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INTRODUCTION

• In the last few years, major advances have been made in the numerical simula-

tion of wall-bounded transitional and turbulent shear flows. So far, most of the

emphasis has been on flows with planar boundaries. Transitional flows in a flat-

plate boundary layer (ref. i) and in a channel (ref. 2), as well as turbulent channel

flow (ref. 3), have been investigated without modeling the near-wall region; Moin

(ref. 4) gives a critique of these investigations. Except for the study of Patera

and Orszag (ref. 5) of axisymmetric pipe flow and the simulation of turbulent flow in

annuli by Schumann (ref. 6), using modeled boundary conditions, very little work has

been reported on nonplanar flows.

In this paper we present a new numerical technique for simulating three-

dimensional, unsteady, incompressible pipe flows and demonstrate its utility and

accuracy. Each vector function in the expansion of the velocity field is divergence-

free and satisfies the boundary conditions for viscous flow. Some of the benefits of

the expansion technique are as follows: (i) pressure is eliminated from the dynam-

ics, (2) only two unknowns per "mesh point" are required, (3) it provides implicit

treatment of the viscous terms at no extra computational cost, and (4) no fractional

time-steps are required.

In addition, the method uses spectral expansions: Fourier series in the azi-

muthal (O) and streamwise (x) directions and global polynomials in the radial (r)

direction. Thus, for smooth velocity fields, we expect rapid convergence of our

expansions, independent of boundary constraints, as long as the radial polynomials

are eigenfunctions of a singular Sturm-Liouville problem (ref. 7). In general,

Chebychev or Legendre polynomials are good candidates, but we show that for cylindri-

cal geometry a certain choice of the Jacobi polynomials is particularly advantageous

in minimizing the coupling of the resulting equations for the expansion coefficients

while satisfying the analytical behavior of the flow variables near r = O. As dis-

cussed below, the method has been tested on the linear stability problem for

Poiseuille flow.
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MATHEMATICAL FOUNDATIONS

The governing equations are the incompressible Navier-Stokes equations for the

velocity u and the disturbance pressure p,

_u_ i dP i

_-_+ ___x u = -?(p + -_ u2) - d_x ex + R_e ?2u-- (l)

V • u = 0 (2)

dP
Here __ = Vxu is the vorticity, Re is the Reynolds number, _xx is the constant

mean pressure gradient, and the density p = 1 everywhere. The boundary condition

at the pipe wall (r = 1) is _Ulr=l = 0. We assume periodic boundary conditions in
the x direction with period L.

We proceed formally by defining the projection operator _ which projects an

arbitrary vector field into the space of divergence-free fields satisfying tangency

at the boundary; that is, if __ is an arbitrary vector field, then we have the

unique decomposition,

! = _ + V_ (3)

where i satisfies

V • _ = 0 , _ " a[ = 0 (4)
boundary

and _ is the operator that accomplishes this decomposition,

_ : £ (5)

By applying this operator to the momentum equation, we obtain the time-evolution of

the divergence-free velocity field as (ref. 8) _

_u

-- i dP ^
_-_+ Re _(V x V x _u) = -_(0_x u) -d-xx ex (6)

Our overall strategy is to expand _ in terms of divergence-free vector func-

tions satisfying the viscous boundary conditions and periodicity in x and O. We

then substitute this expansion into equation (I) and apply a weighted residual

method which mimics the application of the projection operator to obtain evolution

equations for the expansion coefficients.

,



EXPANSION METHOD

We write the velocity field u as the expansion

u(r,e,x,t)= _ a (t)X_n(r)exp(ikx+ i£e) (7)-- n,k_£
n,k,£

where each expansion vector satisfies

? • x_(r) exp(ikx + i£8)] = 0 (8)

and

X__(1) : 0 (9)

We derive a system of ordinary differential equations (ODE's) for the coefficients

an,k, £ by substituting the above expansion into the momentum equation and taking

the inner product of the result with a set of weight vectors which are divergence-

free,

V - [_m(r)exp(-ikx - i£O)] : 0 (i0)

and satisfy the inviscid boundary condition,

_-m(I) " _r = 0 (11)

[The (k,£) dependence of X__nand _-m is suppressed.] This weighted residual method

mimics the application of the projection operator. For example if

= __m(r)exp(-ikx - i£O) then

_. V_dV =-/(V. _)_dV+!_(__. n) dS (12)
V V S

=0

for an arbitrary scalar field _ with periodic boundary conditions in x.

The result for each wave vector (k,£) is a system of ODE's

A_a +I B_a = _f (13)

where

i
/-

A = /_--m °mn _ rdr (14a)
.Y
o
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1

B = • V x V x y rdr (14b)mn

O

i

/   ex]r rfm = - _-m ° _x u+ 2_L-_x

o

and where _ denotes double-Fourier transformation in x and 9. Thus, except for

the nonlinear term, the coupling of the equations occurs only through the radial

modes.

The choice of radial functions in _n and _-m must be made carefully to

(i) minimize the coupling between radial modes (that is, obtain a banded structure

for A and B if possible); (2) allow construction of A and B with relative ease;

(3) obtain efficient computation of f; and (4) obtain rapid convergence while satis-

fying the constraints imposed on X_n and _--n'including the correct behavior as
r.0.

We find that the sequence of expansion vectors _ _vIX-I'X+'X_' " +'-'•" 'Xn Xn "''I
defined

in the following satisfies the above requirements. For n >i 0 the (r,e,x) compo-

nents are

/ -+r_ I¥ "'£±in

- iKqn

+ X+, . £±i (k # 0) (15)

1 d (r £+-i £ £±I
Xn, rd_r qn ) - _qn

where

£ 1£ I 2 (1£I)(r2) (16)qn = r (i - r2) gn

and gn (y) is the shifted Jacobi polynomial (ref. 9),

(£)(y) = P(°'£)(2y - i) (17)gn n

satisfying the orthogonality condition

I

£ (£)(y) (£)(y) dy = C£ 6 (18)gm gn m m,n
o



For the case k = 0, the above expansion vectors clearly are not complete and

must be replaced by an alternative set. A convenient choice is given by (n > 0)

 Jx+
= dr --n= 0£ (19)

0 qnl

' It is a simple matter to verify that the expansion vectors defined above yield

the correct behavior of _(r,k,£) as r . O; for example, if £ > 0,

£-i
u .yrr

£-I
u8 . iyr

u . Br£
x

where V and 8 are complex constants. The additional vector X is required

because ue(k _ 0) and u (k = 0) would otherwise have a double zero at the'wall.x

The corresponding weight vectors are essentially the curl of the _'s. More

specifically, if k _ 0 the weight vectors may be expressed as

L. __+i\

/+iqn _
+ W / £!II

_-= V x V x _ q0 J (20)

-m n

_+
while the y have the form

_n

I . £!I\

\
-+ "_ / £-+i/

As a result, the (+) vectors are uncoupled from the (-) vectors. The resulting

matrices A and B are nonadiagonal, except for an additional nonzero row and

a column owing to the vector _-i" The limited bandwidth of the viscous

matrix B results from the particular choice of the polynomials -(£) given by6n
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equation (17). In particular, the Laplacian operator in the (r,e) plane is equiv-

alent to a tridiagonal matrix in the following sense:

V2 _(r)exp (i£8] (_r r _r r2£21
= qn(r)£exp(i£@)

£[b_ (£)(r2) + c£ a(£)'_2_ d£ (£)(r2)]exp(i£8)= r On_l n°n i_ , + ngn

CONVERGENCE TESTS

As a test, the method described above was applied to the problem of determining

the time eigenvalues for linearized flow in a pipe. The calculations were performed

on a CDC 7600 computer. We assume u _ exp(%t) and order the eigenvalues such that

Real (%1) > Real (%2)> .... The results for %1 with Re = 9600, £ = i, k = i,

are given in the table below, where N + 2 is the number of radial modes in the

expansion.

N %

20 -0.02312 - i 0.95050

25 -0.02317074 - i 0.95048142

30 -0.023170795769 - i 0.950481396659

35 -0.023170795764 - i 0.950481396668

Note that the convergence is exponential in N or some power of N, typical of

spectral methods (ref. 7), and that there is no indication of significant round-off

errors. The results agree with that of Salwen et al. (ref. i0), who obtained

_I = 0.02317 - i(0.95048), using an expansion in Stokes' eigenfunctions to solve the

linear stability problem.

In figure 1 we show convergence of some of the higher eigenvalues for the case

k = i, £ = i, Re = 3000, a Reynolds number in the range where a number of interest-

ing transitional phenomena have been observed experimentally. Note that a large

number of eigenvalues are predicted accurately for 30 to 35 radial expansion func- " '

tions. In figure 2, the amplitudes of the coefficients of X_ for the eigenvalue

_I are shown as a functionof n for four Reynoldsnumberswith k = I and £ = i.

Each of the X_n are normalized so that

i

J_[2rdr = 1
o



_,d tho radial expansion N = 35 (37 expansion functions) was used for all cases.

\;,.ai,,tilecoefficients approach zero exponentially in some power of n.

!.lFI_,IARY

A new numerical method has been developed to investigate three-dimensional,

u,steady Fipe flows using a new velocity-vector expansion method. Each vector func-

tion in the expansion set is divergence-free and satisfies the boundary conditions

for viscous flow. Other features of the general technique are as follows: (i) pres-

sure is eliminated from the dynamics; (2) only two unknowns per "mesh point" are

required; (3) there is rapid convergence of spectral methods; (4) there is implicit

treatment of the viscous term at no extra computational cost; and (5) no fractional

time-steps are required. In the present application of the method to flow in a pipe,

the behavior of each flow variable near the computational singular point is treated

rigorously and expansions in Jacobi polynomials have been shown to be particularly

advantageous. The method has been tested on the linear stability problem for

Poiseuille flow and has demonstrated rapid convergence of the eigenvalues and eigen-

functions as the number of radial modes is increased.
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