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ABSTRACT

We have used a Lagrangian, fully implicit, one-dimensional
hydrodynamic computer code to evolve thermonuclear runaways in the
accreted hydrogen rich envelopes of 1.0 Me neutron stars with radii

of iO km and 20-km. Our simulations produce outbursts which last
fron about 750 seconds to about one week. Peak effective tempera-

tures and luminosities were 2.6 x 10 7 K and 8 x 104 Le for the 10 !an
4

study and 5.3 x 10" K and 600 L8 fcr the 20 km study. hydrodynamic

expansion on the 1G km neutron star produced a precursor lasting

about 10-4 seconds.

INTRGDUCTION

We have stjdied thermonuclear runaways in the accreted hydro-
een rich envelopes of 10 km and 20 km neutron stars using a fully
Implicit, Lagrangian, hydrodynamic computer code which incorporates

a nuclear reaction netwcrk l . :!e have assured that the Bursters and
Transient X-ray sources occur as a result of mass transfer from a
secondary erto a neutron star in an analogous fashion to the nova

phenomena . Reviews of published work on this sL , bject can be found

in the literature3'4.

The published work  has produced simulations of the Burster
phenomena which are in reasonable agreement with the observations
but have not yet reproduced the full range of observed behavior.
B_v tnis we can that observed Bursts show a very wide range of time
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scales lasting from seconds to minutes and the published work has,
so far, only addressed the characteristics of the shortest bursts.
If one wants to prolong the time scale, then there are three pos-
sibilities all of which involve increasing the amount of fuel
available for nuclear burning. First, one can assure that the
luminosity of the neutron star is low and the mass accretion rate
is low and build up a thick hydrogen envelope. Second, one can
assume a rapid inflow of material and include the accretion energy
in the radiative losses; and, third, one can assume that at some
accretion rate the hydrogen will burn stably and a thick layer of
helium can be built up on the neutron star.

Because of the success of the studies of Joss  and Taam 4 re-
viewed in this volume by Joss, we have concentrated on a regime
of the (A,L) plane not yet studied by these investigators: that of
low internal neutron star luminosity and low amass accretion rates
:n our case we are trying to both model the long time state pheno-
mena observed from some Bursters and to understand L the cause of
the very long time scale outbursts of the Transients.

Our computer code has previously been used in studies of the

nova outburst, ^' S ' t thermonuclear runaways in the accreted hydro-
gen rich envelopes of white dwarfs, and is ideally suited to this
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Fig. 1. The temperature as a
function of tine.
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Fig. 2. The luminosity as a

function of time.



study. The physics that we include is described elsewhere 7 . We

include the p -p chain, the CYO reactions, the triple-a reaction,

the 12C(a,Y) t60 reaction and, finally, assume that the 140(a,p)17F

and isO (a,Y) 19Ye reactions are acting in the fashion described by

Wallace anc Woosley$ - We use these last two reactions to provide
a measure of the rate of depletion of the CYO nuclei during the
evolutionary sequences and then use this rate of depletion to cal-
culate an energy generation assuming that a few further proton
captures will occur.

RESULTS

The radius of model 1 was 10 km and it had an envelo pe mass of

1.5 x 10
-11 

M8 . This is a thick envelope for a neutron star of

this mass but can be obtained for low accretion rates onto neutron

stars with low internal temperatures`'. Although some nuclear burn-
ing could have occurred in the deeper layers during the accretion
process, we have neglected this and assumed a sharp composition
interface. We shall refer to this boundary as the core-envelope
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Fig. 4. The hydrogen (x) and helium (y) abundances (mass
fraction) as a function of mass at two times in the evolution
of the 20 km neutron star.
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interface (CEI). We chose a luminosity for the neutron star of

0.1 Lo which results in an effective temperature of 8 x 10 5 K. The

temperature and density at the CEI are 3.3 x 10 7 K and 3 . 1 x 10 6 gm
0

-3 respectively.
We begin the evolution by turning on the nuclear reactions

and it takes this sequence about 760 seconds of evolution to reach

a temperature of 2.45 x 10 9 K and an energy generation of 10 21 erg

gm-l s -1 . The surface luminosity has reached 8 x 10 4 Le and the

effective temperature is 2.6 x 10 7 K !kT'ti 2.2 kev). The entire
envelope has become convective and is mixing fresh unburned nuclei
into the shell source from the surface.

Because of our initial conditions, which may be physically
realizable, the initial region of peak temperature is not at the

CEI but about 10-12 M9 closer to the surface. The reason for this

effect is that the electron degenerate conductivity is large
enouah to transport the energy produced in the deepest layers of
the  accreted envelope into th e core. This effectively keeps these
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regions cooler than the less degenerate regions closer to the sur-
face. However, the energy produced by the shell source is now
heatinc the hvdrooen rich layers just bLelow it and their tempera-
ture slowly climbs until they reach about 3 x 108 K. At this

point they flash to a temperature of 2.8 x 10 9 K and an energy

generation rate of 1025 erg gm i s -1 . This flash produces an over-
pressure of a few percent which results in a shock wave that

reaches the surface some 5 x 10 -5 sec after the flash occurred.

The surface luminosity climbs to 2 x 105 L8 and the effective

temperature to 3 x 10 7 K. The shock causes the surface zones to

expand at velocities of 2 x 10 3 km sec -l . However, this expansion

lasts for only about 10
-6
 sec and a total excursion in radius of

1.5 meters.
The shell source slowly moves inward and these la yers flash

to hi gh temperatures although no more shocks occur. The tempera-
ture as a function of time for the deepest hydrogen rich shell is
given in Figure 1. The hydrogen burning layers stay hot until all
of the helium and most of the hydrogen is consumed. It takes
about 400 seconds for this to occur and during this entire phase
of nuclear burning the envelope has slowly exoanded to about 12 km
and remained at virtuall y constant luminosity. The li ght curve
for this simulation is given in Figure 2.

. Once the fuel has been burnt, the radius of the envelope
slowly shrinks which maintains the hi gh luminosity and causes a

slow increase in the effective temperature of 3 x 10 6 K. The se-
quence then cools rapidly and reaches equilibrium in about an hour.

We extended our study to neutron stars with a radius of 20 km;
bracketing the published work. In this case the reduced gravity
should produce outbursts with lower peak luminosities and effective
temperatures but the time scale for the outburst should be in-
creased over that of the 10 kn evolution. Such was the case.

For this evolution we chose an envelope mass of 2 x 10-11 Me

wnich gave a temperature and density at the CEI of 4 x 10 7 K and

4 x 10 5 am cm-3 , respectively. Because of the lower density,the
evolution proceeds more slowly than for the 10 kn case and it takes

nearly 103 sec for the peak temperature in the envelope to reach

10 5 K. As before, this does not occur at the CEI, but a few zones
closer to the surface. In addition, the lower gravity allows the
envelope to expand to nearly 40 km during the evolution which pre-
vents the temperature at the CEi from exceedin g 4 x 10 8 K. At

c
this temperature the 1 4O(a,p) l ^F and 150(a,Y) 1 'Ne reactions are remov-
in g catalytic nuclei from the CNO reaction sequence and are producing
very little additional energy. This results in a most interesting
Phenomena. Once the shell source has reached inward to the COEI,



the temperatures are high enough for a reasonable number of a-
reactions on 140 and 

150 
to occur. This is not true farther out

in the envelope where the temperatures are lower. This results in
the CNO reactions being able to cycle faster at lower temperatures
causing an inversion in the hydrogen abundance. This can be seen
in Figures 3 and 4 which show the temperatures, and hydrogen abun-
dances at two different times in the evolution. Therefore, some
6 hours after the evolution began, the hydrogen abundance drops to
zero about one-third of the way from the CEI to the surface. Be-

cause helium is nearly depleted at the CEI the a- reactions on 140
and 

150 
also become less important and the principle source of

energy comes from the s+-decays followed by proton captures. Be-
cause the CNO catalytic nuclei have their highest abundances at
the edge of the region where hydrogen has become completely de-
pleted, this is just the region where they are cycling the most
rapidly and the burning front slowly moves inward and outward. How-
ever, the hydrogen abundance is low and the runaway time scale
for each zone is more rapid than the time scale for the inward
diffusion of heat. This allows each zone to burn out before the
next inner zone can flash, producing a very ragged curve for both
the temperature versus time (Figure 5) and the luminosity versus
tine (Figure 6). If we had been able to use more zones, these
curves would have been smoother.

The peak rate of energy generation reached in this simulation

was only 10 15 erg gm-1 s -1 . The peak luminosity was 100 L o and the

peak effective temperature barely exceeded 0.5 kev. It takes this
sequence about or...; day to burn out all of the hydrogen in the shell
source and for the luminosity to begin dropping. It then takes
about 45 days to return to minimum. All of the hydro gen and helium
are burnt to higher cuss nuclei except for a thin shell of H of

about 10-13 My which is still burning but on a much longer time
scale.

Because the 14O(a,p) 17 F and 150(a,Y) 1gNe rates are theoretical,
we also investigated the effects of major changes in these rates by
evolving one additional sequence with the identical initial condi-
tions as in the previous sequence but with these rates set to zero.

.t takes this simulation 2 x 10 3 sec for the peak temperature in

the envelope to reach 5 x 108 K. The rate of energy generation has

reached 10 15 erg gm-l sec - 1 . At this temperature a significant num-

ber of triple -a and 12C(a,Y)160 
reactions are occurring and the

triple	 reaction is feeding new catalytic nuclei into the CNN . cycle.
-his increases the value of Z and counteracts the effects of the in-

creasin g number of nuclei being trap ped as 140 and 150. The tem-

:erature continues to increase finally reaching 10'K. The peak

;um	 4incsity is ?.5 x 10 L o and peak effective temperature is 1.2 kev.

a



About 2 x 10  sec later, hydrogen and helium burn out and the tem-
perature starts to drop. It takes nearly 3 days for the effective
temperature to fall below 0.1 kev.

CONCLUSIONS

We have found in this study that we can produce long time
scale outbursts on neutron stars if we assume low accretion rates
and "cool" neutron stars. The time scales for these outbursts

range from 103 sec for the 10 km neutron star to about one day or
longer for the 20 km neutron star. The peak temperatures and
luminosities were inversely proportional to the radius of the neu-
tron stars and our calculations (plus those noted earlier) suggest
that the actual radii of most neutron stars must be closer to 10
km than 20 km. On the other hand, the fast, soft, X-ray transients
can be produced on larger radii neutron stars if such a wide range
in neutron star radii is possible.

We also produced flat topped outbursts similar to some of
those observed. Such a theoretical outburst results when the ac-
creted envelope has had enough time to reach thermal equilibrium
before the outburst begins.

Finally, we have been able to achieve outbursts in hydrogen

rich material because the 
14

0((X,p) 17 F and 1s0(a,y) 19Ne reactions
act to remove catalytic nuclei from the CNO reaction cycle and,
at high temperatures, restores the temperature dependence of the
CNO reactions. - In addition, at these same temperatures, the
triple -a reaction is feeding new nuclei into the CN cycle which
also keeps the rate of energy generation elevated over what one
would predict if these reactions were not occurring.
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