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the amplitude of Uy the fundamental oscilla-

14
flow past the parabola with o = 3n/4, Contours
0-22 With ﬂn intetval of ouol.ob‘iDIODOOQt.Qooilpullllnl

the phase, in degrees, of U o,1° the fundamental

of the flow past the parabola with 0 = 3n/4, Contours
to 2.0° with an interval of 2,0% . vsivvivrnrnronrsvonnens

the amplitude of Go,l' the fundamental oscilla-

flow past the parabola with o = 3n/2, Contours
0-22 With .n interval Of 0-01.ntloq'|ontiutt!bo!onooluuo

the phase, in degrees, of G L the fundamental

of the flow past the parabola with o = 3n/2, Contours
to 2. 0 wlth an 1nterval of 2. 0 R R E R A

the amplitude of u ,2? the first harmonic of the
oscillation of the flow past the parabola with

o = w/l6, Contours from 0.0 to 9.6 x 10-3 with an interval of

6.0 x 10 =%,
Contours of
of the free

The 1&bela ‘re SClled by 1051|06nn|ooto.oocto.!lvttt‘n

the phase, in degrees, of Go 2 of the first harmonic
)y
stream oscillation of the flow past the parabola with

g = n/16, contours from -260.0° to 140.0° with an interval of

20.0’00!..00
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Figure
5la

51b

52a

52b

53a

53b

54,

55.

LN S - *

Contours of the amplitude of U 0,2’ the first harmonic of the

free stream oscillation of the flow pllt the parabola wigh
o =n/4, Contours from 0.0 to 4,6 x 10‘ with an ioterval of
2.0 % 10‘ The labels are .c.l‘d by ’0 L AP LN P EE R P SN SN KRR B R AR

Contours of the phase, in degrees, of G G, 9 of the first haimonic

of the free stream oscillation of the £low past the parabola
witho = v /4, contours from to =240,0° to 100,0° with an interval

L]
Of 20-0 IR N N N N N N NN R NN NN NN

Contours of the amplitude of Go g» the first hammonic of the

free stream oscillation of the flow past :he parabola with
g = 31/4. Contours from 0,0 to 1,8 x 10~3 with an interval of
1.0 x 10’ The 1.b‘1l are ‘Q.l'd by 1051pnnu-onu-.-lobuv;n..unoino

Contours of the phase, in degrees, of uo Y of the first hawmonic

of the free. stream oscillation of the flow past the parabola
with g = 3y /4, contours from -200,0° to 80.0° with an interval of

20'0.. ..".C‘il.."!."‘..!lll"....!!,l'l'-.."|!ll.l|Q.“‘...‘0.'
Contours of the amplitude of Go g» the first hamonic of the
¥

free stream oscillation of the flow past the parabola with
o = /2. Contours from 0.0 to 9.6 X 10‘“ with an interval of
6,0 X 10‘5, The labels are scaled by 105, v u i

Contours of the phase, in degrees, cf “0,2’ of the first harmonic

of the free stream oscillation of the flow past the parabola
witho = 3w /2, contours from -280.0° to 60.0° with an interval of
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Cross-section of the nose of the body used in the experiment of
Kachanov, Kozlov, and Levchenko (1978). One inch on the figure

is equal to 1 mm. on the body; see the scale on the figure,

This figure shows the body from the nose to a distance of 5mm,

back. The dashed line in the figure is the line y = o for both

the upper and lower ellipses, Thi upper surface in this figure

is that above which the measurements were made,,... oo v rsnsosnse

Experimental reaults of Kuchanov, Kozlov, and Levchenko (1978),
Contours of u (in the notation of this paper) are shown.

Contours are labeled with the lpeed in m./sec. and the dashed
curve labeled § is the position of the top of the boundary
1lyet. Diltlncel are inmilliﬂe':ﬁt..-ioo»qp'-ouuuuipoolvpto-'soonoc
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THE RECEPTIVILY OF BOUNDARY LAYERS ON BLUNT BODIES
TO OSCILLATIONS IN THE FREE STREAM

By

Chester E, Grosch*
INTRODUCTION

The prediction of the position of transition on a body is one of the
most difficult problems in fluid dynamics, Linear stability theory with the
"eM" criterion (see Mack, 1977, for an extended discussion) is probably
the most widely used method of predicting transition. The major weakness of
this method is that it employes a relative measure of flow instability; the
growth of some measure of the disturbance size, whether amplitude, energy,
or whatever, relative to an unknown initial size of the disturbance.

It is clear, as pointed out by Mack (1977), that the position of tran-
sition must depend on the absolute size of the disturbance, and thus on the
initial size of the disturbance as well as the growth rate of the unstable
disturbance. If there were no disturbance at all, that is the initial size
were zero, the stability or instability of the flow would be irrelevant.

The flow would remain laminar, and transition would not occur anywhere on
the body unless, of course, the flow separated., On the other hand, if the
initial disturbance were very large, say of the order of the mean flow
speed, then transition would, presumably, occur very near the front of the
body, perhaps in the immediate vicinity of the stagnation point or line,

A rough estimate of the magnitude of the initial amplitude of the
Tol)miern-Schlichting waves at the beginning of the region of instability can
be made if it is assumed that the "e™' criterion is an approximately valid
transition method and if one accepts the estimate of Klebanoff, Tidstron,
and Sargent (1962) that, at the beginning of transition, the rms value of
the perturbation velocity is about 1.5% of the free stream speed. Since the

*Professor, Department of Oceanography, Old Dominion University, Norfolk,
Virginia 23508,
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initial proposal of the "e™ criterion by Smith (1956) and Van Ingen

(1956) , extensive studies of transition data have shown that n varies from
about 2.5 to 10.0, depanding on the test facility. Taking the disturbance
amplitude at transition to be 0.015 of the free stream speed, and n to
vary from 2,5 to 10,0, it follows that the amplitude of the disturbance at
the beginning of the region of flow instability is in the range 10-3 to 10-6
of the free stream spend. This suggests that a very weak coupling of free
stream disturbances to Tollmien-Schlichting waves in the boundary layer may
be extremely important in the initiation of the traneition process. If the
free stream disturbances have amplitudes of 0(c), even disturbances in the
boundary layer of 0(c?) may play a role in initiating transition,

In order to incorporate the influence of the flow environment in sta-
bility pradiction methods, and thereby provide a rational basis for there
methods, it is necessary to be cble to calculate the initial size of the
disburbance caused by external, i,e. free stream, disturbances. There are
four classes of free stream disturbances which may be responsible for the
generation of the Tollmien-Schlichting waves which lead to transition
(Obremski, Morkovin, and Landhal, 1969)., They aze: mean £low unsteadiness,
free stream vorticity, sound, and entropy fluctuations, If the fluid were
truly incompressible, only the unsteadiness of the mean flow and free stream
vorticity could exist znd initiate the transition process, 1In reality,
sound waves are always present. Entropy fluctuations appear to occur only
at high supersonic speeds, 1In a recent study, Harvey and Bobbitt (1981)
have examined the anomolies between wind tunnel and flight transition mea-
surements, They state that the experimental results show"... the dominance
of free-stream disturbance level on the transition process from beginning to
end." Further, they conclude that there is a question of"... whether sound,
unsteadiness, or spectral peaks is the most influential on boundary layer
receptivity,..." Morkovin (1978) has argued that, in medium to low subsonic
flows, sound waves can be modeled quite accurately by a sime varying
oscillation superimposed upon a steady mean flow, provided that the
wavelength of the sound wave is much larger than the chacvacteristic length
scale of the body. For a sound wave impinging on th¢ nose of a body this
characteristic scale length would appear to be the radius of curvature of
the body at the forward stagnation point.

SR
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Recent studies, (Salwen, Kelly, and Grosch, 1980; Grosch and Salwen,
1980; Salwen and Grosch, 1981) have been addressed to the problem of calcu-
lating the amplitudes of the discrete and continuum eigenfunctions of the
linearized, parallel flow stability problem., The results of these studies
can be summarized as follows: first, the proper inner products for ortho-
gonality of these eigenfunctions were found; second, it w4 shown that the
set of discrete and continuum eigenfunctions for both the temporal and spa
tial problems is complete; and third, a procedure for calculating the ampli-
tudes of the discrete and continuum eigenfunctions was found. In order to
calculate these amplitudes, the disturbance must be known, as a function of

time, on a plane perpendicular to the boundary.

In order for this procedure to be evplied it is necessary for the dis~
turbance to be small so that linearization is valid; that the parallel flow
approximation be valid, at least approximately; and that the form of the
disturbance be known thrcughout the boundary layer and free stream at one
location on a two-dimensional body. Even if the disturbances are small,
this theory cannot be applied in the immediate vicinity of the leading edge
of a body because the flow in that region is not even approximately
parallel. A basic problem is to determine the flow within the boundary
layer caused by disturbances propagating and being advected by the mean flow
toward the front of a blunt body,

The response of the boundary layer on a body to oscillations in the
free stream has been the subject of a number of studies beginning in the
early 1950's. Some rapresentative examples are the work of Moore (1951),
Lighthill (1954), Stuart (1955), Rott (1956), Lin (1956), Glauert (1956),
Carrier and Di Prima (1957), Gibson (1957), Watson (1959), Lam and Rott
(1960) , Rott and Rosenzweig (1960), Sarma (1964), Stuart (1966), and
Ackerberg and Phillips (1972). Riley (1975) and Schlicheing (1979, Chapter
15) give comprehensive reviews of recent work in unsteady boundary layer
theory. None of these authors have considered the application of their

results to the boundary layer receptivity problen.

These studies have considered either the unsteady flow in the vicinity

of a stagnation point or on a flat plate. The flat plate problem presents

-~
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great difficulties because of the singularity of the boundary layer equa-
tions at the leading edge of the plate, Carrier and Di Prima (1957) studied
this problem within the framework of a linearized, Oseen approximation, to
first order in the amplitude of the oscillation. ‘They found that, far from
the leading edge of the plate, the time dependent part of the flow is a
Stokes shear wave. Ackerberg and Phillips (1972) studied the same problem
using asymptotic, again to first order in the amplitude of the oscillation,
and numerical techniques. They also found that, far downstream of the lead-
ing edge, the flow develops into a nearly Blasius steady flow and a Stokes
shear layer imbedded within the steady boundary layer. The most surprising,
and unexpected, result of Ackerberg and Phillips is that ".,, most flow
quantities approach their asymptotic values far downstream through damped

oscillations."

Quite recently, Grosch and Salwen (1982) have found a solution of the
Navier-Stokes equations for an incompressible stagnation point flow whose
magnitude oscillates in time about a constant, nonzero, value (see Attach-
ment 1), The analytic solutions, to third order in the amplitude, ubtained
using inner and outer expansions, are in complete agreement with the results
of numerical integrations. The mean flow is the steady stagnation point
flow plus second, and higher, order flows driven by the Reynolds stress of
the oscillatory components., The oscillatory flow is that of the fundamental

and all of the higher harmonics of the fundamental.

The mean flow is, to lowest order, independent of the oscillating flow.
The structure of the oscillatory components of the flow depends on the fre-
quency of oscillation, not on the distance from the stagnation point. As
was expected, the oscillatory flow develops into a Stokes shear layer at
high frequencies. The results of Carrier and Di Prima and Ackerberg and
Phillips that the Stokes shear layer develops far downstream may be due to
the use of the boundary layer equations in a region in which they are

invalid.

In any case, the flat plate with zero thickness and a "sharp" leading
edge is a nonphysical model; all physical bodies have a blunt leading edge,
at least if a continuum approximation can be applied to the flow past the

body .




ORIGINAL PAGE |8
OF POOR QuUALITY

In this paper we examine one aspect of the boundary layer receptivity
problem; that of the flow induced in the boundary layer on the forward por-

tion of a blunt body by unsteadiness in the mean flow. As was mentioned
above, this is also an approximate solution for the disturbances generated
in the boundary layer by a long wavelength sounid wave impinging normally on
the front of a body in steady motion. This work is an extension of our
previous study of tha flow in the neighborhood of a stagnation point (Grosch
and Salwen, 1982).

FORMULATION

Consider the flow past a blunt, two-dimensional body. The usual bound-
ary layer coordinates are used: ; is the distance along the surface of the
body from the forward stagnation point and ; is the distance from the body
along the normal to the body. A solution is to be found for ; 20 of the
time-dependent, two-dimensional boundary layer equations

3—5»-’-?_:.-0’ (l)
Ix Ay

2
L R (2)
L ax dy at dx dy?

with the boundary conditions
u(x,0,t) = v(X,0,t) = 0, (3)

ulk,y,t) * U(x,t) as Y+ =, 4)

Here, (u,v) are the components of the velocity in the X and ;
directions, U(§,t) is the component of the potential flow which is tan-
gential to the body surface, and Vv 1s the kinematic viscosity. It will be
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assumed that the potential flow is a temporally oscillating flow, super~
imposed on a steady mean flow; specifically it is assumed that,

U(x,t) = U H(x/2)[1 + € cos ut], | (5)

where U, is the magnitude of the mean potential flow,
£ is an appropriate length scale of the body,
€ 1is the dimensionless amplitude of the oscillating component,
and,
H is a dimensionless function, giving the variation along the body

of the tangential component of the potential flow,

It will be assumed that the body is symmetric and is at a zero angle of
attack, so that H 1is of the form )

H(x/e) = % (/)21 (6)

a
=0 2n+]

with the {aj} dimensionless constants. Specific examples will be

considered below,
METHOD OF SOLUTION

Define dimensionless variables

£ = x/%, (7)
n = (a,Re)1/2(y/2) (8)
T = aont/l, (9)

and parameters, a Reynolds number

Re = Uoz/v (10)

ey g

N
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and a Strouhal number, & dimensionless frequency,
g = wz/(.;uo). (L)
Defining & stream function such that
uw Ay, v = -9/X, g (12a,)
by
ERECHVIEN O RYCR IR (13)

equation (1) is satisfied identically and (2) is

3 -1 2 2 2
-a-—-?-wq 3 3% 39 3% | 3%¢ = ¢gH(E) sin ot
an3 3€ an2  9n 3EdN 319N

-1 o
- a HEM'E)1 + € cos o1]2, (14)

The boundary conditions, (3) and (4) are

3 _ 3¢

L w i = at n =0, (15)
an -3¢&

and
3§_¢ H(E)[l + € cos or] as n > =, (16)
an

The tangential component of potential velocity, H(§), 1is a power series in
£. It is clear, from (14), that ¢ must also be a power series in §,
with each coefficient a function of n, T, and the parameter €, Each of
these coefficients will be expanded in a Fourier series in T, with 2ach
Fourier amplitude a function of N and the parameter €&, Finally, each

Fourier amplitude will be axpanded in a power series in €, with each

T W e e

coefficient of the power series a function of n, These functions of n

are then found to be solutions of vrdinary differential equations.
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First, assume that

w X
bEn ) = (2 -6 a2 E 0. (17)
n=0 \
Substituting (6) and (17) into (14) and equating the coefficients of
successive powers of £ on the left and right sides of equation (14), the
partial differential equations for the (Fj(n.'r)} are found. F, satisfies

3p,. 2p 2
R ¢ _1-".3_‘3,!.- (LFL)’- *n P(t;e,0) - Q(t;e,0), (18)
an3 13n2 an a1dn
where
P(T:€,7) = €0 sinaT, » (19a)
and ‘
L 9 +
Qrieo) =1+ ¢ 2 cos €T * — €4 cos 207. (19b)
2 2
Next, define the operators
a3F, a2F, 3F IF, ?F, a%F,
D(F.,F1;)) 8 —L + Fj—3d - (j+ 1) 1+ 5—rF, - —1 (20
] an3 an2 an 3 m2 J 3t

and

"i ayj azpi
G(F,,F.) = - F.. (21)
1] an an anz J

R




Then,
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(R ,F133) = Lp- g,
4

D(Fs ,Fy ;5) -i..p - (1+Lcs) q+ 8os6(ry,Fy),
2
1 X
D(Fy,F1;7) = -é- P - (1 +0C7)Q + 9C7G(Fs,Fa) + 15 C7G(F3,Fs),

1 1 1
D(Fy,F,;9) = . P- (1 + C +—=C YQ+~C 48 G(Fy,F
3 10 9,1 2 9,2 ¢ 5 9,1[ (F7,F3)

+ 1126(F3,F;)] + 18 € G(Fg,F,),
9,2

1
D(Fll Fy:ll) = . P~ (1 +¢C + C + C 30G(F3 , F
s 12 1,1 u,z)q 11,1[ (F3,F9)

+ Loc(sg,ps)] + cnnz[zsc(ys,y,) + 206(F,,Fg)],

Cs = a§/(ajag),
C; = na/(ay ),
G,1 = a3ay/(a1a), Cg o = ak/(ayag),

C11,1 = a3ay/(a1a11), Cp) 2 = agay/(ajay)).

(22)

(23)

(24)

(25)

(26)

(27a)

(27b)

(27¢,d)

(27e,£)
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The boundary conditions for the {F, .} are

Faas1(0F) = @Fy [, 80 0o (28)
and

[2(n + 1) - Gon](al'z“ﬂan) + 1+ € cosorT, (29)
as s N+,

We have previously found the solution for F; up to, and including,
terms in €® (Grosch and Salwen, 1982; see Attachment). Although the
boundary layer equations are being used in this study, it should be noted
that EF (n,r) 1is a solution of the Navier-Stokes equations for oscillating
stagnation point flow. It is easily seen that the form of the solution for

each of the F2n+1 is the same as that for F;. Therefore, we have for

jom1,3,...,11

2m 2m+k
Foln,T) = n)-:O £ 2m,0 (n) + kzl [fj’m’k(n) cos (koT)
+ 35,2m,k(") sin (kOT)]}. (30)

It is quite straightforward, but somewhat tedious, to obtain the ordi-
nary differential equations and boundary conditions for the f's and g's.

These differential equations are given in Appendix A.

One of the major problems associated with series solutions of this type
is that of determining the radius of convergence. On the basis of the
results from the study of oscillating stagnation point flow (Grosch and
Salwen, 1982), it can be concluded that the power series in € is rapidly
convergent for & < 1, except perhaps at very low frequencies., If the fre-
quency of oscillation is low, then a quasisteady approximation is quite
accurate. Because of the rapid convergence of the series in €, for €

small, only the terms through €2 have been calculated.

10
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A much more difficult problem is esti~ating the radius of convergence
of the power series in £, Tt appears thit there are no general results for
determining the radius of convergence of the steady Blasius series, Van
Dyke (1957) has shown that the steady Blasius series for a parabolic
cylinder diverges for ;/r° > 0.62, where r, is Zne radius of curvature of
the parabola at the nose, The results given by Schlichting (1979) for the
steady Blasius series for a sphere of radius r, suggest that this series

is convergent up to at least :/ro = n/2, 1t seems reasonable to assume that

the time dependent series solution given here is convergent for £ = X/t £ 1.’

RESULTS

Numerical integration of the equations given in Appendix A yield the
{ fj,Zn,k’gj,2nk}’ Substituting (30) and (17) into (13) and using (12)

gives, for the velocity components (u,v),

» 2n+l = 2m
- '
w/u, = mz‘o [20+ 1) -8 ] a, & mgo[e By el 2m,0
S 2mek
kzl € {fin+l,2m,k cos(koT) + 85n+1,2m,k sin(kot)}]{, (31)
-1/2 % 2n
v/uo = - (a, Re) n§0 {[2(:\ +1) - 60“](2n + 1) 8
v .2 T 2mk
m ; m+
nzo (e fzn+1,2m,0 + u§1 € {£2n+l,2m.k cos (kot) +
* Bon+1,2m,k sin (uor)}];. (32)

The velocity field depends on the body shape, the {aj} , the
Reynolds number, Re, and the dimensionless frequency, 0. It should be

11
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noted that the effective Reynolds number and frequency depend, to some
extent, on the body shape because the velocity scale is .,uo. see

equations (8), (10), (11), and (13). It is clear from (31) that, as usual,
the tangentisl component of the velocity, u, has no explicit dependence on
the Reynolds number which only affects the scaling in the normal (n)
direction, Again, as usual, the normal component, v, is proportional to
Re=1/2  {n addition to the scaled dependence of the nommal coordinate,

Thrcugh the terms in Ezo

2
U/Uo - uo’O(E MN) +¢€ “2,0(5 n) + e[ugfi(ﬁ,n) cos 0T + ui?i(&,n)
2
X sinot] +¢ [uglg cos 207 + ugzi sin 207], (33)
’ 1]

v/U = - (a,Re)~12{yv (E,n) + ey (e,n) + e[vm(E n) cos ot
[s) l 0,0 ' 2,0' ’ 0,1 ’

2
+ vf)fi sin 01] +¢ [vgt;(s M) cos 207 + Vg?;“'“’

(34)
sin mr]}
with,
u, ™ 5 [2(n + 1) -6 ] a 52n+1£, (m) (35a)
j'o n=0 n ) on 2a+l 2ﬁ+‘k~j)° N7
RO [2n + 1) -6 ] a 2™l g (n) (35b)
0,] a=0 on’ 2n+l 2n+l,0,j '
ul2) § [26n + 1) =6, ] a, 2, (n) (35¢)
"o, a0 ' 0 2n+1 82n+1,o,j '

12
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5 «
vy o ngo [2tn v 1) = 6,) Gnv 1) ay,, 6206, ) 0 (), (350)

5
), , - 2n
Vo, i nzo (260 + 0 =6, T (2n s 1wy, 82, ) ). (350)

(2) . - 2
Yo, nio [2¢n + 1) GOn] (20 + 1) &y, & n

The superscript (1) indicates the component of the velocity in the
boundary layer which is in phase with the free stream oscillation, and the
superscript (2) denotes the out of phase component.

Figure 1 is a sketch of a typical blunt body and the coordinate system.
The tangential and normal velocity components are u and v. The Cartesian
coordinate system (x,y) is also shown in figure 1, The velocity compo-
nents (4,V), parallel and perpendicular to the body axis are related to

(u,v) by
i=ucosf - vsin9, (36a)
Ve=usin +v cos®9, (36b)
There is an inherent difficulty in presenting the results of the calcu-
lations in such a way as to make them intelligible. The reason for this

difficulty is that the character of the flow, in the boundary layer varia-
bles, changes drastically with positigia. In froat of the body the flow is

primarily directed towards the body, so u is very amall and v dominates,

in fact for n large, v~ - U,, As the flow moves around the body v
decreases and u increases so that near the midpoint u dominates. For
this reason it seems most reasonable to present the results in the (x,y)
coordinate system. In particular, in terms of U, the component of the
velocity is parallel to the axis of the body. Note, however, that as y is
varied at fixed x both £ and n vary. Presentation of the results in
terms of U also facilitates comparison »f the results of these¢ calcula
tions with the experimental results of Kachanov, Kozlov, and Levchenko

13
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(1978) although, as will be discussed below, the correspondence between the
conditions of the expariment and of this calculation is not exact,

Detailed calculations have been carried out for the flow past two typas
of bodies; elliptic and parabolic e¢ylinders.

- 3.1 Elliptic Cylinders

On the surface of an elliptic cylinder the tangential component of the
potential flow is

HE) = [1 + (b/a)] sn(E;k), (37)

with a the semi~major axis, b the semi-minor axis,
sn the Jacobian elliptic function, and

R = 1= (b/a)? (38)

The length scale is the semi-major axis, a. ‘The coefficients in the power

series expansion for H(§), the ('2n+l} are given in Table 1, (Cayley,

1895), 7The radius of convergence of the Blasius series for an elliptic
cylinder is, appareantly, not known. However, the calculations appear to
converge up to at least the midpoint on the body, that is to

£ = E(k), (39)

where E is Lhe complete elliptic integral of the second kind. The
calculations were ended at this value of § because we are primarily

interested in the flow on the nose.

Calculations of the velocity field have been carried out for & number
of bodies with different slenderness ratios (a/b) and frequencies, o,
Results are given for three bodies; a moderately thick ellipse with a/b =
5; athin ellipse, a/b = 10; and a very thin ellipse, a/b = 25, see
Table 2, For each of these values of a/b calculations were carried out
for a low frequency o = n/4, two intermediate frequencies, o = n and
3n, and a high frequency, ¢ = 67, In all cases the Reynolds number was

14
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taken to be 100,0, The results at other, particularly higher, Reynolds
numbers appear to have the same form when distances are rescaled to the
appropriate boundary layer thickness.

Contours of the zero order steady flow, Go o) re shown in Figures 2,
1]

3, and 4, The format of these figures, and all of the others is the same,,
The body shape is plotted in the lower right hand corner of the figure and
the flow is from left to right. For each body the semi-major axis is the
same length, The body shape has not been distorted, however the region
outside of the body has been stretched in order to show the details of the
flow in the boundary layer, The coordinate system outside the body is the
(€ ,n) system which is showa in Figure 1, The distance & = 1 corresponds
to four of the major units of the scale shown on the edges of Figure 2 and
all others, The distance N = 1, on the other hand, corresponds to one of
these major units, Thus, for cxample, the coordinates of the point in the
lower left hand corner of Figure 2 are & = 0 and n = 4, and those of the
upper right hand corner of Figure 2 are £ = E(/0.96) = 1,05050, and n =
4,2, Note, however, that although the (£,n) coordinate system is used,
these are contour plots of U, the velocity component parallel to axis of
the ellipse,

The results shown in Figures 2, 3, and 4 show that the zero order in
€, mean flow has the same general feastures for bodies of different
slenderness. Ahead of the body there is a boundary layer merging into the
decelarating potential flow. Near the midpoint of the body the flow is
nearly parallel to the body and the boundary layer flow merges into the
tangential potential flow, In between there is a kiad of "bubble" where

Go o is small. This extends somewhat in front of and above the forward
’ |

portion of the body. This region of small Go o occurs because both Yo
’ ]

and v o are small and are at a substantial angle to the x axis. As the
L]

fluid flows around the nose of the body u increases tut v decreases
until near the middle of the body where it is 0(Re”!/?), Therefore, on the
forward pertion of the body, but away from the axis, u is increasing with
£ but is still not large and v is decreasing. Finally, as the body

becomes more slender, the steady boundary layer tends to become thinner,
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Figures 5 through 16 are contour plots of the second order steady flow,
ﬁzyc. Figures 5 to 8 show the results for an elliptic cylinder with
»
a/b = 5 for a sequance of frequencies, o =w/4, =%, 3, and 6w,
Figures 9 tu 12 show similar results for a/b = 10, while the results for
a/b = 25 are given in Figures 13 to 16, Examination of these figures

reveall some general patterns in the flow,

In all cases U is positive in the lower portion of the boundary

2,0
layer and negative in the upper portion. At low frequencies the maximum and

minimum values of @ occur at the midpoint of the ellipse, As the

2,0
frequency increases the maximum tends to shift towards the front of the body
and the thickness of the regions of both positive and negative secondary
mean flow tend to decrease, However, as the ellipse becomes more slender

i.e,, a/b increases, the region of appreciable 32,0 tends to be confined

to the near midsection of the body, The absolute magnitude of this secon-
dary flow also tends to decrease with increasing o, Finally, at low

fraquencies the max (U is greater than ]min(u2 o)[, but at high fre-
1

2,0)
quencies this is reversed, These results show that the Reynolds stress
generated by the nonlinear interaction of the fundamental oscillatory flow
with itself cause the formation of a weak, secondary, shear within the main
steady boundary layer. At low frequency the maximum shear occurs near the
middle of the Loundary layer. As the frequency increascs, the position of
maximum secondary shear shifts towards “he boundary,

Contour plots of the amplitude and phase of U the fundamental

o,l’
oscillation at frequency 0, are given in Figures 17 through 28. As above,
these show results for a/b = 5, 10, and 25 and o = n/4, w, 3w, and 6w,
The phase is, of course, arbitrary to within an additive constant, It has
been assumed that for both the fundamental and the first harmonic, the phase
is zero at £ = 0, n = 4,

In all cases the contour maps of the amplitude of u Figures 17a

o,l,
to 28a, bear an obvious generic relationship to the corresponding contour

plots of 30 o for the same values of a/b. Of course, the structure of
]

the flow does change with the frequency of oscillation. The amplitude of

the oscillation decreases in front of the body and a region of reduced flow
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is present above and, generally, in front of the nose of the body, As the
oscillations move up onto the body, the amplitude grows. In all cases a
peak in the amplitude distribution appzars in the middle to lower part of
the boundary layer at the midpoint of the ellipse. For a fixed value of

a/b the location of this maximum of Gl o Toves towards the boundary as the
]

frequency increases, reflecting the development of a Stokes shear layer at
high frequencies, 1If the frequency, o, is held fixed, the location of the

maximum of also moves deeper into the boundary layer as a/b

ul,o
increases, i.e. as the body becomes more slender. This is shown in Table 3,

in which the location of the maximum of Go 1 is tabulated as a function
’

o and a/b.

The contour plots of the phase of U Figures 17b to 28b, are all

0,1
quite similar. The region of deceleration of the potential flow and the
development of the boundary layer are obvious, as is the thinning of the
boundary layer as it develops into a Stokes layer at high frequencies. Just
back of the nose, the lines of constant phase tend to be parallel to the
body with a noticeable thickening at low frequency near the midpoint of the
ellipse, As o increases the region over which the phase shift occurs
tends to thin. In all cases this region lies deeper in the boundary layer

than the position of maximum U Independently of the value of a/b,

ol’
the total phase shift appears, from the results given in Table 4, to be
tending to W/4 as o + =,

Finally, Figures 29 through 40 are contour plots of the amplitude and

phase of Go 20 the first harmonic of the free stream oscillation. Again
]

these results show very substantial internal consistency.

The boundary layer in front of the body is readily apparent. The

I3 ~ . ]
region of nonzero |u decreases as the frequency increases at constant

|
a/b and as the slende:QZss, a/b, increases at coanjtant frequency. The
amplitude of 30’2 has a maximum in the lower part of the boundary layer.
For fixed a/b the position of this maximum moves lower in the boundary layer
and forward on the body as 0 increases. At constant frequency the height
of the maximum remains nearly fixed while moving back toward the midpoint of

the ellipse as a/b increases.
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The phase shift of 0 is generally nearly constant over the region

0,2
containing the maximum of ‘ﬁo 2| and then goes negative in the outer
’

portion of the boundary layer. In this outer region the phase then
increases towards zero. At low frequencies this outer phase shift occurs
over a thin layer, but at higher frequencies it is fairly broad,

The first harmonic of the free stream oscillation is always confined to
the steady boundary layer and, as o increases, is confined to a thin
Stokes layer adjacent to the body, As the fluid moves up onto the body,
away from the nose, the amplitude increases but never becomes large. In

fact, |G is never greater than about 5 X 10‘2. The velocity §

0,2|
fluctuations due to harmonics of the free stream oscillation thus never

exceed 5 x 10-2 g2,

3.2 Parabolic Cylinders

We next consider the flow past a parabolic cylinder
y* = bax, 40)

where a 1is the distance from the nose to the vertex. Choosing the le:agth
scale to be a, the tangential component of the potential flow is a power
series in odd powers of £ = x/a. The coefficients of this series are given
in Table 5. The solution does not contain any geometric parameters, that
is, apart from the scaling, is independent of a and is, therefore, a

similarity solution for all parabolas.

The radius of curvature at the nose of a parabola is
fo = 2a. 1)

Using Van Dyke's (1957) result that the Blasius series diverges for x/r,

> 0.62, the solution given here is expected to converge only for & < 1,24,

The coefficient a) = 1/4 for a parabolic cylinder, so that

o ® 4We/vy). Thus the "effective" frequency in the differential equa-
tions for the f's and g's is four times the true frequency of oscilla-

tion. Of course, a similar scaling applies to elliptic cylinders, but for
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an ellipse a; = (1 + b/a)=}, which is nearly unity for slender ellipses.
Because of the factor of fpur in the value of ¢ for a parabola,
caleulations were carried out for o = w/16, w/4, 3In/4, and 3In/2, so

that results would be readily comparable to those obtained for the ellipses.

Contours of ﬁo,o' the 0(1) mean flow past a parabolic cylinder are
given in Figure 41. The format of this, and all of the other figures
showing the results of the calculations for a parabolic cylinder, is similar
to those figures showing the results for elliptic cylinders. The body is
shown in the lower right hand corner. Distances normal to the boundary are
scaled so that one major unit of the scale on the border of the figure
corresponds to one unit of , the boundary layer coordinate. Thus the
point in the lower left hand corner of the figures has the coordinites
g = 0.0, n = 6.0, and the top of the parabola at the right hand side of the
figures has the coordinates £ = 0,90, n = 0.0,

A parabola is, in some ways, a rather peculiar blunt body in that it is
not a clesed body, so that there is no trailing edge, and that the thickness
of the body is a monotonically increasing function of the distance from the
stagnation point, Therefore, the farther back from the nose, the thicker is
the region of potential flow which is substantially influenced by the body.
This effect is apparent in Figure 41. There is a reglon of reduced flow in
front of the parabola due to the deceleration of the potential flow and the
formation of the boundary layer. This region extends far above the axis of
the body because of the blocking effect of the parabola on the potential
flow ahead of the body. In the region in front of the nose the contours of
uo,o are nearly equally spaced. Just above the parabola, these contours
tend to line up with the body and the distance between them becomes
increasingly smaller as the flow moves onto the parabola and the quasi-
parallel boundary layer flow develops.

. Contours of the steady, second order, streaming flow, 32 o for
4
4 =w/4, m, 3, and 6m, are shown in Figures 42 through 45. These
plots show features which are similar to those seen in the contour plots of

82 o for the flow past an ellipse, Figures 5 through 16. In both sets,
]
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Gz o is positive in the lower portion of the boundary layer and negative in
1]

the upper part, The thickness of the secondary boundary layer decreases
as the frequency increases and there is a slight tendency for the position

of the relative maximum and minimum of 32 o to shift forward towards the
»
stagnation point as ¢ increases, However, as O increases the uax[ﬁz ol
1}

decreases significantly,

Figures 46 to 49 are contour plots of the amplitude and phase of Go 1
’

the fundamental oscillation in the free stream flow past the parabola. The

contours of the amplitude of @ show a general similarity to those of

o,1’

steady flow, ﬁo 0" However, as 0 increases a Stokes layer develops on
’

the parabolic cylinder and moves forward towards the stagnation point. Away

from the stagnation point, the contours of Go | are similar to thoseé of
]

for an ellipoe if the surfaces are rotated so as to be locally

i,
o, 1
parallel. The local maximum of Go i+ seen in the flow past an allipse is
’
not, however, seen for the flow past the parabola. The contour plots of the
also show the development of a Stokes shear layer, The
in Figures 46b through 49b

phase of uo,l'

total magnitudes of the phase shift for Go T
]
are quite close to those for the corresponding cases for the elliptic

cyl inders,

Contour plots of the amplitude and phase of 1 the first harmonic

0,2’
of the oscillation in the free stream speed, are shown in Figures 50 to 53.
The results shown in these figures illustrate the development of a second

order Stokes shear layer within the steady boundary layer as the frequency

increases., The max(ﬁo increases with §, af all o, at least up to

.Zl
the point £ = 0.9. It cannot be determined whether or not there is a
localized maximum in the amplitude, as was found for the elliptic cylinders,
or whether the amplitude reaches a plateau. The problem is that, in order
to decide this question, the calculations would have to be extended sub-
stantially beyond £ = 0.9, but, as mentioned above, the series expansion
probably is divergent for & > 1.24, and probably converges very slowly for
§ close to 1.24.

20

EERE——
»

S———




W i

DISCUSSION AND CONCLUSIONS

Perhaps the most general conclusion which can be drawn from the results
of this study is that in the region of the nose of a symmetric, two dimen-
sional blunt body at zero angle of attack, the steady plus oscillating flow
is very similar for a wide class of body shapes. This conclusipon hias been
shown to be true for elliptic cylinders with a/b € 25, and for the parabo-
lic cylinder. Additional calculations, not reported here, were rarried out
for elliptic cylinders with values of a/b up to 100, with results which
are very similar to those reported here. 1In all cases, the flow field in
the nose region of a two dimensional blunt body is generic to that of the

flow in the neighborhood of the stagnation point on a plane wall.

A general picture of the flow on the forward portion of a blunt body,
due to a steady plus oscillating free stream, can be sketched. Forward of
the body there is a region of decelerating potential flow which merges into %
the viscous stagnation point boundary layer, On the stagnation stream line
the boundary layer thickness is 2.38¢ (Re)~172, with £ the scale length
of the body, If one considers 4, the velocity component parallel to the |
body axis, there is a region of small 4, above and ahead of the nose,
where the velocity is reduced and is at a significant angle to the body

axis. On the body itself, the boundary layer changes slowly with distance

from the leading edge. The description, so far, applies to Go ! the 0(1)
’

steady flow.

I1f one next turns to Go 1 the fundamental oscillating component of
’

the flow, the above description is, with some additions and amendations,

valid. These are due to the changes with frequency in the oscillating flow.

. , n . . N
At low frequencies, wl/axuo € -, the flow is essentially quasi-steady;

that is, it is the steady flow scaled by the instantaneous free stream

speed. 48 the frequency increases, the oscillating boundary layer develops
into a Stokes shear layer. This change occurs along, at least, the entire
forward portion of the body, independent of the position on the body, This

is not completely obvious when q is examined, but it is obvious if

N
y

u the component of the velocity locally parallel to the body is

0,1’
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studied. As shown by Grosch & Salwen (1982), the development of a Stokes
layer at high frequency occurs at, and in the neighborhood of, a stagnation

point.

This is in marked contrast to the results of Ackerberg and Phillips
(1972), who concluded that the Stokes layer only develops far downstream of
the leading edge of a flat plate., This may be due to the fact that there is
a singularity at the leading edge of the (nonphysical) infinitely thin flat
plate, or it may be due to the scaling assumptions of Ackerberg and
Phillips, which, in effect, equate low frequencies with small distance from
the leading edge and large distance from the leading edge with high frequen-
cies, In the calculations reported here, the distance from the stagnation

point and the frequency are independent,

The oscillations in the boundary layer, which exist at ail frequencies
and at all positions on a blunt body, could be interpreted as an oscillation
in the steady boundary layer thickness. In the free stream, the mean (time
averaged) speed is Uy and the boundary layer thickness is corventionally
defined as the height in the boundary layer, §, where u($§) = 0,99 Uo’ An
u increases and decreases at fixed N, because of the oscillation, the

instantaneous value of § would appear to increase and decrease. It is

quite easy to estimate the amplitude of the apparent oscillation in 6§, if

the velocity oscillations in the free stream are small, Let

§ =8 + §y(e), 42)

with 60 the time averaged boundary layer thickness, and §) the oscillat-
ing component of the boundary layer thickness. By definition,

<u(8)> = 0.09 <U> = 0.99 v, (43)

where <> 1is a time average. Then, if € <{ 1, it is easy to see that, to

lowest order in €,

du
8, = |e/(—222) cos (wt +8), (44)

~

dy  y =8
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where, as above, u . is the 0(l) steady boundary layer flow component
)

parallel to the boundary, and @ is the phase of uy q evaluated at
~ ’
y-so'

In the neighborhood of the stagnation point on any blunt, two dimen-
sional body, &, scaled by %, is

8o = 2.38 (Re)-!’/2, (45)
and
Su
(—22) ~ 2.6 x 10-2, 46)
§y y=8,

So that, in the vicinity of the stagnation point, |§;|, scaled by %, is
|61] » 38.5 €(ayRe)=1/2 “%7)

and

|61/ = 16.2 e(ay )t/ 2. (48)

At low frequencies the flow is very nearly quasi-steady, but at high
frequencies, there can be some distortion of the velocity profile. If ¢

is large, uo’1 is essentially constant outside of the Stokes layer which
has a thickness of 0(600'1/2). Inside the layer, uo,l can cause some

distortion of uo,o’ while outside the Stokes layer uo,l’
constant, in n, time varying increment to Uy,

only adds a

o
It may be useful, at this point, to give an idea of what is a low
frequency and what is a high frequency. From equation (11),

o =uwe/(aU,),

1f, by way of illustration, 2 = lm., a =1, and Uo = 10 m./sec., then
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g =ng/5 49)
where f 1is the frequency in Hertz. Thus for

o sSn/h,
the low frequency region,

£ £5/4 Hertz,
while, for high frequencies,

o 6m, £ 230 Hertz,

In summary, for this example, frequencies below 1 Hz., are low frequencies,
those greater than 30 Hz. are high frequencies, and the range of 1 to 30 Hz.

is the intermediate range of frequencies.

Considering next the terms of 0(82), there is both a second order

steady streaming flow, u, , and u the first harmonic of the free

2,0 0,2’
stream oscillation. The steady streaming flow extends throughout the 0(1)
boundary layer at low frequencies, but at high frequencies, it is largely,
but not completely, confired to a Stokes layer. However, at high

frequencies, there is a small portion of u vhich decays to zero in an

2,0
outer layer, with a thickness of the same order as that of the 0(1l) mean

boundary layer.

*

The magnitude of this flow, |u |, increases with §, and for an

2,0
elliptic cylinder has a maximum just in front of the midpoint of the

ellipse. Such a maximum may, or may not, occur on a parabolic cylinder.
Because of the limited range of convergence of the series expansion, the

calculation cannot be reliably extended far enough to decide.

The first harmonic, has a structure which is partially similar

u
& 0,2’

to that of the secondary streaming flow, u and partially, to the

2,0’
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fundamental, uy e At low frequencies it extends throughout the steady
1]

boundary layer and at high frequencies is confined to a Stokes layer. It
also develops a maximum amplitude some distance from the stagnation point,

Both the first harmonic and the secondary streaming flow are present at
all €, even at the stagnation point. Away from the stagnation point they
are somewhat modified, but have the same character as in the neighborhood of
the stagnation point, In particular, the estimate (Grosch & Salwen, 1982)
that they are bounded by (€/0)% geems to be valid over an appreciable
range of £, in fact, up to the midpoint on elliptic cylinders and over the
range of a convergence of the series for flow past a parabolic cylinder.

The only experiment with which the results of these calculations can,
apparently, be compared is that of Kachanov, Kozlov, and Levchenko (1978),
They studied the flow past a flat plate with a nose consisting of two con-
jugate ellipses with a semi~major axis, a = 50 mm. and semi~minor axis, b =
2 mm. on the working side and a = 128 mm. and b = 8 mm. on the other side.
Figure 54 shows the cross section of this body from the nose to a distance
of 20 mm. back from the nose.

In Figure 2 of their paper, Kachanov et. al, give contours of (in the

e

notation used here) 30 o in the region from about 10 mm. in front of the
’

nose to about 15 mm. behind it, and from the axis of the body to 6 mm,
above. Figure 55 is an enlarged copy, supplied by Dr. Levchenko, of Figure

2 of their paper. In this figure the contours are labeled with the speed in
units of meters/second.

It is obvious that there is a general, qualitative agreement between
the theoretical results shown in Figures 2, 3, and 4 for the mean flow and
the experimental results of Kachanov, et, al. shown in Figure 55. The major

difference between the theoretical and experimental results is the closed

¢ e TR SRR T R I

contour labeled 6.0 in Figure 55; nothing like this is seen in the results
of the calculations. The experimental result is rather curious. Either
there is an absolute maximum within this contour, a "peak", or a local mini-
mum lies within the contour, so that the contour is the "lip of a volcano."
In either case the flow speed, as shown in Figure 55, is a maximum outside

of the boundary layer.
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It is well known that, for a potential flow, the maximum velocity
occurs on the boundary, The potential flow past an ellipse is a classic
problem (Milne-Thomson, 1955). Calculations of the potential flow for an
ellipse with a/b = 25 confirm that the maximum of Go,o occurs on the
boundary at the midpoint of the ellipse. Taking into account the existence
of the viscous boundary layer, the maximum speed should occur at the top of
the boundary layer. How is it then possible to account for the existence of

a maximum in the speed in what is, apparently, a region of potential flow?

There secems to be three possibilities, The first, and most obvious, is
experimental error. This does not appear to be likely because it would
require systematic errors of the order of 10% to 15%. A second possibility
is that the stagnation point is not on the axis of the body (see Figure 54),
If, as seems likely, the stagnation point lies below the axis, then the flow
must first move thrcugh a region of adverse pressure gradient until it gets
around the nose. Then, for a short distance, the pressure gradient is
favorable, and then falls rapidly to almost zero just behind the nose. It
is possible that there is a local flow separation and reattachment, a
separation bubble, just behind the nose of the upper ellipse. This would
lift the boundary layer in this region and might account for the closed
contour of Go,o in the results of Kachanov, Kozlov, and Levchenko. The
third possibility is that the free stream vorticity is not zero. If the
free stream vorticity is non-zero, perhaps there is s shear in the free
stream, then, depending on the distribution of free stream vorticity, a
maximum of the speed could occur virtually anywhere gutside of the boundary
layer.

There is, of course, a final possibility. These theoretical arguments
and calculations may be wrong., It may be possible, for some reason, that a
non-rotational potential flow has a maximum away from the boundaries. Or,
it may be that there is a viscous effect, not included in these calcula
tions, which causes a maximum in the speed outside of the viscous boundary

layer.

Kachanov, et. al. also give experimental results for an oscillatory
past this body. The oscillatory flow is caused by a vibrating ribbon above

the axis of the plate and in front of it. As Kachanov, et. al. indicate,
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the periodic vortices shed by this ribbon passed above the plate and only
the tails of the vortices impinged on the nose of the plate, The results of
the calculations given here are, at best, in rough qualitative agreement
with the experimental results of Kachanov, Kozlov, and Levchenko, In part,
their results show an absolute maximum in the amplitude of the oscillatory
velocity in a small region just above the axis of the plate and just beyond
the top of the steady boundary layer. They also show a rapid change in the
oscillatory flow immediately below the region of maximum which was discussed
above. As was discussed above, either the calculations reported here are in
error or the experimental results reflect unnoticed effects. In fact, from
the results given in Figure 1 of Kachanov, et., al. it appears that the
oscillation has a nunzero shear in the free stream. In any event, this
issue requires clarification and would seem to require further work, both on

the experimental and theoretical aspects of this problem.

Finally, if the theoretical approach used here and the results are
correct, it would seem to have value beyond this particular study. The
general character cf the flow, in the nose region of the blunt bodies con-
sidered here, is very similar to that of the flow in the immediate neighbor-
hood of the stagnation point. As the flow moves around the nose of the
body, no essentially new features appear. This suggests that the structure
of the flow on the forward part of a blunt body due to more general classes
of disturbances, such as vorticity waves, can be found by studying the flow
due to these disturbances in the neighborhood of a stagnation point. It
seems clear, at least for two dimensional flows, that a linearized, in ¢,
theory is gufficiently accurate. The results given here show that, for any
ellipse and for any parabola, the second order terms are bounded by (e/g)?
for o 2 1. It also should be noted that the steady flow in the neighbor-
hood of a general three-dimensional stagnation point is known. This should
facilitate the theoretical study of disturbances impinging on a body in the
tegion of a stagnation point. These approximations, flow near a stagnation
point, and linearization in €, should be a considerable simplification for
both analytical and numerical studies of boundary layer receptivity.
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APPENDIX A

Differential Equations and Boundary Conditions for the F's and G's

The function F (n,T) is the solution of the oscillating stagnation
point flow problem (Grosch & Salwen, 1982; see attachment)., The differan
tial equations and boundary conditions for the f£f's and g's are given
there through terms €3 and will not be repeated here.

The differential equations and boundary conditions for the f's and
g's given here are those in the expansion of the (Fj(n,r)} for

J=3,5,.,.,11 and €, with n< 2. First, ve define an operator L by

£t
LJ"‘"E[____.“3+f” __"2-(5+1)£i =
Bkt and D20 a2 ¥ gn
] £kt
+ (Y e A (A1)
110,07 By 1 e

where fl o o(n) is the 0(1l) function in F), and is the Hiemenz function,
t At ]

and primes denote differentiation with respect to n. Note that in (Al) the
coefficients are j and j + 1 and that j is the first index of the f
or g upon which L operates, Next we define a second operator S by

S(€(n), g(n);a,B,y) = afg" - BE'g' + Yf'g, (A2)

where £ and g are any functions of n, primes, again, denote differen-

tiation and a, B, and Y are arbitrary constants,

Then for the terms proportional to £3 we have, at 0(1)

Lf3,o,o = -] (A3a)

PRECEDING PAGE BLANK NOT FILMED
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53’0’0(0) - ‘25,0,0(0) =0, (A3b)

f.‘;,o,o + %- as n* . (A3e)
At 0(c) we have

Ly o1 " 035,0’1 --2- s“l,o.l,fa,o,o‘l"””’ (Mea)

Loy oy #9601 = -‘-l;-a - 808y o 11fy 0 0ibbsd), (D)

53’0’1(0) - f:'i,o,L(O) - 33’0’1(0) = 35,0'1(0) -0, (Me)

fé’o,l +> .;:, 35,0,1 +0 as N+ ® (M d)
And at 0(e?)

e, meme SCE ., L i1,4,3) (A5 2)

3,2,0 2 1,2,0'"3,0,0" "™’
- g [SCE o 108 o, 110000 + (B o 18 01510 D)],

£3,2,0(0 = f:',,z'o(O) =0 (ASb)

55’2.0 +0 as N+, (A5¢)
and

l‘£3,o,2 - % 85,0,2 =" ',3- s(fl,o,z’ff),o,o;l’l"a)

- - [S(f1 o 1’53,0,1;1’4’3) - 8(31,0,1,33’0,1;1,4,3)], (A6a)
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+ 20f!

30,2 " 5(8) o 2085 5,00 11497

"’3,0,2

1 |
- ;(S(fho’l,za,o,l,l,é.a) +8(8) 5,1085,0,1511%13)], (A6D)

= £ — - ,
£3,0p2(0) f3,0,2(0) - 33’0,2(0) 53,0’2(0) 0, (A6c)
] J ]
53,0.2 * 83,:.»,,2 >0 as n>e, (A6d)

Next the f's and g's proportional to E5 satisfy, first to 0(1)

1 1,1
LfS,o,o =- (14 2 Cs) ~ 8Cs g(fj’o.ol ’?1'?) (A7 @)
fS,o,o(o) - fg,o,o(O) =0 (A7b)
-fé,o,o » -;- as n+ -, (A7¢)

Then at 0(e)

o - 1 - .
Lfs 0,1 = 985,0,1 = ~2L + 2 C5) = S(Ey o 1065 4 031,6,5)
- 405 S(£3i°'o,f3.°’1;1,2,1) (AB.)

) s 1 ,
Les,o,1 985,01 "¢ " 5(8),0,1%5,0,051165)

—"CS s(f3,o,0’83,0,1;1’2’1)! (Aab)
fs’o.l(O) - fg’o,l(O) = 85’0,1(0) = 35"0,1(0) - 0. (ABC)
fé,o.l*%' B5 o1 * 0 as n>e, (AB4)

The equations and boundary conditions at 0(e2) are:

R | 1 1
LE5,2,0 =~ 3 (1 + 3 Cs) = S(f) 2 ,0+£5,0,0i116,5) - 3

x [8CE) 5, 10E5,5,13116:5) + 5(8) 4 1,85 o,1:1:6,5)]
- 8 Cs‘s(fa’z’ofs’o’o;l,z,l)
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+ L [s(e 1

. l .
y 583,0,10%3,0,10 5 1'2) + 58y 5 183,0,1

x %‘olo-;']} (Agl)
! - . ' .
£5,2,0(0 = €55 o(0) =05 £5 , 5 >0 a8 N> (A9b,¢)
Lf - 208 w -l selc) - see £ i1,6,5)
5,0,2 5,0,2 7 275 1,0,2’"5,0,0" "’
1
7 [8CE) o 1065 6,13106:5) = S8y 1185 o 131,6,5)]
- . l Ll l l
8"s‘s‘fa,o,o’fa.o.z'1'2'1) tg (50 o 106y o 13 PLiD
. l l
- 8(83’0’1’83’0.11 2)1’2)]} (AlOl)
' - - . ! -l .
Lgs 4,2 * 29%5 4,9 5(8) o,2F5,0,0 10655 =7 [S(E o 1485 ¢
x1,6,5) + S(81,.o.lf5,o,1;1’6’5)] - 8(:5‘8(53,0,0’33,0,2;
l '1 1 »} .
X L,2,1) + gls(ey | 1y o i lip) ’{3(33,0,1',53,0,1’
x+1bl), (AL0b)
= f£! - - o = ()
fS,o,Z(O) fS,o,Z(O) 35’0'2(0) 35'0.2(0) 0;
' ]
x fS,o,Z * 856,27 0 as n + o, (Al0c,d)
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The f£'s and g's which are proportional to £’ satisfy the
equations and boundary conditions, at 0(1)

Lf],o,o =1 (1 + 07) - C7s(f3’°'°,f5,°’°;9,24,15), (Alla)
f (0) = f£! (0) = 0, £! > -1- as N+ = (Allb,c)
7,0,0 7,0,0 ' °7,0,0 8 !

At 0(e) cthe equations and boundary conditions are:

- og! - - - .
Lf7,°,1 87,0,1 2(1 + C7) S(fl,o,l’f7,o,1'l’8’7)

uc7[s(f3,o’o,55'0'1;9)24115) + S(fa,o,l’fs,o,o;

x 9,24,15)],

(Al2a)
Lg + ! « Lo s £ :1,8,7) -
7,0,1 7,0,1 © 3 81,0,1'%7,0,0' '™
X . .
C7[S(f3,o,o’35,o,1’9'24’15) + 8085 5 1085 0,00
x 9,24,15)], (Al2b)
™ ' - ™ ! ) ) )
57’0,1(0) 57’0’1(0) g7’°’1(0) 37’0’1(0) =0, (Al2¢)
1
f;’oyl * 3-’ 8;’0’1 >0 as n+o, (A12d,8)
While at 0(c?) we find
Lf = - 1(1 + Cc) - S(f £ ;1,8,7) - 1[s(f
7,2,0 P’ 5 1,2,0°%7,0,0% 1+ PR R

x f7,o,1;1,8,7) + s(gl,o_l,g7,°’1;1,s,7)]
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- C7{S(£3’2.°.f5,0,0;9,24,15) + S(f3’o’o,f5’2’o;9,24,15)

1
* gl 8(Ey o 1afs o 139:24,15) + 5y o ) iBg o )

X 9,24,15)]}, (A13l)
- ! ] '
£7,2,0(0) f7’2’°(0) 0, £7,2,0 + 0 as n + oo (A13b,C)
1
- ! - - - .
Ly 0.2 287 0,2 2,(1 +Cy) s(fl’o’2,£7’o'o,1,a,7)

1
—— . ki .
) (8¢t} 10,1057 0,10 SLED) + 5y 108y o 1

X

1,8,7] - 07(8(53’0 9,24,15) + S(f £

. . .
,0’°5,0,2° 3,0,2 5,0,0’

1

» [s(e

x 9,24,15) + 3,0,1°%5,0,13%:24:13) = Slay , ;.85 4

9,24,15)]}, (Al4a)

X

' B - . - 1
+ 20f 5(8) o of i1,8,7) - 5

Lg7,0,2 7,0,1} 7,0,0 [s(f1,0,1’87,o,1;

x 1,8,7) + s(g) o p» 1,8,7) - 07(s(f3’°

f . .
7,0,1° ,0’85,0,2’

1
X 9,24,15) + S(gy  ),f5  59,24,15) + g[s(s

3,0,1°85,0,1°
X 9,24,15) + s(ga’o’l.f5 . 1;9,24,15)]}, (Al4b)
vy
£ - £ - = g! - ‘
70,200 = £ o 50 37'0’2<o) 8 5,0 =0, (Al4e)
£! 0 as n + =, (Al4d)

+ g! +>
7,0,2 %7,0,2
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For the terms proportional to E2 the 0(l) equations and boundary
conditions are:

1 1
Leg 50 =~ (L *Cy ) +7C o)~ 15 C9,1 5(E3 0,0:%7,0,05
96,320,224) - 18C, ,S(f i f L 1 1) (Al5a)
L 9,2°%%5,0,0’ "5,0,0'2" 2"
- ' - ' ™
fg'o'o(o) f9,o,o(0) 0, fg’o’o + 1/10 as n + =, (Al5b,c)

The O(E) equations and boundary conditions are:

v'-o' j A - .
LEg o1~ 989 ,1 " "2(L+ Cgy * Cg ) SCE) | 10fg 0,00 1010:9)
1
- Tﬁ-09’1[S(fa,o’o,f7’0,1;96,320,224) + S(£3,0’1,£7’°’°;
X - .
96,320,224)] 18c9’2s(f5’°,0,55’0’1,1,2,1) (Al6a)
L + of! -l g - s £ :1,10,9) = = C
89,0,1 9,0,1 10 (8),0,1°%9,0,07 " ? 10 “9,1
x (508 | 08p o 1196,320,224) + S(g3,°’1f7,°,°;96,320,22&)]
- 1809’28(55’0’0,35’0’1;1,2,1), (Al6b)
= §! ™ - g! =
f9’°,1(0> £y 5.1 39’0’1(0) gg’o’l(O) 0, (Al6c)
f£! *> 1 ! + 0 as n+ o (Al6d,e)
9,0,1 ~ T0* 89,0,1 ' ’

The 0(€2) equations and boundary conditions are:

LE s-lavce  +re y-sce

9,2,0 7 9,1 77 %9,2 1,2,0%9,0,0°
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1 . .
x1,10,9)] - 7 [S(fl,o’l,f9'°.l,l,10,9) + S(sl’o’l,gg.o’l,
1
x 1,10,9) ] - c9’1‘S(f3’2’°f7’0.0.96.320.224) + S(fa’o o’

’

» 1 .
X £; 5 4196,320,224) + 5[8(53’0’1,67'0’1,96,320,224)

* 8(33’0’1,37.0’1;96,320,224)], - 1809,2‘S(f5,2,o'f5,o,o;

1 1., i .

x 1,2,1) +5[S(fs’°’lf5’o’l. LY ¢ Sleg , 108s s
X 'zl»"l'%)]} (A17a)

- ! { s 0 43 ‘
f9,2,0(0) 59,2,0(0) 0, f9-,2,0 + 0 as n+ e (A17b,c)

- ' - --l- -1- -
Lf9,°’2 2039’0,2 2(1 + c,‘,.1 +3 09,2) S(f

‘ l.o,2’f9,o,o;1’10’9)

l N
3 [s(fl.ogl,fg’o.l,l.lo,” - 8(31’0’1,39’0’1,1,10,9)]

1
-5 Cg.l‘S(fs’o.of7’°,2,96,320,224) * 86y o

x £, 396,320,224) +-;-[S(f

7.0 1;96,320,224)
A ] ’

3,0,1’f7,o

- 8(8y , 1187 ,.1396,320,220) ]} - 18Cq ,{SCE5 o oufs o o3

1

1 1 ,
*1,2,1) +7[S(f5,o,lf5,o,l’ L) - Ses o 1085 4 15

x %,1,.1.)]}, (A18a)
1
' = - - - .
Lg9,0,2 * 2Gf9,0,2 s(81,0,2’f9,o,o’]"m’9) 2 [S(fl,o,l’SQ,o,l’
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£ s(f

b 4

1,10,9)] - += ¢

101009) + S(slpopl' 9'0)1; 10 9’1 3'0’0'

1
x 37’0.2.96,320,224) + 3(83’0’2.f7,°’°,96,320,224) +

x

[S(fa.o’l,g7.°,1;96,320,224) + 8(33'0’1.57’0.1;96,320,

x

224)]} - 1809,2‘5(fs,o,o'gs,o.z‘l'z'l) + 8(Eg5 o 1085,0,1}

1,2,1)’, (A18b)

x

f9,o,2(0) - fé’o.z(O) = 39.0.2(0) ‘- 86,0,2(0) =0, (A18c)

E'

. ;
9,0,2" 89.0,2 " 0 as n + o, (Alsd)

Finally, for the terms proportional to £l the differential equations

and boundary conditions are, at 0(1l):

Lfll,o,o = - (1 + 011,1 + °11,2) - °11,15(fa,o,o’f9,o,o31°'“°»3°)
= 11,2585 5,0 f7,0,0720,48,28) (Al9a)

£11,0,009 = £11,6,0(® = 0, (A19b)

1

' ——
f11,o,o * 47 as n* e, (Al9¢)

The 0(e) differential equations and boundary conditions are:

= <2(1 + C +C ) - S(f

- ' .
Lf11,0,1 ~ %811,0,1 1,1 * 11,2 1,0,1°f11,0,0°

x 1,12,11) - [s(£ £ ;10,40,30)
o,l1

C11,1t8(83 4 o2 f9,

+ S(f £

3,0,1’ 9,0.1;10’40’30)] -

s(f5

11,2 [ ,0,0°57,0,1°
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x 20,48,28)] + S(f ;20,48,28) ], (A20a)

5,0,1’57,0.0

18)),0,1 *9E1,0,1 " %i'“ - 508) 5 10F11,0,0t 12D

'°11,1[S(f3.o,o'39.o,1‘1°'“°'3°> * 58y 51059000

x 10,40,30)] - cll,z[s(fs,o’o,37’0'1;20,48,28)

+ s(gs.o’l,f7’o,°;zo,as,2s)]. {A20b)
fu’o,l(o) = fil,o,l(O) - 3“’0,1(0) - gh’o’l(o) a0, (A20¢)
fl1,0,1 " o 8]1,0,0 7 0 a8 N> (A20d,e)

And, lastly, the 0(c?) equations and boundary conditions are:

1
Lf --7(1+c ) - S(f

11,2,0 ;1,12,11)

11,1 * C11,2 1,0,2°f11,0,0

1
T[S0y 0,10 F1 0,13 11210 + 8(8y o 08y 4 15

x

1,12,11)] - Cll,l‘s(f3’2,°,f9’o,o;10,40,30) * 8y o oo

1
10,40,30) + 5 [s(e

X

£ £ 10,40,30)

9,0,1;

9,2,0° 3,0,1

’ 10,40,30)]} - c

5(83 5,1'89,0,1} ll,2<8(f5,2,o’£7,o,o;

x

20,48,28) + S (£, o £ ;20,48,28) *'é [sce

,0,0'°7,2,0 5,0,1°

1320,48,28) + S(gs’o 20,48,28)]}, (A21a)

x A .
£ .0, ,1'87,0,1°

1,209 " £11,2,009 = 0 (A21b)
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+0 as n+ -, (A21c)

1
- ' [ -
LE ZOgi 3 (1L +¢ ) - s(f

11,0,2 1,0,2 1,1 * %n,2 1,0,2'f11,0,0°

x

1
1.12.[1) 7 [S(fl’o’l,fll'o.lplnlzpll) - 5(81’0.10

x

i1,12,11) ] - (f $10,40,30)

811,0,1 11,1 5%%3,0,07%9,0,2

+ S(E 5$10,40,30) + 2 [s(¢ £ 10,40,30)

3,0,2' 9,0, 3,0,1'%9,0,1°

S(83 6,1189,0,1310,40,30)] = ¢}, » S(E5 L€, s

x

1
20,48,28) + S(f, 120,48,28) + 3 [scfS o

,0,2’5?.0,0 »0,1°

x f 20,48,28) - S(g5 1.8y , 1320,48,28)] ,  (A22a)
»v

7,0,1;

+ 20f!

11,0,2 = = 5(8) 5,21F11 0,00 1112,11)

Lgll,o,Z

1
3’[S(fl,o,l'slt,o.l’1’12"1) + 508y 510

x

£11,0, 011200 ) = ¢ ISCE; gy o 5310,40,30)

+

1
5(83,4,21%9,0,0310+40,30) + 3 [SC£; .84  1;10,40,30)

+

£ 1;10,40,30)]} -

5(83 5,1f9,0, 011,2‘s(f5,0,0'87,o,2;

;20,48,28) + + [s(f

x 20,48,28) + S\gs’o' 3

2’57,0,0 5,0,1"

x

87,0,1520+48,28) + s(gg 20,48,28)]},  (a22b)

1°£7,5,18
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5“’0’2(0) = 511,0,2(0) = 811’0'2(0) - sil,o,z(o) -0, (A22¢)
+ 0 as N+ -, (A22d)

' ]
£11,0,27 Bl1,0,2
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Table 1. Coefficients in the power series expansion of the potential velo-
city function, H(E), for flow past an elliptic cylinder.

2n + 1 [1+ (b/a)]"ll“,l
1
3 -(1 + k%) /31
5 (1 + 14k% + K*)/5!
7 - (1 + 135Kk% + 135k* + k&) /71
9 - (1 + 12281 + 5478K* + 1228k% + k&) /9!
11 (1 + 1106912 + 165826k + 165826k% + 11069k® + k}0)/111

Table 2. Parameters of the elliptic cylinders for which results are given,

a/b k2

5 0.96
10 0.99

25 ‘ 0.9984

E(k)

1.05050

1.01599

1.00329
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Table 3, The posiiion in the boundary layer of the maximum of

<)

1,0

g a/b = 5.0 10.0 25.0
r /4 2,2 2.1 2.0
” 1.9 1.8 1.7
n 1.2 1,1 1.05
o 0.9 0.8 0.75
Table 4. Total phase shift, in degrees, of al,o'
g a/b = 5.0 10.0 25.0
n /4 11,2 11.9 12.0
n 30.0 30.0 30.0
3n 42.0 40.0 40.0
67 42,0 42.0 40.0
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Table. 5. Coefficients in the power series expansion of the potential
velocity function, H(£), for flow past a parabolic

eyl inder,
HLES “2n 1
1 1/4
3 - 1/22.31
5 22/2% .51
7 -1168/25,7!
9 113536/28, 9!
11 -17521024/210,11!
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Coordinate system.

Figure 1.
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Contours of the zero order steady flow,

to 0.80 with an interval of 0.05.

a/b = 10.

Figure 3.
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Contours from 0.0

The body is an ellipse with

P

Contours of the zero order steady flow,

to 0.74 with an interval of 0.04.

a/b = 25.

Figure &.
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Coatours from

~

Contours of the second order steady flow,

Figure 1l4.

“2,00

-1.8 x 1072 to 2.2 x 10™2 with an interval of 2.0 x 10~2. The
The body 1s an ellipse with a/b = 25

labels are scaled by 10%.

and 0 = w.
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Uy, 10 .the fundamental oecille-

Contours from 0.0 to 0.96 with an interval of 0.06. The

body is an ellipse with a/b = 5, and o = 6w.

tion.

Figure 20a. Contours of the amplitude of
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u, 5, the first harmonic of the
0,
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Figure 3%a. Contours of the amplitude of

Contours from 0.0 to 6.4 x 10~3 with

free stream oscillation.

en interval of 4.0 x 107%.

The

The labels are scaled by 10°.

body is an ellipse with a/b = 25, and o = 3.
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pasc the
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Coritours of the second order steady fluw,

perabola with o = x/4.

Figere 43.

3 to 6.6 x 1073

U2.0°

Contours from -3.6 x 107
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The labels are scaled by 10

with an interval of 6.0 x 107%.
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from 0.0 to 0.22 with an interval of 0.0l.
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ABSTRACT

A solution of the Navier-Stokes equations is given for an incompressi-
ble stagnation point flow whose magnitude oscillates in time about a com
stant, nonzero, value (an unsteady Hiemenz flow). Analytic approximations
to the solution in the low and high frequency limits are given and compared
to the results of numerical integrations., The application of these results

to one aspect of the boundary layer receptivity problem is also discussed,

PRECERING PAGE BLANK NOT FILMED
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1, INTRODUCTION
e e e e e

In this paper we give a solution to the Navier-Stokes equations for an
incompressible stagnation point flow whose magnitude oscillates in time
about a constant, nonzero, value., Apart from the intrinsic interest of this
problem, its solution is the first step in the solution of one aspect of the
boundary layer receptivity problem, that is, the determination of the magni-
tude and form of the disturbance introduced into the boundary layzr on a
body by a perturbation in the free stream, The solution of this problem
would permit the calculation of the initial amplitudes of the Tollmien-
Schlichting eigenmodes and continuum eigenfunctions in the boundary layer
and give a rational foundation to transition prediction methods,

We have recently given the solution to the boundary layer receptivity
problem within the context of incompressible, linear stability theory for a
parallel shear flow (Salwen, Kelly, and Grosch, 1980; Grosch & Salwen, 1980;
Salwen and Grosch, 1981). There is, however, one aspect of the boundary
layer receptivity problem to which our parallel flow solution is clearly not
applicable. If we consider the flow near the forward stagnation point of a
body, a lineagized parallel flow theory cannot be valid because the flow is

intrinsically nonlinear and nonparallel, Although we may be able to use the

boundary layer equations away from the stagnation point, the full Navier
Stokes equations must be used in the immediate vicinity of the stagnation
point. Once a solution of the Navier-Stokes equations for the perturbed
stagnation point flow has been found, it is possible to extend this solution
away from the stagnation point and around the nose of the body. This is, in

fact, what is normally done for the steady flow past an object. The Blasius

137



series (Schlichting, 1979, pp. 168£f) is the extension around the nose of a
blunt body of the Heimenz soluton (Schlichting, 1979, pp. 95£f) to the
Navier-Stokes equations near a stagnation point, In section 6, we discuss
the analogous extension for our oscillating flow solution,

We were stimulated to do this work by the papers of Glauert (1956) and
Stuart (1966). There are a number of other relevant studies in this area
including those of Lighthill (1954), Rott (1956), Lin (1956), Carrier and
DiPrima (1957), Gibson (1957), Watson (1959), and Sarma ﬂ1964). Riley
(1975) and Schlichting (1979, chapter 15) give comprehensive reviews of
recent work in unsteady boundary layer theory. Lighthill (1978) has
recently reviewed the current understanding of the phenomenon of acoustic

streaming; 1i.e., the generation of a steady flow by the Reynold's

gtress

due to an oscillating flow.

2. [EQUATIONS AND BOUNDARY CONDITIONS

We consider the flow in the neighborhood of a stagnation point at
(0,0) on a plane wall, with x the coordinate along the wall and y the
coordinate perpendicular to the wall. We seek the solution (u(x,y,t),
v(x,y,t)) of the two-dimensional Navier-Stokes equations which corresponds

to the potential flow

U= (on/Z)(l + € cos Wt) (1)

V= - (onlz)(l + € cos Wt) (2)
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in the far field, Here, U and V are the x~ and y-components of velocity

of the potential flow, Uo the velocity scale, 2 the length scale, €

the dimensionless amplitude of the oscillation, and w the frequency of

oscillation. Defining a stream function Y(x,y,t) by

9 oy
u = 3%, vV = - a—v}-" (Za,b)

and substituting into the incompressible Navier-Stokes equations we find, as

usual, that ¢ is the solution of

3 3 3y 9
(g + 55 5% a‘;‘c‘s‘}') V29 = V2 (V2y), (3)

with v the kinematic viscosity and

2 2 2
v =& ¥ . (4)
3 3y?

We define dimersionless variables

E = x/, n = (y/ﬂ)/Ro, T = Uot/k, (5a,b,c)

a Reynolds number,

R =U4&/v (6a)
o 0
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and a Strouhal number

g = w&/uo. {6b)

The use of separate velocity and length scales, Uo and &, while ;
correct, is somewhat arbitrary in that they appear only in the combination )
Uoﬂ' in the potential flow, The scales which are intrinsic to this problem
are the time scale of the base flow, '1‘o = £/UD, the frequency, ®, and
the kinematic viscosity, V. We can define velocity and length scales in
terms of To and V, thereby setting the Reynolds number equal to unity.

In any case, the dimensionless parameters which appear in the equations and

[N

tude; €; and the Strouhal

boundary conditions are the oscillation ampl
number, o, and the results will be the same, We have chosen to use
independent velocity and length scales, Uo and £, because we intend to
use the solution presented here as the basis for constructing a solution to
the problem of an oscillating flow past a blunt object with length scale &,

If we set, in analogy with the Hiemenz solution (Scnlichting, 1979, pp.

95¢£),

Y = (uoz//nc) £ F(n,1), (7

then equation (3) reduces to

2 2 2 3
Y chl SN S Rl )
an  97tdn an a2 ol

St L
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which may be integrated to yield tQ 7Y

2 2 2p 33
FF L EEY L pEE_YE ey, (9)
31dn  9n m?  ond

Because the left-hand side of equation (9) is independent of &, it is
clear that the "constant of integration", G, only depends on the
dimensionless time, T. In order that the x and ¢t dependence of the
pressure in the far field agree with that of the potential flow, we must
have

(UO/!?.)2 G = -1-2-‘-1- + H--a«P- = (Uo/z)(~em sin w'r) + (uo/s?.)2

¥ an ¥ 3x
x (1 +€ coswt)2, (10)

Therefore, F(n,T) is the solution of

2 2 3
E_EL.+ (35 - F E_E.— 3_£.= 14+ €(2 cos 0T ~ ¢ sin o7T)
3TIn an on on
L2
+ 5 €2(1 + cos 207) (11)

with the boundary conditions

F(0,T) = 0, (12a)
(2%’-)“0 = 0, (12b)
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g%-+ 1 4+ cos 0T as n » o, (12¢)

3, METHOD OF SOLUTION

S—

To solve equation (11), we will expand F(n,T) in a Fourier series in
the dimensionless time, 7. The coefficients of the expansion are functions
of n and the parameter € and each of these will be expanded in a power
gseries in €, It is easy to see, from the form of (11), that the T~
independent term in the Fourier series contains only even powers of ¢,

Therefore, we look for a solution of the form

[~] [--]
- .2m , _2mtkr . N .
Fln,t) = mzo {e fzm’o(ﬁ) * kzle [rzm,k(n) cos koT

+ me,k(“> sin kot]}. (13)

To find the equations obeyed by the f2m,k and g2m,k we substitute
(13) into (1ll), collect the coefficients of like terms in the Fourier
series, and set the coefficients of the successive powers of & equal to

zero. We find, first, that £ is the solution of
3

d3 ¢ d2f df 2
_20 . 200 L (22 4+ 1=0 (14)
dn3 0,0 4n2 dn

with
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QF o™i o oaery

Eo’a(O) n fé'o(D) =0, fé,o + 1 as n > o, (15a,b,c)

As was expected , f the T-independent, €-independent term in the

0,0’
series, is the Hiemenz solution for the steady stagnation point £low.

Next we define the operator L by
2
Ls..d.z.+foo.i‘.‘.2.-zféog_.+fgo, (18)
dn '™ dn ’7 dn !

with primes denoting differentiation with respect to n, Then it can be

shown that the equations and boundary conditions for the {f and

¢ me,k}

are, for k 2 1,

2m, k}

Lf - ko g' = p

2m, k 2m, k 2m, k’
Lg, ’k+ ko f'z " sz’k, (17b)
me’k(o) = gZN’k(O) = f'zm,k<°> = g'zm,k(O) = 0, (17¢)
B omk” %0 k1 Blom T 0 28 N (174)
and, for m > o and k =0,
L EZm,o = R2m,o’ (18a)
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s 1
me,o(O) - E'Zm,o(O) =0, (18b)
f’Zm,o + 0 as n+w, (18¢)
The (sz’ b, {Q2m,k}’ are linear combinations of products of the

(f

j 1 1 <
2r,a}’ {ng,s} and their derivatives, where s <k and 0L rsSm or

s =k and r <m, and are given in Appendix A, Therefore, these equations
can be solyed sequentially, The equations can be integrated numérically
quite easily, although care must be taken to control roundoff errors., The

results of these integrations are given and discussed in Section 5,

4., LOW AND HIGH FREQUENCY APPROXIMATIONS,

4.1 The Low Frequency Limit

As o + 0, it is expected that the solution will approach a quasi-
steady solution. It is straightforward to show that the quasi-steady

solution,

F(n,t) = (1 + € cos or)l/zfo o([1 ¥ € cos o7t/ 2n), (19)
H

satisfies equation (11) and the boundary conditions (12) to 0(0).
It is also easy to show that this quasi-steady solution is consistent
with the expansion given in equation (13). If F, as given in (19), is

expanded in a Taylor series in €, we find that

n
(¢ cos oT)

- sn(n)

n=o 2 n!
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£ 2m+-k
=7 (2~ Gko) 2 (z) e

k=o m=o

with
sn(n) = fo,0<n>, n=20
n-1
= nheln)
ntetm) )
r=0
n2l1,
and
r
f(r) = d fo,o
0,0 an® ’

Equating the coefficients of €

ORIGINAL [/, » [e
OF POSH&??ﬁKW%7

2mtk S (n)
cos koT,
mi(m + k)!

(-l)n-r-l (211 -5 = 2)!
n-r~1
2 r!(n-x)!

coefficients of € in (13) we find that, to order a,

1
f2m,0 4m 2 SZm’
27 (m!)

1

2m,k 24m+2k—L

g2m,k =

(m+k) Im!

Somtk,

145

(20)

- Xl + Do) )
0,0 ’

2

(21)

(22)

in (21) to the corresponding

(23a)

(23b)

(23¢c)
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Taking the ¢ + 0 limit in the differential equations (17) and (18), for

the (£, .} and {g }, and substituting the low frequency approx ima-
2m, K 2m,

tions (23), it can be shown by induction, after some lengthy but straight- i
forward calculations, that these approximations satisfy the differentional i
equations to 0(o). Therefore, the quasi-steady solution is the same as the

expansion in the low frequency limit, i

4,2 The High Frequency Limit

In the high frequency limit, o + @, it would be natural to look for

approximate solutions for the {EZm } and {g2m } in the form of a power

s K N

series expansion in o=}, However, it is clear from the form of the
differential equations, that this expansion whuld be non-uniform because the
highest derivatives would be multiplied by the small parameter o-! and
thus would vanish as ¢ + =,

We therefore rescale the equations, defining a new independent

variable, an inner variable,

z = (0/2)4/2n = (w/2v) 2y, (24)
with the length scale (Zv/w)l/z, that of Stokes's second problem
(Schlichting, 1979; pg. 75 and Chapter 11). In this limit we assume that

there is an inner expansion of the form,

2m

m)

F = fo,o(n) + m§=1 € (z)

2m,0

«© LY

+ o] ~ .
+ 3 7 e®K[E  (2) cos kot + &, (2) sin kot] (25)
=0 k=l 2m, k 2m, k
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It is easy to see that the differential equations for the {EZm k}
1

and {§2m,k} are just equations (17) and (18) with a transformation of

variables from n to z., It can be inferred from the form of the equations

2m+k—1/2)

that f are 0((2/0) in the high frequency limit.

am,k 2% By

We then solve these equations, retaining only the highest order terms in an

expansion in powers of (2/9),

We find .
~ 1/2 1 - . 1
fo,l(Z) = (2/0) [z + 5 e % (cos z - sin 2z) -'5]’ (26a)
go’l(z) = (2/0)l/2 L% e % (cos z + sin z) --%], (26b)

a Stokes shear layer flow caused by the 0(e) part of the far flow field.
In the high frequency limit it is decoupled from the 0(e®) steady outer
flow, This is, of course, a familiar result in time dependent boundary
layer theory and has been derived and discussed by Carrier and DiPrima
(1957), Stuart (1966), and Riley (1975), among others,

If we let § and 6
0,0 o

’

1 be the boundary layer thickness of the
)

steady flow and the Stokes shear layer flow, respectively, then, for

a»l,

o s R

. 1/2 ;
50’1/50’0 2 (2/0) K 1. (27)

Next, we solve the equations for the 0(e2) oscillatory flow and find

that
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go ,(2) = (2/0)3/2{[_2‘{;/7 % (sinYZ z + cos ¥Z z) - 1]

16
1 - .
+ g ze  sin z} (28a)
go , (2) = (2/0)3/2 {E[eﬂr—fz (sin VZ z + cos V2 z) = 1]
! 16
1 -2z
- g ze  cos z} (28b)

Again we have a Stokes shear layer, decoupled from the steady flow and, for
large o, confined to a thin layer imbedded within the steady boundary
layer.

Proceeding next to the 0(e?) steady streaming flow component, we find

that the most general solution which satisfies the boundary conditions at

z =0, 1Is

EZ = (2/c)3’2(1_.) [13 - 6z - e—Zz - Ae-z (3 cos z + 2 sin z)
10 16

- 4ze % sin z] + D22, (29)

where D is an arbitrary constant. This secondary steady streaming flow is
identical to that found by Stuart (1966) using the boundary layer equations.
Stuart's small parameter, &, 1is the reciprocal of ¢ and Stuart's expan-

sion is in powers of a, while ours is in powers of (2/0). Therefore,
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?2 o with D = 0, is equal to 1/2 of the X given by Stuart (see Stuart,
b

1966; eq. 2.11), Our solution and Stuart's satisfy the boundary conditions

at the wall but do not satisfy the outer boundary condition because

”~

dfz 3
—EEAQ-+ - (BJ (2/0) +o Dn as n + (30)

and does not vanish, as required by the far field boundary condition, for
any value of D. This is explained by the fact (pointed out by Stuart)
that there is an outer boundary layer, thick compared to the Stokes layer

thickness, 60 L but thin compared to the scale of the body, within which
L

this secondary steady streaming flow decays to zero,
Since the ¢ + ® 1limit is non-uniform and 2z 1is an inner variable,

all of the f's and 2's are inner solutions and could be expected to

”~

require matching to appropriate outer solutions. The functions fo 1’
H

g ., f , and g , however, are also outer solutions and, unlike
o,l 0,2 o,
fz o’ do not require matching.
2

OQutside of the Stokes layer, the interaction between the secondary

~

streaming flow, £ , -and the oscillatory potential flow, f; 1? is
?

1
2,0
unimportant. In the case studied by Stuart, the dominant non-linear
interaction is that between E;,o and itself, Since the velocity of this
flow at the top of the Stokes layer is O(Uo/c), the corresponding Reynolds

number is R = (UO/G)(z/v) = RO/c. From this, Stuart concluded that the

thickness of the outer layer is 0(2Rs'1/2) = O(£R°'1/201/2), which is

larger than that of Stokes layer by a factor of the order of o.

149



ORIGINAL PAGE IS
oF POOR QUAL‘TY

For the case under consideration here, the situation is completely

changed by the existence of the large steady flow, fé o with boundary

layer thickness 60 0 " 0(al/2 60 1). The dominant non-linear interaction
] ]

of £ in the outer layer is with f' _and, consequently, it falls off in a

2,0 0,0
distance of the order of §_ (instead of o!/2 8, o)' The appropriate

’ L

outer variable is therefore n = y/§

0,0’
If we express E; 1 and §° 1 in terms of n, substitute them into
1 3
the differential equation for f2 o and let o + =, it can be seen that the
] '
outer solution, ?2 o’ is the solution of
)
3 43 d d
L(E, ) =(—+ ¢ - 2f! —+ £ )£ = 0, (31)
2,0 dn? 0,0 4n2 9:0 4n 0,00 2,0
with the outer boundary condition
' )
£ 2,0 +0 as n * o, (32)
Using the asymptotic expansion for fo !
3
£ ~m+ oA, (33)
0,0

with A a constant, it can be shown that the general solution of (31) is

- '
£20=C ¢ O,o(n) + ¢ h (n) + €, hy(n) (34)

where, as n * &,

© 2 . _n2
h'l ~(1+82) [e Y /de - Be B%/2 (35)
B
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™8+ 83, (36)
with

B =n + A, (37)

The outer boundary condition requires that Cz be set equal to zero.

This leaves three arbitrary copstants, Co’ Cl’ and D, in the inner and

outer solutions so we can match the inner and outer solutions and their
first two derivatives., Matching the inner limit of the outer solution and

the outer limit of the inner solution shows that

G, = 0e~}), ¢, = 0(0=3/2), and D = o("%). (38a,b,c)

The inner solution was obtained by expanding in powers of o-1/2  and
retaining only the lowest order terms. Consistent use of this approximation

requires that we set Cl and D to zero and match the first derivative,

We find that

c, = -3/ (4Ba). (39)

where B = f' (0). The composite solution for £ is
0,0 2,0

2z -

EZ,o = (2/0)3/2 (%30 (13- e " - te “ (3 cos z + sin z)
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sin z] === §' (n), (40)

which satisfies the boundary conditions at 2z equal to zero as well as

z + ®, The thickness of the inner layer of the steady streaming flow is

60 1 while that of the outer layer is 60 o which is much larger than
]

]
§ for o + o,

0,1

We have also calculated the high frequency approximations for the
0(e3) functioms, for f5,30 80,3 fz,l and g, ). These are given in
Appendix B, The components of the amplitude of the 0(e3) portion of the
second harmonic £y 3 and 8, 3 are driven by the interaction of the 0(e)
fundamental (Eo,l’go,l)and the 0(e2) first harmonic (50,2’30,2)‘ The
inner expansions for 50’3 and gg,B’ given in Appendix B, are also outer
expansions.

This is not true for 52,1 and g2,1’ the components of the amplitude
of the 0(e3) part of the fundamental, They are excited by the interaction
of (fo,l’ go,l) with (f2,o) as well as (Eo,l’go,l) with (fo’z,go’z).
The inner expansion of the in-phage component, f2,1’ satisfies the outer

boundary condition, but inner expansion for the out-of-phase component,

g , does not, The outer expansion for 891 is the same as that for
2,1 !

f2 o The composite expansion for g 1 is found in the same way as that
3 1

for f, , and is given in Appendix B.
H
5. RESULTS
We have numerically integrated the differential equitions for the f's

and g's with 2m + k < 3 over a wide range of value?'of g, Some typical
i
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results at a moderately low frequency, o = /4, are shown in Figures
1 - 4, where the sclid curves show the results of the numerical integrations
and the dashed curves are obtained from low frequency approximations for the
f's given in section 4,1, The g's are identically zero in the low fre-
quency approximation,

It can be seen from the results shown in these figures that at low
frequencies there is no Stokes layer; the voundary layer thickness of the
various components are generally equal to or greater than that of the steady

flow component, f; o' The steady streaming component, fé o’ is quite
? )’

small compared to the mean flow, even for € = 1.

At 0 = o the g's, the out-of-phase components, are identically
zero. At small, but non—zers, frequencies the low order (in ¢€) in=phase
components, the £'s are larger than the g's. As the order increases,
however, the magnitudes of the f's and g's tend to equalize and
decrease,

It is also apparent from an examination of Figures 1 - 4 chat the low
frequency approximations are reasonably accurate even at ¢ = 7/4, In fact,
the difference between the numerical solution and the approximation for

fo 1 is so small that it is neot apparent in Figure 2, Taking inkto account
]

the fact that the higher order terms, which have the largest deviations from
the low frequency approximations, have very small magnitudes, it is clear
that the low frequency approximations, equation (19), is reasonably accu-
rate, even for Strouhal numbers as large as T7/4.

Figures 5 - 9 show the f's and g's for 2m + k € 3 at a moderately
high Strouhal number, ¢ = 87, as obtained from the numerical integrations
(solid curves) and the asymptotic approximations (dashed curves). The top

of the Stokes layer is at z » 4.6 and this corresponds to n ™ 6.5 ol/2,
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Therefore, the top of the Stokes layer is at n ~ 1,3 for o = 8n. The
secondary streaming flow (see Fig, 5) extends far beyond the Stokes layer,
The variation of the fundamental component (see Fig, 6) is confined to the
Stokes layer. The amplitude functions of the higher harmonics tend, like
Eé,o’ to extend beyond the Stokes layer because they are also driven by
Reynolds stresses due to fo,o'

The secondary steady streaming flow, f'2,o’ is considerably smaller
at high frequencies than at low frequencies, In addition, the nature of the
secondary flow changes as 0o increasesj at a small o, the net secondary
flow is positive while, for large o, it is negative. As discussed by
Stuart (1963), it is known from experiments that this effect occurs ln the
steady streaming flow generated by & circular cylinder oscillating along a
diameter,

The tangential velocity component, u, is proportional to that

9F
on’
» ] R ¥ I
is to the {EZm,k’ me,k}' In Figure 10 we present some of the results of

the numerical integrations; a plot of the variation of max |fé and

m,k|
max Igé | as functions of ¢, The maximum of f! is 1.0 for all o
m)k 0,0
and the absolute maximum of E; 1 is about 1,069 at o = 17; the maxima of
?

fé o and Fé | are mnot plotted in Figure 10. We can conclude, from the
] ’

results shown in Figure 10, that the high frequency estimate, {‘fém k{’
H

lgém,kl} = O(qum-k+l). is quite good,

6. DISCUSSION

The applied far-field flow consist of a time-independent mean flow and

a fundamental with a coswt time-variation, Nin-linear interactions result
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in the generation of components at all multiples of the fundamental fre-
quency and modifications of the mean flow and fundamental components,
though, at moderate €(£ 1), the fundamental and first harmonic tend to
dominate,

At low frequencies, our results are well repreaentéd by a quasi~steady
approximation (19), which hae the same form as the steady stagnation-point
flow except that the amplitude and scale vary with time, Somewhat surpris-
ingly, this approximation is quite good for a dimensionless frequency, O,
as large as m/4,

At high frequency, the viscous boundary layer c;rresponding to the
oscillating components is largely, but not completely, confined to a Stokes
layer of thickness (2/6)1/2  times that of the steady boundary layer, For

these large values of o, the inner asymptotic approximations are solutions

of differential equations which are independent of fo o] and are, there-
H

fore, decoupled from the mean flow, For a number of components, the inner
expansions are also the correct outer expansions; these components are,
therefore, totally decoupled from the mean flow to lowest qrder in ¢ and
are, in fact, identical to the corresponding solutions found by Stuart

(1966) for a purely oscillatory flow past a body.

Not all of the components are decoupled from the mean flow in the high
frequency limit. The high frequency expansion is a non-uniform asymptotic
expansion and thus, for certain components, in particular the steady second

order flow, f'2 ot an outer expansion, matched to the inner expansion, is E
? H

needed for a uniformly valid approximation. The results given in Section

4.2 show that such composite expansions can be found for o >> 1; they
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satisfy, to lowest order in o, the differential equations and all of the
boundary conditions. We believe, although we have not carried out the cal-
culations, that this is also true for an expansion to any order in ¢, The
results of the numerical integrations, shown in Figures 5-9 are consistent
with this belief, We conclude that, both for this flow and for the oscille-
tory flow studied by Stuart (1966), there are second, and higher, order
steady streaming flow components that do not extend to infinity but are
confined to a layer adjacent to the solid boundary, This layer is much
thicker than the Stokes layer but much thinner than the length scale of the
body.

There are other aspects of Stuart's solution which can be compared with
ours, He used three parameters, @, £, and R_  in his solution, which

are related to our Strouhal number, o, and Reynolds number, R_, by:

o = U_[(h) = o-1,
B +v/?) = 1/(oR ),

» 2 m
Rs Uo/mw) RJ“’

Stuart used the boundary layer equations and an expansion for & + o; we
have used the Navier-Stokes equations and, in addition to the numerical
solutions, an expansion for the high frequency limit, o + ®, It is clear
that Stuart's expansion, and ours, are high frequency approximations,

Stuart assumed that B was small and R8 large in order to justify the use

of the boundary layer equations. In the high frequency limit o + «, and,
with Ro fixed, @, B, and Rs are all small. We do not need to make

any assumptions concerning the magnitude of R, or R,B because we used the
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Navier-Stokes equations. We can determine the f£'s and g's by numeri~
cally integrating the ovdinary differential equations; however, the quasi-
steady solution for low frequencies and the high frequency expansion are
useful analytic approximations.

We have not attempted to determine the radius of convergence, in ¢,
of the series for F(n,Tt,e), equation (13), However, some cohservations can
—2m-k*1/2) for

¥
be made. We have found that me,k and Bom,k 9r® 0o

! 1] ] s
large o. Therefore, max {IEZm,kl’lg 2m,k|}‘ the amplitude functions for

u, are O(o~2m-k+1).

Thus the series for u 1is in terms of (8/0)2m+k,
for large o, and this suggests that it converges for ¢/o < 1 and
converges rapidly for € < 1, On the basis of the results presented in
figure (10) we conclude that the high frequenecy bound on max (lf'zm,kl’
Ig'Zm,k|} is valid at all frequencies and, therefore, that the series
converges rapidly for € < 1, Of course the convergence will be slower at
low frequencies but we have shown that, for ¢ % /4, the quasi-steady
gsolution is an accurate approximation,

In the introduction we suggested that the solution to the problem of
oscillating stagnation point flow was the firast step in the solution of one
aspect of the boundary layer receptivity problem, A few years ago: Morkovin
(1978) reviewed the rather rudimentary state of knowledge of the dynamics of
boundary layer receptivity, He identified four general classes of free
stream disturbances which might generate Tollmien-Schlichting waves in the
boundary layer. These are: vorticity fluctuations, sound, entropy
disturbances, and unsteadiness in the mean flow. In the incompressible

limit, there can be only vorticity fluctuations and unsteadiness. Morkovin

argues, however, that a temporally oscillating incompressible flow is a

157



reasonably sccurate approximation for a sound wave impinging normally on the
nose of a body if the wavelength of the sound wave is much greater than the
radius of curvature of the nose,

The solution of the Navier-Stokes equations given here is the solution,
in the neighborhood of the stagnation point, of the receptivity problem for
a simple unsteady flow. In order to interpret this solution in terms of a
stability model it is necessary to extend it around the nose of the body
into a region where the flow is, at least, quasi-parallel., If we can assume
that the tangential component of the potential flow at the edge of the

boundary is of the form U = UOH(E) (1L + € cosot), with H(§) having a power

series expansion in &, the distance along the bodr from the stagnation
point, we can use an unsteady variant of the Blasius series to solve this
problem. For the first term we use the full two-dimensional Navier-Stokes
equations and the solution is that given here., For the subsequent terms, we
use the boundary layer equations, We have carried out this calculation
procedure up to and including the terms in £}l and we are now applying it
to bodies which are elliptic or parabolic cylinders, We hope to report the
results of these calculations at a later date,

This work was supported, in part, by grant NAG-1-9€&. from the National

Aeronautics and Space Administration.
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The expressions for and R in (17a), (17b), and (18a)

Pom,k*  Qom, Kk

are simplified by use of the notation

2m, o0

M(f,g) = f'"g - 2f'g' + fg". (A1)

In terms of M,

k=1
1 -
Pok 4 {86k1 * zskz + (1 le) rzl [M(fo,r’fo,k-r)
- >
M(go,r’go,k—r)]} for k 21, (A2)
1 m=1 m k-l
P = - = {4 M(f £ ) + (1 -8 )
2m, k% 4 szo 2(m-s),0’"2s,0 k1l 820 rzl
X [M(EZS,r’EZ(m-s),k-r) - M(8254,1"g2(m--s), k—r)
m-1 m~1l-s
* 2 Z ,E [M(fZS,k+m—s-s"f28',m-s~s') * M(825,k+m--s—s"
s=0 sg'=o
830, mg-s’ )]} for m 21, k 21, (A3)
1 k-1
= - - - >
Qi = 7 1298, = (1 = 8,,) rzl M(fo,r,go’k_r) for k 21, (A4)
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1 m=-1 m k-l
Um,k ™72 zszo M(E) (nmg) 1B2g ) * (1= 8) SZO rzl
m=1 m=l-s
X [M(EZS,r’gZ(m~s),k~r) * szo s.go [M(fZS, m-s-s'

- M(fz

X 825!, ktm-g~s"'’ s',k+m-s-s"825',m-s-s')]

1, (AS)

and

m=-1 m~l-s
Ll [M(EZS,m-s-s" Zs',m-s-s') M(gZS,m-s--s',
s=0 s'=o
x g )] for m 2 1 (A6
2s' ,m-s~-s' )

Here, 6ij is the Kronecker & symbol.
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Appendix B

High Frequency Approximations to the 0(e3) Functions

The approximations to £ and g for o +» « are;
0,3 0,3

572 -
E o) =@m) {[9-&T+3(2+1)] +e vz

2 2
-6+4z-4z)cosz+(6—v’?—4z)sinz]

-/—z(4 + %7 - 8z) cos Viz - (4 + 2/2) sin V2z]

+

-V A7+ 1) e—ﬁz( cos Y3z - sin @z) + (52 - 7)

x E('/-2—+ Dz [cos (V2 + 1) z - sin (2 + z]}/128, (L)

5/2 -
g, 4(2) = (2/0) {[9- 87 +v3(VZ+ 1)] re (VT

2 2
-64:)cosz+(/7—6+4z—4z)sinz]

¢ & 2 [(4 + 2/7) cos Y3z + (4 + /T - 82) sin /3z)

- Y372+ 1) e—/-jz( cos Y3z + sin V3z) + (572 - 7)

e—(/"z' ¥ l)z[ cos (v’_:'l_ + l)z + sin (/7*' 1)3]}/128' (b2)
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+ 3 (4 K]
The approximation to f for a0 + @ 1is;

. 5/2 y
£y 1(2) = 2/0) {(349-335/72) /1920 + e “[(60v2-213)/960
+ ((52/64) (z-1)/64) cos z + ((93 + 157/2)/240-10z

x (z + 1)/64) sin z] + er-/—Zz[ (W2 - 2 + 4z) cos Viz

- (W7 + 2) sinV22]/64 + (13/160)e™ 2% + e—(‘/-i-”')z

[(/Z-5) cos(VZ - L)z - (YZ + 5) sin (VY2 - 1)z]/384

+ e 3z cos z/320} .

The composite approximation to gz 1 for ¢ + @ ig:
b

5/2 -
g, () = (2/o) { - (1513 + 125/2)/1920 + & “[(558- 45/Z) /960

+ ((3z (6-2)/64) cos z + ((177 + 45/2) /960 +

/’iz[

x 2(31 + 92)/64) sin z] + e (1Y2 + 2) cos Y2z

+ (W2 - 2 + 4z) sin /22 /64 + e'zz[(la/so + 2/16)]
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PV 1)z[ (5v7) cos(Y2 = 1)z - (5 = V2)

-3 .
x sin (/2 - 1)z] /384 + e % gin 2/320}

2
b4)
+ (2/0) 3f(') o(71)/(8115), (

(b5)
with B = fg’o(o).
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