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ABSTRACT

This study was concerned with the dynamic flexural response
of propeller blades subjected to harmonic forces, and preaents
bith analytical and experimental results,

The determination of the torsional constants of three blade
models having NACA four-digit symmetrical airfoil cross sections
is presented, Values were obtained for these models analytically
and experimentally. In addition, results were obtained for three
other models having rectangular, elliptical, and parabolic croas
sections.

Complete modal analyses were performed for five blade models,
The ildentification of modal parameters was done for cases when the
blades were madeled as either undamped or damped multi-degree-of -
freedom systems, For the experimental phase of this study, the
modal tasting was performed using a Dual Channel FFT analyzer
and an impact hammer (which produced an impulsive excitation). The
natural frequency and damping of each mode in the frequency range
up to two kilohertz were measured,

A small computer code was developed to calculate the dynamic
response of the blade models for comparison with the experimental
results. A comparison of the undamped and damped cases was
made for all five blade models at the instant of maximum excitation
force. The program was capable of handling models where the
excitation forces were distributed arbitrarily along the length

of the blade,

111
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Chapter 1
INTRODUCTION

1.1. General Remarks and Objectives of the Study

The purpose of this investigation was to study, both analytically
and experimentally, the dynamics of cantilevered beams having
airfoil-like cross sections, including damping and inertial
coupling. Information from this study will be used in a more
comprehensive analysis of twisted, rotating propeller blades.

The vibration and fatigue of propeller blades are important from
both a comfort and safety viewpoint.

In a study of the dynamics of propeller blades, one must
consider several factors, including: nonuniform mass and torsional
inertia distributions; nonuniform flapwise, chordwise and torsional
stiffness distributions; built-in twist; noncoincidence of the elastic
axis with the body axis; and inertial coupling. Thus, before
considering the complete case of propeller blade dynamics, it is
instructive to study the behavior of simpler blade models.

Specifically, the objectives of the present study were;:

1. To develop a method to determine the torsional stiffness
of blades having airfoil cross sections. First, an analytical model
was developed based on existing energy methods in solid mechanics.
Secondly, these methods were applied to three models having NACA
four-digit symmetrical airfoil sections, and were verified by
experimental results.

2. To define analyticall¥ the dynamic flexural response of

blade models, modeled as either an undamped or damped multi-degree-

T e e




of-freedom system. The amplitudes of harmonic excitation force
were arbitrarily distributed along the length of the blade,

3. To undertake an analytical investigation of dynamic
characteristics of multi-degree-of-freedom systems in a frequency
domain, and their relation to the time domain. Special attention
was given to the identification of damping.

4, To determine experimentally the natural frequencies and
modal damping of models discussed above with a modern FFT analyzer
using an impulsive excitation.

5. To develop a small computer code to calculate either an
undamped or damped response of blade models discussed above.
Special attention was paid to the modeling of damping,

6. To evaluate the results obtained by the computer program.
Special emphasis was placed on damping and its influence on the

dynamics of frequencies close to the natural frequency.

1,2. Previous Investigations on Torsional Stiffness of

Models Having Airfoil Cross Sections

Since the torsion of models having a cross section different
than that of a circle is governed by Poisson's partial differential
equation, the closed form solution can be obtained only for a few
regular cases., For configurations not defined analytically, torsional
problems can be solved only by approximate methods such as the
finite element and finite difference methods.

One of the objectives of this study was to develop analytical

and experimental procedures for determining torsional constants for

3 o . ek e p



beams having airfoil-like cross sections. In researching this

problem, the existing literature was studied,

1,2.1. Reference Books, Papers, and Literature Studied

A very elaborate treatment of energy methods in stress analysis
is given by Richards in reference 62,

Dym and Shames (14) and Crandal (11) present rigorous treatments
of torsional problems by variational approaches, Emphasis is placed
on the development of basic concepts of energy methods for torsional
problems presented and golutions for models having rectangular,
quadratic, and parabolic segment cross sections,

Chou and Pagano (7)), Hartﬁg (19), and Oden and Ripperber
(55) present detailed analogies of problems related to torsion. The
analogies provide physical insight into problems of this nature
and suggest experimental approaches to these problems.

Most of the analytical work done in this present study was
based on the above references,

Timoshenko and Goodier (86) present a very elaborate method
for determining the total energy of beams in torsion having an
arbitrary cross section. They then apply the Rayleigh-Ritz method
to problems having various crosgs sections. Basically, the total
energy is found in terms of stress functions. These stress functions
are then expanded by a series in order to satisfy the boundary
conditions. Finally, the extremum for total energy is found with
respect to parameters in the series. These researchers also present

this technique for the beams having an airfoil cross section,
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Cook (9) gives an extensive treatment of the method of weighted

residuals for a finite element approach. Since this present study

does not use a finite element approach, only Cook's concepts were used,

Finlayson and Scriven (15) and Hutton and Anderson (26) present

the method of weighted residuals. They give a constructive

critique on several methods, with special attention given to Galerkin's

method,

Duncan (13) ;hows that the analytical approach to the Saint-
Venant torsion problem can be readily done by using Galerkin's
analytical method. He presents a detailed consideration of torsion
of beams having a symmetrical airfoil and a symmetrical parabolic
segment as cross sections. Furthermore, he suggests that this
approach can be emplcyed for nonsymmetrical cross sections by
using a doubly infinite series of the function representing the
contour of the airfoil. Although presented in 1938, this method
still appears useful for studying the torsion of propeller and rotor
blades.

The references discussed above were used as the basis for the
numerical calculation of torsional stiffness for the three models

already discussed.

1.3, Reference Books, Papers, and Literature Studied

On the Dynamical Response of Propeller Blades

Kenedy and Pancy (31) present one of the first expositions on
determining modal characteristics from test data. They assume that
damping takes a rather specialized form, and use polar plots to

determine the modal characteristics.



Lewis and Wrisley (42) present one of the first multiple-shaker
systems for modal testing, They use 24 independently controlled
shakers to (hopefully) drive the system into a pure normal mode.
They assume that the shakers are distributed with respect to the
mass, and that the damping is distributed in the same manner as the
mass. They also assume that the damping is equal in zll modes of
vibration,

Trail and Na;h (87) propose a multiple-excitation technique
which makes use of Kenedy and Pancy's studies to locate the natural
frequencies and the sets of linearly independent forces applied to
the structure, This is done in order to calculate the required
forces needed to excite a pure normal mode,

Asher (1) applies essentially the same analysis as Trail and
Nash (87), but suggests an improved method of locating the natural
frequencies, He uses the determinant of the real part of the
flexibility matrix to define the natural frequencies.

Walgrave and Ehlbeck (90) present a good review of modal
analysis which gives results in the time and frequency domains.

Caughey (§), Clough and Penzien (8), and Paz (56) present the
analytical modeling of modal damping which decouples the damping
forces,

Klosterman (32, 33, 34, 35, and 36) gives a very detailed
treatment on various subjects in analytical and experimental modal
analysis. Some of his papers are more oriented to experimental
analysis.

Craig (10), Meirovitch (49), Bathe (3), and Paz (56) give

rigorous consideration to various subjects on structural dynamics,
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including both claswyical and numerical approaches. They are oriented
toward treatment of vibration phenomena in the time domain, Most of
them were used during the consideration of the undamped and damped
multi-degree~of~freedom systems in Chapters 5 and 6 of this study,

Richardson (63, 64, 65, 66, 67, and 68), Potter (58,59) and
Ramsey (60) cover the treatment of vibrational systems having
multiple degrees pf freedom, The authors present concepts of
vibration analysis in the frequency domain, and they are pioneering
efforts in treating the vibration of multi-degree-of-freedom systems
via .system dynamics,

In order to improve accuracy with modern FFT analyzers, the
following steps should be taken:

1, Calibration of the impact hammer,

2. Conditioning of the input and output signals.

3. Consideration of the noise and its influence on the

measured transfer function.

4. Proper selection of the frequency range so that all

frequencies are excited within the chosen range.
The Spectral Dynamics Co. (82), Harris (17,18), ihe Wavetek-Rockland
Co. (91), the Nicolet Scientific Co, (54), and the Hewlett-Packard
Co. (21) present detailed treatments of signals in order to properly
conduct vibration testing.

An important point in an experimental program is the accurate
measurement of the structural transfer function. Here noise effects
must be considered, Keller (28,29,30), Lally (37,38), Brown (5),
Mitchel and Lynch (50), and Halvorsen and Bendat (16) present

various subjects of crucial interest for determining structural
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transfer functions, They give a detailed treatment of noise in
the time and frequency domains and its influence during transfer
function measurements, Also, they discuss the calibration of an
impact hammer, and input and output signals.

Firally, measured data must be interpreted properly.
Lang (39,40), the Spectral Dynamics Co, (80,81), the Nicolet
Scientific Co. (51, 52, 53), the Hewlutt-Packard Co, (22), and
Brown and Halvors;n (5) present in detail the interpretation of

data obtained by an FFT analyzer.



Chapter 2

ANALYTICAL METHODS FOR DETERMINATION OF TORSIONAL

STIFFNESS .OF BEAMS HAVING AIRFOIL-LIKE CROSS SECTIONS

2,1, Torsional Behavior of Beams Having an

Arbitrary Cross Section

In the case of the torsion of beams not circular in cross
section, we lose the arguments of symmetry and, along with thenm,
the simplicity of the elementary theory of torsion. The argument
that plane cross sections remain plane during deformation, for
example, is now no longer valid, Observation shows that the cross
section of a non-circular section does not remain plane upon
twisting, but warps out of its plane.

Other than the fact that cross sections warp, perhaps one of
the most obvious characteristics of the beam's behavior is the
absence of normal stresses., No external forces or bending moments
are present, and no end constraints exist; therefore, the only
stress components needed to provide the equilibrium ¢f any
transverse segment are shearing stress iﬁ the cross~sectional
planes. Furthermore, of the three components of shearing stress,
only sz and T,z Samn result in a twisting moment: The component
T, 1s zero. Thus, we conclude that for the noncircular beam in

torsion,
o = g =0=’[ = (0 (2'1)

The differential equations of equilibrium in terms of stresses

and body forces reduce to
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9sz T .
5t "5%— =0 (2.2)
9T z a'rxz

Equation (2,3) shows that the shearing atresses do not vary with
z and, hence, have the same distribution on each cross section.
Observing eq. (2.2), we have a statically indeterminate problem,
and we are forced to turn to considerations of strains and dis-~
placements for additional information, Since the material is
zsstmed to be homogenous  isotropic, and linearly elastic, we may
introduce eq. (2.1) into equations for stress and strain in a
homogenous  isotropic Hookean hody to obtain the components of

strain,

ex - Ey = Ez - ny =90 (2.4)

Therefore, the strain-displacement fiormulas reduce to

v,

and

u= f(x,y), v = g(y,z), w= h(x,z)

where £, g, and h are continuous functions yet to be determined,
From this observation, we conclude that cross sections do not
distort in their own planes. In other words, the angle hetween any
two lines on a cross section is not changed during the deformation
of the beam. This makes it possible for us to define the in-plane
displacements of any point on the cross section in terms of the

angle of twist of O of a straight line on the section drawn from
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the x~-axis to the point, as shown in Fig. 2.1, Examining the

geometry of Fig. 2.1, we find

u = - Ozy and v = Ozx,

(2.6)

Referring to equations for stress-strain relations, we have

oT oY,
Xz X2z 0 ,0w , du
52 "¢ 5z "6 Gt - O

Then eq. (2.6) becomes

2
3 ,ow 07 (0z) _
™ 3 ~ V5 = 0.

92

The first term in eq. (2.8) is zero, owing to eq. (2.4).

we have

dz(ez) =0

dzz

d(0z)
dz

= 0 = const.

2.7)

(2.8)

Thus,

(2.9)

(2.10)

It follows that the twist relative to the section 2z=0 is 6z, and

that eq. (2.6) may be expressed in terms of 6, x, y, and z.

In

summary, we express the components of displacement in the form

u = -0yz
v = Oxz
w = £(x,y)

(2.11)

Thus, once O and £(y,z) are known, thecomplete displacement pattern

can be evaluated.
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Finally, from stress-strain relationships, we relate the shear-

ing stresses and strains to the displacements by

dw , Ou
Txz * Sz T OG5 * 37 (2.12)
- - g 4 Ay
‘E’yz G‘{yz G(F; + 82)' (2.13)
Introducing eq. (2.11), we have
- o
L G(ax - By) (2.14)
ow
‘Eyz G(—a-; + 6x), (2.15)

Differentiating the first of these equations with respect to y
and the second with respect to z, and substituting the result

into eq. (2.2), we have

2 2
23,3¥.0 (2.16)
ox ay.

which is the governing partial differential equation for the
warping displacement. This relationship is called Laplace's
equation for the warping function.

The torsion problem is now reduced to one of determining the
four unknowns,sz, Tyz’ w, and 8. To solve thié problem, we have
three relationships: eq. (2.2), which is the equilibrium conditiom,
and the two kinematic conditions in eqs. (2.14) and (2,15), which

we have written in terms of the stresses. Equation (2,16) is not

independent, since it was obtained from eqs. (2.2), (2.14), and
(2.15)., The fourth relationship necessary to solve the problem is

the simple static condition that sz and Tyz must result in a
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twisting moment of magnitude Mt on each cross section,

2.2, Prandtl's Torsion Stress Function

In 1903, Ludwig Prandtl, the distinguished German mechanician,
introduced a scheme whe::eby the torsion pr;blem could be reduced
to one of determining a single unknown. The idea is to introduce
a twice-differentiable function '(x,y), called the torsional

stress function, which has the properties

ar
oz ™ Er (2.17)
and
ol .
Tyz i _(2'18)

When we introduce these definitions into eq. (2.2), we obtain

2
or  dlr
Wy " Byax O (2.19)

which is satisfied by any function which 1s continuous through its
second derivatives, Thus, any such continuous function will
automatically satisfy eq. (2.2) and, therefore, lead to shearing
stresses which are in equflibrium. The correct solution to the
torsion problem, however, must be a state of stress providing not
only equilibrium but also compatible strains and displacements,
Thus, out of the infinite number of functions I' which satisfy
eq. (2.2), we must choose those which also satisfy a condition
of compatibility.

To arrive at this condition, we introduce eqs. (2.17) and
(2.18) into eqs. (2.14) and (2.15), and differentiate first with

respect to z and second with respect to y. Then we have
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9 ,or 9,9

%Gy = 355 - &) (2.20)
] ol 9 0w

W " C Gy ) (2.21)

Recalling that u is also continuously differentiable, we subtract

the second equation from the first and find

2%r 3%
— +
ox dy

Q

r

= -2G6. (2.22)

[\%)

This is the equation of compatibility for the problem of torsion

of beams having non-circular cross sections, Any function T

continuous through its second derivatives which satisfies eq. (2,22)

now automatically provides both equilibrium and compatibility.
Any partial differential equation of this type is also called
Poisson's equation,

We may visualize T as being a curved surface spread gyer
the cross section of the heam, Accqrding to the definition in
eqs. (2.17) and (2.18), the slape of the surface in the y direction
is the stress in the x direction, and its slope is in the x
direction., In fact, if n is any direction oriented o with respect
to the x axis, as shown in Fig. 2.1, the stress directed normal to

n is clearly

Tyxcosa - T, sina. (2.23)

The slope of ' in the n-direction is, by definition,

ar L dx, A&y
@ " xan T dy dn (2.24)

14
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or, s:l.nce--g-E = cos@ and 9y . sina,
dn dn

dar' _
rrda -Tyzcosd + szsina (2.25)
Hence, the slope of the I' surface in any direction is equal to minus
the shearing stress in the perpendicular direction.

Furthermore, since we proved that no shearing-stress components
can act normal to the boundary of the cross-section, the slope

of T parallel to the boundary must be zero. This is possible

only if I is a constant along the boundary. Pictorial representation

- of Prandtl's torsion-stress function is given in Fig, 2.2. The

slope of I' parallel to the boundary curve s is

dl' ol

i&
&

or -
= " 5% s + By a5 - -'ryz(_-n) + T 0 (2.26)

where m and n are the direction cosines of a normal to the curve,
Since no surface forces are present, and the right side of this

equation is zero, [ must satisfy the boundary condition

ar _
=0 (2.27)

Hence, I' must have a constant height along the boundary. Therefore,
without loss in generality, we assume that [' is zero everywhere
along the boundary of the cross-sectiom,

Any solution to eq. (2.22) provides both equilibrium and
compatibility for cross sections of any shape. To ensure that
it also leads to stresses which satisfy static boundary conditions

at the ends of the beam, we must also relate I' to the twisting moment

L R T
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Figure 2.2, Pictorial representation of Prandtl's torsion stress
function.
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developed on each section, The moment developed by the shearing

stresses about the z~axis must be

Mz =M = JJ(—Tyzy + Tﬂzx)dxdy (2.28)
A

where the integration is carried out over the entire area of the

cross section, Introducing I', this equation becomes

M - -”(BI' + 2 x)dxdy. (2.29)
A

We can now write the integral in the form

where the limits A and B stand for boundary points along a line

— B -

I%—gydydx-J
a%Y ,

I AL ax|dy (2.30)
E

y = constant, where C and D stand for boundary points along some

line z

constant, Integrating by parts, we find

o

(Tgyg = Ta¥y) -[de dx - I

=
'

(I'DxD - chc) - Jde dy.

(2.31)
Now PA’ PB’ PC’ and PD denote values of I' at the boundary points
which, according to our earlier discussion, are zero. Hence,

we have

M, = ZHI’dxdy. (2.32)
A

17
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This final result states that the total twisting moment on any
section is equal to twice the volume under the surface T.

Now we can obtain the twisting moment in terms of three
independent quantities: G, the modulus of rigidity, which depends
upon the material; 0, the angle of twist per unit length; and

the constant J, which depends upon the geometry of the cross section.

M, = GJO (2.33)

J is called the torsional constant of the beam. The product GJ
is called the torsional stiffness of the beam. The formula for

J follows directly from eq. (2.32),.

1= ”dedy (2.34)
A

Now we can introduce the modified torsion-stress function, ¥,

oY

Tez = 00 55 (2.35)
- gp &

Typ = =60 5 (2.36)

Performing the same algebraic operations we have done in derivation

of Prandtl's stress function, we have

2 2
] (2.37)
ox y

This is the modified equation of compatihility for the problem
of torsion of beams having mon-circular cross sections. Sometimes
it is more convenient to use the above equation in practical

application.
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The development of the torsion equations via stress and

strain approaches is summarized in Table 2.1

2.3, Solution of the Torsional Problem of the Beam Having

an Arbitrary Cross Section by Energy Methods

We have seen in section 2.1 that the solution of torsional
problems is reduced in each particular case to the determination
of the stress function satisfying the differential equation (2.22)
and boundary conditions. In deriving an approximate solution of
the problem, it is useful, instead of working with the differential
equation, to determine the stress function from the minimum
condition of a certain integral, which can be obtained from
consideration of the strain energy of the twisted bar. The stress

function must satisfy the differential equation

-3-—2- -a—ia--zce (2.38)
ox oy
where the boundary condition is
of dy . of dx _ dT |
Jyds P hxds - ds - O (2.39)

For the strain energy of the twisted bar per unit length, we have

U= é%{](r 2 )dxdy II

If we give to the stress function I' any small variation &I, which

(g£)2+(gr)2:ldxdy (2.40)

vanishes at the boundary, the variation of the strain energy is
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Table 2.1, Development of the torsion equation,

Two strain-displacement equations

Two Hooke's law equations

One equil ibriué equation

Five equations

'sz--é—;‘-—ﬁy

sz--a-';-’"ax

Tz "~ Gsz
yz = 7 'yz
erz 9T z
—3——-+-—JL-- 0
X dy
Tz Tyz? Yez* Tyzr ¥
all functions of x,y only

&~

N

One compatibility equation in

Two stress-displacement

terms of stress equations
9T 9T 3
Xz _JZ . _2cH T\gz - G(ﬁg - 8y)
oy ox il 3w
T " G(-a—' + 0x)
One equilibrium equation b4 Y
9T, 3T One equilibrium equation
X2 yz
— + =0
ox 3y 9T
Xz Z .0
ox y
Txz' Tyz
y T, T W
xz’ 'yz
72 2
I' = -2G8 V'w = 0
ar d B.C.
where % -Tyz, N sz

B.C. =0 on the boundary

on the boundary
Where Hx, Uy are the direction
cosines of the outward normal
of the boundary

Y

Mt: = 2“ Idxdy

Y
ow ow

2, 2 ]
Mt G”E B+y 0+x 3y -y-s-’gld:\dy
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2 2
1 ([],3r ar
’i‘c‘b’: o <=;;ﬁ]dxdy

and the variation of the torque is

ZJIGdedy.

Substituting the above equations into eq. (2.40), we get

a5 ”- D% ¢ 221

dxdy = Zﬁjjﬁdedy
9y

kL

The true expression for the stress function ' is that which makes

G )+( ):‘-mer}dxdy.

the variation of the integral zero.

.- ]

In the approximate solution of torsional problems, we replace

(Bx) + (5 )‘l-ZGGI‘}dxdy (2.41)

the above problem of variational calculus by a simple problem of
finding a minimum of a function. We take the stress function in

the form of a series,

I'= dOFO + lel + dzfz + ... ann (2.42)

]

in which Fo, Pl’ PZ’ eee

condition., These functions are vanishing at the boundary. In

Pn are functions satisfying the boundary

choosing these functions, we should be guided by the membrane



analogy and take them in a form suitable for representing the
function I', The quantities do’ dl’ d2’ very dn are numerical
factors to he determined from the minimum condition of the integral
(2.41), Substituting the series (2,42) in this integral, we
obtain, after integration, a function of the second degree in

d, 4y, dz, «+ey 4 . The minimum condition of this function is

*

éé%‘l--o -59%-0 -%‘12--0. (2.43)
Q

In this way, we obtain a system of linear equations from which

the coefficients do, di, doy oney dn can be determined. By
increasing the number of terms in the series (2.42), we increase
the accuracy of our approximate solution, and by using an infinite
series, we may arrive at an exact solution of the torsional

problem.

2.4, Energy-Method Solution of Torsion of the Beams

Having an Airfoil Cross Section

The cross section of conventional airfoils used in low-speed
aerodynamic design can be approximated as follows (see Fig, 2.3).

The upper curve can be determined by

) X
y = dr()
and the lower curve can be determined by
X
y = -d;K(D)

where < q
k@), = Kk(eh) = (en)" (1-(en)P] (2.43)
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/ Airfoil chord line

c = 2a

Figure 2.3. The airfoil cross section,
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The boundary conditions will be satisfied if we take for the stress

function as approximate expression,

['= A(y-dK) (y+d, K) . (2.44)

Substituting equation (2.44) into the integral (2.41) and minimizing

the strain energy

du
T 0. (2.45)
We define the constant A
14a(d 4, +dd12/c
where 1
3 2
IK (dk/d(th))~d(cth)
d==2 . (2.47)
1
[ue
)
Using the equation already derived for the torque
Mt - ZHI‘dxdy
we obtain
1
c(d+dl)3 3
Mt = A 3 IK d(th). (2.48)

Q

In the case of a symmetrical airfoil, the upper and lower curves
are described by the same expression, and the following assumptions
are taken:

1 .
m "i"a p’q’li Q’dl

y=+d@ =+ d/%-_ -1, (2.49)

st v -
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To define the constant d, we need the maximum thickness of the
airfoil 2b, First, we are going to define the position of maximum

thickness of the airfoil from eq. (2.49)

y= d/?g-d q@

gy . 1/2

d 3
) - +d x . (2.50)
ax 2172172 22372

From the condition

dy .
oy Q
c 2
xX=3=75

which is the position of maximum thickness, the maximum thickness

with respect to b is calculated using eq. (2.49).

% |, (x
y= % d/:; Eriag}

to /e |7 ,c
Frb=d ﬁlj"ézﬂ

Now, we can define constant A as

A-_————G-Q————-—’

2
11 .,.d
1 +<I§(:§9
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and finally
ch3
€ 2
1+ 35
13 2
c
2,p2
Scaling both sides of equation (2.52) with factor 2 CH and
Ta’ b

introducing the substitution ¢ = 2a, we have the scaled torsional

stiffness per unit length:

G(Za)d3 . a24p?

2 33 °
1+11(,d ) 7a’b

13 4a2

' *
%, = 0.0736

Then, the moment-angle of twist for a beam of an arbitrary length

can be found as,
3.3 (2.53)

Mt-](:———‘"—;—é.i-—e.
%£(a“+b°)

2.5, Introduction to Weighted Residual Methods

The solution of boundary-value problems can very often be
achieved by forming a corresponding variational problem. Under
such circumstances, variational calculus methods are very effective
for obtaining an approximate solution, A variatioral principle
is an integral expression (a functional) that yields the governing
differential equations and nonessential boundary conditions of
a problem when given the standard treatment of the calculus of
variations. In areas other than mechanics of solids, it is more
likely that a variational principle may not be known or may not exist.
The governing differential equation and nonessential boundary

condition of the problem are

A

soxtmmE

N

g e

NS
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Bu = g in region V
(2,54)
Lu = f on boundary S.

The exact solution u = u(x,y) is unknown, We seek an approximate
solution, u, It may be a polynomial that satisfies the essential
boundary conditions and contains undetermined coefficients

a5, 35, «.0 , 8. Thus, u = u(a,x). We must find the values ay
such that u and U are "close" in some sense., If u is substituted

into eq. (2.54), we obtain residuals RL and RB because u is not

exact. Residuals are functions of both.x and the ai.

R, = RL(h;x,y) = Bu(x,y) -~ g(x,y)
(2.55)
Ry = Ry(a,x,y) = Lu(x,y) - £(x,y)

where RL is an interior residual and RB is boundary residual.
Residuals vanish only for the exact solution, u(x,y) = u(x,y).

We presume that u(x,y) is a good approximation if the residuals

are made small. This can be done by various schemes known as

the collocation, least squares, least-squares collocation, Galerkin,

and subdomain methods.

2.6, The Galerkin Method

This method provides approximate solutions to differential
equations directly and is applicable whether the transformation
into a variational problem is possible or not. Having wider scope
than variational calculus methods, it is more attractive in practice
since there is no need to evaluate the functional even in those

situations where it existed,

T L R
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Galerkin's method can be described as follows. Suppose we

want to solve a linear partial-differential equation

L{u(x,y)] = £(x,y) (2.56)

in a region over which f(x,y) is prescribed and the boundary
conditions are linear and homogencous. L stands for a linear
differential operator.

We can rewrite equation (2.56) as
Liu(x,y)) - £(x,y) = O. (2.57)

If, further, the approximate solution u(x,y) were expressible in

the form of a complete series of functions
o0

u(x,y) = aiFi(x,y) (2.58)

i=1

satisfying the required boundary conditions, then the '"exactness"
of the solution could be expressed by the statement that in the
region, the left-hand side of éq. (2.57) is orthogonal to every

term in the series above, That is,

J[{L[E(x,y)]-f<x,y)}Fi(x,y)dxdy =0, i=1,2,3,...,n, (2.59)
]
Since we truncate the series, eq. (2.58), to a finite number of

terms, n, then we are in a position to use the above ideas to

impose n-conditions of orthogonality. Thus,

n
JJ{L z a,F.(x,y) -f(x,y)}Fk(x,y)dxdy =0 (2.60)
ju1 1+ 1
S
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with 41 =1, 2, 3, ..., n, provides a kind of averaging basis for

evaluating the n unknown a 's such that the approximate solution 1is

i

n
un(x,y) = 3 aiFi(x’y)' (2.61)
i=1

We select the "weight functions" wi and set the weighted averages
of the residual to zero; for 1 = 1, 2, 3, ..., n. Applying this

to eq. (2.55), we have

R, = Iwi(x,y)&L(a,x,y).dV + Iwi(x,y)RB(.a,x,y)dS = 0. (2.62)
' S
Weight functions Wi are, by definition, coefficients of generalized
coordinates, Thus, Ui = %%—. In structural mechanics, the residuals
’ i

are proportional to forces or moments, and the W, can be regarded

1
as virtual displacement or rotation. Each integral in eq. (2,62)
represents virtual work, which should vanish at an equilibrium
configuration. Usually, in the problems of linear theory of
elasticity, the Ritz coefficients are identical to the cqefficients

found by the Galerkin method for the same system of coordinate

functions Fi‘

2.7. Application of the Galerkin Method to the Torsion of

Beams Having an Airfoil Cross Section

In section 2.2, we showed that the torsion problem for a beam
having an arbitrary cross section can be reduced to the problem
of finding a modified torsional stress function ¥ which vanishes

on tha boundary and which satisfies the differential equation

VY4220 (2.63)
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everywhere within the boundary. When this function has been found,

the components of the shearing stress are given by

-

T =G6ﬂ
Xz dy

oY
Tz -Go = (2.64)

where 6 is the twist of unit length (in radians) and G is the
modulus of torsional stiffness of the homogenous and isotropic
material. Also, the torsional stiffness of a beam having a unit

length is given by
K- ZGIJdedy (2.65)

where the integral extends over the whole section. The function b4
is proportional to the deflection of the membrane in the familiar
membrane analogy of torsiom.

The Galerkin method provides a means for the approximate
solution of the differential equation (2.63) with the assigned
boundary condition. Let Fl’ F2, F3, ver s Fn be a sequence of
linearly independent functions of x and y which all vanish on

the boundary, and put as an approximation
n

Y = i aiFi' (2.66)

Let the result of substituting this expression on the left-hand
side of eq. (2.63) be Ry- Then R, is the error or residual
in the differential equation corresponding to the chosen function

¥, and it is a linear function of the coefficients a In

i

accordance with the Galerkin method, these coefficients are



determined by the condition that the n equations typified by

JJRBFidxdy =0 (2.67)

must be satisfied. This equation can easily be interpreted in
relation to the membrane analogue, If Y is proportional to the
displacement of the membrane in a direction perpendicular to its
undisturbed position, then RB is proportional to the external
load per unit area which is left unbalanced by the tensions in
the membrane, and equation (2,67) expresses the vanishing of the
work done by the unbalanced loads in a virtual displacement of
the membrane proportional to Fi' Thus, the coefficients a may
be regarded as generalized coordinates for the membrane, and the
langrangian equations of equilibrium are then typified by eq. (2.67),
Consideration of the choice of the function Fi remains. When

the section is symmetrical about axis x and has a smooth boundaxy
given by

y = * th | (2.68).

where th.is a known function of x, the following functions, with

p and q as positive integers, will be suitable;

Fq ~ (enZP - ¢2Py2, (2.69)

These functions vanish all over the boundary. The same functions
will serve if the boundary has a sharp corner or corners, except
when part of the boundary is perpendicular to axis x.

It must be pointed out that an exact solution could, in

general, only be reached by the employment of a doubly infinite

31
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set of functions Fi' However, it is found that in most cases an
excellent approximation is obtained by the use of only two or
three functions, and as a rule it is sufficient to use only the
functions which are of the second degree in y, at least for narrow
sections.

The cross section of symmetrical airfoils can be approximated

by the cubic oval given by

e’ = g2 (2a)x(1 - 2 (2.70)

where ¢ = 2a is the chord and g is the thickness parameter equal

to 2b/c. This boundary very closely resembles some of the
symmetrical airfoil sections in current use for conventional
propeller and rotor blades. The maximum thickness occurs at one
third of the chord from the nose, and its magnitude is 8ag/v27.
This particular case has been worked out in detail by the thickness

parameter method. The expression for the stiffness ohtained in

this way is
K - 2566(23),433 :_E 2, 4 _3719 6 (2.71)
¢ 3465 138 T8 ~7221 8 |

correct to the 6th pover of g within the bracket. In applying
The Galerkin method, the following approximation of the modified

stress function will be adopted:

Y= (tz- yz)

ey + o, (2.72)

Hence,

2 X x,2
RB. =7 Y+ 2 = Eo + El(-g) + Ez(—c-), (2,73)
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where
Eo =2 - cl(,2 + 432) + 2c232
E, = 6Clgz - ¢, 2+ 1232)
and
E, = 120232.

The two Galerkin equations are

“Rn(,thz - y2)dxdy = 0
s

f [an(;h"' - y21E)dxdy = 0.
After substitution and reduction, these bec.me
g1(13 + 11g%) + ¢, (5 + 3gh) = 13
c (253 + 153g%) + ¢,(11g + 81g%) = 255,
The last equations yield

c dm= 17 + 182

2
c 8 Slg

where

A= 17 + 5282 + 275",

Hence, by equation (2.71), the expression for the torsional

stiffness is

(2.74)

(2.75)

(2.76)

2.77).

(2.78)

(2 . 79-)..

(2.80)

(2.81)

33
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o« o 2566(2a)%% [T 221 + 4898 | (2.82)
t 3465 .]221 + 676g> + 351g"

The fraction inside the bracket can he converted into an ascending
power series in g, when g is small. The expansign for the term

in 36 can be expressed as

.

11 2 4 379 6
l--ﬁ-g +g - 331 8 * (2.83)

The torsional stiffness of the cylinder of unit length. is

K = 2566(2a1433

11 2 4 379 6
l1-738 t+8 -'55_'1‘8:‘. (2.84)

t 3465
- az+b2
If we scale the expression in eq. (2.84). with the factor =———, we
ma’b

have zodiffed torsional stiffness in non-dimensionazl form

o _ 2566(2a) s>
e T

If the simpler approximation

13 =221 &

1 -4 82 + s“ 379 f]. (2.85)

yme@n® oy (2.86)

were employed, then ¢ would be found from eq. (2.80) by omission

of the term in Czu

€y = ‘“-jéi'—jz (2.87)
13 + 11g

In a similar manner, the torsional stiffness of the beam of unit

length. is derived by

4 3
. 256G(2a)%g 13
KC 3 3 (. " 21.- (2'88)

34
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P

2,.2
Scaling the expression above with the factor 5452—, we get
Ta’b

»  2560(2a) g 13 242

a +b |
Ke = = 3465 " 2 (2.89)

13 + 11g2 7ab°

Finally, the relation torque-angle of twist for a beam of unit

length can be established as

This expression can be generzlized easily for any cylinder of
length % and for a given chord 2a of the cross section:

1ra3b3
2

a2+b

* Q
M‘T Kt -E (2.91)

2,8. Application of the Galerkin Method to the Torsion of

Beams Whose Cross Section is Bounded by Parabolic Curves

A thin blade has a symmetrical section bounded by two parabolic

(see Fig. 2.4) giving the thickness at disctance x from the center

by
th = 2b[1 ~ (2x/2a)%1, (2.92)
The chosen function :
2 22 :
I =a y2 _.t? (1 - 579 (2,93)
a

satisfies the torsion boundary conditionI' = 0 on the boundary.

Using the approach given in the previous section, the torsional !

stiffness per unit length is found to be

K

. .
1+1 333(53393
4‘ ‘ 23

, - 0.1524(3)':113 (2.94) ¥
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Figure 2.4. The geometry of the cross-section bounded by parabolic
curves,

e
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2.2

Scaling eq, (2.94) with the factor L%, we have the modified
Ta™b

torsional stiffness in non-dimensionmal form,

¢t o _0.1524aen? aZip? (2.95)

t eh s 11,33‘)3
-]; + 1.333(33_;)

Having given the geometry of the cross section and knowing the angle

of twist per unit length, we can expand the expression above for
a cylinder of an arbitrary length .
33

- ‘* .9. . ‘n.’ b
M.r i 3 (2.96)
a +h
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Chapter 3

EXPERIMENTAL METHODS AND TECHNIQUES FOR THE DETERMINATION

OF THE TORSION OF BEAMS HAVING AIRFOIL CROSS SECTIONS

3.1, Introduction

There are several analytical methods for the determination

of the torsional stiffness of a cylinder having an airfoil cross

section, Some of these methods were given in detail in the previous

chapter for the types of cross sections which are reasonably good

approximations of a conventional symmetric airfoil section, The
contour lines of the airfoil section are usually presented as

curves described with fairly complicated expressions, 1In trying

to find the exact solution for a particular section by any method

described in Chaptexr 2, one faces serious problems in choosing

the appropriate stress functions and in matching given boundaries.

In this study the experimental method is applied to three
aluminum models with three different cross sections. Since the
cross sections of all three models were chosen from the family
of NACA four-digit wing sections, the approximation taken in
analytical methods is very close to the real cross section, The
experimental methed is universal and can be used fo; any type of
beams having the airfoil cross section restricted only to the

linear elasticity cases.

3.2. Method of Experimental Measurement

Since we do not know the exact position of the shear center

of the models having airfoil cross sections, the relation, between

38
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torque and angle-of-twist cannot be defined in a conventional way.
During modeling of this system, the following assumptions were made;

1, For models made of isotropic materials, in the elastic
region (small deformations), the applied torque, the angle of twist,
the force, and the linear displacement are related linearly,

2, The continuous beam (model) with applied torque at
the tip is modeled as single-spring-mass system.

3. Since th; models are of small size, the weight of the
model is neglected,

The model was clamped to a vertical beam of much larger
mass and stiffness than that of the model, A rigid light bar
with. two positions for applying load was firmly attached at tho
tip of the model. By applying the same weight on two different
moment arms successively, the misial was deflected at two different
angles of twist, The first observation was made in the deformed
state of the model, when the weight was applied at position 1.
From the theory of vibrations, we know how to model some
distributed systems as single-degree~of-freedom systems, thus
reducing continuously distributed parameters to equivalent single
parameters lumped at one point. Using the elementary relations
for work done by force and torque in linear solid mechanics, we
can model a cantilever weightless beam of length £ and with given
physical properties EI as a single-spring-mass system where:

1. E is the Young modulus of elasticity given in [1b/in2].

2. I is the sectional moment of inertia around the axis

of bending given in ina.
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A very useful relation can be established using the force-displacement
relation for the linear spring P = Ko 4 where K, [lb;in) is the

linear spring stiffness (constant). Observing Fig. 3,1, we have

A._‘.‘i
3EL
23
P-Kg'A-l-Kg,.-Sﬁ‘
3EL

In the equation aboave, Kz i the equivalent spring stiffness
of a continuous weightless cantilever beam of length £ and given
EI.

The cantilever beam subjected to the force and moment in
the plane of the tip cross section is modeled as the single-spring-
mass system. The geometry and load conditions are given in Fig. 3.2,
Force of intensity P is applied at point 1 at the distance &, from
shear center in thé‘plane of the tip cross section. Point 2
is at the distance 22 from the shear center. The difference
22—£l is denoted as dg' In Figure 3.2(a) the model is shown in
the displaced state, and in Figure 3.2(b) the single-spring-mass
model is shown in the displaced state when force P is applied
at point 1. The displacements are measured at points 1 and 2.
Observing Figure 3.2, we can say that

A is the linear displacement of the tip of the cantilever
beam subjected to the force P at the tip.

%J‘is the linear displacement at point 1 due to the force

P at point 1.
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Figure 3.1. Equivalent spring of continuous weightless cantilever
beam,
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Figure 3.2, Cantilever beam model in displaced state when force P is
applied at point 1: (a) cantilever beam model;
(b) equivalent single-mass-spring mode%.
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A2l is the linear displacement at point 2 due to the force
P at point 1.
Using the geometry from Figure 3.2 and equations given in

this chapter, we can establish the following relations;

2‘3
A- —BE—I ) (.3-21
Ml - P.zl = KTel (303)

or

Again, using the geometry in Figure 3,2, the following relations
can be established;

By = A+ 48

.. = A !

11 t+ & -K—T- 3.4)

A

A+ 4,6

M
A21' A+9,2~K':r~.

21
(3.5)

Now the cantilever beam model is observed in the second
position. Force of intensity P is applied at point 2. Again,
the geometry of the cantilever beam model and-its single-spring-
mass system analogy is given in Fig. 3.3. Using the geometry in

Fig. 3.3, the following relations are established:

(3.6)

or
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Figure 3.3.

i
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deformed state | & I ~
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-
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—
(a)

/——— -— s

System in
deformed state

Cantilever beam model -in displaced state when force P is
applied at point 2: (a) cantilever beam model;

(b) equivalent single-mass-spring model.
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Bpp = At 40
M
2
A22 1 A+ 22 =
Al2 = A4 2162
Mz,
Alz - A+9¢1-K; .
Now we can establish the following relations:
p,’? P2, BL
A22 qA21 - A+—KT- (_A+-KT—) -Tr_dﬂ
PL
Ay, = A 2 4

22 21"ET“

In a similar manner,

2
PL. 2 P
. 172 21
StIa TR s
RL
A 1

12 = A "R e
Substracting eq. (3.10) from eq. (3.9), we have

Pd
1
—_— (gz v

Bap =By = By, - 1’-'1<T

21)

and finally 2
Pdy

K =
T Bpp=Byy=8,18),
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3.7

(3.8)

(3.9)

(3.10)

(3.11)

which is the torsional stiffness of the model of the length £,

In order to get the torsional stiffness per unit length, we have

to multiply the expression above by %:

2
sz L

e

K

(3.12)
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If the chord of an airfoil cross section is given as 2a, we can

2,.2
scale the expression above with the factor 5L¥t§~.
33
Ta™b
pd 24 2.2
K T i (3.13)
| [%227"217F12%%11)  ma’y
where
2,,2
*
K, =k 2FE. (3.14)
t t 53,3
a’b

We can now find the torsional stiffness for any beam of given
length % and chord 2a for the same family of airfoil section:
33
*
Ry = K, - Z2b (3.15)
2(a"+b7)
In a similar manner, the relation of the torque-angle of twist

is derived;

* Tl'a3b3 )

= K (3.16)
“r t 2(az+bz)

3.3, Experimental Technique

The experimental technique is hased on the approach presented
in the previous section. To obtain satisfactory accuracy in
measurement, the system for measurement is set up as shown by
Fig. 3.4.

The model is clamped to a vertical solid beam of much larger
mass and stiffness. At the tip of the model, two light aluminum
rods are attached, One of them has two attaching points for
weight, These are shown in Fig, 3.2 as points 1 and 2, and are
located at the distance dz = 10{in]. In order to avoid

error in measurement, another bar is used as a reference line when
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Figure 3.4, Side view of the measurement system used.
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measuring the displacements at points 1 and 2. Dial gages
are used for displacement measurement, with a scale of 0.Q01 [in]
per division. Since the shear modulus of aluminum is relatively
low, a small angle of twist is used on the model in order to avoid
plastic deformations. Measurements are conducted in the
following way:

1, The weight is hung at position 1 and the displacements
are measured at position 1, Byps and at position 2, A21.

2. The same weight is hung at position 2 and the displacements
are measured at position 2, A22’ and at position 1, Alz'
The same procedure with. different weights is repeated and the
displacements are measured, The same procedure is then repeated
for all three models, selecting the apprapriate amount of weight

to be used in order to avoid plastic deformation.
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Chapter 4

PREDICTED AND EXPERIMENTAL RESULTS OF TORSIONAL

STIFFNESS OF BEAMS HAVING AIRFOIL CROSS SECTIONS

4.1, Introduction

In this chapter, the predicted results are given for a group
of models having cross sections similar to that of the symmetrical
airfoil, Experim;ntal results are obtained for the three models
having NACA four-digit symmetrical sections. The results are

given in Tables 4.2, 4.3, and 4.4.

4,2, Comparison and Discussion of Predicted and

Experimental Results

In Chapter 2, the formulae are derived for torsional stiffness
per unit length K: for beams having cross sections close to that
By of the symmetrical airfoil section. The models have widths and
thicknesses corresponding to the dimensions of models having
symmetrical airfoil sections used in the experimental part, The
formulae and the results are summarized and given in Table 4,1.

In the experimental part, three models are used. They have
been tested, according to the procedure given in Chapter 3, in
the structural area of the Department of Aerospace Engineering
of The Pennsylvania State University. The models have the
following material properties:

1. The material of the models is aluminum.

2. Young's modulus of elasticity is 10.5:¢106[1b/in2].

3. The shear modulus is 4.0 x 106[1b/in2].
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4, The mass‘density is 2,59 [1b sec2/1n4].

The geometrical and the material properties are giyen in Table 4,1.
With the data obtained by measurement, the torsional stiffness

per unit length Kt and the scaled torsional stiffness per unit
length K: are calculated and givyen in Table 4.3,

The results predicted for models given in Table 4,2 and the
resultsvexperimen;ally ohtained for the models in Table 4,3 are
summarized in Table 5.4. Obgerving these results, we conclude
that we have fairly good agreement for scaled torsional stiffness
K: obtained analytically and experimentally for the same models,
The results obtained experimentally are siightly below the
results predicted. This is probably due to imperfect clamping
of the models and the way the torque is applied to the models,

For any given model made of aluminum or any metal having a
NASA four-digit symmetrical section, we can calculate the
torsional stiffness if we know the leagth £ and the chord 2a;

* ﬂaab3

2 K —— (4.1)
o B S I
*
where Kt is predicted and measured as a function of the shear

modulus. Generally, we can calculate the torque for a given angle

of twist for the models above as

My = KTG. (4.2)

Since the stiffness experimentally measured is slightly helow
predicted, it 1is recommended that the first one be used in further

calculation,
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Chapter 5

THE DYNAMIC MODELING OF CANTILEVER BEAMS AS UNDAMPED

MULTI-DEGREE-OF-FREEDOM SYSTEMS

5,1 Free Vibration

The analysis of a structure in free vibration provides the most’
important dynamic ‘properties of the structure, which are the natural
frequencies and the corresponding modal shapes. The equations of

motion are represented in a matrix form by
m) {x(e)} + [(k1{x(t)} = {0} (5.1)

which represents a set of n simultaneous differential equations of

the type

n n
iz.lmijxj(t) + jilkijxj(t) =0,1=1,2,...,n (5.2)

where [m] and [k] are the mass and stiffness matvices. Before
considering properties of frequencies and modes, it is useful to
consider some of the properties of the stiffness matrices and mass

matrices encountered in structural dynamics problems.

5.2. Some Properties of [k] and [m] Matrices

The strain energy and kinetic energy can be written in the form

of the triple-matrix product
v = Lot 1 i (5.3)

where {x} is the n-dimensional displacement vector and {x}T is its

transpose matrix,
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{x}= . k] = . (5.4)
[} [
xn *

knl kn2 e knn.

b ——"

and

T = -21-{£}T tm) {x} (5.5)

where {i} is the n-dimensional velocity vector.

X1 M1 ™2 00 - My
.} . xz m21 mzz e o mzn
b= () = . (5.6)
x L]
n m
Bl a2 © ¢ Mo

Matrices [k] and {m] for most structures are positive-definite
matrices, that is, wﬁen arbitrary vectors {x} and {x} are chosen and
V and T are c&mputed from eqs. (5.2) and (5.4), the resulting values
of V and T are positive, except for the trivial cases {x} =0
and {x} = 0.

In general, the kinetic energy T is always positive~definite,
so that [m] is always positive definite. The question remains as
to the sign properties of the potential (strain) energy and the
associated matrix [k}. Two cases of particular interest in
vibrations are those in which (k] is positive-definite and [k] is
only positive-semidefinite. When (k] is positive-semidefinite, V

can be zero (for rigid-body modes) or greater than zero (for deformable

R R
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modes). When (k] is positive-semidefinite, det (k] = 0. Since

the det [k] vanishes, [k] is called a singular matrix, When [m]

.

is positive-definite and (k] is positive-semidefinite, the system

is referred to as a semidefinite system, and the motion is called
undamped free vibration. Rigid-body motion is possible because
semidefinite systems are unrestrained, that is, such systems are

supported in a manner in which rigid-body motion can take place.

5.3. Some Properties of Natural Frequencies

We are interested in a special form of solution of the set
(5.2), namely, that in which all the coordinates have the same time

dependence and the general configuraticn cf motion does not change

_ except for the amplitude, so that the ratio between any two coordinates

xi(t) and xj(t), i # j, remains constant during the motion. This
type of motion is expressed mathematically by means of a linear
transformation that can be represented by rhe matrix of the system

eigenvectors.

{x(e)} =[p1{q(t)} (5.7)
{X(e)} =1o1{q(e)} (5.8)

Substituting equations (5.7) and (5;8) into eduation (5.1), we have
m] ($1{q(e)} + (k] (91{q(t)} = {0}, (5.9)

If we assume the following type of harmonic motion for the r-th
mode, the characteristic equation for the r-th mode can be derived

in the following manner.
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{q (©)} = {A }sin(uw t-6 ) (5.10)
{g.(e)} = -{Ar}mrzsin(w1__c-er) (5.11)
(-u 2] + () {6_HA Jsin(w £-8 ) = {0} (5.12)
Since {a_lsin(uw t-6) # {0} .
(-mr2 m] + [kl){cﬁr} --{o}. (5.13)

The equation above represents the n-th order algebraic eigenvalue
problem. For a nontrivial solution, the determinant of eq. (5.13)

has to vanish:
det([k] - mz [m]) = 0. (5.14)

This is called the characteristic equation. When the determinant
of eq. (5.14) is expanded, a polynomial equation of degree n in
w2 is formed whose roots are the eigenvalues, or squared natural
frequencies, mrz. These can be ordered from the lowest to the

highest:

0_<_m12_<_w22§....<w2§...._<_mn2. (5.15)

It is possible for several modes to have the same frequency;
however, this condition is unusual in structural systems. Not so
unusual is the case in which several mode frequencies are very
nearly the same; so close together, in fact, that very great
computational or experimental accuracy is required to distinguish

among them.
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5.4, Some Properties of Eigenvectors (Modal Shapes)

A mode shape is a unique deformation shape that the structural
system would take on if excited solely in that mode of vibration.
Mathematically, mode shapes are represented as vectors known as
modal vectors. Each element of the modal vector is the deflection
of one degree of freedom in the structure. Equation (5.,13) can be

rewritten for the r-th mode in the following way:
2
ki{g.} = w "o}, r=1,2,3,...,n. (5.16)

The solution vector {¢r} corresponding to a particular eigenvalue

is called a mode shape or characteristic eigenvector or an eigen-
vector, and defines a particular structural deformation pattern
called a mode. Because eq. (5.16) is homogenous, there is not a
unique solution, and only a ratio among the elements of a particular
mode shape vector can be determined. The values of the elements
themselves are arbitrary, so that if {¢r} is a solution of eq. (5.16),
theno%{¢r} isalso a solution, where @, is an arbitrary constant.
Hence, the shape of the natural modes is unique, but the amplitude
is not. 1If one of tﬁe elements of the eigenvector is rendered
unique in an absolute sense, this automatically causes an adjustment
in the values of the remaining n-l1 elements, and the ratio between

any two elements 1is constant.

5.5. Scaling (Normalizing) of Eigenvectors

Since the modal vector represents a shape rather than the
absolute deflection of the structure, elements of the modal vector

are normally scaled in some arbitrary manner. The most common

Foers
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technique is to scale the modal vector so that the largest element
equals one, This allows the deflections at the remaining degrees
of freedom contained in the modal vector to be expressed as a
percentage of themaximum. It is a common misconception that modal
vectors define actual vibratory motion of a structure. The total
deformation resulting from external excitation is dependent not
only on the magnitude and location of the input forces, but also
on the participation of each mode in the structure's total response.
The process of scaling a natural mode so that each of its
elements has a unique value is called normalization, and the
resulting modal vectors are called normal modes. A very convenient

normalization scheme consists of setting
T
{0V mifg } =M, r=1,2,3,...n (5.17)

so that the Mr is the generalized mass or modal mass in the r-th

mode. Generally the modal mass matrix is
T
(91" (m] [§] = M. (5.18)

In a similar manner, the generalized stiffness or modal stiffness

for the r-th mode is defined as
T
{¢>r} [k]{¢r} =K, r=12.3,...,n (5.19)
The modal stiffness matrix is
T 2
(01" [k1[9] = [w™J . (5.20)

The following is an especially convenient normalization for

B e

e
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a general system, so that the product {¢r}T[m]{¢r} has the units of
unit mass. Eigenvectors obtained in a such manner are called
orthonormalized eigenvectors. For a system having a consistent
mass matrix (full), the normalized i-th component of the j-th modal

vector 1is

°1j - ¢1J
/{<¢>j}T a1 {0, }

. (5.21)

For a system having a diagonal mass matrix, the i-th component

of the j-th modal vector is

()
4y = EN ‘ (5.22)
/2 2
L ooy
ksl i

in which {¢i}and {¢j} are any two modal vectors and [M] is the modal
mass matrix of the system, The normal modes may be conveniently
arranged in the columns of a matrix known as the modal matrix of

the system, that is,

¢11 12 * an
J o 0
2n

(9] = ‘ (5.23)

ul¢n2 ° e nn

which holds for the general case of n degrees of freedom.

ot DI
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5.6. Orthogonality of Modal Vectors and the Expansion Theorem

The natural modes possess a very useful property known as
orthogonaliéy. This is not an ordinary orthogonality, but an
orthogonality with respect to the inertia matrix [m] (and also
with respect to the stiffness matrix (k] ). The following
calculation is proof of the orthogonality of the modal vectors
{¢r}. We are going to consider two distinct solutions, mr2{¢r}
and w82 {¢s}, of the eigenvalue problem presented in eq. (5.19).

These solutions can be written in the form
2
k1 _} = w, 1} (5.24)
2 )
[k]{¢s} - [m]{¢s}. (5.25)

Premultiplying both sides of eq. (5.24) by {¢S}T and both sides of

eq. (5.25) by {‘I’r}T, we obtain
a6} = w9 Tmi} (5.26)
o ) =6 Fmi) - Gan

If we transpose eq. (5.27) and assume that matrices (k] and ([m]

are symmetric, and subtract the result from eq. (5.26), we obtain

2

w? -6 Ymie ) =o. (5.28)

Since, in general, the natural frequencies are distinct, wc 4 ws,

eq. (5.28) provides

{¢S}T[m]{¢>r} =0, r#s (5.29)
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which is the statement of the orthogonality condition of the modal
vectors. It is easy to see that the modal vectors are also

orthogonal with respect to the stiffness matrix (k)
b Y k1Y = 0, r #s. (5.30)

We stress again that the orthogonality relations shown in eqs. (5.29)
and (5.30) are valid only if [m] and (k] matrices are symmetric.
The modal vectors can be conveniently arranged in a square

matrix of order n, known as the modal matrix and having the form
(61 =1{6, Hg,}... {6 1 | (5.31)

where ($] is, in fact, the transformation matrix. All n solutions

of the eigenvalue problem can be written in a compact matrix form:
k) [6] = (m] (§) . (5.32)

The eigenvectors {¢r} (r = 1,2,3,...,n) form a linearly
independent set, implying that an n-dimensional vector representing
any possible, but otherwise arbitrary, configuration of the system
can be constructed as a linear combination of eigenvectors.
Physically, this implies that any motion of the system resulting
from an arbitrary excitation can be regarded at a given time as
a superposition of the natural modes multiplied by appropriate
constants, where the constants are a measure of the degree of
participation of each mode. This approach permits the transformation
of a simultaneous set of differential equations of motion into an

independent set, where the transformation matrix is the modal
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matrix [¢). The process of deriving the system response by
transforming the equations of motion into an independent set is
known as modql analysis,

To prove that a set of vectors {¢r} 1s linearly independent,
we assume that the vectors are linearly dependent and arrive at
a contradiction., For the set of veccors,{¢r} to be linearly dependent,
it must satisfy an equation of the type

n

cl{¢l} + c2{¢2} + ...t cn{¢n} = I cr{¢r} = {0} (5.33)
r=l

where c. (r = 1,2,,.,n) are non-zero constants. Premultiplying

eq. (5.33) by {¢S}T[m], we obtain

n

Ze s Ymip ) =o. (5.34)

r=1"r

The triple-matrix product {¢S}T[m]{¢r} is equal to zero for r # s
and is less than or greater than zero for r = s, Repeating the
operation in the equation n times, for s = 1,2,3,...,n, we conclude

that eq. (5.34) can be satisfied only in the trivial case defined

by €] =€) = se0 = = 0. Then we have {¢#} as a linear combination
of {¢l}, {Qz}, ceey {@n}, with coefficients cl, Coy Cgp wney C
(o} = ey {0} + cp{o,} + oo+ c {9 ) # {0]. (5.35)

Hence, any vector belonging to the space {¢} can be generated in
the form of linear combination as shown in (5.35). Physically,

this means th;t any possible motion of the system can be described
as a linear combination of the modal vectors. The coefficients <.

are a measyre of the contribution of the associated modes {¢r} to the
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motion {¢},
c. = {¢r}Ttm]{¢} ' (5.36)

Equations (5,35) and (5,36) are known in vibration theory as
the expansion theorem. This can be applied to multi-degree-of-

freedom systems:
T A
{0} mi{e_} = 0. (5.37)
s
If matrix [m] is symmetric, we can rewrite equation (5.37) as

2 9ef1s ¥ Bp¥orPps t oee t Bolarlng = 0> T ¥ 8 (5.38)

for r = g = n

2 2 2
bt T tmd =M (5.39)
or write it in a matrix notation as
T
{¢n} (m] {¢n} - M. (5.40)

We recognize Mn as the modal mass in the n-th mode. Generally

for the system of order n the equation above becomes

o

017 6] =cua= | M, (5.41)

M
R
which is the generalized mass matrix or modal mass matg}x. Using

eq. (5.26) under conditions r = s = n, for the n-th mode,

o Y b= w e Y mife ). (5.42)

65
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In eq. (5.42), we recognize the modal stiffness in the n-th

mode. Generally, for the system of order n, this equation becomes

e — —

17 0l 103 = 0o M3 = w,?, © (5.43)

If the eigenvectors are scaled in the following way
T
(¢1" m) [®] = [I]

where [I]) is the identity matrix, then the scaled model-stiffness

matrix has the following form:

(017 (k] 101 = = w, : (5.44)

5.7. Response of Multi-Degree-of-Freedom Systems

to Initial Excitation

The equations of motion are represented in a matrix form by
ml{x(t)} + k1 {x(t)} = {0}. (5.45)

Equation (5.45) represents a set of simultaneous ODE's with constant
coefficients, Using linear system theory, a general closed-form
solution of eq. (5.45) can be shown to exist. A convenient way

of deriving the solution is modal analysis, which requires the

P .,‘a
]

solution of a so-called eigenvalue problem for the system.

66
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In eq. (5.45) {x(t)} is the displacement vector or the generalized
coordinate vector xr(t) (r = 1,2,3,...,n). We introduce the

following transformation matrices:

{x(e)} = (91{q(t)} (5.46)

{X(e)} = (91{q(e)}. (5.47)

n

Substituting these two equations into eq. (5.43), we have
m) (21{g(e)} + k1o {q(e)} = {0}.
Premultiplying the above expression by [¢]T; we have
1 w1 0144Ce)} + 017 k1191 {a(e)} = {o}. (5.48)

Using the relations in eqs. (5.43a) amsl (5.44) derived earlier,

eq. (5.48) can be rewritten as follows:

1) Y + ~u?J{qle)} = {0} (5.49)
or
[~ -
(4,() % fa©) (o)
Gy (¢ w, a0 | | o
W I ‘ + ' < . r=< : ? (5.50)
. a2l
0
[ 4 - ] (W) ()

For the r-th mode, eq. (5.50) yields

§.(e) + 0 g (6) =0 (5.51)

where variables qr(t) are identified as the normal coordinates

e e
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of the system. Using eq. (5.46), we can write the expansion

expression for {x(t)} as follows:

{x(t)} = {¢1}ql(c) + {¢2}q2(t) + . + {¢n}qn(c) (5.52)
or

n
{x(t)} = I {¢r}qr(t) = (9){q(t)}. (5.53)
r=1

By an analogy with the free vibration solution of an undamped

¢ingle-degree-of -freedom system, the solution of eq. (5.49) is
qr(t) - Crcos(wrt - Gr), r=12,..,.,n (5.54)"

where C_ and Br (r = 1,2,3,...,n) are constants of integration
repiesent.ing the amplitudes and phase angles of the normal coordinates.

Inserting eq. (5.54) into eq. (5.46), we have

n n
{x(e)} = [91{q(r)} -rEI{Qr}qr(t) -rEICr{¢r}c05(wrt -6 (5.55)

- so that the free vibration of a multi-degree-of-freedom system

consists of a superposition of n harmonic motions with frequencies
equal to the system's natural fregquencies, and with amplitudes
and phase angles depending on the initial conditionms.

Letting {x(0)} = {xo} and {x(0)} = {io} be the initial

displacement and initial velocity vectors, respectively, eq. (5.55)

leads to
n
{xo} = 7 Cr{¢r}coser (5.56)
r=1 .
. n
{xo} = I Crmr{¢r}sin6r. (5.57)

r=]

g e ¢
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Premultiplying eq. (5.56) and (5.57) by (¢} [,
T
{¢r} (m]{xo} = Crcoser (5.58)
16 1T mi{x.} = C_sind (5.59)
mr r 0 r r’ *

Introducing these two equations into eq. (5.55), we obtain the

general expression

’ n
{x(t)} 'ril[{¢r}T[ml{xo}coswg:

T e« . 1
+ {¢r} [mJ{qo}E;-sinwE;1{¢r} (5.60)

which represents the response of the systeﬁ to the initial dis-
placement vector {x,} and the initial velocity vector {;O}‘ Now

we assume that the initial displacement vector {xo} resembles a given
normal mode, say {‘PS}, whereas the initial velocity vector is zero.
Introducing {xo} = xo{¢s} and {io} = {0}, the response is

n
{x(t)} 'rEl[q0{¢t}T[m]{xo}coswrt]{¢r}' (5.61)

5.8. The Dynamic Response of Multi-Degree-of-Freedom

Systems to a Harmonic Force

The general response of a discrete system, i.e., the response
to both initial and external excitations, is governed by a set of
simultaneous (coupled) equation§, but can be rendered independent
(uncoupled) by means of linear transformation that can be
represented by the matrix of the system eigenvectors, Because

these eigenvectors are commonly referred to as modal vectors, the

R
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transformation matrix is called the modal matrix and the decoupling
procedure itself is known as modal analysis, The independent
ordinary diffeéential equations resemble those of low-order systems
and can be solved with relative ease. The important feature of
these low-order systems 1s that they are described in terms of a
single dependent variable.

For a linear system, solutions to excitations can be ob;ained
separately and then added up linearly to obtain the combined response.
This is the essence of the so-called principle of superposition,

a very poweriul principle that applies to linear systems alone.

In vibration, we encounter the various types of periodic excitations,
which are not necessarily harmonic. Any periodic function, however,
can be represented by a convergent series of harmonic functions
whose frequencies are integral multiples of a certain fundamental
frequency, Wys provided that it satisfies certain conditions.

The integral multiples of the fundamental frequency are called
harmonics, with the fundamental frequency being the first harmonic.

Such a series of harmonic functions is known as the Fourier Series,

and can be written in the form

F(t) = l-a + 5 (apc03pw

20 p=1 ot + bpsinpwot) (5.62)

where mo = %§3 p are integers, p = 1,2,3,...,n, and T is the period.

The coefficients ap and bp are given by the formulae
T/2

ap = %.Jp(t)cospwotdc, p=20,12,3,...,n (5.63)

-T/2
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T/2
=2
bp =T J F(t)sinpw
-1/2

otdt, P = 0,1,2,3,...,n (5.64)

and they represeni{ a measure of the participation of the harmonic
components cospwot and sinpw t, respectively, in function F(t).

1
The term 7 3

the equation of motion of an undamped n degree-of-freedom system

represents the average value of F(t). We consider

subjected to a harmonic force, expressed in terms of Fourier
components of the fundamental frequency only. The same procedure
could be repeated for higher harmonics.

The amplitudes of harmonic forces are distributed arbitrarily
on all) mass elements of the system, The exciting force can be
written as follows:

F
F(t) = 7?»+ F Sinw.t + F, cosw.t (5.65)

0 f Oc f

or
(W, t+Y
30 =)

r
F(t) = 7? + For

(5.66)

whare

3
|

or = ¥ Fos T Foc

Fo
Y = arctan (7) (5.67)
Oc
and where we is the forcing frequency of the system and { is the

phase angle. The equations of motion for an n degree-of-freedom

system can be written in matrix form as follows:

j(wft+¢)

m]{x(e)} + (k)1 {x()} = {F(e)} = {FO} + {FOr}e . (5.68)

o
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The linear transformation matrices can be expressed as

{x(t)} = (9} {q(t)} (5.69)
{x(e)} = d1{q¢e)} (5.70)

where the transformation matrix [®)] was introduced earlier as the
gcaled modal matrix, Also, in a previous section we showed the

orthogonality conditions for two modes, w_ and w_, W, $ W,

0 Y wmie}=0 rfs (5.71)

T : (5.72)
0 m1{e} =0 sl

Substituting eqs. (5.71) and (5.72) into eq. (5.68), we have

1‘ 3 (mfcﬂp)
m] (P1{qCe)} + k1 (P){q(t)} = {F(t)} = 5-{r0} + {rOr} e .

(5.73)
j(wft+w)

Premultiplying (5.73) by [¢]T, we have
017 @1 0105(e)} + (917 el (01{q} = F101T{F ) + (0T (Fy Je
(5.74)

Using relations derived in a previous section, eq. (5.47) reduces
to
. 2 1.,.T T I (wgt+p)
e} + rw’3 {a(e)} = F101°{Fy} + (91 {F, le . (5.75)
This is a so-called modal equation, which decouples the initial
system of equations into n independent equations. The terms on the
right side are called the components of modal force. They give

the extent to which the components of exciting forces participate

in every mode.

72
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The equation of motion in the r-th mode due to the exciting
forces lumped at all masses, having arbitrarily distributed

amplitudes, evolves from eq. (5.75) as

j(w t+y)
3.(t) + wrzqr - %{¢r}T{FO} + {¢}T{p0r}e £ (5.76)

The solution of eq. (5.76) can be written as

q.Ce) = (q_(t)) + (q () (5.77)

hom part

and the homogenous solution can be expressed as

(qr)hgn = Ercosmrt + Frﬁinwrt.

The particular solution can be found separately for each

component of the forcing function in eq. (5.76):

(qrct))part: - (qr)part 1t (qr)par: 2 . (5.78)

We assume the following types of solutions:

(q.) c. (5.79)

r’part 1 =

Substituting eq. (5.79) into eq. (5.76), and omitting the second

term on the right-hand side of eq. (5.76), we have

1 T
(9 pare 1 = 7708} (7] (5.80)

r

3 (W e4p)
(qr)parc 2 Qre (5.81)
j(w t+Y)
. 2 £ (5.82)

(qr)part g T QU e

==

ST
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Substituting eqs. (5.81) and (5.82) into eq. (5.76), and omitting

the first term on the right-hand side of the latter equation, we have

“’r}{For}_ ej (we t+)

(4) pare 2 = 27 . (5.83)
r f
The general solution for the r-th mode can be written as
1 (o 3T 010 ) ju et }A
q!‘(t) = Ercoswrt + Frsinwrt + ;——-i-{‘br} {FO} + ) 7 e b3 .
T r 4 #
(5.84) %

For convenience in further calculations, eq. (5.84) can be rewritten

as

1 T
qr(t) = E.cosw t + F_sinu t +A;;—§ {¢r} {Fo} + ;

r ¥
(o, r, ) (o " r .}
+ sinw.t + ——————"= cosW_t, (5.85)
w 2 2 £ 2 2 f
- we.w
T f b £

To define the constants Er and Fr, we apply the initial

conditions given. The displacement and velocity vectors at t = 0

are given as {x(0)}and {x(0)}. To impose the initial conditions
from the original system to a new, transformed system, we use

eqs. (5.69) and (5.70) at t = O

{x(0)} = 191{q(0)} (5.86)
)} = 91{q0)}. (5.87)

From eqs. (5.86) and (5,87),
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@@= 017 x(0)} (5.88)
(o= 017 xc0) 1. (5.89)

In order to avoid the inversion of matrix [$], we are using the

following relation:

17 (m] (9] = [1].

Post multiplying the relation above by [¢]-l, we have

-1

17t = 1917 fm]. (5.90)

Substituting eq. (5.90) into eqs. (5.88) and (5.89), we have

{q(0}= (#17 (m] {x(0) } (5.91)
{q0}= 17 m1{x(0)}. (5.92)

With time equal to zero, eq. (5.85) reduces to

T
(91°{r, }
{qr(O)} = {Er} + —1-’—2-[¢]T{F0} +— 0<:2 .

2mr wr - mf

(5.93)

Substituting eq. (5.91) into eq. (5.93), we can calculate the

vector of constants {Er}=

T 1 T [°]T{Fop}
{Er} = (9] [m]{xr(O)} - ——i'[¢] {Fo} -—5 5 . (5.94)
’ 2w W -w
r f
Finding the first derivative of eq. (5.85),
, we 1917 (£}
{qr(t) }= _{Er}mrsinwr; + {Fr}wrcoswrt + -;2—72—_ cosu t
£
we (017 (5, }
B Sinwft. (5.95)
0 - w

£
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With time equal to zero, eq. (5.95) becoues

T
wf[¢1 {Fos}

—2 2
w -wf

{q(0)} = {F_Ju_ + (5.96)

Substituting eq. (5.92) into eq. (5.96), we can calculate the

vector of constants {Fr}:

T
) w, [91°(F, }
{Fr}.a%'[¢]T[m]{x(0)} - fz 2 2e 2
' w (W " -w )
T r'r f

. (5.97)
Now Eq. (5.85) can be written in a final form as

{a(®)} = 1017 m} [ix(0) Jeosu_t + 7 (x(0) }stau_t]
r

1 T [¢]T{F0c}
- -——§{¢] {Fo}cosw_t + —-3—————5-(coswft - sinw t)
2w roow - W r
T o

T
(9] {Fos} w

+——3 (coswfc - 'u—ag' sinmrt:') , T =1,2,3,..,n. (5.98)

W -w
T £ r N

The solution to all n equations in eq. (5.98) must be calculated;
then the finite displacements of masses can be obtained by super-

position of the response in each mode:

’

{x(t)} = [91{q(t)}. (5.99)

Therefore, in summary, the response analysis by mode super-
position requires, first, the solution of eigenvalues and eigenvectors
of the problem in eq. (5.32), then the solution of the decoupled
equilibrium equations in eq. (5.98), and finally, the superposition

of the response of each eigenvector as expressed in eq. (5.99).
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The essense of a mode superpositijon solution of a dynamic
response is that frequently only a small fraction of the total
number of decoupled equations need be considered in order to obtain
a good approximate solution to the actual response of the system.
Considering the problem of selecting the number of modes to be
includ¢3d in the modal superposition analysis, it should always
be kept in mind that an appvoximate solution to the dynamic
equilibrium equations is sought. Therefore, if not enough modes
are considered, the governing equations of motion are not solved
accurately enough, This means that equilibrium, including the inercia
forces, is not satisfied for the approximate response calculated.

This question arises especially when a lumped mass model is
used to approximate a system having a uniformly distributed mass.
There is no unique criterion to determine the number of modes to
be taken. Usually in shock and steadv-state problems driven oﬁ
high frequencies, "effective modal mass" is used as parameter. A
modal effective mass can be identified in matrix form for the n-th
mode as:

1Y mife ) e 1 m){1)

Meff)n = i (5.100)

) E!—-lm i¢ ir]

) 2
ii lmiq)in

(

or in summary form as

(Meff

where m_ is the mass of the i-th point, {l}T is a row matrix of

i
ones, anth is the modal mass in the n~th mode defined by
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n 2
M = Im¢ . (5.102)
n {=1 iin

Usually a good indication that enough mass has bgen considered by
modal analysis is that the effective modal mass is very close to
the actual mass of structure, that is, more than 95% of the total
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Chapter 6

DAMPED MULTI-DEGREE-OF-FREEDOM SYSTEMS

IN STRUCTURAL DYNAMICS

6.1. Introduction

All real systems dissipate energy through one of various types
of damping mechanisms, such as structural viscous or Coulomb damping.
The most common method of taking into account the dissipation of
energy in structural dynamics is to assume in the mathematical model
the presence of damping forces which have magnitudes proportional to
the relative velocity and directicns opposite to the motion, This
type of damping is known as viscous damping, because it is a kind
of damping that will nccur when there is motion in an ideal viscous
fluid., The inclusion of this type of damping in the equations does
not alter the linearity of the differential equations of motion.
Since the amount of damping commonly presented in structural systems
is relatively small, its effect is neglected in the calculation
of natural frequencies and mode shapes, However, to uncouple
the damped differential equation of moticn, it is necessary to impose
some restrictions on the values of the damping coefficients in the
system. These restrictions are of no consequence due to the fact that
in practice it is easier to determine or estimate modal damping
ratios rather than absolute damping coefficients, In addition, when
solving the equations of mation by the modal superposition method,
only damping ratios are required. When the solution is sought by

other methods, the absolute values of damping coefficients may be
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calculated from modal damping ratios by any of the various methods.

6.2, General Consideration

The equation of motion of a linear multi-degree-of-freedom

damped system is

1

. 3 (W et))
mlG(e) ) + ) ix()} + tllx(e)) = 3 7} + {7, de £, (6D

5
In general, the coefficient matrices in the above equation, [m],

fc], and [k], may have nonzero coupling terms (e.g., cij = cji # 0),

so that to solve eq. (6.1) in its present form would require simultane-
ous solution of n equations in n unknowns. The purpose in this section
is to outline the mode-superposition method by which such a set of
coupled equations can be transformed into a set of uncoupled

equations through use of the normal modes of the system. Equation

(6.1) is the original set of coupled equations of motion for an n-degree-
of-freedom system, whére x(t) may be physical or generalized
coo;dinates.' The response of the system fo the excitation force

j (wf t""P) i
and to the initial conditions {x(0)} and

%_— {Fy} + {Fy te
{é(O)} is sought.

The first step in a mode-superposition solv%ion is to obtain
the natural frequencies and modal shapes of the system. In Chapter
5 we gave a very detailed treatment of these quantities. Since
the structural systems can be¢ gonsidered as lightly damped systems,
the most important dynamic properties, the natural frequencies and
the corresponding modal shapes, are not practically affected by

the presence of damping. We assume that if there are any repeated

frequencies, the associated modes have been orthogonalized, so that

C-=

bzt iR
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the orthogunality equations
T
{0} mi{o } = {o }ik1{o } = {0} (6.2)

are satisfied for all r ¥ s, The modes are then collected to form
the scaled modal matrix ([®] already introduced in section 5.4.4,

that is,

GECCHICYRRCR IR (6.3)

The key step in the mode-superposition procedure is to intro-
duce the coordinate transformation, exactly the same procedure used

for an undamped multi-degree-of-freedom system in Chapter 5:

n
{x(t)} = #1{q(t)} = T {8 }q_(2). (6.4)
=1 -

The coordinates qr(t) are usually referred to as nnrmal or principal
coordinates, Equation (6.4) is substituted into eq. (6.1) and the
resulting equation is multiplied by 417 to give the equation of

motion in principal coordinates, namely,

01 @] 91 (G(e)} + 1017 el 121{q(e) } + 1017 (k] (01 {q(e)}

J(w t+@;
- 917 %—{Fo} + {F, Je £ ) (6.5)

Using relations in eqs. (5.43a) and (5.44), eq. (6.5) 1is reduced to

(1{g(e) } + e 1{a(e) + K 1{a(e)} = {F ()} (6.6)

where
(I] = [¢]T[m][¢]==sca1ed modal mass matrix,

. tC;q = [@]T[c][¢]==scaled modal damping matrix, (6.7)

TR
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(KN = [¢JT[k][¢] = gcaled modal stiffness matrix,
jw

tHy
st(t)}-=[¢]T[%%FO} + {For}e £ j]- scaled modal for¢e vector,
Due to the orthogonality conditions of eq. (6.2), [m] and (k)
are diagonal matricus, so the equations of motion in modal coordinates
(eq. (6.6)) are coupled only through a nonzero off-diagonal in the
scaled modal damping matrix [CS]. In the derivation of the modal- *

coordinate equations of motion, it has been assumed that the normal-~

AT SR IR A

coordinate transformation serves to uncouple the damping forces in

the same way that it uncouples the inertia and elastic forces.

TR 1 N

In the following sections, we are going to consider the conditions

under which this uncoupling occurs.

6.3. Conditions for Uncoupling of Damping Forces

Considering the analysis of systems in which damping effects
cannot be neglected, we still would like to deal with decoupled
equilibrium equations (eq. (6.6)) merely to be able to use essentially
the same computational procedure, whether damping effects are included
or neglected. In general, the damping matrix (c] cannot be constructed
from element damping matrices, such as the mass and stiffness matrices,
and its purpose 1s to approximate the overall energy dissipation during

the system response.

6.3.1. Evaluation of the Damping Matrix for Any Set of Specified

Modal Damping Ratios

In principle, the procedure can be explained by considering
the complete diagonal matrix of the damping coefficients, which

may be obtained by premultiplying and postmultiplying the damping

-
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matrix by the scaled modal matrix

l

rzclw.l 0.
T
ms~l = [$]"[c][P) =

o

0 zz;zm2 (6.8)

SO v

It is evident théc the damping matrix [c] may be evaluated by
postmltiplying eq. (6.8) by the inverse of the scaled modal matrix

and its inverse, such that
e} = 0177 11017 (6.9)

Therefore, for any specified set of modal damping ratios {Z},
matrix [C§J can be evaluated from eq. (6.8), and the full damping
matrix [c] from eq. (6.9). However, in practice, the inversion of
the modal matrix is a large compuﬁational effort. In Chapter 5,

we proved that

17 = 017 m). (6.10)

Substituting eq. (6.10) into eq. (6.9), we obtain
(e] = [m] (9] € (41" [m] (6.11)

Since, in the r~th mode, Csr = 2;rwr, substituting this expression
into eq. (6.11), we have
- n
[e] = [mle qcrwrwr}mr}rl (m]. (6.12)
r=1 _
The damping matrix [c] obtained in eq. (6.12) will satisfy the

orthogonality property; therefore, the damping term in the differential

e " e e e e r———— . s e A g A AN S At it A
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equation (eq. (6,1)) will be uncoupled with the same transformation
(eq. (6.4)), which serves to uncouple the inertial and elastic
forces.,

It is of interest to note In eq. (6.12) that the contribution
to the damping matrix of each mode is proportional to the modal
damping ratio; any undamped mode will contribute nothing to the
damping matrix. As mentioned previously, the modal damping ratios
are the most eff;cttve measures of the damping in the system when

the modal analysis 1is carried out.

6.3.2. Defining a System Damping Matrix Using Rayleigh Proportional

Damping
The mode superposition analysis is particularly effective if it

can be assumed that the damping is proportional in the following

manner:

T
{cbi} [c]{‘!’j} - [2(»11;1]6ij (6.13)

where Ci is a modal damping ratio and Gij is the Kronecker delta

(ﬁij =1 for i = j, §,, =0 for 1 # j). Using eq. (6.13), it is

1]
assumed that the eigenvectors {¢i}, i=1,2,3,..., n, are also0
[c]~-orthogonal.,

In considering the implications of using eq. (6.13) to take
account of damping effects, the following observations can be
made. Firstly, the assumption in eq. (6.13) means that the total
damping in the structure is the sum of individual damping in each

mode. In fact, the ability to measure values for the damping ratios

G,, and thus approximate in many cases and in a realistic manner
i p y
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the damping behavior of the complete structural system, is an important
consideration. A second observation relating to the mode superposition
analysis is that for the numerical solution of eq. (6.6) using the
decoupled equations, we do not calculate the damping matrix [c],
but only the stiffness and mass matrices, [k] and [m].

As discussed, damping effects can readily be taken into account
in mode superposition analysis provided that eq. (6.13) is satisfied,

Rayleigh damping can be assumed to be of the form
[e] = ajm]) + a2, [k] (6.14)

where a, and a, are constants to be determined from two given damping
ratios that correspond to the two unequal frequencies of vibration.
Applying the orthogonalit§:condition to eq. (6,14), that is, pre-
multiplying both sides of Lhis equation by the transpose of the r-th

mode {¢r}T and postmultiplying by the modal matrix (¢], we obtain
(0 1 1e102) = a {0 Y m) (8] +a {0 3 k1 103 (6.15)
T 0 ''r 1'r : '
The orthogonality conditions (eq. (5.30)) reduce eq. (6.15) to
6 17 1e1101 = a0 1T re1fe ) +a {0 1T k{0 } (6.16)
r 0 'y r 1"y r* ’
Using eqs. (5.43a) and (5.44), eq. (6.16) is reduced to

o Y te1 191 = ag * alwrz (6.17)

which shows that when the damping matrix is of the form of eq. (6.14),
the damping forces are also uncoupled with the transformation (eq.
(6.15)). However, it can also be shown that there are other

matrices formed from the mass and stiffness matrices which also
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satisfy the orthogonality condition,
In general, a damping matrix that satisfies the relation
presented in eq. (6.13) 1is obtained using the Coughey series:
p-1

) = @ 2 ay (@™t (6.18)
xl'Q '

where the coefficients ay, A= 1,2,3,...,p, are calculated from the

p simultaneous equations:

_1 '“o 3 2p-3
Ci "2‘ "(I)';+ al(di + azwi + s e + ap_lwi i - 1‘.2'3’."’p'
(6.19)

We note that with p = 2, eq. (6.18) is reduced to Rayleigh damping

as presented in eq, (6.14). An important observation is that if

p > 2, the damping matrix (c] in eq. (6.18) 1is, in general, a full
matrix. Since the cost of analysis is increased by a very significant
amount if the damping matrix is not banded, in most practical analysis,
Rayleigh damping is assumed, In practice, reasonable Rayleigh
coefficients in the analysis of a specific structure may often be
selected using available information on the damping from a conducted
vibration test or on the damping characteristics of a typical similar

structure, i.,e., approximately the same aq and a, values are used in

1
the analysis of similar structures,

By taking two terms corresponding to k = 0 and k = 1 in
eq. (6.18), it is possible to compute the damping coefficients

necessary to provide uncoupling of a system having any desired damping

ratios in any specified number of modes. For any mode r, the modal
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damping is given as
¢, = {& }iel{e } = 2z w . (6.20)

If [c] as given by eq. (6.18) is substituted in the expression for
C , we obtain
r

T 1A
c. = {¢r} [mlkzo aA{ImJ [k1} {¢r}. (6.21)

Now, using relation [k]{¢r} = wr21m1{¢r} and performing several
algebraic operations, we can show that the damping coefficient

associated with any mode r may be written as

2
CE = iakmf = Zﬁrwr (6.22)
from which
1 2
Cr = Su Ea;\wr . (6.23)
r A

Equation (6.23) may be used to determine the constant ay for
any desired values of modal damping ratios corresponding to any
specified number of modes. For example, to evaluate these constants
specifying the n modal damping ratios, Cl’ cz, §3, ev. o] we may
choose A = 0, 1,2,3,...,n. Equation (6.23) gives the following

system of equations

) 1 : 3 5 7 n+2] Y
fcl EE- S T B T ) a;
1 3 s 7
J 2| 1w, Y2 Y2 ¥ 9 2
5“2
1 3.5 7 Q> (6.24)
%3 r w, 3 M Y Yy 23 r
) 1 C+2
z — w a
w
A n U
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or, written symbolically,
(g} = = 1q,){a) (6.25)
2 A '

where [QAJ is a square matrix having different powers of the

natural frequencies, The constants {a} could be obtained as
-1 ,
{a} = 219,177 {5}, (6.26)

Finally, the damﬁing matrix is obtained by the substitution of eq.
(6.26) into eq. (6.18).

It is interesting to observe from eq. (6.23) that in the special
case when the damping matrix is proportional to the mzs3s [c] = aOIM],
(1 = 0), the damping ratios are inversely proportional to the natural
frequencies; thus, the higher modes of the structures will be given
very little damping. Analogously, when the damping is proportional
to the stiffness matrix ([c] = al[k]), the damping ratics are
directly proportional to the corresponding natural frequencies, as
can be seen in eq. (6.23) when 1 = 1. In this case, the higher modes
of the structure will be very heavily damped.

Rayleigh coefficients are to a large extent determined by the
energy dissipation characteristics of the structural materials.

In the above discussion, we assumed that the damping characteristics
of the structure can be represented appropriately using proportional
damping, either in a mode superposition analysis or in a direct
integration procedure. In many analyses, the assumption of
proportional damping (i.e., that eq. (6.13) is satisfied) is
adequate. In analysis of a structure witl( widely varying material

characteristics, nonproportional damping may need to be used.



89

We should mention at this point the circumstances under which
it will be desirable te evaluate the elements of the damping matrix,
as in eqs., (6.21) or (6,18), I5 lFus been stated that absolute
structural damping 1s a rather difficult quantity to determine or
even to estimake, However, modal damping ratios may be roughly
estimated on the basis of past experience. This past experience
indicates that values for the modal damping ratios in structures
are generally in.che range of 27 to 10%, probably not exceeding 20%,
In other words, on this basis, and giving some consideration to the
type of structure and materials utilized, we can assign numerical
values to the modal damping ratios. The modal damping ratios are
then used to determine the damping matrix, which is needed explicitly
when dynamic response is obtained by some analytical procedure
other than modal analysis, i.e., step~by~step integration of a mon-

linear system,

6.4. The Dynamic Reaponse of the Damped Multi-Degree-cf~Freedom

Systems Subjected to Harmonic Forces

In Chapter 5 we gave a very detailed treatment of the dynamic
response of an undamped multi-degree-of-freedom system subjected to
harmonic forces. In this section we are going to consider the damped
MDOF system. The general response of a discrete system, i.e., the
response to both iritial and external excitations, is governed by a
set of simultaneous coupled equations. This set can be uncoupled by
means ©f linear transformation that can be represented by the matrix
of the system eigenvectors., The decoupling procedure itself is

known as modal analysis, since the eigenvector matrix is referred to

NPT
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as a modal matrix, We assume the proportionil damping of the system;
in this case, the classical modal matrix deces uncouple the equations
of motion, We will consider in detail the circumstances under which
the decoupling of damping forces is possible.

Again, the system is going to be subjected to a periodic
forcing function, which may be expanded into a Fourier Series whose
terms are sine and cosine functions of successive multiples of the
fundamental frequency, as shown in eq. (5.62), The coefficients of
a series are given by eqs. (5.63) and (5.64). The responsé of the
system is then obtained as the superposition of the response for each
term of the Fourler expausion of the exciting function. This function
is given by eq. (5.65). The equations of motion of an n-degree-of-

freedom system can be written in a matrix form as:

. . 1 3 (wet+y)
mi{k(e)} + el {x(e)} + ){ (&)} = {F(t)} = E{FO} + {FOr}e .

(6.27)

Quantities {For} and ¥ are defined by eqs. (5.66a) and (5.67),
Introducing the linear transformation matrices using the scaled

modal matrix (9], we have

{xCt)} = (¢1{q(t)}
x(t)} = [91{q(e)} (6.28)
{e)} = d1{qCe)}.

In a previous section, we showed the orthogonality conditions

for two modes, w_ and w_, W ¥ W, can be written as follows:
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0 Y @ie =0 r¥s (6.29)
(@Y ielfe =0 r¥s
o Ve =0 rios (6.30)

Substituting equations (6,29) and (6,30) into eq., (6.27), we have

m] (21{4¢e)} + (] ®1{qCt)} + (k1 (®1{q(t)} =

3 (w t+)
= {F(t)} = %'{Fo}-P{FOr}e £ . (6.31)

Premultiplying eq. (6.31) by [¢]7, we have

017wl (93 {5C) } + (017 (el 101 {qCe)} + @17 (k) (91 {q(L)} =

(Jugt+)

Lo T
= 1017 {F ) + 19)7{F, Je (6.32)

Using the orthogonality relations derived in a previous section,

eqs. (6.32) are reduced to

I{Ee)} + ro{ae)} + ni{q(e)} =
1 ,.T T 3(gety) ,
= Z 017 {F,} + 19] {FOr}e . (6.33)
The n equations above are decoupled into n independent equations.
The terms on the right-hand side represent the so-called scaled modal
force. The equation of motion in the r-th mode, due to the exciting
forces lumped at all masses having arbitrarily distributed amplitudes,

evolves from eq. (6.33) as

ve 2
qr(t) + 2z;rmrqt(t) + mr qr(t:) =

3 e

1., 1T T
= -é-{cbr} {FO} + {¢r} {FOr}e (6.34)
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The general solution of equation (6,34) can be written as
q (L) = (q (), + (qr(t))p- (6.35)
The homogenous solution is

-G t

- r
(qr(c))h e [Crcoswdrt + Drsinwdrt]. (6.36)

The particular solution is composed of two components:
(€)= (g, () ; + (a (&) ,. (6.37)
We assume the following type of solution:
(g (£); = C. (6.38)

Substituting eq, (6.38) into eq. (6,34) and omitting the second term

on the right-hand side of the latter equation, we have

T
1.0 (6.39)
(qr(t))pl‘- ;;—E {¢r} {FO},
r
Jlwet+p )
(q:(t))pz = Qe , (6.40)
) j(wft'*'wr)
(qr(t))p?_ = jweQe , (6.41)
J(w ety )
(0 (0) 5 = -uqe” T (6.42)

Substituting eqs. (6.40), (6.41), and (6.42) into eq. (6.43) and
omitting the first term on the right-hand side of the latter

equation we have,
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T
{6} {F,. } Jwt )
{a,(e)} p = —5— o o (6.43)

Rewriting the complex number in equation (6.43) in terms of the

magnitude and phase angle, eq. (6.43) becomes

Jlw thp )
TR

{q (£)} , =
»/(mr g )+(z;rmfwr) e " r
or

3 wgtty_-5)

{0} (Fy le
{a ()}, = L f . (6.44)

v/(mgz-wfz) 2+(2 c!wﬁw:)z

2C wew
§, = arctan __;__ﬁ__r_ . (6.45)
W "W

Let wr-5r = er' Then eq. (6.44) is reduced to

where

I (wgt+y )
(o, rg de © e

(q(e)) , = —
p2 NN 3

The general solution for the r-th mode can be written as

w.t 1

LW T
qr(t) = @ [Crcosmdrt + Drsinwdrt] + ” ) {(br} {FO} +

. r
{0} (Fy Je

2 2 2
//;r -we ) +(2g wew )

(6.46)
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The equation above can be rewritten for a very general case as

(o) = Le TE 1 —Lo 1T )
q.(t) ) = e [C.cosw, t + D sinw, t] + —_— Fnr +
r el r dr r dr el 2wr2 T 0
jlw t+8 )
no {0 (rgde f T
+ L ) (6.47)
r=1 2 2.2 Z
. “l(wr e ) +(2;rmfwr)
or as
- Wt 1 4T N
() =e T F [C cosw, t + D _sinw, t] + —=5{® }{F } 4

2W
T

F{w_t4+8 )
T, £ r
{¢r} {EOr}e

, r=123..,,n. (6.48)

+
T 3
/ar 0 ) H(2E w)

For convenience in further calculations, the equation above can be

rewritten as

- Wt

rr 1 T
{qr(t)} e [C_cosw, t + D sinw, t] + ;)—2-[@] {Fo} +
T
T . T
(81 {Fos}sin(mfb+0r) (1 {Foc}cos(wft+6r)

+ +
/ 2 2.2 2 2 2.2 2
(mr -wf ) +(2crwrwf) »f(mr -wf ) +(2:;rmrmf)
!‘ = 1,2’3,-oo,n. (6'49)

where:
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v/(Foszi + {FOC} (6.50)

—~
&)
O
.
A
[ ]

arctan O%} , £ =L1l,2,...,n, (6.51)
r

-~
-}
"’1'

arctan |——ELff ¢ 1,2,...,n, (6.52)

C
|

and

6 =y

L= 8, = 1,2,3,...,0, © (6.53)

To define the vectors of constants {C} and {D}, we apply the
initial conditions given as the vectors of initial displacements and
initial velocities {x(0)} and {x(0)}. To apply the initial conditions
from the original system to a new, transformed system, we use eqs,

(5.69) and (5.70) at t = 0,

x(0)} = (¢1{q(0)} (6.54)

x(0} = [¢1{q0)}. (6.55)
From equations (6,54) and (6.55), we have

Q@) = 017 {x(0)} (6.56)

@O} = 17 x©O}. (6.57)

In order to avoid the inversion of matrix (&), we are using the

orthogonality relation derived in Chapter 5

(91T (] 0] = (1) (6.58)
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where [I] is the identity matrix. Postmultiplying equation above

by [¢]-l, we have

017" = 1017 tm). (6.59)
Substituting eq. (6.59) into eqs. (6.56) and (6.57), we have

{q(0)} = [8)7 (m] {x(0)} (6.60)
{Q(0)} = 917 m1{x(0)}. (6.61)

At the time t = 0, eq. (6.49) reduces to

T
. { }T{ } f@r} {FOS}Si“G: .
q.(0) = ¢ +—5{2 } {F, 72 %
Zmr ﬂwr - ) +(2r;twrmf)
{¢ }T{F }cos®
+ r Oc r , T=1,23,,..,n., (6.62)

2 2.2 2
vf(wr -0, ) +(2;rwrwf)

Substituting eq. (6.60) into eq. (6.62), we calculate the vector of

constants {C}

T {0.}7{F__}sine
c. = {0 T ml% (0) - —2o{®0 )} (F.} o — T 05 T i
r r T g 2 B O /(m 2o 52020 0 02
F r f rrf
{6 }T{F. }cos8
- T Oc r , r=1273,...,n, (6.63)

3 2.2 2
//E@r e ) +(25rmrmf)

Finding the first derivative of eq. (6.49), we have
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- Wt
ctt

{qr(t)} = -pWwe [C.cosw, t + D_sinw, t] +

-5 Wt
rr
+ e [-CrwdrSinmdrt + Drwdrcoswdrt] +

wf{¢r}T{Fos}cos(mft+6r) ) wf{Qr}T{FOC}sin(w£t+6r)

+
~ 2 2.2 2 2 2.2 12
/(wr -wf ) +(2t;rwtmf) /(wr -mf ) +<2§z""r’”f)
r - 1,2,3,..-,1‘1. (6064)

At time t = 0, eq. (6,64) becomes

. w, {® ¥ {F,, }cosd
{q(0)} = -z wC_+Duw, + f Os L3 -
T rrr r dr / 5 5 5
(wr -mf ) +(2t;rmrwf)

T
wf{q’r} {FOc}sinSr , T=123,...,n. (6.65)

2 2.2 2
-/(mr -wf ) +(21;rwrwf)

Substituting eq. (6.62) into eq. (6.65), we calculate the vector of
constants Dr’ and in a similar manner, we calculate the vector of

constants Cr:

T
. w {¢_}{F,_ }cosb
p = Lo {¢ }T[m]x (0) - gwce_ - Lt I Os L +
oY | T r FET T ta 2 7
(wr -mf ) +(2t;rmrmf)
Ty
wf{¢r} {Foc}siner
+ , r=1,2,3,...,n. (6.66)

yf(wrz-wfz)2+(zcrwrwf)2
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The vector C. is defined by eq. (6,63). Now we can find the complete
solution vector of the transformed system {q(t)}. Finally, the dis-
placements of masses are obtained by superposition of the response in

each mode

{x(e)} = [¢1{q(t)}. (6.67)

Very often, only the steady state response of eq, (6.49) 1is of
interest to us, For this case, xr(O) = 0, and ir(O) =0, r=123,...,

n, and eq. (6.49) is reduced to only the particular solution,

(0 )" {5, Istn(u t+6 )

+

Pre—

/ w

q_(t) = L0 1T r ) + .
T w2 T 0 T332 73
3 )T 0 W)

. {¢r}T{Foc}cos(mft+Br)

, T =1,2,3,...,0. (6.68)

2 2.2 2
/[kwr ~We ) +(2crwrmf)

The vector of phase angles between the harmonic forcing-function
vectors and the displacement vectors, Gr, r=12,3,...,n, is given by

eq. (5.62). The modal amplitudes of sine and cosine forcing functions

are given as

T
@) {¢r}‘{F08}sin(mfc+er)

S

, T =1,2,3,...,n, (6.69)

T / 2 2.2, 2
(mr --mf ) +(2crmrmf)

and
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{¢_YT{F. }cos(w_t+8 )
Q) =—= Os f _r , £ =1,2,5...,n0. (6.70)

r 2 2,2 2
/(wr - ) +(22;rwrwf)

The dynamic amplification factor in a mode is defined by the analogy
for single-degree-of-freedom system, given in Appendix A. The vector
of the dynamic magnification factors in modes is defined as the ratios
of the steady-state modal amplitude Qr to the vector of the static
modal deflections (Qr)st:

i
q¢ (@) _.°

T’ st

D = 1,2,3,...n. (6.71)
The quantity above is usually given for a particular component of a
harmonic forcing function. The response due to a sine forcing function

in eq. (6.68) can be written in terms of modal amplitude:
qr(t:) - Qrsin(wft: + Gr), r =1,2,3,...,n,

where Q. is the vector of modal amplitudes of the sine function, written
as,

{¢_}T(F_ }sin®
0 = —Ft_08 L ,r=1,2,3,...,n (6.72)

r
2 2.2 2
'/(wr -~ ) +(2t;rmrwf)

Observing eq. (6.34), the static displacement at the r-th mode is

(qr)st = L_}:EM:}T{FO} + {¢r}T{Fos}sintpr + {(br}T{FoC}cosw] .

(6.73)

s
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We can expand equation (6.73) for a very general case:

1 (1, T T T, ,
(qr)st = TA:Z-EWII {FO} + {¢r} {Fos}sinwr + {‘PF} {I-Oc}cosg

r=1,2,3,...,0. (6.74)

The maximum dynamic steady-state displacement from eq. (6.68) is

{6 YT {r. }
Q - 1 {Qr}T{F }+ Y Oc \
ol 0 7 2.2 7
r / (wt =g ) +(2t;rwrwf)
r=1,2,3,...,n, | (6.75)

The dynamic magnification factor in a mode is

, T =1,2.3...,n, (6.76)

As a very important characteristic of the system, the damping

100

in a mode can be defined by one of several methods given in Appendix A

for a damped single-degree-of-freedom system. Amount of damping in a

mode is usually determined by measurement for a particular structure

or by analogy with the damping of a similar structure., To define the

damping in a mode, eq. (6.34) can be set for a free vibration:
§.(t) = 2203 () +u’q=0, r=1,2,3,...,n 6.77)
Letting qr(t) = Arept, eq. (6.77) becomes

2 2 pt
p + Zcrwrp + wr JAre = 0,
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Solving the equation above, we have

1 2, 2 2
pl’z - -'Crmr :t’z- /4;t wr - Qwr ’ l’.‘ - 1’2’3, oon,no (6.78)

»

We concluded in Appendix A, that transition between the imaginary

and real roots of the characteristic equation (eq. (6.78)) occurs when

2 (6.79)

or

vhere Cr is the ratio of the actual damping in the r~th mode to

the critical damping in the r-th mode

N 5
4 y~ (6.80)

From eq. (6.79), the critical damping in the r-th mode is

(ccr)r - 2u¥. (6.81)

The actual damping in the r-th mode is
Cr = 2crwr, (6.82)
or, for a very general case,

(Ccr)r = Zwr’ r=1,2,3,...,n, (6.83)

and

S
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Again, by the analogy given in Appendix A, the vibration in a mode
is conventivnally classified with respect to the degree of damping
as

1, Critically damped when Cr = 1.0,

2, Overdamped when ;r > 1.0,

3. Underdamped when Cr < 1.0.

In previous derivations we assumed that we had an underdamped
case or oscillatory motion, which is the only case of interest in
engineering application,

Once more, the same questijon arises regarding how many modes
we must take in order to have the solution accurate enough for an
engineering analysis. Since, for the dynamic cases, inertial
forces of the system are very important, we usually want to know
how well we model our system dyt;amicallyc Since we usually discretize
the system in modal analysis, a very good indication of amount of
mass taken into consideration is ''the effective modal mass." For
the r~-th mode,‘chis*quanticy is defined as

1) m o _He_im {1}

Negg)y = T ’
T

(

r=1,2,3,...,n, (6.85)

or, in a summation form,

2
n
Y m,9
i i ’r
2

(Meff)r a n = 1,2,3,...,0. (6.86)
Z m,d

i=1

Where my is the mass at the i-th point, {l}T is a row matrix of ones,

and Mr is the modal mass in the r-th mode defined by
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M_ = z m ¢, % £ = 1,23, ,n, (6.87)
1=l
A good indication that the inertia forces have been accurately

measured in modal analysis is usually that the effective mass is

at least 95% of the actual mass of the system. Since the modal
parameters for higher mers cannot be calculated correctly, inclusiocn
of higher modes usually does little to increase the accuracy of

the calculation. For structural systems with homogenous material
characteristics, the first several modes are most often enough to

calculate the dynamic response of the systew.

L]
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Chapter 7

MODAL ANALYSIS PERFORMED ON FIVE BLADE MODELS USING A

NICOLET 660A DUAL-CHANNEL FFT ANALYZER

7.1, Introduction

In the previous chapter, we discussed the concepts which have
to be considered duriag modal testing using FFT analyzers., In this
chapter, we are éoing to give a brief description of how to conduct
the modal testing properly using a Nicolet 660A Dual-Channel FFT
Analyzer when impulsive excitation is chosen, Selection and
calibration of the impact hammer will also te discussed, and the

results of testing performed on five models will be presented,

7.2, An Experimental Technique

Impulsive testing utilizes short-duration transient force inpucs
(with corresponding broadband spectra) to excite all frequencies in
the structure simultaneously for a chosen frequency range., Modern
measuremént Iinstrumentation (such as the Nicolet 660A) is fully
capable of performing the modal analysis when the impulsive
excitation is used.

Impulsive testing is nermally conducted using some form of an
instrumented hammer. A force transducer is mounted on the head of
the hammer, and measures the force input to the structure, An
accelerometer is used to measure the response of the structure. By
far the most popular technique for impulsive excitation is to mount
an accelerometer at a fixed location and excite the structure at a

multiplicity of locations, usingAa hammer with a force transducer on its

i



105

face to impulse the system at many locations., The data are analyzed

with a dual-channel FFT analyzer, using the impulse force as a transient
capture trigger condition, These two transient time.histories are
Fourier-transformed to yield the input and output spectra, The

resultant ratic of the output and input spectra is the desired frequency-
regponse function,

Usually, the results of several transient excitations are
ensemble-averageé. Then the signals are Fourier-transformed and the
transfer function is displayed on the screen of the analyzer. The
impulse hammer (excitation system) with sensitivity Sa(mv/lb) is
attached to channel A of the FFT analyzer, The accelerometer (response
transducer), with a sensitivity of Sb(m,/g), is attached to channel B
of the analyzer. Based upon a preliminary examination of the structure,
the input attenuator of channel A 1is set to a full-scale value of Fa’
and the input attenuator of channel B is set to a level of Fye
The levels of Fa and Fb can only be obtained by trial measurements
on the structure,

The structure to be examined is marked it M spacial locations.

The response transducer (accelerometer) is fastened to the structure

at one location. This transducer should be located in a local "hot
spot" so that it will be capable of responding to all modes, Starting
from the response~transducer location, the structure is impacted a
number of times at each spatial location., Each spatial location is
impacted until the coherence function (a function which indicates

the validity of the transfer function) approaches unity across the
selected frequency-analysis range. The first impact will always produce

a coherence function equal to unity, It is essential that each
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location is impacted more than once, so that the coherence function
may be used as a valid indicator of the quality of acquired data,
The first impact point is of particular importance,

A complete description of a mode contains four pileces of infor-
mation. At the n~th mode:

1. Natural fresquency of the n-th mode (fn),

2, Amplification factor of the n-th mode (Qn),

3. "Weightﬁ of the n-th mode; un indication of how much

structural mass 1s in motion in the n-th mode (Wh},

4, Mation of the m~th. location in the n-th.mode

Within a given frequency range, N resonances may exist, Hence,
n ranges from 1 to N, If M locations within the structure are
measured, then m ranges from 1 to M., Each of the N mode shapes may
be normalized so that the maximum displacement (for example, at the
p~th location) is equal to one unit. The choice of mode shape
normalization affects the moda. weight wn. The modal weight 1is

defined by the summation

; M 2
LR A (7,1)

where Wm is the physical weight at the m-<th location.

At the first impact point, both input and response readings
are made at the same spacial location, The input/output relation-
ships associated with this spacial location are used as a guide to
interpret all subsequent measurements. The resonant frequencies
of a structure are independent of the spacial location from which

they are measured. The resonant frequencies of N modes are detected
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by identifying the N peaks in the imaginary part of the displayed
transfer function., The quality factor Q's of the N modes are
measured using information from the displayed real part of transfer
function, and are defined as
(£ /£,)% + 1
Q =7 = ==
g /E)] -1

(7.2)

where
fa = frequency above resonance, where the real part
of the transfer function reaches a peak,
and
fb = frequency below resonance, where the real part of the
transfer function reaches a peak of opposite sign.
We showed in section 7.4.3 that the quality factor in a mode.is
directly related to the amount of damping in a mode, The first
measured transfer function !dentifies the parameter fn and Qn over the.
range of 1 <n <N,

Mode shapes can be estimated directly from frequency-response func-
tions. The mode shape is estimated by measuring quadrature (imaginary)
response values from all of the measured transfer functions at each
resonant frequency. At each of these frequencies, the quadrature
components of the response functions are distributed in proportion
to the displacement at each of the measured locations throughout the
structure. That 1s, they are distributed in an approximation of the
mode shape associated with that resonance.

The imaginary values from the driving-point transfer function at

each of the N resonances should be measured and retained to normalize

ORI W
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subsequent data. The N quadra:ure points, 2MACbb(fn), must be
retained., The driving-point location, a, is subsequently moved
through the sequence of predefined spatial locations. At each of the
M locations, the imaginary part of the transfer function is measured
at the N preselected resonant frequencies, The quadrature valueg,

IMAG (fa)’ are measured and retained for all values between 1 and

a,b
M and all values of n between 1 and N,

If all measurements can be acquired without changing the input
attepuators of channel A or channel B, then a single scale facter is

sufficient to relate physical and electrical units, The constant,

kb’ may be retained where
kc = —SbFa/San. (7.3)

The coefficient, kc’ relates the voltage gain measured by the
analyzer to physical measurements in the structure. If the imaginary
part of'the transfer function, IMAGab(fn), is read at the n-th
resonant frequency, it is related to the physical parameters of the

system by the equation

chn¢a,n¢b,n
W

n

IMAG (f ) =

a b : (7.4)

At any frequency, f , the stored quadrature components, IMAGa,b(fn)’
will have a local minimum occurring at some special location a = p.
The components IMAGp,b(fn) are of particular importance, These are
used to compute the "weight' of each mode and to normalize the

retajned quadrature components from each mode to arrive at the spatial

vectors 9 :
a,n
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i} chnIMAbe(fn)

W (7.5)
n 2 . ‘
IMAGp’b(fn)
IMAG . ()
. b B (7.6)
a,n IMAG £

p,b''n

These shape functions are approximations, because the measured shape

(in response to a single-point excitation) is actually 7 linear summation
of all of the mode shapes of the system., If the resonances are brxoadly
spaced in frequency and high "Q" in nature (Q = 5 or greater), then

the interactionbetween the modes is minimal and the distortion of any

given mode shape by contribution from other modes is not significant.

7.3. Calibration of an Impact Hammer

An impact hammer of 12.5 (1lb] equipped with a light Teflon tip
and the Kistler Ingtrument Quaxrtz Force Transducer Model 901A-903
were selected, and the force transducer output was fed directly to
channel A of a Nicolet 660A Dual-Channel FFT analyzer. In Fig. 7.1,
the FFT analyzer and impact hammer kit (impact tips and weight
extenders) are shown. Preliminary testing on mqdels showed that an
impact hammer with a light Teflon tip and without weight extenders
was enough to excite all frequencies in a frequency range of 0-2 KHz
for all five models, A freely supported mass of 10,437 [lb] (steel
cylinder) was impacted, An Endevco Piezoelectronic Accelerometer,
Model 2233, was mounted at the center of one face of a steel cylinder
of an impact hammer and the Teflon tip at the center of the opposite
side was used as an impact surface. (The mass was impacted through

,the center of gravity.) A plezoelectric accelercmeter is a self-
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Blade Model #
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> 7.1 (a) The control table of the Nicolet 660A Dual-Channel
FFT Analyzer; (b) The impact hammer kit (hammer,

impact tips, and extenders).
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generating transducer which generates an electrical output signal
that is proportional to its acceleration, An Endevco Input Amplifier,
Model 2614B, with an amplification of 10 was used to amplify the
signal generated by the accelerometer. This signal was fed to channel
B of the FFT analyzer. The whole calibration was performed in a
frequency domain of 0-2 KHz,

An ensemble average of a number of impacts was done, and the
calibration factor was calculated in the following manner:

The unitless constant k was calculated as:

o F(w)

kc A(w)

K 6959.65

<" 486,73 - 14.296

(7.6)

k = 14,296
c
where
F(w) 1is the average value of the Fourier-transformed force
signal in a frequency range of 0-2 KHz,
A(w) is the average value of the Fourier-~transformed acceler-
ation‘signal in a frequency range of 0-2 KHz,
The mass of an impacted cylinder was calculated as:A

m_ = % = 0.0270 [lbsec?/in]. (7.7)

The sensitivity of the accelerometer was

E, = 37.5 @mV/gl. (7.8)

The total sensitivityof an accelerometer in engineering units was

found by



E, v2/2
a Ampl. Factor

s [V/in/sec’]. (7.9)

The expression above was multiplied by v%: since the signals were

displayed on the screen of FFT by their RMS values,

_ 37.5x107x /272

S
a

16
s, = 0.686x10™° Y- (7.10)
in/sec

This was the total sensitivity of the accelerometer and in-line
amplifier with a voltage gain of 10.

The sensitivity of the force transducer was not known, The
force transducer system was calculated using eq. (b) derived in

Appendix B, The two total sensitivities are related as follows:

(7.11)

where
m, is the mass of an impacted cylinder

and
Sf is the total sensitivity of the force-transducer impact-
hammer system.

Thus, from eq. (7.11), we obtain

kS g
S¢ = CG“~ (mV/1b] (7.12)

. 14.296 x 37.5 x 107> x /272
£ 10.437x10 :

112

Again, eq. (7.12) is multiplied by 4£ to get the values on the screen

2
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in engineering units (zero to peak).

S. = 0.363 x 1072

£ (V/1b] (7.13)

This technique has the added advantage of being able to calibrate
an accelerometer and impact hammer as a matched set, If the
accelerometer used to measure the response of the suspended mass 1is
the same accelerometer that is used during the modal test, then any
error in the accelerometer measurement for the suspended mass will
automatically be introduced into the impact hammer calibration.

This error will then be eliminated when the ratio of acceleration to
force is calculated, since it 4111 be in both the numerator and
denominator. Therefore, the accuracy of the calibration of the
matched set of transducers depends on the accuracy to which the
calibration mass is known. A very good low-frequency calibration
can be obtained using this technique. The high~frequency limit is
determined by the frequency response of the accelerometer and che
mass. Figures 7.2 and 7,3 show the setup for the impact hammer

calibration.

7.4. Geometrical and Material Properties of Blade Models

The modal testing was performed on five blade models. Three
aluminum blade models had NACA four-digit symmetrical airfoils as
their cross~sectional ar«ss., The other two blade models were of
aluminum and steel, usid had identical rectangular cross-sectional
areas and comparable tengths, The problem was to relate the damping
of the geometrically identical models made of different materials, and

to observe the damping of the models made of the same material
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Figure

7.3,
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Test setup for calibration of the impact hammer.
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(aluminum), but having different cross-sectional areas,

As a very important ccnsept, damping for the same family of
ﬁodels could be much more easily handled if we could get it in a
scaled form with respect to the chord and the thickness, These
blade models are shown in Fig. 7.4. Geometrical and material
properties of these models are given in Table 7,1. The sixth model
wag an aluminum curved blade, as shown in Fig. 7.5. The objective of
this test was just to measure natural frequencies, A different

setup was used for testing of the sixth model,

7.5. The Modal-Testing Procedure

The modal testing was performed on the five blade models
described earlier by the Nicolet 660A Dual-Channel FFT Analyzer using
impulsive excitation, The accelerometer was bonded beneath the tip
of the blade (using adhesive). The "target" points were bonded to
the upper surface of the blade, along the elastic line (a locus of
shear centers). Only four points equally spaced counting from the
tip were used as impacting points, Since the data were analyzed
over a 2 KHz range, all frequencies should be excited in that range.
To accomplish this, extreme care was taken to locate the target
points properly. The nodal points for the first five modes were
defined and good arrangement of the impact points was done to avoid
their location at any of thé nodal points, Figure 7.6 shows the
arrangement of the nodal points of the blades for the first five
modes. For this type of model, the first 5-6 natural frequencies

are within the chosen frequency range of 2 KHz,
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Material: Aluminum
Thickness: 0,125"

2,5"

Figure 7.5. Top view of a curved beam model.
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Figure 7.6. The nodal points of the first five modes. (The modal
shapes are greatly exaggeratad.)



1231

The accelerometer's signal was conditioned by an Endevco Input
Amplifier, Model 2616B, with a voltage gain of 10. During the

calibration procedure, we defined the total sensitivity as

5, = 0.686 x 1070 —Y
in/sec

impacting the targets with an impact hammer, shown in Fig., 7.1(b).

. The blade models were excited by

A force transducer, Kistler Instrument Quartz, Model 901A-903,

was mounted to the machined face of the hammer with a threaded scud:

A plastic tip (Taeflon) was mounted to the force transducer to serve
as the striking surfac~, The reason for its mounting was discussed

in the previous chapter, During the calibration procedure, we defined
the total sensitivity of the force transducer and impact hammer

system as S, = 0.363 x lo_z[%%l.

We discussed earlier the importance of ensemble-averaging both
signals in the time domain. When the signals recovered from noise,
they were Fourier-transformed and the transfer function was calculated.
To obtain above both tramnsient signals in the time domain, they
were captured and stored, The best way to do this is by automatic
capturing of the signals, Working with this analyzer, we set the
trigger on channel A (force signal) to activate the system (capturing
f%-of the maximum amplitude. .
Also, the type of averaging was chosen so that besides the automatic

and storing) of both signals at the

triggering, capturing and storing the averaging was done automatically.
The blade was struck a number of times until the satisfactory
cohérence function was observed on the screen of the FFT analyzer.

The stable data were considered when the coherence function exceeded

sz value of 0.9 around each resonance. This was an indication of
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velid data free from nonlinear effects and noise contamination,

Since the trigger was very sensitive on the level of the force signal,
enough time was allowed between two impacts for the transient
vibration of the model to die out completely, By our obgservation,
this period was usually to two minutes., The whole process of
averaging and the capturing of signals was observed on the screen,
When good coherence was reached, the transfer function was calculated
and displayed on the screen. Also, this function could be described
in all three modes: Bode plot, Nyquist plot, and real and imaginary
part vs. frequency, Then, the picture from the screen was reproduced
on the paper by the plotter attached to the FRT analyzer, The same
procedure was repeated for all target points of the blade. The setup
for modal testing used is shown in Fig. 7.7. Figure 7.8 shows all
components of the setup ready for testing., This test was performed
in the structural area of the Department of Aerospace Engineering

of The Pennsylvania State University during February and March, 1982,

7.6. The Results Obtained by Modal Testing

The objective of this test was to analyze the natural frequenciles
and modal damping of the blade models. Ths mode shapes were not
analyzed, since a very good conditioning of both signals was required,
The accuracy in measurement of mode shapes directly depends on the
accuracy of the determined relationship between electrical and
engineering units., For accurate measurement of frequencies and
damping, we do not need such an accurate conditioning of the signals.

Frequencies and damping were calculated from the point transfer-

function of the blade. The point transfer-function is calculated
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for the station where the input and output signals are taken from

the same point on the blade, In our case, this point was the first
target point at the tip (the target and accelerometer were aligned

at the same axis). Since the natural frequencies and damping are

the global property of the linear structure, any arrangement of the
impact point and accelerometer should give the same natural frequencies
and damping. The measurements and plots were made for four different
locations of impact points, and good agreement was observed.

When good coherence was reached, the transfer function was dis-
played on the screen of the FFT analyzer, and the frequencies were
read accurately, but using the cursor line, as digital numbers,
Figure 7.9 shows the moments of impacting with the blade. Figure
7.9(a) shows impacting with target No. 1, and Fig. 7.9(b) shows
impacting with target No. 4. Figure 7.10 presents the test setup
for modal testing of a steel blade. Since we do not have enough
space to show all graphs reproduced from the analyzer screen, only
those graphs typical of all blade models will be shown
including an aluminum blade model having NACA 0015 as its cross
section, and a steel blade model having a rectangular cross section.

The complete results for all five models are given in Table
7.2. They will be used in the following chapter in the numerical
model of the dynamic response of ghe blades, At this point, we
cannot make any conclusion concefhing the data measured, A preliminary
check shows that at least we have good agreement regarding natural
frequencies compared with the natural frequencies of continuous
beam models. Also, we observe that the damping is concentrated

in the first three or four modes.
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Chapter 8

NUMERICAL MODELING AND RESULTS OF THE DYNAMIC FLEXURAL

RESPONSE OF UNIFORM PROPELLER BLADES

8.1. Introduction

This chapter is a summary and discussion of the results and
findings of this study. A small computer code was developed to
perform a complete modal analysis of all five blade models, including
the dynamic response of the models as undamped and damped multi-
degree-of-freedom systems. The data obtained experimentally by
using the FFT analyzer, which were analyzed in Chapter 7, will %2
used for a damped case. Some important results of numerical modal
analysis will be shown and discussed. A very brief description of
the computer program will be given in the last section. A flowchart

of the computer program is given in Appendix C,

8.2. Formulation of the Equation of Motion

Since we are going to model the blades as undamped multi-degree-
of -freedom free-vibration cases, the formulations of the [m] and (k]
matrices are necessary. In section 5.4, we gave a detailed description
of methods for deriving the mass matrix (m). We found it convenient
to assemble this matrix as a diagonal matrix having only diagonal
terms and lumped masses. A schematic representation of this model
is given in Fig. 8.1.

The formulation of the stiffriess matrix (k] is done in the
following manner. First, the matrix of flexibility influence

coefficients is found; then, by inversion of this matrix, (k] is

PR TI——
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Figure 8.1. (a) Schematic of the blade model, (b) masses lumped at
each ncde of the model segment, (c) final arrangement of
the lumped masses of the blade model,
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computed. Both of them have to be symmetric matrices. The matrix (k]
can also be calculated by using the direct stiffness method., The
computer program is capable of handling the equation system when

we have a full-mass matrix [m]. The program is run for two cases:
when the order of these matrices is 8x8, and when it is 10x10, The

program is capable of handling larger arrays.

8.3, Elgenvalues, Natural Frequencies, and Eigenvectors

Since the accurate calculation of these parameters is very
important for the dynamic analysis of the models, extreme care and
rigorousness was taken in the process of setting up the algorithm
of computer program., The governing equations of motion can be written

(m){X(t)} + (k){x(t)} = {0}. (8.1)

The Jacobi method is used to calculate all eigenvalues and corresponding

eigenve:tors of the generalized eigenproblem
k) (4] = & (m] (4], (8.2)

The program basically transforms the initial system of equation (8.1)

into a new system having only the diagonal elements in both matrices.

This is a so-called modal system of equations, using the modal
mass matrix M] and modal stiffness matrix (KJ instead of matrices
[m] and [k]. 1In Chapter 5, we showed that the following relationship

exists:

[¢)(m][¢] = M, (8.3)
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and

($] (k) [$] = (K (8.4)

where the matrix (¢] is called the modal matrix or array of eigen-
vectors of the system, Also, in Chapter 5 we showed that we could
scale the eigenvector ma:{ix in a certain manner to get tie identity
matrix (I] instead of the matrix M]. We esfablished the following

3

relations:

(8} (m] ($) = (I], (8.5)

and

(0] (k] (8] = (o, (8.6)

where [$] is thé matrix of scaled eigenvectors, We showed also

that 1t is much more convenilent to work with unit masses, where we
could avoid some computational expenses during the dynamic analysis
of the system, especially for imposing the initial conditions of

the system, We will be working with the scaled system of equations
throughout the rest of the program. In order to visualize the
deformation pattern, it is convenient to scale eigenvectors in a
similar manner as to how unit vectors are defined. Then they have
values only between zero and one, and it is easy to see the relative
motion of certain points of the system in different modes. The
natural frequencies are also calculated when the blades are modelled
as continuous beams (Bernoulli-Euler Model). In Table 8.1, the
frequencies are given for all five models for the first eight modes,
Comparison 1s usually satisfactory among the three approaches used

up to the fifth mode. A continuous system and lumped parameter

system are used as numerical approaches to identify the first eight
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frequencies, Only the first five frequencies are measured by the
FFT analyzer (since the frequency range chosen was 0-2 KHz) .

In Fig. 8.2, the deformation pattern is given for the first five
modes (greatly exaggerated). Also, pictorial representation of
every element of the modal matrix is given. This is given only for
five modes, although the pattern is the same for any number of modes.
In Table 8.2, the normalized mode shapes are given for blades having
NACA 0015 airfoil cross sections. The system of notation corresponds

exactly to the pattern given in Fig. 8.2.

8.4, Identification of Modal Parameters Including Damping

In a previous section, we showed the natural frequencies and
modal shapes for somt of the blade models we studied. In this
section, we are going to introdﬁce the damping measured and analyzed
in Chapter 7, then perform a complete modal analysis of blade models
modeled as damped multi-degree-of-freedom systems. We assume that
the natural frequencies and modal shapes are not seriously affected
by introducing the damping, which isvalid for systems having light
damping. As we described earlier, the damping ratios are measured
in the first five modes. Measured data cannot be used directly in
an analytical model without modification.

In Chapter 6, it was shown that we have to impose some i
conditions under which the modal matrix decouples the equation of :
motion for the damped multi-degree-of-freedom system. The damping ?
forces could be decoupled only if the damping matrix is a linear
combination of the mass matrix [(m] and stiffness matrix [k]. The

damping ratios are measured only in the first five modes. 1In the
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3rd Mode
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4th Mode

5th Mode

Figure 8.%2. Pictorial representation of the first five modes of the
blade model,
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analytical model, the damping ratios in the rest of the modes are
taken to be zero, and the least-squares approximation straight line
fits through these points, start:sg at the origin. The damping
ratios modeled in this manner satisfy eq. (6.13), which is rewritten
here as

{tbi} [cl{d’j} = 2w, zd38 (8.7)

ij’

where ti is the modal damping ratio and 61 1s the Kronecker delta

\|
(6,, =1, for 1 = j§, § . =0, for L # j). Using the transformation

1) ij
matrix of scaled eigenvectors [®] and eqs., (8.5) and (8.6), the
governing equation of free vibration of an undamped multi-degree-of-

freedom system becomes
(13 (§(e) }+ 0zl {q(e)) + A {q(e)} = {ol, . ((8.8)

where the relation between original and modal displacements is given

by

{x(£)} = (#1{q(t)}. (8.9)

We have defined the necessary parameters for uncoupling the
equations of motion. Since we have imposed some conditions on the
damping ratios obtained by measurement in order to decouple the
damping forces, the related parameters such as the amplification
factor, critical damping, damping in a mode, and damped natural
frequencies have new values. These parameters are given for all
five models in the first 8 modes in Table 8.3. Since we do not
have much interest in a free vibration, most of these parameters

will be used in the following section, where we are going to

e e,

TR AT 7 ) SRR R
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consider the dynamic response of the blade models modeled as damped

and undamped multi-degree-of-freedom systems,

8.5. The Dynamic Response of Blade Models Modeled by Modal Analysis

as Undamped and Damped Multi-Degree-of-Freedom Systems

In Chapter 6, we defined analytically the dynamic response of
blade models modeled as multi-degree-of-freedom systems. The
excitation force was assumed to be one harmonic of the Fourier
series. The equation of motion for an n-degree-of-freedom swstem

was given as

mI{X(e)} + (el{x(t)} + [kl {x(t)} = {F(t)} = %-{FO} +

1getp,)

+ {FOr}e , 1 =1,2,3,,..,n. (8.10)

Quantities {FOr} and Y, are defined by

{For} = vfios}z + {FOC}2 , (*.11)
and
(F.)
¥, = arctan (Foc)i ,1=1,2.3,...,n. (8.12)
oc’ {1

The equations above are written assuming that the vector of the

excitation forces can be written as

(F(6)} = §{F} + {Fy_lsinwt + {F,_Jeosu,t. (8.13)

f

Premultiplying eq. (8.10) by [NT and using linear transformation

{x(£)} = [&){q(t)}, eq. (8.10) becomes
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(11 {§(e) } + e {q(e)} + iilq(e)} = $1e1T () +

' 3 (wgthp,)

+ 1017 (r, e i=1,2,3,...,0. (8.14)

This is a so-called modal equation which decouples the system of
equations into n independent equations., Then we showed how to obtain
the homogenous an§ particular solution of eq. (8.14). Finally, the
displacement of the system was transformed into the original coordinate
system by transformation.fx(t)} = [¢]{q(t) }.

The computer code has been developed for a simpler mode
(regarding the excitation forces) than the analytical model developed
in Chapter 6. For the test program, it is assumed that the
excitation force is of the type F = sinwft. and that it acts at
the tip of the blade. Also, the dynamic resﬁonse (steady~state) is
defined when the blades are modeled as a continuous system, The
main idea in this study was to compare the response obtained by
two approaches. Also, the initial conditions are assumed to be zero.
The procedure of imposing initial conditions was given in Chapter 6.
This could be done easily by carrying out the calculation in a matrix
notation. The proCedu;e for calculating the dynamic response is
implemented in a computer code for cases when the blade models are
modeled either as undamped or damped multi-degree-of-freedom systems.
For an undamped case with a given excitation force and initial

conditions equal zero, eq. (8.14) is reduced to

(x1{qCe)} + lmzq {q(e)} = [cb]T{FOS}sin(wfc), (8,15)
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where the term on the right-hand side represents the scaled modal
force or the excitation force in a new transformed system., The
steady-state response of the system given by the equation above for
the r-th mode is given as
, T
to Y r, )

qr(t) - 7.2 sm(mfc), r=1,2,3,...,n. (8.16)

w
T £

The final displacéments of masses are obtained by superposition of

the response in each mode:
{x(t)} = [@1{q(t)}. (8.17)

For the damped case with a given excitation force and initial

conditions equal zero, eq. (8.14) reduced to

m1{§Ce) T + Rawi{q(e)} + [mzl{q(c)} - [NT{Fos}sin(wft).

(8.18)
The steady-state response of the system given by eq. (8.18) for the

r-th mode is as follows:

jw_t
T £
{0 Y {ry e

Wp g +HI250.0;
or j((L) t~8 )
o ¥(r, te £ T
q.(t) = Im - (8.20)
2 2.2 2
/fwr -0 ) +(2z;rwrwf)
where
27 w W
§ = arctan ( ; L g). (8.21)
r w "
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Equation (8,20) can be written as

{6 Y{F, }sin(w t-8_)
q(6) = 0 £ ©r . (8.22)

/(wrz-mfz)z-f-(z crwrwf)z

The same procedure can be applied for any of n decoupled equations

of motion. The final displacement of lumped masses is as:

{x(e)} = (¢1{q(t)}. (8.23)

8.6, Predicted Results for the Dynamic Response of Blades

in section 8.5, we gave the outline of the model used in a
computer program, We decoupled the equation of motion, getting the
scaled modal equation of motion, The coefficients and excitation
forces of eq. (8.18) are given for all eight modes in Table 8,4. As
we have already stated, the frequency of the excitation force lies
between the first and second natural frequencies of the blade models.

The steady-state response is predicted by two approaches:
when the system is modeled as a continuous or as a lumped parameter
system, The response of the tip point along the first half of the
time period of the excitation force (at 10 instants of time) is
given in Table 8.5. A good agreement is obtained by the two
different approaches over the entire interval of time considered.

To obtain an insight on the participation of damping in a
dynamic response and relate it to the dynamic response of an undamped
system, responses in both approaches are calculated along the two
time periods of the excitation force. In Table 8,6, the responses

are given by the two approaches when the excitation force reaches
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its peak, The displacements are given at eight stations along the
blade. Also, the ratios of undamped and damped responses at all
stations are given. This is one of the most important findings we
have obtained so far, for it shows how much less the response of the
damped system is as compared to that of the undamped system, For
our models, at the excitation frequency of 400 [(rad/sec], this
ratio is about 1:20. We cannot take this information as the definite
parameter of our system, it is only true when the system is driven
at a frequency of 400 ([rad/sec]. At different frequencies, this
ratio will be different, and generally it will tend to increase if
we are driving chetsyscem closer to the natural frequency. For our
models, this ratio is fairly high., Knowing that the low natural
frequencies are closely spaced, when we are driving the system
between the first and second natural frequencies we are fairly
close to the resonance where damping becomés a very important parameter
of the system. Also, for the thickest blade, we get a very uniform
ratio between the undamped and damped responses at the stations
along the blade., When thinner blades are used, this ratio is not
so well (uniformly) distributed. Taking into aczount the
geometrical and material characteristics of the blade, and the
condition of the dynamic load (the amplitude of the excitation force
is 1 1b.), we might be very close to the borderline of the elastic
range of the blades.,

Also, another very important observation is that when the blades
are driven (numerically) at a frequency less than the first natural

frequency, the response of the blades at stations along the length is
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very close to the static displacement of the load at that instant

of time. In other words, the response of the system at the frequencies
below the first natural frequency is directly dependent on the
stiffness of the system, At frequencies higher than the first but

not close to the second natural frequency, the response depends on

the mass of the system, This is very well documented !n Table 8.6

for all blade models,

From the results above, we can make a very important statement
about the resonant motion of mechanical vibratory systems with widely-
spaced modes. Basically, each resonance is characterized by three
zones of activity. At frequencins below the resonance, the activity
of the structural system is controlled by stiffness terms, which
are proportional to the displacement and contain phases. At the
resonant frequency, all restoring forces come from the damping
terms, which are proportional to the velocity of the driving point.

At frequencies above the resonance, the restoring force is
dominated by the inertial mass terms, which are proportional to the

acceleration at the driving point.
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Chapter 9
CONCLUSIONS

An analytical model and the experimental results have been
obtained for prediction of the torsional stiffness of five blade
models having NACA four-digit symmetrical airfoil cross sectionmns.
These five models, three with the airfoil cross sections and two
with rectangular cross sections (aluminum and steel), were modeled
by modal analysis as either undamped or damped multi-degree-of-
freedom systems. The complete identification of modal parameters
for both cases was carried out.

The dynamic response of undamped and damped 6lades was
calculated, The excitation force F(t) = sin(wft) was acting at
the tip of the beam. The natural frequencies and ‘«mping at
particular modes were obtained by testing with a Nicolet 660A Dual-
Channel Vibration Analyzer. Based on the measured data, the
analytical model was used to model damping in such a manner as to
get a decoupled equation of motion. A small code was developed to
identify all modal parameters and to predict the dynamic response
of undamped and damped blade models which were modeled as multi-degree-
of-freedom systems.

From the analyrical, experimental, and numerical phases of this
study, the following conclusions can be made:

1, Fairly accurate results were obtained for the torsional
stiffness of blade models having NACA four-digit symmetrical airfoil

cross sections,
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2. The results for torsional stiffness have been scaled in
non-dimensional form, such that for any model of an arbitrary
length having a NACA four-digit cross section, the torsional constané
can be calculated as product of the torsional stiffness, the scaling
factor, and the reciprocal value of the length,

3. Predicted values of natural frequencies were in goo&
agreement with egperimental results obtained by the FFT analyzer.

4. The modal parameters were identified when either undamped
or damped blade models were considered, They were essential for
dynsmic analysis of multi-degree-of-freedom systems.

5. A good agreement was obtained betwezn the continuous
and lumped parameter models for the dynamic response of the blade
when the tip of the blade was subjected to a harmonic force of
F(t) = sin((uft) .

6. The dynamic response of the five blade models was predicted

"using the same excitation force. The damping obtained in the

experimental phase was modeled analytically and included in the
calculation of dynamic response.

7. A comparison of undamped and damped responses of the
blades was madé for the same load conditions. The ratio was
determined, and was very much dependent on the forcing frequency
and the amount of damping in the gystem.

8. A much better insight into the damping of aluminum blades
and its influence on the dynamic response of blades was obtained.
This is of special interest when considering a system driven on

high frequencies which are fairly close to resonance.
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Several recommendations for future work can be made from this
study, as follows:

I. Since the torsional vibration mode has to be considered
in propeller, rotor, and turbomachinery blade dynamics, accurate
calculation of torsional stiffness is of special interest. This
study could be used as a basis for the development of a small
finite-element code using Galerkin's method, Experience has shown
that this method.is more accurate and universal than other approximate
methods in boundary-value problems. References such as Richards (62),
Vemuri and Karplus (88), Segeflind (73), and Rao (61) give a very
elaborate treatment of boundary-value problems by employing the
finite-element approach and Galerkin's approach,

2. With the information on the amount of damping in the
system provided in this study, this model can be related to another
model which may be more convenient in application. The best way
to relate the two models is to equate the dissipation of energy
per cycle for both models. Knowing the damped Jdynamic response, the
damping constants of dashpots located at thé nodal points could be
calculated,

3. For the experimental phase, it 1is recommended that a
modern FFT analyzer be adapted for modal analysis in #cructural
dynamics, with an option in the methods for identification of
modal parameters., Using these analyzers, one would be able to
visualize the system and to observe the deformation pattern during
different load conditions (transient and steady state),

4, The concepts of this study for %he analytical and

experimental phases can be used for identification of modal
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parameters in the torsional mode of vibration, With a slight
modification, the computer program is capable of handling the
torsional vibration on a full scale,

5, The most difficult task one faces 1s to develop gradually
the analytical and computational procedure for dynamic response of
real blades. In order to accomplish that, one must consider the
complicated geometry of blades, the strong coupling between
flexural and torsional nodes of vibration, centrifugal stiffening,
the effect of the Coriolis force for thin and long blades, and
unsteady excitation forces varying along the length and azimuth

of blades.
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Y Appendix A

MODAL PARAMETERS IDENTIFICATION

A.l. Introduction

Before we start considering the techniques for modal parameters
identification, it is instructive to describe the distribution of
the magnitudes of the transfer functions along the frequency range
in real structural systems.

When a structure is excited by a broad-band input force, many
of its modes of vibration (degreer-of-freedom) are excited simul-

! taneously. Since the structure is assumed to behave in a linear
manner, its transfer functions are really the sums of the resonance
curves for each of its modes of vibration, as shown in Figure A.l.
In other words, at any given frequency, the transfer function
represents the sum of all the modes of motion which have been
excited. However, near the natural frequency of a particular mode,
its contribution to the overall motion is generally the greatest.
The degree of mode overlap, i.e., the contribution of the tails of
adjacent modal resonant curves to the transfer-function magnitude
at a mode's natural frequency, is governed by the amount of damping
of the modes and their frequency separation., Figure A,1 illustrates
light and heavy modal overlap. Figure A.1(b) shows modes with
light damping and sufficient separation so that there is a little
modal overlap. Figure A.l(c) shows modes with heavy damping

such that there is plenty of modal overlap.

In cases where modal overlap is light, the transfer function

ey

data can be considered in the vicinity of each modal resonance as if
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Figure A.l (a) Magnitude of a multi-degree—of-freedom system transfer
function, (b) light modal overlap, (c) heavy modal overlap.
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it were a single-degree-of~freedom system. In other words, it is
assumed that contribution of the tails of adjacent modes near each
modal resonance is negligibly small. On the contrary, when modal
overlap 1s heavy, a single-degree~of~freedom for modal parameter
identification will not work; the parameters of all the modes mus#
be identified simultaneously.

Usually, four residue-extraction techniques are used and named
by the method: .

l. Quadrature response

2., Peak picking

3. Circle fitting

4, Least squares,
In the following sections, a detailed treatment and application is

given for all four mecdal parameter identification techniques.

A.2, Mode Identification by the Frequency Response

.t

The accuracy of the residue estimate obtained by this method
is a function of how well each mode of the system is represented
by a singlé-degree-of-freedom model. The magnitude of the complex

frequency function for the r-th mode Ih(n%)l is determined from

[h¢gw ) [= Vn(w) b () (A.1)

*
where h (jwrl is the complex conjugate of the frequency response

function
* Rr
h(ju) = 2 \ (A.2)
W W
1- (ﬁ'—) - chr(ﬁ-)
T o
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Thus,

where R, is the modal residue and L. and Qr are defined by the
control theory approach. The plot oflh(wt)]is shown in Figure A,2,

The peak amplitude of the frequency-response function is obtained
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by differentiating eq. (A.3) with respect to W and letting the result

equal zero. The peak occurs when

w =9y 1"2‘":2 . (A.4)

r r

Thus, the peak of the magnitude of the frequency response function
occurs at a frequency less than both u% and Qr' For very lightly
damped systems, the peak occurs at approximately the undamped
natural frequency Qr.

The maximum value of [h(w )| for a single-degree-of-freedom
system in the r-th mode is referred to as the "Qr" of the system.
When a system has a light damping,

Ine@) | = q = = (A.5)
(%
An approximate value of damping for a single-degree-of-freedom
system can be computed by using the frequency difference between
the system's half-power points., The half-power points are defined
as the amplitude
JLICR -

2

(A.6)
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or in terms of the magnitude |h(w)|, when it is equal to "Qr"' The
half-power points occur when
2 2
L SN SRR T 1 ;
g L. )+ 2n, )
[ r
T r
Assuming light damping in the r-th mode, Cr << 1, eq. (A.7) becomes
0 2
(@) =1+r2z. (A.8)
T
Now, let the roots of eq. (A.8) be equal to the frequencies Wy and
Wy o Then the difference of these two frequencies is referred to
as the bandwidth of the resgonance
mz -w - Amr = bandwidth,
For lightly-damped structures,
Au& = ZCrQr. (A.9)
The approximate damping ratio of the system can be obtained from
the magnitude of the frequency-response function by
Awr
Cr = 7&; . (A.10)

The identical procedure can be repeated for the other modes. We
derived the formulas above under the condition of light modal

overlap (the modes are well spaced along the frequency range).
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A.3. Mode Identification by the Peak Picking Method

The peak picking method is essentially a single-degree-of-
freedom syst.em technique, Again, as in the previous case, the
accuracy of the residue estimate is a function of how well each
mode of the system is preseited by a single-degree-of-freedom
system model, TFrom system dynamics it is known that the properties
orf the transfer gunction for a single-degree-of-freedom system in
the r-th mode could be determined from measurements of the frequency

responge function, expressed in terms of its poles and residues as:

*
R

r r
LT I P KT RS

h(mr) 2 (A.1l)

For the single-degree-of -freedom system, the residue is seen to be
real value, given by

R = —1/m -t (A.12)

r w /T =% B4y

In general, the residue may be considered complex and may be
expressed as

ja '
R_= |R. e ¥ = |R [(a_+ib), (A.13)

where er' is the magnitude of the residue

R_| = /R’ (R) m’(R) (A.14)

and OLr is the phase angle of the residue in the r-th mode

Im(Rt)

OLt = grctan W .

(A.15)
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The constants a and b are expresser as

a_ = cost
r r

br = sinotr. (A.16)

Substituting the expressions above for R, in eq. (A.11), we have

R_| |a_(wy -w)+b L w |R| b_( w)acw
h(w) = —— |-
(g -0) 24 (5 w) -w) 24t w)_J

e fagmma ]I o -ae,
. 2 2| - '
2 | ez w) l_wd w2z w?
(A.17)

In eq. (A.17), the real and imaginary parts of the frequency-response
function are explicitly revealed. Again, the first two terms
represent the contribution of the positive pole, while the last two
terms represent the contribution of the negative pole.

For the purpose of graphic interpretation, it is useful to
rewrite equation (A.17) in a dimensionless form., To accomplish this,
we divide eq. (A.17) by the static frequency-response function:

1-2% +b.z

a A
h (0) = [R_| £ L L |R | -=. (A.18)

For a single-degree-of-freedom system, the static frequency-response
function is simply the inverse of the spring constant. The following

dimensionless frequencies are also defined as:
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Y = i% , and

r
w
dr 2
5 - —u');‘ = l"cr . (Ao]-g)
Equation (A.l7) may be rewritten as
h(w) g fq (B- 'Y)+b rl;;(B-Y)-a
b, (0 j 281 (8~v) +c (B-v) +2;
L |2 (BN 2 ":““Y)*ar'?r |
+'§K 3 5| . (A.20)
8+ 2eg 2 (B+Y) 45

181

Equation (A.20) is shown graphically for various values of the damping

ratio in Fig. A.3. For all curves in this figure, the residue is

taken as real (a = 1, b =

response function for a single-degree-of-freedom system.

shows the real part of eq. (A.20), while Fig, A.3(b) shows the imaginary

0). Thus, Fig. A.3 repregents the frequency-

Figure A.3(a)

part. It should be noted that the real part is symmetric in frequency,

while the imaginary part is anti-symmetric,

This property is called

conjugate evenness, and is characteristic of structures with real

residues. Since, for structural systems, we have interest oanly in

a positive frequency range, eq. (A.20) is plotted in Fig. A.4 for

positive frequencies only.

the damping ratio of 0.05

In this figure, the residue is real and

is selected. The parameters of interest

in this figure are the frequencies at which the real and imaginary

parts of the frequency response function have extremes.

=
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Figure A.3. Single-degree-of-freedom system transfer function (real

modes); (a) real part, (b) imaginary part.
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The frequency corresponding to the negative peak in Fig. A.4(b)
(imuginary part) is found by equating the frequency derivative of
the imaginary part of eq. (A.17) to zero. For a real residue, the

imaginary part of eq. (A.l7) is

R -G W R -5 W
I h(w)] = - =t 5l - [ 5|+ (A.21)
(g - 2+(5_0) iﬁod;«m) +(z_u)
Equating the derivative to zero gives
4 rwr(mr '
I_(h(w)] =0 = -|r] - ||z (w). (A.22)

dw T— d " Zf] r r €

In eq. (A.22), the term eém) represents the contribution of the
negative pole. For frequencies near the natural frequency of the

system, this term is negligible

1
8w 3
T

e (u=u ) = (A.23)
Neglecting this term, equation (A.22) indicates that the peak in

the imaginary display of Fig. A.4(b) occurs at

W=, . © (A.28)

That is, the peak in the imaginary part of the frequency response
function is at the damped natural frequency of the system. If we
consider the real part of the frequency response shown in Fig.
A.3(a), near the damped natural frequency this function has two
s extreme values, one positive and one negative. The frequency at

o :
which these extremes occur is found by equating the frequency derivative
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of the real part of eq. (A.17) to zero. For a real residue, the
real part of eq. (A.l7) is
R (W ~w) R (w, +w)
R, (h(w,)] = £ dr 5| + =+ dx 5|+ (A.25)
(g =) "+ 0 ) (gt (T W)
Equating the derivative 'of this expression to zero gives '
‘ R (W, ~-w) : R
4 -0 =L . dr ' L

— S——

In the expression above, the term Qéw) again represents the contribu-
tion of the negative pole. For frequencies near the natural frequency
of the system, this term is negligible:
e (ww ) = Lo (A.27)
4w

Neglecting this term, eq. (A.26) indicates that the extremes in the

real display of Fig. A.4(a) occur at

W= W, F 5w (A.28)

The difference between these two frequencieé is
Aw = ;rwr .
The damping is then estimated from

Aw
Cr = _w: (A.29)
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The damping properties at resonance in the r-th mode can be described
by an amplification factor Q- The amplification factor Q. is

related to the viscous damping fic or, §, by the relationship

1 .
Qr - EE: (A.30)

‘ where Cr is the damping ratio of actual and critical damping of the
system in the r-th mode, This method is the most precise in practical
implementation, particularly when dealing with high Q modes. It
has the distinct advantage of being directly applicable to the real
part of the transfer function. From Fig. A.4(a), we have
@ _fu )2 +1 j
' ar _or :

- @ /o )2 1 (A.31)
ar br

T

where
war = frequency above resonance in the r-th mode, where the real
part of the frequency transfer function reaches the peak.

mbv = frequency below resonance in the r-th mode, where the real

part of frequency transfer function reaches the peak of the

opposite sign,

To summarize, the essence of the peak-picking identification method :
is, therefore, the determination of the three frequencies associated "
with the extreme in the real and imaginary representation of the
frequency response function. This method is effective under the
following conditions:

1. The frequency response function has real, or very

nearly real, residues,
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2, The frequency response function can be approximated by the
sum of the frequency response functions of several single-degree-of=-
freedom systems whose natural frequencies are distinct and "well
separated."

3. The influence ¢f the negative poles on the measured
(positive frequency) frequency response function is negligible, for
moderate and high damping may not be consistent with the accurate
determination of the modal damping ratios.

Whether or not adequate separation of poles exists in a given
frequency response function is a matter of judgment and experience.
In general, a minimum of f£ive half-power bandwidths (Aw) should

separate mode
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rposes. Two extreme
examples are shown in Figs, A.5 and A.6.

Figure A,5 shows t&o "well-separated" modes, Between resonances,
both the real and imaginary parts of this frequency response function
are relatively flat. Figure A,6 shows two "poorly separated' modes.
The effect of one mode on the other is quite apparent, especially in
the real part of the frequency resp ,.se function, Similar phenomena
can be observed if the magnitude of the frequency response function

is plotted.
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Figure A.5.

Two-degree-of -freedom system transfer functions with two
distantly coupled modes; (a) real part, (b) imaginary part.
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Two-degree-of -freedom system transfer functions with two
closely coupled modes; (a) real part, (b) imaginary part,
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Appendix B

SYSTEM EXCITATION AND EXPERIMENTAL TECHNIQUE

B.l1, Introduction

The transfer characteristics may be measured by isolating the
structure from its normal envi?onmental loading and subjecting it
to an excitation of a simpler nature. In practice, the structure
is subjected to a force introduced at a single point with a fixed
orientation, and the resultant motions are measured at one or more
fixed points, This permits measurement of a series of transfer
functions, thus characterizing the structure,

Each transfer function proﬁides two pieces of cause/effect

information:

1. The ratio of force/motion (as a function of frequency)
relating the force input point and the motional response
point.

2. The degree of phase lag (as a function of frequency)
between the force and motion introduced by the structural
path.

As we stated previously, the transfer functions identify the
resonant frequencies, damping characteristics, mode shapes, stiffness,
and inertia of the structure.

Six transfer-function types are frequently measured. These are:

1. Compliance = Displacement/Force

2. Mobility = Velocity/Force

g ? 3. Inertance = Acceleration/Force

%

e

——
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4. Apparent Stiffness = Force/Displacement

5., Impedance = Force/Velocity

6. Apparent Mass = Force/Acceleration
All si; of the descriptive transfer functions are interrelated by
simple alg~braic operations, Having knowledge of one of the six
frequincy response forms is equivalent to having knowledge of all
six. The nature of available instrumenfation, local conventions
and history, and problem specifics normally dictate the selection

of one of the six functions for measurement.

B.2. System Excitation

The transfer functigns can be measured using three broadly
different test procedures. These techniques are called swept sine,
random, and impulsive excitation. There is no '"right" technique
for all problems. Modern FFT analyzers are fully capable of
performing analyses for all three types of testing. The following
is a summary of all.three techniques,

Swept-sine testing is the oldest of the three techniques. 1In
this procedure, the structure is subjected to sinusoidal excitation,
and the frequency of the sinusoid is slowly swept through a range
of frequencies., If the sweep rate is sufficiently slow (as
determined both by the structure and the measurement equipment),
the transfer functions computed from this technique are identical
to the results obtained by "resting at a sequence of frequencies.

‘ In random excitation, testing for the source of excitation is

provided by a broad-band noise generator which produces an output

signal with a "white'" spectrum (a spectrum flat to at least the



bandwidth of the analysis). Probability distribution of the broad-

band excitation is Gaussian. This source of excitation is fed
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through a mass~-compensation network, if required, for the examination

of the light structures with high "Q" modes, then through a power
amplifier to the drive coil of the shaker. Both the excitation
force and the response variable are measured simultaneously using
a dual-channel FFT analyzer.

The methodology for impact testing invelves striking the
structure with an impactor, usually a hand-held hammer, which has
a load cell attached to measure the force input. The input and
output, usually accelerations, are simultaneously measured., The
two signals are Fourier-transformed, and the frequency response
ratio is formed. It is assumed that the impulse is of sufficiently
short duration to have the necessury frequency content to excite
all frequencies in the band of interest simultaneously, Since this
technique is very much of interest in this area of study, it is
going to be treated in detail in the following sections,

To summarize, sinusoidal testing is the slowest but most
precise procedure for performing frequency response measurements,
Impulsive force-input techniques are the fa§test but least precise,

Sinusoidal techniques have retained their popularity throughout
history. Transient techniques havz come into recent vogue as a
means of performing rapid analysis on complex problems. The quick
"look-see" capability offered by impulsive techniques is often

sufficient to solve a problem. Frequently, initial studies are

conducted using impulsive techniques, and higher-resolution information

is gathered (where required) using either the random or swept-sine
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techniques,
FFT processing analyzers have gained enormous popularity because
they are capable of performing transfer-functicn measurements using

any of the three types of excitation. ' ‘

B.3. Impulsive Testing

This procedure utilizes short-duration inputs (with corresponding

broad-band spectra) to excite all frequencies in the structure :
simultaneously, Impulsive testing is normally conducted using i
some form of an instrumented hammer such as that shown in Fig, B.l, %
A force transducer is mbunted either on the head of the hammer or ?
on that portion of the structure to be impacted. 2
An accelerometer is used to measure the response of the |
structure, By far the most popular technique for impulsive
excitation is to mount an accelerometer at a fixed lncation and to
excite the structure at a multiplicity of locations using a hammer
with a force transducer on its face to impact the system at many
points, The data is analyzed with a dual-channel FFT analyzer.
Each time the structure is impacted with the hammer, both the

impulse and the response acceleration are captured by the FFT

analyzer, using the impulse force as a transient-capture trigger %
condition, These two transient histories are Fourier-transformed to
yield the input an output spectra, The resultant ratio of the
output and input spectra is the desired transfer functionm.
Usually, the results of several transient excitations are
averaged. In this situation, the most desirable procedure is to

compute the cross-spectrum between the input and response, and the
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power spectrum of the inpuc. The resultant averaged transfer
characteristic is derived by dividing the cross-spectrum by the input
power spectrum,

There are several advantages to impulsive testing. It is,
by far, the most rapid technique that can be applied to the study of
a complex structure, Its fundamental advantage is that no shaker
system needs to be mounted to the test object, The testing time
required for each‘spacial position on the structure is determined
by the number of times the tester wishes to impact the structure
with a hammer. Because the response transducer is mounted at a
fixed location, no time is required to move the response transducer
from point to point and, of course, a hammer may be easily moved
from one point on the structure to another.

Some disadvantages of impulsive testing, however, also exist,
as follows:

1. Impulsive tecliniques impose stringent requirements on the
analysis instrumentation, Specifically, the FFT analyzer must
have considerable more dynamic range than is required for sinusoidal
or random testing,

2. Precision of the results is strongly affected by the care
with which data is initially acquired., If the signal-conditioning
amplifier or analog-to-digital converters of the FFT analyzer are
allowed to momentarily overload during the acquisition of a
transient, the results are grossly affected,

3. It is important to match the duration of the impulsive

force input to the band of fyiquencies to be analyzed. This requires
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selecting the mass and geometry of the hammer as well as the nature
of the material and the hammer/structure interface to '"shane"
the input pulse,

4, The mass of the striking "tip" between the force transducer
(mounted on the face of the hammer) and the structure can introduce
errors when exciting light structures. Unfortunately, there is no
currently-available technique for performing on-line mass cancellation,
The results of i;pulsive testing have lower signal-to-noise ratios

than those from any other form of excitation,

B.4. Impactor Selection

The impactor is usually a hand-held hammer instrumented with
a force transducer. The force transducer has an impact cap attached
to it, and the hammer may have an extension attached to it. The
hammer could be very small, weighing only a few ounces, or as large
as a sledge hammer,

The frequency content of a force pulse is determined by its
shape. Often it is desirable to shape the pulse to ensure that
the impact excites the structure in a particular desired frequency
range, The three parameters which charaéteriza the pulse are:

1. Pulse height. This is largely controlled by the impact

velocity., A higher impact velocity would require a larger force to
decelerate a given mass, resulting in an increase in pulse height.
2. Rise time. This can be controlled by the choise of impact
caps, If the impact cap is thought of as a spring, it seems
reasonable that an impact with a soft spring (soft impact cap, such

as rubber or plastic) would have a longer rise time than an impact
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with a hard spring (bard impact cap).

3. Pulse width, To a certain extent, the pulse width can be
controlled by the use of extenders to change the hammer mass. For
example, a larger mass (hammer with extender) moving at the same
velocity will have a larger amount of kinetic energy and require a
longer time to be stopped by a given spring (the impact cap),

This produces a wider pulse,

It is necesggry to point out that methods of shaping the pulse
are all interactive, For example, installing a softer impact cap will
increase the pulse width as well a3 increase the rise time, It is
best to try various configurations of impact caps, extenders, and
impact velocities and Fourier-transform the time signals to ensure

that the desired frequencies are being excited,

B.5. Hammer Calibration

In order to calibrate the frequency response plots generated
by impact testing, it is necessary to dynamically calibrate the
load cell which is part of the hammer structure. In Fig. B.2, a
typical calibration setup for an impact hammer and accelerometer is
shown,

On impact, the structure experiences the force which is
necessary to stop the entire hammer assembly, The load cell's
crystal element experiences only the force necessary to stop the
mass of the hammer head and extender. It does not sense the force
component necessary to stop the mass of the impact cap and the
load cell's seismic mass., Because of this, the sensitivity of the

load cell appears to change as the mass of the impact cap and the
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mass of the hammer are changed, Increasing the ratio of the hammer
head plus extender to the total mass of the hammer structure
decreases the apparent sensitivity change, but as the total mass
increases, it can introduce problems of multiple impacts and
penetration, The mathematical model of hammer calibration is given
in the following text.

The hammer calibration involves testing of the functional
transfer behavio£ of a test object, with a known mass acting as a
rigid body employed as the test object. For scaling a test object
measurement, only the ratio of the accelerometer sensitivity to
the hammer sensitivity (Sa/Sf) is needed. However, the actual
sengitivity of the hammer "Sf" can be determined from equation (b)
in Fig. B.3 when a precision quartz accelerometer with a known
sensitivity "Sa" is employed as a reference. The "sensitivity" of
a load cell or hammer structure is just another way of exprecsing
its functional transfer behavior, Calibration (scaling) factors
can be calculated from the peaks of the time-varying signals from
the ratio of their frequency compoients.

The sensitivity of a hammer difZers from the static sensitdivity
of its force-sensor component bec;use of the normal behavior of the
hammer structure. The force experienced by the crystal sensing
elements sandwiched within the hammer structure is not the same
as the force applied on the test object, For this reason, the hammer
assembly ought to be calibrated as it is used., To test small
hammers, a several-pound cylindrical mass with the accelerometer

attached and suspended with a long leads should be used, For a given
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hammer structure, the sensitivity of the moving hammer differs from
its static sensitivity by a constant percentage proportional to

the ratio of the mass of the tip and cap in front of the crystals to
the total mass of the hammer assembly.

Three methods of scaling a frequency response measurement are:

1. Inserting the average sensitivities supplied by the

aanufacturer, '

2, Measuri&g and using the "ratio" of sensitivities as out-

lined above,

3. Calibrating the hammer sensitivity, using an accelerometer

as a reference.

With methods 2 and 3, an average scaling factor can be estimated
or a scaling factor at each discrete frequency in the spectrum of
interest can be measured and used, thus compensating for any
anomalies in the hammer or motion-sensor behavior.

Behavior objectives for hammer and sensor structures are straight
lines relating input and output and their ratio (sensitivity) with
frequency, In other words, ideal sensors treat amplitudes proportion=-
ally and frequercies the same, and do not delay the signal. The

results for one typical impact hammer are given in Fig. B.4.
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Figure B.4. Typical results from calibration of an impact hammer and
accelerometer; (a) time record, (b) frequency response,
(c) amplitude linearity.
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Appendix C

FLOW CHART FOR THE COMPUTER PROGRAM FOR PREDICTION OF

DYNAMIC FLEXURAL RESPONSES OF PROPELLER BLADES

Main program
Call subroutine INPUT

Y

Subroutine INPUT

1. Read and print material and geometrical properties of model,

2., Read and print the amplitudes, frequency, and time increment
of the forcing function,

3. Read and print the initial displacements and initial velocities
at nodal points,

4. Calculate the cross-sectional area and cross-sectional moment
of inertia for an N,A.C.A, four-digit symmetrical airfoil
sectional ares.,

Y
Main Program.

1. Calculate and print lumped masses at all nodal points,

2, Calculate and print flexibility influence coefficients.

3. Call fun¢tion SIMUL,

4, Calculatz and print the stiffness influence coefficients matrix
by inversion of the flexibility influence coefficients matrix,

i Call fun%t:ion SIMUL 1

Function SIMUL

When INDIC is negative, SIMUL computes the inverse of the N by
N matrix in plag:.

When INDIC is zero, SIMUL computes the N solutions X1(1)..X(N)
coyresponding to the set of linear equations.

When INDIC is positive, the set of equations 1is solvad, but the
inverse is not computed in place.




Main Program

Call subroutine JACOBI

Y
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This subroutine solves the generalized eigenproblem using the

Subroutine JACOBI

generalized Jacobi iteration,

Input variables

A(N,N) =
B(N,N) -
X(N,N) =
EIGV(N) =
D(N) =
N -
RTOL -
NSMAX -
IFPR =
EQ=0
EQ=1
I0UT -

Stiffness matrix (assumed .positive-definite)
Mass matrix (assumed positive-definite)
Matrix storing eigenvalues on solution exit
Vector storing eigenvalues on solution exit
Working vector

Order of matrices A and B

Convergence tolerance (usually set to 10**-12)
Maximum number of sweeps allowed (set to 15)
Flag for printing during iteration

No printing

Intermediate results are printed

Output device number

Output variables
All eigenvectors are stored columnwise

A(N,N) =
B(N,N) =
X(N,N) =
XS(N,N) =
XL(N,N) =
EIGV(N) =

Diagonalized stiffness matrix
Diagonalized mass matrix
Eigenvectors

Scaled eigenvectors XS(I,J)TR*M1(I,J)*XS(I,J)=(I)

Orthonormalized eigenvectors
Eigenvectors

The eigenvalues and corresponding eigenvectors are not calculated
in an ascending or descending order,

Main program

Call subroutine MODAL
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*

Subroutine MODAL

This subroutine defines and prints out the following parameters:

1.

.
.

-

s~ i~

-

The coefficients of the modal equation,

The orthogonality relations of eigenvectors.

Modal mass and modal stiffness.

Effective mass in a mode,

The percsatage of total mass taken into consideration by modal
analysis,

The participation factor (modal force).

Natural frequencies sorted in an ascending arder,

Critical damping, amplification factor, damping ratiq, and
damping coefficients in a particular mode,

-

Main program

‘Call subroutine SORT

Y

Suhroutine SORT

This subroutine defines and prints out the following parameters:

The eigenvalues and corresponding eigenvectors sorted in an
ascending orxrder.

Natural frequencies obtained from a continuous beam model.
First five natural frequencies measured by FFT analyzer,

Scaled eigenvectors sorted in an ascending order columnwise

represent the modal shapes in a particular mode,

Y

Main program

Call subroutine EXACT
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Subroutine EXACT

This subroutine calculates and prints out the dynamic response
of the blade modeled as a couiinuous cantilever beam, subjected to
a harmonic force of F = FOVYSIN (OMEGAF*T) at the tip. The
Bernoulli-Euler equation for a continuous beam is used and appro-
priate boundary conditions are applied, This program gives the
steady~-state response of the system and does not take into account
the transient solution., Damping is neglected. The displicements
are calculated a% all N nodal points (along the length) at each
time-step interval through two time periods of foreing frequency.

'

Main program

Call subroutine RESP

Subroutine RESP

Subroutine RESP calculates the dynamic response of the uniform
continuous blade (cantilever beam) modeled by modal analysis with
the damping neglected. A decoupled system of equations is used,

For the complete response, the solution of all N equations,
I=12,.,.,N, is calculated, and then the nodal-point displacements
are obtained by superposition of the response in each mode., Initial
conditions are taken into account for the transient is added to the
steady-state response.

The test program calculates and prints out only a steady-
state response of the blade subjected to a harmonic force of
F = FO*SIN (OMEGAF*T) at the tip, Initial conditions are assumed
to be zero (the system is driven from the rest). The displacements
are calculated at all N nodal points (along the length) at each
time-step interval during two time periods of forcing frequency.

'

Main program
Call subroutine LEAST
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Subroutine LEAST

Subroutine LEAST does a linear least-square approximation of
measured data (damping ratios vs. natural frequencies). The idea
is to decouple the damping forces in equations of motion in a
mdnner similar to that in which the elastic and inertial forces
are uncoupled. This information 1is going to be used later on for
calculation of the damping modal matrix and the full-damping matrix.

Y

Main program

Call subroutine DAMP

=

' Subroutine DAMP

Subroutine DAMP defines the ¢onditions under which the
damping forces are uncoupled. The uncoupling of the equations of
motion 1s possible only by imposing some restrictions or conditions
on the functional expression for the damping coefficients. The
damping normally present in structure does not affect the calcu-
lation of natural frequencies and modal shapes of the system.

This subroutine defines a system-damping matrix by employing
a particular form of proportional damping called Rayleigh damping,
composed of a linear combination of the mass and stiffness matrices
CDMP(I,J) = ALPHA*ML(I,J) + BETA*STF(I,J). Coefficients alpha and

beta are defined using the straight line XI(I) vs. OMEGA(I) obtained

by subroutine LEAST and assuming that the form of proportional
damping is:

XS(I,J) TR*(ALPHA*ML(I,J) + BETA*STF(I,J))*XS(I,J) = 2*OMEGA(I)*
XI(I). Values of the scaled damping matrix and full-damping matrix
are calculated and printed. Damped and undamped natural frequencies
are printed for the number of modes chosen by the program.

AP
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Main program
Call subroutine DRESP

¥

Subroutine DRESP

This subroutine calculates the dynamic response of a uniform
continuous blade (cantilever beam) modeled by modal analysis, with
the damping included, The damping characteristics of the blade
can be represented appropriately by using proportional damping in
a mode superposition. An uncoupled system of equations is used,
For the complete response, the solution to all N equatioms,
I=1,2,..,.,N, i3 obtained and the nodal point displacements are
calculated by superposition of the response in each mode, Initial
conditions are taken into account, and the transient response is
added to the steady-state response,

The test program calculates and prints out only the steady-
state response of a blade subjected to a harmonic force of F = FO*
SIN(OMEGAF*T) at the tip. Initial conditions are assumed to he
zero (the system is driven from the rest). The displacements are
calculated at N nodal points (along the length) at each time-~step
interval during two time periods of forcing frequency,

Y

Main Program

S ns
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