


SUMMARY

This paper discusses a research effort directed toward increased efficiency in
calculating transient temperature fields in complex aerospace vehicle structures.
Explicit solution techniques which require minimal computation per time step and
implicit techniques which permit larger time steps because of better stability are
reviewed and evaluated. A set of implicit solution algorithms with variable time
steps (GEARIB) is described and evaluated. Test problems for evaluating the algo-
rithms include a coarse model of the Space Shuttle Orbiter wing, an insulated frame
test article, a metallic panel for a thermal protection system, and detailed models
of single-bay and three-bay sections of the Shuttle wing. Results generally indicate
that implicit algorithms, especially GEARIB with variable step size and order, are
faster than explicit algorithms for transient structural heat-transfer problems when
the governing equations are stiff. Stiff egquations occur in many practical problems
particularly in insulated thin metal structures.

The effect on algorithm performance of different models of an insulated cylinder
was also studied. The study revealed that the stiffness of the problem is highly
sensitive to modeling details and that careful modeling can reduce the stiffness of
the resulting equations to the extent that explicit methods may be advantageous.

Studies of partitioning techniques for improving the performance of solution
algorithms were carried out. A mixed implicit-explicit technique developed for
dynamic response has been adapted to thermal problems and is demonstrated. In this
method, the model is separated into stiff and nonstiff regions. The implicit algo-
rithm is applied to the stiff portion and the explicit to the nonstiff portion. Two
operator-splitting techniques for speeding up the solution of the algebraic equations
associated with implicit algorithms are also described and demonstrated. Both are
based on separating the coefficient matrices into two parts and solving the resulting
equations by iteration. The first technique bases the separation on stiff and non-
stiff elements of the structure, and the second bases the separation on the sparsity
structure of the matrix. The most effective of the techniques tried was a separation
based on matrix sparsity (using an incomplete Cholesky decomposition) combined with
conjugate gradient iteration. Especially noteworthy is the fact that the performance
of this technique is insensitive to the band structure of the matrix.

INTRODUCTION

An effort is in progress at the Langley Research Center to gain increased effi-
ciency in the prediction and optimization of the thermal-structural behavior of aero-
space vehicle structures. A principal task is to reduce the computing effort for
obtaining transient temperatures. This paper is focused on (1) assessment of the
performance of explicit and implicit temporal integration algorithms, (2) the effects
of modeling on the performance of the algorithms, and (3) techniques for solwving the
algebraic equations associated with implicit methods.

In the current and recent literature, many of the difficulties associated with
the solution of transient heat-~transfer problems and other time-dependent physical



problems are associated with the stiff) nature of the governing differential equa-
tions (refs. 1 to 7). Stiff sets of equations for thermal applications occur in
problems where the rate of heating is significantly slower than the speed of
propagation of temperature differences between adjacent points in the model. In
particular, insulated thin metal structures under long-duration heating often lead to
stiff equations. A preference is evident among researchers for implicit algorithms
for solution of stiff sets of ordinary differential equations. However, many
engineering analysts prefer to use the longer established explicit algorithms, even
for stiff problems. A partial explanation for this dichotomy is that the full power
of the implicit approach has not been transferred from researchers to engineering
analysts. In particular, implicit algorithms are usually implemented in computer
programs with a fixed time step (refs. 8 to 10).

In the explicit algorithms, the time step is limited (often severely) in order
for the technique to be stable. In the implicit algorithms, there is no stability-
imposed limitation on step size, and the step size is limited by solution accuracy
only. This conclusion holds in general for linear systems, but it is also found to
hold in many nonlinear applications (ref. 11). Thus implicit algorithms can, in
general, use much larger time steps than explicit algorithms; this is especially true
for stiff problems. Because a single explicit time step is computationally faster
than a single implicit time step, the key to the advantageous use of implicit
algorithms is to use the largest possible time step size.

The strategy advocated for the solution of problems by implicit methods is to
use algorithms with variable step size and order and to automatically select both
throughout the solution process (refs. 12 to 15). A promising set of algorithms,
developed to implement this strategy, is denoted the GEAR algorithms (refs. 13 and
14). A version of the GEAR algorithms well-suited to heat-transfer analysis, denoted
GEARIB, has been recently installed in the SPAR finite-element thermal analyzer
(ref. 8) for testing. FEarly evaluations of GEARIB in SPAR and comparisons with other

implicit algorithms were described in reference 16 for the first three problems in
this paper.

The first objective of the present paper is to describe recent evaluations,
improvements, and demonstrations in the use of explicit and implicit algorithms for
transient thermal analysis of structures. A coarse model of the Space Shuttle
Orbiter wing, an insulated frame test article, a metallic multiwall thermal protec-
tion system panel, and detailed models of single-bay and three-bay sections of the
Shuttle wing are analyzed. Comparisons between implicit and explicit algorithms are
presented and the performance of the GEARIB algorithms, especially the value of vari-
able step size, is demonstrated.

A characteristic of thermal analysis by finite-element and lumped-parameter
techniques is that modeling strongly affects the stiffness. Since stiffness is one
of the key factors in the performance of implicit and explicit algorithms, the second
objective of the paper is to study the effects of modeling. This paper describes a
study carried out for an insulated cylinder of the effects of modeling on the perfor-
mance of explicit and implicit algorithms.

Tstife sets of ordinary differential equations are characterized by solutions
with widely varying time constants. The typical case is when the solution to the

homogeneous problem has some very small time constants compared with those of the
forcing function (ref. 1).
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Finally, when the stiffness of the problem is due to only part of the finite-
element model, partitioning technigues may be useful. The third objective of the
paper is to explore the potential of some partitioning techniques. The first is a
mixed implicit-explicit algorithm developed by Hughes and Liu (refs. 17 and 18) which
was adapted to thermal analysis in reference 19 and is demonstrated for an insulated
panel. Also, two techniques for speeding up the solution of the algebraic equations
associated with implicit algorithms are described and demonstrated. Both are based
on separating the coefficient matrices into two parts and solving the resulting equa-
tions by iteration. The first technique bases the separation on stiff and nonstiff
elements of the structure and the second bases the separation on the sparsity
structure of the matrix (ref. 20).

SYMBOLS

C capacitance matrix

cp heat capacity

DT integration time step size in SPAR program (ref. 8)

¥ right—~hand side of equations for transient temperature

h, nth time step

K conductivity matrix

k thermal conductivity

0 thermal load vector

R residual of system of equations generated by implicit method

T vector of temperatures; dot over T indicates differentiation with
respect to time

t time

tQ typical time constant of applied heat loads

t, nth time point

tg stability limit of time step for explicit algorithms

o thermal diffusivity

o5 coefficients in backward-difference method (eq. (6))

B; coefficients in backward-difference and Adams-Moulton methods (egs. (5)
and (6))

p mass density



Subscript:

n time step number

NATURE OF ALGORITHMS USED IN TRANSTENT STRUCTURAL THERMAL ANALYSIS

The governing semi-discrete equations for a transient heat-transfer problem
discretized by a finite-element or finite-difference technique are as follows:

cT = Q(T,t) = K(T,t) T = F(T,t) (T(0) =T ) (1)

where T is a vector of temperatures, C and K are matrices, Q and F are
vectors, and F is generally a nonlinear function of T. Obtaining an analytical
solution to equation (1) is usually impractical and numerical integration methods are
used. The simplest numerical integration technique is the Euler method which uses
the first two terms in a Taylor series to predict T

. B -1
T(t .,) = T(t ) +h T(t)=T(t)+hC F[T(tn),tn] (2)

where h  is the time step size at the nth step. Euler's method is an example

of an explicit integration technique, so-named because T(t + ) 1is given explicitly
in terms of known quantities. Another approach to the numerical integration of
equation (1) is the backward-difference method which is an example of an implicit
method. In this approach,

T(t

_ ) _ -1
n+1) = T(tn) + hrl T(tn+1) = T(tn) + hnC F[T(tn+1)'tn+1] (3)

Equation (3) is a system of implicit equations for T(tn+1), which is generally non-
linear. The explicit algorithm is therefore easier to implement; but, the time step
must be bounded to awvoid numerical instability (unbounded propagation of numerical
errors during the solution). Implicit techniques are generally unconditionally
stable for linear systems (and some nonlinear applications) and thus can take larger
time steps which are determined from accuracy considerations rather than stability.

For one-dimensional conduction problems, the time for a temperature disturbance
to propagate from one point to another is roughly proportional to Lz/a, where L is
the distance between the two points and « is the thermal diffusivity. The time
step tg required to insure stability of an explicit integration method is propor-
tional to this intrinsic time. For a finite-element discretization, the explicit
time step is determined by the element with the smallest value of Lz/a, where L. 1is
the length of the element. The rapidity of variation of the temperature, on the other
hand, depends on the time scale of the applied heating. Accuracy considerations
require a time step which is comparable to a typical time constant of the applied
heat loads t,. By definition, a problem is stiff whenever <t is much larger
than tye Implicit methods (in which time steps are bounded only by accuracy
requirements) can use large time steps (of order tQ), whereas explicit methods
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which are bound by stability requirements require small time steps (of order

Lz/a). It follows that stiff problems are usually best solved by implicit methods.
The effort involved in solving a system such as equation (3) is usually cost-
effective if a small number of large time steps are used. The preceding comments

hold for general transient thermal problems except that the intrinsic time steps have
more complex forms than Lz/a.

The Euler method and the backward-difference methods are presented as examples
from a large class of explicit and implicit techniques, respectively. Higher order
methods (e.g., multistep) in both the explicit and implicit classes typically use
more previous information to predict the temperature but the stability properties
of explicit multistep methods are similar to those of the Euler method (ref. 11).
Explicit methods are unstable for time steps much larger than the smallest value of
L“/a. Accordingly, thermal analysis computer programs generally select explicit
time steps automatically based on the stability requirement. When using implicit
methods, the analyst is left to select the implicit time step and order without a
great deal of guideline information, and often several trial runs are needed. There
is an emerging consensus that the preferred approach for integrating stiff systems
of ordinary differential equations is to use implicit methods which automatically
select the order and the step size based on desired accuracy. One software package,
denoted the GEARIB algorithms, has these features and is discussed subsequently.

THE GEARIB ALGORITHMS

Several software packages based on the work of Gear have been developed for
general use (ref. 13). The package most appropriate for application to finite-
element thermal analysis is denoted GEARIB. This package is intended to solve
systems of ordinary differential equations of the form

CT = F(T,t) (4)

The package employs two classes of implicit multistep methods, Adams-Moulton and
general backward differences. For nonstiff equations the Adams-Moulton method of
orders 1 through 12 is used. This method has the general form

9
T(tn+1) = T(tn) + hn jz: Bi T(tn+1-i) (3)
i=0

where g 1is the order. For stiff equations, backward-difference algorithms of
orders 1 through 5 are used. These have the general form

'q
T(tn+1) = hnBO T(tn+1) + § : ai T(tn+1-i) (6)
i=1

The coefficients o; and Bi are given in reference 15. GEARIB employs a
predictor-corrector approach where equation (5) or (6) is the corrector equation and
extrapolation is used for the predictor. The user selects the class of methods
(Adams-Moulton or backward differences) and error tolerance. GEARIB automatically
selects the step size and order by a technique described in reference 13. The



essence of the step size and order selection technique is that at each time step the
error tolerance is compared with an estimate of the actual error resulting from use
of the previous step size and order. Both are scaled to force the actual error to be
no larger than the specified error tolerance.

Use of the GEARIB algorithms is illustrated by using the backward-difference
option (eqg. (6)). Applied to equation (4), equation (6) gives

q
R =CIT(t 1) - Z % T -1~ Pab F[T(tn+1)'tn+1] =0 (7

i=1

This system of nonlinear algebraic equations is solved by the modified Newton
method; that is,

-1
i+1 R | OR

where
OR
or ¢ - BOth

and J = OF/OT 1is the Jacobian of the system. Methods and options used in GEARIB
for computing J are described in references 13 and 21.

DESCRIPTION OF TEST PROBLEMS AND RESULTS

As discussed previously, the stiffness of a transient thermal analysis problem
is in part dependent on the size of the finite elements used in the modeling. . For
the same heat loads, a detailed model which has small finite elements will be stiffer
than a coarse model which has larger elements. In assessing the performance of
explicit and implicit algorithms, it is important to include examples which span the
range of model fineness used in practical applications. The test problems were
chosen with this in mind. The Space Shuttle Orbiter wing model represents a coarse
model suitable for overall trends in early Shuttle thermal analyses. The multiwall
thermal protection system panel represents, probably, the most refined model that
would be used. The other three examples represent typical models which are somewhere
in between the aforementioned two extremes.

In comparing the efficiency of the different algorithms, the Euler method was
used as the only explicit method, whereas the first-order backward-difference, the
Crank-Nicholson, and the GEARIB algorithms were used to represent implicit methods.
Euler was chosen because, of all the power series explicit algorithms available in
SPAR, the Euler algorithm (based on the first two terms of the power series) is the
most efficient for stability-limited problems. The stability limit for the time step
in SPAR is estimated as tS = min (Cii/kii)i where Ci4 and k.i are the diagonal
terms of the capacitance and conductance matrices, respectively. The conductance
matrix includes radiation effects. The actual time step used in the analysis was

selected to be 95 percent of the estimated stability limit, unless otherwise noted.
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Solution times reported in comparing the algorithms are central processor unit (CPU)
times. (A comparison of solution times for all five examples is presented in

table 1.) All calculations were performed on the Control Data CYBER 173 computer
system at the Langley Research Center under network operating systems (NOS) 1.3 and
1.4 unless otherwise noted. It is recognized that the use of GEARIB to represent
implicit algorithms and the Euler method to represent explicit algorithms is somewhat
biased. However, for stability-limited parabolic problems such as the stiff thermal
analysis problems herein, the use of more advanced explicit algorithms are not
expected to be significantly more efficient than the Euler method. Thus, the bias is
probably not very significant.

Space Shuttle Orbiter Wing

The Space Shuttle Orbiter wing (fig. 1(a)) was chosen as the first example
problem. The SPAR finite-element model (fig. 1(b)) consists of a relatively coarse
idealization of the structure augmented by a representation of the insulation
attached to the upper and lower surfaces. This model is useful for obtaining rough
overall gualitative ideas about the temperature distributions but is too coarse for
a detailed thermal analysis. The structure is modeled by one-dimensional, triangu-
lar, and quadrilateral (K21, K31, and K41, respectively) SPAR conduction elements.
The insulation on each surface is modeled by six layers of one—dimensional conduction
elements. Use of these latter elements neglects lateral heat transfer in the insula-
tion. This modeling decision was guided by results from a previous wing model
(ref. 21) in which lateral heat transfer in the insulation was included. It was
found that lateral temperature gradients were negligible when compared with gradients
through the insulation. The complete model contains 2289 grid points, 840 one-
dimensional (1-D) and 560 two-dimensional (2-D) elements in the structure, and 1962
one~-dimensional elements in the insulation. Thermal properties of the aluminum
structure are temperature dependent; thermal properties of the insulation are temper-
ature and pressure dependent. The pressure dependence is treated in SPAR as time
dependence using the variation of pressure as a function of time from the trajectory
data for a simulated flight. BAs a result of these dependencies, the conductivity of
the insulation in the outer layers changes by a factor of nine during the temperature
history.

For the purpose of this analysis, the heating on the wing is represented by a
specified temperature history on the external surface of the insulation on the under
side of the wing (shown as the solid line in fig. 2) and is roughly indicative of
atmospheric reentry heating. Temperature histories of the wing for 4500 seconds were
computed by using the explicit (Euler), implicit (Crank-Nicholson), and GEARIB algo-
rithms. Figure 2 shows the temperature histories of a point in the structure and a
point in the insulation at a typical wing cross section. The explicit, implicit, and
GEARIB algorithms produced essentially the same temperature histories. Solution time
comparisons are shown in table 1(a) along with the time steps used to obtain compa-
rable accuracy. The explicit algorithm used a time step of 10 seconds - in fact, the
stability limit calculated by SPAR (ts) was over 100 seconds but the time step size
was dictated by accuracy and the need to periodically update temperature-dependent
material properties. The large permitted time step is due to the coarse modeling of
the structure which did not include any thin, high~conducting, or radiating elements
which can lead to stiff equations. The implicit algorithm (Crank-Nicholson) required
a time step of 10 seconds to achieve comparable accuracy and reguired about five
times as much computer time as the explicit algorithm. The GEARIB algorithms
performed very well for this problem. By adaptively varying the time step from
1.0 second early in the temperature history to as large as 528 seconds toward the



end, GEARIB required only 570 CPU seconds to complete the solution. GEARIB required
only eight recalculations and refactorings of the Jacobian, which shows that even
with the large variations in material properties, the problem is only mildly
nonlinear.

Insulated Frame Test Article

An insulated frame test article analyzed and tested under transient heating as
described in reference 22 is shown in figure 3(a). The test article consisted of an
aluminum skin/stringer structure with two corrugated aluminum frames. An installa-
tion of FRSI (flexible reusable surface insulation) was placed on the skin surface.
The test article was also equipped with an auxiliary insulation blanket to prevent
direct heating of the test article sides and back. The principal purpose of the
study of the configuration, as discussed in reference 22, was to evaluate the thermal
performance of Shuttle FRSI during a simulated flight. A secondary purpose was to
evaluate by comparison with test data the adequacy of thermal analysis techniques
needed by the Shuttle contractors for preflight thermal and thermal stress analysis.

Because of symmetry, the lumped~parameter model from reference 22 (not shown
in the figure) consisted of a two-dimensional section of half the structure. The
lumped~-parameter model was converted to a finite~element model for analysis with
SPAR. The SPAR finite-element model (fig. 3(b)) contains 149 grid points and
148 elements including one-dimensional elements which account for conduction in the
aluminum structure and radiation across the air gap and two-dimensional elements
which model conduction in the insulation and across the gap. Minor modifications
were made to the finite-element model following the conversion from the lumped-
parameter model. These modifications consisted of eliminating or consolidating some
extremely thin or short finite elements in the aluminum structure in order to reduce
the stiffness of the equations and to increase the allowable time step for the
explicit solution algorithm. The properties of the aluminum structure are functions
of temperature, and, as in the previous example, the properties of the insulation are
functions of temperature and pressure. The heating is simulated by a temperature
history at the outer surface of the insulation.

The temperature history for the frame was computed by using the explicit (Euler)
and implicit techniques (Crank-Nicholson and backward differences) and GEARIB. Com-
parisons of solution times are given in table 1(b). The explicit algorithm had a
stability 1limit tg of 0.16 second and required 1723 seconds. This time step was
controlled by conduction through the aluminum elements along the center and front of
the model. The solution times using the Crank-Nicholson algorithm varied from 475 to
65 seconds corresponding to variations in the time step from 1.0 and 50 secondsg. The
solution times for backward differences were essentially the same as those of Crank-
Nicholson and are not shown. The GEARIB algorithm used time steps from 50 to
170 seconds and the solution time was 54 seconds. As indicated in table 2, there is

very little loss of accuracy in either the structure or insulation temperatures with
increased time-~step size.

The accuracy of the solutions obtained by the various techniques is further
assessed in figure 4 which displays temperature histories at a point in the outer
layer of the alumiaum structure corresponding to node 309. (See fig. 3.) The solid
curve in figure 4 represents specified temperatures at the outer surface of the insu-
lation (node 29). The dashed line shows temperatures obtained by the SPAR analyses
vhich are plotted as a single curve since there is little difference between the
results. The long-dash—short-dash curve shows analytical results from the lumped-
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parameter analysis of reference 22, which are also in close agreement with the SPAR
temperatures. The circles in figure 4 represent test data from reference 22, The
close agreement between the numerical and experimental results indicates that the
models are adequate to simulate the temperature history in the test article.

Multiwall Thermal Protection System Panel

The next example problem is one which evolved out of a study of the thermal
performance of a titanium multiwall thermal protection system (TPS) panel which is
under study for future use on space transportation systems (ref. 23). A high level of
modeling detail was required to accurately represent the local thermal conductivity
of the multiwall concept and to assess some approximations used in the work reported
in reference 23. The configuration, depicted in figure 5(a), consists of alternating
layers of flat and dimpled sheets fused at the crests of the dimpled sheets to form a
sandwich. The representation of a typical dimpled sheet is shown in figure 5(b).

For the purpose of this analysis, it is assumed that the heating does not vary later-
ally. This assumption, in addition to the regular geometry of the structure, leads
to the modeling simplification wherein only a triangular prismatic section (indicated
in fig. 5(a)) of the panel needs to be modeled. The intersection of this prism with
a typical dimpled layer is indicated by the shaded triangle in figure 5(b).

The finite-element model shown in figure 5(c¢) contains 333 grid points located
on nine titanium sheets (five horizontal and four inclined). The model contains 288
triangular and quadrilateral metal conduction elements, 264 solid elements (K61 and
K81) which account for air conduction between the layers, and 544 triangular and
quadrilateral radiation elements which account for radiation heat transfer between
adjacent horizontal and inclined sheets. Thermal properties of titanium and air are
functions of temperature. Radiation exchange (view) factors were computed and sup-
plied to SPAR with the TRASYS II computer program (ref. 24).

The temperature history in the panel resulting from a specified transient tem—
perature at the outer surface of the panel was computed for 3200 seconds. Results
were obtained with SPAR by using explicit, Crank-Nicholson, backward-difference, and
GEARIB algorithms. Solution time comparisons are presented in table 1(c). The
explicit algorithm had a stability-limited time step ty of 0.007 second. This time
step was dictated by the short conduction paths between the vertices of adjacent
trianqular layers. The small time step indicates that this is an extremely stiff
problem as may be expected because of the fine detail in modeling. Required solution
time for the explicit algorithm was estimated by extrapolation to be 98 400 seconds.

The Crank-Nicholson solution was carried out with time steps of 1.0 and
5 seconds, which led to solution times of 28 400 (estimation based on extrapolation)
and 6352 seconds, respectively. Backward difference was used with the same time
steps and had the same solution times. GEARIB took time steps ranging between 1.0
and 113 seconds and required a solution time of 2754 seconds. A plot of typical
temperature histories for a point midway through the panel and the primary structure
are shown in figure 6 along with the applied outer surface temperature. The results
shown are from the implicit algorithm with a time step of 5 seconds and are identical
to results with a time step of 1 second and GEARIB.,



Three Bays of Shuttle Wing

A three~bay section of the Shuttle wing (fig. 7) was analyzed by the authors
of reference 25 and the model was made available for the present study. The finite-
element model shown in figure 8 for wing station 328, unlike the coarse model of the
complete wing shown previously, is typical of the level of detail used in Shuttle
thermal modeling practice. The purpose of the study described in reference 25
was to use thermal analysis tools to predict temperatures measured during the first
Shuttle flight. Temperatures predicted by the SPAR program were found to be in good
agreement with flight data. The forward spar web of bay 1 is made of aluminum honey-
comb core sandwich plate, and the rest are corrugated plates. The upper and lower
skins are hat-stringer stiffened. The lower skin is covered with HRSI (high-
temperature reusable surface insulation). The upper skin is covered with LRSI (low-
temperature reusable surface insulation) and FRSI.

In order to account for the spanwise heat flow and the effect of the rib
trusses, the wing segment was modeled in three dimensions. The finite-element model
has 915 joint locations. The modeling was limited to the major load-carrying
portion. The wing skins and spar webs, rib caps, shear webs, insulation surface
coatings, and RTV (room temperature vulcanized) adhesive layers lying on both sides
of the SIP (strain isolator pad) were modeled with SPAR K41 elements. The spar caps,
ridb caps, and rib trusses were modeled with SPAR K21 elements. The insulation was
modeled in 13 layers on the lower surface and 5 layers on the upper surface with SPAR
K81 elements. The SIP was modeled by one layer of SPAR K81 elements. Aerody-
namically heated surfaces were modeled with one layer of K41 elements. For the
external and internal radiant heat energy exchanges, a layer of SPAR R41 elements
(four-node radiation exchange elements) was attached to the outer surface of the
insulation and the exposed aluminum surfaces. For the spar webs with two sides
exposed (lying between the bays), one layer of R41 elements was used for each exposed
surface. Outer surfaces of the forward and rear spar webs were totally insulated.
Internal convection and external convective cooling (negligible during entry) were
ignored. The heating rates vary along the model from bay to bay. The heating rates
used are from reference 25 and are shown in figure 9.

A 3500~-second history of temperature for the model was computed by use of the
explicit (Euler), implicit (Crank-Nicholson), and GEARIB methods. Solution time
comparisons are given in table 1(d). The rather nonstiff nature of this model leads
to a relatively large explicit time step ts of 2.6 seconds. The Crank-Nicholson
algorithm required a time step of 5 seconds to obtain comparable accuracy. Not
surprisingly, the explicit solution time was significantly less than the Crank-
Nicholson solution time. The GEARIB method used time steps varying from 0.1 to
229 seconds for a solution time that is less than one-fifth the time required by
the explicit technique and it obtained equal accuracy.

Single Bay of Shuttle Wing

The single-bay model shown in figure 10 represents a two-dimensional section
through the wing in the third bay at wing station 240. The model was obtained from
the authors of reference 25. The SIP and RTV layers (lying on both sides of the SIP)
were modeled with SPAR K41 elements. The spar webs and caps, rib caps, and trusses
and skins were modeled with SPAR K21 elements so as to form a frame. The insulation
was modeled in 10 layers on the lower surface and 3 layers on the upper surface with
SPAR K41 elements. Radiation heat transfer from the upper and lower surfaces and
inside the cawvity was modeled with R21 elements. The single~bay model contained a
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total of 123 grid points and 191 elements. The heat rates as functions of time were
obtained from the authors of reference 25 and are shown in figure 11.

A 3500~second temperature history of the model was performed by use of the
Euler, Crank-Nicholson, and GEARIB algorithms. Solution time comparisons are given
in table 1(e). The model is stiff due to the short heat paths through the aluminum
elements near the corner of the frame. The time step needed by the Euler technique
ty, was 0.1 second. The Crank-Nicholson method was used with a time step of
1.0 second resulting in a solution time which was one-third that of the Euler
technique. With GEARIB, time steps varied from 0.1 second at the beginning of the
solution up to 225 gseconds toward the end of the solution. The solution time was
less than 10 percent of the Euler solution time and less than 25 percent of the
Crank—-Nicholson solution time.

EFFECT OF MODELING ON ALGORITHM PERFORMANCE

This section gives some insight concerning how modeling details can affect the
performance of transient solution algorithms - especially explicit algorithms. The
structure chosen for the study is an insulated cylindrical shell shown in figure 12.
The cylinder is 720 inches in length and 180 inches in diameter. The aluminum is
0.1 inch thick and the insulation (insul) is 2.0 inches thick. The outer surface of
the insulation is heated over a region which consists of one-third the length and
one-half the circumference.

Three finite—element models are used in the study. Because of symmetry, only
half the cylinder is modeled in each case. 1In model I, solid (K81) elements are used
exclusively = 39 along the cylinder length, 4 around the circumference, and 3 through
the depth (2 elements in the insulation and 1 in the structure). The outer surface
has quadrilateral elements which receive the heating and radiation elements (R41)
which radiate to space. Model I contains 800 grid points and 650 elements. The use
of solid elements to model the metal layer is not necessary and was used here as an
extreme example of the effect of thin metal elements on stiffness. In model II the
solid elements in the metal layer are replaced by quadrilateral elements (K41) in
which temperatures do not vary through the thickness; this is generally a good
assumption for thin metal structures. Model II has an extra layer of solid elements
in the insulation in order to preserve the number of grid points in the model at
800. In model IITI the grid points are identical to those of model II, but the
insulation is modeled with one—~dimensional conductors (K21). This model neglects
lateral heat conduction but, as mentioned previously in connection with the coarse
Shuttle wing model, this effect is small for the class of insulated flight structures
of primary interest in the present work.

Another aspect of the effect of modeling is comparison of results from finite-
element and lumped-parameter models. To investigate this, the MITAS lumped-parameter
computer program (ref. 26) was used to analyze the cylinder. The finite-element
model I was converted to a lumped-parameter model by use of the CINGEN program
(ref. 27). The resulting lumped-parameter model contained 625 nodes as compared to
800 grid points in the finite-element model. The unknown MITAS temperatures are
located only at the centroids of each lump.

The first 2000 seconds of the cylinder temperature response to the heating rate
history shown in figure 13 were computed in each model. The explicit (Euler) and
implicit (backward-difference) algorithms were used for all models, and GEARIB was
used for the SPAR models. Solution times are summarized in table 3. Model I is
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extremely stiff as evidenced by the small time step (ts) of 0.06 second required for
stability of the explicit algorithm. The high stiffness is due to the use of K81
elements to model the metal layer. In model II, the stiffness has been esgsentially
eliminated by replacing the three-dimensional elements in the metal layer with two-
dimensional elements. In model II, the explicit technique uses time steps ranging
from 2.4 to 10 seconds and is faster than backward-difference and GEARIB tech-
niques. In model III, due to low stiffness again, the explicit algorithm is faster
than the implicit but GEARIB is slightly faster than the explicit technique.

MITAS computation times are shown in table 3. Because none of the SPAR models
is equivalent to the MITAS model in terms of the number of unknown temperature or
nodal connections, no direct comparison of MITAS and SPAR sclution times are
appropriate. The MITAS model is not particularly stiff as evidenced by the large
time step used in the explicit solution technigue. SPAR models IT and III which
begin to resemble the MITAS model in certain respects are also less stiff and favor
explicit algorithms.

Fiqure 14 contains temperature histories of a point in the metal portion of the
cylinder 45° inside the edge of the heated region and 18 inches from the end of the
cylinder. Model II is considered to be the best of the models (recall the additional
insulation elements used); thus, the temperatures represented by the dashed line are
expected to be the most accurate. These results are bracketed by results from
model I and MITAS (from above) and by model IIT (from below). There are negligible
differences between temperatures from the implicit and explicit solutions for any
given model. Results from models II and III are different from those of model I
because of the extra layer of insulation elements. The MITAS temperature history
agrees well with that of model I (on which the MITAS model is based) except for some
differences beginning at about 1400 seconds.

Figure 15 contains temperature distributions from each model along a generator
of the cylinder 45° from the edge of the heated region which contains both the heated
and unheated parts. Temperatures are plotted for the aluminum surface of the
cylinder. All four models give consistent results and are able to track the large
temperature drop across the boundary between the heated and unheated regions. Of
particular note is the close agreement of the results from models II and III. ‘This
close agreement tends to verify the adequacy of using one-dimensional conduction
elements in the insulation of model III, which led to substantial solution time
savings. The results of this modeling study show that modeling can have a major
impact on the stiffness of the system and on solution times, especially for an
explicit algorithm.

EFFECT OF MATRIX SCALING

For models I and II of the cylinder problem (table 3), the GEARIB algorithm,
despite using much larger time steps, was only marginally faster than the Crank-
Nicholson implicit algorithm, and for model II it was slower than the explicit
method. This is partially due to the different ways of handling the temperature-
dependent material properties. 1In the explicit and implicit methods as implemented
in SPAR, the properties are represented as piecewise constant within time intervals
specified by the user (by the input quantity TI) in SPAR. Material properties for
each element are evaluated at the beginning of each interval based on the average
temperature of the element nodes, and the conductivity and capacitance matrices are
regenerated only at those times. Results for models I, II, and III in table 3 were
obtained by using TI = 20 seconds. For the GEARIB algorithm, the material prop-
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erties are assumed to vary continuously and the residual R (eg. (7)) must be
evaluated at each iteration used in solving equation (8). Thus, there is a need for
continuous regeneration of the conductivity and capacitance matrices. This extra
effort is the price paid for higher accuracy. Furthermore, this burden of recal-
culating matrices and residuals shows up most noticeably in problems which utilize
solid (K81) elements because of the size of the matrices for those elements

(model III does not contain K81 elements). A way to ease the burden (for thermally
isotropic elements) has been identified and has been recently implemented in SPAR.
The method is to generate the matrices only once for unit values of the appropriate
property and simply scale the matrices by the property whenever it is updated. The
effect of scaling on the solution time is shown in table 4. The most significant
impact of scaling is in the implicit and GEARIB solution times in models I and II
which contain K81 elements and the least impact is seen in model IIT which has

none. Scaling thus helps to ease the burden on implicit algorithms of regeneration
of conductivity matrices for the K81 elements and makes them more attractive for use
in large complex models. Scaling has a minimal effect on the explicit solution time
for model I because most of that time is due to time marching and relatively little
is due to matrix regeneration.

PARTITIONING METHODS

The examples in the previous section have shown that stiffness of the problem is
the major factor in choosing an explicit or an implicit temporal integration method
for thermal analysis. When the problem is stiff, an implicit method is preferable;
when the problem is nonstiff, an explicit method is more efficient. Scme problems,
however, call for a mix of implicit and explicit techniques. These problems occur
when the high stiffness is due to only a part of the model. This typically happens
when a small number of elements with high diffusivity or short conduction lengths are
used. Recently, several promising techniques have been developed which combine the
attributes of explicit and implicit integration techniques. These techniques are
referred to as partitioning techniques and are still in the research stage in
contrast to the more mature status of the purely explicit and implicit integration
techniques. A survey of partitioning methods may be found in reference 28. This
section presents examples of the use of such methods for transient thermal analysis.

The Hughes-Liu Mixed Explicit~Implicit Technique

One class of partitioning methods is based on dividing the model into explicit
and implicit parts. The Hughes-Liu mixed implicit-explicit technique, which was
originally developed for problems with fluid structure interaction (refs. 17 and 18),
is an example of such a partitioning method. The basic idea is to use implicit inte-
gration for the portion of the model which is responsible for the stiffness of the
problem and explicit integration for the rest of the model. This idea was adapted by
Malkus, Reichmann, and Haftka (ref. 19) to transient heat transfer in a structure
which is composed of a good insulator and a good conductor. The structure is divided

into an explicit group of elements and an implicit group of elements. Egquation (1)
is then rewritten as

T - T
n+1 n I E
2C T *RAT 4T ) F KT - (T ) - QT

) =0 (9)
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where XP is the partition of the conductivity matrix corresponding to the elements
in the explicit group, and kI is the partition for the elements in the implicit
group. When all the elements are explicit, the method reduces to the explicit Euler
method; when all the elements are implicit, the method reduces to the implicit Crank-
Nicholson method. The method was applied to the configuration in figure 16 which is
a coarse model of one-half the configuration in figure 3. The insulation finite
elements are in the explicit group; the metal finite elements are in the implicit
group. The diffusion ratio between the insulation and the metal was kept constant at
50, whereas the absolute values of the diffusivity were changed to control the stiff-
ness of the problem. Table 5 containg two sets of results comparing the calculation
times for the fully explicit (Buler), fully implicit (Crank-Nicholson), and Hughes-
Liu techniques for two values of the diffusivities. For the lower value of the dif-
fusivity, the problem is not stiff and the explicit method performs better than the
implicit method. In this case, the Hughes-Liu method is comparable in performance to
the explicit method. For the higher value of the diffusivity (higher stiffness), the
implicit method is faster than the explicit method because of the stiffness ~f the
problem. In this case, the Hughes-Liu technique is significantly better than either
the explicit or the implicit method. This simple example indicates the potential of
the Hughes-~Liu technique for improving the efficiency of transient thermal analysis
for more complicated insulated-structure problems.

Operator-Splitting Algorithms for Linear Equations

The Hughes-Liu technique represents partitioning at the level of integration of
the differential equations. Other partitioning methods may be appropriate later in
the solution process. An important class of these methods are used in the solution
of the linear algebraic equations generated by Newton's method utilized in implicit
solution techniques (egs. (7) and (8)). For notational simplicity, the equations
generated by Newton's method are written as

Ax = Db (10)

Operator-splitting methods are based on separating the matrix A into two parts M
and N such that

A=M-N (11)

Equations (10) and (11) are combined and the resulting equation is solved
iteratively. A simple fixed-point iteration is used

PPl BN ol ) SR ¥ 5 (12)

This iteration may be modified to include an overrelaxation parameter  and is
written as follcws:

L w"M'1(b + N+ (1 - )™ (13)
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The choice of M and N is based on the following general considerations. First,
the matrix M should be significantly easier to invert than the matrix A. Second,
it should be chosen for fast convergence of the iteration in equation (13). The
choice of M may also be based on matrix topology considerations -~ for example, the
sparsity of the matrices A and M - or it may be based on the properties of the
mathematical model that led to matrix A. Consider the latter choice first.

Operator splitting based on model characteristics.- If the problem is composed
of a good conductor and a good insulator, the splitting (which parallels the Hughes-
Iiu technique) is to include in M the contribution of the good conductor and the
diagonal term from the good insulator. This choice was applied to the analysis of a
simple metal insulation system (shown in fig. 17) by David S. Malkus, Elwood T.
Olsen, Peter I. Reichmann, and Raphael T. Haftka under NASA Grant NSG-1266 at
Illinois Institute of Technology. This model depicts an insulated slab heated by
internal sources and cooled at the outer insulation surface by radiation to free
space. The Crank-Nicholson algorithm with the modified Newton's method was used to
generate the equations to be solved. Computation times with and without operator
splitting were compared for several grids. The results are given in table 6. Though
the splitting was effective (from the standpoint that the solution of eqg. (13)
required only a single iteration), the results in table 6 are somewhat disappoint-
ing. The results indicate this type of operator splitting is effective only if
frequent factoring of the Jacobian is needed.

Operator splitting based on matrix structure.- Several choices for the
matrices M and N based on the matrix topology are available. Two obvious choices
that result in an easily invertible M matrix are the diagonal of matrix A and the
lower triangular part of A. These choices lead to the well-known Jacobi and Gauss-
Seidel iterative methods, respectively. The Gauss-Seidel iteration with over-
relaxation is commonly known as successive overrelaxation (SOR). Although matrices
based on the above are easily inverted, they usually result in slow convergence of
the iteration process. When the matrix A 1is very sparse and has a large bandwidth
{(as when it is generated by a three-dimensional finite-element model), a choice of
M which is based on a partial elimination or incomplete Cholesky decomposition that
retains the sparsity of A has been suggested. 1In this case,

M= LT (14)

where 1 is a lower triangular matrix which has the same sparsity pattern as A.
This incomplete Cholesky decomposition has been combined with the conjugate gradient
method by Meijerink and Van der Vorst (ref. 20) to produce the incomplete Cholesky
conjugate gradient (ICCG) algorithm. The conjugate gradient method forms the basis
for other iterative algorithms, such as preconditioned conjugate gradient methods
(e.qg., ref. 29). The algorithm has been applied by Haftka and Kadivar (ref. 30) to
the insulated cylinder problem. For this problem four methods were compared:

(1) Gaussian elimination (a direct solution technique); (2) SOR; (3) incomplete
Cholesky decomposition with fixed~point iteration (eq. (12)); and (4) the ICCG
algorithm. Results are shown in figure 18 for cylinder models having 400, 720, and
1100 grid points. These results demonstrate the advantages of iterative methods over
elimination, especially for poorly banded problems. Also, the ICCG algorithm is
consistently superior, for the problem studied, to the two other iterative procedures
and is nearly independent of the matrix bandwidth but depends on the degree of
sparsity.
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CONCLUDING REMARKS

This paper discussed an effort to obtain increased efficiency in calculating
transient temperature fields in complex aerospace vehicle structures. Explicit
solution techniques which require minimal computation per time step and implicit
techniques which permit larger time steps because of better stability were
reviewed. A promising set of implicit solution algorithms having variable time steps
and order, known as GEARIB, was described. Test problems for evaluating the
algorithms were defined and finite-element models of each one were described. The
problems included a coarse model of the Space Shuttle Orbiter wing, an insulated
frame test article, a metallic panel for a thermal protection system, and detailed
models of single-bay and three-bay sections of the Shuttle wing. Calculations were
carried out using the SPAR finite—element program. Results generally indicated that
implicit algorithms, particularly the GEBRIB techniques, are more efficient than
explicit algorithms for solution of transient structural heat-transfer problems when
the governing equations are stiff. Stiff equations were encountered in most of the
test problems and are frequently encountered in thermal analysis of insulated thin
metal structures.

Studies were made of the effect on algorithm performance of different models of
an insulated cylinder test problem. These studies revealed that the stiffness of the
problem is highly sensitive to modeling details and that careful modeling can reduce
the stiffness of the resulting equations to the extent that explicit methods are
quite effective.

Evaluations of two partitioning techniques were also performed. First, a mixed
implicit-explicit technique adapted to thermal analysis was demonstrated. In this
method, the model is separated into stiff and nonstiff portions with the explicit
algorithm applied to the nonstiff part and the implicit algorithm applied to the
stiff part. This method was comparable in performance to the explicit method for a
nonstiff problem and faster than either the explicit or implicit techniques for stiff
problems. Second, two operator-splitting techniques for speeding up the solution
of the algebraic equations associated with implicit algorithms were described and
demonstrated. Both are based on separating the coefficient matrices into two parts
and solving the resulting equationg by iteration. The first technique bases the
separation on stiff and nonstiff elements of the structure, and the second bases
the separation on the sparsity structure of the matrix. The most effective of the
techniques tried was a separation based on matrix sparsity (using an incomplete
Cholesky decomposition) with conjugate gradient iteration. This technique was
especially noteworthy in that its performance appeared to be insensitive to the
band structure of the matrix.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665 '

July 1, 1982
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TABLE 1.~ PERFORMANCE OF ALGORITHMS FOR TRANSIENT THERMAL ANALYSIS
OF VARIOUS MODELS

[Solution time is CPU time]

Explicit algorithm

Implicit algorithm

Buler Crank-Nicholson GEARIB
Time Solution Time Solution Time Solution
step, time, step, time, step, time,
sec sec sec sec sec sec
(a) Space Shuttle Orbiter wing (4500-sec temperature history)
10 2 288 10 11 730 1 to 528 570
(b) Shuttle frame (2000-sec temperature history)
0.16 1 723 1 475 50 to 170 54
10 249
25 106
50 65

(c) Multiwall thermal protection system (32

00-sec temperature history)

0.007

298 400 1
5

bog 400
6 352

1.0 to 113 2754

(d) Three-bay section of Shutt

le wing (3500-sec temperature history)

2.6

10 560 5

16 800

0.1 to 229 . 1950

(e) Single-bay secti

on of Shuttle wing (350

0-sec temperature history)

0.1

3 205 1

1 145

0.1 to 225 245

2gxtrapolated value based on 12 296 seconds for 400 seconds of
temperature history.
Extrapolated value based on 8879 seconds for 1000 seconds of
temperature history.




TABLE 2.~

EFFECT OF TIME STEP ON ACCURACY OF IMPLICIT
ALGORITHMS FOR SHUTTLE FRAME

Time Temperature of Temperature of
step, node 3092 at node 492 at
sec 1200 sec, °F 1200 sec, °F
1.0 335.7 398.6
10.0 335.6 398.5
25.0 331.6 396.0
50.0 328.3 394.7
b 16 335.7 398.6
€50 to 170 337.5 400.3

8gee figure 3(b).
Explicit algorithm.

CGEARIB.

TABLE 3.- EFFECT OF MODELING ON SOLUTION TIME FOR INSULATED
CYLINDER PROBLEM

[Solution time is CPU time]

Explicit algorithm

Implicit algorithm

Crank=Nicholson
Euler and backward- GEARIB
Model difference

Time Solution Time Solution Time Solution

step, time, step, time, step, time,

sec sec sec sec sec sec
SPAR model T 0.06 10 107 10 1880 1.0 to 83 1779
SPAR model II 2.4 to 10 1 518 10 1920 5 to 106 1707
SPAR model III 3.3 to 10 279 10 536 2 to 133 266
MITAS lumped-

parameter model 10 226 10 320
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TABLE 4.- EFFECT OF MATRIX SCALING ON SOLUTION TIME FOR
INSULATED CYLINDER PROBLEM

[Solution time is CPU time]

Explicit algorithm

Implicit algorithm

Euler Crank-Nicholson GEARIB
Model -
Time Solution | Time Solution Time Solution
step, time, step, time, step, time,
sec sec sec sec sec sec
SPAR model T
With scaling 0.06 8 000 10 735 1 to 83 520
Without scaling 0.06 10 107 10 1880 to 83 1779
SPAR model II
With scaling 2.4 to 10 392 10 782 to 106 505
Without scaling | 2.4 to 10 1 518 10 1920 to 106 1707
SPAR model TII
wWith scaling 3.3 to 10 247 10 504 to 133 231
Without scaling | 3.3 to 10 279 10 536 to 133 266
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TABLE 6.~ EFFECT OF OPERATOR SPLITTING ON SOLUTION TIME FOR INSULATED SLAB

[Solution time is CPU time on Prime 400 computer]

Solution time, sec, for -
Number of
Mesh time N“mber.Of Modified Newton's | Modified Newton's
steps factorings method without operator method
splitting with splitting
7 x7 x1 91 20 119 149
7 x7 x 1 52 26 95 99
7 x 7 x 1 51 51 137 117
7 x 11 x 1 91 20 237 340
7 x 11 x 1 51 51 234 223
7 X7 %2 91 20 1205 1129
7 X7 x2 52 26 1164 752
7 x7 %x 2 51 51 1211 928




(a) Configuration.

Thermal model:

2289 grid points

1400 structural elements (1-D and 2-D)

1962 insulation elements (1-D)

327-grid-point
model of structure

element model.

{b) Finite-

Figqure 1.- Space Shuttle Orbiter wing.
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Figure 10.~ Finite-element model of Shuttle wing bay at wing station 240.
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(a) Configquration and boundary conditions.

(b) Finite-element model.

Figure 16.~ Ir~shaped insulated metal configuration used to evaluate
Hughes-Liu mixed implicit-explicit integration algorithm.
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Figure 17.- Ingsulated slab problem used to assess operator splitting.
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Figure 18.- Comparison of various linear operator-splitting techniques in
transient thermal analysis of insulated cylinder. (CPU time is for
Prime 400 computer.)
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Figure 18.~ Continued.
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