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ABSTRACT

Convective cooling of photovoltaic modules is investigated for different
wind conditions, including steady-state controlled testing in a solar
simulator and natural test environments in a field. Analytical thermal models
of different module designs were used to correlate experimental data. The
results obtained in the controlled environment confirm the applicability of
existing heat-transfer correlations. The result of long-term field testing at
the Jet Propulsion Laboratory test site is not conclusive because wind
conditions were measured at different heights than that of the modules.
Nevertheless, reasonable agreement can be obtained by applying a power-law
wind profile.
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GLOSSARY

ABBREVIATIONS AND ACRONYMS

AM	 Air mass

ASEC Applied Solar Electric Corp.

DOE U.S. Department of Energy

FSA Flat-Plate Solar Array

(Project)

JPL Jet Propulsion Laboratory

NASA National Aeronautics and

Space Administration

NOCT Nominal Operating Cell

Temperature

NTE Nominal Terrestrial Environment

PV	 Photovoltaic(s)

t

DEFINITION OF SYMBOLS

Symbols Description Units

A area m2

C unit conductance W/m2•oC

Cp specific heat kWh/kg

g load factor

H forced-convection
coefficient W/m2•oC

h free-convection

coefficient W/m2•oC

k thermal conductivity W/cm•oC

L characteristic

thickness cm

M mass kg

m sec.sitivity constant 0C•cm2/mW

P electric-power
conversion W

Q thermal energy mWh

Symbols Description	 Units

S insolation	 mW/cm2

T	 temperature	 c, K

t	 time	 min., h

U measured wind speed m/s

V effective wind speed m/s

ac	 solar absorptance

E	 emittance

C conversion efficiency
71 relative coefficient

4 module tilt angle deg
weighting function

0' Stefan-Boltzmann
constant	 mW/cm2•0K4

exponent coefficient
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SECTION I

INTRODUCTION

The Jet Propulsion Laboratory's (JPL) Flat-Plate Solar Array Project
(FSA) has aought to define design requirements, design analysis and test
methods, and design approaches for flat-plate arrays and modules, to define
means of reducing the cost and improving the utility and reliability of
photovoltaic (PV) modules for terrestrial applications. This report presents
the results of a study carried out as part of the FSA Engineering Sciences
Area to improve the understanding of field wind conditions on module and array
performance.

The performance of solar arrays depends upon two key parameters: inci-
dent irradiance (level and spectral composition), and the junction temperature
of the PV device. At present, the most widely accepted insolation reference
condition is a total irradiance of 100 mW/cm 2 at air mass (AM) 1.5 spectrum.
Reference solar-cell efficiency, Co, is referred to the value rated at the
reference insolation and a cell temperature of 28 0C (References 1 and 2). As
expressed in Equation (1), the effective PV conversion efficiency, C, is the
reference efficiency modified by two coefficients: a relative temperature
coefficient, 77T, and an irradiance coefficient, 17S.

C _ Co • '7T • 'IS	 (1)

For silicon devices, the reference cell efficiency, C o , at 280C and
100 mW/cm2 , ranges from 9 to 16%. The relative temperature coefficient,

17T , expressed in Equation (2) shows a 0.5% reduction per degree Celsius
increase in cell temperature, Tcell•

77T = 1.1456 - 0.0052 T
cell	 (2)

The relative irradiance coefficient, 77S , can beapproximated by Equation (3)
in terms of the effective insolation, S, in mW/cm2.

77S = [0.143 log 10 ( 	
* 1.02	 (3)

For PV arrays, the cell operating temperature is a complex function of
the module thermal design and the site's environmental conditions, which
include the irradiance level, ambient temperature, and wind conditions. To

j	 provide & relative-performance basis for different module designs, a reference
(	 characterization test procedure was proposed to measure the Nominal Operating

Ce;:l Tempera:ure (NOCT) in a defined Nominal Terrestrial Environment (NTE)
(Reference 3,1 . NOCT is defined as the cell temperature of a module at a
specified insolation (80 mW/cm2 ), 200C ambient temperature, 1 m/s wind
speed (not east or west wind), and open-circuited. The approach is based upon
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the observation that the cell-ambient temperature difference, Tce'1 - Tamb+
of a typical solar array is largely independent of ambient temperature and is

essentially linearly proportional to the inaolation level, S.

Accurate prediction of solar-array performance is difficult because of
variations in solar irradiance, ambient temperature, and wind conditions.
Current practices have been based upon recordings of weather data to assess
long-term electric- l ower production of a PV module. For most weather-data
records, such as the SOLMET formatted tapes (Reference 4), the recordings are
made hourly and the measurements represent the instantaneous values observed a
few minutes before each hour.

There are two different approaches in assessing long-term PV power
production. One of them does not account for the variable wind effect of

different wind velocities on module cooling, but includes a fixed term based
on typical mild-wind field conditions. Equation (4) is a sample expression
for a representative PV module. The sensitivity coefficient, m, was evaluated
at 0.30C•cm2/mW, based upon long-term field-test data (References 1 and 2)
with an average wind of 1 m/s.

Tcell	 Tamb + m S
	 (4)

In this approach the performance prediction is based upon experimental
observations, where a typical long-term wind-cooling effect is automatically
included in the sensitivity coefficient, m. The prediction has been found to
be reliable for solar-array sites with mild-wind conditions.

The other approach in assessing PV power production relies upon explicit
analytical simulation of the module thermal response using weather-tape wind

data. The wind effect on module temperature is computed according to
established heat-transfer correlations such as those shown in Reference 5.

Theoretically, the assessments resulting from these two different
approaches should be compatible on a long-term basis. However, in real

practice, some apparent discrepancies have been experienced. It is the
primary objective of this investigation to understand these disagreements.

a
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SECTION II

FUNDAMENTAL HEAT-TRANSFER CORRELATIONS

The thermal behavior of a flat -plate PV module can be described by the
energy-balance relationship expressed in Equation (S). The amount of solar
energy absorbed by a module should be equal to the sum of the following
quantities: convective and radiative heat losses to the ambient environment,
power converted into electricity, and change in thermal energy content.

dT
ASS 

QJrAe 
+ `wind + Qrad + P + MCP dt 	

(S)

where

A = effective module area

a = effective solar absorptance

S - insolation

Qfree ' free-convection heat loss
cony

Qwind - heat loss caused by wind cooling

Qrad ` radiative heat loss

P - power conversion to electricity

MCp - thermal capacitances of module

T = effective module temperature

t •' time

Equation (S) treats the entire module as a lumped mass unit. However,

becaj.se all PV modules are composites of encapsulants, cells, intercell
spa • :s, substrates, and mounting structures, complex nodal modelr, can also be
esra.lished for each component of the modu l e. For the purpose of simplicity,
the single-node model is often used and all properties take the weighted

average values of individual components.

A.	 SOLAR ENERGY ABSORPTION

The active surface of a PV module consists of composite layers of cell
ensembles, encapsulants and interconnectors. Typical nodule designs have
60 to 90% active cell area, whose measured solar absorptivities are in the
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0.85 to 0 . 9 range. The solar absorptivity of intercell spaces may vary
significantly depending upon surface conditions and coating applications. The
effective solar absorptance is then a weighted average of the two components.

B. RADIATIVE HEAT LOSS

Radiative heat transfer between a PV module and its environment say be
affected by the ground temperature and view factors. However, for most
flat-plate module applications, one may consider that the front-surface views
only the sky while the back surface is either insulated (roof mounted) or has
a unit view factor to the ground.

In a field arrangement, mo': of the effective ground area is in shadow.
Ambient air temperature may be used as a good approximation for the effective
ground temperature. Equation ( 6) gives a close approximation for the module
radiative heat loss.

i

4rad Ef^(Tf - Ts
ky ) + EgebA^(Tb - Tamb )	 (6)

where

Ef, Eb - surface emittance of the front and back surface

Tf, Tb - front and back surface temperatures

e9 - ground emittance and takes a nominal value of 0.8

Tsky - sky temperature

cr - Stefan-Boltzmann constant, 0.56699 x 10 -8 mW/cm2•oK4

All temperatures in Equation (6) are expressed in the absolute scale
(i.e., Kelvin). Ts ky can to related to Tcell by the relationship
established based upon NASA measurement ( Reference 6) as shown in Equation (7).

Tsky - 0.914 Tamb (OK)
	

(7)

C. POWER CONVERSION

Total power extraction from a PV module is governed by the conversion
efficiency and the load condition as shown in Equation (8).

P - S • Ac - C - g	 (8)

where

Ac - active cell area

g - load factor

2-2



The load factor, g, specifies the electric load condition, 0 < g < 1; g - 1
for maximum power tracking, and g - 0 for no-load condition.

D.	 THERMAL INERTIA

The thermal inertia of a PV module is determined by the module design.
Table 2-1 lists the thermal inertia, along with other relevant thermal-optical
properties, for four baseline PV module designs that are used throughout the

Table 2-1.	 Representative Photovoltaic Module Specifications

ModuleModule Module Module
Design A Design B Design C Design D

(Sensor Technology) (Spectrolab) (Solarex) (Solar Power)

No. of Cells 25 20 18 22

Cell Diameter, cm 5.08 5.4 7.62 8.64

Cell Area/ 53.7 57 69.75 68.28
Module Area, %

Module Dimensions, 16.5 x 57.2 12.4 x 64.8 24.4 x 48.2 33.0 x 57.15
cm

Substrate aluminum extrusion aluminum G10 board G10 board
12 short fins extrusion

single fin

Solar Absorptance 0.66 0.688 0.76 0.776

Front-Surface 0.91 0.86 0.88 0.88
Emittance

Back-Surface 0.85 0.86 0.98 0.88
Emittance

Thermal Inertia 0.261 0.532 0.288 0.851
Wh/oC

Specific Thermal 2.766 6.626 2.447 6.43
Inertia
Wh/oC•m2
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present investigation. The following module designs are the Block I
procurement for FSA in 1976:

Module design A:
B:

C:
D:

Sensor Technology
Spectrolab
Solarex
Solar Power

Module designs A and C have similar specific thermal inertia around
2.5 Wh/ oC•m2 . A complete shading of the module from solar irradiation for

1 min would result in a temperature change of about S oC. For module designs

B and D the corresponding temperature change would be less than 2.50C,
because of their larger thermal inertia.

E. FREE CONVECTION

Both front and back surfaces of open-frame-mounted flat-plate PV modules

are exposed to ambient air. Free-convective heat transfer can be calculated

by Equation (9).

4free - (hf + hb) AT	 (9)
c onv

where h f and hb are the coefficients of heat transfer for the front and
back surfaces, respectively.

Approximations for the turbulent free-convective heat-transfer
coefficients for the front and back surfaces tilted upward at an angle 4 are

shown in Equations (10) and (11), respectively (Reference 7).

h f = 1.52 (QT cos 4)113
	

(10)

hb = 1.31 (LET sin *)1/3
	

(11)

In each of these equations, the coefficient of heat transfer is expressed in

W/m2•oC; AT is the temperature difference between the surface and the

local air temperature. The relationships are for a ;P angle less than 70 deg.

F. FORCED CONVECTION CAUSED BY WIND

Forced convection of wind over a flat-plate PV module involves a large

number of variables such as wind speed, wind direction, time-dependent

/	 fluctuations, module surface characteristics, tilt angles, and wind

interference from terrain and structures. The general correlation is
complex. However, a special case of parallel flow has been well investigated
(References 8, 9, 10). For steady-state airflow over a parallel plate, the

following simple formulae were found to give good correlations to experimental

measurements:
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H- 3.8Vi,	 ; V„<_ 5m/s
(12)

H- 7.17 V4 0.78; %;,> 5m/s

where

H - forced-convective coefficient of heat transfer in W/m2•oC

V„ - free-stream wind velocity parallel to the module, measured near the
surface, in m/s

This correlation has also been checked in a series of thermal tests
performed on a 1.2 x 1.2-m array made up of painted (Catalac flat black;
at z 0.96, E :: 0.87) surfaces. The array was tilted 34 deg; the back surface
was insulated. Air was moved across the front surface by a fan. Thermocouples
were installed to monitor plate temperatures, ambient temperature, and the

air-gap temperature behind the back surface. Temperature readings and
incident solar flux were recorded at 5-min intervals. A thermal network model
was constructed and a transient analysis was made, based upon the recorded
boundary conditions.

A model correction technique was applied sequentially, corresponding to
each data set, to assess the value of total convective heat-transfer

coefficient. The estimated heat-transfer coefficient includes both free- and
forced-convection components. Values for the forced-convection coefficient,
H, were calculated by subtracting the free-convection components from the
total values.

It should be noted that during the test period some wind fluctuation was
observed, as fan-induced air movement was affected by natural wind conditions
at the test site. Figure 2-1 shows the test data plotted against parallel

wind speed, which was integrated over every 5 min period. The results
correlate well with the simple relationship shown in Equation (12).

Natural wind conditions are generally much more complicated than the air
movement generated under laboratory conditions. Figure 2-2 illustrates a set
of representative wind speed and direction records. From a practical point of
view, the instantaneous effect would be too complex to handle.

In an earlier study (Reference 10), average mean wind speed, V, was used
to characterize the wind condition. The effect of wind direction was

considered to be averaged. The effective wind speed takes the integrated
average:

t +fit
V	 t 1	 V(t) • dt	 (13)

1

where

VW - instantaneous wind speed at time near the module

At - time duration for integration
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(14) ^ IH = 2.59 v

The values of the average wind speed were correlated to experimental
measurements in PV module thermal testing. A transient thermal model
correction technique using the Wiener-Kalman filtering scheme was applied to
evaluate the forced-convection coefficient. The result is shown in Equation
(14).

where

H effective wind convection coefficient for both the front and back
surfaces, W/m2•oC.
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SECTION III

EXPERIMENTAL OBSERVATIONS

A. LONG-TERM FIELD TEST AT JPL

The principal photovoltaic field-test site for FSA is located at JPL.	
t

The site has 33 test stands; each can accommodate two 1.2 x 1.2-m arrays.
Data acquisition includes weather data and module performance records.

Weather data have been recorded at intervals, with high-frequency sampling
around the time module performance data were taken. Thcse weather data
include pyranometer reading, wind speed, wind direction and ambient air

temperature. Module performance data were scanned once each day (approximately
3 min to scan through a total of 226 modules). Recorded data include module
I-V characteristics, peak powers, and module temperatures.

Tests began in early 1977 and the test items were dismantled in August
1981. The modules were tilted four times each year to adjust for solar

declination angle changes. The tilt angle varied from 15 deg (June, July,
August) to 34 deg (September, October, November, March, April, May) and 55 deg
(December, January, February). A detailed description of the field-test
operation is contained in Reference 11.

In the present investigation, four representative modules (Nos. 27, 70,
122, 131) were selected. Experimental data were retrieved from the period of
April 1978 to July 1981. The records were first screened to eliminate obvious

errors, including negative wind speed and wind speed exceeding 150 mph. Days
with strong insolation variations were also excluded. The accepted data base

consisted of 288 randomly selected sets of daily data. Wind condition was
recorded at a height of 6 m from the ground. Mean measured wind speed was

defined as the average of 12 recorded instantaneous values near the time of
module temperature measurements. The data base also included records of
ambient temperature and insolation variation in a period of 30 min ending at
the time of module temperature measurements.

Figures 3-1 through 3-4 show the raw test data of module temperatures
above the ambient, Tcell - Tamb, plotted against the instantaneous

insolation level, S. The data fit the linear Equation (4) reasonably well.
The mean sensitivity const$nt, m, and the corresponding standard deviation are
evaluated in Table 3-1.

B. CONTROLLED TESTING IN A SOLAR SIMULATOR

An experimental investigation of wind effect on PV modules was conducted

in the JPL 25-ft solar simsilator. A 10-hp blower with a diffuser was used to

provide a uniform airflow. The test item was a PV module design by Applied
Solar Energy Corporation (ASEC) (Reference 12). The module was mounted on a
pedestal that could be tilted and rotated to simulate different configurations

and wind directions. The pedestal was tilted toward the south, referred to as

180 deg with east at 90 deg. Wind speed was measured over the module surface

by a 6000-P Alnor velometer. The results are shown in Figure 3-5 as

reproduced from Reference 14.
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Table 3-j. Sensitivity Coefficient Based on Long-Term Test Data

Module	 Manufacturer	 m,	 Standard Deviation
Design	 oC•mW/cm2

A	 Sensor Technology	 0.237	 0.0198	 l

B	 Spectrolab	 0.230	 0.0196

C	 Solarex	 0.302	 0.0228

D	 Solar Poser	 0.312	 0.0234	 r

C.	 DISCUSSION

Results shown in Figure 3-5 indicate that cell temperature is very
sensitive to wind speed, and moderately so to wind direction and ambient
temperature. Cell-temperature deviations of up to 20 0C, caused by a change
in wind speed from 1 to 3 m/s have been observed. This corresponds to about
10% increase in electric-power production.

On the other hand, the long-term field-test data showa in Figures 3-6
through 3-9 display different characteristics. Linear regression analyses of
the data indicate a very weak sensitivity to change in wind speed. This seems
to support the assumption expressed by Equation. (4) that cell temperature rise
is dominated by insolation level only. The fact that the standard deviations
in the slope constants of four modules tested are all less than 8.5% of the
mean valuer m, suggests that Equation (4) should be able to predict long-term
energy production within 2%, at least for the JPL test site.

It should be pointed out that the conditions and measurements of these
two observations were quite different and may contribute significantly to the
apparent discrepancy. The data obtained from the control testing in the
simulator were in steady-state conditions, while the long-term field-test data
consisted of instantaneous readings.

More significantly, wind measurements in the chamber were made near the
module. In the field experiments, wind speed was measured at a post 6 m above
the ground. Wind profile varies significantly with height as well as with
local topography. Macroscale turbulent fluctuations occur in periods of
seconds (Reference 14). However, instantaneous wind oscillations are too
complex to be analyzed and the wind speed reported in Figures 3-6 through 3-9
are the average value of 12 instantaneous readings recorded within 30 min of
the experiment time. It was understood that such an average wind speed may
not be representative of the wind condition at the time. Nevertheless, it was
considered to be more realistic than using a single instantaneous reading.

Because wind speed is influenced by drag forces at the ground surface,
the variation of wind speed with altitude is strongly a:fected by terrain

6hL___
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roughness until the altitude reaches the gradient height, which is typically
330 m (1000 it) or more. Above the gradient height there is no retardation of
airflow because the ground surface and the wind profile would become uniform.
Below this critical level, the effective wind speed can be approximated by the
established relationship (References 15 and 16) shown in Equation (15) for
most engineering applications.

	

( 
VZ /	 \

1/7 ZZ

30 	 G

 )I/j9

	
(15)

where

VZ - effective wind speed at altitude Z ft

V30 = reference wind speed measured at 30 ft above ground

Terrain	 Q	 ZG

Open	 7	 900 ft
Suburb	 4.5	 1200 ft
city	 3	 1500 ft

According to Equation (15), the effective wind speed near the module, V (at
1.5 m or 5 ft above ground), can be estimated from Equation (16) based upon
the measured wind speed, v (at 6 m or 19.68 ft above ground), with a terrain
constant, ,3, of 3, and an altitude constant, ZG, of 1500 ft.

V	 ( 900 1/7 
5	 1/3

v	 \19.68	 1500)	 1	
- 0.258	 (16)

It should be noted that the test conditions at the JPL test site are not
time-invariant. The module tilt angle is changed every three months. This
provides a relatively constant insolation level for performance measurements,
but both the convective and radiative heat-transfer characteristics are
altered. In addition, the topography and the environment were changed over the
years by adding more module stands. Furthermore, screening of the records
reveals that the maintenance of measurement equipment was less than desirable.
Many sets of wind data were clearly in error, since negative wind speeds and
those greater than 150 mph are not possible. Some insolation data were also
questionable. Most of these doubts were found in the latter part of the
record. It is possible that these were caused by equipment errors.

3-12



SECTION IV

STEADY-STATE ANALYSIS

The thermal behavior of a photovoltaic module seldom reaches steady-
state conditions in a natural environment, because all of the pertinent
parameters such as insolation, wind condition, and ambient temperature
fluctuate with time. Nevertheless, steady-state analysis presents the

simplest condition for the investigation of wind-cooling effect. In this
special situation, all environmental inputs are time-invariant. The process
of establishing the correlation between experimental data and analytical
predictions is much more simplified.

A. SIMULATION OF CONTROLLED TESTING

Controlled testing inside the solar simulator represents a rare case of
steady-state condition. The result can be used as a reference case to

calibrate the analytical technique.

A detailed thermal network model of the ASEC PV module was constructed
and steady-state thermal analysis was made under proper boundary conditions.

The model was first calibrated with reported NOCT data. The established
thermal model was then used to evaluate the forced-convection heat-transfer

coefficient by matching the analytical temperature predictions with the
measured data reported in Reference 13. Figure 4-1 illustrates the forced-

convective heat-transfer coefficient for different wind speeds; for a fixed
wind direction, the correlation is fairly linear. Figure 4-2 shows that the
value of the coefficient of heat transfer is affected by wind direction, with
the highest value corresponding to the range of 90 to 120 deg. It is worth
noting that the integrated average value over all wind directions, assuming
equal weighting for any direction, agrees well with the expression in Equa-

tion (14).

B. LINEARIZED APPROXIMATION

A detailed thermal network model of a system consists of many lumped-
mass nodes, and the energy Equation (S) has many non-linear terms. However,
the relationship can be greatly simplified if the following assumptions are

made:

(1) Free-convective heat transfer can be linearized and represented by
an average coefficient of heat transfer, h.

(2) Radiative heat transfer can also be linearized by an effective

radiative conductance coefficient, hr.

(3) Temperature gradient along the module is ignored. Heat loss
conducted through the module, Qcond, can be approximated by

Equation (17):

_	
M

Qcond	 (Tcell - TS ) L	 (17)
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where

Tcell - cell temperature

TS - surface temperature

K - effective conductivity

L - effective thickness

The linearized energy Equation (5) can be reduced to the following for a

steady-state condition:

*a
Tcell - Tamb	 C • S
	 18

where

C - effective unit heat-transfer conductance

a* - pseudo-effective solar conductance coeffected for power
extraction, P

a* - 
a - AS
	 (19)

1 - I 	+ L	
(20)

C	 (h + hr + H) front + (h + hr + H)back K

It is clear that the value of effective conductance, C, is a function of
ambient temperature, wind condition, and module thermal design. To establish
a relative basis for comparison, one may define a reference conductance, Co,

that is consistent with NTE.

C
0

Tcell - Tamb	 C mO
	 S	 (21)

where mo is the sensitivity constant for a reference condition of 1 m/s wind

speed, and 200C ambient temperature. The normalized conductance ratio,
Co/C, characterizes the dependency on environmental parameters (i.e., wind

speed and ambient temperature). Co/C can be evaluated based upon the

established thermal models for various module designs. Figure 4-3 shows the
variation of Co/C for different levels of effective wind speed, V. It can
be seen that the relationships for module designs C and D (Solarex and Solar
Power) are very close because their design configurations are very similar.
However, module designs A and B (Sensor Technology and Spectrolab) display
different sensitivity relationships, because the designs have different fin
structures on the module back surfaces. The relationship between Co/C and

ambient temperature level is shown in Figure 4-4. The difference in module
thermal designs does not seem to affect this sensitivity relationship.

4-4



0
.4
u
to
a

d
u
F
0
a+
u
0b
ar
L

d
N

. rl
..a

cd

e
Oz
c
O

CL

^o
C
3
w
O
u
ud
ww
W

e+i
1

d
D
00

w

n

N

W-

E

0WW
CL

oz
3
W

U
W
LL
LL
W

71

ORIGINAL PAGE IS
Of POOR QUALITY

^ th N ^ v "' "' •	 p O O
•	 O O O O O O O

A 10/
0

0) OIlVU 30NvionONOO 03ZIIVVYUON

4-S



D

v
O

E

o ^
c^ W

ac

Q

W
CL
2

O W
C,4 F-

H
2
W
m

Q

O
r

'Or O
O o

O

a
vu
4
a+
u
b
e
cg

v
N

0

0
d
M
7
a^N
M
d

v
H
L
C
d

w
O
uud
w
w

d
1
d
d
M
7
00
•d
W

ORIGINAL PAGE IS
OF POOR QUALITY

N r" O	
CV)	 IN

O O O O O O O O

1(0/°0) "011dd 30NvionaN00 a3VIVVYWON

4-6



The relationships shown here can be used to assess steady-state module
temperature. For example, the reference sensitivity constant, Mot for
module design C is 0.302 at 1 m/s, 20 0C. The estimated cell temperature at
350C ambient (Co/C - 0.927) 9 2 m/s wind (Co/C	 0.85), and 95 mW/cm2
insolation can be evaluated from

(Tcell - Tumb ) (Co) ( Co)- - m
o • 3

T	 V

or	 (22)

Tcell	
35 00 + 0.927 x 0.85 x 0.302 x 95

- 57.6oC

E

4-7



i

SECTION V

PSUEDO-STEADY-STATE APPROXIMATION

A. TRANSIENT THERMAL RESPONSE

The thermal behavior of a photovoltaic co,- le rarely reaches a steady-

state condition in a natural environment. Thi+ is because of the changing
environmental parameters: insolation, ambient temperature, and wind. The
module temperature at any specific time is not just a function of the
instantaneous environmental parameter values, but rather is a function of the
time-varying process governed by the energy balance, initial temperature, and
pertinent boundary conditions.

In a linearized form, the energy Equation (5) can be written as follows:

MC

	

Mcp dT
	

S - C ('i - T

	

A dt	 `	 emb

The values of insolation, S, and ambient temperature, Tamb, vary with time.
The unit conductance, C, is a function of wind, which fluctuates with time.

One of the major drawbacks of transient analysis is the lack of
available thermal and environmental data. Most of the weather records, such
as the SOLMET tape, represent a sampling of instantaneous values taken every

hour or every 15 min. Module temperature measurement data are even harder to
obtain. The JPL field-test data indicating module temperatures are recorded

only once every 24 h. Therefore, a transient thermal analysis cannot be

performed accurately with the available data.

B. TRANSFER FUNCTIONS

Because transient analysis is too complex and a steady-state solution
does not include time variations, it is difficult to correlate experimental
results in natural environments. A concept of transfer function is proposed

here, as a practical approximation, to include the time variations of
environmental parameters, so that module thermal response can be treated in a
simple linear relationship. The procedure for transfer function calculations
involves a detailed transient analysis of module thermal response. A multi-

node thermal model of a specific module design was first constructed and the
thermal response under a reference environment is computed. In this reference

case the environmental parameters, such as insolation, S, ambient temperature,
Tamb, and effective wind speed, were assumed to be constant and the resultant

module temperature is T o . In a series of perturbation calculations, each

parameter is simulated by a pulse of changes at different time instances, t.
The corresponding transfer function is calculated as the equivalent change in

the parameter in a steady-state manner.

(23)
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In order to illustrate the procedures for determining transfer functions,

a sample calculation of OTM (transfer function for ambient temperature 	 j

change) is shown as follows

(1) Let us consider that the NM of a specific module is 45 0C. (i.e.,
the steady-state temperature To under NTE).

(2) These NTE parameters are maintained at constant levels of
80 mW/cm2 9 200C and 1 m/s wind, except that the ambient tempera-
ture was increased +100C (to 300C) for 1 min at time (t - 15 min),
before returning to the reference temperature of 200C. The corre-
sponding module temperature at t is observed to be 45.50C.

(3) A steady-state module temperature of 45.50C under g0 mW/cm2 and
1 m/s environment corresponds to an ambient temperature of 20.50C.

It can be seen that for this specific module a change in ambient temperature
of 100C for 1-min duration, 15 min before the measurement time would be
equivalent to a change of 0.50C in the pseudo-steady-state ambient tempera-
ture. Therefore, in other words, the transfer function i4r (15 min) is 0.05.

After all the transfer functions are evaluated for different time
instances, pseudo-steady-state quantities can be assessed for ambient tempera-
ture, insolation and wind speed according to Equations (24) to (26).

T* _ To + ft t Tamb(r) - Tamb ^T(T)dT	
(24)awn	 amb 

	 ^(T)dT

t

 

f-It
t

O S(T)- So]OS(T)dT
S 	 S + ft-t. t	 (25)

(T)dT
t Qt

ro 3
	 - V J^(TMTV+  	 (26)

t J6V(T)dT
t Qt

Once these pseudo-steady-state environmental variables are evaluated based
upon the time series of variations, the module temperature at time t can be
expressed as

C} 
(Tcell	 Tamb) = 

a* S*	 (27)



Figures 5-1 through 5-3 show the computed transfer functions of the
four module designs. The transfer functions for insulation, OS, for ambient
temperature, OT , and for effective wind speed, 10V, are very similar for a
specific module design. Forall practical purposes, they can all be repre-
sented by a single function, V T - t), which is a function of the module
thermal inertia and time. Module designs A and C have similar thermal inertia
per unit area, while module designs B and D have close values as shown in
Table 2-1. For module designs of light thermal inertia, such as module design
C, the thermal response is more sensitive to the instantaneous environmental
changes and is less sensitive to the variations in the past.

C.	 PSEUDO-STEADY-STATE ANALYSIS OF FIELD-TEST DATA

Field-test measurements obtained at the JPL test site were correlated in
this report to demonstrate the proposed pseudo-steady-state approximation
technique. Because of the change in the module mounting configuration and
measurement uncertainties, only the data set obtained in the period of June
through August 1978 was used. The sampling frequency for environmental
parameters was 15 min. Variations in insolation level and ambient temperature
were interpolated between data points. The concept of transfer functions was
applied to obtain the pseudo-steady-state quantities, S *and TSob. The sampling
frequency was considered to be too slow to provide meaningful resolution for
wind-speed variations; therefore, no meaningful pseudo-steady- state wind, V*,
can be computed. Instead, an average effective wind speed, V# , adjusted
according to Equation (16), was used in characterizing the effective wind
conditions.

Figures 5-4 through 5-7 show the average effective unit conductance, per
surface, C*/2, evaluated using Equation (27). The values were plotted versus
the corresponding average effective wind speed, V#. The data can be curve
fitted with a least squares linear regression expression of C*/2 a a + b • V#.
The coefficient, a, is the heat-transfer coefficient for free convection and
thermal radiation. The value ranges from 9.07 and 10.25 W/m 2•oC for module
designs C and D, to 11.67 W/m2 • oC for module A and 12.66 W/m2•oC for module
design B. Module designs A and B have design fins on the rear surfaces to
increase the heat-transfer rate to the ambient. The sensitivity coefficient, b,
is evaluated to be 2.37 and 2.71 W/m 2•oC/(m/s) for module designs C and D.
The values for module designs A and B are 1.86 and 2.07, respectively. These
values appear to be in general agreement with the effective value of
2.59 W/m4.00/(m/s) shown in Equation (14).
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SECTION VI

CONCLUSIONS

The effect of wind cooling on photovoltaic arrays is governed by wind

speed, wind direction, and the location of wind measurement. For
unidirectional wind parallel to module surfaces, the cooling effect can be
expressed by the established convective heat-transfer correlation: H - 3.8 V.
Experimental data obtained in controlled chamber tests confirm this

correlation.

The cooling by natural wind can be approximated by an average
coefficient of convective heat transfer, H, which can be correlated linearly
with the effective wind speed averaged in all directions. The relationship,
H - 2.59 V, which agrees with the observation in the chamber test, is

recommended for predicting PV module thermal performance in a field. Wind
measurement location appears to be the critical factor that determines the
validity of the correlation between convective heat transfer and wind speed.

Wind condition measurements at weather stations or test sites are typically
taken at a height different from the module level. The effective wind speed
for module convective cooling should be measured at the average module height
and could be significantly less than that measured at higher altitude.
Power-law relationship has been established to relate wind speeds at different
altitudes. Applying this power-law profile on field-test data obtained at the

JPL test site resulted in reasonably good agreement between the test results
and the established heat-transfer correlation. It should be cautioned,

however, that: limited test data were analyzed. Furthermore, the range of
measured wind-speed variation was very limited; the maximum wind-speed
variation, after scaled down from a height of 6 m to 1.5 m (the ratio of
wind-speed retardation is about 4:1), would be around 0.6 m/s. As a result,
the experimental uncertainty level is larger than the signal to he detected.

In other words, although the field-test experimental data show general
agreea,en_ with the established correlation, nevertheless, the data do not
cover sufficient range and should not be viewed as conclusive. Direct-wind

data comparisons between weather-station recording and in-situ wind
measurements near the module shoul: be made in future experiments to establish

a reliable method for assessing the effective wind speed.
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