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INTRGAUCHON

Research on this grant consisted primarily of studies of fluid mechanical

effects cn combustion processes in steady flow combustors, especially gas

turbine combustors. Flow features of most interest were vorticity, especially

swirl, and turbulence. The research included theoretical analyses, o userical

calculations and experiment. The theoretical and numerical work focused on

noncombusting flows, while the experimental work, which formed the bulk of the

research program during the later years of the grant, consisted of both

reacting and non-reacting flow studies. Our objective in this research was to

form a better understanding of the influence of vorticity (swirl) and

turbulence on fluid dynamics and combustion dynamics occurring in combustors

of interest to Lewis and to develop an experisental data set, e.g. velocity,

temperature and composition, for a swirl flow combustor which could be used by

combustion modelers for development and validation work. We believe we have

been quite successful in achieving these specific research goals. In

addition, our NASA grant has helped support and train a large number of

graduate students both for the N.S. and the Ph.D. degrees, see Appendix I.

The scope of our research is clearly indicated in the list of papers and

publications resulting in whole or in part from grant research, Appendix III,

and by the list )f theses related to the Grant, Appendix II. Work on the

grant and results are fully reported in these theses, reports and publications

(copies of the most recent ones are attached). Therefore, details of the work

and results will not be presented here. Instead, a brief summary of our

findings and their implications for research, development and design is

presented.
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RESEARCH SUMMARY

Swirl Flows

Studies of swirling recirculating flow* formed a major component of Grant

research efforts. Professor Leibovich led a series of studies on

vortex breakdown in high Reynolds number flow which built on previous work

wherein ideas by Benjamin [1) had been exploited and a trapped wave model for

the axisymmetric form of vortex breakdown was developed [2,3). Faler [4) made

careful observations of vortex breakdown forms for different flow conditions

and measured the velocity field of an axisymmetric vortex breakdown.

Complicated, unsteady nonaxisymmetric flow features were observed by Faler in

the central recirculation zone and are attributed to flow instabilities.

Further observations of these flow patterns at higher Reynolds numbers were

made by Garg (5), while a complementary theoretical study of these instabi-

lities was made by Huang [6). Coherent flow patterns are frequently observed

in turbulent, as well as laminar, swirling flows, and many important questions

concerning them, including their connection to instability phenomena, remain

to be answered. Professor Leibovich continues work on instability problems

with other sponsorship.

A series of numerical calculations were carried out with grant support

building on work for laminar swirling flows by Torrance and Kopecky [7).

Under Professor Gouldin's guidance several turbulent flows were studied using

a k-e turbulence model. Kubo [8) used a stream function-vorticity, finite

difference code to evaluate the effect of various flow parameters on the

Lin and Moore [25) on a previous NASA Grant (NGL-33-010-042) studied flow
recirculation induced by azimuthal vorticity (smoke rings) rather than
swirl.
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recirculation zone formed in a confined concentric swirling jet flow composed

of a circular jet surrounded by a second annular jet. Coudeyras (9) modified

Kubo's code to study flow behind a single NASA swirl-can module, while Le u

[10] investigated the same code to assess the solution sensitivity to changes

of inlet conditions and the rate of convergence. Multiple recirculation zones

were found by Coudeyras for the swirl-module, and Haines (11] attempted to

verify this observation by studying an actual swirl module in a water flow

facility. He found that the flow was highly unsteady with discrete low

frequency oscillations and that the inlet flow (to the test section) from the

module in the mean was not axisymmetric as assumed in the calculations. Leu

found very slow convergence for the calculations in the vortex core region.

Based on the work described so far a number of conclusions were reached.

The generation of flow reversal in the swirling flows which we have studied is

an inertia dominated process (viscous forces and Reynolds stresses may be

neglected). A proper prediction of these flows requires accurate

specification of the inlet and boundary conditions. An accurate turbulence

model is of secondary importance to the prediction of recirculation but is

required to predict flow in the recirculation zone and for predicting species

and energy transport in combusting flows. The instabilities observed in

laminar flow must be modeled if these flows are to be fully understood and

discrete frequency oscillations related to these instabilities may be

important in turbulent flow as well.

Vu and Gouldin 1121, using pressure probes and hot-wire anemometers,

conducted velocity measurements in an experimental flow tunnel with a

concentric jet configuration similar to that studied numerically by Kubo [8].

A five-hole pressure probe operated in the null mode was used to find mean

t
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flow speed and direction, while a single element hot-wire sensor was used to

measure velocity fluctuation characteristics such as the turbulence intensity

and the Reynolds stresses. The influence of swirl level on the recirculation

zone was studied and extensive measurements of mean flow and turblence

quantities for two flow conditions were made to provide data for numerical

model development and validation. These data have been supplied to a number

of investigators including resesrchers at Garrett, General Electric, United

Technologies and Lrigham Young University. These measurements are considered

quite buccessful. (Results of recent laser doppler velocimetry (LDV)

measurements at Carnegie-Mellon University 1131 on an almost identical flow

apparatus have confirmed the results.) Additional  velocity measurements with

LDV in this flow configuration have been made at Cornell in combusting and

noncombusting flows with emphasis on mean velocity and rms velocity

fluctuations [14,15].

Combustion Studies

Experimental investigations of the combustion characteristics of a

premixed gaseous-fueled swirl combustor with a concentric jet configuration

similar to the one described above formed a second major component of our

grant research. The combustor was fired on methane and propane and was

operated at atmospheric pressure without preheating. Construction and early

testing of the combustor including the determination of blow-out limits for

methane firing were carried out under SNF funding [161. With NASA support

exhaust emissions and combustion efficiency were measured as a function of

flow conditions 120,211 for methane and propane firing. For two specific flow

conditons sampling and thermocouple probes were used to measure mean

temperature and gas composition distributions in the combustor [171, while
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Heyler and Gouldin [18) measurement chemi-luminsecent emissions from the

combustor to determine the time-mean location of the reaction zone for the

same two conditions.

From these measurements and velocity measurements [14,15] the following

picture of the combustion process emerges:

1. Combustion occurs in a relatively thin (few mm) turbulent reaction zone

with characteristics very similar to a premixed turbulent flame.

2. Reaction begins on the combustor centerline upstream of the recirculation

zone where the local effective turbulent flame speed equals the local

mean axial velocity.

3. The reaction zone propagates radially as it is carried downstream.

4. The reaction zone lies in the boundary layer flow around the

recirculation zone.

5. The primary role of the recirculation zone in flame stabilization is to

provide a low mean velocity region upstream of its front stagnation

point.

6. Temperatures are high in the recirculation zone and therefore NOx

formation rates and concentrations are high. The contirbution of this

region to exhaust NOx is not known since the flux of NOx out of the

recirculation zone by turbulence has not been established.

7. Significant amounts of NO2 are observed in the exhaust flow and the

NO2/N0x fraction is larger for conditions which promote mixing of the

two jet streams - inner premixed fuel/air and outer air. Reasonable

chemical kinetic mechanisms for the conversion of NO to NO2 hAve been

proposed by Chen [19).

8. Combustion eficiency is low in this configuration in part becasue of :he

absence of high pressure and preheat. Efficiency is determined by the
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ability of the flame to propagate radially across flow streamlines. In

turn, this ability is determined by the turbulence levels which influence

flame speed, by the mean velocity patterns and by the mixng between the

two jets. These different factors interact in a complex way. Small,

apparently minor changes in flow conditions result in significant changes

in efficiency [211. Similar results are obtrained for methane and

propane firing implying that chemical kinetics play a secondary role in

determining the flame speed and hence combustion efficiency.

9.	 Swirl induces significant radial pressure gradients which affect

turbulence levels in cold flow and to a such larger extent in hot flow

where density fluctuations introduce new terms into the turbulence

equations. This interaction explains the dramatic change in flame

appearance which we observe when swirl levels are changed.

Two important final observations can be made regarding the implications

of our findings on swirling flow combustion with premixed reactants. The

formation of a recirculation zone is dominated by inertial effects - viscous

and turbulent stress terms may be neglected in the mean flow equations - and

wave motions may be important to the process. On the other hand combustion

processes which are influenced by heat and mass transfer are greatly

influenced by turbulent transport, and therefore good turbulence models are

required to model combusting flows. Research on flow field prediction has

tended to emphasize turbulence model development. In part this concern is

misguided and diverts attention from the important questions of proper inlet

and wall boundary layer specification, of numerical convergence and numerical

error and of the roles of flog asymmetry and instability. In view of what we

It
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now know concerning swirling flow proceses one is forced to conclude that no

numerical code is satisfactory for flow prediction when a central

recirculation zone is present and that agreement obtained so far is

fortuitious.

In diffusion controlled combustors with liquid fuel sprayed into the

recirculation zone, reaction occurs for the most part in the mixing region

between the recirculation zone and the surrounding flow. This is not the case

for a premixed combustor where fuel is injected upstream of the recirculation

zone and then flows around the recirculation zone. in premixed flows, high

combustion efficiency depends on the ability of reaction to penetrate this

surrounding flow, for a flame to propagate away from the recirculation zone.

For such combustors turbulent flame dynamics are of paramount importance,

while the recirculation zone plays a secondary role. This important

distinction between premixed, prevaporized combustors and liquid fueled,

diffusion controlled combustors is not fully appreciated.

Turbulent Flame Studies

A third major componet of our NASA funded research was a study of

premixed turbulent flames. The motivation for this work is two fold - to

study the influence of turbulence on combustion in an uncomplicated flow field

and to improve our understanding of turbulent flame processes which are

important in premixed, prevaporized combustors. This work began with modeling

efforts by Gouldin (22] who proposed a flame speed correlation and concluded

with a series of experiments on a laboratory burner. These experiments

composed the major portion of our research on turbulent flames and were the

work of two successful Ph.D. candidates - K. 0. Smith and K. V. Dandekar.
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Smith [231 developed a burner for studying combustion in a well defined

turbulent flow-grid turbulence-and he developed and refined a novel technique

for measuring the turbulent flame speed as a function of position in the

flow. Preliminary laser velocimetry measurements and temperature measurements

were performed by Smith as well. A large amount of data of good precision

were obtained by Smith for a range of flow conditions in methane-air flames.

The flame speed measurement technique was further refined by Dandekar

[241 who measured flame speed for propane-air, ethylene-air and methane-air

mixtures. Dandekar used laser velocimetry and Rayleigh scattering to make

extensive measurements of velocity and molecular number density (the

reciprocal of temperature) in methane-air flames. Velocity measurements

revealed considerable streamline curvature across the reaction zone which is

dependent on the mixture strength and flame angle with respect to the reactant

flow. Large changes in velocity fluctuation levels in the reaction zone were

also observed indicating a coupling between combustion dynamics and turbulence

dynamics. The density measurements 4mplied a wrinkled-laminar-flame structure

for the turbulent flame which is consistent with other findings. The laminar

flame thickness was found to be the same order as the turbulent flame

thickness, a common situation for flames in low turbulent Reynolds number

flows.Frequency spectral analyses of the density data indicated that the

wrinkling of the laminar flamelets or flame sheets is not determined solely by

the turbulence dynamics but that instabilities of the flamelets may be

triggered by the turbulence. These expeiments clearly show that the

combustion affects turbulence fluctuations and that there is a strong coupling

between chemical dynamics and heat release and turbulence dynamics. Further
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studies of these dynamics are of great importance to the understanding of

premixed turbulent flames and we plan to continue our research in this area.

CLOSURE

Over a seven year period we have received support from by NASA Lewis.

With this continued support we have been able to attack and solve a variety of

flow and combustion problems. The constancy of this support has allowed us to

attack large and complex problems from more than one prospective, while

regular review of our work has helped to maintain our focus on NASA problems.

This support also has helped train a number of graduate students who are now

either still in school or are active in industry and teaching and thus a

benefit to the nation. This NASA support is greatly appreciated and

gratefully acknowledged.
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