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THE RECEPWIVI` Y OF BOUNDARY LAYERS ON BLUNT BODIES

TO OSCILLATIONS IN THE FREE STREAM

By

Chester E. Groach*

INTRODUCTION

The prediction of the position of transition on a body is one of the

most difficult problems in fluid dynamics. Linear stability theory with the

iienii criterion (see Mack, 1977, for an extended discussion) is probably

the most widely used method of predicting transition. The major weakness of

this method is that it employes a relative measure of flow instability; the

growth of some measure of the disturbance size, whether amplitude, energy,

or whatever, relative to an unknown inrtisl size of the disturbance.

It is clear, as pointed out by Mack (1977), that the position ol tran-

sition must depend on the absolute size of the disturbance, and thus on the
initial size of the disturbance as well as the growth rate of the unstable

disturbance, If there were no disturbance at all, that is the initial size

were zero, the stability or instability of the flow would be irrelevant.

The flow would remain laminar, and transition would not occur anywhere on

the body unless, of course, the flow separated, On the other hand, if the

initial disturbance were very large, say of the order of the mean flow

speed, then transition would, presumably, occur very near the front of the

body, perhaps in the immediate vicinity of the stagnation point or line.

A rough estimate of the magnitude of the initial amplitude of the

Tol).mien-Schlichting waves at the beginning of the region of instability can

be made if it is assumed that the ra ni, criterion is an approximately valid

transition method and if one accepts the estimate of Klebanoff, Tidstron,

and Sargent (1962) that, at the beginning of transition, the rms value of

the perturbation velocity is about 1.5% of the free stream speed. Since the

*Professor, Department of Oceanography, Old Dominion University, Norfolk,
Virginia 23508,



initial proposal of the "e n" criterion by Smith (1956) and Van Ingen

(1956), extensive studies of transition data have shown that n varies from

about. 2.5 to 10.0 0 depending on the test facility. Taking the disturbance

amplitude at transitions to be 0.015 of the free stream speed, and n to

vary from 2.5 to 10.0, it follows that the amplitude of the disturbance at 	
f,

the beginning of the region of flow instability is in the range 10- 3 to 10`6

of the free stream speed. This suggests that a very weak coupling of free

stream disturbances to Tollmien- s Schlichting waves in the boundary layer may

be extremely important in the initiation of the transition process. If the

free stream disturbances have amplitudes of 0(e) 0 even disturbances in the

boundary layer of 0(e2) may play a role in initiating transition,

In order to incorporate the influence of the flow environment in sta-

bility prediction methods, and thereby provide a rational basis for there

methods, it is necessary to be 9ble to calculate the initial size of the

disburbance caused by external, i.e. free stream, disturbances. There are

four classes of free stream disturbances which may be responsible for the

generation of the Tollmen-Schlichting waves which lead to transition

(obremski, Morkovin, and Lsndhal, 1969). They atze: mean 4`low unsteadiness,

free stream vor'cicity, sound, and entropy fluctuations, If the fluid were

truly incompressible, only the unsteadiness of the mean flow and free stream

vorticity could exist and initiate the transition process, In reality,

sound waves are always present. Entropy fluctuations appear to occur only

at high supersonic speeds. In a recent study, Harvey4 and Hobbitt (1981)

have examined the anomolies between wind tunnel and flight transition mea-

surements. They state that the experimental results show"... the dominance

of free-stream disturbance level on the transition process from beginning to

end." Further, they conclude that there is a question of"... whether sound,

unsteadiness, or spectral peaks is the most influential on boundary layer

receptivity,..." Morkovin (1978) has argued that, in medium to low subsonic

flows, sound waves can be modeled quite accurately by a time varying

oscillation superimposed upon a steady mean flow, provided that the

wavelength of the sound wave is much larger than the characteristic length

scale of the body. For a sound wave impinging on the nose of a body this

characteristic scale length would appear to be the radius of curvature of

the bidy at the forward stagnation point.

2
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Recent studies, (Salwen, Kelly, and Grosch, 1980; Grosch and Salwen,

1980; Salwen and Grosch, 1981) have been addressed to the problem of calcu-

lating the amplitudes of the discrete and continuum eigenfunctions of the

linearized, parallel flow stability problem. The results of these studies

can be summarized as follows: first, the proper inner products for ortho-

gonality of these eigenfunctions were found; second, it wr shown that the

set of discrete and continuum eigenfunctions for both the temporal and spa-

tial problems is complete; and third, a procedure for calculating the ampli-

tudes of the discrete and continuum eigenfunctions was found. In order LO,

calculate these amplitudes, the disturbance must be known, as a function of

time, on a plane perpendicular to the boundary.

In order for this procedure to be eiplied it is necessary for the dis-

turbance to be small so that linearization is valid; that the parallel flow

approximation be valid, at least approximately; and that the form of thta

disturbance be known thrcighout the boundary layer and free stream at one

location on a two-dimensional body. Even if the disturbance@ are &I'all,

this theory cannot be applied in the immediate vicinity of the leading edge

of a body because the flow in that region is not even approximately

parallel. A basic problem is to determine the flow within the boundary

layer caused by disturbances propagating and being adverted by the mean flow

toward the front of a blunt body.

The response of the boundary layer on a body to oscillations in the

free stream has been the subject of a number of studies beginning in the

early 1950's. Some representative examples are the work of Moore (1951),

Lighthill (1954), Stuart (1955), Rott (1956), Lin (1956), Glauert (1956),

Carrier and Di Prima (1957), Gibson (1957), Watson (1959), Lam and Rott
(1960), Rott and Rosenzweig (1960), Sarma (1964), Stuart (1966), and

Ackerberg and Phillips (1972). Riley (1975) and Schlichting (1979, Chapter

15) give comprehensive reviews of recent work in unsteady boundary layer

theory. None of these authors have considered the application of their

results to the boundary layer receptivity problen.

These studies have considered either the unsteady flow in the vicinity

of a stagnation point or on a flat plate. The flat plate problem presents

E
1

k,
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grdat difficulties because of the singularity of the boundary layer equa-

tions at the leading edge of the plate. 	 Carrier and Di Prima (1957) studied

this problem within the framework of a linearized, Oseen approximation, to

first order in the amplitude of the oscillation. 	 They found that, far from

the leading edge of the plate, the time dependent part of the flow is a

Stokes shear wave.	 Ackerberg and Phillips (1972) studied the same problem

using asymptotic,	 again to first order in the amplitude of the oscillation,

and numerical techniques.	 They also found that, far downstream of the lead-
9

ing edge, the flow develops into a nearly Blasius steady flow and a Stokes

shear layer imbedded within the steady boundary layer.	 The most surprising,

and unexpected,	 result of Ackerberg and Phillips is that 11 ...	 most flow

quantities approach their asymptotic values far downstream through damped

oscillations."
a

ppp

Quite recently, Grosch and Salwen (1982) have found a solution of the
4'.

3

Navier-Stokes equations for an incompressible stagnation point flow whose

i	 magnitude oscillates in time about a constant, nonzero, value (see Attach-

ment 1).	 The analytic solutions,	 to third order in the amplitude, obtained

using inner and outer expansions, are in complete agreement with tl,e results —

of numerical integrations. 	 The mean flow is the steady stagnation point

flow plus second, and higher, order flows driven by the Reynolds stress of

the oscillatory components. 	 The oscillatory flow is that of the fundamental

and all of the higher harmonics of the fundamental.
x

The mean flow is, to lowest order, independent of the oscillating flow. 31
The structure of the oscillatory components of the flow depends on the fre-

quency of oscillation, not on the distance from the stagnation point. 	 As

was expected, the oscillatory flow develops into a Stokes shear layer at a

high frequencies.	 The results of Carrier and Di Prima and Ackerberg and

Phillips that the Stokes shear layer develops far downstream may be due to

the use of the boundary layer equations in a region in which they are

invalid.

In any case, the flat plate with zero thickness and a "sharp" leading

edge is a nonphysical model; all _physical bodies have a blunt leading edge,

at least if a continuum approximation can be applied to the flow past the

body.

4
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In, this paper we examine one aspect of the boundary layer receptivity

problem; that of the flow induced in the boundary layer on the forward por-

tion of a blunt body by unsteadiness in the mean flow. As was mentioned

above, this is also an approximate solution for the disturbances generated

in the boundary layer by a long wavelength sound wave impinging normally on

the front of a body in steady motion. This work is an extension of our

previous study of the flow in the neighborhood of a stagnation point (Grosch

and Salwen, 1982)

p OR14ULAT IO N

Consider the flow past a blunt, two-dimensional body. The usual bound-

ary layer coordinates are used: x is the distance along the surface of the
N

body from the forward stagnation point and y is the distance from the body
N

along the normal to the body. A solution is to be found for x ?O of the

time-dependent, two-dimensional, boundary Layer equations

+ av . 0,	 (1)

aX ay

au y au y au	 au +U aU +v a"	 (2)T U r.^ T V N .. ^	 N	 N ,.

at	 ax	 ay	 at	 ax	 By 

with the boundary conditions

u(X ,o, t) " v(x,o ► t) - O,	 (3)

ow	 N
u(x ► y,t) + U (x )0 as y +	 (4)

N	 i#(

Here, (u,v) are the components of the velocity in the x and y
N

directions,	 U(x,t) is the component of the potential, flow which is tan-

gential to the body surface, and v is the kinematic viscosity. it will,. be

L

7^r

Y	 ^^

I

t

h



assumed that the potential flow is a temporally oscillating flow, super-

imposed on a steady mean flow; specifically it is assumed that,

U(x,t) - U0H(x/R) (1 + C cos Wt),	 (5)

where Uo is the magnitude of the mean potential flow,

R is an appropriate length scale of the body,

C is the dimensionless amplitude of the oscillating component,

and,

H is a dimensionless function, giving the variation along the body

of the tangential component of the potential flow.

It will be assumed that the body is symmetric and is at a zero angle of

attack, so that H is of the form

H(x/R) - I a	 (X/1) 2n+1

nn0 2n+1
	 '

with the (a) dimensionless constants. Specific examples will be

considered below.

METHOD OF SOLUTION

Define dimensionless variables

x/R,
	

(7)

n	 (a,Re)112(y/R)
	

(8)

T - alUot/ R ,	 (9)

and parameters, a Reynolds number

Re	 UoA/v	 (10)

4

6

ti

(6)
i

x '^
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and a Strouhal number, a dimensionless frequency,

v . wf/(alto).	 ill)

Defining a stream function such that

N	 N
u to way , v - -Wax,

(l2a,b)

by

[ (Uo )/(al Re) l / 2 1 0(4,n,T),	 (13)

equation (1) is satisfied identically and (2) is

330 + ail a+ 324 - of 820 - a20 
n C OW) 	 OT

30ag ;in	 an again	 a,ran

al 
H

(L )W (l )[I + e c ps OT]2	
(14)

The boundary conditions, (3) and (4) are

4

i

a^	 3^ . 0	 at n • 0,	 (15)
an .74

and

at 
+ H(E )[ 1 + e co g vT]	 as n + •.	 (lb)

an

The tangential component of potential velocity, H(0, is a power series in

E. It is clear, from ( 14), that ^ must also be a power series in E,

with each coefficient a function of n, T, and the parameter E. Each of

these coefficients will be expanded in a Fourier series in T, with each

Fourier amplitude a function of n and the parameter E. Finally, each

Fourier amplitude will be expanded in a power series in E, with each

coefficient of the power series a function of n, These functions of n

are then found to be solutions of Ord nary differential equations,



P(T;E,o) - Ca sin aT,	 (19a)

and

F;

i
—4

5

 c	 t	 a
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First ► assume that

( ,n ,T) ' j [ 2(n + 1) - 6 ] a	 92n+1 F	 (n ► T).	 (17)
nw0	

on 2n+1	 2n+1

Substituting (6) and (17) into ( 14) and equating the coefficients of

successive powers of t on the left and right sides of equation (14), the

partial differential equations for the ( F,
J 
(t1,T)) are found. F 1 satisfies

alFl. + F 82F _ aFl _ 82 F1 • P (T ;E CF,	 - Q(T; E ,o),	 (18)
an 	 ' ant	 in—/ TT

where

Q(T ;e ,a)	 1 + 1 e2 + 2e cos CT + 1 E2 cos 20T. 	 (19b)
2	 2

Next, define the operators

a 3 F.
	

a2 F.	 aF aF.	 a2F1	 a2F.
D ( F •,Fl ; J) =	 1 + Fl	 3 - (j + 1)	 1	 J + ?-- F . -	 1	 (20)

an3	 ant	 an an	 ant	 J	 aTan

i

and

^	 W

aF. aF.	 82F.
G (F,F^) =	 i -- 3 -	 1 F.•	 (21)	 p

an an	 an2
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Then,

^x
A(F3 rF1,3) m I P - Q, (22)

4

0(F5,F1,5) . 1 P -	 (1 + I Cg) Q + 8CSG( F3, F3), (23)
6 2

D(F7,F1,7) -	 P - (1 + C7) Q + 9C7G(FS,F3) + 15 C70 ( F3, F5), (24)8

0 (Fi3 OF, ;9) .	 P - (1
+ C9 +	 C9G(F70F3)

Q + 1 C9 1`482	
► 2)	 5

t0
► 1

+ 112G(F3 , F7 )] + 18 C	 G(FS ,FS ), (25)902

D(Fll	Fl ; 11)	 1 P - (1 + C + C	 ) Q + C	 [30G(F3,Fg)
12 11, 1	 1102	 11 ► 1

+ 10G(F ,F	 )]	 + C	 (28G ( F5,F7) + 20G(F7 0F 5 )], (26)9 3 11S2

I

d

4

with

C5 - of/(alas),

C7 . a3 a5 / (al a7)

C9,1 - a3 a7 /(al a9), C9,2 ' aj/(ala9),

Cll,l ` a3 a9 /(al all ), 011,2	 asa7 /(alall).

(27 a)

(27b)

(27G,d)

(27e, f)
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The boundary conditions for the (F2n+1} are

	

F2n+1 (0,T) . (3F2n+l /an >n.o = 0
	 (28)

and

	

2(n + 1) - d onJ l a F2n+t an) + 1 +	 e cos QT,	 (29)

as	 .n+0'.

We have previously found the solution for F1 up to, and including,

terms in e 3 (Grosch and Salwen, 1982; see Attachment). Although the

boundary layer equations are being used in this study, it should be noted

that Ul (n ,T) is a solution of the Navier-Stokes equations for oscillating
stagnation point flow. It is easily seen that the form of the solution for

each of the F2n+l is the same as that for F l . Therefore, we have for

j- 1,3,...,11

Fj(n 	 JC2mfj
, ^^ 

(n) +	 e2m+k[ fj'2m,k (n) cos (ko-0
r

n*0	
2m	

k 1

	

g j ^ 2m ^ k(n) sin ( kvt)]	 (30)

It is quite straightforward, but somewhat tedious, to obtain the ordi-

nary differential equations and boundary conditions for the f's and g1s.

These differential equations are given in Appendix A.

One of the major problems associated with series solutions of this type

is that of determining the radius of convergence. On the basis of the

results from the study of oscillating stagnation point flow (Grosch and

Salwen, 1982), it can be concluded that the power series in a is rapidly

convergent for e < 1, except perhaps at very low frequencies, if the fre-

quency of oscillation is low, then a quasisteady approximation is quite

accurate. Because of the rapid convergence of the series in e, for e

"	 small, only the terms through e2 have been calculated.

10
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A much more difficult problem is estirating the radius of convergence

of the power series in ^. It appears that there are no general results for

determining the radius of convergence of the steady Blasius series, van

Dyke (1957) has shown that the steady Blasius series for a parabolic

cylinder diverges for x/r o > 0,62, where ro is the radius of curvature of

the parabola at the nose, The results given by Schlichting (1979) for the

steady Blasius series for a sphere of radius r 	 suggest that this series

is convergent up to at least x/ro " w/2. It seems reasonable to assume that

the time dependent series solution given here is convergent for t in lf/f A 1.

RESULTS

Numerical integration of the equations given in Appendix A yield the

{ fj,2n,k'gj,2nk), Substituting (30) and (17) into (13) and using (12)

gives, for the velocity components (u,v);

•	 2n+1 •
u/Uo 	If 2(n + 1) - 

Son a2n
+l^	 Ie2mf2n+1,2m,0n*0

	
UFO

+ 7t2m+kt f2n+l,2m,k cos(kCfT) + g2n+1,2m,k sin(kaT))] , (31)
ku l

v/Uo	 (al Re)-1/2 7 J[ 2(n + 1) - don ] (2n + 1) a2n+lC2n
nn 0

w	 .

C.2mf
,2n+1,2m,0 +	

E2m^k {f2n+1,2m,k cos (ka T) +
nn0	 k^l

+ 92n+1,2m,k sin (WT))]	 (32)

The velocity field depends on the body shape, the {a j ) , the

Reynolds number, Re, and the dimensionless frequency, a, It should be
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noted that the effective Reynolds number and frequency depend, to some

extent, on the body shape because the velocity seal* is alU O, see

equations (8), (10), (11), and (13). it is clear from (31) that, as usual.,

the tangential component of the velocity, u, has no explicit dependence on

the Reynolds number which only affects the scaling in the normal (n)

direction. ,Again, as usual, the normal component, v, is proportional to

Re-112 in addition to the scaled dependence of the normal coordinate.

Thrcugh the terms in t2,

u/Vo ` uo ► o (Con) + C u2 ^ o (4,n) + E[u((O(4,n) cos alt + u( 2i(4,n)O'l

X sin OT] + c 
2
[u(1)cos 29T + u(2) sin 20 ,r) ►o ,2	 o,2

v/U • - (a Re) - 1/2 (v 	(4,n) + 
t2v
	 (c on) + E[v0) (4,n) cos OT0	 001

+ v (2 ) sin CT] + e 2 [v (l) (4n) cos 20'r+ v(2)(4,n)0,1	 o,2 '	 0,2

sin 37TI}

WIN

(33)

(34)

4

with,

5	
2n+1	 .ua ro " 

no0 
[ 2(n + 1)	 a onJ a2.a+l 4	 f2ti+, ^,o(n),

5
u (1) W 5 [2(n + 1) - 6 0n ] a	 42n+1 f ,	 (n) ►
o ► 	
n^o 
	 2n+1	 2n+1,0,J

5

uO2J 0 n^0[ 2
(n + 1)	

on ]  a2n+1 
4 2n+1	

, , . (n) ,
n+1 0

(35a)

(35b)

(35c)
,

12
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I ( 2(n + 1) - d ) (2n + 1) &2n+1 
C3n

vj,o ^	 on
f
2n+1,3,0 (n;

nw0 

5
vol^	

nI0 ( 
2(n + 1) - 6 on^ C 2n + 1) a2n+1 92nf2n+ l,o,,j(n,

vat) . ? (2(n + 1)	 d on (2n + 1) a2n+1 92n 2n+l,o,j(n,
nQ

The superscript ( 1) indicates the component of the velocity in the

boundary layer which is in phase with the free stream oscillation, and the

superscript (2) denotes the out of phase component.

Figure 1 is a sketch of a typical blunt body and the coordinate system.

The tangential and normal velocity components are u and v. The Cartesian

coordinate system (x,y) is also shown in figure 1. The velocity compo -

nents ("u,$), parallel and perpendicular to the body axis are related to

(u,v) by

unucose - v sin A,
	 (36 a)

v 0 u sin A+ v cos e
	

(36b)

r

r	 u

IL

There is an inherent difficulty in presenting the results of the calcu-

lations in such a way as to make them intelligible. The reason for this

difficulty is that the character of the flow, in the boundary layer varia-

bles, changes drast ically with position, In front of the body the flow is

primarily directed towards the.body, so u is very small and v dominates,

in fact for n large, v	 Uo. As the flow moves around the body v

decreases and u increases so that near the midpoint u dominates. For

this reason it seems most reasonable to present the results in the (x,y)

coordinate system-, In particular, in terms of u, the component of the

velocity is parallel to the axis of the body. Note, however, that as y is

varied at fixed x both 9 and n vary. Presentation of the results in

terms of a also facilitates comparison of the results of these calcula-
tions with the experimental results of Kachanov, Kozlov, and Leirchenko

13



(1979) although, as will be discussed below, the correspondence between the
conditions of the experiment and of this calculation is not exact.

Detailed calculations have been carried out for the flow past two types
of bodies; elliptic and parabolic cylinders ►

3.1 Elliptic Cylinders

On the surface of an elliptic cylinder the tangential component of the
potential flow is

N(f,)	 1 + (b/a)] sn(C;k),	 (37)

with a the semi-major axis, b the semi-minor axis,
in the Jacobian elliptic function, and
k2 . 1 _ (b/a)2	(38)

The length scale is the semi-major axis, a. The coefficients in the power

series enpansion for H(U, the (a
201 ) 

are given in Table 1, (Cayloy,

1895). The radius of convergence of the Blasius series for an elliptic
cylindev is, apparently, not known. however, the calculations appear to

converge up to at least the midpoint on the body, that is to

n E(k),	 (39)

where E is Lhe complete elliptic integral of the second kind. The

calculations were ended at this value of C because we are primarily

interested in the flow on the nose.

Calculations of the velocity field have been carried out for a number
of bodies with different slenderness ratios (a/b) and frequencies, a.
Results are given for three bodies; a moderately thick ellipse with a/b
5	 a thin ellipse, a/b w 10; and a very thin ellipse, a/b - 25, see

Table 2, For each of these valued of a/b calculations were carried out
for a low frequency a w/4, two intermediate frequencies, a - r and

3R0 and a high frequency, a	 6W. In all cases the Reynolds number was

14



taken to be 140,0, The results at other, particularly higher, Reynolds

numbers appear to have the same form when distances are resealed to the

appropriate boundary layer thickness.

Contours of the zero order steady flow, u0 0 0 
1  are shown in Figures 2,

3 0 and 4. The format of these figures, and all of the others is the mama,,

The body shape is plotted in the lower right hand corner of the figure and

the flow is from left to right. For each body the semi-major axis is the

same length. The body shape has not been distorted, however the region

outside of the body has been stretched in order to show the details of the

flow in the boundary layer. The coordinate system outside the body is the

(^,n) system which is shown in Figure 1. The distance 4 n 1 corresponds

to four of the major units of the scale shown on the edges of Figure 2 and

all others, The distance n n 1, on the other hand, corresponds to one of

these major units, Thus, for example, the coordinates of the point in the

lower left hand corner of Figure 2 are 4 a 0 and n - 4, and those of the

upper right hand corner of Figure 2 are 	 n E( O.96 n 1.05050, and h n

4,2. Note, however, that although the (9,n) coordinate system is used,

these are contour plots of u, the velocity component parallel to axis of

the ellipse.

The results shown in Figures 2, 3, and 4 show that the zero order in

e, mean flow has the same general fenitures for bodies of different

slenderness. Ahead of the body there is a boundary layer merging into the

decelerating potential flow. Near the midpoint of the body the flow is

nearly parallel to the body and the boundary layer flow merges into the

tangential potential flow, In between there is a kod of "bubble" where

u	 is small. This extends somewhat in front of and above the forward
000

portion of the body. This region of small uo 
a 

occurs because both 
uo,o

and vo 
o 

are small and are at a substantial angle to the x axis. As the

fluid flows around the nose of the body u increaser, but v decreases

until near the middle of the body where it is 0(Re- » 7 ). Therefore, on the

forward portion of the body, but away from the axis, u !^s increasing with

f but is still not large and v is decreasing. Finally, as the body

becomes more slender, the steady boundary layer tends to become thinner,

3
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Figures 5 through 16 are contour plots of the second order steady flow,

u2,o . Figures 5 to 8 show the results for an elliptic cylinder with

a/b : 5 for a sequence of frequencies, o . w/4 0 w, 3w, and 6w.

Figures 9 to 12 show similar results for a/b a 10, while the results for

a/b a 25 are $Ivan in Figures 13 to 16, Examination of these figures
raveala some general patterns in the flow.

in all cases u2 o is positive in the lower portion of the boundary

layer and negative in the upper portion. At low frequencies the maximum and

minimum values of u2,o occur at the midpoint of the ellipse. As the

frequency increases the maximum tends to shift towards the front of the body

and the thickness of the regions of both positive and negative secondary

mean flow tend to decrease. However, as the ellipse becomes more slender

i.e., a/b increases, the region of appreciable 
u2 o 

tends to be confined

to the near midsection of the body, The absolute magnitude of this secon-

dary flow also tends to decrease with increasing a. Finally, at low

frequencies the max ('U' 
2,o
	 is greater than Imin(u 2,o )1, but at high fre-

quencies this is reversed. These results show that the Reynolds stress

generated by the nonlinear interaction of the fundamental oscillatory flow

with itself cause the formation of a weak, secondary, shear within the main

steady boundary layer. At low frequency the maximum shear occurs near the

middle of the boundary layer. As the frequency increases, the position of

maximum secondary shear shifts towards the boundary.

Contour plots of the amplitude and phase of uo,l , the fundamental

oscillation at frequency o, are given in Figures 17 through 28. As above,

these show results for a/b 	 5 0 10, and 25 and a a n/4, w, 3s, and 6w.

The phase is, of course, arbitrary to Within an additive constant. It has

been assumed that for both the fundamental and the first harmonic, the phase

is zero at t = 0, n . 4.

In all cases the contour maps of the amplitude of u
0010 

Figures 17a

to 28a, bear an obvious generic relationship to the corresponding contour

plots of u®o for the same values of a/b. of course, the structure of

the flow does change with the frequency of oscillation. The amplitude of

the oscillation decreases in front of the body and a region of reduced flow

3
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is present above and, generally, in front of the nose of the body, As the

oscillations' move up onto the body, the amplitude grows. In all cases a

peak in the amplitude distribution apprurs in the middle to lower part of

the boundary layer at the midpoint of the ellipse. For a fixed value of

a/b the location of this maximum of u
l,o 

moves towards the boundary as the

frequency increases, reflecting the development of a Stokes shear layer at

high frequencies, If the frequency, v, is held fixed, the location of the

maximum of ul 
o 

also moves deeper into the boundary layer as a/b
r

increases, i.e. as the body becomes more 'slender. This is shown in Table 3,

in which the location of the maximum of uo 
l 

is tabulated as a function

a and a/b.

The contour plots of the phase of uo'l	 Figures 17b to 28b, are all

quite similar. The region of deceleration of the potential flow and the

development of the boundary layer are obvious, as is the thinning of the

boundary layer as it develops into a Stokes layer at high frequencies: Just

back of the nose, the lines of constant phase tend to be parallel to the

body with a noticeable thickening at low frequency near the midpoint of the

ellipse. As a increases the region over which the phase shift occurs

tends to thin. In all cases this region lies deeper in the boundary layer

than the position of maximum u O'l , Independently of the value of a/b,

the total phase shift appears, from the results given in Table 4, to be

tending to n/4 as a + -.

Finally, Figures 29 through 40 are contour plots of shed amplitude and

phase of uo 21 the first harmonic of the free stream oscillation. Again

these results show very substantial internal consistency.

The boundary layer in front of the body is readily apparent. Th e

region of nonzero 1u  21 
decreases as the frequency increases at constant

a/b and as the slenderness, a/b, increases at conotant frequency. The

amplitude of uo 2 has a maximum in the lower part of the boundary layer.

For fixed a/b the position of this maximum moves lower in the boundary layer

and forward on the body as a increases. At constant frequency, the height

of the maximum remains nearly fixed while moving back toward the midpoint of

the ellipse as a/b increases.

^r
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The phase shift of uo 2 
is generally nearly constant over the region

containing the maximum of Iuo 21 and then goes negative in the outer

portion of the boundary layer. In this outer region the phase then

increases towards zero. At low frequencies this outer phase shift occurs

over a thin 'layer, but at higher frequencies it is fairly broad.

The first harmonic of the feee stream oscillation is always confined to

the steady boundary layer and, as a increases, is confined to a thin

Stokes layer adjacent to the body, As the fluid moves up onto the body,

away from the nose, the amplitude increases but never becomes large. In

Iu	 1	 g	 x	 2	 yfact	 uo,2	 is never realer than about 5	
l0'	 The velocity

fluctuations due to harmonics of the free stream oscillation thus never

exceed 5 x 10-2 e2.

3.2 Parabolic Cylinders

We next consider the flow past a parabolic cylinder

y2 - 4ax,	 (40)

where a is the distance from the nose to the vertex. Choosing the ler,igth

scale to be a, the tangential component of the potential flow is a power

series in odd powers of 9 = x/a. The coefficients of this series are given

in Table 5. The solution does not contain any geometric parameters, that

is, apart from the scaling, is independent of a and is, therefore, a

similarity solution for all parabolas.

1

is

..I

The radius of curvature at the nose of a parabola is

ro • 2a. (4.1)

Using Van Dyke's (1957) result that the Blasius series diverges for x/ro

> 0.62, the solution given here is expected to converge only for 9 < 1.24.

The coefficient al = 1/4 for a parabolic cylinder, so that

a	 4(wx /vo) . Thus the "effective" frequency in the differential equa-

tions for the f's and g's is four times the true frequency of oscilla-

tion. Of course, a similar scaling applies to elliptic cylinders, but for
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an ellipse a, . (1 + b /a)- 1 , which is nearly unity for slender ellipses.
Because of the factor of four in the value of a for a parabola,

calculations were carried out for v - n/16, n/4, 3n/4, and 3 ,R/2, so

that results would be regidily comparable to those obtained for the ellipses.

Contours of uo,o , the 0(l) mean flow past a parabolic cylinder are
given in Figure 41. The format of this, and all of the other figures

showing the results of the calculations for a parabolic cylinder, is similar
to those figure, showing the results for elliptic cylinders. The body is

shown in the lower right hand corner. Distances normal to the boundary are
scaled so that one major unit of the scale on the border of the figure
corresponds to one unit of 	 , the boundary layer coordinate Thus the

point in the lower left hand corner of the .figures has the coordino,tes

g	 0.0, n - 6.0, and the top of the parabola at the right hand side of the

figures has the coordinates 4 	 0.90, n - M.

A parabola is, in some ways, a rather peculiar blunt body in that it is

not a closed body, so that there is no trailing edge, and that the thickness

of the body is a monotonically increasing function of the distance from the

stagnation point. Therefore, the farther back from the nose, the thicker is

the region of potential flow which is substantially influenced by the body.

This effect is apparent in Figure 41. There is a region of reduced flow in

front of the parabola due to the deceleration of the potential flow and the

formation of the boundary layer. This region extends far above the axis of

the body because of the blocking effect of the parabola on the potential

flow ahead of the body. In the region in front of the nose the contours of

uo o are nearly equally spaced. Just above the parabola, these contours

tend to line up with the body and the distance between them becomes

increasingly smaller as the flow moves onto the parabola and the quasi-

parallel boundary layer flow develops.

Contours of the steady, second order, streaming flow, u 2 o , for

4a - n /4, n , 3rt , and 6rt , are shown in Figures 42 through 45. These

plots show features which are similar to those seen in the contour plots of

u2 
o 

for the flow past an ellipse, Figures 5 through 16. In both sets,

19

Lir



,

u2 o is positive in the lower portion of the boundary layer and negative in

the upper part. The thickness of the secondary boundary layer decreases

as the frequency increases and there is a slight tendency for the position
of the relative maximum and minimum of u 2 o to shift forward towards the

stagnation point as a increases, However, as a increases the max Iu2,ol

decreases significantly.

Figures 46 to 49 are contour plots of the amplitude and phase of uo,l,
the fundamental oscillation in the free stream flow !past the parabola. The

contours of the amplitude of uo,l , show a general similarity to those of

steady flow, 
uo o

. However, as o increases a Stokes layer develops on
,

the parabolic cylinder and moves forward towards the stagnation point. Away

from the stagnation point, the contours of 
uo,l 

are similar to those of

uo 11 
for an ellipoe if the surfaces are rotated so as to be locally

parallel. The local maximum of uo 1, seen in the flow past an ellipse is

not, however, seen for the flow past the parabola. The contour plots of the
phase of uo,l , also show the development of a Stokes shear layer. The

total magnitudes of the phase shift for u o 1 , in Figures 46b through 49b
,

are quite close to those for the corresponding cases for the elliptic

cylinders.

Contour plots of the amplitude and phase of uo 2 , the first harmonic

of the oscillation in the free stream speed, are shown in Figures 50 to 53.

The results shown in these figures illustrate the development of a second

order Stokes shear layer within the steady boundary layer as the frequency

increases. The maxiuo,2 I increases with	 , -t all a, at least up to

the point	 = 0.9. It cannot be determined whether or not there is a

localized maximum in the amplitude, as was found for the elliptic cylinders,
or whether the amplitude reaches a plateau. The problem is that, in order

to decide this question, the calculations would have to be extended sub-

stantially beyond E	 0.9, but, as mentioned above, the series expansion

probably is divergent for 9 ? • 1.24, and probably converges very slowly for
E close to 1.24.

r
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DISCUSSION AND CONCLUSIONS

Perhaps the most general conclusion which can be drawn from the results

of this study is that in the region of the nose of a symmetric, two dimen-

sional blunt body at zero angle of attack, the steady plus oscillating flow

is very similar for a wide class of body shapes. This conclusioon has been

shown to be true for elliptic cylinders with a/b < 25, and for the parabo-

lic cylinder. Additional calculations, not reported here, were carried out

for elliptic cylinders with values of a/b up to 100, with results which

are very similar to those reported here. In all cases, the flow field in

the nose region of a two dimensional blunt body is generic to that of the

flow in the neighborhood of the stagnation point on a plane wall.

A general picture of the flow on the forward portion of a blunt body,

due to a steady plus oscillating free stream, can be sketched. Forward of

the body there is a region of decelerating potential flow which merges into

the viscous stagnation point boundary layer; On the stagnation stream line

the boundary layer thickness is 2.3&t(Re)-1/2, with I the scale length

of the body. If one considers u, the velocity component parallel to the

body axis, there is a region of small u, above and ahead of the nose,

where the velocity is reduced and is at a significant angle to the body

axis. On the body itself, the boundary layer changes slowly with distance

from the leading edge. The description, so far, applies to uo O , the 0(1)

steady flow.

If one next turns to uo 1 the fundamental oscillating component of

the flow, the above description is, with some additions and amendations,

valid. These are due to the changes with frequency in the oscillating flow.

At low frequencies, w4/a l U0 < 1 , the flow is essentially quasi-steady;
4

that is, it is the steady flow scaled by the instantaneous free stream

speed. As the frequency increases, the oscillating boundary layer develops

into a Stokes shear layer. This change occurs along, at least, the entire

forward portion of the body, independent of the position on the body. Ibis

is not completely obvious when u , is examined, but it is obvious if

uo,1 , the component of the velocity locally paral-lel to the body is
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studied, As shown by Grosch b Salwen (1982), the development of a Stokes

layer at high frequency occurs at, and in the neighborhood of, a stagnation

point.

This is in marked contrast to the results of Ackerberg and Phillips

(1972), who concluded that the Stokes layer only develops far downstream of

the leading edge of a flat plate. This may be due to the fact that there is

a singularity at the leading edge of the (nonphysical) infinitely thin flat

plate, or it may be due to the scaling assumptions of Ackerberg and

Phillips, which, in effect, equate low frequencies with small distance from

the leading edge and large distance from the leading edge with high frequen-

cies. In the calculations reported here, the distance from the stagnation

point and the frequency are independent,

The oscillations in the boundary layer, which exist at all frequencies

and at all positions on a blunt body, could be interpreted as an oscillation

in the steady boundary layer thickness. In the free stream, the mean (time

averaged) speed is U of and the boundary layer thickness is conventionally

defined as the height in the boundary layer, 6, where u(6) - 0.99 U 0 . As

u increases and decreases at fixed n, because of the oscillation, the

instantaneous value of 6 would appear to increase and decrease. It is

quite easy to estimate the amplitude of the apparent oscillation in 6, if

the velocity oscillations in the free stream are small. Let

a - 6 o + a l (t),	 (42)

with 6 0 the time averaged boundary layer thickness, and 61 the oscillat-

ing component of the boundary layer thickness. By definition,

<u(6)?	 0.09 <U? - 0.99 U 01
	 (43)

where 0 is a timo average. Then, if E << 1, it is easy to see that, to

lowest order in e,

8u

al	 e/( °'°	 cos (wt + 8),	 (44)
a y 	y = ao

4 ^

i

:f
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where, as above, uo o is the 0(l) steady boundary layer flow component

parallel to the boundary, and 9 is the phase of u 010 evaluated at
N	 i
y'60.

In the neighborhood of the stagnation point on any blunt, two dimen-

aional body, 6, scaled by X, is

6 o	 2.38 (Re,)-'12,	 (45)

and

6u
( °' o )^
6y y = 60

M 2.6 x 10-2 (46)

So that, in the vicinity of the stagnation point, 1 6 11, scaled by t, is

1 6 11 " 38.5 c(alRe)- 1/2 	(47)

and

161 1 /6 0 " 16.2 a (al )-1/ 2 .	 (48)

At low frequencies the flow is very nearly quasi steady, but at high

frequencies; there can be some distortion of the velocity profile. If 0

	

is large, u0'1 is essentially constant outside of the Stokes layer which 	 J

has a thickness of 0(600-1/2 ). Inside the layer, uo 
l 

can cause some

distortion of u, while outside tho, Stokes layer uo,l r only adds ao 0 

constant, in n, time varying increment to u0 o'

It may be useful, at this point, to give an idea of what is a low

frequency and what is a high frequency. From equation (11),

Y

0 = wR / (a l Uo) .

If, by way of illustration, I . lm., al = 1, and Uo - 10 m./sec., then



a - if f/5

where f is the frequency in "Hert

0 ^n A

the low frequency region,

f 4 5/4 Hertz

While, for high frequencies,

o 2 6n, f Z 30 Hertz,

In summary, for this example, frequencies below 1 Hz. are low frequencie s,

those greater than 30 Hz, are high frequencies, and the range of 1 to 30 Hz.

is the intermediate range of frequencies.

Considering next the terms of 0(c 2 ), there is both a second order

steady streaming flow, u2 
o, 

and uo 
2, 

the first harmonic of the free

stream oscillation. The steady streaming flow extends throughout the 0(l)

boundary layer at low frequencies, but at high frequencies, it is largely,

but not completely, confined to a Stokes layer. However, at high

frequencies, there is a small portion of u 2 o which decays to zero in an

outer layer, with a thickness of the same order as that of the 00) mean

boundary layer.

The magnitude of this flow, 
lu2,0 

1, increases with E, and for an

elliptic cylinder has a maximum just in front of the midpoint of the

ellipse. Such a maximum may, or may not, occur on a parabolic cylinder.

Because of the Limited range of convergence of the series expansion, the

calculation cannot be reliably extended far enough to decide.

It The first harmonic, uo,2 ,  has a structure which is partially similar
to that of the secondary streaming flow, 

u2 o, and partially, to the
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fundamental, uo 
1, 

At low frequencies it extends throughout the steady

boundary layer and at high frequencies is confined to a Stokes layer, It

also develops a maximum amplitude some distance from the stagnation point.

Both the first harmonic and the secondary streaming flow are present at

all ^, even at the stagnation point. Away from the stagnation point they

are somewhat modified, but have the same character as in the neighborhood of

the stagnation point, In particular, the estimate (Grosch b Salwen, 1982)

that they are bounded by (t /o)z seems to be valid over an appreciable

range of E, in fact, up to the midpoint on elliptic cylinders and over the

range of a convergence of the series for flow past a parabolic cylinder.

The only experiment with which the results of these calculations can,

apparently, be compared is that of Kachanov, Kozlov, and Levchenko ( 1978),

They studied the flow past a flat plate with a nose consisting of two con-

jugate ellipses with a semi-major axis, a - 50 mm. and semi-minor axis, b

2 mm. on the working side and a n 128 mm. and b w 8 mm. on the other tide.

Figure 54 shows the cross section of this body from the nose to a distance

of 20 mm. back from the nose,

In Figure 2 of their paper, Kachanov et, al. give contours of (in the

notation used here) uo 
ro 

in the region from about 10 mm, in front of the

nose to about 15 mm. behind it, and from the axis of the body to 6 mm.

above. Figure 55 is an enlarged copy, supplied by Dr. Levchenko, of Figure

2 of their paper. In this figure the contours are labeled with the speed in

units of meters/second.

It is obvious that there is a general, qualitative agreement between

the theoretical results shown in Figures 2, 3, and 4 for the mean flow and

the experimental results of Kachanov, et, al. shown in Figure 55. The major 	 x

difference between the theoretical and experimental results is the closed

contour labeled 6.0 in Figure 55; nothing like this is seen in the results

of the calculations. The experimental result is rather curious. Either

there is an absolute maximum within this contour, a "peak", or a local mini-

mum lies within the contour, so that the contour is the "lip of a volcano."

In either case the flow speed, as shown in Figure 55, is a maximum outside

of the boundary layer,

25
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It is well known that, for a potential flaw, the maximum velocity

occurs on the boundary. The potential flow past an ellipse is a classic

problem (Milne-Thomson ) 1955), Calculations of the potential flow for an

ellipse with &/b 25 confirm that the maximum of uo'o occurs on the

boundary at the midpoint of the ellipse. Taking into account the existence

of the vinwous boundary layer, the maximum speed should occur at the top of

the boundary layer. }low is it then possible to account for the existence of

a maximum in the speed in what is, apparently, a region of potential flow?

There seems to be three possibilities. The first, and most obvious, is

experimental error. This does not appear to be likely because it would

require systematic errors of the order of 10% to 15%. A second possibility

is that the stagnation point is not on the axis of the body ( see Figure 54),

If, as seems likely, the stagnation point lies below the axis, then the flow

must first move threigh a region of adverse pressure gradient until it gets

around the nose. Then, for a short distance, the pressure gradient is

favorable, and then falls rapidly to almost zero just behind the nose. It

is possible that there is a local flog separation and reattachment, a

separation bubble, just behind the nose of the upper ellipse. This would

lift the boundary layer in this region and might account for the closed

contour of u
o,o 

in the results of Kachanov, Kozlov, and Levchenko. The

third possibility is that the free stream vorticity is not zero. If the

free stream vorticity is non-zero, perhaps there is A shear in the free

stream, then, depending on the distribution of free stream vorticity, a

maximum of the speed could occur virtually anywhere Outside of the boundary

layer.

There is, of course, a final possibility. These theoretical arguments

and calculations may be wrong. It may be possible, for some reason, that a

non-rotational potential flow has a maximum away from the boundaries. Or,

it may be that there is a viscous effect, not included in these calcula-

tions, which causes a maximum in the speed outside of the viscous boundary

layer.

Kachanov, et. al. also give experimental results for an oscillatory

past this body. The oscillatory flow is caused by a vibrating ribbon above

the axis of the plate and in front of it. As Kachanov, et. al. indicate,

a
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the periodic vortices shed by this ribbon passed above the plate and only
the tails of the vortices impinged on the nose of the plate. The results of

tho r,alculations given here are, at best, in rough qualitative agreement

I
	 with the experimental results of Kachanov, Kozlov, and Levchenko, Io part,

t their results show an absolute maximum in the amplitude of the oscillatory
velocity in a small region just above the axis of the plate and just beyond

the top of the steady boundary layer. They also show a rapid change in the
oscillatory flow immediately below the region of maximum which was discussed
above. As was discussed above, either the calculations reported here are in
error or the experimental results reflect unnoticed effects. In fact, from

the results given in Figure 1 of Kachanov, et, al, it appears that the

oscillation has a nonzero shear in the free stream. In any event, this

issue requires clarification and would seem to require further work, both on

the experimental and theoretical aspects of this problem.

Finally, if the theoretical approach used here and the results are

correct, it would seem to have value beyond this particular study, The

general character of the flow, in the nose region of the blunt bodies con-

sidered here, is very similar to that of the flow in the immediate neighbor-

hood of the stagnation point. As the flow moves around the nose of the

body, no essentially new features appear. This suggests that the structure

of the flow on the forward part of a blunt body due to more general classes

of disturbances, such as vorticity waves, can be found by studying the flow

due to these disturbances in the neighborhood of a stagnation point. It

seems clear, at least for two dimensional flows, that a linearized, in e,

theory is sufficiently accurate. The results given here show .that, for any

ellipse and for any parabola, the second order terms are bounded by (el0)2
for a Z 1. It also should be noted that the steady flow in the neighbor-

hood of a general three-dimensional stagnation point is known. This should

facilitate the theoretical .study of disturbances impinging on a body in the

region of a stagnation point. These approximations, flow near a stagnation

point, and linearization in e, should be a considerable simplification for

both analytical and numerical studies of boundary layer receptivity.
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APPENDU A

Differential Equations and Boundary Conditions for the F's and G''s

The function Fi (n,T) is the solution of the oscillating stagnation
point flow problem (Grosch 6 Salwen, 1952; see attachment) . The differen-
tial equations and boundary conditions for the f'• and g'a are given

there through terms c 3 and will not be repeated here.

The differential equations and boundary conditions for the f'a and

g's given here are those in the expansion of the (Fj (n,T)) for
J n 3,5,.,.,11 and en , with n < 2. First, we define an operator L by

L fj ' k 'R = [ ± +f- ( j + 1 ) f'	 d
gj,k,R	 dn3	 l'o '° d12	1'0'0 do

+ ( j)f"€3'k'f
1,0001 (8j,krI

where f1 0 o(n) is the 0(1) function in Fl, and is the Aiemenz function,

and primes denote differentiation with respect to ni. Note that in (Al) the

coefficients are j and j + 1 and that j is the first index of the f
or g upon which L operates. Next we define a second operator S by

S(f(n), g(n);a,S,Y) = afgii 	 Of Igo t Yf 11 g, 	(A2)

where f and g are any functions of n, primes, again, denote differen-

tiation and a, S, and Y are arbitrary consta ►its.

Then for the terms proportional to g3 we have, at 0(1)

Lf3,0 ' o	-1	 (A3a)

(Al)

PRECEDING PAGE BLANK NOT FILMED
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f3 0 0 (0)	
f3 0 0 (0)	 0,	 (A3b)

► 	 3► 	 ►►

f3,o ,o 
+	 as n + "	 (A3 C)	 1

'r
a

At 0(c) we have a
I

a

`	 Lf3,o,1 - ag
o 	• —2	 S(f1,o ►► f3,o ^o;1,4,3), 	 (As)

S(g
► o,l ► f3,o,o'1 ► 4, 3),	 (A4b)LS3,o,1 +of3`o`10 

F

f3,o,1(0)	
f3 0o ► 1 (0) _ 83p0#1(0) . 53,0,1(0) 	 0,	 (A40

f3 00,1 10	
g3 ► o,1 + 0 

as n ♦ • 	 (A4d)

And at 0(e 2 )	 ^..;

Lf 3 2 , 0 - 
2- S(fl 

► 2,	 ►o' f3 0 ► o
;1 ► 4,3)	 (A5a)

1tx	 [S(f	 ,f	 1 4 3) + S(8	 ► 	 ► 1,4 ► 3)]T	 l,o,l 3,o,l ; ' ► 	 l,o,l
g 3,o,1

i

f3 2 0 (0) ' f3 2 
0 (0)	 0	 (A5b)	 d

tl

f3,2' o + 0 as n + •, (A5c)

and

i
r	 s

Lf	 — 20 g' 	 S(f	 f	 ,1,4,3)
3,o,2	 3,0,2	

2	
1,0,2, 3^p^p	 it

f'

1 [S(fl,o,l"f3,o,1;1,4,3) - S(g1,0,109300 ► 1;1,40)], (A6a)
2
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Lg3,o,2 + 20f3 ool2 	S(gl'oo2,f3,o,o;1,4,1)

12 [S(fl,o,l , g3,o,1 ;1,4,3) + S(9 l+o,10 f3,o#1 ;1,4,3)), (A6b)

f	 (0) - f'	 (0) - g 	 (0) n g' 	(0)	 0,	 (A603,o, 2	 3,o, 2	 3,o, 2	 3,c► , 2

g	 (A6d)s
f 3,0, 2	 3,0, 2 + 0 as n^

Next the f's and $'a proportional to 95 satisfy, first to 0(l)

Lf5,o,o - - (l + Z C5 ) - 8CS S(f3^ o,o , 1,1,2)	 (Ala)

f5 ,opo (0) ' f5l,o'0(0)	 0	 (A7b)

fs,o,o +	 as n + • .	 Wc)

Then at 0(C)

Lf5 ,o,l - vgS,o,l	 -20 + 2 C5 )	 S(fl,o,l , f5,o,o;1,6,5)

45 S(f3,o,o,f3,o,1;1,2,1)	 (A8a)

.Lg5,o ' 1 y o fs ,o,l -6
a 	 - S(91 , o,l'f5,o,o;10605)

-4c5 S(f3,o,o' 9 3 0 1 ► 1,2,1),	 (A8b)

f5,o,l (0) - fs ,o,l (0) - 95,o,1 (0) . g
5l

	

,o,l (0) - 0,	 (A8c)

(5,011 + , 95,o,l + 0 as n + ".	 (A8d)

The equations and boundary conditions at 0(C 2 ) are:

Lf5 , 2 , o'• -2( 1 + 2 C5) 	 - S(fl ,2,o,f5, o^o ;1,6,5) - Z

X S(fl,o,l ,f5,o,1 ;1,6 5) + S(gl,o,l,g5,o,1;1,6,5)^

- 8 C5`$(f3 2 o f3 0 o*1,2,1)

31
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+ 2 [S(f3 ^ o ^ 1 , f3,o,l ; l,1 ,l) + S(g3,o,lrg3,o.1;

x T ,1,2 ) )	 (Aga)

f5,2,o(0) - fs^ 2,9 (0)	 0; f5,2,o	 0 ^1s h	
•;	 (A9b,c)

Lf	 - tag	 -	 1 (1 + 1 C ) - 5(f	 ,f	 ;1,6,5)5,o,2	 S,o,2	 2 5	 1,o,2 5,o,0

1
Z [S(fi,u,l,f5,o , l;1,6,5) - S(g1,0,1,g5 ,

0,1;1,6,5)1

8C5 {S(f3 ^ o ^ o ,f3po ^ 2 ;1,2,1) + 2 [S(f3,o,l'f3,o,l; 20112)

S(g3,o,l ,g3 , o,1 ; 2'l'2) ] )	 Woo)

Lg5,o,2 + 20f5,ob2	 - S(g1,o,2,f5,o,o;1,6',5) - 2 [S(fl,o,llg5,0,1;

x 1,6,5) + S(gl,o,lf5,o,1;1.,6,5)] 	 8C 51S(f3,o,o'83,o,2;

x 1,2,1) + 2[ S(f3^o^l ,g3,o,1;2,1,2) F`S(g3,o,l,fa,o,l;

x 22) }',	 (A1Ob)

f5,o,2 ( 0)	 f5 0o12 ( 0) - g5,o,2 (0) - g5 ,o,2 ( 0) - 0;

x 
f5 0 0 92	g5 9 0 

2 + 0 as n + ^.	 (AlOc,d)
1	 (	 i

'	 9
.y

f
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The f's and	 g's	 which are proportional to 	 47	 satisfy

equations and boundary conditions, at 0(1)

Lf7,o,,o
" 1 (1 + C 7 ) -	 C7S(f3,o,o'f5,o,o;9,24,15),

f7,o 0(0)
- 

f7 o n (0)

v

0 ' f7 0 0,0 + 1	 as	
n +

At	 0(E) the equations and boundary conditions are:

Lf7,0,1 - a g''o'l - - 2(1 + C 7 ) -	 S(fl,0,l , f7,0
	
1;1,8,7)

-C7[S(f3,o,o'f5,o,1'9,24,15)
+ S(f3,o,1,f5,o,o;

x	 9,24,15)]0

L$7,o,1 + of7',o,l - 8 a -	 S(gl,o,l'f7 , o,o;1,8,7) -

x	 C [S(f	 ,g	 ; 9,24,15)	 + S(g	 ,f	 ;
7	 3,0,0	 5,0,1	 3,0.,1	 S,o,o

x	 9,24,15)],

(Alla)

(Al lb, c)

(Al2a)

(Al2b)

f7,o,l (0) - fl^ o ^ l (0) - g 7 ^ 0 ^ 1 (0)	 8'^0 ^ 1 ( 0) • 0,

1
f7''o01 + $, 8^^ 0 ^ 1 + 0 as n + ab

While at 0(E 2 ) we find

Lf7,2,o = - ^(1 + C5 ) - S(f1 ^ 2 ^o , f7 ^ 0,0 ; 1 ,,8,7) - l[S(f1,0,1,

x f7,o,1 ,1,8,7) + S (
gl,o.l'g7,o,1 ' 1'8'7)]

(Al20

(Al2d,e)
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- C7(S(f3,2,o,f5,o,o;9,24,15) + S(f 3,o,o,f5,2,o;9,24,15)

+ fi S(f300p1 ,f5,o,1 ;9,2415) + S(93ro,1,85,0,1;

x 9,24,15)]}	 (A13a)

f7,2,o(0) . f ,2,o (0) 	 00 f7,2,o + 0 as n + - r 	 (A13b,c)

Lf7,o,2 - 
2ag7,o,2 

a -
 2

(1 + C7 )- S(fl,o,2,f7,o,o;1,8,7)

1 [S( f loo,l pf7,o,l o ; 1,, 	 + S(gl^o,l ,g7,o,l;
2

x 1,8,7)] - C (S(f	 ,f	 ;9,24,15) + S(f	 f	 ;
7	 3,0,0 5,0,2	 3,0,2 S,o,o

x 9,24,15) + I [S(f3,o,1,f5,0,1;9,24,15) - S(93,o,1'95,o,1'

x 9,24,15)]) ,	 (Al4a)

Lg7,o,2 + 2a f7 1011	 S(gl^o,2f7^o^o;1,8,7) - T [S(f l,o,l,g7,o,l;

x 1,8,7) + S(g	 ,f	 ;1,8 ,7) - C (S(f	 ,81,0,1 7,0,1	 7	 3,0,0 5,0,2

x 9,24,15)+ S(g 3,o,2 ,f5 ^ o ^ o ;9,24,15) + 2[S(f3,o,l,g5,o,l;

x 9,24,15) + S(g3,o,1'f5,o,1;9,24,15)]),	 (A14b)

f	 (0)	 f 	 (0) a	 (0) _ '	 (0) n 0	 (A14 )
7,o,2	 7,o,2	 07,o,2	 g7,o,2	 '	

c

f 7 0 2 + g7 
0 2 + 0 as n+ °', 	 (A14d)

„ „

k,

..-

j
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For the terms proportional to 	 the 0(1) equations and boundary

conditions are:

Lf91000	 - (1 + C9,1 + T C9 02 ) -	 C9 ^ 1 S(f3,o,o,f7,o^o;

96,320,224) - 18C9 ^ 2 S(f5,o,o;fS,o,o'10 101)' 	(A15a)

f9,0,0 (0) . f9
'o0o

(0) 0 0 1 f9 ,o,o + 1/10 as n, +	 (A15b,c)

The 0 (E) equations and boundary conditions are:

Lf9,o)1	
Og91o,1	

-2(1 + C 9,1 + C9r2 ) - S(f1,o,1,f9Pojo ; 1)10,9)

1 C 	 [ S(f	 f	 96 320 224) + S(f	 , f	 ;
10 9,1	 3,o,o' 7,0,1'	 3,0,1 7,0,0

	x 96,320,224)] - 18C
9,2	 S,o,o

S(f 	, 
S,a,l

f	 ;1,2,1)	 (A16a)

1
Lg9'o,I + Of9^ o ^ 1 n I	 - S(g1^o,1,f9 , o,o;1,10,9) - 1

-0 C9,1

x [ S(f 3,o,0$97,o,1;96,320,224) + S(g3,o,lf7,0,0;96,320,224)]

- 18C
9,2 
S(f 500,0195,0,1 ;1,2,1), 	 (A16b)

f
9,0,1	 ;101

(0)	
f1	 9,0,1

(0) - g	 (0)	 g 
91 0 0 ,

1 (0)	 0,	 (A16c)

f9 pol1 + T07,g9g0^1 + 0 as n + 4,	 (A16d,e)	
J

The 0(e 2 ) equations and boundary conditions are:

1	 {

Lf	 - 1(1 + C	 + 1 C	 )	 S(f	 f9,2,o	 2	 9,1	
2 

9,2	 1,2,o 9,0,0'
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x 1,10,9)] - 2 [S(f1,o,l,f9
, o,1;1,10,9) + S(gl000l,gg,o,l

X 1 1 10 1 9)] - 
10 C9,1`S(f3,2,of7,o,o;96,320,224) + S(f30 # 09A -

x 
f7 2,o ;96,320,224) + 2[S(f3 0 1' f7 0 1;96,320,224)

+ S(g 	,g	 ;96,320,224)]'	 18C	 `S(f	 f3,0,1,.	 7,0,1	 9,2	 5.,2,0' S,o,o'

x 1,2,1) + 2[S(f5,o,lf5,o,l; 1# 1 121 ) + S(95,o,lig5,0,1;

x Z'1'2)])	 (A17a)

f9 
2 0(0)	 f9 2 0 (0)	 0 ' f9 2 n	 0 as n +	 (A17b,c)r	 .	 ,	 ,

Lf9,o,2	 2cg9 ,o,2 	- 2(1 + C9'1 + Z C9,2 ) - S(fl,o,2 + f9,o,o ; 1,10,9)

1
2 [ S ( f 11o11 ,f9,o,1 ;1,10,9) - S(81,o,1>89,o,l;1,10,9)]

- 1 C
	 (S(f	 f ; 96,320,224)  + S(f10 9,1	 3,o,o 7^o^2 3,o 2,

x ;96,320,224) + 1[S(f	 ,f	 ;96,320,:124)f7,o,o	 2	 3,o,1 7,o,1

S(g3,o,1,g7,o,1;96,320,224)]' 	 18C9 21
S(f5 o o' f5 0 2'

x 1,2,1) + 2[S(f5 ^ o ^ l f5' o^ l ; 2,1,2) - S(g5'o'1,85'o'l;

x 2' 1 '2) ]''	 (A18a)

d

l

Y "^

Lg9,o,2 + 2af9,o,2	 S(gl,o,2'f9,o,o;1,10,9) - 21 [S(fl,o , l,g9,0,1;
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i
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1,10,9) + S(g
l,o,l

,f9,o ;1,10,9)1 - 10 C9+1 S(f3,o,0,

F

x $7,0 2 ;96,320,224) + S($3^o,2'f7,0,0;96,320,224) + 2

x [S(f3,o,1'g7,o,1;96,320,224) + 8(g3,o,l,f7,o,1;960310,
a

x 224)]) - 18C9^2CS(f5,o,o'g5,o,2;1,2,1) + S(f5,o,lrg5,o,l

x 1,2,1) 	 (Al8b)
i

r
f9,o,2(0) 	 f9 ,o,2 (0)	 $9,0'2 (0) * g9 ,o,2 (0)	0,	 (A18c)

j	 f9,o,2 + 99,o,2 + 0 as n +
	 (Algid)

Finally, for the terms proportional to 911 the differential equations

and boundary conditions are, at 0(1):

Lf 11 ^ 0 ^ 0	 - (1 + Cll,l + C 11 ^ 2 ) - Cl1'lS(E3,o,o,f9,0'o;10,40,30)
rF

k	 C11,2S(f5 0 o' f 7 0 
0 ;20,4$,28)	 (A19a)

,	 ,	 ,

0

f11,0,0 (0)
	 f 1,0'0 (0) 	 0,	 (A19b)

f
11 0 0 + 12 as 

n + m .	 (A19c)
,

r
E

The 0 ( e) differential equations and boundary conditions are:

Lf
ll,o,l	 °g ll,o , l ' '2(1 + C 11,1 + C 11,2 ) - S(fl,o,l,fll,o,o;

x 1,12,11)	
C ll l [S(f3 o o' f

9 0 1;10,40,30)

+ S(f3 ^^^ 1 ,f9,o,1 ;10,40,30) - C ll ^ 2 [S(f5^o^0,f7,0,1

37
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x 20,48,28)] + S(f 5,o,l'f7 o,o ;20,48,28)],	 (A20a)

f>

Lgll,o,1 + 
Of	

T-2 12 
n	

S(g1,0,1'fll,o)O'1,12,11)
	 j

-C11,1[S(f3,O,pr89,o,l;10,40,30) + S(83,o,l'f9,o,o;

x 10,40,30)] - 
C11 2 [S(f5 0r	 r r0 98 7 0 

1;20,48,28)

3
F	 J

	

S(g5,0,1,f7,o,0;20,48,28)],
	 J A20b)

1
i

f 11,0,1 (0) 	 f ll,o,l (0)
 
m 9 11,0,1 (0) 	9ll,o,l(0)
	 0,	 (A20c)

A

1
f l,
	 + T2`, 911,4,1 + 0 as 

11 + °'•	 (A20d,e)

And, lastly, the 0(C 2 ) equations and boundary conditions are:

l
1

Lf11,2,o = - T (1 + C11,1 + C11,2 ) - S(f l,o,2'fll,o,0;1,12,11)

1

2 [S(f l,o,l' fll,o,l ; ,
12,11) + S(81,o,1,911.,o,1;

x 1,12,11)] - C	 `S(f	 ,f	 ;10,40,30) + S(f
11,1	 3,2,0 9,0,o	 3,o,o

}	 A

x f9 2 0 ;10,40,30) +- [S(f3 0 l' f9 0 
1;10,40,30)

r	 r	 ,	 ,

a
cc+ S(8

3,o,1' 8 9,0 , 1
;I0,40,30)] ,

	C11,21 S(f 5,2,o'f7,o,o'

x 20,48,28) + S(f,f	 ;20,48,28) + 1 [S(f

	

5,o,0 7,2,0	 'F	 5,o,1'	 z
'y

X f7,o,1;20,48,28) + S(85,o,1'g7,o,1;20,48,28)],, 	 (A21 a)

r

f 11, 2,o (0)	
f1 1, 2,0 (0)	

(A2 Ib)

i
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f1	
+1,2,u + 0 a^ 	 •. (A210

1
Lfll,o,2 - 2dgil,o,2	 - 2 (1 + C11,1 + C 11 ^ 2 ) - S(fl^o^2,fll,o^oO

x 1,12,11) --L [S(f 	 ,f	 L 12 11) - S(2	 1,0,1 ll,o,l i '	 '	 $1,0,1'

X Sll,o,l ► 1,12011)] - C ll,l S(f3,o,o,f9,o,2;10,40,30)

+ S(f3,o,2,f9,o,o;10,40,30) + 2 [S(f3,o,1'f9,o,1;10,40,30)

- S(g 3,o,l ,g9,o,1 ;10,40,30)] - C11,2 S(f5,o,o,f7,o,2;

x 20,48,28) + 
S(f5 0 2' f7 0 0 ;20,48,28) + 2 [S(f 5 0 1',	 ►	 , ,

x f7,o,1 ;20,48,28) - S(g5,0,1,g7,o,120,48,28)] ,	 (A22a)

Lgll,o,2 + 2of11,o,2	 - S(gl,o,29fll,o,o;1,12,11)

- 1 [S(f	 1 12 11) + S(2	 l,o,l'glt,o,l' '	 '	 gl,o,l'

x fll,o,l ► 1,12,11)] - C11,1`S(f3,o,o'g9,o,2;10,40p3O)

+ S(g3,o,2,f9,0,0;10,40,30) + Z [S(f3,o,l,g9,o,1;10,40,30)

+ S(g3,o'l,fg,o,1;10,40,30)]' - Q11,2`S(f5,o,o'87,0,2;

x 20,48,28)+ S(gS ^ o ^ 2 ,f^ popo ;20,48,28) + 2 [S(f5,o,l,

x g7,0,1;20,48,28) + S(g5,o,1 ,f f,t- ;20,48,28)])	 (A22b)
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f 11,o,2 (0)	fll,o,2(0) 
0 gll,o,2(0) ` gll,o,2(0) . 0,

f ll,o,2 ; g 1,0 1 2 ' 0 as n * •.

(A220

(A22d)



REF'ERENCI

I'ss.

41

Ackerberg, R,C. & Phillips, J.H. 1972, J. Fluid Mach, 51, 137,

Cayley, A. 1895, "Elliptic Functions" Second Ed. Reprinted Dover Pub,, New
York, 1955.

Carrier, G.F. & DiPrima, R.C. 1957 ) J. Math. & Phys. 35, 359,

Gibson, W.E. 1957, Ph.D, Math. Thesis, Mass. Inst. Tech.

Glauert, M.B. 1956, J. Fluid Mech. 1, 97.

Grosch, C.E. & Salwen, H. 1980, Proc. 15th Int, Cong, 7heor. Appl. Mach.
155, Springer-Verlag, Berlin.

Grosch, C.E., & Salwen, H. 1982, to appear Proc. Roy, Soc. A

Harvey, W.D. b Bobbitt, P.J, 1981, AIM-81-122,5.

Kachanov, Yu. S., Kozlov, V.V. & Levchenko, 'I. Ya. 1978, Isv. Akad. Nauk
SSSR, Mekh, 2h id. Gaza 5, 85.

, Kleaanotf, P.S., Tidstrom, K.D., & Sargent, L.M. 1962, J. Fluid Mach, 12, 1.

Lam, S.H. & Rott, N. 1960, Cornell Univ. GSAE Rep. AFOSR TN-60-1100.

Lighthill, M.J. 1954, Proc. Roy, Soc., A, 224, 1.

Lighthill, M.J. 1978, J. Sound & Vib, 61 0 391.

Lin, C.G. 1956, Proc 9th Int. Cong. Theor, Appl. Mech., 136, Springer!:.-
Verlag, Berlin.

Mack, L.M. 1977, JPL Pub. 77-15, ,Jet Prop. Lab., Cal. Inst. Tech.

Milne-Thomson, L.M. 1955, "Theoretical Hydrodynamic a", 3rd Ed. MacMillan
Comp., New York.

Moore, F.K. 1951, NACA TN 2471.

Morkovin, M.V. 1978, AGARDograph No. 236, NATO, Paris.

Obremski H. J., Morokovin, M.V., & Landahl, M. 1969, AGARDogroph No. 134,
NATO, Paris.

Riley, N. 1975, SIAM Rev. 17, 274,

Rott, N. 1956, quart, Appl. Math. 13, 444.

Rott, N. & Rosenzweig, M.L. 1960, J. Aerospace Sc i. 27, 74.



Salwen, H., Kelly, K.A. & Grosch, C.E. 1980, Bull, Am. Phys. Soc. 25, 1085.

Salwen, H. 6 Grosch, C.E. 1981, J. Fluid Mech. 104. x,45.

Sarma, G.N. 1964, Proc. Camb. Phil. Soc, 60, 137.

Schlichting, H. 1979, "Boundary Layer Theory" McGraw-Hill Comp. New York.

Smith, A.M.O. 1956, Proc. 9th Intl. Con$. Theor. Appl, Mech. Springer-
Verlag, Berlin.

Stuart, J.T. 1966 0 J. Fluid Mech. 24, 673,

Van Dyke, M. 1956, Proc. 9th Intl. Cong. Theor. Appl. Mech. 318, Springer
Verlag, Berlin.

Van Ingen, J.L. 1956, Rept, UTH-74, Dept. Aero. Eng. Univ. of Tech. Delft.

Watson, J. 1959, Quart. J. Mech. Appl. Math. 12 0 175.

42



43

Table 1. Coefficients in thepower series expansion of the potential velo
city function, H(C), for flow past an elliptic cylinder.

2n + 1	 l + (b/a)^^ la2n+l

1	 1

3	 -(1 + k2)/31

5	 (1 + 14k2 + k4)/51

7	 - (1 + 135k? + 1350 + k6) /71

9 c	 (1 + 12281 2 + 54780 + 12280 + k8 ) /91

11	 (1 + 11069k2 + 1658260 + 165826k6 + 110690 + klo)/111

Table 2. Parameters of the elliptic cylinders for which results are given.

a/b k2 E(k)

5 0.96 1.05050

10 0.99 1.01599

25 0.9984 1.00329
Y4

i!

i,



Table 3. The posiwion in the boundary layer of the maxim of ul'o.

d	 a/b 5.0 10.0 25.0

eA 2,2 2.1 2.0

1.9 1.8 1.7

3w 1.2 ill 1.05

6w 0.9 0.8 0.75

Table 4. Total phase shift, in degrees, of
u l o`

o a/b	 5.0 10.0 25.0

w/4 11.2 11.9 12.0

if 30.0 30.0 30.0

3tr 42,0 40.0 40,0

6w 42.0 42,0 40.0

I'.

i
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3	 .

Table. 5. Coefficients in the power ,eerier expansion of the potential
volocity function, H(4), for flow pest a parabolic
cyl inider.

2n t. 	a 2 1

	

1	 1/4

	

3	 1/22.3!

	5 	 22/24,51

	

7	 1168/26.71

	

9	 113536/28.91

	11	 -17521024/210 ,111

1
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ABSTRACT

A solution of the Navier- Stokes equations is given for an incompressi-

ble stagnation point flow whose magnitude oscillates in time about a con-

stant, nonzero, value (an unsteady Hiemenz flow). Analytic approximations

to the solution in the low and high frequency limits are given and compared

to the results of numerical integrations. The application of these results

to one aspect of the boundary layer receptivity problem is also discussed.
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PRECERING PAGE St.,

1 . INTRO]

In this paper we give a solution to the Navier-Stokes equations for an

incompressible stagnation point flow whose magnitude oscillates in time

about a constant, nonzero, value. Apart from the intrinsic interest of this

problem, its solution is the first step in the solution of one aspect of the

boundary layer receptivity problem, that is, the determination of the magni-

tude and form of the disturbance introduced into the boundary layer on a

body by a perturbation in the free stream. The solution of this problem

would permit the calculation of the initial amplitudes of the Tollmien

Schlichting eigenmodes and continuum eigenfunctions in the boundary layer

and give a rational foundation to transition prediction methods.

We have recently given the solution to the boundary layer receptivity

problem within the context of incompressible, linear stability theory for a

parallel shear flow (Salwen, Kelly, and Grosch, 1980; Grosch & Salwen, 1980;

Salwen and Grosch, 1981). There is, however, one aspect of the boundary

layer receptivity problem to which our parallel flow solution is clearly not

applicable. If we consider the flow near the forward stagnation point of a

body, a linearized parallel flow theory cannot be valid because the flow is

intrinsically nonlinear and nonparallel. Although we may be able to use the

boundary layer equations away from the stagnation point, the full Navier-

Stokes equations must be used in the immediate vicinity of the stagnation

point. Once a solution of the Navier-Stokes equations for the perturbed

stagnation point flow has been found, it is possible to extend this solution

away from the stagnation point and around the nose of the body. This is, in

fact, what is normally done for the steady flow past an object. The Blasius
t

h

137

i
E

+ 1



series (Schlichting, 1979, pp, 168ff) is the extension around the nose of a

blunt body of the Heimenz soluton (Schlichting, 1979, pp, 95ff) to the

Navier-Stokes equations near a stagnation point. In section 6, we discuss

the analogous extension for our oscillating flow solution.

We were stimulated to do this work by the papers of Glauert (1956) and

Stuart (1966). There are a number of other relevant studies in this area

including those of Lighthill (1954), Rott (1956), Lin (1956), Carrier and

DiPrima (1957), Gibson (1957), Watson (1959), and Sarma (1964). Riley

(L975) and Schlichting (1979 0 chapter 15) give comprehensive reviews of

recent work in unsteady boundary layer theory. Lighthill (1978) has

recently reviewed the current understanding of the phenomenon of acoustic

streaming; i.e., the generation of a steady flow by the Reynold'.- stress

due to an oscillating flow.

2. EQUATIONS AND BOUNDARY CONDITIONS

We consider the flow in the neighborhood of a stagnation point at

(0,0) on a plane wall, with x the coordinate along the wall and y the

coordinate perpendicular to the wall. We seek the solution (u(x,y,t),

v(x,y,t)) of the two-dimensional Navier-Stokes equations which corresponds

to the potential flow

U - (Uox/k)(1 +e Cos wt)
	

(1)

V : - (U 0YAM + E Cos Wt)
	

(2)
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in the far field. Here, U and V are the x- and y-components of velocity

of the potential flow, U 
0 

the velocity scale, Z the length scale, e

the dimensionless amplitude of the oscillation, and W the frequency of

oscillation. Defining a stream fdncrion *(x,y,t) by

U M 3^	 v	
aq)	

(2a,b)up	
97

and substituting into the incompressible Navier-Stokea equations we find, as

usual, that	 is the solution of

+	 V2^ - VV2 (Vl*)	 (3)
5—y	 Ty

with v the kinematic viscosity and

a2
S — +	 (4)

9 X2 	 y2

We define dime.,^,sionless variables

^ = x/t , n = (y/k )V R 
0 )	 T = U 

0 
t/Z $	 (5a,b,c)

a Reynolds number,

R 0 - U 
0 
X /V	 (6 a)
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2

and a Strouhal number

a w W9, /U0.
	

(6b)

The use of separate velocity and length scales, U 	 and !Z, while

correct, is somewhat arbitrary in that they appear only in the combination

U0 A in the potential flow. The scales which are intrinsic to this problem

are the time scale of the base flow, T o = R/Uo , the frequency, W, and

the kinematic viscosity, v. We can define velocity and length scales in

terms of To and v, thereby setting the Reynolds number equal to unity.

In any case, the dimensionless !parameters which appear in the equations and

bound ary con:it ions are the oscillation amplitude, C, and the Strouhal

nimiber, r1 , and the results will be the same. We have chosen to use

independent velocity and length scales, U 	 and R, because we intend to

use the solution presented here as the basis for constructing a solution to

the problem of an oscillating flow past a blunt object with length scale R.

If we set, in analogy with the Hiemenz solution (Sctilichting, 1979, pp.

95,ff),

^ : (Ua /3 Ro ) ^ F(n,T) ,

then equation (3) reduces to

a ^ 
a2 

F + (a 
F 

)2 - F 
a 2 

F - 
a3 

FJ '= 0,
an aTan	 an	

ant	 an8

w

(7)

(8)
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which may be integrated to yield	
OF POOP, VIALITY

32 F	
A L) 

2	 a2F	 33F
— + G.—	 F — — - G(^,T).

9TDn	 an	 an2	 an3

Because the left-hand side of equation (9) is independent of 9, it is

clear that the "constant of integration", G, only depends on the

dimensionless time, T. In order that the x and t dependence of the

pressure in the far field agree with that of the potential flow, we must

have

(U 
0 
A ^ G - 1 2 U + LU - (U 

0 
/A) (-ew sin WT) + (U 0 /Z)2

x an	 ax

x (l + e Cos W 02	 (10)

Therefore, F(n,T) is the solution of

82 F	 2	 D2+ (D F) - 
F	

F _ PF	
+ C(2 cos crT	 a sin aT)

aTan	 an	 TnF an3

+	 r:. 2 (I + cos 2aT)	 (11)

with the boundary conditions

F(O,T) - 0,	 (12a)

3F
(
^—n

) 
n=0	 01	 (12b)
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an+ 1 + cos QT as n +	 (12c)

3. METHOD OF SOLUTION

To solve equation (11), we will expand F(n,T) in a Fourier series in

the dimensionless time, T. The coefficients of the expansion are functions

of n and the parameter a and each of these will be expanded in a power

series in e. It is easy to see, from the form of (11), that the T-

independent term in the Fourier series contains only even powers of e.

Therefore, we look for a solution of the form

F(n,T) -	 {`2mf2m o(n) + I elm+k(f2m k(n) cos kOT

m=o	 '	 k=l	 '

+ 9
2m,k(n) sin koTI).
	

(13)

To find the equations obeyed by the 
f2m,k 

and 92m,k we substitute

(13) into (11), collect the coefficients of like terms in the Fourier

series, and set the coefficients of the successive powers of a equal to

zero. We find, first, that fo o is the solution of

3	 2	 2Of
fo,o + 

f	 d fo'o - ( dfo'o) + 1 - 0	 (t4)

dn 3 	 o'o dn2	do

with
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4 " ." Vi i, w`	 '-'- 7y   

fo 0(0) - f^ 
0

(4) W 0, f  ® + 1 as n	 «► ,	 (15e,b,c)
>	 ► 	 t

As was expected , f 0 Q , the T-independent, C-independent term in the

series, is the Hiemenz solution for the steady stagnation point flow.

Next we define the operator L by

2

L ~ dn 3 * £o ' o 
d^2 - 2Eo+o del + f

®, o 0	 (16)

with primes denoting differentiation with respect to n, Then it can be

shown that the equations and boundary conditions for the (f 2m k) and

(g 2m, k)

are, for k L 1,

Lf 2m, k - ka g 1 2m, k . P 2m, k'

Lg 2m, 
k + ko E 2m, k Q 2m, k ,	 17b

f
2m,k	 2m,k	 2m,k	 2m,k

(0)	 g	 (0) - f'	 (0) - g'	 (0)	 0,	 (170

'	 d	 d	 , g^	 +	 +°°,f	 +
2m,k	 m,o k,l	 2m,k	

0 as tt	 (17 d)

t.

and ) for m > o and k	 0,

L E2m,0 ^ R
2m,o , (18a)

r	 'I
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f2m,o(0) - f12m,o(0) = 0,
	 (18b)

f'2m,o + 0 as n + w,	 (180

The {pZm,k) ,
 (Q2m,k10 are linear combinations of products of the

( f2r s) ' ( 8
2r s) and their derivatives, where s < k and 0 S r :5. m or

s = k and r < m, and are given in Appendix A. Therefore, these equations

can be solved sequentially. The equations can be integrated numerically

quite easily, although care must be taken to control roundoff errors. The

results of these integrations are given and discussed in Section 5.

4. LOW AND HIGH FREQUENCY APPROXIMATION

4.1 The Low Frequency Limit

As a + 0, it is expected that the solution will approach a quasi-

steady solution. It is straightforward to show that the quasi-steady

solution,

F(n ,T) _ ( 1 + e cos 0T 
)1/2 f o o([ l 

+ e cos 0T] 1/2n), 	 (19)

satisfies equation (11) and the boundary conditions (12) to 0(0).

It is also easy to show that this quasi-steady solution is consistent

with the expansion given in equation (13). If F, as given in (19), is

expanded in a Taylor series in e, we find that

nF	 (e cos 0T ) 
S (n)

n=o	 2 nn f	 n
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C*	0	
e 
2m+k 

S2m+k(n)
Z (2 - d ko ) z (e)	 cos k0T,	 (20)
k`o	 moo	 ml (m + k)l

Sn (n) ` fo,n (n), n	 0

= n n f (n) (n) + 
n11 (- 1)n- r- 1 (2n - 5 - 2)1 [n - r(r + 1)Inrf(r)(n),

	

o ' o	 r=o	 2n- r- L r 1 (n•- r) 1 	 2	 o' o

	

n ? 1,	 (21)

with

r

f(r) _ d fo'o	
(22)

o,o	 dnr

Equating the coefficients of a in (21) to the corresponding

coefficients  of a in (13) we find that, to order o,

_ 1(2 3a)
2m,0	

2 
m	 52m'

__	 1

f2m,k	 2 m+2k-1(m+k)!ml S2m+k, 	
(23b)

92m,k = 0	
(23c)
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Taking the a + Q limit in the differential equations (17) and (18), for

the 
(f2m k} 

and (8 2m k}' and substituting the low frequency approxima
,

h
tions (23), it can be shown by induction, after some lengthy but straight-

forward calculations, that these approximations satisfy the differentional

equations to 0(a). Therefore, the quasi steady solution is the same as the

a
expansion in the low frequency limit.

4.2 The High Frequency Limit

In the high frequency limit, a +	 it would be natural to look for

approximate solutions for the (f2m 
k
} and {g2m k} in the form of a power

series expansion in a' 1 , However, it is clear from the form of the

differential equations, that this expansion io u%d be non-uniform because the

highest derivatives would be multiplied by the small parameter a ^ 1 and

thus would vanish as a + -.

We therefore rescale the equations, defining a new independent

variable, an inner variable,

z = (a/ 2)1/2n : (w/2V) 1/2 y,
	

(24)

with the length scale (2V /w) 1/2 , that of Stokes's second problem

(Schlichting, 1979; pg. 75 and Chapter 11). In this limit we assume that

there is an inner expansion of the form,

0o

F = f  o (n) +	 elm f2m,o(z)
'	 m=1

00	 0*

+
	

2m +k f2m k (z) cos kaT + g2m,k(z) sin ka rr]	 (25)

m=o k=1	 '

146



It is easy to see that the differential equations for the 
(f2m, k)

and 
(g2m,k) 

are dust equations (17) and (18) with a transformation of

variables from n to z. It can be inferred from the form of the equations

that f2m k and 9 2m
,k are 0((2/a)2m+k-1/2) in the high frequency limit.

We then solve these equations, retaining only the highest order terms in an

expansion in powers of ( 2 /0).

We find

1/2
fo 1 ( z ) _ ( 2 /0)	 [z + 2 e z( cos z - sin z) - 2^,	 (26a)

go 1(z)	 (2/0)1/2 [2 a-z (cos z + sin z) - 2],(26b)
,

a Stokes shear layer flow caused by the 0(e) part of the far flow field.

In the high frequency limit it is decoupled from the 0(c o ) steady outer

flow. This is, of course, a familiar result in time dependent boundary

layer theory and has been derived and discussed by Carrier and DiPrima

(1957), Stuart (1966), and Riley (1975), among others.

If we let 60 o and 60 l be the boundary layer thickness of the

steady flow and the Stokes shear layer flow, respectively, then, for

0 >> 1,

6o,L/60,0 p 2 (2/0)1/2 << 1.
	

(27)

Next, we solve the equations for the 0(e 2 ) oscillatory flow and find

that
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fo 2 (z) - (2/03/2(r2  [e -/ z (sin r z + cos Y'2 z) - 1]

+	 ze- z s in z}
	

(28a)

go , 2 (z) = (2/v)" 2 {- [ e 2 z (sin w,-2 z + cos V-2 z)- 1]
'	 16

1	 -z

4 ze
	 cos z} (28b)

Again we have a Stokes shear layer, decoupled from the steady flow and, for

large a, confined to a thin layer imbedded within the steady boundary

layer.

Proceeding next to the 0(e 2 ) steady streaming flow component, we find

that the most general solution which satisfies the boundary conditions at

z = o,	 is

f2 ,
o  = (2/0)32 (1 ) [ 13 - 6z - e 2z - 4e 

z 
(3 cos z + 2 sin z)

 16

- 4ze 
z 

sin z] + Dz2 ,	 (29)

where D is an arbitrary constant. This secondary steady streaming flow is

identical to that found by Stuart (1966) using the boundary layer equations.

Stuart's small parameter, a, is the reciprocal of a and Stuart's expan-

sion is in powers of a, while ours is in powers of (2/v). Th eref ore,
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f2 lo , with D = 0, is equal to 1/2 of the 
Xs 

given

1966; eq. 2.11), Our solution and Stuart's satisfy the boundary conditions

at the wall but do not satisfy the outer boundary condition because

df 

,o + - ( 3 (2/o) + o Dn as n +
	

(30)

and does not vanish, as required by the far field boundary condition, for

any value of D. This is explained by the fact (pointed out by Stuart)

that there is an outer boundary layer, thick compared to the Stokes layer

thickness, 6 0 1 , but thin compared to the scale of the body, within which
a

this secondary steady streaming flow decays to zero.

Since the a + °D limit is non-uniform and z is an inner variable,

all of the f's and g's are inner solutions and could be expected to

require matching to appropriate outer solutions. The functions fo 1'

go 1' fo 2' and g
o 2 , however, are also outer solutions and, unlike

f2 
o, 

do not require matching.

Outside of the Stokes layer, the interaction between the secondary

streaming flow, f 	 , and the oscillatory potential flow, foil , is
2,0

unimportant. In the case studied by Stuart, the dominant non-linear

interaction is that between f
2,0 

and itself. Since the velocity of this

flow at the top of the Stokes layer is 0(Uo /v), the corresponding Reynolds

number is R = (U la ) (Y /v) = R /o . From this, Stuart concluded that the
s	 o	 0

thickness of the outer layer is 0( R
 R s -1/2) = W R o -1/201/2), which is

larger than that of Stokes layer by a factor of the order of 0.

4
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For the case under consideration here, the situation is completely

changed by the existence of the large steady flow, fo 0 with boundary

layer thickness 6 0 0 - 0(al/2 do l)' The dominant non-linear interaction

of f2 
0 

in the outer layer is with fo^ oand, consequently, it falls off in a

distance of the order of 60 
0 

(instead of al/2 60 0 ). The appropriate
f;

outer variable is therefore n a Y16o o'

If we express f0 1 and g0 1 in terms of n, substitute them into

the differential equation for f2 
0, 

and let a + -, it can be seen that the

outer solution, f2 0 , is the solution of
e

L( f	 ) = (d3 + f	 d2 - 2f'	 d + f" ) f	 0,	 (31)
2,o dn 3	 0;o dn2 	 0,0 do	

o,a	 2,0

with the outer boundary condition

f'2 o + o as n + 03 .	 (32)

Using the asymptotic expansion for fo o'

fO O ^n +A,	 (33)

with A a constant, it can be shown that the general solution of (31) is

f 2 0 = C o flo o (n) + C lh 1 (n) + C 2 h2(n)
	

(34)

where, as n + °D,

00

	 2	 2

h,l	

(1 + 
62) 

J e-Y /2dY _ $e-S /2

0
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h' 2 — 6 + 1 3 3 ,	 (36)

with

3 = n + A.	 (37)

The outer boundary condition requires that C2 be set equal to zero.

This leaves three arbitrary corstants, C o , C l , and D, in the inner and

outer solutions so we can match the inner and outer solutions and their

first two derivatives, Matching the inner limit of the outer solution and

the outer limit of the inner solution shows that

Co = 0(0-1 ) , C1 = 0(0-3/2 ) , and D - 00-2 ).
	 (38a,b,c)

The inner solution was obtained by expanding in powers of 0- 1/2 and

retaining onjy the lowest order terms. Consistent use of this approximation

requires that we set C' l and D to zero and match the first derivative,
We find that

C = -3/(00).	 (39)
0

where B	 f"	 (0). The composite solution for f	 is
0,0	 2,o

,7

f2 o = (2/0)312 (TC1 3 — e 2z — 4e z (3 cos z + sin z)
a
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4ze 
z 
sin z) - 

3 
f.,

©
 (n),	 (40)

4Bo

which satisfies the boundary

z + gip . The thickness of the

d o ,^, while that of the out,
s

6 O ' 
l for a + -.

We have also calculated

conditions at z equal to zero as well as

inner layer of the steady streaming flow is

ar layer is 
Soo 

which is much larger than

the high frequency approximations for the

0(e 3 ) functions, for 
fo 3' go 3' E2,1 and g2 1, 

These are given in

Appendix B, The components of the amplitude of the 0(e 3 ) portion of the

second harmonic f o,3 and go,3 are driven by the interaction of the 0(e)

fundamental 
(fo 

l,go,l)and the 0(e 2 ) first harmonic 
(fo 2 ,go 2)' The

inner expansions for fo 3 and gn 
30 

given in Appendix B, are also outer

expansions.

This is not true for f2,1 and g2,1 , the components of the amplitude

of the 0(e 3 ) part of the fundamental. They are excited by the interaction

of (fo,l) 90,1) with (f 2,o ) as well as 
(fo,l,go,l) with (fo,2,go,2)•

The inner expansion of the in-phase component, f2 1 , satisfies the outer

boundary condition, but inner expansion for the out-of-phase component,

g	 , does not. The outer expansion for g 2 ^ 1 is the same as that for

2,1

f2 0 . The composite expansion for g2 
1 

is found in the same way as that

for f2,0 and is given in Appendix B.

C	 '.__n __

We have numerically integrated the differential equations for the f's

and g's with 2m + k C 3 over a wide range of valuef, of o, Some typical
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results at a moderately low frequency,

1 - 4, where the solid curves show the results of the numerical integrations

and the dashed curves are obtained from low frequency approximations for the

f's given in section 4.1. The g's are identically zero in the low fre-

quency approximation.

It can be seen from the results shown in these figures that at low

frequencies there is no Stokes layer; the loundary layer thickness of the

various components are generally equal to or greater than that of the steady

flow component, fo o . The steady streaming component, f' 0 , is quite

small compared to the mean flow, even for e - 1.

At a - o the g's, the out-of-phase components, are identically

zero. At small, but non--zero, frequencies the low order 	 in e ) ir,- phase

components, the f's are larger than the g's. As the order increases,

however, the magnitudes of the f's and g's tend to equalize and

decrease.

It is also apparent from an examination of Figures 1.., 4 chat the low

frequency approximations are reasonably accurate even at a - n/4. In fact,

the difference between the numerical solution and the approximation for

fo 
1 

is so small that it is not apparent in Figure 2. Taking Into account
a

the fact that the higher order terms, which have the largest deviations from

the low frequency approximations, have very small magnitudes, it is clear

that the low frequency approximations, equation (19), is reasonably accu-

rate even for Strouhal numbers as large as 1/4.

Figures 5 - 9 show the f's and g's for 2m + k < 3 at a moderately

high Strouhal number, a - 8n, as obtained from the numerical integrations

(solid curves) and the asymptotic approximations (dashed curves), The top

of the Stokes layer is at z a 4.6 and this corresponds to n N 6.5 al/2.

1,5 3



Therefore, the top of the Stokes layer is at n M 1.3 for a . 8n. The

secondary streaming flow (see Fig. 5) extends far beyond the Stokes layer.

The variation of the fundamental component (see Fig. 6) is confined to the

Stokes layer. The amplitude functions of the higher harmonics tend, like

f2 o , to extend beyond the Stokes layer because they are also driven by

Reynolds stresses due to f	 ,
o,o

The secondary steady streaming flow, f' 2 0 , is considerably smaller

at high frequencies than at low frequencies, In addition, the nature of the

secondary flow changes as a increases; at a small a, the net secondary

flow is positive while, for large a, it is negative. As discussed by

Stuart (1963), it is known from experiments that this effect occurs In the

steady streaming flow generated by a circular cylinder oscillating, along a

diameter.

The tangential velocity component, u, is proportional to an, that

is to the 
{f2m,k' 9m,	

InIn Figure 10 we present some of the results of

the numerical integrations; a plot of the variation of max 
If2m kl and

max 
Ig '2	 1 as functions of a. The maximum of V	 is 1.0 for all a

and the absolute maximum of f
O
 1 is about 1.069 at a a 17; the maxima of

fo o and fo 
1 

are not plotted in Figure 10. We can conclude, from the
r

results shown in Figure 10, that the high frequency estimate, (ifznl,k(,

I 92m,k l} - 0(a-2m-k+1), is quite good.

6. DISCUSSION

The applied far-field flow consist of a time-independent mean flow and

a fundamental with a coswt time-variation, N)n-linear interactions result
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in the generation of components at all multiples of the fundamental fre-

quency and modifications of the mean flow and fundamental components,

though, at moderate e(4 1), the fundamental and first harmonic tend to

dominate.

At low frequencies, our results are well represented by a quasi-steady

approximation (19), which has the same form as the steady stagnation-point

flow except that the amplitude and scale vary with time. Somewhat surpris-

ingly, this approximation is quite good for a dimensionless frequency, 0,

as large as n/4.

At high frequency, the viscous boundary layer corresponding to the

oscillating components is largely, but not completely, confined to a Stokes

layer of thickness (2/0) 112 times that of the steady boundary layer, For

these large values of a, the inner as,-mptotic approximations are solutions

of differential equations which are independent of f
0 0 0 

1  and are, there-

fore, decoupled from the mean flow. For a number of components, the inner

expansions are also the correct outer expansions; these components are,

therefore, totally decoupled from the mean flow to lowest order in o and

are, in fact, identical to the corresponding solutions found by Stuart

(1966) for a purely oscillatory flow past a body.

Not all of the components are decoupled from the mean flow in the high

frequency limit. The high frequency expansion is a non-uniform asymptotic

expansion and thus, for certain components, in particular the steady second

order flow, f' 2 o , an outer expansion, matched to the inner expansion, is

needed for a uniformly valid approximation. The results given in Section

4.2 show that such composite expansions can be found for 0 » 1; they
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satisfy, to lowest order in o, the differential equations and a+ ll of the

boundary conditiou3. We believe, although we have not carried out the cal-

culations, that this is also true for an expansion to any order in a. The

results of the numerical integrations, shown in Figures 5-9 are consistent

with this belief. We conclude that, both for this flow and for the oscilla-

tory flow studied by Stuart (1966), there are second, and higher, order

steady streaming flow components that do not extend to infinity but are

confined to a layer adjacent to the solid boundary. This layer is much

thicker than the Stokes layer but much thinner than the length scale of the

body.

There are other aspects of Stuart's solution which can be compared with

7T , three	
M	 Q	 J D	 ^* AH I_.6 ^.ours. He useu  	 parameters, a, W I anu tl 

B 
in hi s solution, --ic..

are related to our Strouhal number, c, and Reynolds number, Q, by;

a - U o /(WR) - a- 1 f

s + V /(WR2 ) - 1/(oR0),

Rs - U o2 /(WV) - Ro0 .

Stuart used the boundary layer equations and an expansion for a + o, we

have used the Navier-Stokes equations and, in addition to the numerical

solutions, an expansion for the high frequency limit, v + -- It is clear

that Stuart's expansion, and ours, are high .Frequency approximations.

Stuart assumed that S was small and R s large in order to justify the use

of the boundary layer equations. in the high frequency limit v + -, and,

with R 	 fixed, a, S, and R s are all small. We do not need to make

any assumptions concerning the magnitude of R  or Rs because we used the

4A
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Navier-Stokes equations. We can determine the f's and g's by numeri-

tally integrating the ordinary differential equations; however, the quasi-

steady solution for low frequencies and the high frequency expansion are

useful analytic approximations.

We have not attempted to determine the radius of convergence, in E,

of the series for F(n,r,e), equation (13). however, some ohservations can

be made. We have found that 
f2m,k 

and g2m,k are 0(O-2m-k+1/2 ) for

large v. Therefore, max 
(If2m,k Id g' 2m k1), the amplitude functions for

U) are 0(o-2m-k+l). Thus the series for u is in terms of {e/o) 2m+k

for large a ) and this suggests that it converges for c/o < 1 and

converges rapidly for e c 1. On the basis of the results presented in

figure (10) we conclude that the high frequency bound on max (If'2m,ki,

19'2m,kl) is valid at all frequencies and, therefore, that the series

converges rapidly for e < 1. Of course the convergence will be slower at

low frequencies but we have shown that, for a 	 n/4, the quasi-steady

solution is an accurate approximation.

In the introduction we suggested that the solution to the problem of

oscillating stagnation point flow was the first step in the solution of one

aspect of the boundary layer receptivity problem. A few years ago, Morkovin

(1978) reviewed the rather rudimentary state of knowledge of the dynamics of

boundary layer receptivity. He identified four general classes of free

stream disturbances which might generate Tollmien-Schlichting waves in the

boundary layer. These are; vorticity fluctuations, sound, entropy

disturbances, and unsteadiness in the mean flow. In the incompressible

limit, there can be only vorticity fluctuations and unsteadiness. Morkovin

argues, however, that a temporally oscillating incompressible flow is a
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reasonably accurate approximation for a sound wave impinging normally on the

nose of a body if the wavelength of the sound wave is much greater than the

radius of curvature of the nose,

The solution of the Navier-Stokes equations given here is the solution,

in the neighborhood of the stagnation point, of the receptivity problem for

a simple unsteady flow. In order to interpret thin solution in terms of a

stability model it is necessary to extend it around the nose of the body

into a region where the flow is, at least, quasi-parallel. If we can assume

that the tangential component of the potential flow at the edge of the

boundary is of the form U - U
0 
HM (1 + e cosot), with H(g) having a power

series expansion in 4, the distance along the bode from the stagnation

point, we can use an unsteady variant of the Blasius series to solve this

problem. For the first term we use the full two-dimensional Navier-Stokes

equations and the solution is that given here. For the subsequent terms, we

use the boundary layer equations. We have carried out this calculation

procedure up to and including the terms in 911 and we are now applying it

to bodies which are elliptic or parabolic cylinders. We hope to report the

results of these calculations at a later date.

This work was supported, in part, by grant NAG-1-96. from the National

Aeronautics and Space Administration.
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The expressions for P
2m,k' 42m,k' 

and 
R2m,o 

in (17a), (17b), and (18a)

are simplified by use of the notation

M(f,g) ° f"g - 2f'g' + fg 	 (Al)

In terms of M,

k-1
Pok ' - 

4 {8d
k1 + 2d^ 2 + (1 - dkl) E [M(fo

 r o k-r)r= 1	 '	 '"

kf

- M(go,r'go,k-r) 	 for k : 1,	 (A2)

	

M-1	 m k-1
P	 -1 .4 E M(f	 , f

2s,o ) 
+(1 -d ) I	 I2m,k	 4	 s=o	 2(m—s),o	 kl s=o r=1

X [M(f
2s,r' f 2(m-s),k-r ) - M(g 2s,r' g 2(m-s), k-r)

M-1 m-1-s

+ 2 s
1
O S11  [M(f2s,k+m-s-s " f2s',m-s-s') + M(g2s,k+m-s-s "

	

92s,m-s-s'
	for m ? 1, k ? 1,	 (A3)

l	
k-1

Qok = 2 2aSk1 - (1 - dkl) r=l M(fo^r,go,k-r)	 for k	 1, (A4)

P	

•`P
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42m,k	 2	
2m^1 

M(f2(m-s)' g
2s,k^ + ^1 - 6k1^ I kIl

1
s o	 s o r t

m-1 m-1-s

x [M(f2s,r'g2(m-s),k-r) + so s'
Io (MCf2s, m-s-s'

x 92s',k+m-s-s' - M(f2s',k+m-s-s '' 92s',m-s-s')1

for m > 1, k > 1,
R

and

M-1
R	 =-1 26	 +2(1 —6 ) Z M(f	 f	 )2m,o	 4	 ml	 ml s=l	 2s,o' 2(m-s),o

M-1 m-1-s
+

s =o s'Zo 
M(f

2s,m-s-s ''f2s',m-s-s') + M(g2s,m-s-s',

xg2s',m-s-s')l	
for m	 1.	 (A6;	 a

Here, 6 i is the Kronecker 6 symbol.

F

r
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Appendix B

High Frequency Approximations to the 0(0) Functions

The approximations to fo 3 and go,3 for o + - are,

fo 3 (z) - (2/08/2 {[9 - 8/72 + 3 [2 + 1)] + e7 z [[ 2

-6 + 4z - 4z2 ) cos z + (6 - ^72 - 4z 2 ) sin z]

+ e r2z (4 + 2/-2- 8z) cos r2z - (4 + 2r) sin r2z]

- 3 3 -/ + 1) e r3z
( cos r3z - sin F3z) + (5/-2 - 7)

X e(^ + 1)z [COS ( vf-2  + 1) z- sin ( 2 + 1) z] } /128,	 (b 1)

go 3 (z) _ (2/0)5/2 {[9 - 8r + V  (r2 + 1)] + e z [[^72

-6 4z2 ) cos z + [Y"-2 - 6 + 4z	 4z2 ) sin z]

+ e Wiz [ ( 4 +) cos Y2z + ( 4 + 2v"-2- 8z) sin Yr2" z ]

-	 ^ + 1) e -r3 z( cos V-3z + sin Y3z) + ( 5/ 72- - 7)

-(^ + 1)z
x e	 [ cos (,r-2  + 1) z + s in (/-2 + 1) z] } /128.	 (b2)

161
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The approximation to f 2 1 for a + - is:

f2,1 (z) m (2/a)5/2 {(349- 3350/1920 + e z[(60r-213/960

+ ( (5z/64) (2-1)/64] cos z + { (93 + 150/240-10z

x (z + 1)/64] sin z] + e ^ z [ (7v'-2- 2 + 4z) cos r2z

- (7v^-2+ 2) sin Y'-2z]/64 + (13/160)e 2z + e- (r2+I)z

[ V-2 -5) cos(/-2- 1)z - V-2 + 5) sin V-2- 1)z] /384

+ e 3z cos z/3201.	 (b3)

The composite approximation to g2 1 for a + 00 is:

g2,1 (z) _ (2/a)5/2 { - {1513 + 1250/1920 + e z [(558- 45v72 /960

+ ( (3z (6- z) /64) cos z + (177 + 45r2) /960 +

x z(3'1 + 9z) /64) sin z] + e V2z [ (7 r2- + 2) cos vr-2z

i
n

+ (7,r-2 - 2 + 4z) sirs r2z 1 /64 + e 2z [ (13/80 + z/16) ]
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+ e (r2 + 1) z[ (5r2) cos(r - 1) z - (5 - r2)

x sin (1 - 1) z) /384 + e 3z sin z/3201

2

+ (2/a ) 3f 0,001 )/ (8B),	 (b4)

with
	

B = V (0) .	 (b5)
0,0
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