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1. 

INTRODUCTION 

Proteins and other membrane components are not static entities 

but rather carry on a considerable dynamics on the membrane surface, 

particularly by translational and rotational diffusion (1). Knowledge 

about the speed of movement of proteins as they diffuse laterally in 

the membrane is crucial for understanding many of their cellular 

functions (2), and it is becoming increasingly clear, that knowledge 

about the localization and aggregation of membrane components, either 

due to contact with another cell (3-5) or due to the effect of extra-

cellular ligands (6-9), is important as well. To understand the 
-. 

1Qca1ization phenomena, Chao, Young and Poo (10) have described a model 

of localization in which the motion of the membrane components is 

assumed to be diffusive, with the diffusing species being "trapped" 

in a certain region of the membrane surface when their diffusive motion 

brings them into contact with the "trap" boundary. A similar model has 

been proposed by Edwards and Frisch (11) for the localization of 

acetylcholine receptors at the muscle endplate (see Poo (12) for further 

evidence regarding this hypothesis). In related studies, Adam and 

Delbruck (13) have considered the possibility that some biologically 

interesting diffusional processes occur by first lowering the dimension-

ality of the diffusion space via a trapping mechanism, and they have made 

numerical estimates in support of their hypothesis. Also, Berg and 

Purcell (14) have studied diffusive transport to a cell with specific 

receptors to measure the concentration of a chemical species and influence 

chemotactic behavior. In Ref. (10), the numerical results of Hall (15) 

were used to approximately compute the surface density of trappable 

membrane proteins and the average time required for a trappable particle 



to reach the trap boundary by diffusion, using the simplest boundary 

condition that any particle which reaches the trap boundary is 

trapped and no longer diffuses in the membrane. 

There are a number of points at which the above mentioned model 

2. 

of diffusion mediated localization on membrane sqrfaces (diffusion driven 

trapping, referred to below as the DDT model) may be generalized to make 

a more realistic approach to localization phenomena, particularly 

with regard to the behavior of the protein at the trap boundary, and 

with regard to the possibility that only a fraction of the potentially 

trappable components actually become localized. In Ref. (10) it was 

indicated that at least 26% of the SBA receptors in the membrane are 

e1ectrophoretica1ly mobile, and that only a small fraction of the mobile 

receptors actually become trapped. It was, however, assumed in Ref. (10) 

that all the potentially trappab1e receptors were trapped. In addition, 

by carrying out an approximate analytical treatment of the DDT model, 

some insight into the relative importance of various cell and membrane 

protein parameters on the localization may be obtained. 

In order to estimate the trapping rates of various membrane components, 

one may calculate under various assumptions about intrinsic trapping 

probability, initial distribution of diffusing membrane components and 

number of trapping sites, the mean time for a particular species to be 

trapped. It is also possible, in fact, that not all of a particular 

membrane component is, indeed, trapped. That is, there may be an equilibrium 

established on the membrane surface in which only a fraction of a given 

trappable component eventually resides within the trap site. Various 

possibilities are considered in the next section where, to the extent 

possible, exact results are derived for the mean trapping times implied by 



the different situations enumerated above. This section is 

followed by a discussion of the results and their connection with 

experimentally observed membrane component localization. 

3. 



4. 

THEORY 

A. Introduction 

The model of a cell membrane to be used here is that of a spherical 

surface of radius R in which membrane components may diffuse with 

diffusion coefficient D (assumed to be constant in most of the discussion 

below) • 

The general diffusion equation for such a system is 

where p is the concentration of membrane components at time t. If 

diffusion is limited to the surface of the spherical cell then the radial 

coordinate in Eq. (1) is fixed at a value of Rt the cell radius, and the 

concentration depends only on the polar angle e and azimuthal angle ~ 

of spherical polar coordinates, as shown in Fig. 1. Thus, Eq. (1) becomes 

D a ap + 1 
2 { ag(sine ag sine 

R sine 
(2) 

Suppose that the cell coordinates are oriented so that a trap is near 

e-rr and that there is no dependence on azimuthal angle. Then, Eq. (2) is 

independent of ~ and may be rewritten, letting w = cose, as 

(3) 

Since only diffusing particles that are essentially confined to the surface 

of the cell are under consideration here, the volume concentration p may 

be replaced by a surface concentration o(e, t). That is, p = 0 except at 

radius R, so Eq. (3) may be integrated over the radial coordinate, the 

result being 



5. 

(4) 

Integrating cr over the surface of the sphere gives the number of particles 

in the system at a particular time N(t). 

To proceed further in the analysis of membrane surface diffusion, 

initial and boundary conditions must be specified. A variety of physical 

situations are outlined below and their trapping rates derived and 

analyzed. 

B. Perfect Trap 

The simplest possibility is that every diffusing particle that 

approaches within a certain distance of w = -1 (8 =7T) is trapped ("perfect" 

trap model). Then, as discussed by Chao, Young and Poo (10) the boundary 

condition at the trap is cr = O. To be specific, let the trap region be 

defined by a cap centered at w = -1 and extending to w = cos8. That is, 
a a 

cr(w ,t) = 0, 
a 

(5) 

The surface concentration is zero at 8 because every particle that reaches 
a 

e from the region 8 < 8 is immediately captured permanently by the trap, 
a a 

and any particle with 8 > 8a remains always with 8 ~ 8a in thiS, the 

simplest example of trapping. 

To determine the trapping rate under these conditions, it is suffi-

cient to calculate the number net) of particles in the cap region as a 

function of time, which is related to the number of particles N(t) remaining 

untrapped at the same time by 

net) = N - N(t) o 
(6) 



where No - N(o) the number of diffusing particles initially outside of 

the cap. One finds that 

2 
N(t) - 21TR Iw

l 

a 

dwa(w,t). (7) 

When the diffusion space is finite as in this case of diffusion on the 

surface of a sphere of fixed radius, the particle number N(t) is expressed 

as an infinite series of terms each decaying exponentially with time. 

However, except at very short times, the infinite series may to good 

approximation (16) be replaced by a single exponential decaying with time, 

6. 

the time constant being the mean trapping time T as introduced by Weisb (17). 
p 

Methods for calculating T exactly have been developed by Weaver (18,19), 
p 

Szabo et ale (20), and Deutch (21) using the definition 

00 

T -
P J dt N(t)/N • 

o 0 

(8) 

Application of these methods (see the Appendix) yields the result 

T 
P - -D 

{_2_ 
l-w a 

2 
in (l+w ) - I} • 

a 
(9) 

Eq. 9 is an exact analytical calculation to be compared with the numer1cal 

treatment of Ref. 10 1n which the lowest eigenvalue approximation to L 
p 

was used. As shown in Refs. 16 and 20, the approximation 

-tiT 
N(t) ~ No e p (10) 

is in very good agreement with accurate numerical calculations of N(t) 

over a wide range of parameter sizes. Comparison of Eq. 9 with the 

numerical approximation of Ref. 10 shows better than one percent agreement 

for small traps (1 + W < .01) and lesser agreement (but still quite a 

good) as the trap gets larger. As seen from Eq. 9, the dependence of T 
p 

on the cap surface area given by S ~ 2TIR2(1+W ) is not very pronounced c a 



2 
when S is small compared to the total surface area A - 4~R • c 

be seen by rewriting the expression for T as 
p 

T 
P 

A/S 

{A/S ~l 
c 

R.n A/S - I} 
c 

7. 

This may 

(11) 

Thus, the dependence of T on S occurs mainly in the logarithmic term and, 
p c 

therefore, is considerably suppressed. For example, 

A 
T ( - = 100) 

p S 
c 

A 
T (- = 10) 

p S 
c 

- 2.34. (12) 

However, as the cap area becomes a significant fraction of the total surface 

area, the dependence on S becomes much stronger. For example, as S ~ A, 
c c 

R2 A 
T ~ - ( -S - 1) (13) p 2D 

c 

Thus, when A/S changes from 1.1 to 1.01, T decreases by a factor of 10. 
c P 

c. Imperfect Trap 

There are two ways in which the trap of part B can be imperfect. First, 

if every time a particle reaches e , it is not captured with a probability 6 
a 

of one but rather with 6 < 1 so that more than one (perhaps many) diffusion 

to the e = e boundary is necessary before capture occurs. Second, if every a 

particle that is captured does not remain permanently in the cap region but 

may recross the boundary and continue to diffuse on the sphere, perhaps to 

be recaptured again, and so on. In this case an equilibrium state will be 



reached eventually with some portion of the diffusing species remaining 

uncaptured. The two possibilities are considered below. 

1. Imperfect Capture Probability 

This is the case when the probability that a particle which diffuses 

to the boundary at e is captured (which was taken to be one in section B a 

above) is less than one. Then, the mean trapping time T will be larger 

than the value found in section B. To incorporate the capture probability 

into the above analysis, the boundary condition at e = e , Eq. (5) must be a 

modified so that o(w ,t) is no longer zero. To the extent that the boundary 
a 

condition must remain linear in 0 and its derivatives, the usual way to 

incorporate partial capture is to note that the net particle flux at ea 

is the difference between the particles reaching the boundary and those 

not captured at that time. The flux is proportional to the first derivat1ve 

of 0 with respect to w (or e) so the boundary condition at e is modified a 

to be 

dO - -dW 
Cl 

--0 

Il-w2 ' 
w=loI' a 

(14) 

The parameter Cl ranges from zero (no trapping with all particles be1ng 

reflected at the e boundary) to 1nfinity (o(w ,t) = 0 case). The inter-
a a 

pretation of Cl in terms of molecular parameters is discussed below. 

With the boundary condition above, the mean trapping time is (see 

Appendix for details) 

tan + T 
P 

(15) 

8. 



where L is defined by Eq. (9). that is. L as a ~~, and a uniform initial 
p 

distribution has again been assumed. The factor tan (e /2) in Eq. (is) has a 

9, 

a simple geometrical interpretation as follows. The surface area ~ in which 

diffusion takes place is 

and the circumference C of the trap is 

Then 

C = 27TR sine • a 

~ -= R 
C 

(l-cose ) 
a 

sine 
a 

- R tane /2. a 

(16) 

(17) 

(18) 

Thus, '[1 is inversely proportional to the "size" of the "target" available to 

the diffusing particles, and directly proportional to the space available for 

diffusion, as well as varying inversely with the trapping probability. 

The ratio of the two capture times is 

sine 
1: a a {_-:2=--_ 
~ - l-cose I-cose 
1:1 a a 

2 
(I+cose - I} 

a 
= af(e ) a 

(19) 

the product of the trapping probability factor a and a geometry factor fee ). 
a 

The geometry factor goes to zero both as e ~ 0 and as e ~ 1800 and has a a a 

broad maximum around 140 0 of about 1/2 as shown in Fig. 1. Thus, for a trapping 

probability factor a « 1, the imperfect capture time dominates, and, conversely, 

for a » 1. the perfect capture time will be dominant. 

The dimensionless trapping probability factor a may be decomposed into 



10. 

several multiplicative parameters according to the following definition 

R 
a - I S/l-S. (20) 

The parameter R, the radius of the cell, appears naturally in Eq. (14) 

because the dependent position variable is the angle e (2~. The parameter 

S is the probability that a collision with the trap circumference causes 

capture, so that 0 < B ~ 1, and t is a length parameter which is, in general 

expected to be smaller than the characteristic dimension of the trap. If 

the probability B is small, then most of the collisions w1th the trap 

perimeter do not result in capture. As B approaches one, however, the inter-

pretation of Eq. (14) is to divide by a so that l/a appears on the left-hand 

side. Since a ~ 00 as S ~ 1, Eq. (13) approaches the boundary cond1tion of 

Eq. (5) for trapping at each collision with the trap. If the lack of 

trapping at each collision is due to a potential energy barrier at the trap 

edge, then t may be interpreted as the width of this barrier wh1ch the 

particle must cross to get from "outside" to "inside" the trap area. Alter-

natively, a kinetic theory interpretat10n of the boundary condition leads 

to an estimate of t of 2D/v for small B where v is the average particle 

speed at the given temperature (23, 24). In either case, when B « 1, one 

expects that a is considerably less than one as well and, thus, cause TI 

to dominate the expression for the trapping time T, with the consequence 

of a considerably lengthened mean trapping time compared to the perfect 

trap case. Interpretation of these results in the context of experiemental 

observations will be discussed below. 

,. 
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2. Equilibrium Established 

This is the case when some of the trapped particles "escape" from the 

trap and commence diffusion again, perhaps to be trapped again at a later 

time. Then, one no longer speaks of a mean trapping time T (whether the 

trapping probability is one or smaller than one), but, instead, one must 

consider the time to reach the equilibrium state for this system in which 

some fraction of the particles remain trapped and the rest continue to diffuse 

freely in the membrane with the members of these two categories changing 

places repeatedly. Discussion of the approach to equi1birium requires 

introduction of a new parameter, the equilibrium constant K defined as 

K = lim n(t) 
t~ N(t) (21) 

In order to introduce the equilibrium constant into the diffusion problem, 

the boundary conditions must be modified by the subtraction of the term 

o n(t)/N K from 0(6 ,t) in Eqs. (5) and (14). As a result of this change, 
0_0 a 

the mean time to reach equilibrium T 1S calculated (25) to be simply 
eq 

related to T of Eqs. (9) or (15), the result being 

K 
Teq .. ( l+K )T (22) 

where K/(l+K) is the fraction of particles trapped at equi11brium, that is 

Note that as K ~~, the situation becomes one in which no trapped particle 

escapes, and T ~ T. Conversely, if most trapped particles subsequently eq 



escape, so that K « 1, then T «T and equilibrium is (relatively) eq 

rapidly reached with only a small fraction of the diffusing particles 

being trapped. 

The above analysis represents the simplest case in which an equili-

brium is established between the trap region and the rest of the cell 

surface. In this case, as inidcated above, it is meaningful to discuss 

the approach to equilibrium in terms of a single time constant, T ,and 
eq 

to have an exponential increase in the number of particles trapped as a 

function of time. If, however, some particles are initially trapped by 

the mechanism of trap formation itself (see, for example, Ref. 10), then 

it is possible that the single exponential approximation does not apply. 

Consider, for example, the experimental situation in which the 1nitial 

concentration of diffusing species in the trap region and the rest of 

the cell surface is the same, say a. Then the ratio of numbers of 
o 

diffusing particles in and out of the trap is 

nCo) = 
N(o) 

a S 
o c 

a (A-S ) 
o c 

= 
S /A 

c 
l-S fA c 

(24) 

12. 

If n(l)/N{o) is large compared to K, then the single exponential approxi-

mation will not be valid. If, however, K is large compared to n(o)/N(o), 

the considerations discussed above which assume nCo) = 0 will approximately 

apply. 



DISCUSSION 

The DDT model of Chao, Young and Poo (10) has been analyzed with 

regard to the possibility of capture of mobile proteins at a trap site 

on the surface of a spherical cell. A single relaxation time approximation 

has been outlined, and the time parameter T (or T ) shown to depend on the eq 

cell surface area and trap circumference as on the probability of trapping 

and the trapped/untrapped equilibrium constant. 

It is important to consider the effect of a trapping probability 

13. 

a < 1. This would affect the determination of the diffusion coefficient using 

trapping experiments. Figure 2 shows the dependence of aDT/R2 on trap size 

for several values of the probability parameter a. The log-log plot is 

essentially a straight line in the range of 6 and a shown, since from 
a 

Eq. 15, 10glO(aDT/R
2

) is directly proportional to 10glO(1+cos6a). Further 

2 numerical estimates of DT/R are given in Table I as a function of 6 for a 

particular values of a. These studies show that when the trapping probability 

parameter a is small, the estimated diffusion coefficient from trapping 

time data is strongly influenced. A more specific example is shown in 

Table II in which the experimental parameters of Ref. 10 (namely, 

R = 1.5(10)-3 cm, 6 = 151.35 0 and T = 200 sec) are used to calculate 
a 

D. The strong dependence of D on a small trapping probability is apparent. 

The mean trapping time approximation cannot be use~at present, to make a 

direct comparison with the exPeriments of Chao. Young and Poo (10), because, as 

discussed above, the cell components may come to equilibrium with the 

trap region rather than approach the situation in which a(t +~) + 0 

as would be the case for K +~. If K is finite, then the eigenvalues 

obtained in a solution of Eq. 4 will have zero as the lowest eigenvalue 

(corresponding to equilibrium) and the rest of the eigenvalues are not 

necessarily small in absolute value. Thus, extensive numerical estimates 



must be made to compare with the explicit experimental parameter determined 

in Ref. 10 (their A.I.) and consequently a number of terms in the series 

solution for T may he needed. It would be helpful in understanding the 

motions of cell components if a more direct measurement of net) could be 

performe~preferably with the trap region empty initially. 

In order to clarify the theoret~cal situation further, numerical 

calculations are in progress to predict the behavior of T and n under 

various assumptions about the equilibrium state, trapping probabil~ty, 

initial concentration distribution and number of trap sites. 

14. 
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APPENDIX: CALCULATION OF MEAN TRAPPING TIME 

To compute the mean trapping time one may integrate Eq. 4 using the 

appropriate boundary conditions and a uniform initial distribution outside 

the trap. One gets 

J
:w, dO' = 

dt 
W 

--

D 

R2 

D 
R2 

d {(l_w,2) 

dW' 

dO' 

aw' 
} 

Suppose that K = 00 so the boundary condition is (Eq. 14) 

Then, since 

dO' 
aw = 

I 

dO' I = aw 
W a 

one finds that 

cr(W ,t) 
a = -

2 I 

1-w 

0', W = W a 

aD /l-W
a 

2' 

J!W' 
W 

a 

J!". 
W 

a 

Further integration of Eq. A-1 leads to 
W 1 

O'(w,t) = o(wa,t) - ~2 J 1~:2 IdZ 
wa Y 

R2 
f!WI dO' --

DaJ 2 • at 1-w wa a 

00' 

dt 
(Z, t) 

w 
R2 J dy 
D l_y2 

W 
a 

(A-1) 

(A-2) 

(A-3) 

(A-4) 

(A-5) 

r aa dz at 
Y 
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The mean trapping time is defined by Eq. 8 to give the approxi,~tion 

for N(t) of Eq. 10. The result for N(t) that one obtains from Eq. A-5 is 

H(t) - 2nR
2 

I!xO(z.t) 

wa (A-6) 

2 
- - 21TR { -

One finally obtains for T the result 

T = I= N(t) 
N 

0 
0 

- R2 tan e R2 { _2_ a 
aD T + D l-w a 

J~z aa } 
y at 

2 
In (l+w ) 

- 1 } (A-7) 
a 

as discussed above (see Eq. 15 and the following discussion) using the 

limiting cases a(w,oo) = 0 and a(w,o) = a 
o 

a constant with the value 

N /(A-S ). 
o c 

Although somewhat more complicated algebraically, 

by a similar method with the result being Eq. 22. 

T may be derived 
eq 
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TABLE I 

2 calculated fpom Eq. 15 The dimensionless ratio DL/R for several values of l+W (where W • cos e ) at a a a 
fixed a(the trapping probability parameter defined by Eq. 20). 

DT/R2 

1 + W a"'10-3 10-2 10-1 100 101 102 103 104 
a 

1- E-004 1. 41E+005 1. 42E+004 1. 42E+003 1.50E+002 2.30E+001 1.03E+001 9.05E+OOO 8. 92E+OOO 

2. E-004 1.00E+005 1.00E+004 1.01E+003 1.08E+002 1. 82E+001 9. 21E+000 8. 31E+OOO 8. 22E+OOO 

4. E-004 7.07E+004 7.08E+003 7. 15E+002 7. 82E+001 1. 46E+OOl 8. 23E+000 7.59E+000 7. 53E+OOO 

6. E-004 5.77E+004 5. 78E+003 5.84E+002 6.48E+001 1. 29E+001 7. 69E+000 7. 17E+OOO 7.12£+000 

8. E-004 5.00E+004 5.01E+003 5.07E+002 5. 68E+001 1. 18E+001 7.33E+000 6. 88E+000 6. 83E+000 

1. E-003 4. 47E+004 4. 48E+003 4.54E+002 5. 13E+OOl 1. 11E+001 7.05E+000 6.65E+OOO 6. 61E+OOO 

2. E-003 3. 16E+004 3. 17E+003 3. 22E"1'"002 3.75E+OtH. 9.08E+000 6. 23E+000 5. 95E+000 5. 92E+000 

4. E-003 2. 23E+004 2. 24E+003 2.29E+002 2. 76E+001 7.46E+000 5.45E+000 5.25E+OOO 5. 23E+OOO 

6. E-003 1. 82E+004 1.83E+003 1. 87E+002 2. 31E+001 6.65E+000 5.01E+000 4. 84E+000 4. 83E+000 

B. E-003 1.5BE+004 1. 53E+003 1.62E+002 2.03E+001 6. 12E+000 4.70E+000 4.5GE+000 4. 55E+OOO 

1. E-002 1. 41E+004 1. 41E+003 1.45E+002 1.84E+001 5. 74E+000 4.47E+000 4. 34E+000 4. 33E+000 

2. E-002 9.95E+003 9.99E+002 1.03E+002 1. 36E+001 4.65E+000 3. 75E+000 3.66E+000 3. 65E+OOO 

4. E-002 7.00E+003 7.03E+002 7.30E+001 9.99E+000 3. 69E+000 3.06E+000 3.00E+000 2. 99E+OOO 

6. E-002 5.69E+003 5.71E+002 5. 95E+001 8.30E+000 3. 18E+000 2. 67E+000 2. 62E+000 2. 62E+OOO 

8. E-002 4.90E+003 4.92E+002 5. 13E+001 7. 25E+000 2. 84E+000 2.40E+000 2. 36E+000 2. 35E+000 

1. E-001 4. 36E+003 4. 38E+002 4.57E+001 6.51E+000 2. 59E+OOO 2.20E+000 2.16E+000 2. 15E+OOO 

2. E-001 3.00E+003 3.02E+002 3.UE+001 4. 56E+000 1. 86E+000 1. 59E+000 1. 56E+000 1. 56E+000 

4. E-001 2.00E+003 2.01E+002 2.10E+001 3.01E+000 1. 21E+000 1.03E+000 1.01E+000 1.01E+OOO 

6. E-001 1. 53E+003 1. 53E+002 1.60E+001 2. 25E+000 8.73E-001 7. 35E-001 7.21E-001 7.20E-001 

8. E-001 1. 23E+003 1. 23E+002 1. 28E+001 1. 75E+000 6.50E-001 5.39E-OOl 5.28E-001 5.27E-001 
N 

1. E+OOO 1.00E+003 1.00E+002 1.04E+001 1. 39E+OOO 4.86E-001 3.96E-001 3.97E-001 3. 86E-001 0 . 



TABLE II 

Diffusion coefficient calculated from Eq. 15 for e a 151.35° and a 
t - 200 sec. 

a 2 D(cm /sec.) 

1000 2.227 E-009 

100 2.266 E-009 

10 2.663 E-009 

1 6.628 E-009 

0.1 4.628 E-008 

0.01 4.428 E-007 

21. 
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Figure 2. 
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2 The normalized mean trapping time aDT/R 7 as defined by Eq. 15 7 

is plotted versos the angle S defining the trap region 
a 

~a - cos Sa) for three values of a the trapping parameter 

defined by Eq. 14 and the discussion following Eq. 20. 
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