
NASA Technical Memorandum 82874

A Generalized Memory
Test Algorithm

Edward J . Milner
Lewis Research Center
Cleveland, Ohio

July 1982

NI\S/\

NASA-TM-82874 19820024095

2
LANGLEY RFS!."ARCH CENTf:R

L BR~RY. NA'SA
HAMl:.lON VIRGINl,l\

a
LCl
N
r-< ,
w

A GENERALIZtD MEMORY TEST ALGORITHM

Edward J. Milner

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

SUMMARY

Presented in this report is a general algorithm for testing digital com
puter memory. The test is complete insofar as it checks that 1) every bit
of each word can be cleared and set, and 2) bits are not erroneously cleared
and/or set elsewhere in memory at the same time. The algorithm is general
insofar as it can be applied to any size memory block and any size memory
word. It is also concise and efficient, requiring few cycles through memory.
Fewer than 400 cycles through memory are required for a test of 16-bit- word
memory. The algorithm has been used on a microcomputer having a cycle time
of 133 nanoseconds. The memory test took approximately 15 seconds to verify
the microcomputer's 32K-by-16-bit memory.

INTRODUCTION

A chief requisite of a digital computer is its ability to accurately
store information in memory. However, its ability to do so can be hindered
for a variety of reasons. For example, improper machine electric field
interactions, wiring errors, or shorts may cause memory bits to be cleared
or set improperly. An error may occur in the memory word being accessed or
it may extend to some other memory word as well. The execution time required
for a diagnostic program to check all possible word pattern combinations for
the entire memory is unrealistic, even for the fastest computers available.
What is needed is a suitable memory test which executes in a reasonable
amount of time. A complete memory test at the single-bit-interaction level
would be an essential part of such a memory diagnostic.

A diagnostic program was required for memory checkout of a high-speed
research microcomputer being designed and developed at the Lewis Research
Center. That microcomputer, designated as the DSC-1 (Digital Simulation
Computer), was designed to be the computing element of a real-time digital
simulator (ref. 1) being developed at Lewis. The DSC-1 was designed to have
a cycle time of 133 nanoseconds. Its 32K of 16-bit-word memory was fash
ioned with provision for expanding the memory to 64K words. ~y operating up
to ten OSC-1's in parallel, the simulator could proviae the speed required
for real-time simulation .of jet engines. This approach to real-time engine
simulation offers a number of advantages over current approaches which use
hybrid (analog-digital) computers (ref. 2) or mainframe digital computers.
The advantages include lower cost, easier programming, more repeatable
results, expandability of the hardware, and portability of simulation
hardware and software.

It was hoped that an appropriate diagnostic test to check the DSC-l
memory would be available in the literature since many manufacturers have
designed computers with this type of memory. However, a search of the
literature failed to uncover an algorithm which satisfied our criterion for
an acceptable memory test.

Our criterion for an acceptable memory test required that two essential
conditions ue satisfied. To qualify, a memory diagnostic algorithlll must:

1. check that every bit can be cleared and set in each memory location;
and

2. check that bits are not erroneously cleared and/or set elsewhere in
memory at the same time.

Existing diagnostic algorithms appear to concentrate on condition (1)
(ref. 3 to 7) but neglect condition (2). However, condition (1) can De
satisfied while serious memory defects still exist. None of these tests
adequately address condition (2). Only by addressing this condition in
sufficient detail can one be assured that memory is not mistakenly being
destroyed. Of the memory test algorithms examined, that presented in ref. 6
most nearly satisfies our two requirements for an acceptable memory test.
However, it aoes not initialize memory and read each memory location before
writing into it. Hence, the test fails to detect an important kind of
overwrite error. (This shortcoming will De examined in detail later in
RE~ULTS AND DISCUSSION.)

It was necessary, therefore, to develop a memory test algoritnm sat
isfying conditions (1) and (2) above. That new memory test algorithm is
documented in this report.

A distinctive characteristic makes the memory test algorithm described
herein different from any other currently in the literature. This new
algorithm initializes memory to be tested and then reads eacn memory loca
tion just prior to writing into it. By doing so, bit errors violating con
dition (2) can be effectively determined. As an example, fewer than 400
cycles through 16-bit-word memory are required for the test. Consequently,
in the case of the USC-1 microcomputer, the whole test executes in approx
imately 15 seconds. Moreover, the algorithm is generalized insofar as it
can be applied to any size memory block and any size memory word.

The memory test will be examined in detail in the following sections.
Following a description of the algorithm, the basis for tne algorithm will
be presented and discussed.

ALGORITHM DESCRIPTION

The procedure used by the algorithm is relatively simple. ~riefly, it
can be summarized as follows. Memory to be tested is first initialized.
Next, each memory location is read and then filled with a prescribed binary
bit pattern. After the memory-filling process is completed, memory is again
read to check that the contents of each location are correct. Tne entire
procedure is then repeated, but this time memory is filled with a different
required set of binary bit patterns. The process continues until all re
quired binary bit patterns have been used.

Using this brief overview as a foundation, the algorithm will now be
examined in more detail.

The first step in the memory test algorithm is to clear the memory block
to be tested. Unce cleared, filling the memory block with the first set of

2

binary bit patterns can take place. The filling process is carried out in
the fal -Iowing lIIanner. The first memory word is read to make sure that it is
cleared. If it is not cleared, the error is flagged. dtherwise, the first
meillory word is then loaded with the binary bit pattern consisting of all
bits cleared except for the rightmost bit, which is set. If n-bit-word
memory is being tested, for example, the pattern

• • • •
is loaded into the first memory word. Next, the second memory word is read
to make sure ttlat it is cleared. Again, if it is not cleared, the error is
flagged. Otherwise, it is loaded with the binary pattern consisting of all
bits cleared except for the second rightmost bit, which is set. For n-bit
word Illemory the pattern

I 0 I 0 10) • • • •
would De loaded into the second memory word. Each successive binary bit
pattern is formed by simply rotating the current pattern left one bit.
kepeating the process for the third memory word, then, produces the binary
bit pattern

10 I 0 I 0 (• • • •

The algorithm continues to fill successive memory locations in this
fashion until the entire memory block to be tested has been filled. When
filled, memory should contain the pattern displayed in figure 1. Notice
that the "sliding one" pattern repeats every n memory words. Once memory
has been filled, the next step in the algorithm is to check memory by again
reading each memory location to verify that it contains the value with which
it was filled. If an error is detected, it is flagged. This portion of the
test will be referred to as "sliding one-part 1" in following discussions.
(For convenience, TABLE I summarizes memory initialization and loading order
for each part of the algorithm.)

In the next part of the test, denoted as "sliding one-part 2", the memory
is filled in reverse order, as follows. Memory is initialized by clearing
each bit in each word as before. The last memory word in the block is then
read to make sure that all its bits are cleared. The last binary bit pat
tern used in "sliding one-part 1" is then loaded into this memory Word.
Next, the second last memory word is read to Illake sure that an its bits are
cleared. The memory word is filled with the binary bit pattern obtained by
rotating right one bit the binary pattern just used to fill the last memory
word. The memory-fi 11 i ng process conti nues in thi s reverse order with each
successive binary bit pattern obtained by rotating the current pattern right
one bit. When the memory block has been filled, the first memory wora con
tains the pattern

I 0 101 o? • • • •) 0 I 0 I 0 I 1 !
and the memory block should again contain the pattern displayed in figure 1.
As before, once memory has been filled, each memory location is again read
to confirm that that it contains the value with which it was filled.

3

-- ----- -----

lI~liciing one-part 3" and "sliding one-part 4" are essential"iy the same
as parts 1 and 2, respectively. They differ only in that Inemory is ini
tialized "high" for these portions of the test. Every bit of each word is
set, not cleared as before, prior to beginning the filling process. The
filling and cflecking processes are as described above except that each word
is read to make sure that all its bits are set before it is filled with a
binary bit pattern.

The algorithm requires cycling through all possible initial patterns of
bits. That is, for the second pass through "sliding one-part 1," tile binary
pattern

• • • •)01011101
is used as the initial pattern in the first memory word. When filled, 'memory
should then contain the pattern displayed in figure 2. The a'igorithm con
tinues cycling until all n possible initial (sliding one) bit patterns have
been used. For the nth and final pass, the initial pattern in the first
memory word is the binary pattern

• • • •)01010101

Finally, the algorithm repeats the entire procedure using a "sliding
zero" in place of the "sliding one." For the first pass through "sliding
zer(}-part 1," the initial pattern loaded into the first memory word is

• • • •
When fillea this first time, l1lemory should contain the pattern displayed in
figure 3.

RESULTS AND DISCUSSION

As mentioned before, the distinctive characteristic of the memory test
algorithm just described is the reading of each memory word before it is
loaded with a particular binary bit pattern. This feature offers a con
venient means to determine whether bits have been erroneously cleared and/or
set elsewhere within memory from some access to a particular memory
location.

Referring to figure 4, suppose that loading some memory location i
causes an error of one or more bits to be cleared and/or set elsewhere in
memory. The error falls within one, or a combination, of three distinct
categories. Namely, CASE I) bits are cleared and/or set erroneously in
memory words preceeding location i (area I in fig. 4); CASE II) bits are
cleared and/or set erroneously in memory words following location i (area II
in fig. 4); and CASE III) bits are cleared and/or set erroneously in l(}
cation i itself.

Let us now examine each of these cases individually.

CASE I:
A. If bits are cleared in a preceeding location, the error will be

detected by "sliding one-part 4" of the algorithm. Recall tnat

4

J

for this portion of the test, lllelilOry is initialized with all bits
set, and the memory block is filled in reverse order from last
word to first word. The error will be discovered when the
algorithm attempts to load a binary pattern into a memory word
whose value has changed from its initial condition value of all
bits set.

~. If bits are set in a preceeding location, the error will be
detected by "sliding one-part 2" of the algorithm. Here , an
attempt will be made to load a binary pattern into a memory word
whose value has changed from its initial condition value of all
bits cleared.

CASE II:
A. If bits are cleared in a following location, the error will be

detected by liS 1 i ding one-part 3" of the a 1 gorithrn . For th is
portion of the test, memory is initialized with all bit s set and
the memory block is filled in a forward direction from first
word to last. Again, the value of a memory word will have
changed from its initial condition of all bits set .

B. If bits are set in a following location, tne error will be
detected by "sliding one-part P of the algorithm in similar
fashion.

CASE I II :
If extra bits are set withi n the word itself, the II s 1 i di ng one"
portion of the algorithm will detect the error. It will ao so
because after the memory block is filled, each memory location
is read to verify that it contains the value with which it was
supposed to be loaded. Since a valid "sliding oneil pattern has
only one bit set, an extra bit set in the word will be
discovered immediately. The "sliding-zero" test, however, is
required to detect the error of extra bits being cleared within
the word itself. This error will be detected while reading
memory after it is filled because a valid "sliding zero" pattern
has only one bit cleared.

Since erroneous clearing and/or setting of bits elsewhere in memory is
detected, the algorithm fulfills the second condition required for an ac
ceptable memory test. It certainly also fulfills condition (1) since each
bit of every word in memory is cleared and set not only during the "sliding
one" test but also again during the II sliding zero" test.

CONCLUDING REMARKS

Presented in this report is an algorithm for testing digital computer
memory. The scheme is general insofar as it can be applied to any size
memory block and any size memory word. The algorithm is concise and
efficient. Fewer tnan 400 cycles through memory are required for a test of
16-bit-word memory. Using a microcomputer having a cycle time of 133
nanoseconds, approximately 15 seconds were required to test its 32K- by-1b
bit memory. The algorithm is a complete memory test at the single-bit
interaction level. It will also detect basic types of pattern sensitivity

5

because each memory bit is required to tolerate neighooring bits at both the
same and opposite logic levels as itself. However. it was not designed to
thoroughly test for word pattern sensitivity because such a test would
require too much program execution time to be practical. Likewise. detecting
intermittent errors is hardly plausible unless they occur while the diagnos
tic test is executing.

REFERENCES

1. ~Iech. ~ichard A.; and Arpasi. Dale J.:
Simulation Using Parallel Processing.

An Approach to ~eal-Time
NASA TM 81731. 19~1 .

2. Szuch, John R.; Seldner, Kurt; and Cwynar, David S.: Development and
Verification of Real-Time Hybrid Computer Simulation of FI00- PW-IOO(3)
Turbofan Engine. NASA TP 1034, 1977.

3. Lilley, Robert W.: Test Program for 4-K Memory Card, JOLT
Microprocessor. (TM-33, Ohio University; NASA Grant NGR-36-009-017.)
NASA CR-148770, 1976.

4. Nabers, Steve: 6502 Comprehensive Memory Test Program. Interface Age,
Vol. 4, No.4, Apr. 1979, pp. 140-145.

5. Duncan, Ray: Z-SO Memory Test. Dr. Dobb's Journal (Computer
Calistnenics and Orthodontia), No. 52, Feb. 1981, pp. 22-23.

6. Borer, A. J.: Total Memory Test. Microprocessors and Microsystems,
Vol. 4, No.4, May 1980, pp. 141-144.

7. Grappel, Robert D.: M68000 Diagnostic Program Tests Memory. EDN
Magazine, Vol. 26, No.8, April 15, 1981; pp. 1~7-15~.

6

I ------- ------- - - ._----------

TABLE I. - SUMlvJARY OF MEMORY INITIALIZATION
AND fVlEMORY LOAD ORDER

Memory Memory load Text use
initialization order reference

Sliding one-part 1 Clear Forward Case II-l)
Sliding one-part 2 Clear Reverse Case I-B
Sliding one-part 3 Set Forward Case I I-A
Sliding one-part 4 Set Reverse Case I-A

Sliding zero-part 1 Clear Forward Case III
Sliding zero-part 2 Clear Reverse Case III
Sliding zero-part 3 Set Forward Case III
S 1 i ding zero-part 4 Set f{everse Case III

7

0
0
0

0
0
1

0
0
0

0
0
1

0
0
0

0
0
0

0
0
1
0

0
0
0

0
0
1
0

0
0
0

0 0 0 0 0 0 1 1st Location
0 0 0 0 0 1 0 2nd Location
0 0 0 a 1 a 0 3rd Location

0 1 a 0 0 0 a (n-2)th Location
1 0 0 a 0 0 0 (ruth Location
0 0 0 0 0 0 0 n h Location

0 0 0 0 0 0 1 In+Uth Location
a a a a a 1 0 (n+2)th Location
0 a 0 0 1 0 0 In+3)th Location

0 1 0 0 0 0 0 (2n-2)th Location
1 0 0 0 0 0 0 (2n -Mth Location
0 0 0 0 0 0 0 (2n)t Location

0 0 0 0 0 0 1 (2n+ l)th Location
0 0 0 0 0 1 0 (2n+2)th Location
0 0 a 0 1 0 0 12n+ 3)th Location

Figure 1. - Memory contents after first pass through
"S liding one" test.

0 0 (j 0 0 0 1 0 1 st Locati on
0 0 0 0 0 1 0 0 2nd Location
0 0 0 0 1 0 0 0 3rd Location

0 1 0 0 0 0 0 0 (n-3Ith Location
1 0 0 0 0 0 0 0 (n _21th Location
0 0 0 0 0 0 0 0 (ruth Location
0 0 0 0 0 0 0 1 n h Location

0 0 0 0 0 0 1 0 (n+l,th Location
0 0 0 0 0 1 0 0 (n+ 2)th Location
0 0 0 0 1 0 0 0 (n+ 31th Location

0 1 0 0 0 0 0 0 (2n -3Ith Location
1 0 0 0 0 0 0 0 (2n-21th Location
0 0 0 0 0 0 0 0 (2n-Mth Location
0 0 0 0 0 0 0 1 (2nlt Location

0 0 0 0 0 0 1 0 (2n+ llth Location
0 0 0 0 0 1 0 0 (2n+2Ith Location
0 0 0 0 1 0 0 0 (2n+ 3)th Location

Figure Z. - Memory contents after second pass through
"Sliding one" test.

1
1
0

1
1
0

1 1 0 15t Location
1 0 1 ZndLocation
0 1 1 3rd Location

1 0 (n-Zlth Location
0 1 (ruth Location
1 1 n h Location

1 1 0 In+lIth Location
1 0 1 (n+Zlth Location
0 1 1 (n+3Ith Location

1 0 1 1 1 (Zn _Z)th Location
0 1 1 1 1 Izn-~th Location
1 1 1 1 1 (2n)t Location

1 1 1 0 (2n+ lith Location
1 1 0 1 (2n+ 21th Location
1 0 1 1 (2n+ 3)th Location

Figure 3. - Memory contents after first pass through
"Sliding zero" test.

MEMORY

CD

Filling this word
causes error to occur

@

1 st Word

Znd Word

ith Word

(i+lIth Word

Figure 4. - Memory block being tested. Loading Ith word
causes error In memory.

1 Report No. I 2. Government Accession No. 3. Recipient's Catalog No.

NASA TM- 82874

4 Tit le and Subt"lc 5. Report Date

A GENERALIZED MEMORY TEST ALGORITHM
July 1982

6. Performing Organizat ion Code

505-32-6B

7 Author (s) B. Performing Organization Report No.

Edward J. Milner E-1250

10. Work Unit No.

9. Performing Organization Name and Addre.s

National Aeronautics and Space Administration
11 . Contract or Grant No.

Lewis Research Center

Cleveland, Ohio 44135
13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Technical Memorandum
National Aeronautics and Space Administration

14. Sponsoring Agency Code
Washington, D. C. 20546

15 Su pplementary Notes

16 Abstract

Presented is a general algorithm for testing digital computer memory, The test checks that
1) every bit can be cleared and set in each memory word, and 2) bits are not erroneously cleared

and/ or set elsewhere in memory at the same time. The algorithm can be applied to any size
memory block and any size memory word. It is concise and efficient, requiring very few cycles
through memory. For example, a test of 16-bit-word-size memory requires only 384 cycles
through memory. Approximately 15 seconds were required to test a 32K block of such memory,
using a microcomputer having a cycle time of 133 nanoseconds.

17. Key Words (SuggC5ted by Author(s)) lB. Distribution Statement

Computer memory test; Memory diagnostic; Unclassified - unlimited
General memory test; Memory error test; STAR Category 61
Memory failure test; Computer memory

di 3.,,"l1ostic

19. Se<-ur ity Cla.sif. (of this report) 20. Security Classif. (of this page) 21 . No. of Pages 22. Price
.

Unclassified Unclassified

• For sale by the NatIOnal Technical Information Service . Springfield . Virg inia 22161

National Aeronautics and

Space Administration

Washington _ 0 C.
20546

0 4 f IClal Buslnpss

Ppnallv for Provate US('. $300

NI\SI\

SPECIAL FOURTH CLASS MAIL
BOOK

111111 ~-~

1111mlllllllf~/11~il~}mlll' .. =
1176 00503 9301 DSlage and Fees Paod

POSTMASTER :

altona! AefonauhCS and
Space Admonoslfalton •
NASA·~51

If U nd~hv~rahl< (S," 1''1 n I 5 PI
Puslal ~4Jnual) I)" , I«I"ro,

