal stressas never contribute
to time dependent behavior (13, 14) but rather that the data given in
Figure 9 do not suggest this paremeter to be of importance. A

Now that the basis of physical aging behavior has been introduced
and deminstrated for some rather common epoxy bulk resins, we will now
direct our attention to epoxy based composites to note if the same or

similar behavior occurs.

I
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EXPERIMENTAL

Materials

Two uniaxial graphite fiber-reinforced epoxy composites were
utilized in this study. Both of these systems were received from
NASA/Langiey. One of these was based on 8-ply specimens of a uniaxial
graphite fiber composite utili2ing Hercules 3501 resin -- one of the
more common high strength composite resins. The two main constituents
of the resin are the epichiorohydrin derivative of 4.4'-diaminodiphenyl
methane (a2 tetrafunctional epoxy) and diaminodiphenylsulfone, OPS (also
a tetrafunctional aromatic curing agent). The chemical structure of
the epoxy and the curing agent are given in Figure 10. The epoxy
apparently was not completely cured because the Tg of the resin was
found to be around 84°C. The other graphite fiber composite used in
this study was prepared using fioer/NARMCO 5208 resin, another well
known composite res‘n. The curing of the latter system was carried
out in our laboratory (after constructing specimens as described
later) according to a schedule prescribed by NASA/Langley. The
impregnated plys of graphite/NARMCO 5208 which were received in
dry ice were warmed to room tamperature and were then stacked in
a uniaxial fashion (4 or 6 plys). They were then placed between
Teflon sheets of 5 m1 thickness, cut in the desired dimensions and
directions and sandwiched between two flat metal sheets. The thickness
of the top metal sheet was chosen so that the force exerted by the
top sheet was around IOg/cmz. The samples were heated for 4.5 hours
at 149°C (300°F) after which the temperature of the oven was raised



to 177°C (350°F) and kept there for an additional 1.5 hours. The
samples were then taken out of the oven and quenched to room temperature
in air. The bulk (pure) 5208 resin samples were prepared by the following
procedure. Uncured resin which was received in dry ice and stored in
a freezer was allowed to warm up to room temperature. A desired amount
of the resin was weighed into a beaker then heated in a vacuum oven at
120°C and degassed for a period of 10-20 minutes until no gas evolved.
The resin was then poured into a Dow Corning RTV 3110 silicone rubber
mold which was preheated to 149°C. The curing was carried out at
149°C for 4.5 hours after which the temperature was raised to 177°C
and kept there for an additional 1.5 hours. Quenching was done by
placing the hot mold between two large metal pieces at room temperature.
The samples were removed from the mold after they had cooled (approximately
1/2 hour). AIl1 the samples were stored in a desiccator prior to use.
The Hercules 3501 composite samples had to be cut after they were
cured. To cut the samples, the sheet of the composite was sandwiched
between two stainless steel dog-bone templates. The composite sheet
was then sawed off around the .emplates using an ordinary electric saw.
This was done to minimize formation of cracks in the samples. The
samples were cut with the dog-bone axis in both the direction of the
fibers (parallel, ||) and perpendicular to the dirsction of the fibers
(perpendicular, |). The size of the template was such that the fimal
sample had a width of 0.65 cm and effective length of 4.0 cm.
The NARMCO 5208 composites were cut into appropriate dimensions
prior to curing. To prepare samples for tensile studies, the sandwizh

of Teflon-composite-Teflon was placed between the dog-bone templates.



The sample was then cut by s1iding a sharp razor blade around the
templates. Samples were prepared again in the parallel and perpendicular
directions. The effective size of these samples wes the same as those
prepared fram Hercules 3501. The number of plys used in the parallel

and perpendicular samples was 4 and 6, respectively, which resulted

in respective thicknesses of 0.7 mm and 1.1 mn in the final samples
following curing.

The size of the samples used for flexural tests was 7.5 cm x 2.5 om.
These samples were constructed from 4 plys which resulted in a sample
thickness of ca 0.8 mm after curing. Samples for both paraliel and
perpendicular directions were cut prior to curing. Samples of pure
resin were cured in rubber molids and had the dimensions 7.5 x
2.5 x 0.1 cm. A1l NARMCO and Hercules samples were annealed for
10 minutes at 200 and 100°C, respectively, quenched in cool water,
quickly dried and aged within a2 vacuum desiccator.

Measurements

The thermograms of the samples were obtained using a Perkin
Elmer DSC-2. The rate of scanning was 10*/min.

The stress relaxation measurements were made on an Instron Model
1122. The stress relaxation tests were done in the tensile mode, but
for some samples the test was also per‘ormed in the flexural mode.

For the stress or relaxation in the tensile mode, the sample was clamped
between the jaws of the instrument so that effective initial length of
the sample was 4.0 cm. A fixed strain (0.25 or 0.50) was applied
rapidly (cross-head speed 10 mm/min) and the "initial" and the ¢ime
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dependent stress were monitored for a period of 10 minutes. The
percent relaxation in 10 minutes was then calculated according

to Figure 7. While the time scale of 10 minutes is short relativa
to the complete relaxation curve, it has provided a good index of
physical aging behavior as discussed in past studies. Most of the
stress relaxation tests were carried out at ambient conditions.
The stress relaxation studies via the flexural tests ware performed
in the manner described below.

Flexural testing was performed using an Instron machine operated
with a tensile load cell and fitted with two aluminum/stainless stoel
pieces. The lower and stationary piece formed a base and held two
stainless steel rods 0.6 cm in diameter and 6.35 cm apart, center to
center. The upper and mobile piece held a third stainless rod, also
0.6 cm in diameter and parallel to the two base rods. To run the
flexural test, the mobile rod was lowered to a position below that of
the two stationary rods in the base piece. As iilustrated in Figure 11A,
a sample was tnen placed above the single rod and belcw the pair of
base rods. The geometry is then very similar to the common three-
point bend test (15), the differences being the relative positions of
the three “points” and the sample as well as the motion of the central
point.

In the case of a composite material, it is important to note the
orientation of fibers with respect to the direction of the flexural
rods. Figure 11B i1lustrates the authors’' notation for the two possible

situations.



This test allows an accurate zeroing of samples in mechanical
testing. With a sample in place between the rods, the mobile piece was
raised at a crosshead speed of 10 cm/min, until a stress response was
observed on the Instron's recording chart. The upper piece was then
generally Towered 0.1 mm to ensure that no stresses were imposed on
the sample prior to the beginning of testing.

Flexural stress-strain curves on samples aged 10 minutes (crosshead
speed, 10 mm/min) showed that the behavior was linear to at least 6
or 7 mm central deflection for both the pure resin and the composites.
Accordingly, 5 mm was chosen as a standard deflection to be sure that
all testing was done in the linear region.

The flexural device was used to measure the €en-minute stress relaxation
of NARMCO samples aged for various times. At a crosshead speed of 100 mm/min,
samples were deflected to 5 mm in a deformation time of 3 seconds. This
deformation was held for 10 minutes and the percent stress relaxation
calculated.

The volume fraction of the resin in the graphite/NARMCO 5208 system
was determined by removal of resin from an uncured composite using
acetone as 2 solvent. Taking the density of the cured resin as 1.3 g/cc
and that of graphite as 1.8 g/cc (both determined using a volume
displacement method), the volume fraction of the resin was determined
to be around 0.47.

The value of strain placed on bulk samples in the tensile relaxation
experiment was 0.5 percent. The strain imposed on the composites
in the perpendicular direction was chosen at 0.25 percent value. This



was done taking into account a series mode) in which the deformation
was assumed to be concentrated in the resin matrix. A strain of 0.25
percent was 2130 aoniied to the composite in the parallel direction
because at higher extensions considerable slippage of the samples

occurred.

Results and Discussion

The mechanical properties and the aging behavior of the composites
are dependent on the sub -Tg annealing temperature, T.. relative to the
transiticn temperature T of the resin. Since the rate of attainment

of equilibrium is 1n1t11?1y dependent on the temperature increment
AT = T9 - T.. either a decrease in Tg and/or an increase in T‘ would
potentially result in a variation of aging behavior.

The glass transiton temperature of a fully cured bulk NARMCO 5208
resin (chemical structure of major constituent is given in Figure 10)
is found to be around 240°C. The transition temperature of the resin in
the composites is, however, far away from that of the fully cured
state and {s dependent on the curing condition employed in the preparation
of the new composites. A comparison of the transition temperature of
8 composite prepared according to the NASA/Largley procedure to that of
& resin which is essentially fully cured is made in Figure 12. The
bulk resin, for exampie, which has been cured for 4.5 hours at 149°C
and 1.5 hours at 177°C, displays an exothermic behavior above 180°C
(Just a few degrees above the highest curing temperature). This indicates

that the sample is not yet fully cured and when enough thermal energy



is supplied to the chains, the unreacted portions gain enough mobility
to continue the reaction of the as yet unreacted species. The energy
released from the subsequent chemical reaction is displayed as exothermic
behavior. Thus the practical glass transition of such partially cured
samples 11es close to the highest curing temperature as described by
Gillham (16). In order to study the effect of sub-Tg annealing on the
physical aging behavior, the resin is generally heated for 5-10 minutes
at 10-15°C above its Tg to erase nast history ;nd it is then quenched to
the selected annealing temperature Ta' The time the sample is quenched
is taken as time zero and thereafter the properties are measured against
the sub--Tg annealing time (11). Since neither of our composites were
fully cured, it was necessary to differentiate the effect of possible
chemical aging from physical aging in our systems. One possible way

of reducing chemical aging would be to fully cure the epoxy as done by
Kong (17). Such a sample will not undergo further curing when it is
heated to erase past histroy or when it is being aged. Unfortunately
there are two probiems associated with this manner of procedure. First,
the curing procedure employed for preparation of a composite has been
selected with optimization of the material properties. That is,under
that specific curing procedure, and therefore a given apparent Té of

the resin, the material properties of the system may be most desirable
when the fully cured condition is not achieved. For example, possibly

further curing may result in a more brittie system and therefore the

aging study of such a system may not be relevant to practical applications.



Secondly, when a system is fully cured its T_ becomes higher and

therefore for a given AT one has to choose aghithr annealing temperature.
Moreover, if the system is fully cured, it does not guarantee that no other
chemical reactions can occur. Indeed we have observed that annealing
at above 120°C for a period of one week, even in vacuum (Pair < .SemHg),
resulted in a noticeable discoloration of bulk NARMCO 5208 in the first
0.2 - 0.5 mm of the sample thickness. Because of these complications,
it was decided to study the aging behavior of these composites prepared
according to the "standard" prescribed procedure. To investigate the
effect of possible chemical aging, a sample of NARMCO 5208 resin which
was cured according to the prescribed schedule, Tg ~185°C, (Figure 12,
curve A) was heated for 10 minutes at 200°C (about 15°C above Tg)'
In this way we introduced a heating cycle which was needed to erase
the past history of the sample. A DSC rerun of this sample shows
that the apparent Tg of the sample had been raised to 200°C (as
expected due to further curing). However, when such a treated
sample was aged for 1 week at ambient or even when it was aged for
that period at 100°C no noticeable changes in the thermogram of the
sample were apparent (Figure 12, curve C). Therefore chemical aging
of the sample under those conditions was considered negligible.
Therefore aging of the NARMCO samples followed a 10 minute pre-treatment
of the composite at 200°C.

The effects of sub.Tg annealing temperature on physical aging are
il1lustrated in Figure 13. Bulk samples of NARMCO 5208 which had been

treated identically and, therefore, had the same Tg. 195-200°C, were aged



at ~25°C (TR) and 100°C (T1°0). It should be recalled that, as indicated
before, this 100°C sub-Tg annealing does not cause any significant
change in the chemical structure of the polymer and therefore a
difference in mechanical behavior is related to physical aging of
the resin. At early aging times (“or example, 10 or 100 minutes),
the samples at higher sub-Tg annea.ing temperature (100°C) display
Tower percentagesof stress relaxation than samples stored at TR'
This indicates that a sample aged at a higher annealing temperature
has densified (or has lost free volume) more than a sample aged at
a lower temperature during the short aging periods used here. At
longer aging times (for example, 10,000 minutes), the percentages of
stress relaxation in samples aged at TR and T100 have apparently
become closer in value to each other. Therefore the data in Figure
13 indicated that at an early aging time, the sample at the higher
Sub-Tg annealing temperature has come closer to its true equilibrium
state than the sample at the lower annealing temperature. However,
the rate of aging (that is the slope of lines in Figure 13)

is higher for the sample at the lower annealing temperature.

Thus it is conceivable that at very long aging times, for example
105 minutes, samples aged at Ta may show more embrittiement than
samples aged at TIOO’ To explain this phenomenon we will utilize
the volume-temperature plots given in Figure 14. Let us assume
that the resin sample is cooled down from somewhere above T_. Once

g
the temperature of the sample is lowered below Tg. the volume of the



resin will follow the solid 1ine (nonequilibrium) and, at any given

temperature, will deviate from the equilibrium volume (broken line

in Figure 14A & B). Initially the sample would be either at point 1

or 2 depending on whether the annealing is done at 100°C or at

Ta ® 25°C. Figure 14A represents the volume state of the sample

at an early time. That is after a short aging period the sample

annealed at the higher temperature will be at the point AIOO and the

sample at TR will be at point st. The larger decrease in volume for the sample

at the higher annealing temperature is due to the fact that at higher

temperatures more thermal energy is available for the molecules to

undergo Brownian motion and thus more readily approach equilibrium.
The lower the temperature (i.e. at 25°C) the less thermal energy

is available to overcome viscous forces even though at this tem-

perature the volume of the sample is farther awdy from its equilibrium

state. Thus when the sample at 100°C is quenched in cold water after

a short perioc of aging (for example, 10 min) in order to determine

its stress relaxation, the volume decreases following a path that

we will presently assume is parallel to the line between points 1

and 2. After this short annealing time, the sample aged at 100°C

has densified to a greater extent and consequently has lost more

volume (or free volume) than the sample aged at TR for the same

period of time (points AZS and 825 in Figure 14A.) The sample aged

at 100°C will therefore show a lower percentage of stress relaxation

than one aged at TR because the lowering of free volume restricts the

mobility of macromolecular segments. At a longer aging time (see

Figure 14B) the sample at the elevated temperature T100 has come



very close to its equilibrium volume, whereas the sample at TR

is still very far away from its equilibrium volume state and there-
fore continues its densification process. That is, at a longer sub-Tg
annealing time, the volume (or free volume) occupied by a sample

aged at TR (B'zs in Figure 14B) and the volume taken up by the sample
aged at T]oo and quenched to 25°C (A'zs) are close to each other.”

This means that at longer aging times hoth samples may show similar
behavior as suggested by the data in Figure 13.

To elaborate on the above discussion, a schematic representation of
the dependence of the volume change, |AV| = |v1. - vtl » 1s shown in
Figure 14C where Vi is the initial volume of the glass after quenching
to a given temperature and vt is the volume at any given time at that
temperature. Figure 14C presents changes in AV from time zero to
infinity. This time-1ine can be broken into three regions, two of
which are, at present, experimentally inaccessible to us. Data
given in Figure 13 indicates that in the first ten minutes of aging
those samples aged at T] 00 lose free volume much more quickly than
those aged at TR. presumably because of the higher thermal energy
available at T100‘ We begin to measure stress relaxation at 10
minutes, at which time the T1 00 samples have considerably less
free volume than the TR samples and show correspondingly lower

values of percent stress relaxation. Within the time frame of the

‘The reader realizes that once a sample is guenched to T, from T] 00
it starts to undergo aging at this lower temperature. HoweveB, since
the stress relaxation test is done almost immediately after quenching
the sample to T, (aged not more than 1-4 minutes), such aging should

be 1nsigm‘f1can§1y small and is therefrre not considered here.



experiment, 10 to 10,000 minutes, those samples aged at T100 are already
approaching their equilibrium free volume whereas those samples aged
at TR are still losing free volume at an appreciable rate, producing
greater decreases in stress relaxation with time, that is, physically
aging to a higher degree. As shown by extrapolations beyond 10,000
minutes in Figure 14C, T10° samples are nearly at their equilibrium
volume at very long times. The TR samples, however, continue to lose
free volume at a greater rate, the end result being that their final
free volume at infinite time will be significantly smaller than the
equilibrium free volume of samples aged at T100' In regard to mech-
anical properties for the case in point, one might anticipate that a
sampie aged at Tp for infinite time will be much more brittle (at TR)
than one aged at T]00 for the same amount of time but tested at TR.
Having discussed the aging properties of the bulk resin, the aging
behavior of the composite can now be considered. A comparison of the
percentage of stress relaxation in the tensile mode of carbon fiber/
NARMCO 5208 composites has been made to that of the bulk resin as shown
in Figure 15. The sub-Tg annealing has been done at room temperature
(v25°C). The percentage of stress relaxation for the uniaxial composite
is expected to be dependent on the test direction relative to that of
the fiber axis. We have performed the test in both the direction per-
pendicular to the fiber axis (]) and parallel to the fiber axis (}!).
Although the pure resin shows a considerable amount of aging with time,
the composite may or may not display aging, depending on the test
direction. In the test carried out in the direction perpendicular to

the fiber axis (]), the samples show a distinct change in properties with



time. This is because in this direction the composite benaves with the
matrix and fibers in series. That is, while the graphite matrix may not
show any chance in properties with time, because the resin does have
time dependent characteristics, the system as a whole would show

kinetic effects. The absolute value of the relaxation for the per-
pendicular sample at any given time is approximately half of that for
the pure resin. This is probably due to the fact that the volume
fraction, ¢, of the resin in the NARMCO composite is also about one

half (¢ = 0.47). )

resin

The stress relaxation of the composite in the fiber direction is
noted to be very small. Moreover it is time independent. This is due
to the fact that in the parallel direction, mechanical properties are
dominated by the stronger graphite fibers. That is, although the
resin does undergo physical aging, the composite does not change
properties with time in this direction. Even the small percentage
of stress relaxation exhibited in the parallel direction is believed
to be primarily due to the small slippage of the extremely rigid samples
in the grips of the sample holders.

The effects of aging on the tensile stress relaxation of graphite/
Hercules 3501 composites are shown in Figure 16. The tests are again
run in the parallel and perpendicular direction. The resin used in
this composite has basically the same chemical structure as shown in
Figure 10. The glass transition of the resin is, however, much below
that of NARMCO 5208 material and is around +85°C. The exact reason
for the lower transition of this resin has not been disclosed to us
but it could be due to a2 lower concentration of co-catalyst and/or

less severe curing conditions. Whatever the reason, the resin is



less fuliy cured and therefore has a lower transition as discussed
earlier. The composite shows basically the same trend as the NARMCO
system in that it does not display any changi in property with time
when measured in the direction of the fiber (i.e. parallel). The
stress re\txaiion behavior of the sample in the perpendicular direction
is again time dependent indicating that aging properties of the resin
are displayed in this testing direction.

The results of determining physical aging using the flexural test
are given in Figure 11. The samples were bent using a three-point
set-up and the initial stress and the stress after a lapse of 10
minutes were recorded. The testing was again done in two directions,
"Across" and “Between", which correspond resoectively to parallel
and perpendicular tensile tests (see Figure 11B). The results from
this test not only support the earlier tensile resylts, but in
respect to practicality, the ease of measurement as well as the
accuracy of the results supersede the earlier tensile tests. The
bulk NARMCO 5208 (pure) shows almost identical aging behavior to
that of the tensile tests (compare Figures 15 and 17). In the
flexural test in which the composite is bent against the fibers
(direction A), which corresponds to the tensile test in the paraliel
direction, the sample displays zero relaxation which does not change
with time. This is expected because in this direction the properties
are controlled by the strong time independent graphite fibers which
dominate the properties under these conditions. This result indicates
that the small relaxations obtained in the tensile mode for samples
in the parallel direction at all the aging times were probably due to

the slippage of samples from the grips of the clamps. In the opposite



direction (i.e. direction B), which corresponds to the perpendicular
direction of the tensile test, the sample clearly shows physical aging.
This is again due to the fact that in the testing direction the resin
(matrix) plays an important role and thus its aging behavior becomes
apparent. The resultsof the tests in this direction are identical to

that obtained via the tensile test (compare B in Figure 17 to that
perpendicular in Figure 15) and again the absolute value of relaxation

at any given time is approximately one-half of that of pure resin. As
mentioned earlier, this lower percentage stress relaxation of the composite
is principally due to the fact that this coumposite contains aboyt half

as much resin (¢ .47). However, the fact that the rate of aging

resin
(slope of thelineB or slope of perpendicular test direction in Figures
17 or 15, respectively) is different could be related to the difference
in the morphology of the resin in the composites. Such a difference
could be due to the nature of the gelation front in the pure resin as

compared to that in a composite matrix as recently discussed (18).



SUMMARY

Physical aging of the resin in graphite epoxy based composites
affects the material properties of the matrix. This pnysical aging
behavior, which is dependent on the variation of the free volume of
the polymer resin with time, can be most noticeable when the testing
is done in an appropriate direction. If the directional effect is
not noted, a test might indicate no change in a property with time,
whereas in actuality the resin has undergone aging and other important
properties of the composite such as its toughness or impact resistance
may also be affected in an undesirable manner. Stress relaxation in
both the tensile and flexural modes provides a means of easily monitoring

physical aging provided an appropriate testing direction has been chosen.
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Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

FIGURE CAPTIONS

Stress-strain curves of amorphous PET aged at room temperature
for 10, 90, 1,000, 10,000 and 70,000 min. Note changes in
yield stress, modulus, and characteristic draw ratfo.
References 7 and 8.

Stress-strain curves for a linear high molecular weight epoxy
(AEP-6) aged at room temperature ‘or 10, 100, 1,300 and 10,000
min. Note changes as per Figure 1. Reference 10.

Stress-strain curves for Epon 828 resin crosslinked with nadic
methyl anhydride and aged at room temperature for 10 min. and
56 days. Reference 11.

Modulus vs. log time plots for Eporn 828 crosslinked with
PACM-20 by a two-stage curve. No significant differences
are noted detween "dry" samples and those subjected to
moisture. Reference 10.

Schematic plots showing changes in enthalpy and volume with
changes in temparature. Dotted line indicates the
equilibrium state, which is achieved only if the matcrial
is cooled infinitey slowly. T2 is the temperature.
Reference 1.

Plots of percent weight gain of methyl ethy! ketone vs.

time immersed in MEK for an Epon 828 resin cured with
PACM-20. The rate of MEK uptake is reduced with aging

time as ¢ result of decreases in free volume. Reference 11.

Schematic of a stress relaxation curve in which the stress
needed to sustain a particular deformation decays with time.
The calculation for percent stress relaxation is described
in the figure.

Plot showing the l1inear decrease in percent stress relaxation
with 1og aging time for Epon 828 cured with PACM-20 in a..
one-stage reaction. It is seen that the physical aging
behavior of this material in the presence of moisture does
not differ markedly from that in a dry environment.

Plot of percent stress relaxation vs. log aging time for
Epon 828 cured in one stage with PACM-20 and prepared

in samples of different thicknesses. All data points

fall on essentially the same line, suggesting that internal
stresses did not significantly influence the natural
physical aging in this case. Reference 10.
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Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

10.

11A.

11B.

12.

13.

14A.

14B.

14C.

15.

16.

Chemical structures of mujor constituents of NARMCO 5208
and Hercules 3501 resins.

Schematic drawing of the flexural test device including
sample shape, sample and rod positions, and motion of
the rods.

Schematic drawing showing the authors' notation for the
orientation of test device rods and fiber direction in
flexural test samples.

DSC thermograms of NARMCO 5208 resin. The curing schedule
and the thermal history of samples are described in the
figure. The heating rate 1is 10°C/minute.

Effect of annealing temperature on the aging behavior of
bulk NARMCO 5208 resin. The tests are in the tensile
mode and € = 0.5%.

A schematic representation of volume-temperature behavior of
a resin after a short annealingtime. Points 1 and 2 refer to
volumes of the glass at 100°C and T, (25°C), respactively,
imnediately after it is quenched f T.

Points A100 and 825 refer to volumes of the glass after a

short period of time at 100 and 25°C. Point A,. is the
volume of the polymer which was aged at 100°C ;&udutely
after it was quenched to T,. T, is the equilibrium second
order transition temperatu ofzthe resin. (The length
of the arrows {s prooortional to the changes in volume).

The same as 14A except after a longer annealing time.
Prime is used in A'wo. A'ZS and B‘zS to indicate longer
anne2’'ing times.

The dependence of the absolute value of the change in
volume of the resin, |4V|, with time at 100°C and room
temperature, [AV| = WAL is the volume of
the polymer immediately aft‘r it is quenched end Vt

is the volume at time t.

A comparison of aging behavior of bulk NARMCO 5208 resin
to that of the graphite fiber composite in the parallel and
the perpendicular directions. The aging was done at room
temperature; € = 0.5%, and 0.25%, respectively, for the
bulk and the composite. The tests are in the tensile mode.

A comparison of aging behavior of graphite fiber/Hercules
3501 composite in the parallel :o that in the perpendicular
direction. The tests were done at room temperature with

e = (.25%.



Figure 17.

A comparison of the physical aging of bulk NARMCO 5208
resin to that of its graphite fiber composite. The
tests were done in the flexural mode in directions
against the fiber (A) and along the fiber (B) (See
Figure 11 for further description of notation).
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