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CHAPTER' 1

INTRODUCTION

The technical material presented in this report déscribes the work
under NASA Grant NSG-1603, Langley Research Center, Hampton, VA for the
period of March 16, 1981 - Qctober 30, 1982, Dr. Eugene D. Denmap served
as principal investigator for the grant. { Q

The work under this grant was to investigate numerical algorithms for
large~space structures with pnr:icuiar emﬂhlsia on decoupling method for
analysis and design, The invsztigator and project participants have con-
sidered numerous aspects of the analysis of large systems ranging from the
algebraic theory to lambda matrices to ide.iification algorithms. Previous
reports have described some of the problems considered including the theory
of the dacoupling procedure. The material presented in this report is a
general treatment of the algebraic theory of lambda matrices and application
of the theory to second-order lambda matrices. Since the finite-alement
analysis of the dynamics of a structure can be characterized by a second=-
order matrix differential equation, the second-order lambda matrix is of
importance in analysis and design.

Although publishedyliterature on lambda matrices is adequate in some
aspects, there are numerous gaps in the general theorytand a sericus lack
of computer‘sofcware for analysis of large structures. As an example, there
is no software package known to this investigator that computes the latent
roots and latent veutors with efficiency comparable to the software available

for computing eigenvalues and eigenvectors of general matrices. The usual
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computational approach for handling lambda matrices is to form a state-
variable matrix from the lambda watrix and then use the existing software

in computer libraries. Since the state-variable matrix is sparse, the exis-
ting software may not be efficient for such problems.

Chapter 2 of this report gives the general theory of lambda matrices.
This work was carried out to acquire a better understanding of lambda matrices
as well as £fill in some of the gaps in the theory. The relationships bacVein
eiganvalues, latent roots, eigenvectors, latent vectors, eigerprojectors and
latent projectors are presented in this chapter. The decoupling algorithm is
based on Riccatl matrices and projectors so this chapter plays an important
role in the work that follows. The theory of lambda matrices presented in the
chapter should also help in developinﬁ better software, as well as referaence
material for other researchers.

A lambda mac:ix of the general form A(A)-Aokn+A1kn—l+ - .+A“ is said
to be regular if det(Ao)#O. Chapter 2 is restricted to the regular lambda
matrix as the dynamic of a structure can generally be defined in the regular
form. Lambda matrices which are not regular have been considered in Chapter
3. This type of lambda matrix will sometimes result from the -analysis of
the dynamics of a system, A firti order lambda matrix which is noctregulat
was encountered in some related work on the space shuttle. The theory in
Chapter 3 complements the development in Chapter 2 and the twb chapters
cover the general theory of lambda matrice regardless of regularity.
large-space structure problem, but is given for completeness as well as:fot
the researcher working with low-order as well as low dimensioned system. The
procedure for computing latent projectors or matrix residues given in that
chapter would not be preferred to the eigenvector method given in Chapter 2

and 3 unless the worker has the inverse lambda matrix, [A(A)]-l.
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The finite-element model that :ﬁil investigator has considerad is char-
acterized by a second-order lambda matrix, Chupter 5 presents some theorems
on second-order lambda matrices and details on the oigdnprojcctorl and laten:
projectors of such lambda matrices, The material presented in ché chapter 6
can be used as a basis for cowputing the damping mwatrix although an in-depth
investigation reveals that the computational burden for this method of com-
puting the damping matrix will be high. Work gill continue on determining the
damping matrix by use of the mathematics of thib chapter,

The final chapter of the report describes a decoupled optimal control
algorithm tha appears to be reasonably efficlent for large space structures.
The method discussed a decoupling procedure which can be used with optimal
control theory to damp selected modes in a structure. A general scftware
package for determining feedback control for a structure could be developed
from the theory. Investigations made to date do not indicate a limitation on
the procedure other than the normal onep encountered in large systems. The
mode spill-over problem is eliminated by the method.

The material presented in this report required the effort of several
individuals. The contributions made by Dr. Graham Goodwin, Jesus Leyva-Ramos
and G.I. Jeon have been essential to the investigations and the material pre-
sented in this report., Dr. Graham Goodwin was on leave from the University
of Newcastle, New South Wales, Australia and was a Visiting Professor for the
six month period January-June 1982 at the University of Houston. The contri-
bution to Chapter 3 is hereby acknowledged as well as the time given to research
personnel for discussion of various problems. |

The Principal Investigator is grateful to NASA Langley Research Center
for the support during the grant périod as well as the encouragement and

suggestions of Dr, Garnett Hornmer, technical monitor of the grant.




CHAPTER 2

THE ALGEBRAIC THEORY OF LATENT VECTORS AND PROJECTORS IN LAMBDA MATRICES

Multivariable systems and controls are often formulated in terms cf n-th
order matrix differential equations which give rise to lambda matrices of the
form ACA) = A A™+A A""H4. ... +A . This chapter describes the algebraic
theory of latent roots, latent vectors, and latent projectors and gives the
relationshipa to eigenvalues, eigenvectors and eigenprojectors of the com-
panion form mn:rix; The theory presented in the chapter is general in that
distinct as well as repeated eigenvalues or latent roots are treated. The
work is limited to regular lambda matrices, det (Ao) ¥ 0,

The chapter consists of three sections. Section 1 is introductory in

scope and presents the mathematical forms of lambda matrices, and companion

matrices as well as the contiection between eigenprojectors and latent proctors,

Section 2 gives the algebraic theory of lacent roots, eigenvalues, latent
vectors and eigenvectors. It is shown that the latent roots obtained from
the lambda matrices are equivalent to the eigenvalues are computed from the
companion matrix. This result is well known and presents no new material,
The relationships that exists between the left and right eigenvectors and

the left and right latent vectors is then developed and it is shown that the
latent vectors are subvectors of the eigenvectors. The algebraic theory of
the eigenprojectors and the latent projectors is developed in Section 3.

It is shown that the latent projectors are submatrices of the eigenprojectors.
Section 3 is a general treatise on eigenprojectors and latent projectors where

distinct as well as repeated eigenvalues have been considered.
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1. Introduction

Multivariable systems such as a finite-element model 6! vibrating struc-
tures, control systems, and large l“,nall systems can be formulated in terns
of second or higher order matrix differential equations. Although such
systems can be reformulated in state-variable formy, it may be more efficient,
from a numerical viewpoint, to analyze the system ’uling the higher-order
differential equations.

To illustrate, assume that the dynamics of a system can be characteriszed

by the nonhomogensous matrix differential equation

x . & | , |
A # A e * ous s A X® !(t) (1-9;)
0 ac” 1 ae” 1 B

wxm n a
where Aiek , X(t)ER™ and £(t)eR, from which it follows that A(s) given
by

- n n=1 ‘
A(.) Ao. +A1. + LN ] *00 + An (1.?)

will result when the Laplace transform is taken of (1.l). If s » A then
(1.2) becomes a lambda matrix (or matrix polynomial). If Ao = I, then
(1.1) can be defined in state-variable form and the companion matrix A o

can be written as

o, I o LN ] °
0 0 I ces 0
Aem 1 S H IR « @3
-An -An_l -An_ 2 XX -Al y 7

- L
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vhich has eigenvaluas Ai and cigcnvoctori’Yci. At will be a mnXmn Matrix
vith mn eigenvalues and mn ligcnvnctd?p.

When the parxtial fraction .xpnnnibﬁ of [A(A)]'I is taken the following
general form is obtained

r P°Y P

TN A N e (1.4)

i=1 4=0 (A=A

where r is the number of distinct latent roots given by det A(A) = 0, L is
the multiplicity of a root and q, is equal to the nullity of A(A1) for the
latent root Ai‘ The matrices Pi,zec-x- will be called latent projectors
(or matrix residues, [1]).

Similarly, the cumpanion form Ac(k) is given by [Ik-Ac] which has eigen-
values Ai given by dct[Ac(k)] = 0, The partial fraction expansion of A;l(k)
can be written as

r MY o

-1 1,8
A (A - ) ——tee
M) 121 220 (=2

g m

with P dencted as eigenprojectors or matrix residues [2].

i,
The purpose of this chapter is to formulate the algebraic theory of lambda
matrices and the relationship of latent roots, latent vectors and lttcnt‘
ptbjoctors to the eigenvalues, eigenvectors and eigenprojectors of the com-
panion form. The chain rule for latent projectors and eigenprojectors for
the repeated latent root or eigenvalues will be given.
This werk follows the lines of the earlier work of Lancaster [3],

Lancaster and Webber [4], and that of Dennis, Traub and Weber [5] on lambda

matrices and matrix polynomials. The reader should refer to Zadeh and Desoer,

[T —

o o s gt




[1) and Cullen [6] for material on matrix residues and projectors as well

as to tha paper by Denman and Loyﬂa-lalo- [2] for some material on eigen-
projectors. It is assumed that the readir is familiar with the fundamentals |
of linear algebra. An axcellent source of general material on linear algebra
is Gantmacher, [7]. Lambda matrices are discussed by Lancaster in [3], [4)
and [8]. ’

2. Lambda Matvices and Companion Forms

A system of differential equations representing a physical model may

be given by
- d(n)! t — d(n"1>x t —
* T;GP‘ + K -:Fn—_—l-)(-l oo +EX(E) = £(E) (2.1)
. ey m - mXm m
with initisl conditions x(0),x%(0),...,x(0)eR" where A ,eR ~, x(t)eR and

i
£(t)eR®. The existence and uniqueness of the solution to (2.1) is assumed.

It is further assumed that (2.1) is Laplace transformable with the Laplace

transfora taking the general form

= A= n= T _
[AO. +Al. +. » .+Anlx(') '(.) (2'2)
vhere B(s) contains the initial condition information as well as thc‘Lapllce
transform of £(t),

If 8 = A in (2.2), then the resulting equation can be considered as a
lambda matrix equation. The left hand bracketed term in (2.2) is of inter-

est in the Temaining parts of this paper. The equation in brackets, AQ)

or A(s), is frequently called a matrix polynomial although Lancaster [3]

and Dennis, Traub, and Webber [5) defined IIA) as a lambda matrix. This
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paper vill adhere to the terminology of Lancaster , et. al., and refer to af))
as a lambda matrix.

2.1 Definition, Givan & set of constant matrices 'K,,en"", and a scalar A
such that AEC, then a lambda matrix will be defined as A(A) = TOA“+’KIA"1+
...-O-Kn. This matrix will be called regular when det 'A'o ¥ 0. Yor -A'o non-
singular, then Ko can be factored vut of A(A) such that

RO = By (™A 24, A ) = KAQ) (2.3)

2.2 Dafiniction. Lat ;‘:(A) be as definad in (2.3) amd lat 'Aiac be a latent
root of ;O‘) where a latent root J\i is a root of det K(J\) = 0,
1f -A—(A) is regular, the:n thers will be mn latent roots of ;(A) which

are equal t» the eigenvalues of Ac.

2.3 Theorem. Let A(A) be as defined in (2.1) and let the determinant of

A()\) be given by the general form

1

det A(\) = cok"a-clx"' +oabC = 0 (2.4)

The lambda matrix will have at most m-nullity KO latent roots.

Proof. Let A(A) be represented by

) M) e e ]

_ 8,00 8,00 .. ay ()
A(A) Ld . ) see . (205)

L] L] LN r L]

l.l(l) o .d(k) see “.(A)

Yot

A

astéceng .
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where each 8, (\) 1is a scaler polynomial of at most order n, i.e.
- n an=1

wvhers 85K are the coefficients of the scalar polynomial with ’l“k - A.k(ig.'i).
The determinant of (2.5) has been defined by Franklin [9) as

det -A-(k) - A l(d Dj; --vj )l (A)l (A)-o-l (A)o
(31212,.,..3n) 12wy T2, '@-(z -

The summation extends over m! permutations 31.32...3- of 1,2...m with

Uplyeedy) motm | 1Aty (2.8)

The coefficient co is obtained from the leading coefficient of det A()\) as
given in (2.7) which will be

Co = § a(j)lljlo 12120 - .njnO = det A, (2.9)

1f det IO = 0 then A(\) will have at most m-1 latent roots. The czsfficient
cl will be given as a linear combination of the determinants of all the sub-
matrices (m-1)X(m-1) of 'Ko. C, will be given as & linear combination of the
determinants of all submatrices (w=2)%(m~2) of IO and so on until IO is the
zero matrix. '

2.3.1 Corollary. There will be at lesst nullity A latent roots at the
origin, i.e. A = 0. In the particular case when dat Kn = 0, there is at

least one latent root at A = 0,
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The proof of this corollary follows directly from (2,7) when the co-

efficient cm in the summation is considered,

2.4 Definition. Let A(A) be defined as in (2,3) with matrix coefficients
Azel.'x' and latent roots Ai of multiplicity LT The number of prircary right
or left latent vectors will be q - nullity A(Ai). The right latent vectors
will be denoted by yij) and the left by ::J) where yi" and l(j) satisfy

the relations

A(Aj,,)yj(_d) = Opx1 i= 1:2v-'-n‘li (2.10)

AT(}\i)Ifj). lel J - 1‘2'oou,q1 (2011)

with yj(_j)ec"xl and zij) ec"xl
The primary right latent vector yi’” is a subvector of the linear* in-
dependent right eigenvector yg) of the companion matrix of (1.3) with

= -

y(J)

¢}
A

@ . i’ij) (2.12)
n=-1_(3)
M Yy

(

wvhers yc'l) satisfies the usual algebraic equation (A I)y(” =0y

Such eigenvectors will be referred to as primary ninnvac:orl in the rest
of this paper.

pese
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It follows that the primary right eigenvector yii) is a function of~y§5)

and Ai. The primary left eigenvector ;gi) satisfies a similar form as

, [
yéi) with '

- -
ATt 2 L oy 1):"’

a=2 T [€))
e R IR L T | B
’:i) i} - (2.13)

raaTy 5 (3
(A T4A7) 23
2‘,:’)

L. i =

whsare :ij) is a primary latent vector,
The two forms of ygi) and zgi) given in (2.12) and (2.13) hold when
41.3 4 and the maximum number of primary right or left latent vectors will

be m. If n, > 4y then m,-q, generalized latent vectors must be constructed

. to completely define the lambda matrix from its latent roots and vectors.

The B-q, generaiized latent vectors satisfy a chsin rule as given in

Lancaster, [4].

2.5 Theorsm. Let a(A) be defined as in (2.3), a set of right latent

@ @ (“3’ o<l

vectors Vi e ¥4 e oeeen vy form a right Jordan chain associated

with the latent root Ai and the jth primary latent vector. The chain rule

is given by

[} ,G-) dzA(Ai)y(z-Z)

(1-)
AQ)y ™"+ =gy "'2! Y

(1-1) X
, d AQAY)
1 £, g

+ 2 - 1 2 LR ) h
(2-1) ! i nxl i | 2ot | ’

4 (2.14)
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where yil) is the jth primary right latent vector and h3 is the length of the

Jordan chain. The vectors yik) for 1L<k<h

vectors of the jth primary latent vactor.

Proof. The proof of this theorem is obtained from tonsideration of the chain

rule for genaralized eigenvectors. The chain rule is

(A~ I)ym - yg)

a Ay - @

(2.15)

ét) for 1 < k.i‘hj its generalized

eigenvectors associated with the eigenvalue ki of Ac. When (2.15) is expan-
&)

being ygi) the jth primary eigenvector and y

ded the chain rule is obtainad where A

&)
ci’

The generalized right latent vectors yil) snd y(z) will be obtained from

is formed from the first m rows

of y

dA(A,)
“"1)"(2)"' dx'L""il) = O

dAQ)) d°AQr)
3, (2) i i
Ay vy et A | S I

or (2.14) in general.

5 are the generalized right latent

Bl

BNt Ao
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Tha chain rule can also be utilized to modify (2.12) for the relation

between the generaliced eigenvectors and the generalized latent vectors with

Red

r —
o
: (), (k-1)
Ay vy
(%) 2 (k) (k=1) . (k=2)
Yoo = | Ay{ey ey (2.16)

-1
, n=1, ,n=3=1_(k=3)
y ( 3 )Ai Yi

=0
(k-321]

2.6 Theorem. Lat A(A) be defined as in (2.3), a set of left latent vectors
zil). zfz), pesey zihj) ec‘*l form a left Jordan chain associated with the

latent root;xi and the jth primary latent vector. The chain rule is given by

2,T
__-d A (ll)

aaT@,) 1
&
21 dlz

AT(A‘):?) P i""‘) +

=2)
dx r 1

+ e

a D0, .
- 2z - - . .

D

where z}l) is the jth primary left latent vector and hj is the length of the
ik) for 1< k< hJ are the generalized left

latent vectors of the jth primary latent vector.

Jordan chain. The vectors z
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Proof. The proof of this theorem follows directly from the generalized

(k)

left eigenvectors z.q

(k)

vector z1

of the companion form, the generalized left latent
will be formad from the last m rows of zﬁi).

(k)

The generalized left eigenvector z,, can also be defined from the

latent vectors zik) of Ai, the latent roots Ai and the lasbda matrix A(A).

Utilizing (2.13) and the chain rule for zét). it follows that the left.

‘generalized eigenvactors satisfy the relation

-

::) (A§I+A§A£+A§)zik)+(2A11+A§)zik‘l)+z§k'2)
Ty (k) (k=1)
(A11+Al)zi +z1
(k)
z
|1

(2.18)

(k)

The latent vector z,

is defined only for 1 < k < hj'

The number ‘of primery latent vectors associated with the latent root

Ai is q1 and eéach of these latent vectors could have a chain of generalized

lateant vectors. The structure of a Jordan block Jiecnixli could be given by

Do TV R R T T (CE DY s TS T LSRRV Y e T

—

i ity

i gttt

Ao e in

stk
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A1 .
A \
1,. : h
R !
)
Ji- -.. e (2.19)
R )
‘ |
' A q
i i 5
i & "oy
Y
N 3 iy

q

i
such that Z j -, and every Jordan chain has a very well defined number
oi gcnnralized lateunt vectors., The value of hj is such that the chain rules
for (hj+1) as given in (2.14) and (2.17) are nct satisfied.

An example will now be considered to illustrate the computational pro=-
ceéduras. Let A()) be defined as
1 0 2 -(‘.0 200 300 “1.0
A(Qd) = AT+ , A+ (2.20)
01 -0.2 =3.0 0.2 2.6
which has latent roots A, = 1 with multiplicity m = 1and ), = 2 vith mul-

tiplicity m, = 3. The right latent vectors are '

r® D @ O 13 -1 -2

Y=
| 72 0 1 =1 =1

and transposed left latant vectors.

3 =2 =] -1
(1) _(3) (2 (1)
Z = [z z z ]=
17 =2 5 5 0 5

The right eigenvectors can be constructed from (2.12) and (2.16) with HR be-

ing the right eigenvector matrix

3
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st

] y» W ¥ y9
w ™
2T [hp® ay® yBay® @O
(4 5 -1 =t |
0 1 =1 =1 ) Q) (2) (3)
"y 6 1 s | "D Y2 Y2 Ye2!
LP 2 =1 -3 R

The transposed left eigenvectors can be constructed from (2.13) and (2,18)

with bcing the left eigenvector matrix

(n M0 DD aPemade® @Dy
b A e 29 D oD

r -
-8 2 1 1
A A N C N C N

3 =2 1 -1 [' P2 %2 ]
-5 5 0 5
L. -

It should be notad that the left eigenvectors snd latent vectors are
raversed in order with respect to the right eigenvectors and latant vectors.
The reason for this revarse ordering will be discussed 1lter,

The companion matrix Ac can bs generated from the right eigenvector
patrix WR or the left eigenvector matrix “L
A= w Wl et g W (2.21)

where

[

st




3
¥
I
1
t
$

P

A

P

e
R

Uit

[ —

BRI e

ORIGINAL PAGE IS 17
OF POOR QUALITY

B =
0
0

1

i 0 Z'J

In the next section it will be assumed for simplicity that the (qi-l),

o ©C O
o O N O
O N = O

primary latent vectors do not have any generalized latent vectors and the
qith latent vector has Cli-qi) generalized latent vectors although a more
general treatment will require the structure of Ji as given in (2.19).
3. Eigenprojectors and Latent Projectors

It was shown in the previous section that the latent vectors of a
regular lambda matzrix with leading coefficient AO = I are given au subvec~-
tors of the eigenvectoras of the companion matrix Ac constructed from A(A).
The structures of A, and A(A) as given in (1.3) and (2.3) respectively will
be assumed in this section. The computation of eigenprojectors and latent
projections from the eigenvectors and the latent vectorswill be given in
this section and their relationship to partial fraction expansions of
[Ac(k)]-i as vell as [A(A)]-l will be given. The chain rule for the latent
projectors will be derived and an example will be presented.

Zadeh and Dasoer 11] have given the general partial frncg;bn expansion
of (AI-AC)-l as

m,- P
T (3.1)

-1 a1
[A,(AM)] "= (AI-A ) " = )
e c =1 =0 (-a™

mnXmn
where Pi.zec

»m, is the multiplicity of the eigenvalue Ai and q is the

number of primary eigenvectors. The Pi 2 matrices will be called the eigen-
9 N

projectors since they can be constructed from tlhe eigenvectors of Ac. The

eigenprojectors are also the matrix residues which can be computed from the
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usual formula
-V ik LN A1
Pi,m-q, ok T M -Ty 9 [A. M) - G

k - o.l.." O_.‘i-qi

or from the proper selection of the right and left eigenvectors as will ta
seen later.

The aigenprojectors (or matrix residues) satisfy the properties of the
resolution of the identity and spectral decomposition

T

L. 151 21,0 " Ymnxan

II. Pi,o Pi.O - Pi.O

L By By o O 199
IV. Pi,ﬂ.+1 - Pi'z (Ac-xil) i = 0.1.2..0.'-1 qi-z
Vo Py mmg, A MY " O
) ] ]
. VI. A = ot P i (3.3)
c 4=1 i,0 =1 i,1

Property VI describes the apectral decomposition of A sRan'n

and the set
of eigenvalues Xi is called the spectrum of L An additional property can
be added for defining functions of a matrix which is obtained dirsctly from
VI with

VII. £(A) = 1‘21 Pi‘of(ki) + 121 9.21 Pi.z'fu"d‘;ﬁi £0A,) (3.4)

18
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Properties I~V and VII are given in Zadeh and Dasoer [l].

3.1 Definition. Let Wy, WrC™ ™ be formed from the set of normalized,

right and lefteigenvactors, yg) and :é‘}_’t:c-‘“1 respectively with u‘u{ -A‘I.

Let !::x'i and z::“‘i be the rectangular matrices (or vectors when m - 1)
for Ai with
" mnm : (q,-1) (q,) (m,)
1., () i 1 1 ,
YCi [Yci yci see yci yci ves ’ci l (3-5)

vhere it is assumed that the first g, vectors in (3.5) are the primary eigen-
vectors and the last m,-q, are generalized eigenvectors associated to Ay
Similarly, assume that

Q1 @) ()
z

T, e By ] (3.6)

mnX
z 4 D @

ci - ['c ced " Ted

W @) (9y) o
where 2oy 0By v eenEy in (3.6) ars primary eigenvectors and the vectors

(q,+1) (=) o |
z i peserZag the generalized aigenvectors for Ai. The ordering of the
ci

left eigenvectors in (3.6) must be as shown because the ones in ths Jordan
blocks for Ai are located on the subdiagonal of Ji due to the transpose
operation in Ac.

The matrices “R and "L are the right and left eigenvector matrices (or
modal matrices) with

1

- T
Ac =- WR J WR

~1

waere WR - H: vhin the eigenvectors have been properly normalized. It fol-

lows from (3.7) that

T s o

T e T AR T TR e 5

T T
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\ -1 T
(AI-A)) = W QI=DW." = W A=W, (3.8)

thus (AI-Ac)-l - wn(xx-J)'lw‘l. See the appendix for the atructutu of J.

3.2 Theorem. Let Pi ochnx'n be a primary eigenprojector of (3.2) for a
]

distinct, nonrepeated eigenvalue Ai of Ac. The primary eigenprojectors are

given by
\ ¢ Y (1)
P1.0 - Yizi Yei %ot (3.9)
where y(l) and z(l) are normalized right and left eigenvectors respectively
of A

Proof. Let (AI—AC)'l be as given in (3.8) with P1 % defined as in (3.2)
»

then

o Vim 4 -1 _ fm . =17
P10 " hen, OmAD OTA)™h = (8 OeA Wy A=) a4

s @
- Yiz Yei Zet
as all diagonal elements of (A-}\:L)()\I-J)'1 will be zero in the limit except

for the ith diagonal element which will bLe one.

1, oEC eC™ ™ pe the primary eigenprojectox of (3.2) for

a8 repeated eigenvalue of Ac with qq = m. The primary eigenprojectors for

the repzated eigenvalues are given by

P -y z yi (.1) (J) (3.10)

1,0

st

gttty
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where ygi) and :gi) are the normalized eigenvectors for Ai.

Proof. The proof follows from (3.8). The diagonal elements of
associated with Ai in the limit and zero elsewhere. This means that each

right eigenvector pairs off with a left eigenvector giving (3.10),

3

3.3.1 Corollary. Given that ;:i) and Qii) are not normalized, then the
primary eigenprojectors are given by ‘

OO NONON
-1 yci ‘ci -t yci 'ci ~
Pio= )l —w—= I =53 .a11)
0T gm o
el ‘el

o TA 4
where ni'i - zéi) yéi).

Proof. Assume that the ncrmalized right and left eigenvectors ars scaled

by %y and BJ respactively, The numsrator of (3.11) then becomes

A ()T RO
yci ‘ci - ajejyci ':i

whereas the inner product in the denominator terms ave

1,9 o s CO ) I
ni’ fed Ve uwajzei Ved uij

T .
sinca zéi) y§i> = 1., The product “ij in the numerator and denominator then
1
cancel,giving (3.i0). It is important to notice that séi) yéi) = 1 becauss

the primary eigenprojectors satisfy Property II in (3.3).

3.4 Theorem. When the eigenvalue Ai is repeated with multiplicity m, and .
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q < my then Ac will have 9y primary elgenvectors and m-q generalized
eigenvectors. The primary eigenprojector for Ai is given by

94-1 » (m,~3+q,)"

. BB, M@, iy

dzl ci ci + qu yci zc:l. {3.12)
'l

},0

vhere the first summation is over the set of qi-l normalized primary eigen-
vectors snd the second susmation is over the qth primiry eigenvector and

the set of (Iieqi) normalized generalized eigenvectors.

Proof. As before, (?‘I-Ac)"1 can be written as ip (3.8) with J. Utilizing

the mataerial as given in Appandix A, the primary eigenprojector is

(‘ -qi)
_ B9y -1
P, A_,'; Vel _q 3 —-(.—_T)(A A G=-07I (3.13)

which after differentiating (li-qi):iuna and taking the limit gives

ey 2F (3.14)

Py,0 " YoiPey

and substituting for Y , and Z , as defined in (3.5) and (3.6) gives (3.12).

3.4.1 Corollary. Lat ;éi) and,féi) be unnormalized right and left eigen-

vectors for the eigenvalue Xiqwhich has multiplicity L and 9 <m. The

primary eigenprojector for A is given by

a1 5@’ sy )’

P - 1 ci ci Zi‘ ci ci
o -
B0 g ~<3)Ty§i’ sma, BRI
ci y
a1 A(i) (;1) ﬁcib‘:i )"
-7 °j° +2 Yot Tet (3.15)
- »J - i*q '3
i=1 I=q, '“1 1

e
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T
where ni’k‘ - lg) yé:) .

e Proof, The proof of thia corollary follows from the proof in Corollary 3.3.1,

3.4.2 Corollary. The normalization coefficients ni"“ for the summation

o over the qth primary eigenvector and the generalized eiganvectors is given

E i by

ié »,,q m-1,q,+1 qqm ;
nlt : - nii i‘ iee ® ﬂii 4 (3.16)

Proof, The proof of this corollary follows immediately from the definition
of generalized right sigenvectors as given in (2.18) and from ths general-

ized left eigenvectorsas follows

e ) ;(qi)

| r (4
UMD 2oy cd

(q,+2) (q,+))

, r 9y 1

(A~A D727 =z

C @) (=D
4 q

(AN D2, Bei

and taking sppropriate inner product the following result is obtained

- T | ;
1 T (m)" n,-q, (m)
i e 2@ yE = ayt aan G

for qif_j 5—"1 and qii‘kf_ni

3.5 Theorem. Let ‘yf_i) and zéi) be the right and left eigenvectors for

such that j+k = m +q,; then (3.16) is proven,

the eigenvalue >‘1 of multiplicity m, and q < m, then there will be »-q
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generalized esigenprojectors associated to Ai and given by

| W ) , T
(m,=34q,~2)
1,0 " th yc(:i)'cii : (3.17)
1

P

Uh.tl ﬁl - 1’2.boo_’-1"qil

Proof, This theorem is proven by considering the structure of (Al:-.)".)'1
as given in Appendix A, and by carrying out the algebraic opexations of

(3.2).

3.5.1 Corollary. Given that ths secondary eigenprojectors are to be con-
structed from the set of unnormalized eigenvectors, the required normaliza-

-iOQ’. ,
tion factor is oo dee.

m,~L AT
. ._..!'......,. i ;(.1 ) ; (ﬂi"Jﬂt"L)
ci el

P
m,,q9 -
n 't 3%y

4,8 . l-l,Z,;..,-i-qi (3.18)
Proof. The normalization coefficients ni’k are constants over the qth
primary and generalized eigenvectors of Ai,:hcrcforn,clch vector product
in (3.17) will be normalized by the sama constsnt.

The algebraic theory of eigenprojectors is useful in developing the
algebraic theory of latent projectors (or matrix residues) of a lambda

matrix. The partial fractjon expansion of [‘A(A)]-1 is

A

- r o,=-q 4
arte 7t LA (3.19)

=1 gm0 (=-rM

vhere Si 2 is a latent projector. It is known that 51 g can be computed in
’ 1 ]

the usual manner with

24
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a . lin (k) »,-q,*1 -
Fimmaon " G LTT O-ap * ) (3.20)

for k= 0,.1.2..-0..1"1110
The devalopment on eigenvactors, eigenprojectors and latent vectors
will now be used to devalop the algebraic theory of latent projectors as

defined in (3.19) and (3.20).

3.6 Theorem. The lambda matrix [A(A)]-1 will be given in the upper right
a%m block of the inverse of AC(A) as lhowﬁ

_
. u\(m’ﬂ

wrta Lo . (3.21)

provided that A(\) is regular and AO - I,

Proof. The proof of this thecrem follows directly from the inverse of

Ac(k) where

- aam
AI -I 0 sv e 0
0 AI —I e 0
AN =1 s : S .
Ay Ay Ayg e ATEA

3.7 Theoram. Lat fi 0 denote a primary latent projector of A(A) for the
»

latent root Ai of multiplicity m, and q =mn

g The primary latent projector

is given by
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)
0" jxi yij)z(j) (3.22)

()

where y1 and z(J) ars normalized riglit and left latent vectors respective-

ly of AQA).

Proof. The matrix AC(A) can be defined by N

-1 -1 T
[Ac(})] - WR(XI-J) HL

and from the previous theorem

.. (a1t Y

A M1 - : - O=0"....27)

N

with Y = [Yl.!z,...,Yt] and Z = [zl,zz,...,zr]. The latent vectors in Yi
and 2i are in sequential order since there are no generalized latent vectors.

Using the definition of an eigenprojector from (3.20) and

AT - Y[AI-3)" 22T

gives the desired results when the individual vectors of Y and ZT are con-

sidered.

3.7.1 Corollary. The lambda matrix [A(k)]-'1 as defined in (2.3) is given

by

(A1 = Y(A1-3)7 22T | (3.23)

sty

N
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whare Yec®™ and 2eC™™ gre the matrices of right and left latent vectors
respectively. Equation (3.23) will be designated as the canonical form for

the inverse of a lambda matrix [3).

Proof. The results stated in this corollary were obtained in the previous

theoren.

3.8 Theorem. The primary latent projectors P 1,0 of A(\) for the latent

root Ai of multiplicity m, and ¢, < m, are given by

q -
B B LI T (3.24)

vhere yi‘j) and zij) are the normalized right and left latent vectors re-

spectively.

Proof. The proof of this follows from a detailed analysis of [A(A)]-l as

defined in Corollary 3.7.1.

3.9 Theorem. Let P scmxm be a primary eigenprojector associated with

i,0

an eigenvalue A N of multiplicity m, with q g =9y The m*m block matrices
in the last m~columns of P are given by (A )Jf for § = 0,1,2,...,n~1
i,0 i’ "1,0

where P 1.0 is a primary latent projector.
| ]

Proof. When the inverse of Ac()\) is takes the m last columns will be given
as follows
.. oot

-1
e o AlAW)]

a1 - amr (3.25)

ese o
see o

.. Aot

_ .
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but the eigenprojector P for qi L is defined as

i,0

liﬂ -1

then applying the last equation into (3.25) gives

o R —
[ 2 . L ] Pi.o
1 ] [ ] L[] xiri'o
o= | @ : : (3.27)
N=lA
KR \ 13 00

which proves the theorem.

3.10 Theorem. Let P TN be an eigenprojector for Ai of multipiicity

i, 0

», with 9 primary eigenvectors and m, -q, generalized eigenvectors. The

mxm block matrices in the last m columns of P1 o e given by
L]

1] L] [) P‘o

. L . A Pi 0 1.1 +

+2A

4
]

1,0 "1’10 111 12

n=12 n=1,.n=-23 n-1, .n-3
S V) 1171'04-( TONTR, PR

1'2+I.'

(3.28)

Proof. This theorem is proven by considering the eigenprojector P de-

i,0
fined as

PETIISI

Ly

[ SEN.
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(- ,=q,)
- Mm

»-q tl -1
Pi0 ™ A {—-—:;:5—--?-—:;;- (=1)) (A, M7} (3.29)

when this property is spplied to (3.25), then the mXm block matrices in the

last columns of Pi owill have the structure as given in (3.28).
’

3.11 Theorem. Let Pi z xn be the latent projectors associated to the

regular lambda matrix A(A) with Ao = I, the set of latent projectors satis-

fies the following properties

I. izl Pi.o - oﬂXﬂ
1 § % A4 . for § = 1 2 e
. 1-1 2-0 2’ 1 1.’4 mxm pgoeey < 1 q’.
) nil It HR f<m,~ (3.30)
" qm1 gm0 * 71 1,4 ‘mm 2B~y .

If all q = m then 211 the generalized latent projectors ars zero and the

above properties simplify to

r

33 - -
Iv. 121 Py 0 ™ Opxg 3 =0,...,0°2
v. )’ x“'lr e (3.31)
i=]
Proof. Let Pi 0 c™ *an be the primary eigenprojectors of the compunion
form A as given in (3.28), when the resolution of the identity Z P1 0 = I

i=1
is applied, the mxm block matrices in the last column satisfy the properties

given in (3.30). If all q = m, then Pi.O

given in (3.27) then properties in (3.31) can be easily obtained.

have a simplified structure as
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Property I in (3.30) will be called the resolution of the zero matrix,
The above properties have been derived when the lambda wmatrix has the iden-
tity as the leading matrix coefficient, but for a general regular lambda
matrix the above properties also hold where Properties III and V are modi-
fied having Aj" in their right hand side.

It has been assumad in the theorems on latent projectors that the
latent vectors wers normaliied with normalization WRWE = I, The above nor-
malization is based on complete knowledge of the eigenvectors which may not
be available. It is therefore necessary to compute the normalization
factors from the latent vectors. Suppose that ni'k is as given ear.ler,

then for normalized eigenvectors

T
ni’k - z‘(:'l) yf:). (3.32)

This normalization factor must be applied to sach unnormalized latent vector
‘in the latent projector calculation.

The primary eigenvectors of Ac are given in (2.12) and (2.13) therefore,

the normalization factor, is

ye)

Aviyaf.j )

T T ,
ni'i - l:. .. ..z’(_J) [A§I+A1A1+A2],zij)[Ait-mll.zf')j Aiyij)

n-1_(3)
Ay Yy

i L

T dAA)
- .’(.J) __ari_-_ yij) for J < q (3.33)

o

S —
o
SN .

St barioad
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The normalization factors for the latent vectors in the chain rule are
more complex than the normalization factorzs for the primary latent vectors.
A lemma will ba given for that case,

m, X2 '
3.12 Lemma. Let J iec i1 be the Jordan block associated with the latent

root Ai and let y§j> and l{j) be the latent vectors. The normslization

factor is given by

(»)
ke g LT L A0 g

\ , y (3.34)
chvpeiticrq, = O0 o d

where A, has m,-q, generalized latent vectors and where q, < t < j and

Pk

Proof. The proof of this Jumma follows from Corollary 3.3.1 and the corre-

sponding relations for the aigenvecrors and latent vectors., As stxtad
B, Ii-l,Q£+1

Corollary 3.4.2, the normalization factors ny =-n, = . see ™
q B
ni1 ! are equal.

The generalized latent projectors satisfy a chain rule which would be
expected since they are constructed froa the generalize latant vectors that

saticfy a chain rule,

Theorem 3.13. Let $1pzec‘x' be the generalized latent projectors associ-
. ?
ated with the latent root Ai. The chain rule for the generalized latent

projectors is

)0
-1' 1'J 1 d A(}\lj ~ ’
220 -g'-‘- dA(R') Pi.j"’l - O‘XH J - 0'1' s O-i'qi (3035)

where A(A)mh’“‘ is a regular lambda matrix.

B ———————

e
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Proof. lLet Pi’fcmxm be the eigenprojectors of the companion form Ac.

Using P1 g as defined in (3.2) it is easy to show that the m*am block matrices
’

of the last m columns have the following structure

r-i ' —
. L L ] Pi‘z
. . Aipig £+Pi.z+1
Paa™ 1 : (3.36)
n=12 n=1, ,n=22
JECI.Y) 1’1.1*‘ 1% Py e,
- -

when the structure of Pi,z is used with Properties IV and V in (3.8) then
the results in this theorem are obtained.

The results in the last theorem also hold for regular lambda matrix
vwhere matrix leading coefficient is different than the identity matrix.

The following example will be given to illustrate some of the computa-

tional aspects of the material. Let A()) be defined as

] 2 -4-0 2.0 300 "1.0
AQQ) = AS + A+
0 1 "0-2 -3'0 0.2 2:6

with latent roots Al = 1 of multiplicity 1, and Az = 2 of multiplicity 3.

The latent vectors for the lambda matrix are given by

pr

13 -1 =2
(1) () (2) (3
Yo [y, vy vyl e 6 1 -1 -1

and -
3 =2 =1 -1
2= D P PO

-5 5 0 5
L

[

]

PrATCI
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Since nullity A(2) = 1, there is only one primary latent projector for
AZ-ZU

The latent projactor for Al = 1 can be computed directly from the latent
vectors yil) and :{1) and dA(l)/dA or

) y L [
P10 " "3
g (1) aw | oo

The second primary latent projector 32 0 is given by

N 1)‘(3) +y(2)'(2) +y(3) T 1 3 -5
P ﬁ —
2,0 3 1 °%
, nd 0 o
where n:’l is cowputed from (3.34) with
T a@ @, 1 @ dag gV 4 do T @ @
- '§ ‘?i'l "—LL At L@ Y2t

3,1 2,2

It can be verified that nz' w Ny 1,3

=Ny’ . The generalized latent projectors

are
T
v, (z> ONS 2 s
a - d
P - —-L l ——
2,1 ng 1 *s 0 S
and
T
S e N [ T
P - ____.—. - -
2,2 n; o1 S 1 -5

The eigenprojectors for A are :
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B 1.6 =3.2° -0.6 1
- 0 0 0 o
1'0 106 "302 "006 1
0 0 0 0
|--°-6 3:2 006 "1
0 1 0 o
P, . »
2,0 -1.6 3.2 1.6 -1
o 0 0 1 |
(04 -3.2 0.4 1
- 0 -2 0 1
2,1 “1.4 =2.2 1.4 -1
-0.2 =2.6 0.2 1
and
- | -
-0.6; 4!2 0.6 -3
"'002 1.4 0.2 "'1
Py2"
’ -1.2 8.“ 102 -6
-0. 2.8 0. -2
i 4 4 |

¥

|

vhere it is noted that the 2x2 upper right blocks are the latent projectors.

The eigenprojectors were computed by using WR sh ri L w;l with
[

— -
13 -1 -2
T
16 1 -5
0 2 -1 -3

as constructed from (3.5) and the shifting matrices are

Fertimtahoss
[rpr—
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100 0]
0000
sh ¥ -
1,0 0000
000 0
_ -
r‘. —
0000
0100
sh ¥, .=
2,0 0010
0001
b, wensed
— -
0000
LD 0001
0000
F em—y
0000
0001
sh ¥ - ‘ .
2,2 0000
0000
b po—

The structure of the shifting matrices has also appeared in [10],

The partial fraction expansion for [A(A)].1 is

(Al - A =33 1 |33 1 e 1 3 -
A - + + - 2 +
5-0) | 4 o S-2) | 4 5(-2)“] 0 5 5e2)3 |1 -5

The chain rule for the latent projectors 32 2 satisfy the equations
. 89!

A dA(2) A -
. a@f,  +4EE .0

ot i e

e Sonireoptiont

e

S




2., )
A dA(2) & O
L. AQF, o+ —df-l Fay* i-'-—d-;g-l Fp g™ 0

as given in (3.35).
The results given in this chapter hold only for lambda matrices that

are regular, 1.0.,3b is nonsingular and a full sat of latent vectors exists.

4, Conclusion

The theory of latent projectors have been presented and their use in
the computation of tha inverse of A(\) and its residuss have been described.
The latent projectors have specific properties and are related to the eigen-
projectors of the companion form Aé obtained from A(A\). The concept of
gineralized latent projectors has been dnv-lbpod which are constructed from
the generalized latent vectors of A(A). The chain rule for the generalized
latent projectors has been developed and described. The work on eigen-
projectors, latent projectors and lambda matrices presented in this chapter is
not exhaustive as many other questions must be resolved; for example, the

case of singular ib has not been addressed. The next chapter resolvaes the

problem of singular 16. .

PR
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CHAPTER 3

THE EIGENVALUE-EIGENVECTOR STRUCTURE OF OBSERVER STATE SPACE FORMS
AND THEIR RELATIONSHIP TO GENERAL LAMBDA MATRICES

This chapter studies the algebfaic theory of latent roots and latent
vectors of a row-reduced form of a lambda matrix A(1) = AOA“+A1 A“'1+...
+es¥A . In the previous chapters A(? . was assumed to be regular, i.s.,
det Ao ¢ 0; however, this assumption is very restrictive particularly when
A()A) arises as the left inverse matrix in a left polynomial matrix descrip-
tion for a dynamical system. In this chapter the regularity assumption is
replaced by & wéaker assumption, namely that ARKA) is now reduced. The
latter assumption is shown to be without loss of generality in the context
of dynamical system modeling. The development utilitizes the duality
between lambda matrices and observer state space forms to reveal the algebraic
structure of the latent vectors of row-reduced lambda matrices. This, in
turn, exposes the algebraic structure of the eigenvectors of observer state
forms,

This chapter along with the material presented in Chapter 3 gives the
general algebraic theory of lambda gggriccn and their relationship to state
space forms, The mathematical development in the chapter supplements the
material in the previous chapter, The computational procedure for the latent
vectors, eigenvectors, latent projectors and eigenprojectors for the singular

case 1is given.

37
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1. Ingreduction

Multivariable systems, such as finite-element models of vibrating sys-
tems, control systems, and large scale systems, can be formulated in terms

of second-and higher-order matrix differential equations of tha form

Py 1 d“'l

A _“"ooo 1§0+A3-n "'_'%.'.'... vee * B U
odt Aldtnl ldc‘ n

(1.1)
vhere Aien"’“, x(t)eR™, Biel‘xr and u(t:)eR”'. Such a model is often called
a left mitrix description for the dynamical systea. y

If the Laplace transform is taken of Eq. (1.1), the following matrix
polynonial appears

Als) = Ao.“ul-“'l oo kA (1.2)

on the left side of (1.1), 1f s is replaced by A, then (1.2) Jdefines »
lanbda matrix [1], also called a matrix polynomial.

Our objective here is to investigate the latent roots and the latent
vectors of the polynomial matrices. Earlier work on this topic has been
described by Lancastex [1i. Lancaster and Weber [4], Dennis, Traub and Weber
(5], Lancaster (2], and Denman, Leyva-Ramos and Jeon [11]]. In all of this
work it has been assumad that A()) is regular, i.s., det Ao ¥ 0. This
assunption permits the model in (1.1) to be expressed in block companion
state space form. The assumption that A(A) is regular is too restrictive
in the context of models of the form in (1.1). In general, regularity can
be achieved by introducing additional roots, i.e., at the origin. Howeaver,

this negates one of the prime motivations for the work in [3]-{5], namely

i
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that of achieving numericelly efficient procedures for handling sigrnvalue-
eigenvector problems arising from systems of the form given (n (1.1). The
general case will be treated in this chapter without the need. for introducing

additional roots.

et
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2, Row-reduced Lambda Matrices

To ensure existence and uniqueness of the solution to (1.1), it is re-

quired that det A(A) ¥ 0. The following definitions are introduced, [12;
131

Definition 2.1 A nonsingular polynomial matrix AR(X) is said to be row-
reduced if the matrix formed from the coefficients of the highest powers of
A in each row is nonsingular.

It follows that any row-reduced polynomial matrix AR(A) can be written

in the form

Ag(0) = QOB + L(A) (2.1)
where
, v, vy \ ‘
S(A) = diag[A ",A %, A ™ (2.2)
L) = YT T (2.3)
A 1 A 1 A LA 1;__",..... gessmante m sasERNILRI S
S h AR L P BN YPEEIRES GO ......E v -1 v -2 .y e e :
T ;A.z acu% 2 u......é..-.........l..;
youT = P SR II S |
L EAv‘-l :\v‘-z
(2.4)
and Do.‘f are matrices of raals with
det Dy ¥ 0 ' (2.5)

A key fact from the theory of polynomial matrices is the following:

40

s §oeae

eee 1
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Lemma 2.1 Any nonsingular lambda matrix A()\) can be transformwed to roy-
xaducad form AR(A) by left multiplication by a unimodular matrix U()).

Proof: See (12 p. 27) or Q3. \'A'A

Note that operating on £q. (1.1) by U(A) does not change the number of

latent roots since dat U(A) is a nonsingular constant matrix independent of
A. Thus, we see that A()) can be transformed to the row-reduced form

without loss of generality. However, it is very restrictive to assuma that

-AO in (1.1) is nonsingular since this is tantamount to assuming that the

row indices v, to v are all equal. Thé latter situation is unlikely to
occur unless additional roots ave artificially introduced. Of course, the
case dat Aﬁ ¥ 0 is simply a special case of row-reducedness in which

v, = \):j ~4, je(l,2,...,m].

m
Theorem 2.1. Thae number of latent roots of A(A) is precisely I \ where
' im]
V, is the row-degree in the row-reduced form of A (A).

Proof: The proof follows directly from (2.1) as det D, ¥ 0. 'A%}

By standard arguments, [L3, [i4], any row-reduced set of differential
equations, as given in (2.1), can be associated with a state space model
in the observer canonical form, léﬂlcinna called the flat canonical form

5. The system matrix has the following form:

L
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/
q

'y
|
]
]
!
'
)
f
'
[]
'
[}
|
]
| §
' ) ‘
‘ ¥
- (@t (2.6)
- (b, : .
@l |
'
| r
]
)
{10+ 0
| * e Y

0", »
| l’!. o
[} .« .0
| L
' A
Iy 0

- D . A WD P e ES S W e G AP D G AR e D W . S > A > > -

—

where [LD

and (2.3).

0 1.1

denotes the ith column of Eb-l and D

0 0 and L are as in (2.1)

The above companion form is the appropriate generalization of the hlock .

’conpanion form used elsevhare, (see [3] to [5]). Note that the block com= i

panion form requires that det AO $ 0, whereas the form in (2.6) needs only
the weaker assumption that det Do ¥ 0 and there is no loss of generality in

the latter assumption.

In the sequel, D

0

[
it

= I will be taken since if this

is not the case, then one can simply multiply by Dal throughout.
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3. Eigenvectors and Generalized Eigenvectors

In this section, the definitions for eigenvaluas, right and left eigen-

vectors, and tha chain rulas for the generalized eigervectors of a real
matrix F will be given,

The following definitions are standard for a real matrix ¥, (see [16]:

Definition 3.1 A scalar Ai is an eigenvalue of F 1if

d.t[kil-F] =0 . \ (3.1)

The eigenvalue Ai has multiplicity n, if

c n1
det[\I -F] = ‘n‘l (A=A , (3.2)
{iw

vhere 0 is the number of distinct eigenvalues.

Definition 3.2 A voctor,yil) is said to be an eigenvactor of F associasted

with Ai iff

@2, Dy =0 h (3.3)

@ @ G
i

and a set of vectors {y S ANETENN A

are said to be the generalized

eigenvectors associated to yil) if

(F-A I)ky(k) - 0 k - 2.3'010.“
e (b, +) 1
vhere h1 is such that Yy = 0 is the only solution in (3.4).

(3.4)

et
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The generalized eigenvectors, as given in (3.4), can be aleo obtained in

the following form

k k=1 : ©
(FA Dy = y{eD) k= 2,3,.00 b, (3.5)
and the generalized eigenvectors assoclated to yil) form a chain where h1

is the length of the chain. It is possibla that the same eigenvalue produce
sets of different chains associated with other eigenvectors but tha
number of different chains associated to the eigenvalue Ai is cqual!to the

nullity of [F—AII]. The length of the longest chain is called the index of

g max h '
)\i and is such that Y(A) g n ()\-Ai) i
i=l ‘

The expression in (3.5) is called the Jordan chain gg‘genorllizcd right

is the minilal Eolxgoninl of Fs

eigenvectors.
From the right eigenvectors the modal matrix can be conastructed by the
collection of the eigenvecters and their chains where the chained eigenvec-

(1) _(2) (1) _(2)

tors appear in a sequential manner as Wk - [y1 aYp weeea¥y a¥p avecs
yél),yéz)....]. and WR is called the right eigenvector matrix.
A similar definition of the left eigenvectors of F can be given where

(F—Ail) is replaced by its transpose in definition 3.2. The set of vectors,

(2) ,(3) (hy) ; ,
{z1 1277 hernaZy } form a chain of left generalized eigenvectors asso-
ciated with the primary eigenvactor zil). The chain can be obtained from
- T (k) _ ,(k-1) ‘ : ‘ o
(F Ail) zi - zi k= 2,,-,“,hi (3-6)

where hi is the length of the chain and zil) is the primary left eigenvector.

Also, the collection of all the left eigenvectors forms the left eigen-

Y
L
t*’

R,

B
ey

o
Y
s

S aatiaint s

bttt oo,
[P,

[ — P

o B

-
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&

vector matrix vhera the chained eigenvectors appear in a sequential manner

as “1.. - [y](_l) 0752) o" o uyél) 0’2(2> poes DY‘SI) ,yc(,z) seesle
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4, Latent Roots and Latent Vectors of Lambde Matrices.

Analogous definitions to those in Section 3 for a rowreduced lambda
matrix AR(A) will be given. It will be shown that there is an interesting
duality between the definitions of Section 3 and those for the correspond-
ing lambda matrix AR(A) and F, as given in (2.6). Without loss of general-
ity, it is assumed that Do = I. To simplify the notation in the proofs, it,

has been assumed that m=2, The extension to m>2 is along the same lines.

Definition 4.1 Let AR(A) be as defined in (2.1) and let Aiec be a scalar,
| then A is a laton: root of AR(A) if det Ax(ki) = 0, Now A has multiplicity

1f det A(A) = H (A=A ) *, where ¢ is the numbar of distinct roots.
i=1

Connection 4.1 The determinant of An(k) is equal to the determinant of
(AI-F), where F is as defined in (2.6) with

det An(k) - dct(IA-F)

- H (A—A ) (4.1)
i=1

Proof: Let An(l) be as défined in (2.1) and represented by

-1
o Pl 2] BT a L L ea M
= PZI(A) Pzz(l). .21sz-1 + tes ess ta %1
1 v2
AVIES §
‘izk 1 + o e L Y + . 12
"1 (4.2)
v Va=1 . (&
Az’.§2A2 +0l. ot"+‘22
v
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T in (2.3) can be easily obtained as well as the observer canonical form ¥,

then (AI-F) can be repressentad by

a1l v 12 e e }
Wat -1 00 a0 0
n g : \
.2 x. ‘.‘ o E . : :
. » ..‘ -1 : L] : ;
. 1‘ : [ : :
& S I

(Ax-r) - 'céi'uiigoooi'p 0‘-:1;.:1'zévtlnuntnigl0. . (‘,3)

.1 9 . s o. : A+‘1 _l. 0': [ -?
. ¥ [} 3 22 .0. .l.:
| I i, A
; . vl *o=1
1 " .22 'y
0:-+-++0 ! a A

"V P V2 §

If (AI-F) is multiplied by the following unimodular matrix,

‘:z . [1 0 KRR I 0 rl o.. e s 00 0

;31 A 1 . * . * A 1 ' . *

[ . . . " TR .

U(A) = Block Diag< R X B . ; (4.4)

i vl g el tJ g

{ A 1 s e e Al J LA ‘-2- LI T k 1

- "
ﬁ.
" then
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. < -
Ptl_l(k) -] 0 i!? : plz.l(k) o- AT )
L ' ' P 1 ' :
.‘ \ * : L] ]
A ’ '
* s o . N []
[} o‘ .' ‘0 : . : :
* : .‘ “ ¥ » L] :
115 RN 24y
P ' ‘.' ’ L2Y . N
PRI TR W o N TPRPT (
U(A) (AI"!) - 0201 * ‘ @ »eE - g: 2-2 * - G(x) . ‘.s)
A W
: R 0, "o
. ' + . N Y '.
' ’ . ) .
21 \ P 22 vl
R LI
pzl(A) 6 ...... 6 E 922 (x) o . . o B

However, by evaluating lG(A)I by minors on the ones, it is clqlt that

P2y P2
d.:(AI"r) = det - d.: A(A) -’ (‘96)
o2y P22 vV

Definition 4.2 Let AR(A) have latent roots A, then the primary right latent
Q)
1

vectors denotad by and the primary left latent vectors denoted by :§1>

satisfy the relations

AR(Ai)yil) ® onxl : (4.7a)
and

a0z o, (4. 7)
respectively.

o e
RPN

S
el

shess

exitas,
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We nov explore the structure of the eigenvectors of F associated with an

eigenvalue and then relate these to the latent vactors associated with AR(A).
From (3.3) the eigenvactor satisfies the relation (F-Ail)yé:) = 0 and

by operating on this expression by =U()), as defined in (4.4), the follow-

ing expression is obtained:
sy wo, (4.8)

wvhere G()\) is as defined in (4.5). Note that the polynomials p?l(k).

1—1 are the Tschinhauser polynomials [16] associated with pll(k)

defined as follows

J - 1.--.,\,

[ 11 7 . a T b
P - (A) I‘\ 1' 0 et g9 P 0" s 4, 0
Vl 1 - ,. , : 1
11 y ' * .
Py .2 S T , 1
Yl 2 ' . . . . ‘ X ll
; - . e T e " *.9)
] . . . . ¢ . . »
Pil(k) Avl.l . ) '} . 1 .o .
v ‘.o \’-1 b4 .o .0
ST OO N PPN TR SRR U B | 1:.

and similar exprassions can be found for the other polynomials in (4.5).
The eigenvector yéi)

(

1
vector yif) in the following connection.

can now be exprassed as a function of the latent

Connection 4.2 L. y‘i) be as defined in (4.8) and let yil)'bl the corre-

sponding right latant vector associzted with the root Ai’ then the eigen-

vector and latent vector ars related by

Véi) - ""‘1”‘?:1) (4.10)




s o % v
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vhere U(A,) is as defined in (4.4) and M 1is given by

& -
{1 0
11 12
11 12
8 8
M= . (10 . 11)
0 1
21 22
"1 1
21 22
TS B

Proof: The expression given in (4.10) is obtained by mnoting in (4.5) that
the first and the (v1+1) elements of the eigenvector yéi) form the latent

vector yil)

+ Then by using simple substitutions to obtain the rest of the
elemsnts of the eigenvector as a function of the elaments of the latent vec-
tor, the expression (4.10) is obtained whare the corresponding Tschinhauser

polynomials as given in (4.9) have been used. v

Also the left eigenvector z

éi) of the observer form defined as

(Ail-F)Tzéi) = 0 can be obtained as a function of the left latent vectot

zil) of the row-reduced forn‘An(Ai):

- Connection 4.3 Let zéi) ba the left eigenvector of F and zil) the corre-

sponding left latent vector associated to the root Ai’ then the eigenvector

and latent vector are related by

-

i

exntimer gt

wavssze i,

W -

WS
o i
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[ V-1 -
\
Ay 0

A 0 !

w. | M (D - yer 3ol
%01 . 0 2 = YO ey
V=1
2

? M
0 N,
0 1
- -

wvhere ¥(\) is as given in (2.4).

Proof:

T A . . -

51

(4.12)

Consider (AI-F) as given in (4.3), then the left eigenvector is ob-

tained by (A I-r)T (1)- 0 and using the expression for zéi?, then

N 11 11 11 21 21-"
At.l 2 sse Y ’.\’1 .1 ses s .vz
-1 A 0‘0 ¢ @ o o: . e @ e 9 -!o
* i, A » N ’
ot ) [Y .0 .' : : '
T :
o-- ...o -1 .Ai 0. L] L I B n06
12 12 22 22
.1 se [ Y .vl AI. [N Y ‘vz
o ¢ o & ® & s 8 @ . o -1. A‘. o.‘:o 0
: T
- Qs s ¢ &0 oo o, 0 o:':o '_1 .'. Aj_J

[ v,-1 =
MY0
v1-2
Ayt 0
1 0, . H" "0
0 xsz
0 N
0 Ay (4.13)
0 1

In the above expression, the first and (v1+1) rows will contain the lambda

matrix AR(A) as defined in (4.2), therefore A;(Ai):il) = 0 as expected. VVV
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It is intexesting to notice in (4.12) that the elements of the left

latant vector appear on the ”l and (vr+v2) locations of ths laft aigenvector.

In tiie same manner as in section (2), a set of generalized latent vec-

tors associited with the latent vactor yil) exist and they satisfy a chain

rule, which is given in the next theoram.

Theorem 4.1 Lnt_An(A) bs definad as in (2.1). A set of right latent vectors

(&)
(1) .yi ),... ...,yi 1 ec"‘l form a right Jordan chain associatad with the

hunt root Ai and the primary latent vector yil). The chain is given by
W , %y NOS NN gy MO
——r _'—_-r L

AgQAyy o

2

(2=1), .
$o—— 1 -d—-—_-—A.!'-(i‘—')- (1) =0 L =2 Jh
T DT T o0y T4 wxl YT Sreenly

(4,14)
where h.1 is the length of the Jordan chain. The vectors yiz) for 1<&5p$
(1)

. are called the generalized right latent vectors of the latent vector y1 .

Proof: The generalized right nigcnvnccor'y( ) can be obtained from the
- aquation (F=) I)y(z) = ygi) which when multiplied by -U(Ai) as defined in

(4.4) givas the following expression:
617D w cvr )y (4.15)

Using connection 4.2 and considering the v, and (v1+vz) rows of the above

expression, the following result is obtained

aO ¥ = oy | (4.16)

F——.

N

iy

’ e e
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B

[

where tha eleéments of generaiized latent vector yfz) are in the first and
(v1+1) locations of the generalized eigenvector ygi). Using the expression
yéi). as given in (4.10), gives A
(2) T W ., |
LYW 00y =0 | (4.17)
Conaidaripg tlic generalized eigenvector yéi) as obtained from (r-kil)yéi) -
ygi), then a similar expressicn to that in (4.16) is obtained with

a0y Ty w0 (4.18)

yg:) is needed in the above expression and can be obtained from (4.15) where

the elements of yiz) are located in the first and (VI+1) elements. We then

use back substitutions to obtain the rest of the elements of ygi)'an a function
of yil) vhere the following expression is obtained for yéi)
-o e = . . o o L ¢ & 0w - o N ! ; »
- £ : [
1 '. . ' ' %
' ¢ v i
.vl-z AR : .
@ @, | Mo A 20 00 )
y°1 U(M)Hyi + 0° * * ’ .0 Q ¢« * o s 0 y01 *
* . 1 . ) 5
'Aih". [ b
: :vz-z . ’ : L
o L} + [1] M LR Ail OJ

(4.19) i i
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*

The second matxrix on the second term is not U()\) but is a shifted ver-
sion of U(A) and will be called sh U(A) where sh stands for shifting., This

shifting matrix has the interesting property that

_1_a®a (sh UQA)) a® ) (4.20)
- . u \ & »
(W) 5, (1) N

Now substituting the vnlunl of y( ) into (4.19) and using the shifting
01

property, the expression in (4.18) can be changed to

du(r,)
a0y P Uy P a) —z - o, (4.21)

Following the same lines as the beginning of the proof and using the shift-

ing property the following chain rule is obtained.

dU(A
Hyi’ﬁz)'ﬁ (XN}

a0y W0 U T,
a+-2) (1)

vee ¥+ ‘l’ (Ai) ——T—'Z'H—U(Ai)m, - omx1 2 L 2'3’.".h1.

(4.22)
Equation (4.14) of this theorem is obtained by recognizing that

(2+1)
1 g T |
WD L& A =¥ o +l for £ = 0,1,...,h,=2 (4.23)

thus the theorem is proved. yw

L

The left generalized latent vectors associated with z, satisfies a

similar chain rule that is given in the naxt theoram.

-
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Theorem 4.2 Let A ()) be defined as in (2.1), @ set of left latent vectors
Tt Tty ...:“‘ﬁec"‘l form a left Jordar' chain associated vith the
latcn: root A and the primary latent vector :(1). The chain rule 1%:|1vnn
by ﬁ

2.T
B0s <z>+“n D L L DRI 6

1 .
) +"‘(_E:m dk(!"l) zi - O-xl R_ - lpzp!!'lhj

(4.24)
where hj is the length of the Jordan ck:in. The vectors z(z) for :l.<$l,<h;1 ars

the generalized left latent vectors of the primary latent vector z(l)

Proof: The proof of this theorem follows aiong the same lines as theorem
4.1 where the chain of generalized left eigenvectors as given in (3.6) is
used with the corresponding values of zéi). The elements of z(z) are
located in the v, and (v,+ 2) entries of zéi). Vv

As can be seen in the proof of Theoraem 2.1, some interesting relations exist
between the generaliced eigenvectors of F and the genaralized latert vectors

of AR(A).

@) () (hy) |
Connection 4.4 Lat Yoi *Yoi,re: Vo4 be a set of generalized eigenvectors

of F and let yiz),yis).....yi 1 be the corresponding set of generalized
latent vectors of AR(A) associated with the root Aigy The eigenvectors and

latent vectors are related by

(2-1)
du(x ) d urAp)
(2) @ . 1 (2-1) 1 i )
yoi - U(Ai)ny Ky + e e K] (&-1) ' dA 1_1 Myi
!l L] 1,2..-;.}‘ (4'25)

1 .

o=

S e i g RS S
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i1> as was previously stated

Proof: The eigenvector yéi) is & function of y

in connection 4.2. Now using yg:) as given in (4.19) and lubiticucin. yé:)
Ygi) - U(Ai)uy§2)+(.h u(ki))u(xl)uyfl) (4.26a)
and using (4.20)
du(r,)
Vg.) - vow P+ —5t “y.il)o o (4,26b)

The generalized eigenv‘ctor y(s) can be obtained from the chain rule

0l
(r—Ainyéi) - yéi) and following the arguments as in (4.19), with

yéi) - u(ki)uyf)»«(-h U(?\i))}'éi). (4.27)
Substituting the vector yéi) as given in (4.26b) in the last expression then
2
du(A,)) ' a“ug(r,) »
re = v+ — L D %T_dx_z—i— . (4.28)

The remaining eigenvectors in the chain are obchincd from the extension of

(4.28). v

The left generalized eigenvectors of F can be cbtained from the left

generalized latent vectors of AR(A) as given in the following connection.

c @ (3 (hy)

onnection 4.5 Let Zoi 0Bgq seer ceeaZyy be a set of generalized left
(h,)

eigenvectors of F and let ziz),zi3).... ceeeZy be the corresponding set

of generalized left latent vectors of AR(X) associated with the root Ai. The

left eigenvectors and left latent vectors are related by

- i

PO .
4 &
] E::

et
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<z-1)

a¥Qr,) ¥ ()
(1) (*) (1-1) P e
- W(ki)' *—l— + PP ees + 2-1)' -Tz-:- 1 )

gn - 1'2.onb.h (4029)

1 .

(1) (1)

Proof: The left eigenvector Z,, as a function of z;”" vas praviously ob-

@ W

where the elemsnts of the left latent vector ziz) are at the vl and (v1+v2)

locations of zéi) and thus by simple substitution, zéi)

tained in connection 4.3. The left eigenvector nntinficn (F=A I) z,

can be represented

by

22 = v )P+ (o v NS (4.30)

where (sh U(Ai))T is the shifting upwards on the transpose of U(A). This

shifting matrix has the property that

(2+1) )
1 a% ey T 4'%

(W) 4, (241) (sh UQA)) 2@ ¥YQ) - (4.31)
Using 2(1) as given in (4.12) and the above property with (4.30), then zéi)
is given by

d¥(A,)
’c()i) - \w‘i”iz) dAi il) . (4.32)

Successive application of the chain rule of the left generalized eigenvectors

and (4.31) gives equation (4.29) as stated in this connection. \'A'AY

It has been shown that the eigenvectors of the observe: state form can

be defined in terms of the latent vectors of the row-reduced form An(k).

P S
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v

It therefore follows that the eigenvectors of the observar state fora can

be obtainad directly from the knowledge of the latent roots and latent vec-

tors of Al(l) .

- ™
-
7S
y /@il e

IR e L

=

d = =R



e

e
E g 3 B e

wostny

[P e

(R

ORIGINAL PagE
PAGE IS
X OF POOR QuALITY

5. An Example

An illustrative example is given. Let ARO‘) be the row-reduced form

of & lambda matrix that has been subjected to a unimodular matrix

AaaZerae3 e

ALQ) = (5.1)
~3+3 A2-61+5

and then expressing the above row-reduced lambda matrix into the form given

in (2.1)
B ool o 2 r100][-1 o
A0 = + 17 8 (5.2)
o 2)lo 1 0 00 A1 3 s
-3 -6
3 s
! ]

where it can be noted that v, = 3 and vz = 2, The observer canonical form

1
is
"1 10 0 0]
-7 01 -8 0
F= |-3 00 -5 0]. (5..3)
300 61
-3 0 0 -5 0

The determinant of the lambda matrix is [An(lﬁl - A(A-l)(A-Z)a. therefore

Al -0, Az = ] and As = 2, The prinnrjaright latent vectors can be cal-

59
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P
culated using (4.7a) with
a@y® a0 Ay -0 a2y - o (5.4)

and the latent vectors are

-5 13 1l
S @ . / .
1 [ 3] 72 [-m] 73 [ -1 J

yél) has two generalized latent vectors that can be calculated using (4.14)
2) (2)
ﬁ(z)y(z) M‘ ,/51) =0 and Anmym - ygz)

2
. 4°A_(2)
1 (1) ,
+ = Az y3 =0 (5405)

and the generalized latent vectors are

@, |"V3 @ |*

The right eigenvectors of (5.3) can be calculated using (4.10) where the

unimodular matrix U(A) and M are

1 000 0 [ 1 o ]
A 1 0 0 O -1 0
vy = |22 A 10 o0 Ma| 7 8 (5.6)
0 00 1 0 0 1
0 00 A 1] -3 -6
L

S
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The eigenvectors are then obtained with
[ -5 ] (13 ] (1 ]
5 0 1
S N Y N R
3 =10 -1
[ -3 | ju] |1
The generalized eigenvectors for y‘%) vere obtained from (4.25)
ygg) - U(Z)My(z) + U 2 Hy(l)
and
2
(2) - (3) U 2 2) 147p@ 1)
vhere yég) and ygg) are found to be
[-1/3 | [ 1]
2/3 | 2/3
- | el
0 ' -1
h ° o 9 1 -
The left latent vectors can be calculated using (4.7b) as
oz eo, QWP a0 m AL@2® -0 (5.8)

then

S,
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and the two genaeralized laft latent vectors :;n are obtained from (4.24)

T X
M.(Z) | (2)
A.:(z)_:;z) + ax zgn =0 A:(Z)sga) + ﬁdx— :;2)
d (2)
+ - An (1) : (5.9)
a?

The left generalized latent vector~ are

z<2) - -1/2 ‘(3) - -3/4 .
3 -11/2 3 -7/12

The left eigenvectors are calculated from (4.29) and they are

[ 0 ] [0 ] | [ 4 ]
0 0 2
aéi) =11 :g;') =10 :g') - ‘1
o - 1 14
k"l.l ;IJ ;7J

The left gensralized uigenvectors for ‘(%) are then obtained from

(D o ya@ + 8D

and

<3) - ¥(2)z (3) N vgzz (z) 1 42: 2 z;x) (5.10)
d

oy
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with zgg) and zég) given by

T2 ] [ 4 ]
0 -2
:g) - | -1/2 - |- |
-4 -20/3
| -11/12 -7/12 |

It is obvious that the eigenvectors of the observer form can be obtained

from the latent vectors of the row-raduced form.

rreniieat
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6, Conclusions

This chapter has explored the eigenvalue-eigenvector structure of ob-
sarver canonical form and it has been shown that this etructure is related
to the simpler underlying structure of the corresponding lambda matrix.

This work generalizes the previous results pnrtaiﬁing to a special class of
lambda matrices in which the row indices are taken to be equal., The special
structure of the eigenvectors has potential for simplifying computations
concerned with their evaluation, Dual results also clearly exist for right
fraction descriptions, column reduced lambda matrices and the controlilsr

>

canonical forms.
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CHAPTER 4

PARTIAL FRACTION EXPANSION METHODS FOR MATRICES
OF STRICTLY PROPER RATIONAL FUNCTIONS

Chapters 2 and 3 describes the algebraic theory of latent roots, vectors
and projectors, The latent projectors of the lamhda matrices are the matrix
residuas of the partial fraction expansion of [A(A) ]'1. see Section 1 of
Chaptaer 2. The latent projectors are important in obtaining the time domain
solutions since the inverse Laplace transform can be uséd once the partial
fraction expansion is known. The latent projectors or matrix residues can
be computed by either using the latent vectors or by the more classical
procedure of cohputing the residues of the partial fraction expansion.

The latter method is not recommended for a lambda matrix with high-order
matrix coefficients although algorithms for the procedure will be given
here for completeness.

This chapter extends several partial fraction expansion methods for
matrices of strictly proper rational functions. These methods are
1) eigenprojector, 2) Chen and Leung and 3) escalation which are first given
for the scalar problem and then extended to the matrix case by using the
Kronecker product. The three methods are competitive for high order functions

although the escalation method is the most efficient for scalar functions.
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1, Introduction

It is frequently necessary in system analysis to find the partial
fraction expansion of a matrix of proper rational functions [1] and [13].
Several methods for the expansion of scalar rational functions have been
describad in recently published papers. The paper by Karni and Etter [17]
was among the first to show that derivatives of the functions were not
necessary in the evaluation of the rasidues of the expansion. Chen and '
Leung [18], as well as Mahoney [19], also avoid derivatives and describe
algorithms that are quite ﬁeucrul. The paper by Shahzadi [20] described a
procedure that eliminates the necessity for the differentiation of rational
functions but derivatives of the numerstor and dencminatic must still be
taken separately. The authors have developed an algorithm which is quite
similar to the procedure given by Chen and Leung. The algorithm developed
by the authors will be describad in this paper and will be denoted as the
eigenprojector method [11].

The procedure given by Mahoney is the most efficient in a numerical
sense for scalar functions but the method does not clearly reveal the alge-
braic structure of the partial fraction expansion procedure. The Chen and
Leung method, as well as the eigenprojector procedure, is base; pn the
algebraic structure of the partial fraction expansion. The Karni and Etter
method is algebraic but the referenced version had a limitation in that the
order of the numerator polynomial should not exceed the order of the product
of the distinct roots of the denominator of the rational function.

This paper will first give a birief mathematical description of the
three methods 1) eigenprojector, 2) Chen and Leung and 3) escalation

(Mahoney). The cigenprojector method has not been described in the liter~

i i
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ature and for that reason, the development will be more extensive than for
the other two procedures. The¢ Chen and Leung method will be developed and
the Mahonay procedure will be summarized. In Section 2, the description
of t‘o methods will be limited to scalar functions.

In Section 3, the methods are extended %o matrices of proper rational

functions of the form

n~-2

n=-1
c . “"C 9 +l . [N ] h+c
1 2 ' n _ Nfe
H(s) = — - — - (1.1)
-“+d1-“"1+. N Y d(s

where (::ten‘mq and the di coefficients are scalars. The paztial fraction

expansion will have the form

r "‘;,‘1 X

H(s) = ) —L (1.2)

i=1 220 (s-A)) 1

where K, zecpxq. m, is the multiplicity of the root Ai and r is the number
L4

i
of distinct roots of d(s). Zadeh and Desoer [1] discuss the expansion of
functivus of the type given above, but the determination of the residues
“1,2 in their work follows the derivative procedure.

An example will be given in Section 3 to illustrate the thres methods
as well as the number of operations required where the usual assumptions
that the inversion of an nxn matrix requires n3 operations, the solution
of n equations requires n3/3 operations [21] and multiplication of two nXn

matrices requires n3 operations where an operation is defined to be one

scalar multiplication together with one scalar additionm.

o~ BB e ‘
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2. Mathematical Developmant for Scalar Case
a) Eigenprojector Methed
A strictly proper rational scalar fuaction H(s) can alvays be charac-

terized by the triplet (A,B,C). If H(s) is given by

n-1 n-2
cl. +c2. *.Ot ..o+cn n(s
H(s) = =17 — " d(s (2.1)
s +dll L T ...+dn
then H(s) can also be defined by
H(s) = C[sI-A1"1B (2.2)

where Asxpx“, Benpxl and cenlx“. The structures of A, B and C are given by

(91,
0 1 o s e e ® LI ) o
o o . 1., ..,
Aw . LR :' .. .' *0 (2.3)
0 A TR |
-dn -dn-l es e XX -dz -dl
- —
T
B-= [0,0, ... ... 0,1} (2.4)
and .
C = [cn. Cam1® ***  *ees Cgp c1] (2.5)

whare the poles of H(s) ure egual to the eigenvalues of A.

Zadeh and Desoer have shown that H(s) as given in (2.2) can be repre-

[rA————
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sented by the expansion
1 m,~1
P r i k
Ha) =l ] z e R T e ¥ (2.6)

=]l L=Q (I -A ) i=] £mQ (._Ai)z"‘l

where the nXn matrices P1 g are the aatrix residues or eigenprojectors, and
’

ki g re the scalar residues. It is assumed that H(s) has r distinct poles
]

and each pole is repeated L times such that

J m = 2.7)

The eigenprojectors, Pi 4+ can be determined from ['II-A]-1 which can be
1]
represented by the following similarity transformation
[s1-A]"L = M{s1-37"hd! (2.8)

where M is the eigenvector matrix of A, and J is the Jordan canonical form.

The eigenpriojectors can be defined in the usual sense as

gm dd 1y

iim,-41 " e, - o3 1) “ly(e1-~hi) } 1m0, -l @9
where the structure of [aI-J]_1 is, [10] ,

[s1-317" = Block Diaglls1-3,1 7%, [s1-3,072,. ..., (a1-3 171 (2.10)

It is not difficult to show that the inverse of II-Ji is given by




R I Y - AR iR
.

' ORIGINAL. PRGE 13
LAy oopn_'goog_qul\uﬂ
- )
(-2 )™ (.-;‘1)"2' Ry = %
0 (0-31)'1 el .
x_J - . hd - - . (2- 11)
(e3-dy] ) T . (s=2)) 1 (s=1,) 2
0 + v v v v s a0 (.-Ai)'l
_ o

It follows from (2.9) that the eigenprojector Pi o -1 will have the fol-
i 4

lowing form:
0 P
lo .0 1!
‘ v o '
P =M | oo | n Ml M{sh F lu'l (2.12)
1,“1-1 ' o e l i i.‘i-l »

| 0 : l_

Il o
L. | -

where the mixmi interior block has the same location as the ith Jordan

block in J. The matrices [sh Fi n _1] will be defined as the shifting
’
i

matrices. The next eigenprojector, P1 n.=2 for the repeated eigenvalue A
’
i

i
is obtained by shifting the ones to the next lower diagonal of the Jordan

block. The remaining eigenprojectors for the repeated eigenvalue Ai are
generated by shifcing the ones along the remaining lower diagonals until
the main diagonal is reached. If the eigenvalue is not repeated; then a
one 1is placed on the diagonal position corresponding to the Jordan block

for that eigenvalue.

70

RS




ORIGINAL PAGE jg n
OF POOR QUALITY

L}

The eigenvector matrix M of A is constructed from the roots of d(s) as

N TR
1 l 1 Q0 + ¢+ + « v 0 1
” . WRE
M ":“1 . X TR
. 2 MY . 2
K= | A 1A 22, 1 '“1,, (2.13)
. t“. , . TR
. ] N . lt
N L “' . . I' *
WL |0 elyne2 il o
I ' ]
'}

where the eigenvector for a non-repeated root is as given on the first
column of (2.13). Since A 1 is a pole of H(s), the eigenvector matrix M can
be constructed directly from the poles of H(s).

The eigenprojectors given in (2.12) are related to the scalat residues
of the partial fraction expansion in (2.6) and the scalar residues are
obtained by premultiplying the eigenprojectors by vector C and postmulti-
plying by the vector B as given in (2.4) and (2.5). The residues are then

given by

- - -1
kg g = CPy g8 = CM{sh F,  JU"B , (2.14)

and the only difference between residues for different eigenvalues is in
the shifting matrix [sh Fi. R.J which is a matrix of ones and zeros which

selects the proper columms of CM and the proper rows of M_ln.

The computational procedure for the eigenprojector method is determin-

ining the residues of the partial fraction expansion of H(s) is as follows:

[
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(1) Set up the sigenvactor matrix M, from knowledge of the roots of

d(s) as given in (2.13).

-1
(11) Let CM = X1 %n and M B Yax1

as given in (2.4) and (2.5).

and compute x and y from C and B

(111) Set flags regarding the multiplicity of each root to carry out

the shifting process on [sh F1 LJ’
»
{iv) Compute ki,l from ki,l = x{gh Fi'zly.

3
The algorithm will require approximately %— + an - n operations for

distinct roots provided that the flags set in (iv) are used. For a single
root with multiplicity n, the count goes to approximately %3 + 3n2. If n
is reasonably large, the n3/3 term will dominate, thus this value is an
approximate count.

The following example is given to show the procedure of the algorithm.

Let H(s) be given by

ae’esvo %10 %0, *a
3 -3

H(s) = ) 3
8 +78°+158+9 g+l g+3  (s43)

(2.15)

for which the eigenvector matrix M can be reconstructed using (2.13) with

1 1 0 1 1

M= Al AZ 1 - -1 =3 1} .
2 2
Al kz 2%2 1 9 -6

The x row vector and the y columm veitor are now computed where

C =[98 3] and BY = [0 0 1] with

s
Pa

ol
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1 1 0
x=CM=[9813] (-1 -3 1| = [412 -10])
1 9 =6
and
. 1 1 oo 1/4
y= e -1 =3 1 0 - |=1/41.
1 9 =6 1 -1/2

and for this example the sh Fi 3 matrices are
’

100 000 000
sh¥ o=]000 sh¥o=]0 10 sh¥ =00 1.
000 00 1 000

In programming the algorithm for a digital computer, the flags would be sat
to indicate which combination of elements in x and y are necessary to cal-

culate the residue. The partial fraction expansion of (2.15) is

H() = =4 2. 8 | (2.16)
s+l s+3  (s8+3) '

which is the desired expansion.

b) Chen and Leung Method
The Chen and Leung algorithm, although similar to the eigenprojector
method, differs in that all the residues of the partial fraction expansion

are computed limltm%omly ‘
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Utilizing (2.1) and (2.6), it follows that

n-1 n-2 S ky 4 n-1 v
Cls +02’ + o s e +cn - 121 220 m (. +d . + . aHn) (2-17)

The ratio of the two polynomials on the right side of (2,17) can be written

in the general form

27711 ™4 2! i
+. » . o+[dn+dn-1 1, Ai"- ¢ o 0+Ai ] L (2.18)
Substituting into (2.17) and equating terms in l1 gives
- Tk (2.19)
f17 5 51,0
- Lw, ]
AL) + k (2.20)
r
) ki,o(dz-!'dl)‘iﬂi ) + 2 ki 1(dg+20) + Z L (2.21)
i=1 i=]
or in general
r r d
e = %0 ey + Lk G 0T+ .
i=]1 i=]
1 e ) (2.22)
+=— Tk L[4, _ ] 2.2
k-11! 1=1 i,k-1 dAk-l k=-1""1 .

where

d.kl(x)-x +d Ak +...+dk_1

If a pole is not repeated, then k:l. . " 0 for all 2> 1,
, A
Assuming that all roots of d(s) = O are distinct, then (2.19)-(2.22)

gives the matrix equation.

tirmgoes pin
e
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M r

pr— ﬂ pomme --1 —— - -
kl,GJ 1 1 I ‘ . 1 1 o.! ’ . L] . oa 1 rcl
il ' .
ky,0 Mook 4§ 1, ) ¢
: - ‘ : : : ) "I * U [}
‘ : . ' ' ‘ . . ’ . " * , ] ¢
. , . ; © 10 -
n-1 n=1{ | a-1 J '
-n’o- —Al Az l ' An— _dn"l LI T T S ) dl ii _cn.-'
(2.23)

The matrix equation of (2.23) is the desired expresaion for computing the
residues. If the roots of d(s) are repeated, the eigenvector matrix M,
as shown on the right side of (2.23) will take the general form given in
(2.13) with the residue vector on the left side having the residues ki.l
in sequential order with 200,1,...,%=1.

The computational procedure for the Cher and Leung algorithm is quite

simple and straightforward, the algorithm is:

1) Set up the eigenvector matrix M and the coefficient matrix D.

11) Find the solution of the set of equations from D and the coeffi-

cients vector.
111) Find the solution for the set of equations between M and the

vector found in (ii).

The previous example will be considered using this method. The eigen-

vector matrix M is the same as before therefore

klO 1 1 0 1l 0 0 cl
k20 - )\1 >‘2 1 dl 1 0 <,

2 2 .,
u_kn.. _Al Az 2)\,-2- -dz dl ]; cy

s ket sttty R

. »Qir
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and upon subsituting values into the squation, the residues are

-1 -1
klO 1 1 0 1 o o 3 1
k20 - |-1 -3 l 7 1 0 8 - 2
kZL 1 9 =6 ‘15 7 1 9 -6

which are correct.

76

The number of operations required for computing the residues using

. 3

this method is lpproximntely'zg— + n2-2n for all distinct roots and
3

2n 3.2

=5 *’? n” approximately for a single root with multiplicity n, so for

large values of n the c.rn-zg— will dominate, thus this valus is an ap-

proximate count,

¢) The Escalation Method

Mahoney has recently published a paper on partial fraction expansions

by the escalation method. The method is quite efficient although the

alge~

braic structure of the process is not as apparent as in the previous two

methods. The mathematical theory will not be given in this paper and
the algorithm will be presented with the extension to the residues of
matrix of proper rational functions in the next section.

Consider a scalar function as given in (2.1) where ey and d1 are

only

scalars. The basis of the method proceeds as follows; use Hormer's algor-

ithm [23] to expand the numerator of H(s) into the form

‘ n-1 i
N(s) = So + 121 B1 jgl (s—Aj)

and, therefore, H(s) can be expressed as

(2.24)

JERpO—
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n=-1
Byt 171 B 1“; oW
H(s) = H_(s) = = = 2.:
n ﬂ<.EAJ) (2.25)
i=1
wvhere the above expression can be decomposed into

(s) By

Hz(‘) - 2-1 +—-..f—kiy !ﬂ - 1;--:60.‘ ] (2.26)

The function Hn_l(n) will have & similar structure as (2.25). Letting v be
an index on the roots of d(s), then the partial fraction expansion (2,26)

can be wricten as

LB g ) ()
(.) - i\) —.\.).1._3... }’ Xi _..ﬂ_...j. ligih (2.27)
=1 (Q-Av) 1;1 j=1 <">‘i)
Y

vhere liLiz)f-mi and L?') is the multiplicity of the root A, in Hz(l)- As
can be seen in (2.26) when ("}‘2.) in i, is eliminated the multiplicity of
that root in “1-1(') is reduced by one, so the scalation method is based on
that principle. If A\) is taken out in (2.26) then the multiplicities of

the roots will be as

L\(’z-l) = L\()t!,) s =) 1Kwr (2.28)
and

Lf"n - Li’“) 11,2, ,m 1év,

The process tarmivates when L=n and Liw =n,1=1,2,...,0. The coeffi-

cients B(g') B(i) are computed from
3D
Bi(.j) = - Lil)zl (2:29)

iy
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and p{t=1)_p(2) .
'i;‘) - JJT{-T;\)‘& J - Li )!'l.n e .2.1 (2'30).

which Mahoney calls the alien coefficients. The coefficients given by

* L) e
L R 2o/

idr

AR Vot ST I OO A

VJ V.‘J-l (2"32)

are denoted as the native coefficients.
The escalation procedure is efficient but the programming effort to
implement the algorithm is greatar than eithez of the two previous algor-

ithms. The computational procedure is as follows:

i) Use the numerator coefficients and the Horner's algorithm to

compute the coefficients Bi in (2.24),

11) A tableau is then formed from Equations (2.29)-(2,.32) and the
residues will be obtsined in the last row of the nxn tableau.
« p(n)
(g3 = By, 342
The example given before will now be considered using this method.
The Horner's algorithm is used to express the numerator in the form shown

in (2.24), For n(s) = 3|2+8|+9, the Horner's schems gives

. 8 ® »
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thus, n(s) « 4=4(a+1)+3(a+l)(s+3). The tableau is now constructed using

these valuss and Eqs. (2,29)-(2,32) with the tableau given as

o g
r=l 4 By " 4
r=2 2 -6 B, = =4
=3 1 2 o | B, = 3
k10 %20 k21

vhere the residues of the expansion are found in the last row with agree-
ment to the values given earlier,

Mahoney has estimated the numbar of operations for the procedure as
approximately n2+n/2. This pathod is therefore more efficient when execu-
tion time is the only factor considered for digital implementaticon. The
procedure is clearly superior to the other methods when manual calculations

are made.
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3. Extension of the Methoda to.Matrices of Proper Rational Functions

The three procedures which have been classified as, 1) the eigenpro-
jector, 2) the Chen and Leung and 3) the escalation msthod will be extended

to strictly proper matrix function defined as

Lim

piron H(s) = 0 , (3.1)

It will be assumed that the function has the form

n-l n~-2
GI' +C'2= s % s+ PG

H(g) = == i (3.2)

n n-1
s+d1. +l00 .‘an

where cieRpxq with scalar coefficients in the denominator. The Kronecker
product will be used to extend the methods as well as to minimize the

arithmetic operations required for each method.

a) Eigenprojector Method

It can be shown [24] that a rational matrix functions as given in (3.2)

can be expressed in the form

H(s) = C(Is-A)" B (3.3)
o o |
e . Y., % "l
- | " e Tt
Aw | o . ., q - AQDIq (3.4)
oo A L * 0 ’ *'1 )
Oq q q
Ldn:q -dn"llq "'dn_zlq « . . . -dlx

e
ppe—
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e 0,0 eee  +eesOgoEc] = x@xq {3.5)

q
and

c = [c,C

n' n-l,.-. c-o.cz.cll [ (3-6)

Using the definition of Kronecker products [23] and [26], the nq*nq matrix

in (3.4) can be defined as
A= @) EB1) (M"1®Iq'> (3.7)

where J and M are as previously defined
It follows directly from (3.3)~(3.7) that the matrix of rational func-

tions H(s) can then be expressed in the form

H(s) = CH® xq)«.x-.r)‘1® )OI GO 1) (3.8)
or

B(s) = TUO 1) (61-0) @) 6 8@ 1) . (3.9)

The matrix residues of the expansion in (3.2) can be easily obtained

from (3.9) as follows
Ry g = 'é‘(u®xq).<.h ri’2®1q).<u'1g@ 1) (3.10)

where [sh Fi 2,] is as defined in (2.12). The computational procedure is

?
then as given in the scalar except x= E(M@Iq) and ; - M-]'B@Iq where x
is a p*nq matrlx and ; is an nqxq matrix. Notc also tiiat in this case the

last term in (3.10) can be combined with the shift operation and thus
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To illustrate, consider the example

82

(3.11)

[ 1 8 2 1] [9 17 91
H(s) = 6 5 10 |_31 82 45 45 51 47 (3.12)

s +7I +15-+9

whera tlie roots of the denominator are Al = =] with - 1 and Az ® =3 with

= 2, The eigenvector matrix M is given by

1 1 0 1 1 0
M= | A, 1] =|-1 -3 1
2 .2 , .
AOAL 2 1 9 =6

and "é'(n®13) is

12 8 =18 |-10 -18

-6 0 2;52

'(—:(H®13) - 4 0 =4
-20 24 12

B will be given by BT = [0 0 1], therefore

- -

1/4

-4 [ @1, =y .

-1/2

(u"ln)®13

Now using the expression for the residues it follows that

3 -
~15

s
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. I
Kyo = x[sh 110(:>13]Y S e 3
.. T2 7 3
Kyo = x[sh onc:>13]y - g o 1

= - [ -4 9]
X, 1 = Xlsh r,®1,y 5 0 -

Again, there is no need to construct the [sh Pi 2] matrix as the desired
’
operations are carried out by using the flags. The matrix partial fraction

expansion of (3.12) is then

B P N | ] S

(o+3)

which is correct.
The number of arithmetic multiplies and divisions is approximately

a 2, 2 a3 2,32
'y + 2pqn 4n”~ for a low count and S + 2pqn” + 20 for the high count.

b) Chen and Leung Method

The derivetion for the scalar case carries over to the matrix of proper
rational functions in an analogous manner to the eigenprojector case. Eq-
vation (2.23) is modified by performing a Kronecker product of M and D with

Ip. thus for the distinct case




where C

products as given in the Appendix, then (3.14) can be rewritten as

K ]

K0

K
__n,O

where M and D are identical to the matrices for the scalar case.

1,0}

- (M’ln'l(:)xp)

n-

1Ip- * .

'y
.41 1 c
lp L \-n—
(3.14)

84

o
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0
P

ieRqu and Ip and 0p are pXp. Using the properties for Kronecker

(3.15)

Using the same example as before, the matrices M and D are for the

example

wWipml &l-1 -3

1 9

-6

15

~ + O

7o O ©

and using (3.15) the following expansion is obtained

(e ]

1,0

Ky,0

K21

—

'
L

s

©c w o

-18

0
1

-1

o oo O K+ O

0
~1

N O - O

-1 1 -1 1
.|
2 3 1 -1
-18 6 =2
0 3 7 2
11l-6 5 10
0 8 24 15
-1 ||-31 32 45
a 9 17
-2 | |-45 51 47

N

et i
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where the rasidues found from the operations are the same as given (3.13).

2

The method requires about 2n3+pqn +n2 for a low count and about

2n3+pqn2 + %-nz which are almsat the same for large matrices.

c¢) Escalation Method

The last method to be considered for extension to the expansion of a
matrix of proper raticnal functions is the escalation method. The usual
procedure would be to extend the scalar case but where matrices are used
in the procedure as follows. The Horner's algorithm is used to calculate
the Bi watrices of
1 i

n-
N(s) = BO ) 81 T (s-A

& o1 j) (3.16)

vhere Bo....,Bn_leRqu. Equations (2.29)-(2.32) would then ba used in a
matrix form of the tableau.

For the example presented in (3.12), the Horner's algorithm gives

N(s) = [" 0 ':l + l-_:" ~4 7:] (s+1)+ [3 7 2] (s+1) (s+3).
-20 24 12 -7 12 5 -6 5 10| -

Construct the tableau in the same manner as the scalar cz2ie using matrices

given

(r) (x) (r)
| B B B2
e o -4 6, - 4 0 -2
-20 24 12 -20 24 12}
P L —t —— p— A
|2 o -2 6 -4 9 ], = “h -4 7
-0 12 6|3 o -1 | -7 12 5
p—— —— p—— — P ——
i [ -1 2 7 3 6 -4 9 g, = 37 2
| -5 3 -1 -1 7 3 0 -1 -6 510
N — h— - | h— —
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the last matrix row of the tableau gives the residues and they agree with
(3.13).

The arithmetic count, considering only multiplies and divides, is
approximately pq(n2+n/2). The method is more ¢fficient than the other two
but the efficiency tends to be less drastic thzh that for the scalar case
particularly for p and q approximately equal to n for large n.

The Mahoney procedure can be modified so that fewer operations are

required when compared to the matrix formulation given above. Consider

the matrix of rational functions given in (3.2) which can be expressed in

the form _
n-1
-2
[CysCpponeessli] n
Ho) = ——2——2_ |} | @1 (3.17)
s +d1' +oco{-+d ¢ q
n
1
The functions
h, () ! 4=0,1 1 (3.18)
8) = - seesegl= .
J sn+dlsn_1+.....+dn " ’

appear in (3.17) thus knowledge of the n-expansions of (3.18) will provide
the basis for the expansion of (3.17). The Mnhoncy procedure can be used

to expand h _,(s) and the tablesu can be continued to find the expansions

of hn_z(l),.....,ho(s).

If h _,(s) can be reprasented by

: mi-l kili _
hyp(s) = ) (3.19)

151 L=0  (s-2)"*

it follows that the expansion

[P———
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L

o)
h (.) - s j - 1 2 veveeyl (3.20)
n=J 121 =0 (s-rp*H ey ;
will contain coefficients givan by
ka1
G+) D%
*{m-1 " TR, 21 (3.21)
and
L) (34)
kD o Ll L R TUPN (3.22)
' i

which are the same equations given in (2.29) and (2.30) excapt Av-O. The
latter two equations are then used to continue the tableau such that the n
expansions of (3.18) are given in the last n rows of the tableau.
Now it can be seen from (3.17) that the matrix residues ‘i.zechq are
then obtained
L]
1,%

‘ k2
Ry g = [613Cp0e0enriCy) 1,2 ™1 (3.23)

where the vectors [ki 2] are given in the corresponding columns of the last
’
n~-rows of the tableau.

Considering the example in (3.12), the functions given by

b
h,(s) = _

j=0,1,2
3 (s+1) (4+3)>

N -
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must be expanded. Starting with j=2, the Horner's algorithm gives the table

o3 1 0 0

2 | 1 -1 1 A, = =1
1

1 - -

s 1l <4 Az 3

lo 1

and the usual Mahc¢ney tableau for hz(;) is given by the first three rows of

the tableau with the last two rows giving hl(l) and ho(l).

n oy
r=1 1 Bop =1
re2 -1/2 -9/2 B, = =4
=3 1/4 3/4 -9/2 |a? B, =1
-1/4 1/4 -3/2 |«
1/4 -1/4 -1/2 |o°

) ) 1
k10 k20 ko1

The corresponding vectors of the expansion of (3.18) are

Tyl [, Lo T o) o]
k)0 1 ka0 3 ky 1 -9
()| .1 |_ @] 1 @ .11
ko =% |72 > (k20| "% | L |amd |k 3| =3 |3

k(3) 3) (3)
~ 1 ko' -1 k -1
1,0 | R B R IVE ] [ 2,1 ] ]

and using these vectors in (3.23) will give the correct matrix residues.

The cperation count for the above modified procedure is approximately
pqn2+2n2-n/2 which i3 less than the count for the Mahoney matrix formulation

48 well as the other procedures,
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4, Conclusion

Three methods for computing résidues of proper rational functions have
been presented and they all have the property that derivatives for the case
of repcated roots are not necessary. The methods have been compared in
operation counts and the escalation method is the most efficient for the
scalar case.

The eilgenprojector and the Chen and Leung methods are baséd on the
algebraic structure of the expansions which is elegant and easy to follow
and the method can easily be éxtended to the matrix case by continuing
the tableau and theén by applying the Kronecker products. This method is
shown to be the most efficient in operation counts. When the algorithms
are implemented in a digital computer, programming attention should be
given to the Kronecker products to minimize the number of arithmetic
operations, The Kronecker products have been used in the development as
a mathematical tool but that does not mean that the equations are to be

implemented as given in the paper.




CHAPTER 5

ALGEBRAIC THEORY OF A(A) = M + €A+ K

Chapters 2 and 3 of this report gave the mathematical development of
the algebraic theory of lambda matrices, Lambda matrices of general order
were considered and the propertizs of the latent roots, vectors and projectors.
were considered. The finite-element model of a structure will generally be
defined by a second-order lambda matrix MAZ + CA+ K where M is the mass
matrix, C is the damping matrix and K is the stiffness matrix. The latent
roots of such a lambda matrix will generally be distinct except for the
free-free modes which will be repeated and located at the origin of the
eigenvalue space of the associated state~variable matrix. |

This chapter discusses the properties associated with the specific
lambda matrix that arises in the firnite-element model, i.es., the second-order
lambda matrix., The displacement, damping and identification of the (“ructure
is of interest in the drvelopment., The objective in this chapter is to
consider the second-order lambda matrix utilizing the algebraic theory
developed in the previous chapters. The spectral factorization of the second-

order lambda matrix will be described as well as properties associated with

the spectral matrices.
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1. Introduction
The previous chapter of this report gave the general algesbraic theory
of latent roots, vectors and projectcors of lambda matrices. The work did
not considér the special case of a second-order lambda matrix such as the
one occurring in the finite-alement model for structural analysis. The
dynamics of a vibrating structure can be characterized by the sacond-order

differential equation

2
MAX LTI, Ry . E(p) (1.1)
d;2 de
t
vhere Mbnpxm is the mass mn:rix,‘EkRmxm is the damping matrix, Egnﬂ“ﬂ is

1l x1

the stiffness matrix, x(t:)en.“x is the displacement vector and F(t)eRP
is the force acting on the structure. It will) be assumed that H,'E. and X
are symmetric positive definite motrices,

The homogeneous equation

2. _ —
249-—’2‘+c%’-:-+xx-0 : (1.2)
dt

+

can be transformed to a lambda matrix by assuming that x(t) = e exp (At)
or by taking the Laplace transform of (1.2) with zero initial conditions.

The lambda matrix of interest in the following work will be of the form

) = w2+ +K. (1.3)

This lambda matrix will have 2m iatent roots that occur in complex conjugate

-

R

|

T

4
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pairs, 2m right latent vectors in conjugate Pairs as well as 2m latent pro-

jectors that are also in conjugate pairs., The normalized lambda matrix
AQ) = 1A% + cA + K (1.4)

will be taken as the canonic form since the associated block compaaion

matrix

A = ' (1.5)

is considered to be in canonic form. As given previously, the eigenvaluas
of A,c are equal to the latent roots of A(A) and the eigenvectors of Ac con=
tain the latent vectors of A(\) as subvectors., The latent projectors of
A()\) are sibmatrices of the eigenprojectors of Ac, |

The algebraic development in tuis chapter will be directed toward
establishing the theory and structure of the latent roots, Vectors and pro-
jectors of A(\) as given in (1.3) and the structure of C for either speci-
fied mode dampings, or the location of the latent roots of A(A). The first
step in the development will be that of transforming A()\) into the cancnic
form and using the canonic form for the algebraic theory of lambda matrices.
The damped and undamped lambda matrices will then be studied and the alge-

braic structure of each form determined.
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.
2.‘ Ceneral Theory of Lambda Matrices for Undamped Vibrating Systems

The general theory of vibrating systems and lambda matrices has been
covered by Lancaster, [3]. Some of that material is presentad here to pro-
vide the proper satting for the developmenc that follows.

The undamped system that has no viscous or hysteretic damping and the
free vibrating system can be characterized by the m second-order differen-
tial equations

2

M"
dat?

+Kx =0 2.1)

gL

where x(t)€ . The systam is undamped and the displacements :i(.c) will

be sinusoidal therefore if it is assumed that

Jut

x(t) = qe (2.2)
and equation (2.1) takes the form

(*4E)q = 0 @.3
Ifu= -wz, (2.3) can be rewritten as

(nu+K)q = 0 (2.4)

where Mu+K is & real, regular and symmetric matrix pencil, [3]. A pencil
of matrices is regular if a) M and K are square matrices and b) M i3 non-

singular.

T SO 5

L




94

*

A simple matrix pencil of order m has the folluwing properties [31.

a) It io a regular pencil
b) It has n linearly iuﬁipoﬂdcnc right and left latent vectors, ;1

and '51 respectively,

Several theorems and corollaries from Lancaster (3] will now be given with-

out proofs.

¥

Theorem 2.1 Latent vectors corresponding to distinct latent roots of a

regular matrix pencil are linearly independent.

Corollary 2.2 A matrix pencil of order m having m distinct latent roots is

a simple pencil,

Theorem 2.3 A regular matrix pencil Mu+K is simple if and only if for
every latent root U 1 the matrix Mu+K has degeneracy equal to the multiplic-

ity of )Ji.

Theorem 2.4 If M and K are real symmetric matrices and M is positive de-

finite, then Mi+K 1s a simple matrix pencil.

Corollary 2.5 Under the assumptions of Theorem (2.4) all latent roots and

latent vectors of the pencil Mu+K are real.

Theorem 2.5 The regular pencil Miu+K is defective if and only if there
axists a latent root M " with a right latent vector y 1 such that z'i}fyi = Q

for all latent vectors Yy of Mye

Corollary 2.6 As a result of the thcorems, the matrix pemcil Mu+K is there-

fore a simple matrix pencil and has m latent roots with m linearly inde-

P ]
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pundent latent vectors,

The lambda matrix

A = W2

+K, (2.5)
will therefore have 2m latent roots A, = /ﬁ; = #jw, . The latent vectors
for (2.5) will be real since (MA%+E3eRmxm and the latent vector for +jwio
will be equal to the latent vector of ‘3“10' All latent roots appear in
iwaginary pairs, tjwio, and there will be only m linearly independent right
and left latent vectors. Furthermore, since A(A) is symmetric, the right

and the left latent vectors must be equal for a latent root Ai’ il.a.
2, =¥y (2.6)
)T, = AT, -

where A(Ai):i 0 and A (Ai)zi 0.

The latent projectors for an undawped vibrating system for a latent

root Ai are given by

- T - =T
- Yy % Y, Y
P o= 11 . 14 (2.7)

2y a1 e a7

but since dK(Ai)/dA = 2M A,, (2.7) becomes

- .Y,

F1,0 T T G (2.8)
Y4ty

Theorem 2.7 The latent projectors for an imaginary pair of latent roots

of the lambds matrix for an undamped vibrating system occur in imaginary

pairs

C.ﬂ..{
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Sy g

[}

ol —4 !
P21-1,0 ™ Fai,0 ‘ 2.9

where it has been assumed that the latant roots are arranged in the order
Agg-y ™ dWyg and, A2i - "Jwio-The latent préjectotl for‘cacﬁ pair are
lin~arly dependent,

The prooi of Theorem 2,6 follows directly from (2.8). If Apy 3 ™ 30,

and Azﬁ‘ - "'Jwio then

— a—

fa) —Jr .
Fay o " ks Ghh - Sio G
1,0 2(-jw T — % " 23w, , =T~
10 Yi”yi 10 y:(.My:l
A ~
— - * - -—
= Pp3-1,0 ~ “F21-1,0 (2.10)

Theorem 2.8 The latent projectors for different pairs of latent roots,

My ¢ “3 for an undamped vibrating system must be orthogonal,

n ~

The latent projectors for the simple matrix pencil Mj+K = 0 ara ortho-
gonal since this latent-problem can be related to the eigen-problem. If

H o= wio then
K-My = 1/2(u"1/2“164”1/2-m )Ml/2 : (2.12)

where it is assumed that M is positive definite. It then follows that thp
determination of the eigenvalues and eigenvectors of K~I)  i1is a standard

eigen-problem, The eigenprojectors of this algebraic system must satisfy

. OF POOR QUALITY -

¥

vt
i
S——




P

97

the usual orthogonal property with

Py1,0 Pxy,0 " O L | (2.12)

The eigenprojectors of K-Iu and the iatent projectors of K+Azz are related

with

L)

"
Pea,0 ™ Tai-1,0%20-1 TP (2.13)

A, = Bh A I
21,0724 ™ Fagatpg1 * Pagoe

The latent vectors of A21~l and AZi ars real and equal and since there are

only @ linearly indepandent latent vectors for K=Iji , the latent vectors in
N ~ .
1. 4nd ‘i"j o Bust be orthogonal in order for (2.12) to hold with jyi.

’ ’ .

S U——
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= K
3. The Cholesky Dacomporition and the Canonic Form |
Any symmatric positive matrix B w BT can be decomposed into a produtt
of two triangular matrices, Q and QT by the Cholesky algorithm. The canonic
lambda matrix form can be obtained by factoring M out of (1.2), to the
right or to the left, but this process would destroy the symmatry of the
resulting lambda matrix. Rather than carry out this operation, the maes

matrix can first be decomposed by the Cholesky algorithm ([26] with

i

I

whete Qekyxm'in a lower triangular matrix and QT will be an upper triangular
matrix, If Q is now factored to the left and QF to the right, (1.3) takes

the form
— 2 T T
A(A) = QIA"HCAHK]Q™ = QA(M)Q (3.2)

where ™ ¢ = Q_IEQ—T and K = Q-l'i Q. Since C and K have been assumed
to be symmetric, C and K will also be symmetric,
The latent roots of A(\) will be equal to those of A{\) which can be

ecasily shown, Defining A()) as,

(AN s yiaz-nt 2 (3.3)
where zEcmXZm is the laft latent vedtor matrix and YeCZan is the right
latent vector matrix, then |

mon e Yo e (3.4)

) The superscript (-T) will be used to denote the transpose of the inverse
of the matrix. '
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The normalization process giv.n in (3.2)“will therefore map the latent vec-

tors ;i of A(A) into y, with o

v, =y, y ec™t (3.5)
In addition, A(\) has symmetry thus

'51 - 371 - QTyi x 1.e':(:m’d‘ (3.6)

The Cholesky decomposition and factorization will leave the latent roots
{nvariant but the latent vectors will be modified as in (3,5) and (3.8).

The block companior matrix assoclated with A()) will be as given in
(1.5) and its eigenvilues will be equal to the latent roots of A(A), The

right eigenvector of Ac are given by

yci - (3 L4 7)
Ay :

and the left eigenvector of Ac is

zi(J\iI-HJ) :yi(A iI-K‘.) |
Z = - (3. 8)
el )
for Ai with 4 = 1,3,5,,..,m1, The eigenvectors for the eigenvalue Xi with
index 1 = 2,4,6,...,m are equal to the complex conjugate of (3.7) and (3.8).

It will be assumed throughout the development that the latent roots of

-

T e T e T
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A(Q)) are distinct excapt for those At the origin, i.u. A=0, All latent
roots will appear in conjugate pairs including those nh“;cia which must be
present in an even number and all latent vectors will occur in conjugate
pairs,

The (ompanion form matrix Ac has the speactral resolution

(E.4) 121 Py oM " )j Py, oMHEY M) (3.9)

and the partial fraction expansion of (AI—A)-l is given by

2
R
(A, N)] [AI-A 1 = A Tiii'i (3.10)

which can also be defined aa

c

=1 A,+20 X+(G

(3.11)
11)

= Im (P

" 0). If (3.9) is the spectral re-
’

where PRi,O - R.(Pi.o) and PIi,O

‘aolution of Ac' then

A Q) = AI-A, = Z Py oAy

i=1
3 * »
. 121 [By o A=A HPY 4 O-A)] (3.12)

which can also be given as

m
%“"}1“10 Py A=(By ARy A1) (3.13)

e
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It follows from (3,1%) that

m
(E.1) 121 ®y 0Py 00 =1 (3.14)
and
m . W 0 I -
121 (P1.0>‘1+P1,0>‘1) A" - (3.15)

-k =C

Recalling that an eigenprojector Pt 0 is defined as

.y

p, o=y yh o= 4 | 5roase 0 (3.16)
1,0 =~ Vet Vi 7 Btk Y4 )

for normalized eigenvectors, th¢n~§i 93 will be properly normalized and

[ .1 o W]
¥ ¥4 A TH0) "1"2
Pyo" Cr o (3.17)
_ziyi(*11+c*1) AN
B " ]
pi.o(xix-rc) %0
-~ A

where 51 g 1s a latent projector of the canonic lambda matrix. Equation
14

(3.17) can also be derived from [Ac(k)]-l from which it follows that

o L e 1 |
(A, M1t = )] | (3.18)
‘ Y.
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-1 Cern yqel J"11’“” I
Pio ™ RADIA Q)Y = Q) AQ)] x \ 1
1.
PLo0  Fy |
- A ~ (3.19)
Equation (3.14) can be used with (3.17) or (3.19) to derive the rasult
| T "
(L.1) LEL (P1'0+Pi’o) -0 (3.20)
and from (2.15)
m . A w ok
(L.2) 121 (r1'0x1+91’oxi) -1 (3.21)
Boa 2. 50 2% -
(L.3) 121 (91,0A1+P1,0A1 ) = ~C (3.22)

Equations (3.20) and (3.22) expresses the invariances for the assignment of
damping in the system and are key equations. The assignment of damping will
be discussed later.

Two of the properties of the eigenprojectors can be used to derive
properties of the latent projectors. The eigenprojector are idempotent
matrices thus

(E.2) P

Pi0 81,0 Pyo

AR Dy

I
. >
Groeptmne

W’
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Substituting for P 1.0 into the above aquation gives
»
~ oA o . A |
and
) ~ N A 2 A
(L.5) Pi,OAi - P:l,OO‘.LI'K)Pi.O (3.24)

The companion matrix A c will have 2m linearly independent eirenvectors

in which case the eigenprojectors are orthogonal with

{E.3) Pio¥,0"0 143

Substituting for Pi;f«‘ and Pj’o and using (3.17) gives

(L.6) ﬁi’o(ximjmﬁj'o =0 (3.25)
and

(L 7) 31,0"‘1‘31““)%,0 -0 (3.26)

Properties of the eigenprojectors for the companion matrix and the
canonic lambda matrix are summarized in Table 5.1, These properties form
thie bacis for the development of the assignment of damping. Each of these

properties have been verified with an example and a computer run.
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Table 5,1 Summary of the Propert-es of the Eigen/latent Projectors
(r distinct roots of multiplicity m 1)

A, = Block torpanion Form

"
pi,z = aigenprojectora, ni,z = latent projector

E.l Z P,
=1 1’0 "
E,2 Pipo Pi,O - Pi,O i = 1,2;0.0)‘

E.3 Pi,O Pj,O =0 143

1,1!
Y.
B6 (A (A1 m (12 4 ca 4 K]

E7 By o= {0A=2)) [ACA=A)) [ACD) 174 a, (a4 distinct root)
E.8 P om—i QJ_-I_. {¢ =) )ml'l[A(;\)]-lﬂ ( A, repeated root)
. 4,9 TI0 3NN - IETVRRES b
o {3 1H0) B o
Elg Pi’o A
AP4,0
m,~1
T i Pi 2

’ ' -»i- .
B0 [A(N)] 1§1 wo ()

e
veatgs
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Lyaramnbiriste
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E.)1

E.12

E.13

E.1l4

L.l

L.2

L.3

L.4

L.5

L.6

L.7

L.8
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"1,0 Afi . ’1. distinect root -
Ay ™ | o
Piokt Py ., repaated root
Aeghey = 0 14 , -
i
A = A
-1 cl
Ay " A By g
AC)) = 1)24+C MWK Canonic Form
2m ,

od ol
I P 2 (P, oy o) =0
gy T1,0 7 L V24-2,07724-1,0

o

A A ﬂ* Ok -
ghy 10M T4l By o Mgt 0% T T
&m \Raph w2
:LZ;L (P 1,0 iﬂ,i oM ) "¢
Py,0 = Py,0@HTHOR 4

By ohy = Py o(I-KPy 4

By o\ IFATHOIR, = 0 14

i e - .1 3
B, oA NT-K)Py (= 0 ’3
. o, p 9ACY)

Pi’o - yiyi/(yi A y1) yiyi
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4. Spectral Factorization of A(\)

Section 3 of this chaptar considars the restrictions on the eigen-
projectors and the latent projectors of the companion form of Ac and the
canonic form of A(A\). In addition to these restrictions, studies of A(\)
will reveal other restrictions.

Consider the undamped lambda matrix for ‘:he structure with
AQ) = TA3K 4,1)

The matrix coefficients of A(A) are mXw and A(A) will have 2m latent roots
Ai’ Let K' denote a mm matrix with elgenvalues }‘i = Ju, where u,>0 and
similarly let K have eigenvalues )\1 = -jw, with w20, The free-fres
latent roots at )“i = 0 will be equally split into the spectrum of K+ and

that of K, The lambda matrix admits the spectral factorization
AQY = (aah) (TAH) (4.2)
where for the undamped case of (4.1)

K= k'K (4.3
0= KK~ (4.4)

The stiffness matrix has eigenprojectors Pry o thus K can be constructed by
' R ]

the sum

Km A (.‘0-5)

L Pra 0tk

[PENORe,

PR
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where Au - wi. Now K can be !letondf as given in (4,3) with

+ r

o2 Fra,0 M Agy " 40y
and

121 k1,0 ki Mg = =30y

with A;i XEi ”’Aki - mi. Note that (4.4) is satisfied since

KK = Z (Pyy , 0304=Pyy gdwy) = 0

as required. An example can be given to illuatraie tha facforization

K(I,J) MATRIX
9

- 5 o

-5 11 -6

0 -6 13
EIGENVALUES

3,11262 10.6609 19,2264
EIGENVECTOR MATRIX

.587523 .737925 . 332087
1691794 -.24513 ~.679214
.419805 -.62879 .654513
EIGENPROJECTOR FOR LAMBDA = 3,11262

. 345184 406446 . 246645
406446 .47858 .290418
+246645 +290418 +176236
EIGENPROJECTOR FOR LAMBDA = 10,6609

V544534 ~-.18(888 - 464
-.180888 .0600886 .395377
- 464 .154135 .395377

T Note that =JK" and jK  ~re square roots of K, i.e. Kliz.

107

(4.6)

(4.7)

(4.8)
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EIGENPROJECTOR FOR LAMBDA = 19,2204

.110282 =-.225558 «217355
-.225558 461331 -, 444554
«217355 -, 444554 428387

i

Using (4.6), k¥ 18 given by

2.87052 -0.862567 -0.126807
K" - J | ~0.862567 3.06338 =0,933635
-0.124807 ~0.933635 -3.48026

md K- bd -K+u
When damping is to be added, K is invariant under damping assignment

thus the lambda matrix becomes

Ay Q) = INHCMK = (nﬂq;) (D) (4.9)
where
K = KK (4.10)
K% | .
+ -

The invariance of K can be satisfied by postmultiplying K+ by a unitary
matrix and premultiplying K by the transpose of the conjugate of the uni-

tary matrix, i.e.

K= KW' =& | L 4.12)

from which it follows that

PREBESENVEY

wm-«
i
[E -
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W * * R
¢ = Ko’ = ko’ h

The most general form of U is complex with U = UR--JUI and since K+ is

imsginary with K~ = ~K'

*

6 = & KD (Wmd U +hH 0D -y KD

where KR » 0 for the undamped case therefore

+ T +
\ - -

Re(C) = C K, U +U, K

T

Im(C) = 0 = KIUR-URKI
‘ + -
Recalling that K = KDKD. then

K = KK = K (Ui U,) (UHs )K"

1/2 1/2 +

and that K= (JK'“)(-3K™'°) = K'K, (4.17) takes the form

1/2 _ 4

% % |

K = k1 2(UI+j Ug) (U3 UR)TK

109

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

The upper-half spectral matrix K; must have eigenvalues equal t: the latent

roots of A(A) for the upper-half plane. Similarly, K; must contain eigen-

values only in the lower-half plane. Figure 4.1 below shows the eigenvalue

locations for the undamped and damped matrices, K+ and K;.
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2

eigenvalues of damped ad elgenvalues of undamped
system system

Figure 4.1

The damping problem requires that a unitary matrix be found such that

U= Ut Uy (4.19)

U(U*) = I (4.20)
T T '

Uglp ¥ UgUp = I (4.21)
T T

ULUp = ULUL = 0 (4.22)

where U* is the complex conjugate transpose of U. The damping matrix is

given by

¢ = k2 U + u§ g/2 (4.23)

s ———EA

[EAEN
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with the additional constraint that C be triadiagonal and that

12 _ T 1/2
0= K Ug = g K (4.24)

It follows from the above analysis that the lambda matrix A(A) admits

a spectral factorization. o

AQ) = (IEh) (@) (4.25)

" for the undamped case with K = K* and

Ay Q) = [IA+K+(UR—1 UI)][1A+(U§+3 u'{)x‘] (4.26)

for the damped case. The ccmplex unitary matrix must have the property that
C as defined in (4.23) properly accounts for the damping implemented in the
structure., If C is tridiagonal then Uecnxn must satisfy the tridiagonal
property as well as satisfy (4.24).

The aatrix function

¢ = £QU) = (KU + ur(KHyn

given in (4.13) has the following properties: Taussky and Wielandt [28)

a) The nxn complex matrices K+ and U are nonsingular if £(U) is a

positive definite matrix

b) £(U) is linear over the subfield R of real numbers.

R,

e e Y e S S 1 A
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Propﬁrty a) can ba shown as follows; let z denote a vector such that Uz = 0

which implies that U is singular, It follows that
+ + ,
K Uz+z*UN (K )% = zhE(U)z = 0 , ‘ (4.27)

Thus £(U) is not positive definite., Similarly, if Kf is singular then
sz = 0 and (

eKTusun (KH) wzh « 2 EQU) 2% = 0

and this is a contradiction of a),

Property a) then implias that if K+ is singular, e.g, eigenvalues at
the origin then C will be singular. Since K+ can be positive gemi-definite
the C will be positive semi-definite whenever K+ is semi-definita. The
matrix K™ is the spectral factor of K thus K will also be positive semi-

definite when K is positive semi-definite.

o

e
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CHAPTEY 6

' OPTIMAL CONTROL OF SELECTED MODES

The usual approach taken in applying optimal control theory is to
determine state or output feedback for all of the modes of the system.
This procedure works quite well wheﬁ the number of modes in the system is
not large but the computational load for several hundred modes makes this
type of control impractical if time varying gain is used., Even when a
constant gain i{} used, cthe computation of the gain is not a trivial task.

There have been numerous papers, see [29]-[30], published in applying
optimal ceatrol theory to structure with the development based on reduced-
order models. 7The computational load can be reduced significantly by this
approach but the reduced-order model must be carefully chosen if mode spill
over is to be avoided.

The work in this section will take an entirely different dixection.
The computational load for the procedure is reasonable and the mode spill
over problem can be eliminated. The spectral factorization algorithm will
be used to decouple the selected modes from other modes of the structure.
The optimal control theory will then be used to construct the feedback for
the selected modes, The uncontrolled modes are uncoupled from the control
modes and the possibility of mode spill over is eliminated.

The method presented in this chapter is similar to that of 0z and
Meirovitch [31] where the modes are decoupled and the Optimal control is
determined for each mode. The major difference is in the method of de-

coupling and the computational procedure.

113
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1. Introduction

Consider the state equation for a plant with
X(£) = AX(t) + BUCE) (1.1)

where AeRPxn is the system matrix, BeR“xm is the input force matrix,

Rmxl

x(t)eknxl is the state vector and U(t)e is the force vector. Let J be

the assoclated scalar cost function with
~ 1 .,T 1l T T
I(K,0,8) = 7 X (OHX(0) + 3 J: [X"(£)Q, X(E)4U™ (£)Q,U(E) 1dE o (1.2)
The Hamiltonian for the system is
, 1.7 l1.T s T ,
H(X,U,P,t) -5 X (c)le(t) + 5 U (t)Qzu(t)+P (t) [AX(t)+BU(t) ] (1.3)

from which it follows that X(t), P(t) and {(t) must satisfy the equations

i(c) = AX(t) + BU(t) (1.4)
R(t) = -Q,X(£)-A"R(E) (1.5)
0 = Qzu(c)+nTp(:) . O (L.6)

The desired control for minimizing the cost function is

U(e) = ~Q; "BR(E) Lo
where it will be assumed that

P(t) = RX(t) . ; : (1.8)

Differentiating (1.8) with respect to t and using (1.4) and (1.5) gives

the algebraic Riccatl equation

q, + AR + RA - RBQ, 'B'R = 0 | (1.9)

e e @O SR BRI AR R e i R i

zrmst e

e
SN

|t
FO—

PO
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for R. Substituting R into (1.8) and the resulting equation‘into (1.7)

glves the control

u(e) = - BTRR(E) (1.10)
This control will give the closed loop matrix

% = 4-3Q; B'R | | (1.11)

It is usually assumed that H, and Ql are symmetric positive semi-definite
matrices and Q, is symmetric but positive definite. The Riccatl matrix
obtained from (1.9) will also be symmetric and positive definite. The
matrices H, Ql and Q2 are weighting matrix chosen to fix the cost penalty
for the initial conditions, the displacements and the control effort.

An example will now be given to illustrate the computational procedure.

Let A be

/

H=0
Q = Tuxs
Q= Lo

Substituting into (1.9) gives E&
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r-i 0 0 0 FE 0 -9 5 r.b @)0\ 1 0
)
0100, oo 5 -] 0o 0o o 1
0 0 1L O 1 0 -1 0 -9 5 -1 0
0 0 0 1 01 0 -1 | 5 =11 0 =1
- f
FB 0 0 O
R 0000 4 A
0 0 ) O
_9 0 0 EJ
The algebraic solution to this equation is
r_k.1817 ~2.02521 0.0736876 0.0332§IT
R = -2,02521 4,99179 0,033291 0.060371
0.0736876 0.033291  0.465215 0.022792
0.033291 0.060371 0.022792 0.456098
and the closed loop matrix is
—-6 0 0 0
A= |0 0 0 1
~9.07369 4.96671 -=1.46522 -0,022792
Lﬁ.96671 ~11.0604 -0.0227921 ~1,4561 _

ORIGINAL FAGE IS
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The eigenvalues for the open loop system are A = -0,5t32,1566% and

A = -0,5%£13.85344 whereas the closed loop eigenvalues are A = -0,741952%

J2.10985 and A = -0,718708+33,82303.

It should be noted that if the closed loop system matrix represents a

model of the form
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it is necessary to modify the stiffness matrix. It should also be pointed
out that C does not represent a model with passive damping as C does not
have the proper structure. If the closed loop system has the feedback de-
fined in (1,10), there are no restrictions since this control law is not
for a passive sys‘éex‘n. 7

The control vector for optimal control shouldalways be constructed
from the velocity elements of the structure if the matrix form given abcve
is to result from the control. Basically this means that the B matrix
should have zero elements in the upper’hnlf, i.e. in the first nXm block
of B,

The algebraic Riccatl solution for the example given above required
that a 2nX27. matrix be used where A i8 nXn. It is obvious that a system
with a large number of modes is not suitable for the above type of analysis.
The optimal control procedure above will also add damping to all modes
where it may only be necessary to damp a few modes.

The analysis presented above is more diffiicult when an undamped systam
is8 considered. The reason for this is due to the presence of multiple
eigenvalues of the matrix considered in solving the algebraic Riccati
equation. The mode decoupling method presented in the next section will
consider an undamped system and the computational problems with the alge-

braic Riccati equation will be eliminated.

7

7]
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2, Mode Decoupling
A method will be given in this section that decouples some of the
modes from the remaining ones so that the optimal contro) strategy can ba
carried out on a lower-order system,

Consider the undamped system matrix with C=0 such that A is

0 L
.- [ ] L e
-K 0

where K is positive definite. The eigenvalyes of A are along the jw axis
and occur in complex conjugate pairs. The eigenvalues of K are given by
wi where jmi is an eigenvalue of A. This suggests that the spectral decom~
position of A can be obtained from considexing K rather than A.

Suppoée that there exists a similarity transformation matrix T, such

K
that

Ky O

T KT, = = (2.2)
0 Ky

where KBl has eigenvaluea'hflpland KBZ has eigenvalues Ai>|p|-1£ such a
matrix exists, then KB gives the spectral decomposition of K. To find TK’
the eigenvectors of K must be found or the sign algorithm cen be used to
generate T. The eigenvector procedure will probably be the most efficient
for large systems so the procedure will be based on that method,

Let @K denote the eigenvector of K from which it follows that the in-

verse of T is constructed from the columns of @K, Consgider the stiffness

matrix

(r':

et

.

Carnsestas




119

ORIGINAL PAGE I8
OF POOR QUALITY

for which the eigenvalues ave

Al » 3,11262
12 = 10,6609
X3 = 19,2264

and the eigenvector matrix is

0.,587523 0.737925 0.332087

The elgenvectors are ordered in the same order as ths ¢igenvalues,
Assume now that TK is to be conatructed such that KBl contains the
eigenvalue Al and an has eilgenvalues Az and As. The eigenvector matrix

48 partitioned with

0,587523 0,737925 0,332087

P11 - | 0.691794 -0,24513 -0,679214
*21 %2 | 0.419805 -0,62879  0.654513

and T 19 then given by

-1

L 912925

.1 (2.3)

¢21¢ I
or numerically
T .0.5 -0.58874  -0.357266 |
m;l - ~0.58874 0.5 0

~0.357266 0 0.5

The inverse of TK is
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-0,690368 =0,812892 ~0,49329
T, = | =-0.,812892  1.,04284  ~0,580837

The similarity transform as expressed in (2.2) gives

3.11262 0 0
0

Ky = 0 16.887% -2.4273 | = | B
0 -6 13 0 Ky

which has the correct eigenvalues,

If KBl is to be 2%2 with eiganvalues Al and Az. the partitioning of
¢K would be changed so that ¢11 ig 22, ¢22 is 1X1, etec, The transforma-
tion matrix is then constructed and the similarity transformation applied.

Thus far, the spectral decomposition of K has been carried out but
the system matrix given in (2.1) must be considered as this is the matrix

that is of concern. Let T be a new transformation matrix with

T = (2.4)

0o I

o 1, l-xk ollo T =T KLY cL],

v

glives a new system matrix with KB in the lower loft corner of the matrix.

Substituting the value of KB from the example, the new matrix is

bt S

epits




ORIGINAL PAGE IS 121
OF POCR QUALITY

0 0 o 1 0 o0

0 0 0 o 1 0

oart - 0 0 0 0o 0 1
-3,11262 0 0 0o 0 0

0  ~16.8874 2.4273% O 0 0

|0 6 -3 0 0 0

which 1s not block diagonalized, To block diagonalize TAT'l, construct a

row-column interchange matxrix E where

O O O = O O
O O O O = O

lo 0 0 0 © )u'
o O M 0 oo

o B O O O O
H O O O O ©
L J

The block diagonal form can then be found with

S TS |
AB ETAT "E TAATA

. ' K —
0 1 0 0 0 0

-3.11262 0 0 0 o o
0 0 ) 0 0 1
0 0 -16.8874 2,42734 0 0
0 0 6 -13 0 0 |

The spectral decomposition process will modify the state vector X(t)

as will now be shown. Let V(t) be defined as the transformed vector

V(t) = TAX(t) : 2.7)

7
"3 ’
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therefore
V(t) = TAX(t:) - TAAx(t:) . (2.8)
but X(t) = Tzlv(t) thus

V() = T Am;1v<c> (2.9)

A

The gimilarity transformation on A to block diagonalize A will map X(t) into

a new vector V(t) where

0
V(t) = E X(e) (2.10)
TK"
or
-1 ‘
TK 0 |
X(t) = -1 E V(t) . (2.11)
T
K-
For the example given in this section T = ETA is
-6?690368 -0.812892  ~0.49329 0 ' 0
0 0 1] -0.690365 -0.812892 ~0.4
T = ET = ~0.812892 1.04284 -0.580837 0 0
A | .0.49329  -0.580837  1.64753 0 0
0 0 0 -0.812892 1.04284 =0.5
| 0] 0 0 ~-0,49329 -0,580837 1.6

thus the vector V(t) has compdénents Vi(t) with

v) (£) = -0.690368x, (£)-0.812892x, (t)~0.49329x,(t)
v,(t) = -0.69036851(t)-o.812392i2(t>-o.49329é3<t)

v (£) = -0.49329 ilcc)-o.580837&2(:)+1.64753§3(c)

ey

0
9329
0
0

80837 |

PRt

I—

4753

iy

[ETSro—
pre———

MEACL L e
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where XT(C) - [xl(c) xz(t) xa(t) il(t) iz(t) ﬁz(t)] for the undamped model.
All of the computations for the decomposition given in this section

are carried out by considering the K matrix which is mXm, It is not neces-

sary to find the eigenvectors of the A matrix since the necessary information

is contained in K.

o)
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3. Optimal Cont¥01 o\‘if »thx; Undamped Decoupiad State Matrix
It was shown in the pre,vio‘usﬁ 'sect:ion that the atate matrix ﬂcou‘id be
block diagonalized with selected elgenvalues of A placed in one of the
selected block matrices, let the bi;ck matrix for the undamped system

have the general foim
0 o]
Ay = TAT T = a1 | (3.1)
i 0 Ay
where ABl has eigenvalues l}\ i_|<p and ABZ has elgenvalues IA 1|>p with p a
scalar variable and A is the undamped matrix. The value of p will be
chosen to include the desired modes in ABl'

Congider now the algebraic Riccati equation for R and let AB be the

decoupled matrix, thus R must satisfy

—

61+A§R+EAB-§ B Q;_l B R =0 (3.2)

where Q, and Q, are weighting matricés for V(t) and U(t). The matrix B
1 2

represents the control input matrix where
V(t) = AV(t) +BU (3.3)

with A, defined in (3.1) and B = TB. It will be assumed that the algebraic

Riccati equation is completely decoupled such thjt

T = = = =11, = )
Qy + AggRy * RyAgy - Ry(B Q" By Ry =0 (3.4)
+A82R + Ry, - R(TS'QEI_T)Z R =0 (3.5)

The Riccati matrices il and -ﬁz can be found indépendently since the equations

are decoupled.

“yeacins

~’i‘,

—
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Substituting for AB in (3.2),

q + AR + RoaT ™! - R B Q;:‘s*‘ BFE=0 (3.6)

and rearranging gives

QT + ATTRE + T'RTA - T'RTBQ;'E'T'RT = 0 (3.7)
Iz TS
Defining R = T RT and Ql = T QlT glves
Q, + AR + RA - RBQ;'B'R = 0 (3.8)

which 1s the usual algebraic Riccati equation for the general optimal con- 2
trol problem,
Denoting equation (3.4) as system 1 and (3.5) as system 2, it fpllows

that system 1 has the system equation

\'rl(:) = AgyV;(6) + Byu, (v) (3.9)
with cost
I, (V) uy,t) = J: '[vi(t)'d'llvl(t) + u{(t)-dz]_ul(t)]dt . (3.10)

The other system has the state equation

x}z(c) = Ag,V, (6) + Byu,(t) | (3.11)
and cost
Iy (Vgrupst) = f: [V (£)Q ¥, (£) + 0, (£)T,,u, (&) 1dt (3.12)

where the initial state cost has been neglected. Assuming that the first

gystem is the desired system for damping, then §é = 0 will leave system 2

[
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t

undamped iﬁ = 0. It then follows that the uncoupled system Riccati equation

is
T - T - :
- TRt TuhT
R=TRo= [ - . L (3.13)
TRty ToRTyo

o

Since Rl will be symmetric then R will be symmetric as desired. The coutrol

input vector B will have the form

_ By By
B - - - (30 14)
B, 0
therefore
ms - oL -1 Y
0 (T =T1TogTyy)  (Tpy=Tpp135m ) By
B = - T F - .
-1, -1 -1 -1
B, (le‘TlsziTzz) (Typ=Tp1 11771 9) 0

(3.15)
The numerical value of ii can be chosen such that Bl is zero and 82 ¥ 0.

The closed loop system matrix is then given by

. -1.T 0 I 0 0

A = A.-BQ2 B'R = - Cpp— T T = (3.16)
-k @ BaBaT1aMTar  BaBaTioRyTho

where it may be possible to make BZBngéﬁiTll = 0 by properly selectinngz

and the weighting matrices. In general, this matrix will not be zero and
the stiffness of the structure will be changed.
The example used in Section 2 will be used to illustrate the computa-
tional procedure. The stiffness matrix was
9 =5 0
K= =5 11 -6
0 =6 13

ST
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where
0 1
A -
Bl -3.11262 0
and
[ o 0 1 0|
A = 0 0 0 1
B2 ,
~16.8874 2.42734 0 O
L. 6 -13 0 o0
The first step is to select B such that ii ¥ 0 and Sé = 0 which can by, ob-
tained from B = TB where
[ — —
-0,690368 ~0,812892 =0.49329 0 0 0 b11
0 0 0 - .690368 =~ .812892 -0.49329 b
-0.812892 1.04284 ~-0,580837 0 0 0 b13
-0.49329 -0.580837 1.64753 0 0 0 ’ b14
0 0 0 ~-0.812892 1.04284 -0,580837 bl4
0 0 0 -0.49329 -0.580837 1.64753 b
b w—— et o
= =
0
1 -
0 By
0
0

The solution to this equation is

B’r = [0 0 0 -0.5 -0.588738 -0.357266]

where the last m elements is the vector of I;l belonging to the controlled

P e e S ST S e 10

12

15
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mode .

Selecting the 2X2 matrix AB]. for damping, then for Q, =1 Q) =~ 1I
andjif = [0 1), the Riccati equation is

1 0 0o -3,11262 | _ _ [ o 1] _ [o o

+ R.A4R X
01 1 0 171 311262 of| 2o 1| 2

which has a solution

5.48385 0,10098
0.10098 1.09363

and ABl closed loop is

7 g 0 1

- —
A - -B Q BJR, =
L - 4317810 " BiRy -3.2136  ~-1.09363

To recover the full Riccatil matrix, use R = ',rT'ﬁ'r which gives
2.61365 3.07751 1,86755 0481279 .0566694 .0343889 |
3.07751  3.62369 2,19898 .0566694 .0667269 .0404921
1.86753  2.19898 1,33441 .0343889 ,0404921 .024572
0481279 .0566694 0343889 .521233 .613738  .372438
0566694 .0667269 .0404921 ,613739  ,722664  .438536

| 10343889 0404921 .024572  .372438 438536  .266119

‘ , - R WY ¢ 5
The closed loop system matrix is given by A = ArﬁQz B R where the numerical

valueg are

[0 0 o 0 0 o
0 0 0 0 1 0
T= |0 0 0 0 0 1
-9.03456  4.95806 -.0249062 -.377504 -.444502 -.269739
4.95896  -11.0483  5,97067  -.444502 -.52339  -.317611
-.0249063  5.97067 -13.0178  -.269739 -.317611 -.192737

vt g

—
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The eigenvalues of A are

A = ~0,546816%31,70722

1,2

My,q = ¥43.26511

Ag g = t14.3848

)

which agrees with those of.ABl and AB2'

The required feedback control vector u(t) is given by

U(£)=-Q; B'RX(E) = -Q;'B'K T X(t) (3.16)

which can now be determined as Qz,ff and R are known.
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4, Optimal Control of the General Canonical State Matrix Form
The procedure described in the proceeding sections considered the un-
damped state matrix in canonical form. The method can be extended to the
general form by utilizing the algebraic theory in Chapters 2 and 5. Con-

sidexr the damped matrix

0 I
A= [ ] (401)
-k ~C

™ and CE:R.m‘xm with no restrictions placed on the forms of these

where Ksnpx
matricas., The optimal control theory can be applied to this form with some
modifications in the computational procedure.

The right and left eigenvectors for the elgenvalue Ad are given hy

Y3
ey ™ Xij (4.2)
and
<AJI+C)yj
Zoy " " (4.3)

respectively where A(Aj)ydj = 0 and A.'I“‘()\j)zc.1 = 0, The eigenprojector Pj

for the eigenvector Aj is defined as

‘y Z — .
By =il - Yey ?ﬁj (4.4)
%oy Yo

where ch’ and zcj denote the unnormalized eigenvectors and the eigenvectors

with the bar indicates normalized ejflgenvectors. The eigenvalues will occur

»

e TR




L Ceeieh Ab

a

131
ORIGINAL PAGE IS
OF POOR QUALITY

in complex conjugate pairs thus A21—1 will be taken as the eigenvalue in
the upper half plane with Im(AZi_l)gp and AZi in the lower half plane.

The eigenprojectox for a paixr of conjugate eigenvalues of the jth mode

, - o ]
Py " Pogn*Pay " Yeas-1%eri-1Mers®eat (4.5)

or from (4.2) and (4.3)

’ T T T T
Y9im1Y24-1P2g-1THC MY Y54 (Ao THCT)

J T .2 T , T .2 T.
Yo1-1Y21-1P24-1THC Aoy 1) +Y54¥ 54 (Ao THE Agy)

T T
You-1 Y21-1 7 Yau Yoy

T = Pyy-1*Payn

. 4.6)
Yo1-1Y21-1121-1"Y24Y 24 04

but Azi - A;i—l and You ™ y:i—l' Thus the terms in (4.6) can be combined
1f desired. The eigenprojector Pj will be a real matrix since,Aj - APJ
will be a real matrix. |
Suppose now that the first of modes, j = 1,2,.4.,q, are to be the
ones that are to be damped, It then follows that
q
Pp = 12:-1 Py 4.7

and if PUD is the undamped projector, it follows that

PUD T - PD (4.8)

The projector P_ can be computed by determining the latent vectors of

D
A(A) = IAZ+CA+K or from the eigenvectors of A.
The matrix T = S+J is needed but this can be computed from PD' The

elgenprojector for the first q modes can also be defined in terms of the

*
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sign matrix S with '
I, 0
By =3 (S4D) = ¢t 4.9)
~ o 0
with
1, 0
S =0 AT U  (4.10)
0 -I.. -

5

where ¢ is the eigenvector matrix of A, To determine S+J, note that

S = 2P -1 (4.11)
and thus
0 0
T m S4J = ZPD-I+J - 2P§+2 (4.12)
0 -Im_

The next step in the algorithm is to find ABl which is. the block dia-
gonal matrix that is to be damped by the optimal control strategy. It can

be showm that

Agy = Ayy + ARy (4.13)

whgre All and A,, are partitioned blocks of A with Alle:quq and A_12 quzm-q.

These submatrices are determined directly from A. The Riccati function R,,

must be found but this matrix can be obtained from PD or T. It can be

shown that R21 is given by
Ryy = &q07r (4.14)
21 21711 '

where ¢1160qxq and tt)necqxzm'q; Partitioning (4.9) and carrying out the

4algebraic stepas gives

[P

——

st

P




133

ORIGINAL PAGE I3
OF POOR QUALITY

sign matrix S with

I, 0 |
Py =% (SHD) = ¢ ¢l (4.9)
| 0 0
with

I, 0
S m @ o~1 oot €4.9)

0 -1 |

m-q

where ¢ is the eigenvector matrix of A. To determine S+J, note that

S = .”.PD-I (4.10)
and thus
0 o0
T = S+ = 2P ~T+J = 2P 42 (4.1))
0 -Im_q

The next step in the algorithm is to find ABl which is the block dia-
gonal matrix that is to be damped by the optimal control strategy. It can

be shown that

Agy ™ A11 t ARy, : (4.12)

where All and A12 are partitioned blocks of A with Allanxq and Alzenqxzm'q.
These submatrices are determined directly from A. The Riccati function R21

must be found but

‘ed
p
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Byq (byybyp8nabpy) by s (byq=yp8onb, 1) 20y 60k
119117%12%22821) =811 ($117912922%21) 410922 |
Pp = -1 -l il -1 (4.15)
921 (9117912920801) * $p1 (05179509158;1) ’
thug
_11 & N
Ro1 ™ Pp2y Pp1a (4.16)
and
Ry2 = “Pp11 Ppaz - (4,17
12 ™ “Pp11 Pp1z @

The latter matrix, R12’ is not needed unless T'l is sought in which case

71 can be written down directly with
a1 | P TR
R -1
21,

The computational procedure for the damped system matrix is as follow:

a) Select the modes to be damped.
b) Compute the right eigenvectors for the selected modes.

¢) Using the latent vectors obtained from the eligenvectors, compute
the eigenprojector for the selected modes,

d) Compute T and RZl'
e) Form the block matrix ABI'

f) Using the Lanb algorithm [32] compute the algebraic Riccati solu-
tion for the control law of ABl'

g) Compute u(t) = -Q;IBTRx(t) and implement the control.

* )
It 18 assumed that PDll is not singular.

wirtey

P

P
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5, Conclusion

The development of A procedure for optimal control of selected modes
of a second~ordzr lambda matrix hng been given in this section, 'Although
the development has been abbreviated and did not cover the most general
model there appears to be no significant problems for the general case. aIt:
has been shown that the control vector for a rather small second-order
lambda matrix can be determined so that damping is added to the lowest
modes, The other modes remain undamped.

The mode decoupling procedure used with the optimal control strategy
avoids the problem of mode "spill-over". The algorithm as presented does
not give the design the option of placing system eigenvalues at desired
location although this can be achieved with some modifications to the theory
provided that the designer give up some restrictions on the final form of
+he closed loop system matrix.

The calculations carried out in this chapter resulted from several
specific computer programs which could be combined for a general package.
Since software development is a time-consuming task, no effort was made

the develop such a package at this time.

g
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Appendix A

The eigenprojectors Ei.n _kplecmnxmn_.. defined in (3.2),can be obtain-
("

ed from

_ fim

(k) -q,+1
P , ™ 1 4 " raay it -1 1T
Lym-qu-k A, “n{kx .00 [(A=2)) (A1-J) l}wL (A.1)

k -~ o’l’ol"mi-qi

where WR and Wi are the right and left eigenvector matrices. The inverse

of (AI-J) is given by

(-1
‘ 2 ~1
(AI—Jz)
(1-3)"L - , | (A.2)
! -1
B (AI—Jr) _
miXmi ‘ ‘
wherxe Jiec is the Jordan block associated with the eigenvalue Ai of

multiplicity o, . For a defective matrix, the Jordan block Ji can have the

following structure

Ir‘. . —
|
Ai 2 |
i 1y 4y-1
.. '
o, i
L W .
- he = - - iy _.--..--‘..'--.-:--—._..——
' .
q,-1 .. m,~-q,+1
i ; . 1 p R §
. | M|

P
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where q, is the number of primary eigenvectors and m ~q, the number of gen-
i i1

eralized eigenvectors associated with Ai' It follows that ()\‘!.--J:L)"1 is

given by

3

FZA-A1>'1

, -1
(1-3)7" =

eiae

-1
(A—Ai).

-1
(-2y)

: y=1 -2
=A™ -2

-1
(A—Ai)

The bracketed term of (A.l) for (AI—Ji) gives

m,-q,+1
, 17 -1
(kuki) (AI—Ji) -

[ m-q
- 1
) 9y
(=2

m, -q
i7
(A-ki)

qi-ni-l
e (A-Ai)

a-ap7
A

1

o. ”ﬂ _q
. i
(A-A)

(AOS)

It is not difficult to evaluate (A.l) for k = 0,1,...,m -q,- The eigenpro-

Jector P -
i,mi a

i.mi-qi = WR

|
!
-1.L- - e e o oew e we

is then given by

i

1)
|
o
: }
. T « T
. | WL - WR sh.l“:‘_’m -q WL (A.6)
| i
0 I
]
------ 9*-«--
} 0

i
]
F
|
E
|
]
r

Vi
4

W i
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[~ ] -
o |
. b1 | T T
Py o= W i Lo W = W sh By oW w7
A S
;o

The shifting matrices are important in computing eigenprojectors of a
matrix provided that the eigenvalues and eigenvectors are known along with

the multiplicity of each eigenvalue and the degeneracy of each Jordan Block.

- :
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APPENDIX B

The Kronecker product is a useful mathematical tool for systems theory

and can be defined as follows. Let Aqu and BtXt then the Kronecker product

. A®B 1s

A= | H

k5

If the matrices N ’
nxn

M., C

H oW

—
8123 [ lqux

» e = L] . .

qu
—

mXm° " qXs

perties are of interest in this paper:

N—l(:)M-l

11) (A®B (c®D) = (ac) & (8D) .

I8

. (B.1)

An excellent treatment of Kronecker algebra has been given by Brewer [14].

and Dtxz are considered the following pro-

(B.2)

,.,
»
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