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Introduction

The following is a report of progress made during the first six months

(January 1, 1982 to July 1, 1982) under the second phase of NASA Grant No.

NSG 3238. (Work is underway to complete the final reports on the first phase

of this grant)

Under this second phase, detailed measurement will be taken of the flow

field in front of a large-scale single cylinder, mounted in a wind tunnel.

These measurements will provide a better understanding of the three-dimensional

separation occuring in front of the cylinder on the endwall, and of the vortex

system that is formed. The measurements will also provide a data base with

which to check analytical and numerical computer models of three-dimensional

flows.

The work that will be reported on is as follows-

a) A literature survey of three-dimensional boundary layers and their

separation, single cylinder experiments, and a brief survey of fluid

flow calculation methods.

b) Modifications to the wind tunnel, and the design and fabrication of

the model.

c) Five-hole probe calibrations.

d) Description of the data acquisition system.

e) Asymmetric model of saddle point flow.

Literature Survey

The flow separation caused by an adverse pressure gradient generated from

a bluff body is a three-dimensional problem. To describe this three-dimension-

ality, consider a viscous flow over an infinite flat plate. The velocity
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vectors in the boundary layer vary in magnitude normal to the plate, from

zero at the plate surface to the free-stream value at the edge of the boundary

layer. In addition, the velocity magnitude may vary in the flow direction if

a pressure gradient exists, such as the adverse pressure gradient imposed by

a two-dimensional step. Since the pressure gradient imposed by such a step is

uniform in the transverse direction, the mean velocity vectors do not have a

transverse component so that the flow is two-dimensional even through the

separation in front of the step. Now consider the case where the boundary layer

approaches a bluff body, such as a cylinder, irstead of a two-dimensional step.

In this case, the adverse pressure gradient imposed on the flow varies in the

transverse direction inducing transverse velocity components. The separation

that develops in front of the bluff body, then, is three-dimensional. For the

range of Reynolds number of interest in this program, the boundary layer is

turbulent. Therefore, a literature survey has been conducted to identify

investigations that have been accomplished on three-dimensional separating

turbulent flows.

The study of three-dimensional turbulent boundary layers has been approached

analytically in three areas. One of the approaches has been to apply kinematical

principles and theorems to the fluid flow in order to qualitatively infer the

flow processes in the separation region. A second approach has been to use

integral methods to solve the three-dimensional momentum integral equations.

The third technique involves solving the differential boundary layer equations

using numerical approximations. A discussion of the results of these approaches

follows.

Before presenting details of the above approaches, a summary of the

terminology associated with three-dimensional boundary layers, based on Nash

and Patel', is given. The mean velocity profile in a three-dimensional
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boundary layer is composed of the velocity vectors along a normal to the

body surface. Since the velocity profile is generally not collateral (the

velocity vectors do not lie in a plane as for a two-dimensional boundary

layer), its graphical depiction is more difficult than a two-dimensional profile.

An isometric representation of the velocity profile in a three-dimensional

boundary layer is shown in Fig.]. This type of boundary layer, in which the

velocity varies in both magnitude and direction is referred to in the literature

as a skewed boundary layer. The isometric representation conveys the profile's

general form but is not ideal for quantitative examination. Two-dimensional

representations of the profile are often more useful for evaluating the flow.

They usually take the form either of projections of the profile onto suitably

oriented planes, or of separate plots of the magnitude and direction of the

magnitude and direction of the velocity vectors.

Figure 2 shows the latter representation where the velocity magnitude, u,

normalized by the resultant velocity at edge of the bounaary layer, u s , and

ms

the angle a which the velocity vector makes with some datum, are plotted as a

function of y, the normal distiance from the body surface. 	 In this example, F'

was chosen to be the angle measured relative to the streamline at the outer

edge or the boundary layer. This angle is usually referred to as the crossflow

angle, with the crossflow angle at y =0 being the wall crossflow angle, Ew.

Alternatively, the velocity profile

any two nonparallel planes. Orthoy

The dashed curves in Fig.] show the

line of intersection is the normal

profile is measured. 	 In Fig.l, the

has no special significance.	 Often

can be represented by its projection on

1 planes are usually chosen for convenience.

projections onto two orthogonal planes whose

to the body surface at the point at which the

angular orientation of the orthogonal planes

times the orthogonal planes are oriented so
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that one of the planes is parallel to the streamlines at the outer edge of

the boundary layer. This coordinate system, referred to as streamline

coordinates and shown in Fig-3, produces a pair of unique curves for u s and

un , Fig.4, where the streamwise velocity component us (y) is measured parallel

to the external streamlines and the crossflow or secondary-flow component

un (y) is measured normal to the external streamline. u  naturally falls to

zero at the edge of the boundary layer.

Another type of two-dimensional projection is the polar plot shown in

Fig-5. In this case using streamline :oordinates, the velocity vectors are

projected onto the plane tangential to the surface of the body, producing a

plot of u  vs. u s . A straight line joining the origin to any point on the

curve gives the magnitude and direction of the local velocity vector.

Separation is the generic name given to a class of flow phenomena. One

feature which characterizes this class is that the flow becomes detached from

the body surface allowing a turbulent region of indefinite extent to develop

between the body and the outer, quasi-inviscid flow. Separation provides a

mechanism whereby vorticity, which in attached flow is confined within the

boundary layer, can be transported into the interior of the fluid. Prediction

of the onset of separation is of considerable practical importance.	 In steady,

incompressible, two-dimensional flow, the point of separation correlates with

the point at which the skin friction falls to zero. This fortunate correlation

has led to the adoption of zero wall shear stress as a separation criterion which

is both precise and unambiguous.	 In three-dimensional flows, separation is

rarely associated with the vanishing of the wall shear stress. 	 In addition,

separation is sometimes not associated with any special character of the flow at

the surface. However, discussions of three-dimensional separation in the
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literature have concentrated on the definition of separation in terms of

surface-flow conditions and have attempted to find a rational extension of the

zero-skin-friction criterion.

Maske11 2 presented the first generalized kinematical concept of separation

in three dimensions. He defined limiting streamlines which represent the

motion of fluid particles that pass infinitely close to a solid surface. The

direction of these limiting streamlines, which are single-valued and tangent to

the solid surface at all locations except at singular points defined below, is

parallel to the wall shear-stress vector and can be inferred from surface

flow visualization. Maskell defined a separation point to exist when two

limiting streamlines combine at a point to form a separation streamline. If

the limiting streamlines remain tangent to the solid surface, their direction

is single-valued and continuous. Maskell defined this type of separation point

as an ordinary point. However, if the combined limiting streamlines do not

remain tangent to the solid surface, the wall shear stress vanishes and the

limiting flaw direction is discontinuous and many-valued. This separation

point was termed a singular point. A separation zone then is bounded by a

separation line made up of singular and ordinary points in Maskell's terminology.

Maskell went on to characterize separation regions as consisting of free-vortex

layers and bubbles, and he indicated the surface flow patterns associated with

these two elements.

Limiting streamlines can be very useful because they can be used to

quantitatively define the structure of the viscous region of the flow. 	 In

high Reynolds Number flows, the viscous region is well-defined so that knowledge

of the forms that this structure might take is important to a proper under-
:

standing of the physical nature of any three-dimensional flow. However, as

t.



9.

indicated by Taylor j , Maskell's approach has two drawbacks. The limiting

streamlines are not ordinary streamlines since, in the limit, they lie on the

4
solid surface. They approximate streamlines next to the solid surface, but

when the boundary-layer thickness is changing rapidly, such as near a separation

point, the limiting streamlines may not be indicative of ordinary streamlines.

In addition, determination of whether the limiting streamlines are merely

converging or actually combining to form separation streamlines can be very

difficult for some flow patterns. Thus, interpretation of surface flow

visualization for complex flow patterns must be accomplished very carefully.

In order to circumvent the above problems, U ghthill° introduced the

concept of vorticity at the surface, which is equal to vorticity in the fluid.

In addition, Lighthill proposed to identify separations by studying the

topology o f the entire s-irface rather than determining separation at a single

point as proposed by Maskell. Lighthill classified the critical points based

on derivitives of the shear-stress vector. 	 In particular, critical points

fell into two topological categories, depending on the value of the Jacobian, J,

of the shear-stress vector:

(i) J<0: Saddle points, through which pass two shear-stress lines on

each of which the direction of the shear stress changes when passing

through the critical point.

(ii) J>0: Nodal points, through which pass an infinite number of shear

stress lines either all into the point or all out of the point.

Lighthil1 further c!assified the critical mints according to values of the

divergence, .A, of the shear-stress vector. For A greater than or less than

zero, the critical points were considered attachment points or separation points,

i



10.

t	 respectively. In addition, nodal points for whii-ti J>A A war* categorized as
foci. A summary of these classifications, with corresponding flow patterns

as developed by Hunt et.al. 10 , is contained in Fig.6. Lighthill identified the

separation line as the line joining a saddle point to a nodal point. However,

as discussed by Taylor 3 , Lighthill's separation criteria would be difficult to

apply for situations where the singularities may, be far upstream or downstream.

Oswatitsch s investigated the conditions for the separation of a three-

dimensional boundary layer using the phase-plane technique developed in the

field of dynamics. He assumed the velocity components were expandable into a

'Taylor series about the critical point. Using the Navier-Stokes equations,

continuity equation, and the no-slip condition for a viscous fluid, he was

able to parametrically determine the trajectory of the streamlines adjacent to

a singular separation point. Oswatitsch showed the types of separation flow

patterns that are predicted by his model for cases of both symmetrical and

asymmetrical three-dimensional separations.

Based on the discussion of Taylor , Kronauer 6 indicated that the problem

of finding a separation line is the same as finding the limit trajectories of

the governing differential equation set. Perry and Fairlie 7 followed the suggestion

of Kronauer and explored the properties of the governing partial differential

equations using the phase-space method. The authors identified surface critical

points and streamline patterns for both a viscous real fluid and an inviscid

rotational flow. The latter case was considered to be the appropriate model for

turbulent boundary layers approaching an obstacle based on previous work of

Smith° on the flow in the region of an aero-foil trailing edge and Fairlie9

relative to two-dimensional separation bubbles. In contrast to the case where

viscosity is included, solving the inviscid equations in this manner indicates



024 ^J30
a-- 0

(SEPARATION POINT)'

0-0

(ATTACHMENT POINT)

a} 0

i
A- 0

t t .	 ORIGINAL PAGE 1:3
OF POOR QUALITY

SADDLE POINTS:

J-0'

0--0	 A-0

(SEPARATION POINT) 	 (ATTACHMENT POINT)

NODAL POINTS

J ^ A2/4

(FOCI)

Fi g ure 6. Singular point classification proposed by Liqhthill



ORIGINAL F-.-

1	 12. OF POOR Iz^
r p7Y

that all the pressure gradients vanish at the critical point. This is a

significant difference from the analysis of Oswatitsch where the pressure

gradients determine the type of flow. Thus, true surface patterns in turbulent

flow can be predicted with this technique only by matching the inviscid patterns

obtained by Perry and Fairlie to those produced in the viscous zone. Perry

and Fairlie did not develop a relationship for the number of nodes and saddle

points that can exist, though restrictions were developed for pressure and

vorticity for various critical points.

Hunt, et.al . 10 , using previous topological work on separated flow, developed

rules for the number of nodes and saddle points that must be present for a

postulated separation flow pattern to be kinematically possible. Extending the

work of Lighthi11 4 and Flegg ". Hunt et.al . determined that, with a three-

dimensional body on a plane, the total number of nodes must equal the total

number of saddle points on the surface plane:

F.N - F S = 0	 (1)

where FN = total number of nodes

F S = total number of saddle points

They also found that when considering the mean streamlines in a two-dimensional

plane containing a singly connected region, as investigated by Perry and Fairlie,

the following relationship holds:

(rN 
+ I/2. L' N ')	 ( : S + 1/2 F S ')	 0	 (2)

where F N ' = total r,!iriber of surface nodes

S '	 total nu..iber of surface saddle points

>. N = total number of nodes excludi-g surface nodes

`'S = iota! number of saddle points excluding surface saddle points.
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An illustration of the application of the equation 2 is given in Fig.7, which

represents the postulated centerline flow pattern around the cube taken from

Hunt, et.al . The above relationships can be effective tools for verifying that

derived flow fields based on experimental data are consistent with kinematic

principles.

Although the application of kinematic principles to three-dimensional

boundary layer separations provides illustrative information regarding the

flow processes, quantitative analytical information can only be obtained by

solving the governing equations. One technique is to integrate the boundary

layer equations to form two momentum-integral equations. These equations are

coupled first-order differential equations involving eight dependent variables

for an orthogonal coordinate system. By using a streamline coordinate system,

the determination of which in general three-dimensional flows can be a formidable

problem, the integral equations are considerably simpler, and one of the 	 l

parameters can be eliminated. The problems facing users of the integral tech-

nique then, is to determine five auxiliary equations in order to close the

solution. Formulation of these relationships has been accomplished by postulating

the existence of a velocity-profile family both in the streamwise and crossflow

directions. These velocity profiles must be universal in order to use integral

techniques to predict general three-dimensional flows. However, no such

universal profile has been developed, with efforts to formulate a universal

crossflow profile the least fruitful. A summary of attempts to develop such

a crossflow profile follows.

The earliest crossflow model is due to Prandt1 12 , who suggested the

following formulation for small crossflows:

t
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u s
	 = G (y/6)
	

(3)
s ms

u

	u 	
tan 

e  
g (y/6) G (y /6 )
	

(4)
s
ms

	

where un , us and us	are the crossflow, streamwise, and free-stream velocities,

ms
respectively, and w is the angle between the limiting streamline and the free-

stream flow direction as previously defined (see F i g -3) . G and g were assumed to

be universal functions of y/6 and in general are only restricted by the boundary

conditions:

y=6 G= i,g=0

y	 0 G=0, g= 1

E
w 

is an unknown quantity that must be determined by the calculation method.

Two representative models of the universal functions G and g are given by

Mager 13 and Moore and Richardson ) ". Mager assumed two power functions of

Y/6-

G - (y/6)l /n ,	 g = (1 - Y/6) 2 	 (5)

Moore and Richardson replaced the independent variables with y/9 x and H 

as Follows:

G = G ( y /9 x V Hx )	 g = 0 = Y /000 X ) , 	 ( 6)

The main flow function G in equation (6) is similar to the formulation of

von Doenhoff and Tetervin " for two-dimensional flows. The model of Moore

and Richardson is more general than that of Mager in that a variable r replaces
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the constant exponent in the expression for g. Although the models give

good agreement with some experimental data, neither model adequetly represents

all the data. One of the main difficulties with the Prandtl model is that it

does not relate the physical influence of the main flow to the boundary layer.

As shown by Squire and Winter 16 , the development of crossflow is a direct

result of the reorientation of vorticity due to the main flow. The Prandtl

model does not explicitly include this effect.

Taylor" introduced the concept of dividing a skewed boundary layer into

two parts - a collateral boundary layer near the surface with the velocity vectors

in the lirection of the wall shear stress, and a quasicollateral region further

from the surface - joined by a transition region. A quasicollateral boundary

layer is a skewed boundary layer that can be resolved into a collateral boundary

layer by viewing from a moving coordinate system. Johnston le applied Taylor's

model to establish four of the five auxiliary equations required to solve the

momentum integral equations in streamline coordinates. The coordinate system

used by Johnston is shown in Fig.8. Johnston formulated expressions for the

two regions of the boundary layer as follows:

u
n

u	 us tan E 
	 for region I

s
ms

u	 u

u n
	us ) A for region II	 (8)

s	 s
ms	 ms

Note that the main-flow component, u s , was explicitly included to account for

the reorientation of vorticity due to main flow turning. When plotted in polar

(7)

k

form, which Johnston was one of the first to use, the above expressions yield
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a triangular plot for the crossflow profile as shown in Fig.9. Regions I and

II are separated by the apex of the triangle. This formulation does not include

a transition region between the two parts of the boundary layer. Using the

experimental configuration shown in Fig.10, in which a two-dimensional Jet was

forced to flow against a perpendicular back wall, and earlier experiments,

Johnston found that the crossflow profile was represented quite accurately by

the triangular model. One comparison between the triangular model and experimental

data is shown in Fig.9. Johnston then formulated an analysis to solve the

momentum integral equations using the triangular model in the following manner.

He found that region II accounted for approximately 95-99 percent of the

boundary layer thickness with the apex of the triangle falling between values

Of uTry/v of 12 and 16. Therefore, region I was assumed to lie in the laminar

sublayer implying that the velocity profile in region I is linear. Furthermore,

since the velocity vectors in region I were postulated to be collateral (see

equation 3), two-dimensional boundary layer correlations, such as those developed

by Clauser 19 , or Ludweig and Tillman 2 0 with pressure gradients present, were

used to determine the skin-friction coefficient. Finally, Johnston found that

the angle of the inviscid portion of the triangular polar plot was related to

the main-flow streamline angle relative to a fixed direction, a (see Fig.8),

as follows:
a

A	 - 2u2
	 da

sms	 u2
o	 s

ms

Using the above relationships, Johnston formulated four auxiliary equations

so that a solution to the momentum integral equations could be obtained in

parametric form. Fair to good agreement was obtained between the parameterized

(9)

L
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solution and his experimental data. Johnston was unable to determine a fifth

auxiliary equation to close the solution. However, he indicated that the

required equation involved a relationship between the streamwise velocity pro-

files and the other parameters involved in the solutior scheme. No such

formulation has been developed.

The triangular relationship between the crossflow and boundary-layer

velocities can be based on theoretical grounds as indicated by Eichenberger21.

In the layer near the surface, the wall viscous dissipation is very large and

the boundary layer adjusts immediately to new conditions i.e. the free-stream

flow inertia negligibly affects region I of the boundary layer so that a

collateral velocity profile exists. In the outer layer, the skewed boundary

layer depends on the history of the flow as do the flow phenomenon in an

inviscid flow. Thus, in region II, viscosity plays a small role upon the

secondary-flow velocity and Hawthorne's 22 inviscid secondary-flow theory can

be applied which leads to a straight line velocity profile, in polar form, in

region H. It must be emphasized, however, that Hawthorne's, and therefore

Johnston's,models are only applicable for small crossflows. An explanation for

the virtually nonexistent transition region between the two reg i ons (Fig.9) is

not obvious, but, as indicated by Eichenberger, the demarcation between the

regions may be enhanced due to a two-layer turbulence phenomenon as developed by

Townsend 23

Johnston ` " applied the above analysis to predict the separation point in

the plane of symmetry of his experiment. He again used correlations for skin

friction that were derived for two-dimensional flows. Since on the plane of

symmetry, the separation point i a singular point, Johnston identified the
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separation point as the position where the axial component of the shear stress

fell to zero. He found reasonable agreement between his analysis and the

experimental results from his flow configuration, Fig. 10.

Hornung and Joubert' S conducted an experiment to assess the validity of

Johnston's triangular model. Their experimental configuration consisted of a

streamlined cylinder mounted on a flat plate as shown in Fig. 11. They found

that the triangular model was confirmed with good correlation. However, the

value of yu T/v at the vertex of the triangle was found to range up to 150 whereas

Johnston found that this parameter ranged from 12 to 16 in his experimental data.

Hornung and Joubert's work, then, contradicts the assumption made by Johnston that

region I lies within the viscous sublayer. Since this assumption is the basis

of much of Johnston's analysis, the validity of that analysis is questionable.

Even though these early experiments confirmed the triangular model, the

triangular model has not proven to be universal. In particular, the outer region
1

of the boundary layer cannot be universally represented by a straight line. Rather

a crossover, crossflow polar plot, as shown in Fig. 12, represents the crossflow

components for some flow conditions. This type of profile corresponds to a cross-

flow that reverses direction once through the boundary layer. Kliensich and

Pierce 26 observed this type of flow on the endwall of the second bend in an

5-turn duct. Langston 27 also observed this behavior in a turbine cascade passage.

Eichelbrenner 28 described the crossover, crossflow plot by coupling the crossflow

with the streamwise flow in polynomial form:

û 	 us	 tan r: w (I + c l ( u s	 ) + c 2 (
 u

) 2 + .....	 (10)
s	 s	 s	 s
ms	 ms	 ms	 ms

where c  c 2 ... are evaluated from boundary conditions at the edge of the boundary

layer and at the wall. By using enough terms, equation (10) can be used to describe
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almost any kind of crossflow. Alternatively, Langston 27 found that the following

expression correlated the turbine cascade data:

u

u 	 - tan (cw - a z) a_ Yz]	 (1 1)
s
ms

where a is a crossover, crossflow coefficient, Y is a crossflow strength coefficient,

and z is the distance from the endwall surface normalized by the airfoil axial

chord length.	 In Langston's representation, a Johnston-like polar plot is

obtained for a - 0, Ew ? 0, and Y > 0. For values of a > 0, Ew > 0, and Y > 0,

equation (11) yields crossover, crossflow plots. Equation (11) has three ex-

perimentally determined constants and is no more general than a third degree

polynominal as proposed in equation (10). In addition, neither of the above two

approaches can be predictive unless an approximation for the spanwise variation

of the streamwise velocity component can be made. Such an approximation for

three-dimensional flows apparently does not exist according to Nash and Patel'

1	 and Langston`'.

Based on the above analysis, no general universal crossflow profile has

been found. Johnston 29 concluded that the flow in three-dimensional boundary

layers is dependent in each case on boundary conditions and flow history. Since

integral methods to solve the boundary layer equations require a crossflow profile.

Wheeler and Johnston" concluded that three-dimensional prediction methods using

integral techniques cannot be general enough to be applied to a variety of geo-

metric conditions. However, although the crossflow boundary layer approach and

polar plot cannot be used in a predictive fashion. Langston" has shown that this

approach provides a useful and simple picture of a three-dimensional boundary

layer which is not conveyed by other representations.
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With the abandonment of using integral techniques to provide general solutions

to the three-dimensional boundary-layer equations, methods which use finite

difference approximations to the differential boundary layer equations are being

widely explored. To date emphasis has been placed on developing modols for duct

flows: Pratap and Spalding 31 , Briley and MacDonald 32 , and Dodge", or for flows

with a laminar boundary: Ghia, et al. 34 and Briley and MacDonald 3S . Only one

technique, that of Briley and MacDonald 36 , has been developed to predict a general

three-dimensional turbulent flow with a significant crossflow component as exists

in a turbine cascade. They developed solutions for the flow past both swept and

unswept leading edges and compared their predictions with the experimental results

of Shabaka 37 , who obtained measurements for an unswept leading edge at zero

incidence. Shabaka's measurements, which were the only detailed measurements of

secondary flow that Briley and MacDonald could find, were taken in the corner flow

region, well downstream of the leading edge, where the secondary flows were

relatively weak. Briley and MacDonald 36 found that the measured crossflows were

ten times greater and of opposite sense from the predicted flows. Due to a lack

of upstream information., especially near the separation point, Briley and MacDonald

could not assess the cause of the discrepancy between experiment and theory.

The dearth of detailed experimental data for turbulent flows with strong

secondary components, as encountered by Briley and MacDonald 36 , has been the sub-

ject of the recent Stanford Conference on Complex Turbulent Flow. Although some

measurements exist, as discussed below, they cannot be used for computer code

assessment. In order for an experimental data set to be used for code assessment,

the data must consist of profiles of mean and turbulence quantities at upstrean,

and downstream positions, as well as at various locations around the body
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which generates the secondary flow. Such a comprehensive data set does exist

in the open literature.

One configuration which has been used to obtain data with strong secondary

flows is flow past a single cylinder mounted on a flat plate. The boundary layer

upstream of the cylinder undergoes a three-dimensional separation due to the

strong adverse pressure gradient imposed by the presence of the cylinder as shown

in Fig. 13. The separated shear layer creates a saddle point on the axis of

symmetry and rolls up to form a vortex whose ends are swept downstream around the

base of the cylinder. When viewed from above, this vortex has the characterist'c

horseshoe-like s^oape. Investigation of the end-wall separation in front of an

isolated single cylinder is an attractive experiment because the strong cross-

flow can be analyzed without the added complication of an asymmetric flow as

exists in a cascade passage and shown by Langston, et al.36.

However, none of the experiments reported in the literature on the endwall

separation in front of a single cylinder contain a data set applicable for code

assessment. Ram 39 carried out detailed measurements in front of a 15 cm diameter

cylinder at a Reynolds nuober based on the cylinder diameter, Re 
Do 

of 4.1 x 105.

Ram measured static pressures on the endwall and cylinder surfaces and carried

out five-hole probe measurements. However, none of the five-hole probe measurements

were carried out near the separation point, which is critical to code assessment

as pointed out by Briley and MacDonald 36 . Belik 40 studied the horseshoe vortex

system associated with cylinder diameters of 2, 3, 4, and 6 cm for 0.36 x 105

Re  < 2.2 x 10 5 . However, his experiment was designed primarily for flow

visualization, and only minimal endwall static pressure data along the axis of

symmetry i;i front of the cylinder was obtained. Both Hornung and Joubert'S,

mentioned p viously, and East and Hoxey a1 made detailed boundary layer measurements	 +
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upstream of a streamlined cylinder, as shown in Fig. H. Hornung and Jouhert

measured static pressures and flow direction using a yaw meter upstream of a
I

`	 56 cm diameter streamlined cylinder at Re p	6.5 x 10S . However, only limited

data was taken downstream of the separation line, and none was taken near the

saddle point. East and Hoxey measured the flow ahead of a 61 cm diameter

streamlined cylinder at Rep = 3.7 x 10 6 . They carried out extensive flow field

measurements obtaining velocity profiles and flow direction with a 3-hole probe

(no pitch), static pressure distributions, and skin friction. They made measure-

ments ahead of and around the side of the model, but they did not make any deta;led

measurements downstream of the separation line or near the saddle point. Baker 42

carried out an extensive program, looking at the separation in front of a number

of cylinders over a range of Reynolds numbers for both laminar and turbulent

boundary layers. However, he only recorded static pressures on the end-wall and

cylinder surfaces. No probing was accomplished to characterize the flow field.

His work did point out, however, the significantly different flow field associated

with separation of laminar and turbulent three-dimensional boundary layers. In

the case of laminar flow, various numbers of vortices existed in front of the

cylinders on the axis of symmetry. The number of vorticies depended on the Flow

velocity and cylinder diameter. In addition, the entire vortex system oscillated

in a periodic man^er above a certain flow speed. A periodic motion of this type

was not observed with a turbulent boundary layer, but rather oscillations about a

mean flow condition were observed. The mean flow pattern was not affected by the

flow velocity in the turbulent regime. Therefore, measurements of secondary

flc°,ws in a laminar boundary layer, such as those of Peake and Galway 43 , are not

""applicable to turbulent boundary layers. Taniguchi et al. 	 also studied the flow
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around a single cylinder mounted to a flat plate. However, they were mainly

concerned with the drag force on the cylinder and did not obtain detailed flow

measurements upstream of the cylinder.

Another configuration that has been used to obtain flow measurements in a

symmetric three-dimensional boundary layer is similar to that used by Johnston 18924

shown in Fig. 10. Mojola 45 measured mean velocity profiles, static pressure

profiles, and flow angles in the central plane of such a model. Unfortunately,

the flow stability in this experiment was such that the flow was significantly

altered by the presence of probes. Thus the data can only be used in a

qualitative sense.

Experimental Model and Wind-Tunnel Modifications

Design

As previously defined, there are two goals of this experiment: to obtain

a data set that can be used for three-dimensional numerical computer code

assessment, and to further elucidate the characteristics of the vortex system

that is formed in front of a cylinder mounted on a flat plate. These goals

will be accomplished by obtaining detailed flow measurements in the vicinity

of a single isolated cylinder. The measurements will include static

pressures on the endwall and cylinder surfaces, extensive five-hole probe

pressures in front of and around the cylinder, and velocity fluctuations

using a hot wire where the flow is heady enough to yield meaningful results.

These expe , iments will be conducted in the NASA two-cylinder, low-speed wind

tunnel shown in Fig. 14. A description of this facility is given by Langston"s-so

The tunnel, however, must be modified to accomodate a single large-diameter

M:

W
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cylinder and the required endwall static pressure taps. A discussion of the

desi g ned modifications to the tunnel follows.

The wind-tunnel test section is one foot high and six feet wide. The

test section height and entrance conditions were designed so that two separate

turbulent boundary layers can develop on the top and bottom endwalls. 	 With

the cylinder mounted vertically in the tunnel and spanning the tunnel height,

individual flow separations will exist on each endwall. 	 However, as indicated

by Langston 4gi50 , the flow entering the test section is not perfectly symmetric

from top to bottom. To avoid any uncertainty, all detailed boundary layer

measurements will be made near one endwall.	 The decision as to which boundary

layer to characterize was based on the desire to use the existing probe positioning

device, described by Langston SO , which attaches to the tunnel ceiling. Since

the probes used in the test program will be cantilevered from the ceiling, probe

interference effects will be much larger on the ceiling boundary layer than on

the floor boundary layer. Characterization of the tunnel floor boundary layer,

then, is the proper choice to minimize probe interference effects. Therefore,

the floor of the test section has been designed to serve as the instrumented end-

wall. The floor will consist of a support plate, Fig. 15, and a mating

instrumented disk shown in Fig. 16. The support plate will be bolted to the

existing test section frame, and the instrumented disk will be concentrically

clamped to the underside of the support plate with sealing provided by an O-ring.

'rhe clamping arrangement will consist of four toggle clamps and four cam

followers equally spaced around the disk. The cam followers will be mounted

into slides, as shown in Fig. 17, so that the instrumented disk can be easily

retracted from the support plate and rotated to any desired angular location.

11
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The procedure for retracting the disk will involve first releasing the toggle

clamps so the disk will rest on the cam followers. Then by retracting the bolts

tnat hold the slides as shown in Fig. 17, the cam followers wi;l be lowered until

the O-ring seal clears the support plate. The disk can then be rotated on the

cam followers as required. The disk will be reinserted into the support plate

by reversing the above retraction procedure. This design will enable detailed

endwall static pressure measurements to be obtained, with a minimum number of

pressure taps installed in the disk, by sequentially rotating the disk to

position the pressure taps at desired angular locations.

The pressure tap locations on the instrumented disk are contained in Table I.

Pressure taps have been staggered along the disk radius at angular locations of

a - -10, 0, 10, and 20 degrees. The tap locations along these radii are arranged

so that at a given angular location, pressures can be measured along a radial line

every 0.25 inch for 6 < R < 14, every 0.50 inch for 14 < R < 20, and every 1.00

inch for 20 < R < 28, where R is the radius in inches from the disk center, by

successively rotating each of the four lines of taps to the angular location.

Additional taps have been included on the instrumented disk so that a general

survey of the endwall static pressure distribution can be obtained without rotating

the disk. Static taps will also be machined into the support plate at locations

shown in Fig. 15. These taps will be used for defining boundary conditions.

The diameter of the test model (cylinder) was chosen based on a trade-off

between desiring a large-diameter cylinder to minimize probe effects and desiring

a small-diameter cylinder to reduce the interference effects of the tunnel side-

walls. As a result of this trade-off, a nominal cylinder diameter of 12 inches

was chosen. This diameter is large enough so that the model scale is 100 times

larger than the characteristic dimension of a typical five-hole probe or hot
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wire, which is on the order of 0.1 inch. Based on inviscid calculations, the

interference between a one-foot diameter cylinder and the tunnel sidewalls is

expected to increase the pressure coefficients on the cylinder surface by only

several percent, which is believed to be acceptable.

A sketch of the test model is shown in Fig. 18. The cylinder will be

machined from commercially available aluminum tubing with a nominal outer diameter

of 12 inches and a nominal wall thickness of 1 inch. Because of loose tolerances

on tubing concentricity and wall thickness, the cylinder was designed with an outer

diameter of 11.75 inches to guarantee a uniform circular diameter. The height of

the cylinder will be nominally 12 inches to match the test section height.

The cylinder will be concentrically located and bolted on the instrumented

disk via the through holes in the disk shown in Fig. 16. 0-rings will be used to

seal between the cylinder and the floor and ceiling of the tunnel. The cylinder

will rotate with the disk so that detailed static pressure distributions on tie

cylinder surface can also be measured with a minimum number of pressure taps on

the cylinder. The tap locations on the cylinder are given in Table II. Pressure

taps will be staggered along the cylinder axis at four angular locations (which

will be aligned with the four radial lines of staggered taps on the instrumented

disk during assembly) so that static pressures can be measured every 0.25 inch

on the bottom half of the cylinder at any angular location. Additional taps have

been included to enable a survey of the cylinder surface static pressures to be

obtained without rotating the cylinder and to check flow symmetry along the cylinder

axis. The lines connected to the pressure taps on the cylinder will be routed

through the access hole in the center of the instrumented disk (Fig. 16) so as

not to interfere with the probe positioning device located on the test-section

ceiling. Thus. modification of the tunnel ceiling will not be required. 	
k
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Fabrication and Installation

The test cylinder and the parts for modifying the tunnel test section are

partially fabricated. The support plate has been machined but the pressure tap

holes and mounting holes for the clamps and cam follower slide assemblies have

not been installed. The instrumented disk has been fabricated with the pressure

tap holes and through holes to mount the cylinder to the disk installed. The

access hole at the disk center for routing out the cylinder pressure tap lines

has not been machined. A plug to fill the access hole will also be fabricated.

This plug will be installed for tests with the cylinder not installed. The test

cylinder has been turned down to the correct outer diameter, the pressure tap

holes machined in the cylinder wall, and the O-ring groove and the threaded bolt

holes on the cylinder bottom surface installed. The cam-follower slide assemblies

are in the process of being fabricated.

After completing the fabrication indicated above, the test configuration will

be assembled as follows. The wind-tunnel test section will be detached from the

tunnel and located in the shop assembly area. The existing floor, including two

of the angle iron supports that would interfere with the instrumented disk pressure

tap lines, and sidewalls will be removed. The support plate will be mounted onto

the test section frame and the mounting hole locations will be transferred to the

plate from the frame. The support plate will be installed using shims to level

the plate and locate it 12 inches from the test-section ceiling. The instrumented

disk will be clamped to the support plate taking care to minimize steps on the

inside surfaces. The precise distance between the center of the disk and the tunnel

ceiling will be measured with the probe positioning device in place on the tunnel

ceiling. The test cylinder will then be cut to the appropriate length, and the
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0-ring groove will be machined into the top surface. After installing the

pressure tap lines into the cylinder, the cylinder will be bolted to the

instrumented disk with the cylinder pressure tap holes properly aligned with

those on the instrumented disk. After reassembly of the sidewalls, which will

involve tapping mounting holes in the support plate, the test section will be

installed into the wind tunnel for testing.

Five-Hole Probe Calibration

Two five-hole probes, United Sersor Model DC-.093-24-F-22, are available for

use in this program. The geometry for the probes is shown in Fig. 19. The probe

tips have a diameter of 0.095 inch instead of the stock configuration of 0.125 inch.

In addition, the tips are ogival rather than a truncated cone as in the stock

configuration, since it was found that the corners of the truncated cone, even

though they contain large obtuse angles, cause inconsistencies in the calibration.

(See Camarata et a1. 51 .) The ogival tip makes the probe calibration less sensitive

to changes in Reynolds number. The tip of the probe is aligned with the shaft

axis (which is the reason for the "shephard's crook") so that as the probe is

rotated about the shaft axis the tip does not move. The nomenclature for the

pressure taps is shown in Fig. 19. Tap 1 is the impact pressure while taps 2

and 3 are for nulling the probe in yaw , and taps 4 and 5 are for dynamic pressure

and pitch.

The probes were calibrated in an air jet issuing from a 1.5 inch diameter

nozzle. The calibrations were accomplished at a dynamic head of approximately 2.6

inches of water. The sign convention used for the calibration tests is shown in

Fig. 20. Yaw angle, 0, was defined as the angle between the plane formed by the

tip and the shaft of the probe and the projection of the velocity vector on the
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plane perpendicular to the shaft. Pitch angle ^ was defined as the angle between

the velocity vector and the plane perpendicular to the probe shaft. The probes

were calibrated :ver a range of pitch angle- rom -29 to +30 degrees. For each

calibration condition, the probes were nulled in yaw by turning the probe about the

shaft axis until P 2 equaled P 3 . The resultant yaw angle, as measured rulative

to a flag mounted on the shaft, was recorded as 
8cal. 

The pressures from the

remaining taps were also recorded, and the calibration curves shown in Fig. 21

were generated.

Measurements will be acquired in the wind tunnel in a similar manner. At a

given spatial location in the flow field, the probe will be rotated until the

pressures from taps 2 and 3 are equal. The probe rotation wi'1 be measured relative

to a laser alignment beam and designated 8
meas

. The sign convention for 6meas

will be that shown in Fig. 19. The pressures P I , P 4 , and P S will be recorded.

The data will be reduced as follows. The pressure ratio (P 4 - P
5
)/(P l - (P4 + PS) /2)

will be calculated from the measured data and the pitch angle. 0, determined from

Fig. 21A. Knowing 0, the parameter (P I - (P 4 + P 5 )/2)/q will be determined from

Fig. 218 and used to calculate the local dynamic pressure, q. Also using m. the

parameter (P T - P I )/q will be obtained from Fig. 21C in order to calculate the total

pressure. Similarly, the calibration yaw angle, 
ecal' 

can be extracted from

Fig. 21D. The flow yaw angle, ©, then is the sum of ©
cal 

and 
0meas' 

Local static

pressure will be calculated from the total and dynamic pressures using the Bernoulli

equation. The direction of the velocity vector will be defined by the angles 0

and A.

Data Acquisition System

An ADAC corporation data acquisition system will be utilized for acquiring

experimental data. The system includes a Digital Equipment Corporation (DEC)
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LSl 1102 microcomputer with 32K words memory, the DEC RT-11 operating system, a

DEC VT 100 terminal, ADAC dual 8 inch floppy disk drives, ADAC analog to digital

and digital to analog convertors with software support packages, and an Axiom

IMP miniprinter. The intent is to use the data acquisition system to acquire the

data and reduce it to engineering units for on-site analysis. The system will also

be used interactively wit,i the main-frame computer, an IBM 3081 model D, to

transfer the data to the main frame for reduction. In this application the data

acquisition system will act as a remote terminal to the main frame. In order

to utilize the data acquisition system in the above manner, software packages will

be developed for acquiring the experimented data, a communications package will

be developed for linking the data acquisition system to the main frame, and

additional software packages will be written to reduce and assemble the data

using the main frame.

Saddle Point Model

The Oswatitsch model for singular points in a flow was extended to cover

the case of an asymmetric saddle point. The first draft of a final report on

this analytical model was completed and is now being rewritten. Work is also

underway to write a paper on the analysis.
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TABLE I

INSTRUMENTED DISK STATIC PRESSURE TAP LOCATIONS

R	 S-DEG
IN

-20 -10 0 10 20 ±40 ±60 ±80 90

9.75 6.25 5.90 6.50 6.75 9.00 9.00 9.00 9.00

12.75 7.25 7.00 7.50 7.75 12.00 12.00 12.00 12.00

15.50 8.25 8.00 8.50 8.75 15.00 15.00 15.00 15.00

9.25 9.00 9.50 9.75
10.25 10.00 10.50 10.75

11.25 11.00 11.50 11.75
12.25 12.00 12.50 12.75

13.25 13.00 13.50 13.75
14.50 14.00 15.00 15.50
16.50 16.00 17.00 17.50

18.50 18.00 19.00 19.50

21.00 20.00 22.00 23.00

25.00 24.00 26.00 27.00

28.00



Z	 $-DEC
IN

-20 -10 0 10 20 ±4o ±60 ±80 90

1.50 0.125 1.00 0.75 0.50 2.00 2.00 2.00 6.o0
3.50 1.25 2.00 1.75 1.50 4.00 4.00 4.o0
5.50 2.25 3.00 2.75 2.50 6.00 6.00 6.00

3.25 4.00 3.75 3.50 9.00 9.00
4.25 5.00 4.75 4.50
5.25 6.00 5.75 5.50
9.00 7.00 9.00 9.00

8.00
9.00

10.00
11.00
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Nomenclature

A - parameter related to the angle of the inviscid portion of Johnston
triangular polar plot

a - constant	 in Langston polar-plot relationship, equation	 (11)

c - constant in Eichebrenner polynomial polar-plot relationship, equation
(10)

G - function for crossflow profile, equations	 (3) and	 (4)

g - function for crossflow profile, equation	 (3)

H 
- 6x/6x boundary layer shape factor

J - Jacobian of the shear-stress vector

n - related to the shape factor, Hx - (n + 2)/n

P 1 -P 5 - five-hole probe pressures, Fig.	 19

Q -	 resultant velocity

R -	 radial	 location of static pressur taps

r - exponent	 in Moore and Richardson crossflow relationship, equation	 (6)

Rep - Reynolds number based on the cylinder diameter

u - axial	 velocity

u 
- crossflow velocity

us - streamwise velocity

UT -	 friction velocity - square root of the quanity wall	 shear stress
divided by the density

w -	 transverse velocity

x,y,z -	 streamline coordinate system,	 Fig.	 8

^_r - main-flow streamline angle relative	 to a	 fixed direction,	 Fig.	 8

t3 - angular	 location of static pressure taps

A	 - divergence of the shear-stress vector

Y	 - crossflow strength coefficient, equation	 (11)

- boundary	 layer	 thickness
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Nomenclature (Continued)

6 	 - boundary layer displacement thickness
E	 - crossflow angle

V	 - kinematic viscosity

- pitch angle

A	 - yaw angle

6cal	
- yaw angle for nulling five-hole probe during calibration

6meas - uncorrected yaw angle

e	 - boundary layer momentum thickness
x

Subscripts

ms	 - main flow

w	 - wall

1,2 - indices

t
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