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REAL TIME ESTIMATION AND PREDICTION

OF SHIP MOTIONS USING KALMAN FILTER TECHNIQUES

ABSTRACT

A study of the real time estimation and prediction

of ship motions, velocities and accelerations is presented.

The ship motion estimations are of particular interest for

operations in rough seas such as aircraft or helicopter

landing, transfer of equipment or cargo at sea and off-

shore installations.

In the present study the estimation and prediction of

heave, pitch, roll, sway, yaw motions of a DD-963 destroyer

is considered, using Kalman filter techniques, for appli-

cation in VTOL landing.

The governing equations are obtained from hydrodynamic

considerations in the form of linear differential equa-

tions with frequency dependent coefficients. In addition

non-minimum phase characteristics are obtained due to the

spatial integration of the water wave forces.

The resulting transfer matrix function is irrational

and non-minimum phase. The conditions for a finite-

dimensional approximation are considered and the impact of

the various parameters is assessed.

A detailed numerical application for a DD-963 destroyer

is presented and simulation results of the estimations

obtained from Kalman filters are discussed. The effect of



the various modeling parameters on the rms error is

assessed and simplifying conslusions are drawn.

The models developed are used to predict the motions

a few seconds ahead. An upper bound for prediction time

of about five seconds is established, with the exception

of roll which can be predicted up to ten seconds ahead.

The effect of noise and modeling errors on the rms pre-

diction error is investigated in detail.
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INTRODUCTION

The present study started as part of the effort

directed toward designing an efficient scheme for landing

VTOL aircraft on destroyers in rough seas. A first study

[/]_] showed a significant effect of the ship model used

on the thrust level required for safe landing.

In a landing scheme therefore it would be desirable

to have accurate ship models capable of providing a good

real time estimation of the motions, velocities and

accelerations of the landing area, resulting in safer oper-

ations and with reduced thrust requirements.

The modeling is quite complex and a substantial effort

is required to reduce the governing equations to a finite

dimensional system of reasonable order.

The study contains a first chapter on the equations

of motion as derived from hydrodynamics, their form and

the physical mechanisms involved and the general form of

the approximation.

The second chapter describes the modeling of the sea,

which proved to be a crucial part of the overall problem.

The third chapter describes the derivation of the

state-space equations for the DD-963 destroyer.

In the fourth chapter the Kalman filter studies are

presented and the influence of the various parameters is

assessed.
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In the fifth chapter the feasibility of predicting the

ship motions a few seconds ahead in time is studied within

the present formulation.

Finally the appendices provide the characteristics of

the destroyer, hydrodynamic information and some computer

programs used.
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OVERVIEW

The real time estimation of the rigid body motions,

velocities and accelerations of a vessel in rough seas requires

accurate modeling of the wave exciting forces and the hydro-

dynamic coefficients of the ship.

The wave forces are obtained after an integration over

the ship hull of the pressure forces, so that their evalua-

tion requires a seakeeping program, while their magnitude and

phase represent clearly an infinitely dimensional system with

non-minimum phase characteristics.

The complexity of the resulting equations is due pri-

marily to the wave formation as the vessel moves, which is

a mechanism of energy dissipation and additionally it introduces

memory effects.

The wave spectrum contains a rather narrow band of fre-

quencies so that an efficient approximation of the ship charac-

teristics can be achieved within this frequency band.

A DD-963 destroyer was used as the basis for the present

study. First the geometric and mass properties of the vessel

were analysed by the M.I.T. Ocean Engineering Department Sea-

keeping program and its hydrodynamic forces and coefficients

were obtained.

Subsequently a finite dimensional approximation was fitted

in this data within the wave frequency range. Two groups of ship

motions were distinguished, the heave-pitch and the roll-sway-yaw

sets of motion, which up to the first order are uncoupled to each

other.

The parameters of the approximations are four:
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The speed of the vessel, the direction of the waves,

the significant wave height and the modal frequency of the

wave spectrum.

These models were used to estimate the ship motions,

velocities, accelerations using noisy measurements of the

motions. The Kalman filter designed for this purpose gives

very good results when a relatively accurate estimate of

the modal frequency of the spectrum is available. The

modal frequency was found to be the most significant para-

meter in the overall scheme since it influences the estimation

error significantly and is the most difficult to estimate.

The ship speed and the wave heading are important para-

meters also,but can be estimated easily and accurately.

The double peak spectrum, i.e. seas containing swell also,

require separate treatment, because the low frequency peak is

hard to estimate, while its influence is quite important.

The predictability of ship motions has been investigated

within the frame of the present study. First perfect state

information is assumed and by propagating the prediction error

covariance from zero initial value it has been estabIished that

within 25% rms error over rms motion,the prediction time is

about five seconds for all motions with the exception of roll

which can be predicted up to ten seconds ahead. Simulations

confirmed these results.

The effect of noise and modeling errors is to reduce the

prediction time. Omission of the non-minimum phase zeros has

a particularly pronounced effect.
In summary, the approximations described in the sequel

provide a good model of the quite complex ship equations of

motion within the wave frequency range. The derived models can

be used for a real time estimation and prediction of the ship

motions and other responses using Kalman filter techniques.

Computer programs have been prepared that provide the

required model matrices once the parameter of the problem has

been specified.
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Chapter l: EQUATIONS OF MOTION

Definitions

The rigid body motions of a ship in six degrees of freedom

are shown in Figure i.i: We define the XlZ1 plane to coincide with

the symmetry pl_e of the ship, with the zI axis pointing vertically

upwards when the vessel is at rest, and the Yl axis so as to ob-

tain an orthogonal right-hand system,while the origin need not

coincide with the center of gravity. The XoYoZ° system is an

inertial system with XoY° fixed on the undisturbed sea surface,

while the x y z system is moving with the steady speed of the

vessel (i.e. it follows the vessel but it does not participate

in its unsteady motion). Then the linear motions along the xI,

YI" Zl axes are surge, sway and heave respectively. In order to

• define the angular motions, we normally require Euler angles, in

the present case, though, we consider small motions so that the

tensor of angular displacements can be replaced by a vector of

small angular displacements, which are roll, pitch, yaw around

the xI, YI' Zl axes respectively.

The characteristics of a ship are its slender form, i.e.

L/B>>1, L/T>>1, where L is the length, B the beam and T the draft.

Also, the ship is symmetric about the xz plane and near symmetric

about the yz plane. For this reason

I = I = 0
yz zy

I = I =0
xy yx
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The value of Ixz is typically small compared with Ixx, Iyy-

The justification of using the linearity assumption is as

follows: The excitation consists of wave induced forces, which

include fluid inertia forces and hydrostatic forces. It is

well established that the wave height to wave length ratio is

small, since at a typical upper value of 1/7 the wave breakes

and loses all its energy [15] (Figure 1.2). As a result, the

major part of the wave force is a linear function of the wave

elevation and can be obtained by a first order perturbation

expansion of the nonlinear fluid equation, using the wave height

to length ratio as the perturbation parameter [15].

The wave spectrum, as will be shown later, has a frequency

range between typically 0.2 and 2 rad/sec. Given the large mass

of the vessel, the resulting motions, within this frequency

range, are of the order of a few feet, or a few degrees, so

that the equations of motion can be linearized.

The only motion that requires attention is roll, because

due to the slender form of the ship, the rolling motion may

become large, in which case nonlinear damping becomes important.

S;impleDeriVatiOn

We derive the equation of motion for a simple two dimensional

object to demonstrate the overall procedure.

Let us assume that we wish to derive the motion of a two

dimensional cylinder subject to wave excitation, allowed to move

in heave only (Figure 1.3).
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The incoming wave of amplitude a° and frequency _o will

cause a force on the cylinder, and, therefore, heave motion.

Due to the linearity of the problem, the following decomposition

can be used, which simplifies the problem considerably.

(a) Consider the sea calm and the ship forced to move

sinusoidally with unit heave amplitude, and frequency _o' and

find the resulting force.

(b) Consider the ship motionless and find the force on the

cylinder due to the incoming waves and the diffraction effects

(diffraction problem).

(c) In order to find the heave amplitude, within linear theory,

we equate the force found in (a) times the (yet unknown) heave

amplitude, with the force found in (b). (Figure 1.4)

The force in (b) can be decomposed further for modeling

purposes, again due to linearity: One part is due to the un-

disturbed incoming waves and the other part due to the diffracted

waves. The first is called the Firoude-Krylovforce and the

second the diffraction force. The total force is called the

excitrationforce [15].

The force in (a) due to linearity can be also decomposed:

The first part is simply the hydrostatic force. The second part _

is the dissipative force, caused by the fact that the refraction

waves carry energy from the ship to infinity. For this reason,

we define a damping coefficient B so that the dissipative force
! !

will be -Bx where x is the heave velocity. The third part iS_ _
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is an inertia force, caused by the fact that the heaving ship

causes the fluid particles to move in an unsteady motion so that

we define and "added" mass A and the inertia force becomes -Ax

with x the heave acceleration. If we denote the undisturbed in-

coming wave elevation amidships as _(t):

n{t) = aoeim_ • (1)

Where the real part of all complex quantities is meant, here

and in the sequel. Then the excitation force will be .•
. (2)F ='Foei_°t ao .

Where Fo is complex (to take into account the phase differencet

with respect to the wave e!evation), and the equation of motion 'becomes:

II II I

Mx = F - Ax - Bx - Cx (3)

t

Where M the mass•of the cylinder; the motion is also sinusoidal

so with Xo complex: .o

x(t) = Xoei_,t" (14)

A very important remark is that _,A,B depend on the frequency

" of the incoming wave mo • This can be easily understood by the

fact that at-various frequencies the heaving Cylinder will produce •

waves with different .wavelength. We rewrite, therefore, eauation

(3) as:

_ 2 i_°t " )a_+ [A(_o)__ i_) B(_ o) C] Xo}ei_°t-tVJXo_oe = {Fo (t_o - o - . (3a).

By dropping ei_°t ' ' " "", we can rewrite equation (3a) as:

{-[M + A(_o)]_ $ + !moB(_:) + C} x0 = Fo(_ o) ao (3b)
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The motion of a cylinder in water, therefore, results in an

increase in the mass and damping term. Equation (3b) is used

because of its similarity to a second order system, it is strictly

valid, though, only for a monochromatic wave.

Ultimately, we wish to obtain the response in a random sea, so

equation (3b) must be extended for a random sea. This can be done

by obtaining the inverse Fourier transform of (3a), i.e.

11 II

-_1Kc(t- T) x (T)dT+.-=1K_%(t- T) x (T) dT +

. . (5)

+ C x(t) =_,IKf(t- T)n(t)dT

i

Where K=,K_,Kf the inverse Fourier transform of __2.[M + A(_)],

i_B(_) and Fo(_)respectively. The random undisturbed wave elevation •

ks denoted by n(t). Equation (5) is not popular with hydrodynamicists,.

because the effort required to evaluate the kernels Ka, Ku, Kf is by

• far greater than that required to find the added mass, damping ana

excitation force. For this reason, equation (5) is rewritten in a

hybrid form as follows :

W !

--[M + A(_)] X(t) + B(_) x(t) + C x(t) = _(_)q(t) (6)I

This is an integro-differential equation (or differential

equation withfrequency dependent coefficients), whose meaning is

in the sense of equation (5).
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Strip Theory

The evaluation of A(_), B(_), F(_) is not an easy task for

complex geometries, such as the hull of a ship. The hydrodynamic

particulars can be found in a later section, but we can give a

simple description here of a technique used to simplify the

derivations: [15],[17]

The ship can be divided in many transverse strips as shown

in Figure(l-5_Due to its elongated form and for high frequencies,

each strip has small interactions with the other strips, except

,learthe ends. U3ually these end effects are sm_ll, so that

instead of solving the overall three dimensional problem, we can

solve many two dimensional problems (one for each strip) and

sum up all the partial results. For the case of heave, for example,

if A(_,x) B(_,x) are the added mass and damping in heave of a strip

at location x, then

A(_) = :fL/2 A(_,x) dx (7)
-L/2

L/2
B(_) - f B(_,x) dx (8)

-Z/2/

The strip theory has larger errors at smaller frequencies.

It so happens, though, that at small frequencies the hydrostatic

forces are predominant, so that the motion error is quite small.

Comparison with experiments has shown that for slender ship
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configurations, the strip theory provides very good predictions

[15],[17].

Relation Between Added Mass And Damping

The added mass and damping coefficients are not indepen-

dent of each other, because their frequencydependence is caused

by the same refraction waves. If we define

T(_) = _2 [A(_) - B(_)] _.9)

Then y(_) is an analytic function _6]. As a result, A(_),

B(_), which are real, are related by the Kramers-Kronig relations,

in order to describe a causal system. This fact will be used

later to obtain a single approximation for T(_) instead of two

separate approximations for A(_), B(_).

Speed Effects

As it can be seen in Figure 1.6 when the ship is heaving with

a small angle 8 and at the same time is moving forward with speed
o

U, then a heave velocity results, which is x = US. The effect of

the forward speed, therefore, is to couple the various motions

by speed dependent coefficients. As it can be found in Appendix i,

there are simplified expressions for the added mass, damping and

exciting force with a parametric dependence on the speed U. Then
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expressions greatly facilitate the evaluation of the ship motions.

Frequency Of Encounter

An additional effect of the ship speed is the change in the

frequency of encounter. If the incident wave has a frequency

and a wave number k, then the frequency of encounter we is

we = _ + k U cos _ (i0)

Where # is the angle between the x axis of the ship and the

direction of wave propagation (Figure1.7). In deep water, the

dispersion relation for water waves is

_2 = kg (ii)

so that we can rewrite (i0) as

_2
= _ +-- U cos _ (12)e g

A very important consideration in the difference between

frequency of encounter and wave frequency is the following: The

ship motions due to linearity will be of frequency _ so that thee

refraction waves are of frequency _ and the added mass and dampinge

can be written as A(me), B(me).

The amplitude of the exciting force though, consists of

the Froude Krylov part which depends on e and the diffraction

and speed dependent parts which depend on we. The time dependence

is again _ -t, i.e.e
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F(t) = aoF(_, _e,U) ei_°t (13)

with ao the incident wave amplitude.

This is a very crucial observation and can cause significant

errors if not taken into account.
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Equation of Motion

Following the notation of Appendix i, we write the equations

of motion. It should be noted that, due to the slenderness of the

ship, the surge motion is left out as a second order motion. This

is in agreement with experiments [ 17]. Within linear theory and

using the ship symmetry, the heave and patch motions are not coupled

with the group of swaZ, roll, yaw motions. This is not to imply

that the motions are independent, because they are excited by the

same wave, so there is a definite relation both in amplitude and

phase.

(i) Heave - Pitch Motions

M !

{[Mo ]+ [A_3_s 3)x + [B33B_5Ix +
o ly As_ Ass -v Bs3 Bss - -v

, + [ C3a Cas ] x = [ F_ .]D (14)Cs3 Css -v Fs

(2) Sway - Roll - Yaw Motion

M2_M M2_ 2_ A2_ A

+ t +

IB_2 B_ B_6 x u + C_ xu = (15)
: LB62 B_ B66 O
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Where Aij, Bij,Ci_the added mass, damoina, hydrostatic co-

efficient matrices; F. the exciting forces; n the wave elevation;
3

x = {x,, xs}"r (16.)--V

x = {x2, x_, x6}r (17)
_U

The frequency and velocity dependence is not written explictly,

but is understood, as described in the previous sections.

t-
p
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Heave -Pitch Approximation

We start with the heave and pitch motions approximation.

As it is obvious from equation (14), it involves two stages:

(a) Approximation of the exciting force

(b) Approximation of the added mass and damping coefficients

Data are provided by the hydrodynamic theory for both compon-

ents and within the wave frequency range.

A. Excilt_ngFo_rce_p_r0_i_ation

Figure 1.8 shows the exciting heave force on a box-like ship

[25]. This information is important to demonstrate several zeros

of the amplitude of the heaving force. Figure 1.9 shows the ampli-

tude and phase of the exciting force on a destroyer, where, again,

the same zeros appear, accompanied in the phase plot by jumps in

the phase.

The transfer function between the wave elevation and the heave

force cannot be represented as a ratio of polynomials of finite

degree as evidenced by Figure 1.9. Similar plots can be obtained

for the pitch moment. Within the wave frequency range, though, only

the first zero is important, while the remaining peaks are of minor

significance. This is not true for other types of vehicles such as

the semi-submersible, but for ships it is valid for both heave force

and pitch moment, so it will be used to simplify considerably the

modeling procedure.

As it was mentioned before, the exciting force changes with

frequency We, but its amplitude is determined on the basis of the

frequency _. The following variables must be included in an
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appropriate modeling of the exciting forces

(l) frequency

(2) speed V

(3) wave angle

F3 (t, so, #, U) = F3 (_, _)ao ei_et (18)

Fs (t, so, _, U) = {Fs (_, _) + _ f_ (19)z_ ;(_e'_)} ei_et

where ao the wave amplitude, f3 the heave diffraction force. Equa-

tions (18), (19) show that the heave force does not depend on the

ship speed, whereas the pitch moment does, in a linear fashion.

In order tO approximate F3(_,@),.Fs(_,_),f3(_e,_),we use the

plots in Figure 1.9 as well as Figure 1.10, which show the approx-

imate influence of the wave angle on the excitation force.

In order to model the DD963 destroyer, the M.I.T. five degrees

of freedom seakeeping program _7 ] was used to derive hydrodynamic

results. The following model was derived to mode! shape of the

heave force at V = 0 and _ = 0 (no speed, head seas)

F3(S) = 2

I1 + 2Js--_-+_a s_ 1 "(20)

Where J = 0.707,ei a constant to be determined from hydro-

dynamic data, n the wave elevation and _a the corner frequency.

Remembering the analysis above concerning the dependence of the

force on e and Figure i.I0, we can derive_



26

2 _ @ 2 _ U (21)
+ cos_

_a = Lcos_ + B Lcos# + B

where L is the ship length, B the beam.

Before we establish a relation similar to (20) above, we have to

discuss Figure ii, where it is shown that for long waves, the heave

force and the pitching movement are 90° out of phase. This means

that the transfer function between heave and pitch i_ a non-minimum

phase one, because the _mplitude is constant, while the phase is

90°. We choose to attribute the non-minimum phase to pitch. Also,

the pitch angle tends to the wave slope for large wavelengths, so

the pitching moment can be written as

1.-sl 0 s2cosFs = _2 z n (22)S z

1 + S/_o [i + 2J_s-_+ _2_a

Where e2a constant to be determined, _a is the same (for

simplicity) as in equation (21) and _o is an artificial frequency

to model the non-minimum phase. It will be chosen to be equal to

the wave spectrum modal frequency, so we defer the discussion until

the corresponding section.

B. Added Mass and Damping

By using equation (9), we can rewrite the equations of motion

as

s_ 2 T + UsT3 + C
T_3 + Ms + C3_ 3s 3 3s ix31 = 3In (23)

S2 IS 2 + T55 s2 U2T33 + C5 X5 5T53 - UsT33 + C3_
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Here we construct a simplified model where

Tij= Aij Bi_i_ (24)

with Aij,Bij to be evaluated from the hydrodynamic data. Then equa-

tion (23) can be written, after we define
o

Yl = X3 Y2 = X3
o

Y3 = x5 y_ = Xs (25)

y = {yl,y2,y_,y_}rQ

in the form:

3 B33 C3s B3s F3 (23a)= - Y + F
y_ A_3As_ [cs__5_c_B_ - _

where

C_s = C3s + U A33

C_3 = Cs5 - U A_ (26)

C_s = Css - _ × As3
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Sway-Roll-Yaw Approximation

Next we approximate the sway-roll-yaw group of

motions, which is uncoupled to first order from the

heave-pitch group of motiQns. Again a two stage app-

roximation is required, i.e.:

(a) Approximation of the exciting force

(b) Approximation of the added mass and
damping coefficients

Data are obtained by using the sea-keeping program.

A. Exciting force approximation

The same infinite-dimensional form is obtained for

the exciting force as seen in Figure 1.12 (17abc) for all

three motions, as in the case of pitch and heave. Again,

within the wave frequency range, a finite dimensional

approximation can be achieved, and of reasonably small

order.

The important fact that the exciting force depends

on the wave frequency rather than the frequency of en-

counter, is used, while the following three quantities

define the exciting force amplitude and phase

(i) Wave frequency

(2) Speed V

(3) Wave angle

In Appendix 1 the strip theory approximation of the

sway, roll,yaw forces can be found. Using the M.I.T. five

degrees of freedom seakeeping program the following finite

dimensional approximation was found in case of V = 0, _ =

90o for sway, roll and yaw
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2

A2 S
(27)

F2 (S)= 2

Is152
+ 2J2 --2+ 1

2

A S (28)4
F4 (S)= I sS 2+ 2&_4+ 1

L

A6 S2

F (S) = (29)

6 [ S ]2 S + 1
_6 + 2J6 _6

where m = 0.65 J = .5
2 2

m_ = 0.85 J_ = .3

m6 = 0.85 J6 = .3 (30)

and A2,A4,A6 are obtained from hydrodynamic data.
We redefine the value of _2, m4,m6 such that

it will be valid for angles ¢ other than 90o, and

speed other than 0:

_,j = (_j + _2.3Vg cos_) sin_ (31)
where j = 2,4,6 and _. is given above.

3

It should be noted that the sway,roll and yaw forces0

are proportional to the wave slope, i.e. 90 out of phase

with respect to the wave amplitude. This means that they

belong to the same group with pitch, and the same non-

minimum phase transfer function:

must be used for all three of them, when the total

system (all 5 degrees of motion) is considered.



3O

B. Added Mass and Dampinq

The amplitude of the transfer function between the wave

elevation and the rolling motion has a very narrow peak so that

the coefficients can be approximated as constant [17]. Using

Appendix i:

0

A4_ = A44 B44 = B14

0 0
A42 = A24 B42 = B24

/

v
o + _ o

A46 = A46 _2B24

using the value of '_ at the roll peak. It should be noted

that roll involves a significant nonlinear (viscous) damping,

which •isapproximated by introducing an additional "equivalent"

damping coefficient B* [ 3 ]44



Sin_ilarly,we calculate the sway, yaw coefficients at
the same frequency:

• = A_ cA22 22 B22 = B22

V

c _ _ B_2A26 = A26 ' _ -

o

B26 B26 - V A22

= o _ V_o
A62 A26 _2_22

= o + V o
B62 B26 • A22

V2
= 0 + -- 0

A66 A66 _2A22

V Bo
= o + _2 22 (33)B66 B66

4

S2{Aij+Mij} + S{Bij} + {Cij} = Fa i = 2,4,6

F_ J = 2,4,6
(34)

where Cij = 0 except for C44, whlch is the roll hydrostatic

constant, i.e. C44 = _- (GM) with A %he ship displacement and (GM)

the metacentric height.

Due to the special form of the matrix C, a zero-pole

cancellation results from a direct state space representation of

the equation above. After some manipulations, the following

representation can be obtained which avoids zero-pole cancellation

problems:
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O ....

X= T X +UF

. O

where X = {X 2 , X_ , x_ , X6} T

F = {IF2, F2 , , IF6,F6} ,(35)

where IF indicates the time integral of F and T = {tij}and

U = {uij} , with:

r .r •rz2 .r
_ _ z2p _ptz_ = -_ P -P ,tz2 z2 _z = -- P-P , tzr22 21 11 r22 , 3 r22 22 12 r22 23 13

r ..r32 ..r ..r

t_z = _32p _p , t_2=_22,t_3= 3__2p- p , t44 =-!32P- Pr22 2z 3z r22 22 32 r22 23 33

i.

t2z ---P2ztzz- P23t_z t22= -P2ztz2- P23t_2- P22

- t. = -P t13-P23t_3-23 21 r22C_

"" t2_ = -P2ztz_-P23t_

t3i = 0 exceptfor t32 = 1 " (:36)

' rI2 r2 1
Ui = rj = 0 exceptfor Uzz zz r

22

•r. r .,r r
U = r 12 23 32 21, U =r -
z_ z3 r _z 3z r ._

22 2_

r r

U = r 32 23 , U2z = -P U -P U_ 33 r 2z zz 23 _z
22

U = r ,U = r , U = -P U -P U
22 21 23 22 2h. 21 lb. 23 h.h

U2$ = r23 (3.7)

where R = {rij}= [A+M]-Z, p = {Pij} = R B (38)
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Figures 1.13 through 1.15 show the actual force and moments

versus frequency and the achieved finite dimensional approximation

for zero speed and beam seas (_=90°). It should be noted again

that the approximation is not as good outside the wave frequency

range.

Figures 1.16 through 1.18 show the same quantities for speed

U= 15.5 ft/sec and 45° angle of incidence. From these figures it

can be seen that above 1 rad/sec the approximation is poor, none-

theless no significant wave energy is contained in that range, so

the approximation is acceptable.

Figures 1.19 through 1.21 show the overall transfer function

between the corresponding motion and the sea elevation.
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Figure i.I

Ship Reference Systems
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,Figure1.2

Wave Profile

Figure1.3

Hydrodynamic Problem
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"'HL-* ,Ly_
"..... __-°'" w_r

RadiationProblem

-" ._ _ . ]" 4--'- |/lC, Ol'tll'llo t.,.,.., ..

Cylinder W_uue.
posi{ion

Fi_e 1.4b

Diffraction Problem
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Figure 1.5

Strip Subdivision of Ship Hull

Figure 1.6

Effects of Ship Speed
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Fi@ure i.7
Angle of IncomingWaves
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Figure 1.8

Heave Exciting Force on a Rectangular Barge

of Length L, Beam B
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Fi@ure 1.9

Effect of Ship Speed on Heave Force and Pitch Moment

at Head Seas



Figure i.i0

The Equivalent Wavelength for Heave and Pitch
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Wave Force and Moments in Sway, Roll, and Yaw at

60° Angle and Zero Forward Speed
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Figure 1.13

Sway Force Versus Frequenoy for the DD963 Destroyer and Its

Finite Dimensional Approximation (dotted line) for Speed

D = 15.5 ft/seo and 450 Angle of Incidence
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?i_ure 1.14

Roll Moment for DD963. Same conditions as in 1.13.
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Fiqure 1.15

Yaw Moment for DD963. Same conditionsas in 1.13.
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Omega (dB)

Figure 1.16

Sway Force Versus Frequency for the DD963 Destroyer and Its
Finite Dimensional Approximation (dotted line), for Speed

U = 15.5 ft/sec and 450 Angle of Incidence
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Figure 1.17
Roll Moment for DD963. Same conditionsas in 1.16.
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Figure 1.1B

Yaw Moment for DD963. Same conditions as in 1.16.
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SHHY TRRNSFER FUNCTION

0.00 I

I %N

"" -30.00_"
KI
B
f_

-40.00 I

-50.00 I

|
-60.08 _ I .,j_._ ,.. _-_ I I IXI 01

• @

Ome(dB)

Fi,gure 1.19

Sway Transfer Function for the DD963 Destroyer and Its

Finite Dimensional Approximation (dotted line), for Speed

U = 15.5 ft/sec and 45° Angle of Incidence
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Figure 1.20

Roll Transfer Function for DD963. Same conditions as in 1.19.
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YRH TRHNSFER FUNCTION
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Figure i.2i

Yaw Transfer Function for DD963. Same conditions as in I.i9.
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Chapter 2: SEA MODELING

The sea waves are generated by the wind, except for very few

cases. The process of wave generation is of importance in model-

ing, so we will outline, briefly, a simple theoretical model:

When the wind starts blowing over a calm water surface, it

contains gust components of high frequency, which cause wavelets

on the surface. This is due to the inherent instability of the

wave air interface. As soon as the Surface becomes rough, a

significant drag force develops betweep air and water, which

becomes zero only if the average wind speed (which causes the

major part of the drag) equals the phase wave velocity. As a

result, the steady-state condition of the sea develops slowly

by creating waves whose phase velocity is close to the wind speed.

Since the process starts with high frequencies, we conclude that

a young storm will contain a peak at high frequency. We usually

distinguish between a developing storm and a fully developed

storm.

As soon as the wind stops blowing, then the water Viscosity

dissipates the high frequency waves so that the so called swell

(decaying seas) forms, which consists of long waves (low frequency

content), which travel away from the storm that originates them.

For this reason, swell can 5e found together with another local

storm (Figure 2.1).
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A storm usually contains one peak (except if swell is present

when it contains two peaks) and the peak frequency _m is called

the modal frequency (Figure 2.2). Also, the intensity of the storm

is required, which can be described in a number of waves: Beaufort

Scale, Sea State, Wind Average Velocity, Significant Wave Height.

The best is the significant wave height H defined as the statistical

average of the 1/3 highest waveheight. For a narrow band spectrum

of area Mo

H = 4 _ (39)

From our discussion on sea storm generation, we conclude that

it is important to model a storm by both H (intensity) and _m

(.durationof storm). For this reason, the Bretschneider Spectrum

will be used defined as:

4

m
S (_) 1.25 H2 _ _m= _ eXD { - 1.25 (--_---)_ } (4014 t_ -

The spectrum was developed by Bretschneider for the North

Atlantic, for unidirectional seas, with unlimited fetch, infinite

depth and no swell. It was deve!oped to satisfy asymptotic

theoretical predictions and to fit North Atlantic data. It was

found to fit reasonably well in any sea location. Also, by

combining two such spectra, we can model the swell as well. Its

main limitations are unidirectionality and unlimited fetch.
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It was felt, however, that it could provide an adequate descrip-

tion for the present application for open sea.

As it has already been mentioned, the forward speed of the

vessel causes a shift in the wave frequency to the frequency of

encounter. The Spectrum, now, can be defined for ship coordinates

as follows

S(We) Ld"_e_ w W = f(We)

where
z Ucos6-I + 41 + 4_

w = f(we) = e g (42)

2 _ cos_
g

A rational approximation was found to (29) subject tQ (30) in

the following form

4
(_e/_o)

1.25 H2

Sa(we) = _ B(e) rl we q 3m + ( ) (43)

C J_o

where Sa(We) the approximate spectrum

u
a = g _m cos% (44)

B(e), y(e) functions given in table 2.1
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Now a transfer function can be deriven from (143)such as to

provide an output with the spectrum in (40,)when driven by white

noise. It is easy to see that

2
(s/_0o)

Ha (s) =

E1 s 2_3 (45)
+ 2j--s+ ( )_o

where

]..25
So H2 B(a) (46)4_

m

_o = 7(a) _m (47)

J = 0.707

A plot of the spectrum for various wind speeds is given

in Figure 2.3, while the spectrum and its rational approximation

is plotted in Figure 2.4 for fully developed seas and HI/3= 3 m.

!mportant Remark

It is customary to define the power spectral density as the

Fourier transform of the autocorrelation R(T)

-i_
S(_) = I R(T)e aT (48)

In wave theory, the spectrum is defined one sided (for positive

frequencies only) as follows

oo

1 f R(_)e-i_T dT _ > 0 (49)s_ (oJ)=
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For this reason, the relation between the spectrum S(_) as

required for the present application and the Bretschneider spectrum

S8(_) is:

I_S 8(_) _ > 0

s(_)= (50)
SS(-_) _ < 0

Therefore, the intensity of the white noise required for

driving the transfer function (33) is _ (or equivalently we can

multiply the transfer function by _/_-).
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TABLE 2.1

Sea Spectrum Coefficients

.@0 .9538 1.8861

.10 1.8982 1,6110

.20 1.1809 1.3827

.30 1.2717 1.2116

.40 1.3626 1.0785
._,Io.50 1.4539 _

.60 1.5448 .8845

.70 1.6368 .8116

.80 - 1.7272 ,7498

.90 1.8182 ,6968
1.88 1.9895 .6589
1.18 2._1008 ,6106

1.20 , 2.0918 .5750
1.30 2.1833 .5434
1.40 2.2744 .5150

1.50 2.3657 .4895
J.60 2.4567 .4664

1.70 2.5481 .4454
].80 2.6395 ,4262
1.90 2.7306 ,4085
2.00 2.8218 .3923

#

k

L
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5_

Figure 2._
!

Figure 2.2
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Figure Z.9 Bretschneider spectrum at various

wind speeds (fully developed seas).
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BRETSCHNEIDER SPECTRUM AND RPPROX. HI/3 - 3.0(m)
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Figure 2.4 Bretschneider Spectrum and ADproximation
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Chapter 3:_DERIVATION:OF THE STATE- SP_CE EQUATION

We proceed to derive a state-space form of the

equations of motion. Starting with the sea, we can construct_the

following representation (three cascaded second order systems)

0 1 0 0 0 0 0

-_ -2J_oo _ o o o
o 0 0 0 1 0 0 0 • (51)

x = _s +
, -s o o -_o-2J_o o _i 'o

0 0 0 0 0 1 0

0 0 0 0 -_ -2J_ o 1

n = [ sv_7o o o o o] x

or

o

x$ = As xs + Bs_ (52)

= C x
S --S

Heave-Pitch Mode1

The following model is derived for the force (some algebra

was involved to reduce th'edimension of the state).
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o m _

0 1 0 0 0 0 1

-_}o -2J_o (_ 0 0 0 I

0 0 0 1 0 0 1

o xf +
xf = 0 0 -_i -2J_o 0 -- 1 1

81 82 83 %4 1 0 I

:Lo 0 0 0 _:os -

or written in short

o

xf = Af xf + Bf n
n

F (54)
= Cf xf

The inertia model can be written as follows:

0 1 0 0 0 0

o 81 B2 83 B4 x + DI D2 --_-I:3J
Xm = m bJ-- 0 0 0 1 - 0 0

Ss 8G 87 Be D3 D4

(55)
o o

= '0 1 Xm
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where

DzD, A33 A3 s i
• = (56)

3 s_ Asj

D2 C3 B3 C B
= - (57)

s 8s 87 3 s3 Bs3 Css

and we can write in short

-Xm= _m-Xm+ Bm 3
(58)

_X:I = Cm "m

Now the total model can be constructed as follows:

O

xt=_tx-t+Btw
(59)

:x_ = Ct xt

where
_A O O

At = i s
O A BmCf

I m i

IBfCs 0 Af_

Bt = FBs O O_ T (60abe)

Ct = _O Cm
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Data were obtained for the DD-963 destroyer from the M.I.T.

Seakeeping Program and are given in Appendix 2. Appendix 4 lists

a computer program that produces the At, Bt, Ct matrices once the

ship speed, wave heading, significant wave height and modal

frequency were specified. The output can be used directly as

input to the LIDS control and filter design package.

Table 3.1 provides the numerical values of matrix A for

speed 20 knots, angle 0° (head seas), significant wave height

i0 ft. and modal frequency 0.72 rad/sec (sea state 5).
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Swa[-Rol!-Yaw Model

The sway, roll, yaw exciting forces and moments are essentially

driven by the slope of the sea elevation, which for regular waves

equals the wavenumber times the amplitude, or for deep water we

can write

_2
Slope = -- ag

i.e. in the time domain:

i d 2

Slope = g dt2 _ (61)

As outlined in Chapter i, the fact that only roll has a

spring constant causes zero pole cancellation problems, which can

be avoided by introducing the matrices T and U described by

equations (36) through (38). The original equation is in the form

- I !

(M+A) xI + BxI + CxI = F1 (62)

where xI is of dimension 3:

xI = _roll = x_ , F1 = F_ (63)
Lyaw x6 F6

M is the mass matrix, A and B the added mass and damping

matrices respectively, C is the hydrostatic matrix and F the vector

of exciting force and moments. Then

S2Xl = - [M+A]-I SXl - [M+A]-ICxl + [M+A]-I[I (64)
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By letting
T
x = [x2 , x_ , x4 , x6]m

FT = [;F2, F2, F_, ;F_, F6 ] (65ab)

and using the T and U matrices of equations (36),(38) we obtain

a state space description of (64) without zero-pole cancellation,

in the form
I

x = T x + U F (66)

The state space representation of equations (27) through (29)

is in the form

x. = x. + n (67)
--3 __2j -2 _ --3

where j = 2,4,6, while

;Fj A3 3
X.

= ._2. --3 (68)
Fj 0 A3 3

For this reason we build a force matrix AF:

AF = _ A4 _ J (69)
_ A6

I

and a matrix BF driving the force dynamics with 0 , i.e. using the

sea model, which is exactly the same as in the case of heave,

pitch (6 states), so



66

BF (i,j) = 0

except

BF(2,2) = -A2_

BF(4,2) = -A_ (70abcd)

BF(6,2) = -A6_

Then using the same sea model described in equations (52ab) we

obtain the overall model as

(16x16) (16xl)
!

xt= At xt + BtW
(71ab)

Ix2 (3x16)

: ctxt
X6

where

As _ _ 1
At = BF AF

u T

T = [ BT @] (72abc)Bt s

Ct [@ i 1 0 0 0 ]

= 0 0 1 0
" 0 0 0 1

Data for all quantities involved are given in Appendix 2, while

Appendix 4 lists the computer programs that can produce the matrices

At, Bt, Ct once the ship speed, wave heading, significant wave

height and modal frequency are specified.
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Table 3.1 provides the At matrix for speed 15.5 knots,

heading 45°, significant wave height i0 ft. and modal frequency

0.72 rad/sec (sea state 5).



TABLE 3.1

Matrix A for heave and pitch (15 x 15)

_. !. B. 8. B. B. 8. B, e. B. B. _. 8. 8. 8.

-1.491K+_ -I.728K+_ 8. 1.491£+_ B. B. 6. _. 8. B. B. B. B. B. 8.
_. B. O. I. 2. O. 8. B. _. 2. O. _. B, 8. _.
O. _. -1.4SIE._ -%.72g£_1_ _. 1.491E'_al_ 8. 8. 8. O. 8. 8. _. 8'. B.
8. 0. 8. B. 8. I • B. B. 8. _. 8. 2. B. 8. 8.
O. O. B. 8. -1.4911r._ ~1.72BE+JEer O. O. _. 8. O. 8. O. O. O.
S. 8. S. O. 8. 8. B. I • 8. 8. 8. 8. E. B. O.
B. B. 8. B. E. B. -1.213E+_ -5.358£-81 -9.452E+E_ -;_.19BE+EI ?.S5_E-BI B. _. 8. -5.B27£_-B1
E. 8. B. 8, 2. E. B. l_, S. 1. S. B. B. 8. El.
E. 0. i]. B. _. 8. 8.810E-B4 3.11;_£-84 -I. IG3E+_ -4.347_'-BI -1.5291£-_3 O. 13. E. !.5BSF'-2"d
8, 8. m. O. 8. 8. I_. I_. B. 8. 8. I • 8. g. B.
B. 2. E. B. B. m. B. B. E. B. -G.S35E'-B! -Z. Z52£4"$_' 6.G35£-E! E. B.
e. _B. S. 8. O. B. Ca. _. 8. 8. ta. O. B. I. S.
G.595£+_ O. B. E. a. 8. O. B. S. S. S. 8. -G.S35£-i_1 -1.152£+_ _.
8. _. O. €1. O. B. _. 13. i E. _. 9.?28E:-Et 1.249£+_-9.728E-E1 4.4E_'E-O! -I.BSOE.Bi]

0"_
CO

Matrix A for sway, roll, yaw (16 x 16)

_. 1• O. O. O. O. O. O. O. O. O. 8. O. O. 8. 8.
-I. t35E+O43-1.50"7£+_ 8. I, 136E+08 S. O. ;_. O. O. O. O. I_. O. O. O. O,
O. _. 8. 1. O. 8. 8. O. 8. O. O. 8. O. O. _B. O.
8. 6. -1,136£+B;_ -1.51]'.'£+1_ 6. 1.136E+EO 6. 8. 8, 8. 8. 6. 8. 8. 8. 6.
8. O. 8. O. O. I. O. _. 8. O. 8. O. O. 8. O. _.
9. O. O. 9. -1.136E._ -1.587E+Sl_ O. E. O. 8. 8. 8. O. 8. O. O,
O. 8. 8. O. 8. O. O. I. O. O. g. 8. O. O. O. O.
O. 5. ?22E+Ol 8. _. O. 8. -2, GIBE-E! -5.2B2='-Ol B, 8. 8. 8. O. O. 8. 8.
8. €. O. S. O. 8. 8. O. B. I. B, I_. O. g. B. O.
O. 6. 859E+B2 O. 8. S. O. O. S. -4.575E-01 -S. 696E:-1_1 8. 8. 8. 8. 8. B.
O. 8. B. O. 8. 8. O. O. O, 8. ii_. 1. 8. O. O. O.
O. 5.481E4-1_3 O. O. O. 8. O. _. 8', 8. -O. 111E-B! -4. 458E-81 O. O. O. O.
E. _. B. B, 8. B. :_.423E-23 O. B, O. -4.469E-i_lS B. -0.343E-_3 2.740£'-Erl I.W3?E-Gll 8.B41E._
i]. O. O. O. 8. 8. 3.21BE-_IS 1.375£-08 8. 8.142_'-B8 -1.9S9£:-_ -1.804£_q39' 4.343E-_ -l.SSlr-_;i_ -2.344E:-B1 1.206E-B2
B. B. 8. 8. O. O. O. O. O, O. 8. O. O. 1. I_. O.
8. 6. 8% O. 8. 8. -4,_57E-_; O. i O. 6, 1.29gE-B?' O. -4.511£-B4 -2.319r-82 4.692E-04 -3.;?42£-B'd

i
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Chapter 4: KALMAN FILTER AND SIMULATION

The heave-pitch approximation resulted in a 15 state system

and the sway-roll-yaw approximation in a 16 state system. Given

that 6 states describe the sea, the total system required for

5 degree of freedom motion studies would contain 25 states. If the

sea spectrum contains two peaks then a 31 state model is required.

The heave-pitch group is not coupled with the sway-roll-yaw

group so that the study of each group can be independent. This

is not to indicate that in a total design the two groups must

remain independent, since they are excited by the same sea.

Heave-Pitch Motions

It is assumed that the heave and pitch motions are measured.

• The gyroscopes can provide accurate measurements of angles,

up to about I/i0 degree. The noise therefore is due to structural

vibrations, which in the longitudinal direction can be significant

due to the beam-like response of the vessel. As a result the

measurement noise was estimated based on data from ship vibrations.

The same applies to the heave measurement noise.

A Kalman filter was designed for speed V = 21ft/sec and waves

coming at 0° (head seas) with significant wave height H = i0 ft.

and modal frequency _ = 0 73 rad/sec (sea state 5) The measure-m "

ment noise intensity matrix was selected from ship vibration
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data to be

0 0.0003

The model poles are shown in table 4.1, while the filter poles are

within a radius of 1.3 rad/sec as seen in table 4.2. Typical

simulation results are shown in Figures 4.1 and 4.2. In these

figures exact knowledge is assumed for the significant wave height

and modal frequency. The accuracy of the filter is very good both

for heave and pitch.

Subsequently, the same filter was used combined with a ship

and sea model different than the nominal one, to investigate the

sensitivity to the following parameters:

The influence of the significant wave height is very small

when the modal frequency is accurately known. On the contrary, .....

the influence of the modal frequency is quite critical; particularly

for pitch (see Figures 4.6 and 4.7). The same conclusion is

reached when a double peak sea spectrum is used [22],[23].

The effect of the forward speed and wave direction was found

to be unimportant particularly for heave, while for small changes

in wave angle (_ 15°) the pitch prediction error was not affected

significantly [22].
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S_way-Roll-YawMotions

As in the case of heave and pitch, the measurement noise

consists primarily of structural vibrations rather than instrument

noise. For roll such vibrations are quite smal! for a destroyer

vessel and similarly for sway and yaw the vibrations are smaller

than in the case of heave and pitch.

The noise intensity used was nonetheless similar to the

heave, pitch noise, so as to bound the filter eigenvalues below

2 rad/sec, which is the typical wave bandwidth.

A specific example has been worked out for a forward ship

speed of 15.5 ft/sec and waves at 45° and sea state 5 (significant

wave height of i0 ft. and modal freqeuncy of 0.72 rad/sec). The

measurement noise intensity matrix was

" diag {0.i ft2 , 2,10-4 (rad)2 , 2,10-_ (rad)2}

The simulation shows very good estimation as seen in figures 4.3,

4.4, and 4.5. Yaw is very small and the measurement noise is large

relative to the yaw motion, nonetheless the yaw estimation based

primarily on the roll, sway measurements is very good.

Table4.2 presents the results of a sensitivity study of the

influence of the various parameters involved. The most critical

parameter is again the modal frequency. The ship speed and the wave

direction are not critical for the estimation error. This is a

very important conclusion as far as the wave direction is concerned,

because in reality, seas are directional and very difficult to

measure, or even model appropriately.
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The influence of systematic measurement errors was studied

by using a calibration factor. This factor is defined to be the

ratio of the measurement fed to the filter over the aCtual

measurement, thus introducing a systematic error. If C is the

calibration factor,then the systematic error as a percentage of

the actual measurement is 100.(I-C). In the case of a 10% error,

the most significant change was found in the case of the roll

motion. In the case of a calibration factor 0 (indicating a dis-

connected measurement) significant errors resulted, especially

for roll in the case of disconnected roll measurements (Table 4.3).

Table 4.4 presents the poles of the model used, while Table

4.5 shows the poles of the Kalman Filter derived for the nominal

condition as described above. Figures 4.8 through 4.10 are sim-

ulation results and show the significant effect of the modal fre-

quency on the estimation error. Finally, Figure 4.11 shows the

simulation of the sway motion estimation when the roll measurement

is disconnected.
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Ship Speed: U = 21 ft/sec Heading angle: 0°

SEA: H=I0 ft, w = 0.72 ra_ H=I0 ft, w = 0.52 radm sec m sec

PI,2 = -0.199 _+i.iii% same

P3,4 = -0.286 _+1.016_ same

P5 = -1.058 P5 = -0.696

P6,7 = -0.576 _+0.576 _ same

P8,9 = -0.576 _+0.576 % same

Pl0,11 = -0.863 _ 0.863 _ Pl0,11 = -0.571 _ 0.571_

P12,13 = -0.863 _ 0.863 _ P12,13 = -0.571 t 0.571_

P14,15 = -0.863 _ 0.863i P14,15 = -0.571 _ 0.571_

TABLE 4.1: Poles of the heave, pitch model
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Ship Speed: U = 21 ft/sec, Heading angle: 0°

SEA: H = i0 ft Wm = 0.72 rad/sec

PI,2 = -1.289 _+0.540_

p = -1.134 + 1.033
3,4

P5 = -1.340

P = -0.903 + 0.7280
6,7

P8,9 = -0.777 _+1.376

= -0.273 + 1.572
PI0,11

= -0.248 + 0.918
P12,13

P14,15 = -0.0936 _ 0.0940

TABLE 4.2 Poles of the heave, pitch Kalman Filter
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TABLE 4.3 Sensitivity of the RMS error of sway, roll, yaw motion,
to changes in the parameters of the ship-sea model.
C (sway) indicates a calibration coefficient in the
sway measurement (and similarly for the other motions),
to handle systematic errors in the measurements.

Parameter Changed Error •Sway (ft) Error Roll (deg)Error Yaw (deg)

Basic Case 0.241 0.56 0.0776

U=20 ft/sec 0.245 0.568 0.0963

_m--0.52rad/sec 0.314 0.91 0.0858

#=60o 0.296 0.624 0.112

C(sway)=0.9 0.255 0.586 0.081

C(roll)=0.9 0.247" 0.708 0.0808

C(yaw)=0.9 0.242 0.56 0.0777

C(sway)=0.0 0.518 1.21 0.1408

C(roll)=0.0 0.376 4.08 0.158

• C(yaw)=0.0 0.242 0.563 0.0785

RMS values of
the motions 0.60 4.56 0.227
(nominal case)

Measurement
noise intensity (.316 ft:)2 (-81°)2 ('81°)2
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Ship speed : U=lS.5ft/s %<,_veheadino angle : _=45_

SEA : H=10ft _ =0.72rad/s 1 SEA : H=12ft _ =0.-_S07rad/s
m I m

Ship model poles :

Pl,2 = -0.754 Z 0.754_ Pl;2 = -0.470 z 0.470

P3,4 = -0.754 ± 0.754_ P3,4 = -0.470 -+ 0.470 {

P5,6 = -0.754 ± 0.754 _ P5,6 = -0.470 Z 0.470

= -0.223 ± 0.873
P7,8

= -0.335 . 0.588
P9,10

= -0.260 . 0.440 _ SA!,_E
Pll,12

= -0.00983 Z 0.484
P13,14

= -0.0204 __ 0.0597
P15,16

TABLE 4.4 : Poles of the sway, roll, yaw model
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SEA H:10ft u :0.72rad/s

<a!man filter poles :

= -1.067 ± 1.086
Pl,2

= -0.457 ± 1.312
P3,4

= -1.279 ± 0.477
P5,6

= -0.210 . 0.934 {
P7,8

= -0.365 z 0.523
P9,10

= -0.087 Z 0.446 %
Pll,12

= -0.159 z 0.165
P13,!4

= -0.0203Z 0.0595i
P15,16

TABLE 4.5: Poles of the sway, roll, yaw Kalman filter



78

7.50

-7.50 i I c i i , _ i

m m m m m m m m m
m I_ _ m I_ m m m m
i1"1 I',1 FI pl FI !1"1 Fi FI ii"!
+ + + . + + + + +

TIME (_ec)

Figure 4.1

Results of Heave Simulation and Its Kalam Filter Estimate

(dotted line), Using Accurate Model at U=21 ft/sec and 0°

Angle of Incidence and in sea state 5.
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Figure 4.2

Results of Pitch Simulation and Its Kalman Filter Estimate.

Same conditions as in 4.1.
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Figure 4.3

Results of Sway Simulation and Its Kalman Filter Estimate

(dotted line), Using Accurate Model at U=15.5 ft/sec and 45o

Angle of Incidence, and in sea state 5.
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Figure 4.4

Results of Roll Simulation and Its Kalman Filter Estimate.

Same conditions as in 4.3.
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Figure 4.5

Results of Yaw Simulation and Its Kalman Filter Estimate.

Same condition as in 4.3.
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Figure 4.6

Results of Heave Simulation and Its Kalman Filter Estimate

(dotted line). The actual wave spectrum model frequency is

0.52 rad/sec, while the value used in the Kalman Filter is

0.72 rad/sec. All other parameters as in 4.1.
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Figure 4.7

Results of Pitch Simulation and Its Kalman Filter Estimate.

Same condition as in 4.6.
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Figure 4.8

Results of Sway Simulation and Its Kalman Filter Estimate

(dotted line). Actual W =0.52 rad/sec, while in Kalman Filterm

Wm=0.72 rad/sec. All other parameters as in 4.3.



86

30.00

20.00

10.00 1

0.00 " - I
_.i
._1
o
n,,

-I0.00

-20.00 -

-3 0.00 , i i i

r,1 r,1 rq i'q I','i
-I- + + + +

TIME (sec)

Figure 4.9

Results of Roll Simulation and Its Kalman Filter Estimate.

Same conditions as in 4.8.
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Figure 4.10

Results of Yaw Simulation and Its Kalman Filter Estimate.

Same conditions as in 4.8.
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Figure 4.1i

Results of Yaw Simulation and Its Kalman Filter Estimate

(dotted line), using noisy measurements (light line) when the

roll measurement is disconnected. Same other conditions as

in 4.3.
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Figure 4.12

Results of Sway Simulation and Its Kalman Filter Estimate

(dotted line), using measurements (light line) whenthe actual

angle of incedence is 60° and the value used in the Kalman

Filter is 450. Same other conditions as in 4.3.
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Chapter 5: SHIP MOTION PREDICTION

It is of interest to use the models developed in the previous

sections to forecast the behavior of the vessel within a few seconds.

The feasibility to predict the motions could assist significantly

the pilot in committing the aircraft to landing under favorable

conditions.

An automatic landing does not require within LOG theory such

information since the predictable part of the motions is included

in the state and therefore used directly. Nonethless the prediction

is of primary importance for pilot landing or semi-automatic landing.

Similarly for offshore operations a display of a prediction

of the most critical vessel motions could reduce the operation risk

significantly. The operator could choose a time window of minimal

motion or acceleration and then transfer cargo or personnel.

The subject has been considered in the literature [6], [ii],

[24] using both frequency and time domain techniques.

Theoretical Background

The first to treat the subject of developing a predicting

filter was Wiener [29]. If a random process has power spectrum S(_)

a spectral factorization is first required, i.e.

A(_) = _(_) _* (_) (73)

where * denotes complex conjugation and _(s) is an analytic function

of s with the exception of a finite number of poles in the left

half plane. Then the transfer function of the optimal predictor

K(_),in the sense of minimizing the expected value of the error, is
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given by the expression:

IK(_) = Y (t+a)e-i_t dt (74)0

where Y(t) is the inverse Fourier transform of _(_) and a is the

prediction time. The importance of this result is to provide a

number of intuitive results, such as the fact that a narrow band

process is predictable while at the extreme a wide band process is

unpredictable. The disadvantage of this approach is that it may

require differentiators in its implementation, depending on the

form of the spectrum [29].

The alternative is to use state space models where no such

problems appear. In fact the predictive filter has a very simple

form. If the system has a state space description

o

x=Ax+ W 1_
(75ab)

Y= Cx+ W 2

where W1 and _2 are white noise signals, it is not hard to see that

if the state _ is perfectly known at t then the predictable part of

x(t+T), denoted by Xp, is

x (t+T) eAT_p = x(t) (76)

If the state is not available the Kalman filter estimate is

used instead [5],[8]:

AT ^
Xp(t+T) = e x (t) (77)
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i.e. the propagation of the equation

o

x
--p(t+T)= A x (t+T)

--P (78ab)
J%

x (t)= x (t)
--p

For a stable matrix A_Xp(t+T) . 0 as T +_, reflecting the fact

that the influence of the driving white noise completely alters the

state of the system, once the homogeneous solution has died out.

The covariance of the error

e = x - x
-- -p -

denoted as P is governed by the equationP

o (T) A T + V 1 (79)Pp(T) = A Pp(T) + Pp

When the state is perfectly known the initial condition is:

P (o) = 0 (80a)
P

While in the case of using the Kalman filter estimate

P (o) = P(t) (80b)
P

where P (t) is the error covariance of the Kalman filter at the

"present" time t.

The two models developed for the vertical and horizonatl motions

have been used to study the predictability of the ship motions.

Figures 5.1 through 5.5 show simulation results assuming perfect

state knowledge. Similarly perfect state knowledge has been

assumed and the covariance has been propagated using equations (79),

(80). Figure 5.6 is a plot of the heave, pitch motions rms error

versus prediction time, while Figure 5.7 depicts the sway, roll,
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yaw rms erros versus prediction time. The error has been non-

dimensiona!ized with respect to the corresponding rms motions.

As expected, the error tends to 100% for large prediction

times. Roll is a narrow band process and as expected it is the

most predictable motion, up to ten seconds ahead. The remaining

four motions are predictable up to five seconds ahead.

These results hold in the ideal case. The actual performance

will be lower due to the presence of noise in the measurements,

fewer measurements than states and modeling errors.

To assess the effect of measurement noise some simulations were

made, whose results are shown in Figures 5.8 through 5.10. A rather

extreme case was considered: In the case of the vertical motions

only two measurements were available, heave and pitch, and in the

case of the horizontal motions, only the sway, roll, and yaw motions

were available. As seen in the figures, the same noise used to

derive the Kalman filter gains was used, which is quite significant.

As expected, the performance deteriorated although roll is still

predictable up to eight seconds. The other four motions are pre-

dictable up to about two seconds.

In the case of modeling errors, let the correct model be

o

x = Ax + W (81)

while the prediction model is

o

x = A* x (82)
--p --p

with A* = A + 6A. Then the error e = _p - _ is governed by the

equation

= A*e + _A x - W (83)
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°r bY letting Xl = [e]T
O _

Xl = 0 A Xl + W (84)

so by denoting:

P = E {e eT } , V = E{ x eT } , v = E{ x xT } (85)

the following equations are obtained /_

o

P = A* P + P A*T + _A'V + vT'6AT + V1

o

V = A V + V A*T + U-_AT - V1

o

U = A.U + U AT + V1 (86abc)

\ U, the covariance of the vessel model, can be assumed to be in

steady state so the first two equations can be used to propagate

V and P. Figures 5.12, 5.13, and 5.14 depict the error covariance

of the vessel motions when the model used is different than the

actual one. Since one of the most critical parameters is the modal

frequency, its effect has been studied: The nominal value is 0.52

rad/sec, while the value used in the prediction filter is 0.72 rad/

sec. The covariance at the initial time is assumed to be zero

(perfect state knowledge).

As can be seen from these figures, the effect of modeling error

is important in the case of the modal frequency, providing a re-

duction of about 30-50% in the prediction time within prescribed

confidence limits.
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The sinusoidal behavior of the covariance propagation at

about twice the motion natural frequency (as seen in the case of

roll, for example) can be explained by the form of the covariance

equation

o

P = A P + P AT - V (87)

For example the unforced equation

o ATP=AP+P
(88ab)

P(O) = Q

has the solution

P(t) = eAtQeATt
(89)

which is composed of exponentials in the form

(Xi + lj)t
e

where li are the eigenvalues of A. As a result 21 i will appear and

in the case of roll it is obvious that twice the roll natural fre-

quency dominates the response.
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Reduced Number of States

Another aspect of interest is omitting states. In such a case

we denote by x the nominal state of dimension n and by x_*the

implemented state of dimension m, n>_m. We assume that x_*is

obtained by simply omitting some states, so that

x* = Wx (90)

where
w = [I : _] (91)m.

with Im the unit (mxm) matrix. The nominal system equation is
o

x = A x + BWI

(92ab)•

= Cx + _2

while the prediction filter is

o

X = A * X
-p -p

(93ab)

Zp = C* Xp

where x has dimensionm, A* is the mxm reduced systemmatrix and
-p

C* the reduced observationmatrix. Then we define:

A = WT A* W -A (94)

and we obtain the covariance equations [8]:

= wT.A*.W.P + p-wT-A*T-w + _A-V + vT_A T + V1

o

V = A.V + v-wT.A*T.w + U._AT - V1 (95abc)

o = AU + UAT + V1U
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where P, V, and U are the same quantities defined before, ex-

cept that the error is defined as:

e = WT x - x (96)
--p

Note that we may eliminate any row from the original system,

so its is convenient to set all the rows to be eliminated at the

end by performing a row permutation. The matrix that interchanges

rows has the form

S = 0 0 ... 0 1 0 ... 0 97)

e • •

where each row has only one nonzero entry equal to one, and no row

is the same as any other one.

The inverse of S is ST thus minimizing the computational effort.

Once the appropriate permutations have been established, it is easy

to construct S and equation

!

x = Ax + BWI_
(98ab)

Z= Cx

becomes
o

£ = Ap £ + BpW1 (99ab)

Z= Cp £

where
z = Sx

A = S A ST
P
B = S B (100abcd)
P

C = C ST
P P
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Then we proceed to determine the error covariance as explained

above using Ap, Bp, and Cp as the system matrices.

The inclusion of non-minimum phase zeros was considered to be

an important part of the overall modeling. This was confirmed by

studying the effect of omitting these zeros on the prediction error

covariance. This is seen in Figure 5.15, where the heave and

pitch rms error, non-dimensionalized over the corresponsing rms

motion, is plotted versus prediction time. As expected, pitch error

increases substantially, since pitch lags heave at low frequencies

by 90°. Because heave and pitch are coupled, the error in heave

is also affected, resulting in poor prediction of both heave and

pitch.
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-2.88

TIME (seo)

Figure 5.1

Heave Simulation Results and Its Prediction (dotted line starting

at t=40 sec) for U=21 ft/sec and _=0°, and in sea state 5.

Perfect state knowledge is assumed.



i00

2.BB -

1.5B

TIME (e_eo)

Figure 5.2

Pitch Simulation Results and Its Prediction. Same conditions

as in 5.1.



i01

TIME (sec)

Figure 5.3

Sway Simulation Results and Its Prediction (dotted line starting

at t=40 sec) for U=15.5 ft/sec and €=45°, and in sea state 5.

Perfect state knowledge is assumed.
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Figure 5.4

Roll Simulation Results and Its Prediction. Same conditions

as in 5.3.
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TIME (sec)

Figure 5.5

Yaw Simulation Results and Its Prediction. Same conditions

as in 5.3.
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PREDICTION ERROR

12.59E.01

TIME(SEC)

Figure 5.6

RMS Prediction Error Over RMS Motion Versus Prediction Time

for Heave and Pitch, U=21 ft/sec, Wm=0.72 rad/sec, sea state 5.
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PREDICTION ERROR

I;'.58£+8%

Z 16.88E+81
bJ
U

bJ
O.

Z 75._8£+880

F-
0

to

\ J /
_" SWAY
'" ROLL
O_ 25.88E+90

/ri / / --" --------YAW.08E-81 L i t n n
•-" _" I%) I%1

cn _g _ _ _n

TIME(SEC)

Figure 5.7

RMS Prediction Error Over RMS Motion Versus Prediction Time for

Sway, Roll, Yaw. U=15.1 ft/sec, @=45 °, sea state 5.
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HEAVESIMULATION,PREDICTION

;'.50 -

l
-s.ee l ACTUALr'10TION

-- -- ---NOISYMEASUREME_T

-7.5e- ---------PREDICTION

-10.00 i i i i i i i

TIME (soo)

Figure 5.8

Heave Simulation Results, Its Kalman Filter Estimate (up to

40 sec) and Its Prediction Using the Kalman Filter Estimate

(after t=40 sec). Same conditions as in 5.1.
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SWAY SIMULATION,PREDICTION

3.88

I. 8B

TIME (eeo)

Figure 5.9

Sway Simulation Results, Its Kalman Filter Estimate (up to 40

sec) and Its Prediction Using the Kalman Filter Estimate

(after t=40 sec). Sam conditions as in 5.3.
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ROLLSIMULATION,PREDICTION

TIME (:_eo)

Figure 5.10

Roll Simulation and Prediction. Same conditions as in 5.9.
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.75
actual

.... estim_.ted/predicted

.50

TIME (_ec)

Figure 5.11

Yaw Simulation and Prediction• Same conditions as 5.9.
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Figure 5.11: .. _-

Yaw Simulation and Prediction• Same conditions as 5.9.



iii

PttLGIICTION ERROR (Stir)
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ll.llE-lll I._ , i I i i

TZME(SEC)

Figure 5.12

RMS Prediction Error Versus RMS Motion Versus Prediction Time

for Sway. Actual Wm=0.52 rad/sec, used Wm=0.72 rad/sec. All
other conditions as in 5.3.
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PREDICTION ERROR (ROLL)

TIME (see)

Figure 5,13

RMS Error Versus Prediction Time Roll. Same condition as

in 5.12.
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I_I_I_ERROR(Y_)
12.50E_1

TIME(8oo)

Figure 5.14

_4S Error Versus Prediction Time for Yaw. Same conditions

as in 5.12.
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Figure 5.15

RMS Prediction Error Over RMS Motion for Heave and Pitch.

U=21 ft/sec, @=0°, sea state 5. In the prediction model the

nonminimum phase zero have been omitted.
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CONCLUSIONS

A satisfactory approximation of the ship motion equations

as provided by hydrodynamic theory has been achieved. The

approximation is valid within the wave frequency range and for

seas described by the Bretschneider spectrum, whose major

limitations are

(a) uni-directional seas

(b) unlimited fetch, deep water

The resulting two groups of motions, i.e., heave-pitch and

sway-roll-yaw can be approximated separately requiring 15 and 16

states respectively. If both must be used a 25 state system is

required.

The model depends parametrically on the ship speed, the

wave angle and the significant wave height and modal frequency.

The Kalman filter is designed using as measurement noise

intensity, values from ship vibration amplitudes. For sway-

roll-yaw the vibration levels are small, nonetheless, to bound

the filter eigenvalues below 2.0 rad/sec similar values were

used, as for heave-pitch.

It should be remembered that heave and pitch are related

by a non-minimum phase transfer function, resulting in reduced

filter accuracy. Actually, heave is 90° out of phase for low

frequencies with respect to all the other motions.
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A sensitivity analysis of the filter performance indicates

that the most critical parameter is the spectrum modal fre-

quency. It should be remembered that a sea spectrum may contain

more than one peak, in which case it is essential to obtain an

accurate estimate of both peak frequenices.

Of particular interest is the fact that the wave direction

does not have a significant influence on the estimation error.

This means that although our modeling used a uni-directional

Bretschneider spectrum, it can be applied in its present form

for directional seas.

The models derived herein can be used to predict the ship's

motions up to 5 seconds ahead in time for all motions and i0

seconds for roll. When modeling errors and noise are taken into

account, a more realistic estimate of 2-3 seconds for all motions

and 6-8 seconds for roll_is obtained.

Again, the modal frequency of the sea spectrum is the mo_t

critical parameter. Also, the nonminimum phase zeros can deterio-

rate the performance of the predictor significantly if omitted.
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APPENDIX 1

Hydrodynamic Theory

In the text, the simple one dimensional equation of heave

motion was derived to demonstrate the principles involved. Here

we will proceed to write the overall equations of motion.

We will avoid extensive hydrodynamic theory developments

since [13 ] and [17 ] provide an in depth coverage. Within linear

theory, we intend to write the added mass, damping and exciting

force terms.
/

The equations of motion can be written as

\

{_m2 [M + A] + im B + C} _ = F,_.n i (i)

where

M = {Sij} , A = {Aij}, B = {Bij}, C = {Cij} (2)
+

We can find the various matrices from hydrodynamic theory

[15 ], [ 173 and dynamics. We omit surge as a second order

quantity so that x is a vector of dimension f_ve:f_

m O -mz O O
c

O m O O 0 \
M =

-mz O I 0 I (3)
C XX XZ

0 O O I 0
YY

O O I O I
zx zz

with m the of the ship, z the distance of the center of
C

Y
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gravity, vertically, from the origin.

2 0 A2_ O A26

0 A33 0 A3s 0

A = A_2 O A_ 0 A_6 (4)

O As3 0 Ass 0

A62 0 A6_ 0 A66

o2 O B2_ 0 B2

0 B33 0 Bss

B = B_2 0 B_ O B_s (5)

O Bs3 O B55 0

B_ 0 B_ O B66

I

O O 0 0 O

O pgA_p O C3s 0

C = 0 0 A(GM) O O (6)T

0 Cs3 O A(GM)L 0

0 0 O 0 0

With A_p the waterplane area of the ship, _ the displacement,

(GM)T the transverse metacentric height and (GM)L the longitudinal

metacentric height.

The following relations hold true within strip theory [17]
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A3 3 = A° U A
33 - _b s

A
B33 = B° + U u3333

Ua A
A3 s = A° U U bA3 _ 3

o A U2 AB35 = B° + UA33-Ux A a33 - _ D 335

A53 = A_ + U o U A3s _ B33 + _-2XA b 3

o A
B53 = B° - UA33 - UxA _3335

A U2 Ao U2 o U 2 b 3 + _sxA 0_33Ass = Ass + _2 A33 - _sx A

o Us o A Us AB.=s = Bss + _ B33 + Ux_ a33 + _x A b 3

The superscript 0 denotes quantities at zero speed. XA is
A

the distance to the aftermost cross-section of the ship and a..,z3
bA.are its sectional added mass characteristics. These last two
z3

quantities are important only for cruiser stern ships. The A[j,

B?. can be found using the M.I.T. Seakeeping Program [273.z3
Similarly, we can find:

° u _sA22 = As2 - _-_

o A
B22 = B2s + U OL22
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o uAz _ = A_2 = A2 ,.-

o A

o o A U2 AB2s = B26 - U_2 + UXA e22+ _ b 2
1

o U b_A_ = A_ -

o A *B_ = B_ + U a _ + B_

with B4_ the equivalent nonlinear damping

U2 A
o U o U bA_ + _2

A_ 6 = A_ s + _ B2 _ - _2 XA

o o A U2 bA
B_6 = B_6 - UA2_ + UxA ez_ + _ 2_

• o U o U b2A2
A_2 = Azs - _ B22 - _2 xA

o o A
B62 = B2 _ + UA2 2 + UxA e22

o U o U bA4A6_ = A_6 -- _2 B2 _ - _2 XA

o o • A
B6_ = B_ + UA2_ + UxA e_
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o o_ ° u 2 bA . U_ _A2A66 = A6_ + _-_A22- _ xA _ XA

o U2 o A U2B66 = B66 + _ B22 + UX_ e22 + _ xA b 2

uF2 = _o P I (fz + h_) d_ + eo P i_--

F6 = uo p I [_ (f2 + h2) + .----h2 ] d_ + eo P "----xA h

F_ = Uo p I (f_ + h_) d_ + uo _ .-----h

uF3 = P _o I (f3 + h3) d_ + p _o i_

U U AFs = -P Uo I [_(f3 + h3) + _-- h3 ] dE - p uo -- XAh

where f. is the sectional Froude-Kryloff force and h. the sectional3 3
diffraction force.
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VCG = Vertical Center of Gravity = - 4.6 ft.

(from waterplane)

GM = Metacentric Height = 4.16 ft.

XCG = Longitudinal Center of Gravity = 1.07 ft. AFT

( from admidships)

= Displacement = 6,800 ton
/

Cb = Block Coefficient = 0.461 ...... -
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APPENDIX 2

The M.I.T. Sea-keeping Program [27] was used to

derive the hydrodynamic data. The values used to develop

the simple models for heave-pitch and sway-roll-yaw (as

already mentioned, to first order heave and pitch are

uncoupled from sway, roll and yaw).

All units are consistent such that the forces

are obtained in tons, the moments in ton-ft., the

linear motions in ft. and the angular motions in radians.

The programs change the angular motions and express them

in degrees only in the final (output) stage.

Heave-Pitch Characteristics

M = 214 C33 = 587

0 = 260
A°33= 281 B33

0 = 15500
A°35= 15500 B35

C35 = 260

-55T-_3"76"106 A55 = 4.20"106

B55 = 3.8,106 C55 = 9.53,106

A1 = 550

A2 =120000

The principal ship characteristics have as follows

LBp = Length between perpendiculars = 529 ft.

B = Beam = 55 ft.

T = Draft = 18 ft.
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Sway - Roll - Yaw Characteristics

A44 = 22,800

I44 = 104,000

B44 = 800 + B44

C44 = 28,800

A24 = -760
B24 = -50

A46 = 181,000 B46 = 5,600

A22 = 220 B22 = i0

A66 = 4.16.106

I66 = 3.8 * 106

B66 = 130,000

A26 = 14,500 B26 = 370

A2 = 380

A4 = 2,400

A6 = 23,000
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APPENDIX 3

Simulation

The simulation of a continuous system

I
x = Ax + BW1

y = Cx + W 2

where the white noise signals WI, W2 have intensity VI,

V2 respectively, is performed by constructing the equivalent

discrete system

x(T+6t) = Ak x(t) + Bk Wkl

y(t) = C x(t) + Wk2

where Ak = eA6t A2 6t2= I + A-6t + • /2 ! + . . .

= /t+_t A(t-T)BkWki e BW1(T)dt

An approximation would be

x(t+6t) = (I+A'6t)x(t)+(B-6t)Wkl

y(t) = Cx(t) + Wk2

i

where Wkl, Wk2 discrete white noise of intensity Vkl, Vk2

respectively, given by:
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Vkl = Vl/6t

Vk2 = V2/_t

If a random number generator is provided with a range be-

tween 0 and l, the following relation provides Wkl (and simi-

larly Wk2)

Wkl = (RND-0.5) •_2-Vkl

where RND is a random number between 0 and i.

Higher order approximations to Ak may be necessary in some

cases. Problems appear in particular with lightly damped systems.,

i.e., when the matrix A possesses eigenvalues -a + ib where

0<a<<b. Such for example, is the case of roll whose damping

is typically around 10% of the critical value.

The approximation:

e(-a+ib)_t (l-a'_t) + ib-6t

is valid provided

a_ t<<l

b_ t<<l

The next order term is:

2 6t2
(-a+ib) T

so for accuracy we require,

J(a2-b2)_2J <<a_t

ab_t2<<b_t
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which results in a single additional condition

2a

6t<<la-__b_ 1

It is easy to see that when a<<b then

6t<< min [_ , g •( )]

This requirement may be veryldemanding for simulation by

imposing an extremely small time step. If an appropriate step

is not chosen then the real part of the (neglected) second order

term reduces the first order real part, thus resulting in a re-

duction of the already small damping. By using a higher order

approximation, in the form

A-_t Am_tm
e _ I + A-at + . . .+ m7

such problems are resolved. In the present case, the sway-

roll-yaw model requires such treatment for efficient simulation.
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A__endix 4

Computer Program Listing



F!LE: _O[;EL FORTRAN A V'_/SP CGh_ER-%ATIONAL MONITOR SYS[E_ PAGE 001

DIMENSION A t 1̀5, !5) ,C(2,1 5) ,SIGMA( 15, 15) ,XI (2,2) MODO0010 Program to prepare
F×(X)=5.*(-X**4+I .)*(I.+2.*X*ALFA)-2.*ALFA*X-,5 MOO00020

WR !TE (6,2000 ) NiODOOO30

2C00 FC)P_._AT(3X,'INPUT THE SPEED (FT/SEC) AND WAVE ANGLE (DEGREES)') MODO0040 matrices for the heave-
REAL)(5, * )U, T I MODO0050

T=1I,3. 14159/180. MODO0060

s--:_2.2 MCDO0070 pitch motions.
}JRITE( 6,2010 ) MOr)O0080

2010 FORMAT(3X,'INPUT THE SIGN. WAVE HEIGHT (FT) AND MODAL FREQ. (RAD/SMODO0090
IEC) ' ) MODO0100

READ( 5, * ) Z.;, OMM MODO0110
ALF A= J/G_ O,IM*COS(T) MODO0120
UI =.2 MODO0130
U2=5. MODO0140

AA=FX(U_) MQDO0!50
£03 UM:-(J1 +',32),,. 5 MODO0160

IFIADS(_I-_J2),LT..OOCI',U;A) GO TO 901 MODO0;70
CC=F<(UM) MODO0180
IFIAA,,CC.GT.O.) GO TC 902 MODO0190
U't: U_ MOD00200
GO TO 903 MODO0210

£02 U_ =U_,I MODO0220
AA=.CC MODO0230
GD TO 903 MODO0240

£01 ZS=U'A+ U_€,_,2- ALFA MODO0250

GA',I=Z S *2. " ','. 25 MODO0260 /_f
Z51=(1 .'t(ZS/GAM)**4)**3/ZS**4 MODO0270 Lo
ZS2=EXP(-1.25/UM*_4)/UM**5/(1.+2.*ALFA*UM) MODO0280 (.,J
BE1 =ZS 1 *ZS2 MODO0290
A33=495. MODO0300
833=26 O. MODO0310
C33=537. MODO0320
A35=15500. MODO0330
B35=I 1 700. .280. :wU MODO0340
C35=26 O. ,U.I 7250. MODO0350
A53=15 500. MODO0360
85[;=1 1700.-280.,U MODO0370
C5,3---260_ U_ 17250. MODO0380
A55=7. 9_'* 1.3. *'6 MODO0390
B55=3,8.10__na MOOO0400
C55=-2 DO. *U* "2_,9.53"10.* "6 MODO0410
D::A33*A55""%35*_53 MODO0420
D_ =A55/D MODO0430
D2 .--A 35/D MODO0440
53::-A53!D MODO0450
D4=A33/b MODO0460
Z 1 =.-(D I *B33.D2*B53) MODO0470
Z2=-( D 1 _ C33+D2.C53) M(]DO0480
Z3=-(D 1 j [:35.D2_855) MODO0490
Z4::- ( ,91 *C35+D2.C55) MODO0500
ZS::-(D3*[;:_3_ D4*B53) MODO0510
Z6=- (D 3.C23+D4.C53 ) MQDO0520
Z7=-(D3*B35+D4*855) MODO0530
Zt!=- (D3*C35+D4*C55) MODG0540
RL=52g. MODO0550



FILE: MODEL FORTRAN A VM/SP CONVERSATIONAL MONITOR SYSTEM PAGE 002

B=55. MODO0560
FO=SgRT(2.-3.14159*G/(RL*COS(T)+B))+2.*3.14159/(RL*COS(T)+B)*U'COSMODO0570

I(T) MOOO0580
ZT=.70?I M0000590

OMNE=O_+OMM**2*U/32.2*COS(T) MODOO600
THI=(2.*ZT*FO#*5+FO**4*OMNE) MODO0610
TH2=(FO**4*(4.*ZT**2-1.)+2.*ZT*FO**3_OMNE) MODO0620
TH3=-(O_NE_FO**4+2.*ZT*FO_*5) MODO0630
TH4=FO**4 MODO0_40
A_=550. MQDO0650
A2=120000. MODO0660

TH5=OI*A!*FO**2 MODO0670
TH6=D2*A2*COS(T) MGDO0680
TH7=D3*AI*FO**2 M0000690
THS=D4*A2*COS(T) MODO0700
OMN=O._M_GAM MODO0710
SO=l.25i4.*ZZ**2/OMM_S*BET MODO0?2O
VPI=OMN**2 MODO0730
VP2=OMN*2.*ZT MODO0740
VP3=VPl*SQRT(SO) MODO0750
DO 800 I=I,15 MODO0760
DO 800 J=1,15 MODO0770

800 A(I,J)=O. MODO0780
A£I,2)=1. MODO0790
A(3,4)=I. MODOO800

A(5,6)=I. MODO0810
A(7,8)=1. MODO0820 L_
A(9,10)=1. MODOOB30 4:=
At_1,12)=1. MODO0840
A(_3,14)=1. MODO0850
A_IS,15)=-OMNE MODOO860
AIB,7)=Z2 MODOO870
A_,B)=Z1 MODOO880
A_B,9)=Z4 :: MODOOB90
A(B,IO)=Z3 MODO0900
A_*O,7)=Z6 MODO0910
At!O,_)=Z5 MODO0920
_(_0,9)=Z8 MODO0930
A(IO,10)=Z7 MODO0940
A(_5,11)=T_l MODO0950
A(_5,12)=TH2 MODO0960
A(15,13)=TH3 MGDO0970
A(_5,14)=TH4 MODO0980
A(B,11)=TH5 MODO0990
A[B,15)=TH6 MOD01000
_(10,11)=TH7 MOD01010
A(lO,15)=THB MOD01020
A(2,1)=-VPl MOD01030
A(2,2)=-VP2 MOD01040
A{2,4)=VP1 MOD0!050
A(4,3)=-VP1 MOD01060
A(4,4)=-VP2 MOD01OTO
_(4,6)=VP1 MOD01080
A(6,5)=-VPI MOD01090 '

A(6,6)=-VP2 MOD01100
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A(12,1 1)="F0.'2 MOD01110
A(12,12)=--2*ZT*FO MOD01120
A(12,13)=F'3**2 MOD01130
A{14.13)=-FO_*2 MOD01140
At14,14)=-2*FO*ZT MOD01150
AI14,1 )=VP3 MOD01160
WRITE(6,2230) MOD01170

2200 FORMAT(_* * A MATRIX') MOD01180
DO B90 I=1,15 MOD01190

" WRZTE(9,2400) (A(I,d),d=1,15) MOD01200
2400 FOFtMAT(BEIO.4) MOD01210

_90 CONTINUE MOD01220
END MOD01230

L_
UI
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C SRYO0010
C MODEL FOR THE SWAY ROLL YAW MOTIONS OF A DD-963 DESTROYER SRYO0020
C REVISED VERSION SRYO0030
C LAST CORRECTED SEPTEMBER II 1981 SRYO0040
C SRYO0050

DOUBLE PRECISION A(16,1B),XI(16, i6),C(3,16),CV(3,1B),CA(3,16) • SRYO0060 Program to prepare matrices
DOUBLE PRECISION THETA(3,3) SRYO00?O

DOUBLE PRECISION AH(3,3),BH(3,3) SRYO0080 for the sway-roll-yaw motionsDOUBLE PRECISION P(3,3),R(3,3),T(4,4),U(4,6) SRYOOOgO
DOUBLE PRECISION ZET(16,16),WR(16),WI(16),APS(16, i6) SRYO0100

C SRYOOIIO

C SPEED, ANGLE AND SEA STATE INPUT SRYO0120
C SRYOOi30

WRITE (6,100) SRYO0140
I00 FORMAT(2X,'INPUT THE SPEED (FT/SEC) AND ANGLE (DEGREES)') SRYO0150

READ(5,*)V,TI SRYOOi60
TI=TI/57.29578 SRYO0170
WRITE(6,101) SRYOOi80

I01FDRMAT(2X,'INPUT THE SIGNIFICANT WAVE HEIGHT (FT) ', SRYO0190

I'AND MODAL FREQUENCY (RAD/SEC)') SRYO0200
READ(5,*)ZZ,DMM SRYO0210

C SRYO0220
C SEA MODEL SRYO0230
C SRYO0240

ALFA=V/32.2*OMM*COS(T1) SRYO0250
ZETTA=0.707 SRYO0260

DELTA=SQRT(I.-2.*ZETTA**2+SQRT(9.-4.*ZETTA**2+4.*ZETTA**4))/2. SRYO0270 F_
OMN=ABS(OMM*(1.+ALFA)/DELTA) SRYO0280 LO
BET=((1.-DELTA**2)**2+4.*ZETTA**2*DELTA**2)**3/DELTA**4 SRYO0290 (;%
BET=ABS(BET*EXP(-1.25)/(1.+2.*ALFA)) SRYO0300
SO=O.3125*ZZ**2/OMM*BET SRYO0310
VPI=OMN**2 SRYO0320
VP2=OMN*ZETTA*2 SRYO0330

C SRYO0340
C HYDRODYNAMIC DATA SRYO0350
C FORCES SRYO0360
C SRYO0370

A2=310.*SIN(T1) SRYOO380
A4=2120.*SIN(TI) SRYO0390
A6=ll3OO.*SIN(T1) SRYO0400
ZET2=O.72*SIN(TI) SRYO0410
ZET4=O.7*SIN(TI) SRYO0420
ZET6=O.35*SIN(T1) SRYO0430
OM2=(O.6+V*COS(Tt)/Bg.444)*SIN(T1) SRYO0440
OM4=(O.76+V*COS(T1)/55.748)*SIN(T1) SRYO0450
OM6=(O.96+V*COS(T1)/34.939)*SIN(TI) SRYO0460

C SRYO0470
C ADDED MASS - DAMPING SRYO0480
C SRYO0490

OMES=(O.425+V*COS(T1)/178.27)**2 SRYO0500
AH(1,1)=223. SRYO0510
AH(1,2)=-759. SRYO0520
AH(2,1)=-759. SRYO0530
AH(2,2)=22900. SRYO0540
BH(1,1)=IO.6 SRYOO550
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BH(1.2)=-55.4 SRYOO560
BH(2,1)=-55.4 SRYO0570
BH(2,2)=887. SRYO0580
AH(1,3)=14600.+V*BH(1,1)/OMES SRYO0590
AH(3,1)=14600.-V*BH(1,1)/OMES SRYO0600
AH(2,3)=182000.+V*BH(1,2)/OMES SRYO0610
AH(3 2)=182000.-V*BH(2,1)/OMES SRYO0620
AH(3 3)=4.18E6+V**2*AH(I,I)/OMES SRYO0630
BH(1 3)=423.-V*AH(1,1) SRYO0640
BH(3 I)=423.+V*AH(lot) SRYO0650
BH(2 3)=6270.-V*AH(l°2) SRYO0660
BH(3 2)=6270.+V*AH(I,2) SRYO0670
BH(3 3)=144000.+V**2*BH(1,1)/OMES SRYO0680

C NONLINEAR ROLL FACTOR SRYO0690
FBV=3. SRYO0700
BH(2,2)=BH(2,2)*FBV SRYO0710

C SRYO0720
C MASS AND SPRING CONSTANT SRYO0730
C SRYO0740

AH(I,I)=AH(I,l)+215. SRYO0750
AH(I°2)=AH(1,2)+988. SRYO0760
AH(1,3)=AH(1,3)-230. SRYO0770
AH(2,1)=AH(2,1)+988. SRYO0780
AH(2,2)=AH(2,2)+104000. SRYO0790
AH(3,1)=AH(3,1)-230. SRYO0800
AH(3,3)=AH(3,3)+3.76E6 SRYO0810

C44=28800. SRYO0820 I.--'
C SRYOO830 L_J
C CONSTRUCTION OF THE MATRICES T AND U SRYO0840 ..j
C SRYO0850

CALL RINV(AH.R) SRYO0860
CALL RMUL(R.BH,P) SRYO0870
DO 400 I=1,4 SRYO0880
DO 401 d=1,4 SRYO0890

401T(I,d)=O. SRYO0900
DO 400 d=l,6 SRYO0910

400 U(I d)=O. SRYO0920
T(t 1)=R(I,2)*P(2,1)/R(2,2)-P(t,1) SRYO0930
T(1 2)=R(1 2)/R(2,2) SRYO0940
T(1 3)=R(1 2)*P(2,2)/R(2,2)-P(1,2) SRYO0950
T(1 4)=R(1 2)*P(2,3)/R(2,2)-P(1,3) SRYO0960
U(1 1)=R(1 1)-R(1,2)*R(2,1)/R(2,2) SRYO09?O
U(1 5)=R(1 3)-R(1,2)*R(2,3)/R(2,2) SRYO0980
T(4 1)=R(3 2)*P(2,1)/R(2,2)-P(3,1) SRYO0990
T(4 2)=R(3 2)/R(2,2) SRY01000
T(4 3)=R(3 2)*P(2,2)/R(2,2)-P(3,2) SRY01010
T(4 4)=R(3 2)*P(2,3)/R(2,2)-P(3,3) SRY01020
U(4 1)=R(3 1)-R(3,2)*R(2,1)/R(2,2) SRY01030
U(4 5)=R(3 3)-R(3,2)*R(2,3)/R(2,2) SRY01040
T(3 2)=1 SRY01050
T(2 1)=-P(2,1)*T(1,1)-P(2,3)*T(4,1) SRY01060
T(2 2)=-P(2,1)*T(1,2)-P(2,3)*T(4,2)-P(2,2) SRYOI070
T(2 3)=-P(2,1)*T(1,3)-P(2,3)*T(4,3)-R(2,2) *C44 SRY01080
T(2 4)=-P(2,1)*T(I,4)-P(2,3)*T(4,4) SRY01090
U(2 I)=-P(2,1)*U(1,1)-P(2,3)*U(4,1) SRY01100
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U(2,2)=R(2,1) SRYOiliO
U(2,4)=R(2,2) SRYOIi20
U(2,5)=-P(2,1)*U(1,5)-P(2,3)*U(4,5) SRYOll30
U(2,6)=R(2,3) SRYOII40

C SRYO1150
C CONSTRUCTION OF THE MODEL MATRICES SRY01160
C SRYO1170

DO 402 I=1,16 SRY01180
DO 402 d=1,16 SRYOI190
A(I,d)=O. SRY01200

402 XI(I,d)=O. SRYOI210
XI(6.6)=S0.3.1415926 SRYOI220
A(1,2)=1. SRYO1230
A(2,1)=-VPI SRYOI240
A(2.2)=-VP2 SRYO1250
A(2.4)=VP1 SRYOI260
A(3,4)=1. SRYOI270
A(4.3)=-VP_ SRYOt280
A(4,4)=-VP2 SRY01290
A(4,6)=VPI SRY01300
A(5,6)=t. SRY01310
A(6,5)=-VPI SRYO1320
A(6.6)=-VP2 SRY01330
A(7,8)=1. SRYOi340
A(8.2)=A2*OM2**2 SRYO1350
A(8,7)=-OM2**2 SRY01360
A(8.8)=-2 *ZET2*OM2 SRYOI370 I_• L_
A(9,10)=I. SRYOI380 O0
A(IO,2)=A4*OM4**2 SRYO1390
A(tO,9)=-OM4**2 SRY01400
A(IO, IO)=-2.*ZET4*OM4 SRY01410
A(_1,12)=1. SRY01420
A(12,2)=A6*OM6**2 5RY01430
A(/2,11)=-OM6**2 SRY01440
A(12,f2)=-2.*ZET6*OM6 SRYO1450
DO 404 I=1,4 SRYO1460
IP=I+12 SRYOI470

DO 405 d=I,6 SRYOI480
dP=d+6 SRYOI490

405 A(IP,dP)=U(I,d) SRYOISO0
DO 406 d=l,4 SRYOI510
jP=J+12 SRY01520

406 A(IP,dP)=T(I,d) SRYO1530
404 CONTINUE SRYOI540

C OUTPUT MATRICES SRY01550
DO 403 I=1,3 SRYOt560
DO 403 d=t,16 SRYOt570
C(I,d)=O. SRYOI580
CV(I,J)=O. SRY01590

403 CA(I,J)=O. SRYOI600
C(1,13)=1. SRYOI6tO
C(2,15)=1. SRY01620
C(3,t6)=1. SRYOi630
CV(2,14)=t. SRY01640
DO 407 I=1,6 SRY01650
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IP=I+6 SRY01660
CV(1,IP)=U(1,I) 5RY01670
CV(3,IP)=U(4.I) SRYOI680
CA(1.IP)=-P(I.1)*U(I.I)-P(1.3)*U(4.I) SRY01690
CA(2.IP)=U(2.I) SRY01700
CA(3,IP)=-P(3,t)*U(1,I)-P(3,3)*U(4,I) SRY01710

407 CONTINUE SRY01720
CA(I.8)=R(1.1) 5RY01730
CA(1.10)=R(1.2) SRY01740
CA(I,12)=R(f,3) SRY01750
CA(3,8)=R(3,1) SRY01760
CA(3,10)=R(3,2) SRYOf770
CA(3,12)=R(3,3) SRY01780
DO 408 I=1,4 SRY01790
IP=I+12 SRY01800
CV(1,IP)=T(1.I) SRY01810
CV(3.IP)=T(4.I) SRY01820
CA(1.IP)=-P(I.I)*T(t.I)-P(1,3)*T(4.I) SRY01830
CA(2,IP)=T(2,I) SRYO1840
CA(3.IP)=-P(3.t)*T(1.I)-P(3.3)*T(4.I) SRYOI850

408 CONTINUE SRY0t860
CA(1.14)=CA(1,14)-P(1.2) SRY0t870
CA(1,15)=CA(1,15)-R(I,2)*C44 SRY01880
CA(3.14)=CA(3.14)-P(3.2) SRY01890
CA(3.15)=CA(3.15)-R(3.2)*C44 SRY01900

C SRY01910
C OUTPUT SRYOI920 L,.}
C SRY01930 _0

GO TO 399 SRY01940
IERI=O SRYOI950
IER2=O SRY0t960
CALL TRNATB(16.t6.16.16.A.APS) SRY01970
CALL LYPCND(16,16.16,APS,XI,ZET,WR,WI,IERI.IER2) SRYO1980
DO 174 I=1,t6 SRY01990
XI(I,I)=-XI(I,I) SRY02000

174 WRITE(9,175)XI(I,I) SRY02010
175 FORMAT(D11.5) SRY02020
399 CONTINUE SRY02030

WRITE(9.310) SRY02040
310 FORMAT(IOX.' MATRIX A ") SRY02050

WRITE(9,320)((A(I,d),J=1,16),I=1,16) SRY02060
320 FORMAT(8Et4.4) SRY02070

WRITE(9,330) SRY02080
330 FORMAT(IOX." MATRIX C ") SRY02090

WRITE(9,320)((C(I,d),J=1,16),I=l,3) SRY02100
WRITE(9,340) SRY02110

340 FORMAT(IOX.' MATRIX XI ............ ) SRY02120
WRITE(9.320)((XI(I.d).J=l.16).I=l.16) SRY02130
DO 350 1-1,3 SRY02140
DO 350 d=1,3 SRY02150

350 THETA(I,J)=O. SRY02160
WRITE(6,360) 5RY02170

360 FORMAT(2X.'INPUT THE SWAY-ROLL-YAW NOISE INTENSITIES (3 NUMBERS)')SRY02180
READ(S,*)THETA(t,1),THETA(2,2),THETA(3,3) SRY02190
WRITE(9,370) SRY02200
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370.FORMAT(iOX,'- MATRIX THETA --') SRY022iO
WRITE(9,320)((THETA(I,d),d=I,3),I=I,3) SRY02220
END SRY02230
SUBROUTINE RINV(A,B) SRY02240

C 3X3 MATRIX INVERSION SRY02250

DOUBLE PRECISION A(3.3).B(3.3).C(3.3) SRY02260
C(1.1)=A(2.2)*A(3.3)-A(3.2)*A(2.3) SRY02270
C(1.2)=A(2.1)*A(3.3)-A(3.1)*A(2.3) SRYO22BO
C(1.3)=A(2.1)*A(3.2)-A(3.1)*A(2.2) SRY02290
C(2.1)=A(1.2)*A(3.3)-A(3.2)*A(t.3) SRY02300
C(2.2)=A(I.t)*A(3.3)-A(3.1)*A(1.3) SRY02310
C(2.3)=A(1.1),A(3.2)-A(3.1)*A(1.2) SRY02320
C(3.1)=A(1.2),A(2.3)-A(2.2)*A(1.3) SRY02330
C(3.2)=A(1.t)*A(2.3)-A(2.1)*A(1.3) SRY02340
C(3.3)=A(1.1)*A(2.2)-A(2.1)*A(1.2) SRY02350
DET=A(1.1)*C(1.1)-A(1.2)*C(1.2)+A(1.3)*C(I.3) SRY02360
B(f,I)=C(1,1)/DET SRY02370
B(I.2)=-C(2.1)/DET SRY02380
B(1,3)=C(3, t)/DET SRY02390
B(2,1)=-C(I,2)/DET SRY02400
B(2.2)=C(2.2)/DET SRY02410
B(2.3)=-C(3.2)/DET SRY02420
B(3.1)=C(1.3)/DET SRY02430
B(3.2)=-C(2.3)/DET SRY02440
B(3.3)=C(3.3)/DET SRY02450
RETURN , SRY02460

END SRY02470 i_
SUBROUTINE RMUL(A,B,C) SRY02480 4:1

C 3X3 MATRIX MULTIPLICATION SRY02490 0
DOUBLE PRECISION A(3,3),B(3,3),C(3,3) SRY02500
DO 100 I=1,3 SRY02510 _-_
DO 100 d=l,3 SRY02520
C(I,d)=O SRY02530
DO 100 K=1,3 SRY02540

I00 C(I,d)=C(I,J)+A(I,K)*B(K,Q) SRY02550
RETURN SRY02560
END SRY02570








