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ABSTRACT

This study was concerned with the dynamic flexural respona,e

of propeller blades subjected to harmonic forces, and presents

both analytical and experimental results.

The determination of the torsional constants of three blade

models having NACA four-digit symmetrical airfoil cross sections

is presented. Values were obtained for these models analytically

and experimentally. In addition, results were obtained for three

other models having rectangular, elliptical, and parabolic cross.

sections.

Complete modal analyses were performed for five blade models,

The identification of modal parameters was done for cases when the

blades were modeled as either undamped or damped multi-degree-of-

freedom systems, For the experimental phase of this study, the

modal t*sting was performed using a Dual Channel FFT analyzer

and an -impact hammer (which produced an impulsive excitation). The

natural frequency and damping of each mode in the frequency range

up to two kilohertz were measured,

A small computer code was developed to calculate the dynamic

response of the blade models for comparison with.the experimental

results. A comparison of the undamped and damped cases was

made for all five blade models at the instant of maximum excitprti,on

force. The program was capable of handling models where the

excitation forces were distributed arbitrarily along the length,
	 1

of the blade.
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Chaptelt 1

INTRODUCTION

1.1. General Remarks and Objectives of the Study

The purpose of this investigation was to study, both analytically

and experimentally, the dynamics of cantilevered beams having

airfoil-like cross sections, including damping and inertial

coupling. Information from this study will be used in a more

comprehensive analysis of twisted, rotating propeller blades.

The vibration and fatigue of propeller blades are important from

both a comfort and safety viewpoint.

In a study of the dynamics of propeller blades, one must

consider several factors, including: nonuniform mass and torsional

inertia distributions; nonuniform flapwise, chordwise and torsional

stiffness distributions; built-in twist; noncoincidence of the elastic

axis with the body axis; and inertial coupling. Thus, before

considering the complete case of propeller blade dynamics, it is

instructive to study the behavior of simpler blade models.

Specifically, the objectives of the present study were;

1. To develop a method to determine the torsional stiffness

of blades having airfoil cross sections. First, an analytical model

was developed based on existing energy methods in solid mechanics.

Secondly, these methods were applied to three models having NACA

four-digit symmetrical airfoil sections, and were verified by

experimental results.

2. To define analytically the dynamic flexural response of

blade models, modeled as either an undamped or damped multi-degree-

rs
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of-freedom system. The amplitudes of harmonic excitation force

were arbitrarily distributed along the length of the blade.

3. To undertake an analytical investigation of dynamic

characteristics of multi-degree-of-freedom systems in a frequency

domain, and their relation to the time domain. Special attention

was given to the identification of damping.

4. To determine experimentally the natural frequencies and

modal damping of models discussed above with a modern FFT analyzer

using an impulsive excitation.

5. To develop a small computer code to calculate either an

undamped or damped response of blade models discussed above.

Special attention was paid to the modeling of damping,

6. To evaluate the results obtained by the computer program.

Special emphasis was placed on damping and its influence on the

dynamics of frequencies close to the natural frequency.

1.2. Previous Investigations on Torsional Stiffness of

Models Having Airfoil Cross Sections

Since the torsion of models having a cross section different

than that of a circle is governed by Poisson's partial differential

equation, the closed form solution can be obtained only for a few

regular cases. For configurations not defined analytically, torsional

problems can be solved only by approximate methods such as the

finite element and finite difference methods.

One of the objectives of this study was to develop analytical

and experimental procedures for determining torsional constants for



beams having airfoil-like cross sections. In researching this

problem, the existing literature was studied.

1.2.1. Reference Books, Papers, and Literature Studied

A very elaborate treatment of energy methods in stress analysis

is given by Richards in reference 62.

Aym and Shames (14) and Crandal (11) present rigorous treatments

of torsional problems by variational approaches. Emphasis is placed

on the development of basic concepts of energy methods for torsional

problems presented and solutions for models having rectangular,

quadratic, and parabolic segment cross Sections.

Chou and Pagano (7), Rartog (19), and iden and Ripperberg

(55) present detailed analogies of problems related to torsion. The

analogies provide physical insight into problems of this nature

and suggest experimental approaches to these problems.

Most of the analytical work done in this present study was

based on the above references.

Timoshenko and Goodier (86) present a very elaborate method

for determining the total energy of beams in torsion having an

arbitrary cross section. They then apply the Rayleigh-Rita method

to problems having various cross sections. Basically, the total

energy is found in terms of stress functions. These stress functions

are then expanded by a series in order to satisfy the boundary

conditions. Finally, the extremum for total energy is found with

respect to parameters in the series. These researchers also present

this technique for the beams having an airfoil cross section.

3
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1
Cook (9) gives an extensive treatment of the method of weighted

residuals for a finite element approach. Since this present study

does not use a finite element approach, only Cook's concepts were used.

Finlayson and Scriven (15) and Hutton and Anderson (26) present

the method of weighted residuals. They give a constructive

critique on several methods, with special attention given to Galerkin's

method.

Duncan (13) shows that the analytical approach to the Saint-

Venant torsion problem can be readily done by using Galerkin's

analytical method. He presents a detailed consideration of torsion

of beams having a symmetrical airfoil and a symmetrical parabolic

segment as cross sections. Furthermore, he suggests that this

approach can be employed for nonsymmetrical cross sections by

using a doubly infinite series of the function representing the

contour of the airfoil. Although presented in 1938, this method

still appears useful for studying the torsion of propeller and rotor

blades.

The references discussed above were used as the basis for the

numerical calculation of torsional stiffness for the three models

already discussed.

1.3. Reference Books, Papers, and Literature Studied

On the Dynamical Response of Propeller Blades

Kenedy and Pancy (31) present one of the first expositions on

determining modal characteristics from test data. They assume that

damping takes a rather specialized form, and use polar plots to

determine the modal characteristics.

i
3

f
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Lewis and Wri¢ley (42) present one of the first multiple-shaker

systems for modal testing. They use 24 independently controlled

shakers to (hopefully) drive the system into a pure normal mode.

i
They assume that the shakers are distributed with respect to the

mass, and that the damping is distributO in the same manner as the

mass. They also assume that the damping is equal in all modes of

vibration.

Trail and Nash (87) propose a multiple-excitation technique

which makes use of Kenedy and Pancy's studies to locate the natural

frequencies and the sets of linearly independent forces applied to

the structure. This is done in order to calculate the required

forces needed to excite a pure normal mode.

Asher (1) applies essentially the same analysis as 'trail and

Nash (87), but suggests an improved method of locating the natural

frequencies, He uses the determinant of the real part of the

flexibility matrix to define the natural frequencies.

Walgrave and Ehlbeck (90) present a good review of modal

analysis which gives results in the time and frequency domains.

Caughey e5), Clough and Penzien (8),.and Paz (56) present the	
i^.

analytical modeling of modal damping which decouples the damping

forces.

Klosterman (32, 33, 34 0 35, and 36) gives a very detailed

treatment on various subjects in analytical and experimental modal

analysis. Some of his papers are more oriented to experimental

analysis.

Craig (10), Meirovitch (49), Bathe (3), and Paz (56) give

rigorous consideration to various subjects on structural dynamics,



including both classical and numerical approaches. They are oriented

toward treatment of vibration phenomena in the time domain. Most of

them were used during the consideration of the undamped and damped

multi-degree-of-freedom systems in Chapters 5 and 6 of this study.

Richardson (63, 64, 65, 66, 67, and 68), Potter (58,59) and

Ramsey (60) cover the treatment of vibrational systems having

multiple degrees of freedom. The authors present concepts of

vibration analysis in the frequency domain, and they are pioneering

efforts in treating the vibration of multi-degree-of-freedom systems

via .system dynamics.

In order to improve accuracy with modern FFT analyzers, the

following steps should be taken:

1. Calibration of the impact hammer.

2. Conditioning of the input and output signals.

3. Consideration of the noise and its influence on the

measured transfer function.

4. Proper selection of the frequency range so that all

frequencies are excited within the chosen range.

The Spectral Dynamics Co. (82), Harris (17,18), the Wavetek-Rockland

Co. (91), the Nicolet Scientific Co. (54), and the Hewlett-Packard

Co. (21) present detailed treatments of signals in, order to properly

conduct vibration testing.

An important point in an experimental program is the accurate

measurement of the structural transfer function. Here noise effects

must be considered. Keller (28,29,30), Lally (37,38), Brown (5),

Mitchel and Lynch (50), and Halvorsen and Bendat (16) present

various subjects of crucial interest for determining structural
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transfer functions. They give a detailed treatment of noise in

the time and frequency domains and its influence during transfer

function measurements. Also, they discuss the calibration of an

impact hammer, and input and output signals.

Finally, measured data must be interpreted properly.

Lang (39,40), the Spectral Dynamics Co. (80,81), the Nicolet

Scientific Co. (51, 52, 53), the Hewl6tt-Packard Co. (22), and

Brown and Halvorsen (5) present in detail the interpretation of

data obtained by an FFT analyzer.

N

7



Chapter 2

=
T = 0

X ^y = 6 =z	 xy (2.1)

ANALYTICAL METHODS FOR DETERMINATION OF TORSIONAL

STIFFNESS-OF BEAMS HAYING AIRFOIL-LIKE CROSS SECTIONS

2.1. Torsional Behavior of Beams Having an

Arbitrary Cross Section

In the case of the torsion of beams not circular in cross

section, we lose the arguments of symmetry and, along with them,

the simplicity of the elementary theory of torsion. The argument

that plane cross sections remain plane during deformation, for

example, is now no longer valid. Observation shows that the cross

section of a non-circular section does not remain plane upon

twisting, but warps out of its plane.

Other than the fact that cross sections warp, perhaps one of

the most obvious characteristics of the beam's behavior is the

absence of normal stresses. No external forces or bending moments

are present, and no end constraints exist; therefore, the only

stress components needed to provide the equilibrium ^,f any

transverse segment are shearing stress ìn the cross-sectional

planes. Furthermore, of the three components of shearing stress,

only 
Tzy 

and 
Txz 

can result in a twisting moment: The component

T
xy 

is zero. Thus, we conclude that for the noncircular beam in

torsion,

z
The differential equations of equilibrium in terms of stresses

and body forces reduce to
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aT	 BTxz + - y 0	 (2.2)

aT	 aT

^sz	 xz	 (2,3>z r Q.

Equation (2.3) shows that the shearing iitresses Rio not vary with

z and, hence, have the same distribution on each cross section.

Observing eq. (2.2), we have a statically indeterminate problem,

and we are forced to turn to considerations of strains and dis-

placements for additional information. Since the material is

assumed to be homogenous isotropic, and linearly elastic, we may

introduce eq.. (2.1) into equations for etress and strain in a

homogenous isotropic Hookean body to obtain the components of

strain.

x . ey - e	 ,tYy . 0	 (.2.4)

Therefore, the strain -displacement formulas reduce to

au	 av aw	 0	 (2.5)^' " 7z'y
and

u - f (x , y), v = g (y , z ), w ' h(x,z)

where f, g, and h are continuous functions yet to be determined.

From this observation, we conclude that cross sections do not

distort in their own planes. In other words, the angle between any

two lines on a cross section is not changed during the deformation

of the beam. This makes it possible for us to define the in-plane

displacements of any point on the cross section in terms of the

angle of twist of a of a straight line on the section drawn from
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F

the x-axis to the point, as shown in Fig. 2.1. Examining the

geometry of Fig. 2.1, we find

u	 - ezy and v = ezx.	 (2.6)

Referring to equations for stress-strain relations, we have

Y
8 z ` 

G azZ = G az (ax + Du
	 = 0.	 (2.7)

Then eq. (2.6) becomes

a aw	 a2(ez) = 0	 (2.8)
ax (az)  y 9z 

The first term in eq. (2.8) is zero, owing to eq. (2,4). Thus,

we have

d2(ez) = 0

dz2

die Z) = e = const.	 (2.10)
dz

It follows that the twist relative to the section z =0 is 6z, and

that eq. (2.6) may be expressed in terms of 6, x, y, and z. In

summary, we express the components of displacement in the form

u = -eyz

v = exz	 (2,11)

w = f (x, y)

Thus, once 6 and f(y,z) are known, the complete displacement pattern

can be evaluated.

<

C

I`
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Finally, from stress-strain relationships, we relate the shear-

ing stresses and strains to the displacements by

Txz = GYxz ' G(ox +
au
	 (2.12)

Tyz - Gyyz ` G(^y + a) .	 (2.13)

Introducing eq. (2.11), we have

Txz ` G(—ax - ey)	
(2.14)

Tyz 
G (ay 

+ E) .	 (2.15)

Differentiating the first of these equations with respect to y

and the second with respect to z, and substituting the result

into eq. (2.2), we have

2	 2

a 
2 + a 2
	

0.	 (2.16)

ax	 ay.

which is the governing partial differential equation for the

warping displacement. This relationship is called Laplace's

equation for the warping function.

The torsion problem is now reduced to one of determining the

four unknowns,Txz' Tyz, w, and 6. To solve this problem, we have

three relationships: eq. (2.2), which_ is the equilibrium condition,

and the two kinematic conditions in eqs. (2.14) and ( .2.15), which.
.1
i

we have written in terms of the stresses. Equation (2.16), is not

independent, since it was obtained from eqs. (2.2), (2.14), and

	

(2.15). The fourth relationship necessary to solve the problem is	 !
s

^.'	 the simple static condition that TX Z and Tyz must result in a
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twisting moment of magnitude ef t on each cross section.

2.2. Prandtl's Torsion Stress Function

In 1903, Ludwig Prandtl, the distinguished German mechanician,

introduced a scheme whe;ceby the torsion problem could be reduced

to one of determining a single unknown. The idea is to introduce

a twice-differentiable function r(x,y), called the torsional

stress function, which has the properties

TxZ = 
ay	

(2.17)

and

Tyz = — ax .	
(2.18)

When we introduce these definitions into eq. (2.2), we obtain

a2r.	 a2r 
= 0	 (2,19)ax9y — ayax

which is satisfied by any function which is continuous through.tts

second derivatives. Thus, any such continuous function will

automatically satisfy eq. (2.2) and, therefore, lead. to shearing

stresses which are in equilibrium. The correct solution to the

torsion problem, however, must be a state of stress providing not

only equilibrium but also compatible strains and displacements.

Thus, out of the infinite number of functions r which satisfy

eq. (2.2), we must choose those which.also satisfy a condition

of compatibility.

To arrive at this condition, we introduce eqs. (2.171 and

(2.18) into eqs. (2.14) and (2.15), and differentiate first with

respect to z and second with respect to y. Then we have
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dr ar dx 9r v
do = 7x do + ay do

(.2.241

r

ORIGINAL PAGE IS
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(ay) G 3y( x - ®y)	 (2.20)

Tx e ax) G x ay + 8x).	 (2.21)

Recalling that u is also continuously differentiable, we subtract

the second equation from the first and find

2	 2
a 2 + 11 - -2G8.	 (2.22)
ax	 ay

This is the equation of compatibility for the problem of torsion

of beams having non-circular cross sections. Any function r

continuous through. its second derivatives which satisfies eq. 0,22),

now automatically provides both equilibrium and compatibility.

Any partial differential equation of this type is also called

Poisson's equation.

We may visualize r as being a curved surface spread dyer

the cross section of the heam. According to the definition in

eqs. (2.17) and (2.181, the s1Qpe of the surface in the y direction

is the stress in the x direction, and its slope is in the x

direction. In fact, if n is any direction oriented a with respect

to the x axis, as shown in Fig. 2.1, the stress directed normal to

n is clearly

Tyxcosa - TXzsina.	 (2.23)

The slope of r in the n-direction is, by definition,



dr. = 0.
ds

(2.27)

ORION-M r AGE is
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or, since d = cosa and do = sina,

dr
dn -T

yZcosa + TXZ asin (2...25)

Hence, the slope of the r surface in any direction is equal to minus

the shearing stress in the perpendicular direction.

Furthermore, since we proved that no shearing-stress components

can act normal to the boundary of the cross -section, the slope

of r parallel to the boundary must be zero. This is possible

only if r is a constant along the boundary. Pictorial representation

of Prandtl ' s torsion-stress function is given in Fig, 2.2. The

slope of r parallel to the boundary curve s is

dr ar dx + ar ^ = _T (-n) + T m	 (2.26)
ds ax ds	 ay ds	 yz	 xz

where m and n are the direction cosines of a normal to the curve.

Since no surface forces are present, and the right side of this

equation is zero, r must satisfy the boundary condition

Hence, r must have a constant height along the boundary. Therefore,

without loss in generality, we assume that r is zero everywhere

along the boundary of the cross -section.

Any solution to eq. (2.22) provides both equilibrium and

compatibility for cross sections of any shape. To ensure that

j^	
it also leads to stresses which satisfy static boundary conditions

at the ends of the beam, we must also relate r to the twisting moment
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Figure 2.2. Pictorial representation of Prandtl's torsion stress
function.



developed on each section. The moment developed by the shearing

stresses about the z-axis must be

Mz = Mt	 ff ( -TYzy + T4>z
x)dxdy	 (2.28)

A
F

where the integration is carried out over the entire area of the

cross section. introducing T, this equation becomes

Mt 
-f (" y + ax x)dxdy.	 (2.29)

A

We can now write the integral in the form

— B	 -

-J ayyay ax - 

fl-
 fE 

ax xdx dy	 (2.30)
A 

where the limits A and B stand for boundary points along a line

y = constant, where C and D stand for boundary points along some

line z = constant. Integrating by parts, we find

Mt	 _f ('r YB, 
I' AyA) - f dx	 l (rDxD - PCxC)	 frd

X]

dy.

(2.31)

Now PA, rB , PC , and 
r
  denote values of r at the boundary points

which, according to our earlier discussion, are zero. Hence,

we have

Mt = 2ffrdxdy.	 (2.32)

A



i

ORIGINAL PAC5 C;a
t

	

	 OF POOR WALITY	 18

z
`

	

	 This final result states that the total twisting moment on any

section is equal to twi,e the volume under the surface r.

Now we can obtain the twisting moment in terms of three

independent quantities: G, the modulus of rigidity, which depends

upon the material; 6, the angle of twist per unit length; and

the constant J, which depends upon the geometry of the cross section.

Mt = GJe
	

(2.33)

J is called the torsional constant of the beam. The product GJ

is called the torsional stiffness of the beam. The formula for

J follows directly from eq. (2.32).

G6 ffJ	 I'drdy	 (2.34)

A

Now we can introduce the modified torsion-stress function, T.

TxZ = G6 BY	
(2.35)

Tye a -G8 
ax
	(2.36)

Performing the same algebraic operations we have done in derivation

of Prandtl's stress function, we have

2	 ?

a2 + 
a-2 = -2.	 (2.37)

y

This is the modified equation of compatibility for the problem

of torsion of beams having non-circular cross sections. Sometimes

it is more convenient to use the above equation in practical.

application.

Is	 7

t g
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The development of the torsion equations via stress and

strain approaches is summarized in Table 2.1

2.3. Solution of the Torsional Problem of the Beam Having.

an Arbitrary Cross Section by Enemy Methods

We have seen in section 2.1 that the solution of torsional

problems is reduced in each particular case to the determination

of the stress function satisfying the differential equation (2.22)

and boundary conditions. In deriving an approximate solution of

the problem,, it is useful, instead of working with the differential

equation, to determine the stress function from the minimum

condition of a certain integral, which can be obtained, from

consideration of the strain energy of the twisted bar. The stress

function must satisfy the differential equation

2	 2
a r + 21 - _2G6	 (2.38)

ax 	 ay2

where the boundary condition is

ar ^y + ar dx . dr . 0.	 (2.39)
ay ds ax ds ds

For the strain energy of thu twisted bar per unit length, we have

U 
2G (T2+T2

)dxdy 
Gj1 (ax)2+(ay)2

 dxdy	 (2.40)11 xz yz

If we give to the stress function r any small variation dr, which

vanishes at the boundary, the variation of the strain energy is

^f
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Table 2.1, Development of the torsion equation,

_	 Y 
-aw -

BYTwo strain-displacement equations 	 xz ax

Yyz - ay + ax

Two Hooke ' s law equations	 Txz	 Yxz
Tyz-Gyz
BT	

ITOne equilibrium equationaxz + ^Z - 0

Txz' Tyz' Yxz' Yyz' w -
Five equations	 all functions of x,y only

One compatibility equation in
terms of stress

BT 	BT

-e	 Bxz 
F XZ - -20

One equilibrium equation

9TXZ 	BT z
+--y--O

eX 

Txz' Tyz

Two stress-displacement
equations

awTxz - G{arc - 9y)

yZ
-G(ay+OX)

One equilibrium equation

B
Txz	

BT 
x-^- + -^- 0

T 1 T ,W
xz yz

V 2 - O
B. C.

ax - y1 l'" 
+ 1-92—w

y  + x81 Py - 0

on the boundary	 '
Where 11x, uy are the direction
cosines of the outward normal
of the boundary

v2r - -2GO

where ax . -Tyz' a - Txz

B.C. r - 0 on the boundary

	

Mt = 2J J rdxdy	 Mt = G1 
J I-2

8+y2 6+x ay -Y a dxdy

PL d	 x -
jL
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l8r + (a 2 dxd
2G

f

,)Fdx'y

and the variation of the torque is

2ffdrdxdy.

Substituting the above equations into eq. (2.40), we get

((	
2	 2 z'

z aJ1 (^) + (a 
i dxdy a 2e f f 6rdxdy

2
8

J J	

2

{
2 (r)+ (sy) -2Ger)dxdy.

The true expression for the stress function r is that which makes

the variation of the integral, zero.

f

r 	 2	 2
u	 1{2 ( x + (ay)	 2c6r}dxdy	 (2.41)

In the approximate solution of torsional problems, we replace

the above problem of variational calculus by a simple problem of

finding a minimum of a function. We take the stress function in

the form of a series,

r = dory + d1r1 + d 
2 
r 2 + ... darn	(2.42)

	

in which r0 , rl , r2 ,	 , r  are functions satisfying the boundary

condition. These functions are vanishing at the boundary. In

choosing these functions, we should be guided by the membrane



where

	

	 q
K(^)^ K (th) _ (th) m [l-(th) P I

h
(2.43)

22

analogy and take them in a form suitable for representing the

function r. The quantities d o, dl , d2 , ..., do are numerical

factors to be determined from the minimum condition of the integral

(2.41). Substituting the series (2,42) in this integral, we

obtain, after integration, a function of the second degree in

do , dl , d2 , ..., dn . The minimum condition of this function is
t

•auau	 au
'ad ' 4	 Td_.- 0	 ad2 . 4.	 (2.43)o 

In this way, we obtain a system of linear equations from which.

the coefficients do , dl , d2 , ..., do can be determined. Ry

increasing the number of terms in the series (2.42), we increase

the accuracy of our approximate solution, and by using an infinite

series, we may arrive at an exact solution of the torsional

problem.

2.4. Energy-tiethod Solution of Torsion of the Reams.

Having an Airfoil Cross Section

The cross section of conventional airfoils used in low-speed

aerodynamic design can b.e approximated as follows (see Fig. 2.3).

The upper curve can be determined by

y = dK(X)

and the lower curve can be determined by

y = -d1K(^)

J
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Figure 2.3. The airfoil cross section.
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The boundary conditions will be satisfied if we ti

function as approximate expression,

r = A(y-dK) (y+d1K) .

Substituting equation (2.44) into the integral (2

the strain energy

dU-Q.
dA

We define the constant A

A -	 G9

1t(%(42+d12+dd1)/c2

where	

JK

1

3(dK/d(th) ) 2d(th)

d = o

I1 K3dt
0

Using the equation already derived for the torque

Mt a 2 
1fr  

dxdy

we obtain

(2.47)

c(d+d )3 1
Mt - -A	 3 

1 
fK

3
 d(th).	 (2.48)

0

In the case of a symmetrical airfoil, the upper and lower curves

are described by the same expression, and the following .assumptions

are taken:

m - Z' p'q-1, c:-d1

y = ± dK(-) _ ± d 3 ^ 11-(E) ^ .
	

(2.49)

Y
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To define the constant d, we need the maximum thickness of the

airfoil 2b. First, we are going to define the position of maximum

thickness of Lhe airfoil from eq. (2.49)-

y w d3 - d 3 (c)-

AX - 2c1 2x1 2 + d 2c3 2 xl/2 ,	 (2.50)

From the condition

di Q

x^3^23

which is the position of maximum thickness, the maximum thickness

with respect to b is calculated using eq. (2.49).

y td 3 c L-(

2 ^• 6 d3 3c ', (-j ) I

d* 3/ b,8

Now, we can define constant A as

A -	
Ge

2
1 + 3(d2 )

c

25
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and finally

3
M ax 0.0736	 Gcd	 Q,	 (2,52)Mt

 1 + 13(d2)
c

2 2
Scaling both sides of equation (2.52) with factor a 3b3 and

ira b
introducing the substitution c - 2a, we have the scaled torsional

stiffness per unit length:

*G(2a)d3	a2+b2
Kt	0.0736	

2	 3 3
1 +, d 2)	

ra b

4a

Then, the moment-angle of twist for a beam of an arbitrary length

can be found as,

26

(2.53)
M	 K*	 ,ra3b3 e .
t	

t 4a2+b2)

2.5. Introduction to Weighted Residual Methods

The solution of boundary-value problems can very often be

achieved by forming a corresponding variational problem. Under

such circumstances, variational calculus methods are very effective

for obtaining an approximate solution. A variational principle

is an integral expression (a functional) that yields the governing

differential equations and nonessential boundary conditions of

a problem when given the standard treatment of the calculus of

variations. In areas other than mechanics of solids, it is more

likely that a variational principle may not be known or may not exist.

The governing differential equation and nonessential boundary

condition of the problem are

IX

i

9
1{

e
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r	 ^

r	 Ii

Bu - g in region V

(2.54)

Lu - f on boundary S.

The exact solution u - u(x,y) is unknown. We seek an approximate

solution, u. It may be a polynomial that satisfies the essential

boundary conditions and contains undetermined coefficients

al , a2 , ... , an . Thus, u - u(a,x). We must find the values a 

such that u and u , are "close" in some sense. If u is substituted

into eq. (2.54), we obtain residuals R L and RB because u is not

exact. Residuals are functions of both . s and the al.

RL - RL (a,x,yl -, Ru(x,y) - g(Y.yl

(2.55)

RH * RB C,a , x , yZ - Lu (x, y) - f (x, y)

where RL is an interior residual and RB is boundary residual.

Residuals vanish only for the exact solution, u(x,y) - u(X,y).

We presume that u(;x,y) is a good approximation if the residuals

are made small. This can he done by various schemes known as

the collocation, least squares, least -squares collocation, Galerkin,

and subdomain methods.

2.6. The Galerkin Method

This method provides approximate solutions to differential

equations directly and is applicaTale whether the transformation

into a variational problem is possible or not. Having wider scope

than variational calculus methods, it is more attractive in practice

since there is no need to evaluate the functional even in those.

ti

	 situations where it existed.

i



~

	

	 Galerkin's method can be described as follows. Suppose we

want to solve a linear partial-differential equation

Lju(x,y)J = f(x,y)	 (2.56)

in a region over which f(x,y) is prescribed and the boundary

conditions are linear and homogeneous. L stands for a linear

differential operator.

We can rewrite equation (2.56) as

Lju(x,y)i	 f(,X,y) = 0.	 (2.57)

if, further, the approximate solution u(x,y) were expressible in

the form of a complete series of functions

00

u (x, Y) = E aiF i (x , Y)	 (2.58)
i=1

satisfying the required boundary conditions, then the "exactness"

of the solution could be expressed by the statem pnr that in the

region, the left-hand side of eq. (2.57) is orthogonal to every

term in the series ab.ove. That is,

fj
{L(—u(x,y)]-f(x,y).)F i (x,y)dxdy  = 0, 1 	 1,2,3,...n. (2.59)

S

Since we truncate the series, eq. (2.58), to a finite number of

terms, n, then we are in a position to use the above ideas to

impose n-conditions of orthogonality. Thus,

—n
{L ZaiFi (x,y) -f(x,Y)}Fk(x,y)dxdy = 0	 (2.60)l 

S

28
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^4 =

with i - 1 0 2, 3, ..., n, provides a kind of averaging basis for

evaluating the n unknown a i l s such that the approximate solution is

_	 n
un(x +Y ) - E a iFi (x •Y) .	 (2.61)

Jai

We select the "weight functions" W  and set the weighted averages

of the residual to zero; for i - 1, 2, 3, ..., n. Applying this

to eq. (2.55), we have

R  ' 1
W.

(x,Y) Rh (a , x.Y1dV + fwi (.x,y)RB(.a,x,y)dS = 0. (2.62)

V	 S

Weight functions Wi are, by definition, coefficients of generalized

ai
coordinates. Thus, W	 a . in structural mechanics, the residualsi 
are proportional to forces or moments, and the Wi can be regarded

as virtual displacement or rotation. Each integral in eq. (.2.621

represents virtual work, which should vanish at an equilibrium

configuration. Usually, in the problems of linear theory of
i

elasticity, the Ritz coefficients are identical to the coefficients

found by the Galerkin method for the same system of coordinate

functions Fi.

2.7. Application of the Galerkin Method to the Torsion of

Beams Having an Airfoil Cross Section

In section 2.2, we showed that the torsion problem for a beam

A

having an arbitrary cross section can be reduced to the problem	 i

of finding a modified torsional stress function T which vanishes 	 i
{

on the boundary and which satisfies the differential equation

2̂T + 2 _ 0	 (2.63)
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everywhere within the boundary. When this function has been found,

the components of the shearing stress are given by

TxzGAay

TxZ = -GA 
ax
	(2.64)

where 6 is the twist of unit length (in radians) and G is the

modulus of torsional stiffness of the homogenous and isotropic

material. Also, the torsional stiffness of a beam having a unit

length is given by

Kt - 2G I [Tdxdy	 (2.65)

where the integral extends over the whole section. The function T

is proportional to the deflection of the membrane in the familiar

membrane analogy of torsion.

The Galerkin method provides a means for the approximate

solution of the differential equation (2.63) with the assigned

boundary condition. Let F l , F2 , F3 , ... , Fn be a sequence of

linearly independent functions of x and y which all vanish. on

the boundary, and put as an approximation

n

T - E, aiF1'	 (2,661
i

Let the result of substituting this expression on the left-hand

side of eq. (2.63) be RB . Then RB is the error or residual

in the differential equation corresponding to the chosen function

T, and it is a linear function of the coefficients a i , In

accordance with the Galerkin method, these coefficients are



determined by the condition that the 1

M:

IfR BFi dxdy = C	 (2.67)

must be satisfied. This equation, can easily be interpreted in

relation to the membrane analogue. Tf T is proportional to the

displacement of the membrane in a direction perpendicular to its

undisturbed position, then R  is proportional to the external

load per unit area which is left unbalanced by the tensions in

the membrane, and equation (2.671 expresses the vanishing of the

work done by the unbalanced loads in a virtual displacement of

the membrane proportional to F i . Thus, the coefficients a may

be regarded as generalized coordinates for the membrane, and the

Langrangian equations of equilibrium are then typified by eq. (2.67).

Consideration of the choice of the function F  remains. When

the section is symmetrical about axis x and has a smooth.boundary

given by

y=+th
	

(2.68)

where th. is a known function of x, the following functions, with

p and q as positive integers, will be suitable;

Fpq	 (th2p - y2p)x2 .	 (2.69)

These functions vanish all over the boundary. The same functions

will serve if the boundary has a sharp corner or corners, except

when part of the boundary is perpendicular to axis x.

It must be pointed out that an exact solution could, in

general, only be reached by the employment of a doubly infinite



set of functions F i . However, it is Youn g that in most cases. an

excellent approximation is obtained by the use of only two or

three :functions, and as a rule it is sufficient to use only the

functions which are of the second degree in y, at least for narrow

sections.

The cross section of symmetrical airfoils can be approximated

by the cubic oval given by

th2 - g2 (2a)x(l - x) 2	 (2.70)

where c - 2a is the chord and g is the thickness parameter equal

to 2b/c. This boundary very closely resembles some of the

symmetrical airfoil sections in current use for conventional

propeller and rotor blades. The maximum thickness occurs at one

third of the chord from the nose, and its magnitude is Bag/ 3^^

This particular case has been worked out in detail by the thickness

parameter method. The expression for the stiffness obtained in

this way is

K - 256G(2a) 493 1 _ 11 g2 + g4	 379 g6'	
(2.71)

t	 3465	 I	 13	 _ 221

correct to the 6th pover of g within the bracket. In applying

The Galerkin method, the following approximation of the modified

stress function will be adopted:

T- (t2 y2) (c1 + c 2 (^^	 (2.72)

Hence,

R3 - 0 2 4' + 2 - Eo + E1 (x) + EZ ( x) 2	 (2.73)
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where

E  = 2 - c1 (,2 + 4g2) + 2c 292	(2.74)

E1 = 6 clg 2 - c2 (2 + 12g2 )	 (2.75)

and

E2	 12c2
9
2 .	 (2.76)

The two Galerkin equations are

f
f %(.th2 ^ y2 )dxdy = 0	 (2.77),

S

J J 
RB

'(th2 
•. y2) (Zdxdy = a •	 (2.78)

After substitution and reductign, these became

cl (13 + llg2) + c 2 (5 + 3g2) = 13

X1 (253 + 153g2), + c 2 (llg + 8lg 2^ 255.	 (2.79)

The last equations yield

C 1 p = 17 + 18g2

c2 p = 5192 	(2.80)

where

p = 17 + 529 2	8+ 27 4 .	 (2.81)

Hence, by equation (2.71),, the expression for the torsional

stiffness is



R

The fraction inside the bracket can be converted into

power series in g, when g is small. The expansign for

in g6 can be expressed as

	

11 2	 4	 379 6

139 + g - 221 g

The torsional stiffness.of the cylinder of unit length

	

K	 256G(.2a).4g3	 11 2	 4	 379 6

	

t	 3465	 1 

_ 
13 g+ Cr	 221 g-	 -

_	
^ 2b2If we scale the expression in eq. (2.841 with. the factor aa ++ 	 we

7ta b
have 2odified torsional stiffness in non -dimensional form

	

3	 11Kt 2563(25)4 	1 _ 13 82 .4. g4 	221 gb .	 (2.85)

If the simpler approximation

	

cl (xh2 _ y2 ^	 (2.86)

were employed, then c  would be found from eq. (2.80) by omission

of the term in c2'

	

c _	
2

13	
(2.87)

13 + llg

In a similar manner, the torsional stiffness of the beam of unit

length. is derived by

256G(2a)9 G 13	 L
K	

.	 (2.88)
t X65 13 + llg2

ORIGINAL PAGE 13
OF POOR QUALITY

K = 256G(2a) 493 r 221 + 482g2
t	 3465	 221 4 , 676g2 + 35184

c 1
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Scaling the expression above with the factor

* 256G(2a) 4g3	13	 a2+b2
Kt	 3465	 ^ 13 + llg 

2) 
Tfa 

3 
b 
3	

(2.89)

Finally, the relation torque-angle of twist for a beam of unit

length. can be established as

Mt = KtB .	 (,2.90)

This expression can be generalized easily for any cylinder of

length R and for a given chord 2a of the cross sections

33
MT Kt 6

	

	
7rZ b2	

(2.91)
a +h

2.8. Application of the Galerkin Method to the Torsion of

B.eams Whose Cross Section is Bounded by Parabolic Curves

A thin blade has a symmetrical section bounded by two parabolic

(see Fig. 2.4) giving the thickness at disctance x from the center

by

th. -q 2b.11	 (fix/2aZ2 ] .	 (2.92)

The chosen function

r	 A y2 - .th2 (1 - x2 ) 2	(2.93)

a

satisfies the torsion boundary condition r - 0 on the boundary.

Using the approach given in the previous section, the torsional

stiffness per unit length is found to be

-, 0.1524(a)thK	 3
t	 (2.94)

3 3
1 + 1.333( h

1
	 )



^F
36

ORIGINAL PAGE IS

OF POOR QUALITY

N

Figure 2.4. The geometry of the cross-section bounded by parabolic
curves.
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2 2

Scalin% eq, (2.94) with the factor 
a +b3 , we have the modifiedTra3

torsional stiffness in non-dimensional form.

K	 0.1524 (2a) th3 a2+b.2	 (2.95)t	

th 2 ^a3b3

F-1
+ 1,333(2x)

Having given the geometry of the cross section and knowing the angle

of twist per unit length, we can expand the expression above for

a cylinder of an arbitrary length Z.

	

K* 9 . Wa3b3	
(2.96)MT	 t R 

a 
2 
+b, 

2
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EXPERIMENTAL METHODS AND TECHNIQUES FOR THE DETERMINATION

OF THE TORSION OF BEAMS HAVING AIRFOIL CROSS SECTIONS

3.1. Introduction

There are several analytical methods for the determination

of the torsional stiffness of a cylinder having an airfoil cross

section. Some of these methods were given in detail in the previous

chapter for the types of cross sections which are reasonably good

approximations of a conventional symmetric airfoil section. The

contour 15.nes of the airfoil section are usually presented as

curves described with fairly complicated expressions. In trying

to find the exact solution for a particular section by any method

described in Chapter 2, one faces serious problems in choosing

the appropriate stress functions and in matching given boundaries.

In this study the experimental method is applied to three

aluminum models with three different cross sections. Since the

cross sections of all three models were chosen from the family

of NACA four-digit wing sections., the approximation taken in

analytical methods is very close to the real cross section. The

experimental method is universal and can be used for any type of

beams having the airfoil cross section restricted only to the

linear elasticity cases.

3.2. Method of Experimental Measurement

Since we do not know the exact position of the shear center

r	 of the models having airfoil cross sections, the relation, between



znrque and angle-of-twist cannot be defined in

During modeling of this system, the following assumptions were made:

1, For models made of isotropic materials, in the elastic

region (small deformations), the applied torque, the angle of twist,

the force, and the linear displacement are related linearly.

2. The continuous beam (model) with applied torque at

the tip is modeled as single-spring-mass system.

3. Since the models are of small size, the weight of the

model is neglected.

The model was clamped to a vertical beam of wach.larger

mass and stiffness than that of the model. A rigid light bar

with.two positions for applying load was firmly attached at thn

tip of the model. By applying the same weight on two different

moment arms successively, the modal was deflected at two different

angles of twist. The first observation was made in the deformed

state of the model, when the weight waa, applied at position 1.

From the theory of vibrations, we know how to model some

distributed systems as single-degree-of-freedom systems, thus

reducing continuously distributed parameters to equivalent single

parameters lumped at one point. Using the elementary relations

for work done by force and torque in linear solid mechanics, we

can model: a cantilever weightless beam of length t and with given

physical properties EI as a single-spring-mass system where;

1. E is the Young modulus of elasticity given in [lb./in2].

2. I is the sectional moment of inertia around the axis

4of bending given in in
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A very useful relation can be established using the force-displacement

relation for tho linear spring F . Kp Q, where K Z [lbi nJ is the

linear spring stiffness (constant). Observing Fig. 3,1, we have

L3

s 3EI

R3P KR • D • 1 Kz ' M

K^ ^ M
 ER

(3.1)

In the equation ab.oye, K2 is the equivalent spring stiffness

of a continuous weightless cantilever beam of length. R and given

El.	 .

The cantilever beam subjected to the force and moment in

the plane of the tip cross section to modeled as the single-spring-

mass system. The geometry and load conditions are given in Fig. 3.2.

Force of intensity P is applied at point 1 at the distance Z  from

shear center in the plane of the tip cross section.. Point 2

is at the distance !Z2 from the shear center. The difference

R2 -fZI is denoted as d 2 . In Figure 3.2(a) the model is shown in

the displaced state, and in Figure 3.2(b) the single-spring-mass

model is shown in the displaced state when force P is applied

at point 1. The displacements are measured at points 1 and 2.

Observing Figure 3.2, we can say that

Q is the linear displacement of the tip of the cantilever

beam subjected to the force P at the tip.

Il is the linear displacement at point 1 due to the force

P at point 1.
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u
a

EI, weightless

i
Psl

K = 3EI
k Q3

P- 1

Figure 3.1. Equivalent spring of continuous weightless cantilever
beam.
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(a)

K	 System i.: undeformed state

K ^K	 I
T i4	 Qa	 System in

deformed state 

,-

P	 IP KT	
Q	

^'^

(b)

Figure 3.2. Cantilever beam model in displaced state when force P is
applied at point is (a) cantilever beam model;
(b) equivalent single-mass-spring model.



"21 is the linear displacement at point 2 due to the force

P at point 1.

Using the geometry from Figure 3.2 and equations given in

this chapter, we can establish. the following relations;

3
AM z(3.21

Ml = P•41 KT@1
	

(3.3)

or

81 - H
KT

Again, using the geometry in Figure 3.2, the following relations

can be established]

All , A+ ,i 6l

011 = e+z Ml	 (.3.4)
KT

A21 . 
A+ R2 Al

021 D + R,2 KT	 (3.5)

Now the cantilever beam model is observed in the second

position. Force of intensity P is applied at point 2. Again,

the geometry of the cantilever beam model and • its single-spring-

mass system analogy is given in Fig. 3.3. Using the geometry in

Fig. 3.3, the following relations are established:

r

43

M2 = P•Q2 = KTe2

or
M2

82K7`

(3.6)
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^a

(a)

System in undeformed state
^^ KR /—	 ------

"	 R	 I
> ^K	 Ia

.^ >	 System in
Mg i	

m	 deformed state N	 I ^,
Nindex ;

P

(b)

Figure 3.3. Cantilever beam model-in displaced state when force P is
applied at point 2s (a) cantilever beam model;
(b) equivalent single-mass-spring model.
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d22	
A + Z262

M2
422 A + k2 2

	
(3.7)

A l2 - A+ R10 2

012 - A + kl M2
KT	

C3.8 )

Now we can establish the following relations:

	

P2 2	 PR Q	 pt

p22 021 ' A + 	 CA + KT 2) 	
KT d 

PlC2

	

X22 `X 21 	 KT dV
	 (3- 9)  

45

In a similar manner,

2

0
12 All - A+ pz1z2 (^+ Pki

KT	KT

Rol
X 12 ^ X11 *	 d2•	 (3.10)

Suhstracting eq. (3.10) from eq. (3.9), we have

Pd

X22 - X21 - (412 - A
ll )	

KT (R
2 - R1)

and finally
Pd22

(3..11)KT . 2 22 -"21_ '^2+"11

which is the torsional stiffness of the model of the length Z,

In order to get the torsional stiffness per unit length, we have

to multiply the expression above by 2:

Pd 
z2 

Q

Kt
"22-A21-"12+"11	

(3.12)



If the chord of an airfoil cross section is gii
2

scale the expression above with the factor a 13
7ra 1

K* =	
Pd X24 

	 a2+b

t
	 (A 22 -421 -412+"113 	7ra3b'

where

*	 a2+b2

Kt * Kt 
Ira 

3b3

We can now find the torsional stiffness for and

length R and chord 2a for the same family of a^

*	 7ra3b3
KT at 	

• R(a2+b22

In a similar manner, the relation of the torque

is derived;
z

MT	
* 7ra3b3

= Kt 
UA2+b 2) 9.

3.3. Experimental Technique

The experimental technique is based on the approach presented

in the previous section. To obtain satisfactory accuracy in

measurement, the system for measurement is set up as shown by

Fig. 3.4.

The model is clamped to a vertical solid beam of much larger

mass and stiffness. At the tip of the model, two light aluminum

rods are attached. One of them has two attaching points for

weight. These are shown in Fig. 3.2 as points 1 and 2, and are

located at the distance d^ _ 101in]. In order to avoid

error in measurement, another bar is used as a reference line when
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Figure 3.4. Side view of the measurement s y stem used.



measuring the displacements at points 1 and 2. Dial ga

are used for displacement measurement, with a scale of

per division. Since the shear modulus of aluminum is r

low, a small angle of twist is used on the mo!el in ord

plastic deformations. Measurements are conducted in tb

following way:

1. The weight is hung at position 1 and the displ

are measured at position 1. All , and at position 2, 21

2. The same weight is hung at position 2 and the

are measured at position 2, A 22 , and at position 1, Al2

The same procedure with.diff erent weights is repeated a

displacements, are measured. The same procedure is then

for all three models, selecting the appropriate amount

to be used in order to avoid plastic deformation.

_J
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Chapter 4

PREDICTED AND EXPERIMENTAL RESULTS OF TORSIONAL

STIFFNESS OF BEAMS HAVING AIRFOIL CROSS SECTIONS

4.1. Introduction

In this chapter, the predicted results are given for a group

of models having cross sections similar to that of the symmetrical

airfoil. Experimental results are obtained for the three models

having NACA four-digit symmetrical sections. The results are

given in Tables 4.2, 4.3, and 4.4.

4.2. Comparison and Discussion of Predicted and

Experimental Results

In Chapter 2, the formulae are derived for torsional stiffness

per unit length Kt for beams having cross sections close to that

of the symmetrical airfoil section. The models have widths and

thicknesses corresponding to the dimensions of models having

symmetrical airfoil sections used in the experimental part. The

formulae and the results are summarized and given in Table 4.1.

In the experimental part, three models are used. They have

been tested, according to the procedure given in Chapter 3, in

the structural area of the Department of Aerospace Engineering

of The Pennsylvania State University. The models have the

following material properties:

i
	 1. The material of the models is aluminum.

2. Young's modulus of elasticity is 10.5 x 106[lb/in2].

3. The shear modulus is 4.0 x 106[lb/in2].
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t`	 4. The mass density is 2.59 [lb see t /in 41.

The geometrical and the material properties are given in Table 41.

With,the data obtained by measurement, the torsional stiffness

per unit length Kt and the scaled torsional stiffness per unit

length K* are calculated and given in Table 4.3.

The-results predicted for models given in Table 4.2 and the

results experimentally obtained for the models in Table 4,3 are
i

summarized in Table 4.4. Observing these results, we conclude

that we have fairly good agreement for scaled torsional stiffness

Kt obtained analytically and experimentally for the same models.

The results obtained experimentally are slightly below the

results predicted. This is probably due to imperfect clamping

of the models and the way the torque is applied to the models.

For any given model made of aluminum or any metal having a

NASA four-digit symmetrical section, we can calculate the

torsional stiffness, if we [snow the length, k and the chord 2a;

3 3
Kt 

1ra2b 

2	 (4.1J
k(a +b.

where Kt is predicted and measured as a function of the shear

modulus. Generally, we can calculate the torque for a given angle

of twist for the models above as

MT a KTe.	 (4.2)

Since the stiffness experimentally measured is slightly below

predicted, it is recommended that the first one be used in further

calculation.
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THE DYNAMIC MODELING OF CANTILEVER BEAMS AS UNDAMPED

MULTI-DEGREE-OF-FREEDOM SYSTEMS

5.1 Free Vibration

The analysis of a structure in free vibration provides the most'

important dynamic'properties of the structure, which are the natural

frequencies and the corresponding modal shapes. The equations of

motion are represented in a matrix form by

[ml {X( t ) } + [k] {x( t) } - {0 }	 (5.1)

which represents a set of n simultaneous differential equations of

the type

n	 n

i=1mi^x^ (t) + 
jZ 1kii x

j 
(t) - 0, i	 1,2, .. , ,n	 (5.2)

where [m] and [k] are the mass and stiffness matrices. Before

considering properties of frequencies and modes, it is useful to

consider some of the properties of the stiffness matrices and mass

matrices encountered in structural dynamics problems.

5.2. Some Properties of [k] and [m] Matrices

The strain energy and kinetic energy can be written in the form

j	 of the triple-matrix product

1	 1	 T
V = 2

{x} [ .,o {x}	 (5.3)

F
where {x} is the n-dimensional displacement vector and {x} T is its

fr	 transpose matrix.



x 
x2

{x}

xn
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k11 k12

k21 k22	 k 2
(k)

nl kn2	 knn.

(5.4)

and

T = 2 {x}T [m] {x}

where {x} is the n-dimensional velocity vector.

X1	 m11 m12	 min

x2	 m21 m22'
	 m2n

{x}
[MI.

x
n

mnl mn2	 mnn

(5.5)

(5.6)

Matrices [k] and (m) for most structures are positive-definite

matrices, that is, when arbitrary vectors {x} and, {x} are chosen and

V and T are computed from eqs. (5.2) and (5.4), the resulting values

of V and Tare positive, except for the trivial cases {x} = 0

and {x} = 0.

In general, the kinetic energy T is always positive-definite,

so that (m) is always positive definite. The question remains as

to the sign properties of the potential (strain) energy and the

associated matrix [k].	 Two cases of particular interest in

vibrations are those in which [k] is positive-definite and (k] is

only positive-semidef inite. When (k] is positive-semidef inite, V

can be zero (for rigid-body modes) or greater than zero (for deformable
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modes). When (k] is positive-semidefinite, det[k] - 0. Since

the det(k] vanishes, (k) is called a singular matrix. When [m]

is positive-definite and [k] is positive-semidefinite, the system

is referred to as a semidefinite system, and the motion is called

undamped free vibration. Rigid-body motion is possible because

semidefinite systems are unrestrained, that is, such systems are

supported in a manner in which rigid-body motion can take place.

5.3. Some Properties of Natural Frequencies

We are interested in a special form of solution of the set

(5.2), namely, that in which all the coordinates have the same time

dependence and the general configuration of motion does not change

except for the amplitude, so that the ratio between any two coordinates

xi(t) and xi (t), 1 # j, remains constant during the motion. This

type of motion is expressed mathematically by means of a linear

transformation that can be represented by the matrix of the system

eigenvectors.

{x(t) } - [O) { q ( t ) }	 (5.7)

{X(t) } - [$] {q(t) }	 (5.8)

Substituting equations (5.7) and (5,8) into equation (5.1), we have

(m] [0] {q(t) } + (k] (^] {q(t) } - {0}. 	 (5.9)

If we assume the following type of harmonic motion for the r-th

mode, the characteristic equation for the r-th mode can be derived

in the following manner.
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', f
{qr(t)} _ {Ar )sin(Wrt-Ar )	 (5.10)

r	
{qr(t) } _ -{Ar }Wr2 sin(WI, t-8r )	 (5.11)

I	
(-Wr2[m] + [k]) {fir

}{Ar
}sin(Wrt-8r ) 	 {0}	 (5.12)

r

t	 Since	 {Ar}sin(Wrt-e) # {p}
}

	(-r2 [m] + [k]) {fir } _ W.	 (5.13)

The equation above represents the n-th order algebraic eigenvalue

problem. For a nontrivial solution, the determinant of eq. (5.13)

has to vanish:

det( [k] - W2 [m]) = 0.	 (5.14)

This is called the characteristic equation. When the determinant

of eq. (5.14) is expanded, a polynomial equation of degree n in

W2 is formed whose roots are the eigenvalues, or squared natural

.frequencies, Wr2. These can be ordered from the lowest to the

highest:

	

0 < W12 < 
W22 

< . . . . < Wr2 < . . .	 < n2 .	 (5.15)

It is possible for several modes to have the same frequency;

however, this condition is unusual in structural systems. Not so

unusual is the case in which several mode frequencies are very

nearly the same; so close together, in fact, that very great

computational or experimental accuracy is required to distinguish

among them.

7
I
a

IL I
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5.4. Some Properties of Eigenvectors (Modal Shapes)

A mode shape is a unique deformation shape that the structural

system would take on if excited solely in that mode of vibration.

Mathematically, mode shapes are represented as vectors known as

modal vectors. Each element of the modal vector is the deflection

of one degree of freedom in the structure. Equation (5.13) can be

rewritten for the r-th mode in the following way:

[k](Or } - r 2 (Or}, r - 1,2,3,...,n. 	 (5.16)

The solution vector {fi r } corresponding to a particular eigenvalue

is called a mode shape or characteristic eigenvector or an eigen-

vector, and defines a particular structural deformation pattern

called a mode. Because eq. (5.16) is homogenous, there is not a

unique solution, and only a ratio among the elements of a particular

mode shape vector can be determined. The values of the elements

thewsel'ves are arbitrary, so that if (fir} is a solution of eq. (5.16),

then ar{fir } is also a solution, where a  is an arbitrary constant.

Hence, the shape of the natural modes is unique, but the amplitude

is not. If one of the elements of the eigenvector is rendered

unique in an absolute sense, this automatically causes an adjustment

in the values of the remaining n--1 elements, and the ratio between

any two elements is constant.

5.5. Scaling (Normalizing) of Eigenvectors

Since the modal vector represents a shape rather than the

absolute deflection of the structure, elements of the modal vector

are normally scaled in some arbitrary manner. The most common

i

i
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technique is to scale the modal vector so that the largest element

equals one. This allows the deflections at the remaining degrees

of freedom contained in the modal vector to be expressed as a

percentage of the maximum. It is a common misconception that modal

vectors define actual vibratory motion of a structure. The total

deformation resulting from external excitation is dependent not

only on the magnitude and location of the input forces, but also

on the participation of each mode in the structure's total response.

The process of scaling a natural mode so that each of its

elements has a unique value is called normalization, and the

resulting modal vectors are called normal modes. A very convenient

normalization scheme consists of setting

{Or }T[m] {or} - Mr , r - 1,2,3,...,n	 (5.17)

so that the Mr is the generalized mass or modal mass in the r-th

mode. Generally the modal mass matrix is

[0J T Cm ] CO ] - CMJ.
	 (5.18)

In a similar manner, the generalized stiffness or modal stiffness

for the r-th mode is defined as

{$r }T [k] {Or } - Kr , r - 1.2,3;...,n.	 (5.19)

The modal stiffness matrix is

[^ ] T (k] (fl - rw2MJ .	 (5.20)

The following is an especially convenient normalization for



a general system, so that the product {fir}1

unit mass. Eigenvectors obtained in a such manner are called

orthonormalized eigenvectors. For a system having a consistent

mass matrix (full), the normalized i-th component of the j-th modal

vector is

^ij	 (5.21)^ij
{^ j }T [M 1 4

For a system having a diagonal mass matrix, the i-th component

of the j -th modal vector is

0 i
	 ^ij	 (5.22)

n	 2

k-1m k j

in which {^i }and {^j } are any two modal vectors and [Ml is the modal

mass matrix of the system, The normal modes may be conveniently

arranged in the columns of a matrix known as the modal matrix of

the system, that is,

X11 
4D
12	 In

021 (P
22	 ^2n

[D]	 (5.23)

(D
nl0n2	 • ' 0 n

.g

j

i

which holds for the general case of n degrees of freedom,,



5..6. Orthogonality of Modal Vectors and the Expansion Theorem

The natural modes possess a very useful property known as

orthogonality. This is not an ordinary orthogonality, but an

orthogonality with respect to the inertia matrix [m] (and also

with respect to the stiffness matrix [k] ). The following

calculation is proof of the orthogonality of the modal vectors

{fi r }. We are going to consider two distinct solutions, Wr2 {Or}

and ws2 {O S }, of the eigenvalue problem presented in eq. (5.19).

These solutions can be written in the form

[k] {fi r } = W 2 [m] {0r} (5.24)r

[k]	 ws2s} (m] {$ s }. (5.25)

Premultiplying both sides of eq. (5.?4) by {$s}T and both sides of

eq.	 (5.25) by {fir }T , we obtain

}T[kl {or} s wr 2 {fir}s 1T [m] (5.26)s

{fir }T(k]{^s}	 ws 2 {fi r }T [m]{ s } . (5.27)

If we transpose eq. (5.27) and assume that matrices [k] and [m]

are symmetric,, and subtract the result from eq. (5.26), we obtain

( r2 - W s 2 ) {(P s }T [m] {fir } = 0.	 (5.28)

Since, in general,, the natural frequencies are distinct, wr # ws,

eq. (5.28) provides

q	 4 s } T (m] {fi r } 	 0 , r # s	 (5.29)

62

4{
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which is the statement of the orthogonality condition of the modal

vectors. It is easy to see that the modal vectors are also

orthogonal with respect to the stiffness matrix [k]:

(^ s }T [k] (fir } - O f r # S.	 (5.30)

We stress again that the orthogonality relations shown in eqs. (5.29)

and (5.30) are valid pnly if [m] and [kl matrices are symmetric.

The modal vectors can be conveniently arranged in a square

matrix of order n, known as the modal matrix and having the form

[^] - [(ol }(Y... {can}]	 (5.31)

where [fl is, in fact, the transformation matrix. All n solutions

of the eigenvalue problem can be written in a compact matrix form:

[k] [0] _ [m] [^] NQ.	 (5.32)

The eigenvectors (fir } (r - 1,2,5,.... n) form a linearly
independent set, implying that an n-dimensional vector representing

any possible, but otherwise arbitrary, configuration of the system

can be constructed as a linear combination of eigenvectors.

Physically, this implies that any motion of the system resulting

from an arbitrary excitation can be regarded at a given time as

a superposition of the natural modes multiplied by appropriate

constants, where the constants are a measure of the degree of 	 {

participation of each mode. This approach permits the transformation

	

of a simultaneous set of differential equations of motion into an 	
t
Y

independent set, where the transformation matrix is the modal

j
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matrix {0]• The process of deriving the system response by
transforming the equations of motion into an independent set is

known as modal analysis.

To prove that a set of vectors {0r} is linearly independent,

we assume that the vectors are linearly dependent and arrive at

a contradiction. For the set of vectors {od to be linearly dependent,

it must satisfy an equation of the type

n

cl{o1} + c2{02) + 	+ cn {On } 	 Z cr f9d = {0}	 (5.33)
r=I

where c  (r - 1,2 0 ..,A) are non-zero constants. Premultiplying
eq. (5.33) by {^s }T (m], we obtain

n

Z lcr to 
T (m) {or } = 0.	 (5.34)

The triple -matrix product {oS}T (m]{0r} is equal to zero for r # s

and is less than or greater than zero for r = s. Repeating the

operation in the equation n times, for s = 1,2,3,...,n, we conclude

that eq. (5.34) can be satisfied only in the trivial case defined

by c 	 c2 = ... = C  = 0. Then we have W as a linear combination

of {$1}, {q)2}, ..., { (Pn } , with coefficients c1 , c2 , c3 , ..., c n :

{0} = c1 41 } + c2 {o 2 } + ... + cn{0n} # W.	 (5.35)

Hence, any vector belonging to the space W can be generated in

the form of linear combination as shown in (5.35). Physically,

this means that any possible motion of the system can be described

as a linear combination of the modal vectors. The coefficients c
r

are a measµre of the contribution of the associated modes {fir } to the
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motion W.

C  = {`fir }Ttm]4}	 (5.36)

Equations (5,35) and (5.36) are known in vibration theory as

the expansion theorem. This can be applied to multi-degree-of-

freedom systems:

{Or}T [m] {0 s } - 0.	 (5.37)

If matrix [m] is symmetric, we can rewrite equation (5.37) as

m101rols + m2o2ro2s + " ' + mnonrons 0, r f s
	 (5.38)

forr - s - n

mltln2 + m
202n2 +	 + aonn2 Mn	 (5.39)

or write it in a matrix notation as

{fin}T [m] {$n } - Mn .	 (5.40)

We recognize Mn as the modal mass in the n-th mode. Generally

for the system of order n the equation above becomes

M1

[O] T [ml [0] =rMJ=	 M2	 (5.41)

'M
n

which is the generalized mass matrix or modal mass matr'^x. Using

eq. (5.26) under conditions r = s = n, for the n-th mode,

..ffi	

(q)n}
T [kl {ran } - 

wn2t^n}T[m] 
{O n }.	 (5.42)
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In eq. (5.42), we recognize the modal stiffness in the n-th

mode. Generally, for the system of order n, this equation becomes

2
Wl M1

(0 IT 
[k] I03 * twn2MIJ	 w22M2	

(5.43)

W M
n n

If the eigenvectors are scaled in the following way

1101  
[ml [0] _ [I]

where [I] is the identity matrix, then the scaled model-stiffness

matrix has the following form;
2

1
2

((D] T [kl VN _ r-2J =	 02	 (5.44)

2
n

5.7. Response of Multi-Degree-of-Freedom Systems

to Initial Excitation

The equations of motion are represented in a matrix form by

[m] {x (t) } + [k] {x(t) } _ {0}.
	 (5.45)

Equation (5.45) represents a set of simultaneous ODE's with constant

coefficients. Using linear system theory, a general closed-form

solution of eq. (5.45) can be shown to exist. A convenient way

of deriving the solution is modal analysis, which requires the

solution of a so-called eigenvalue problem for the system.

W- ^-'
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In eq. (5.45) {x(t)) is the displacement vector or the generalized

coordinate vector xr(t) (r = l,2,3,—.,n). We introduce the

following transformation matrices:

	

{x(t) } = (fl {q(t) }	 (5.46)

{x(t) }	 [4)] {q(t).}.	 (5.47)

Substituting these two equations into eq. (5.45), we have

[m] (1] {q(t) } + {k] [(D] {q(t) } = {p}

Premultiplying the above expression by [$] T , we have

[ I, ] T [m] [(P] {q(t) } + [^ ] T [k] [(D] {q(t) } = W.	 (5.48)

Using the relations in eqs. (5.43a) and (5.44) derived earlier,

eq. (5.48) can be rewritten as follows:

[I] {n(t) } + r'w2 -J {q(t) } _ {01	 (5.49)

or

q1(t)X12
	

ql(t)	 0

q^(t) 	
X22	

q2(t)	 0
+	 _	 (5.50)

qn(t)	

.wn2	

qn(t)	 0

For the r--th mode, eq. (5.50) yields

r

	

qr (t) + wr 2 gr (t) = 0	 (5.51)

where variables qr (t) are identified as the normal coordinates

9

9

7

^l

1

i
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of the system.	 Using eq. (5.46), we can write the expansion

expression for {x(t)} as follows:

{x(t) }	 {(P1}g1(t) + {(D2}q2(t) + ... + { n)gn(t) 	 (5.52)

n
{x(t) }	

E {Or
}qr(t) _ [(D){q(t)}.	 (5.53)

r=1

By an analogy with the free vibration solution of an undamped

single-degree-of-freedom system, the solution of eq. (5,49) is

qr (t) - Crcos(wr t - 0r ), r - 1,2,...,n	 (5.54)`

where Cr and 
e
  (r - 1,2,3,...,n) are constants of integration

rep:esent_ing the amplitudes and phase angles of the normal coordinates.

Inserting eq. (5.54) into eq. (5.46) , we t:ave

n	 n
{x(t) } - [0 1{q(t)} =i{(r}qr(t) - rE1Cr{(r}cos(wrt - er ) (5.55)rl 

so that Che free vibration of a multi-degree-of-freedom system

consists of a superposition of n harmonic motions with frequencies

equal to the system's natural frequencies, and with amplitudes

and phase angles depending on the initial conditions.

Letting {x(0)} - {x 0} and {x(0)} _ {x 0 } be the initial

displacement and initial velocity vectors, respectively, eq. (5.55)

leads to

n

	

{x0} = E Cr {(Dr}coser	(5.56)
r=1

r?	 n
{x0 } 	 E CrWr(0r }sine 

r ,.	 (5.57)
r=1

or
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Premultiplying eq. (5.56) and (5.57) by {fis}T[m],

{fir}T[m]{x0}	
Crcos©r	 (5.58)

W {fir}T [m]

	

{x0 } = Crsin6r .	 (5.59)
r

Introducing these two equations into eq. (5.55), we obtain the

general expression

{x(t) } = E [{fir }T [m] {x0 }coswrt
r=1

{fir }T [m]{qo}	 sinwrt] {fir}	 (5.60)
r	 t

ii

which represents the response of the system to the initial dis-

placement vector {x0 } and the initial velocity vector {x0}. 
Now

we assume that the initial displacement vector {x 0 } resembles a given

normal mode, say {fi s } , whereas the initial velocity vector is zero.

Introducing {x0} = x0{fig} and {XO} 	 {0}, the response is

n
{x(t)} - E 

[q0
{0r}T [m]{x0}coswr t1{fir1' 	(5.61)

r=1

5.8. The Dynamic Response of Multi-Degree-of-Freedom

Systems to a Harmonic Force

The general response of a discrete system, i.e., the response

to both initial and external excitations, is governed by a set of

simultaneous (coupled) equations, but can be rendered independent

(uncoupled) by means of linear transformation that can be

represented by the matrix of the system eigenvectors. Because

these eigenvectors are commonly referred to as modal vectors, the
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transformation matrix is called the modal matrix and the decou

procedure itself is known as modal analysis. The independent

ordinary differential equations resemble those of low-order sy

and can be solved with relative ease. The important feature o:

these low-order systems is that they are described in terms of

single dependent variable.

For a linear system, solutions to excitations can be obtained

separately and then added up linearly to obtain the combined response.

This is the essence of the so-called principle of superposition,

a very powerful principle that applies to linear systems alone.

In vibration, we encounter the various types of periodic excitations,

which are not necessarily harmonic. Any periodic function, however,

can be represented by a convergent series of harmonic functions

whose frequencies are integral multiples of a certain fundamental

frequency, w0 , provided that it satisfies certain conditions.

The integral multiples of the fundamental frequency are called

harmonics, with the fundamental frequency being the first harmonic.

Such a series of harmonic functions 3s known as the Fourier Series,

and can be written in the form

00

F(t)	 2 
a0 +^ 1 (apcospw0t + bpsinpw0 t)	 ( 5.62)

where w0 
= 2T, p are integers, p = 1,2,3,...,n, and T is the period.

The coefficients a  and b y are given by the formulae

T/2

ap	Tf F(t)cospm0tdt, p = 0,1,2,3,...,n	 (5.63)

-T/2

i



F(t) = 2 + FOre (wf 
t+0

(5.66)

^^2
r Or	 FOs + FOc

whn'r.e

or

Ir
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by = T 1 F(t)sinpw0tdt, p = 0,1,2,3,...,n 	 (5.64)

..T/2

and they represent a measure of the participation of the harmonic

components cospWOt and sinpw0t, respectively, in function F(t).

The term 2 aO represents the average value of F(t). We consider

the equation of motion of an undamped n degree-of -freedom system

subjected to a harmonic force, expressed in terms of Fourier

components of the fundamental frequency only. The same procedure

could be repeated for higher harmonics.

The amplitudes of harmonic forces are distributed arbitrarily

on all mass elements of the system. The exciting force can be

written as follows:

F
F(t) = 2 + FOssinwf t + FOccoswft	 (5.65)

.-

71

= arctan 
(FOs ) 	 (5.67)

Oc

and where W  is the forcing frequency of the system and ^ is the

phase angle. The equations of motion for an n degree -of-freedom

system can be written in matrix form as follows:

1	 j (wf t+^)
[m] {x(t) } + jk] {x(t) } _ {F(t) } = 2 {F O } + {FOr } e	 . (5.68) 3



t

f

The linear transformation matrices can be expressed as

{x(t) } _ [(Dl {q(t) }

where the transformation matrix (01 was introduced earlier

:scaled modal matrix. Also, in a previous section we showed the

orthogonality conditions for two modes, W  and wr , w  # w 

{(Ds}T[m]{(Dr}	 0	 r # s	 (5.71)

{@s}T[k] {fir} = 0	 r # s;	
(5.72)

Substituting eqs. (5.71) and (5.72) into eq. (5.68), we have

[m] [0] {q(t) } + [kl [m] {q(t) } _ {F(t) }	 2 
{FO } + {

FOr} e 

j (wft+^)

Premultiplying (5.73) by [(
p

] T, we have	 (5.73)

T
[0] T [m] [ (p

l {q ( t) } + [(p ] T [k] [0l {q} _ Z [(D] T {FO } + [O] {FOr}e 
3 (w 

f 
t+^)

(5.74)

Using relations derived in a previous section, eq. (5.47) reduces

to

2	 1 T	 T	 J (wft+^)
[I] {q( t ) } + Cw J {q (t) } a 

2 [(Dl {FO } + [(D] (F le. (5.75)

This is a so-called modal equation, which decouples the initial

system of equations into n independent equations. The terms on the

right side are called the components of modal force. They give

the extent to which the components of exciting forces participate

in every mode.

z

r
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PF_

The equation of motion in the r-th mode due to the exciting

forces lumped at all masses, having arbitrarily distributed

amplitudes, evolves from eq. (5.75) as

2	 1	 T	 T	 j (Wf t+^)	 ( 5.76)ir ( t) + r qr -1 {(D{FO} + {(D} {FOr}e

The solution of eq. (5.76) can be written as

	

qr(t) . (gr(t))hom + (gr(t))part 	 (5.77)

and the homogenous solution can be expressed as

(q.) Ica - ErcosWrt + FrsinWrt.

The particular solution can be found separately for each

component of the forcing function in eq. (5.76):

	

(gr(t))part . (gr ) part l + (gr ) part 2	 (5.78)

We assume the following types of solutions:

(gr ) part 1	
C .	 (5.79)

Substituting eq. (5.79) into eq. (5.76), and omitting the second

term on the right-hand side of eq. (5.76), we have

(gr ) part 1 
M 

1 2 {
(p
r }T {F4 1 	 (5.80)

2W
r

J (Wf t+^)

(gr ) part 2 
M 

Qre	 (5.81)

2 J (wft+0 	 (5.82)
(gr ) part 2	 -4rwf e



Substituting eqs. (5.81) and (5.82) into eq. (5,76), and omitting

the first term on the right-hand side of the latter equation, we have

( ID } {F Or
 

_ }	 J (w 
f 

t+^)

(gr ) part 2 a	 2	 2 e
	 (5.83)

Wr - Wf

The general solution for the r-th mode can be written as

T 14._}T{FOr} j (W t+V)qr(t) - ErcosWrt + FrsinWrt + 2W 2 {'Pr } (FO } + W 
2 

_ 

W 
2 e f

r	 r	 f

(5.84)

For convenience in further calculations, eq. (5.84) can be rewritten

as

qr(t)	 ErcosWrt + FrsinWrt + 12 {(Dr }T {FO } +
2W

r

{fir } T̂ {FOs }	 {fir}T{FOc}

+ ^ 2 _W 2sinWf t+ w 2rW2 cosWf t.	 (5.85)

r	 f	 r	 f

To define the constants Er and Fr , we apply the initial

conditions given. The displacement and velocity vectors at t - 0

are given as {x(0)}and {x(0)}. To impose the initial conditions

from the original system to a new, transformed system, we use

eqs. (5.69) and (5.70) at t - 0:

{x(0) } s [(Dl {q(0) }
	

(5.86)

{x(0) } _ ((Dl {q(0) }.
	

(5.87)

74

From eqs. (5.86) and (5.87),

c

_.	
}A
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{q(0)} = [ 1D1 -1 {x(0)1	 (5.88)

{;(0)} = C^] -1 {x(0) }.	 (5.89)

In order to avoid the inversion of matrix ID), we are using the

following relation:

I'D I T [m] Rl = M.

Post multiplying the relation above by Cp 1 -1 , we have

	

[0) -1 = 101  
[m] •	 (5.90)

Substituting eq. (5.90) into eqs. (5.88) and (5.89), we have

{q(0)} = [
,
t] T [m] {x(0) }	 (5.91)

{4(0)} = [(D] T [m] {x(0) }.	 (5.92)

With time equal to zero, eq. (5.85) reduces to

T

{qr (0)} : {Er} + 1 2 [^lT{F0} + [02 {FOc2	 (5.93)

2wr	 W  - ^f

Substituting eq. (5.91) into eq. (5.93), we can calculate the

vector of constants {Er};

E	 ^ T
	

- 1 ^ T	 _ 

[01 
{F 0C

T

	}{ r } _ [ l [ml{xr(0)}	 2 [ ] {F0}	 2	 2r	
(5.94)

2w	 w - wf

Finding the first derivative of eq. (5.85),

W [^] T {F }
{q (t)}= _{E }W sinw t + {F }w cosw t + f	 oc cosw tr	 r r	 r	 r r	 r	 W2-w2	 f

f



ORIGINAL PqI

OF POOR QU CS
76

With time equal to zero, eq. (5.95) becomes

W [ ID] {F }
(q(0)) _ 

{Fr }wr +	 2	 Fos	
(5.96)

w 
_ W 

Substituting eq. (5.92) into eq. (5.96), we can calculate the

vector of constants {Fr};

W [O] T{F }

{Fr} _ tL [O] T [m] {x(0) } - f 2	Os F	 (5.97)
r	 W  (

wr - wf )

Now Eq. (5.85) can be written in a final. form as

{q(t) } 
_ [t]T 

[m] [{x(0) }cos =t  + w • {x(0) }sinwr t ]
r

1	 T	 [0]T {FOc}

2W
2 [( 

{FO
}coswrt + _W2 - 2 (coswf t - sin =t)

r	 r	 f

[01T {F Os }	 f+	 2	 2 (coswft	 W sin =t), r _ 1,2,3,..,n. (5.98)

	

W  - wf	r

The solution to all n equations in eq. (5.98) dust be calculated;

them the finite displacements of masses can be obtained by super-

position of the response in each mode:

.

	

(x(t) } - [01{q(t)j.	 (5.99)

Therefore, in summary, the .response analysis by mode super-

position requires, first, the solution of eigenvalues and eigenvectors

of the problem in eq. (5.32), then the solution of the decoupled

equilibrium equations in eq. (5.98), and finally, the superposition

of the response of each eigenvector as expressed in eq. (5,99),

fy

i
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The essense of a mode superposition solution of a dynamic

response is that frequently only a small fraction of the total

number of decoupled equations need be considered in order to obtain

a good approximate solution to the actual response of the system.

Considering the problem of selecting the number of modes to be

include! in the modal superposition analysis, it should always

be kept in mind that an approximate solution to the dynamic

equilibrium equations is sought. Therefore, if not enough modes

are considered, the governing equations of motion are not solved

accurately enough. This means that equilibrium, including the inertia

forces,, is not satisfied for the approximate response calculated.

This question arises especially when a lumped mass model is

used to approximate a system having a uniformly distributed mass.

There is no unique criterion to determine the number of modes to

be taken. usually in shock and steae v-state problems driven on

high frequencies, "effective modal mass" is used as parameter. A

modal effective mass can be identified in matrix form for the n-th

mode as;
{ 1 }T	

n
tm){$` } {^ 

n 
}T tm)'{l }

(Neff ^n	 Mn - — —	
(5.100)

or in summary form as

L=
11m i^inn]

(Mef f ) n- n	
- —

lmiin

where m  is the mass of the i-th point, {1} T is a row matrix of

ones, and n is the modal mass in the n-th mode defined by

r_

i^
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n	 2
lain	E mi(Din	

(5.142)
i=i

Usually a good indication that enough mass has baen considered by

modal analysis is that the effective modal mass is eery close to

the actual mass of structure, that is, more than 95% of the total

mass.
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Chapter 6

DAMPED MULTI-DEGREE-OF-FREEDOM SYSTE14S

IN STRUCTURAL DYNAMICS

6.1. Introduction

All real systems dissipate energy through one of various types

of damping mechanisms, such as structural viscous or Coulomb damping.

The most common method of taking into account the dissipation of

energy in structural dynamics is to assume in the mathematical model

the presence of damping forces which have magnitudes proportional to

the relative velocity and directions opposite to the motion. This

type of damping is known as viscous damping, because_ it is a kind

of damping that will occur when there is motion in an ideal viscous

fluid. The inclusion of this type of damping in the equations does

not alter the linearity of the differential equations of motion.

Since the amount of damping commonly presented in structural systems

is relatively small, its effect is neglected in the calculation

of natural frequencies and mode shapes,, However, to uncouple

the damped differential equation of motion, it is necessary to impose

some restrictions on the values of the damping coefficients in the

system. These restrictions are of no consequence due to the fact that

in practice it is easier to determine or estimate modal damping

i
	 ratios rather than absolute damping coefficients. In addition, when

k	
solving the equations of motion by the modal superposition method,

only damping ratios are required. When the solution is sought by

other methods, the absolute values of damping coefficients may be

3

t
	 a
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k^

calculated from modal damping ratios by any of the various methods.

6.2. General Consideration

The equation of motion of a linear multi-degree-of-freedom

damped system is

3 (w t+^)
[m] {X(t) ) + [c] {x(t) } + [k] {x( t) } _ . {FO} + 

{Fur 
}e	 f	 (6.1)

in general, the coefficient matrices in the above equation, [m],

[c], and [k], may have nonzero coupling terms (e.g., c if = c]i # 0),

so that to solve eq. (6.1) in its present form would require simultane-

ous solution of n equations in n unknowns. The purpose in this section

is to outline the mode-superposition method by which such a set of

coupled equations can be transformed into a set or uncoupled

equations through use of the normal modes of the system. Equation

(6.1) is the original set of coupled equations of motion for an n-degree

of-freedom system ; where x(t) may be physical or generalized

coordinates. The response of the system to the excitation force

1
2 {F0 } + {FOr}e 

j (Wft+^)
and to the initial conditions {x(0)} and

{x(0)} is sought.

The first step in a mode-superposition sol- ion is to obtain

the natural frequencies and modal shapes of the system. In Chapter

5 we gave a very detailed treatment of these quantities. Since

the structural systems can be considered as lightly damped systems,

the most important dynamic properties, the natural frequencies and

the corresponding modal shapes, are not practically affected by 	
1

the presence of damping. We assume that if there are any repeated
	

a

frequenuies, the associated modes have been orthogonalized, so that

c z
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the orthogonality equations

{fir}T(m) ((Dr} a {fir } (k] ( ID r } - {0}	 (6.2)

are satisfied for all r ^ s. The modes are then collected to form

the scaled modal matrix [0] already introduced in section 5.4.4,

that is,

(] _ (((Dl){(D2 }... {(D d. 	 {on
} ) •	 (6.3)

The key step in the mode-superposition procedure is to intro-

duce the coordinate transformation, exactly the same procedure used

for an undamped multi-degree-of-freedom system in Chapter 5:

n
{x(t) } - [@] {q(t) } . E {Or }gr, (t) .	 (6.4)

r-1

The coordinates qr (t) are usually referred to as normal or principal

coordinates. Equation (6.4) is substituted into eq. (6.1) and the

resulting equation is multiplied by [D] T to give the equation of

motion in principal coordinates, namely,

(^] T [m] [j'] {q(t) } + [( ] T [c] [(D] {q (t) } + [(D] T [k] [D] {q ( t ) }

_ T[	 J (wf t+^)
[0] 2 (FO } + {FOr}c
	 (6.5)

Using relations in eqs. (5.43a) and (5.44), eq. (6.5) is reduced to

[I] {q{t) } + [ Cs ] {q(t) + [Ks ] {q (t) } _ {Fs (t) }	 (6.6)

where

(1] _ [(D] T [m] ((D] - scaled modal mass matrix,

^x
• [CS _ ((D] T

[c] [0] -scaled modal damping matrix,
i

(6.7)
	

9
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[Ksl . (0 ) T [k) [Dl = scaled modal stiffness matrix,
T 1	 J (Wf r.+^

(Fs (t)	 2(F0) + (FOr}e	 R scaled modal forte Nrector.

Due to the orthogonality conditions of eq. (6.2), [m) and (k)

are diagonal matrices, so the equations of motion in modal coordinates

(eq. (6.6)) are coupled only through a nonzero off-diagonal in the

scaled modal damping matrix ICs ). In the derivation of the modal-

coordinate equations of motion, it has been assumed that the normal-

coordinate transformation serves to uncouple the damping forces in

the same way that it uncouples the inertia and elastic forces.

In the following sections, we are going to consider the conditions

under which this uncoupling occurs.

6.3. Condlitions for Uncoupling of Damping Forces

Considering the analysis of systems in which damping effects

cannot be neglected, we still would like to deal with decoupled

equilibrium equations (eq. (6.6)) merely to be able to use essentially

the same computational procedure, whether damping effects are included

or neglected. In general, the damping matrix (c] cannot be constructed

from element damping matrices, such as the mass and stiffness matrices,

and its purpose is to approximate the overall energy dissipation during

the system response.

6.3.1. Evaluation of the Damping Matrix for Any Set of Specified

Modal Damping Ratios

In principle, the procedure can be explained by considering

the complete diagonal matrix of the damping coefficients, which

may be obtained by premultiplying and postmultiplying the damping
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matrix by the scaled modal matrix

	

2 ;1"l 0	 0

Ecs4	
(0]T 

[c] ['P]	 0 2^ W	 02 2

0	 0
2 ^nWn

(6.8)

It is evident that the damping matrix [c] may be evaluated by

postmiltiplying eq. (6.8) by the inverse of the scaled modal matrix

and its inverse, such that

	

(c) - [Pl
-T [cs ] 

[0 ]
-1 .	

(G.9)

Therefore, for any specified set of modal damping ratios 10,

matrix CC sa can be evaluated from eq. (6.8), and the full damping

matrix [c] from eq. (6.9). However, in practice, the inversion of

the modal matrix is a large computational effort. In Chapter 5,

we proved that

[0]-1 - [0] T [m] .	 (6.10)

Substituting eq. (6.10), into eq. (6.9), we obtain

[c] = [ml [0] [c s
'I 

[
(p

l T [m] .	 (6.11)

Since, in the r-th mode, C
sr 

= 24 
r r
W , substituting this ex?ression

into eq. (6.11), we have

—n
[c] _ [m]	 5 q^ Wr (CD I f fi r }	 [m].	 (6.12)

r=1

The damping matrix [c] obtained in eq. (6.12) will satisfy the

orthogonal..}y property, therefore, the damping term in the differential

i
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equation (eq. (6.1)) will be uncoupled with the same transformation

(eq. (6.4)), which serves to uncouple the inertial and elastic

forces.

It is of interest to note in eq. (6.12) that the contribution

to the damping matrix of each mode is proportional to the modal

damping ratio; any undamped mode will contribute nothing to the

damping matrix. As mentioned previously, the modal damping ratios

are the most effective measures of the damping in the system when

the modal analysis is carried out.

6.3.2. Defining a System Damping Matrix Using Rayleigh Proportional

Damping

The mode superposition analysis is particularly effective if it

can be assumed that the damping is proportional in the following

manner:

(cpi}T [c] {Oj }	 [2wi^i1 6 
11 
	 (6.13)

where i is, a modal damping ratio and 6 ij is the Kronecker delta

Uij	 1 for i = j, 6 i = 0 for i # j).. Using eq. (6.13), it is

assumed that the eigenvectors {O i}, i . 1,2,3,.,., n, are O-io

Cc] -orthogonal.

In considering the implications of using eq. (6.13) to take

account of damping effects, the following observations can be

made. Firstly, the assumption in eq. (6.13) means that the total

damping in the structure is the sum of individual damping in each

84

mode. In fact, the ability to measure values for the damping ratios

ci , and thus approximate in many cases and in a realistic manner
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the damping behavior of the complete structural system, is an important

consideration. A second observation relating to the mode superposition

analysis is that for the numerical solution of eq. (6.6) using the

dncoupled equations, we do not calculate the damping matrix [c],

but only the stiffness and mass matrices, [k) and [m].

As discussed, damping effects can readily be taken into account

in mode superposition analysis provided that eq. (6.13) is satisfied.

Rayleigh damping can be assumed to be of the form

[c]	 a0 [m] + al [k)
	

(6.14)

where a0 and a l are constants to be determined from two given damping

ratios that correspond to the two unequal frequencies of vibration.

Applying the orthogonality'--ondition to eq. (6.14), that is, pre-

multiplying both sides of this equation by the transpose of the r-th

mode {Or}T and postmultiplying by the modal matrix [0], we obtain

{'Dr } T [c) [¢l	 a0{4,r}T [m) (4)] + al
 (

ID r } T [k] [ ,D] .	 (6.15)

The orthogonality conditions (eq, (5.30)) reduce eq. (6.15) to

{ ID d T [c] [fl = a 0
{ cpr }T [c3 {4)r } + al {4,r } T [k] {(Pr }.	 (6.16)

Using eqs. (5.43a) and (5.44), eq. (6.16) is reduced to

{1)r}T [c ] [ 1^1	 a  + alwr 2	 (6.17)

which shows that when the damping matrix is of the form of eq. (6.14),

the damping forces are also uncoupled with the transformation (eq.

(6.15)). However, it can also be shown that there are other

matrices formed from the mass and stiffness matrices which also
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satisfy the orthogonality condition.

In general., a damping matrix that satisfies the relation

presented in eq. (6.13) is obtained using the Coughey series:

P-1
(c) - (m; E a,{ tm)

-1 
(k) )	 (6.18)

xW 0

where the coefficients ap X — 1,2,3,...,p, are calculated from the

p simultaneous equations:

[

—WO^i . 2
	
+ alwi + a2wi3 + ... + a lwi2p-

3 
i 

i	 p
(6.19)

We note that with p . 2, eq. (6.18) is reduced to Rayleigh damping

as presented in eq. (6.14). An important observation is that if

p > 2, the damping matrix [c] in eq. (6.18) is, in general, a full

matrix. Since the cost of analysis is increased by a very significant

amount if the damping matrix is not banded, in most practical analysis,

Rayleigh damping is assumed. In practice, reasonable Rayleigh

coefficients in the analysis of a specific structure may often be

selected using available information on the damping from a conducted

vibration test or on the damping characteristics of a typical similar

structure, i.e., approximately the same a0 and al values are used in

the analysis of similar structures.

By taking two terms corresponding to k m 0 and k - 1 in

eq. (6.18), it is possible to compute the damping coefficients

necessary to provide uncoupling of a system having any desired damping

ratios in any specified number of modes. For any mode r, the modal
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damping is given as

C
r s fo r	 r

) [c] ($ ) = 2 
r r

W .
	

(6.20)

If [c,j as given by eq. (6.18) is substituted in the expression for

Cr, we obtain

Cr 	{fir }T [m] E a^ Qm,]_1 [k]}X{fir}.	 (6.21)
=0

Now, using relation [k3 {cp r I = Wr 2 Tm] {4)r } an%i performing several

algebraic operations, we can show that the damping coefficient

associated with any modes may be written as

2X

	

Cr = Eat _ = 2Crwr 	(6.22)
X

from which

	

^= 2w Ea awr2'	 (6.23)
r A

Equation (6.23) may be used to determine the constant a^ for

any desired values of modal damping ratios corresponding to any

specified number of modes. For example, to evaluate these constants

specifying then modal damping ratios, Cl, 
C2' 3 ... +n we may

choose a	 0, 1,2,3,...,n. Equation (6.23) gives the following

system of equations

1	 3	 5	 7n+2

	

^l	
w1 

Wi Wl W1 W1 ... W1 	 a 1

1	 3	 5	 7

	

^2	 1 w ) 2 W2 W2 W2	 a2

2	
1	 3	 5	 7	 6.24)

	

3	 w3 W3 W3 W3 W3	 a3

' Wn n+2	 an

n

--I//

87



or, written symbolically,

r

(4) - 
2 [Q X] (a)	 (6.25)

where [Q XJ is a square matrix having different powers of the

natural frequencies. The constants (a) could be obtained as

{a) . 2 jgXj -lW. 	 (6.26)

Finally, the damping matrix is obtained by the substitution of eq.

(6,26) into eq. (6.18).

It is interesting to observe from eq. (6.23) that in the special

cane when the damping matrix is proportional to the mail [c] - a0[M],

(i - 0), the damping ratios are inversely proportional to the natural

frequencies; thus, the higher modes of the structures will be given

very little damping. Analogously, when the damping is proportional

to the stiffness matrix ([c] - a 1 [k]), the damping ratios are

directly proportional to the corresponding natural frequencies, as

can be seen in eq. (6.23) when i - 1. In this case, the higher modes

of the structure will be very heavily damped.

Rayleigh coefficients are to a large extent determined by the

energy dissipation characteristics of the structural materials.

In the above discussion, we assumed that the damping characteristics

of the structure can be represented appropriately using proportional

damping, either in a mode superposition analysis or in a direct

integration procedure. In many analyses, the assumption of

proportional damping (i.e., that eq. (6.13) is satisfied) is

adequate. In analysis of a structure wits, widely varying material

characteristics, nonproportional damping may need to be used.
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We should mention at this point the circumstances under which

it will be desirable to evaluate the elements of the damping matrix,

as in eqs. (6.21) or (6.18). It r ,,s been stated that absolute

structural damping is a rather difficult quantity to determine or

even to estimate. However, modal damping ratios may be roughly

estimated on the basis of past experience. This past experience

indicates that values for the modal damping ratios in structures

are generally in the range of 2% to 14%, probably not exceeding 20%.

In other words, on this basis, and giving some consideration to the

type of structure and materials utilized, we can assign numerical

values to the modal damping ratios. The modal damping ratios are

then used to determine the damping matrix, which is needed explicitly

when dynamic response is obtained by some analytical procedure

other than modal analysis, i.e., step-by-step integration of a non-

linear system.

6.4. The Dynamic Response of the DamEed Multi-Degree-of-Freedom

Systems Subjected to Harmonic Forces

In Chapter 5 we gave a very detailed treatment of the dynamic

response of an undamped multi.-degree-of-freedom system subjected to

harmonic forces. In this section we are going to consider the damped

MDOF system. The general response of a discrete system, i.e., the

response to both initial and external excitations, is governed by a

set of simultaneous coupled equations. This set can be uncoupled by

means of linear transformation that can be represented by the matrix

of the system eigenvectors. The decoupling procedure itself is

known as modal analysis, since the eigenvector matrix is referred to

i

i



as a modal matrix, we assume the proportioaa4 uumping or me system;

in this case, the classical modal matrix does uncouple the equations

of motion. We will consider in detail the circumstances under which

the decoupling of damping forces is possible.

Again, the system is going to be subjected to a periodic

forcing function, which may be expanded into a Fourier Series whose

terms are sine and cosine functions of successive multiples of the

fundamental frequency, as shown in eq. (5.62). The coefficients of

a series are given by eqs. (5.63) and (5.64). The response of the

system is then obtained as th e superposition of the response for each

term of the Fourier expansion of the exciting function. This function

is given by eq. (5.65). The equations of motion of an n-degree-of-

freedom system can be written in a matrix form as:

^ (w t+^)
[m) {x(t) } + Cc  {x(t) ) + [k] { (t) } ' {g( t)} ' 2{FO} 

+ {FOr}e f

(6.27)

Quantities 
{FOr} 

and ^ are defined by eqs. (5.66a) and (5.67).

Introducing the linear transformation matrices using the scaled

modal matrix [(Pl, we have

{x(t) } - to {q( t ) }

{x(t)} _ {0]{q(0}	 (6.28)

{x(t) } _ R) {q(t) }.

In a previous section, we showed the orthogonality conditions

for two modes, w  and wr , Ws W=, can be written as follows:
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0 )T (ma {fir } r 0 r f s	 (6.29)

o }T [c1(fir) - 0 r	 s

{08 }T [k) {0r } . 0	 r	 s.	 ( 6.30)

Substituting equations ('6.29) and (6.30) into eq. (6.27), we have

[ml [(D] {4(0) + (c) [OI{; (0)  + [k] [f3 {q(t) )
^ (eft+^?

{F (t) } Z
1 

{FO } 
+ {FOr

}e 	(6,31)

Premultiplying eq. (6.31) by [(P) T , we have

[03 T [m] [03 { q( t) } + (0) [c] [0] {q( t) } + Cc [k] (01 {q(t) )

T	 Qwft+*)
n 2	 °[$] ♦ {FO} + [0:1 {FOr}e 	(6.32)

Using the orthogonality relations derived in a previous section,

eqs. (6.32) are reduced to

[I, {q(t)
..	

} + l'24UQ {4 (t) } + D24 {q (t) }

t+
= Z [0] T{ o } + t ]T{For

le3( f ^)	 (6.33)	
3

The n equations above are decoupled into n independent equations.

The terms on the right-hand side represent the so-called scaled modal

force. The equation of motion in the r-th mode, due to the exciting

forces lumped at all masses having arbitrarily distributed amplitudes,

evolves from eq. (6,33) as

i
ar ( t ) + 24rwrgt (t) + wr2gr(t)

a

1	 T	 T	 j (w f t+fir )	 I

2
{'r } {FO } + {Ir } {F

Or
,}e	 (6.34)

w



(6.35)
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The general solution of equation (6.34) can be written as

qr (t) • (gr (t)) h + (gr(t))p.

The homogenous solution is

-4w t

(gr(t))h = s r CCrcoswdrt + Drsinwdrtj.

The particular solution is composed of two components:

(gr ( t )) p = (gr(t)) pl + (gr(t))p2.

We assume the following type of solutions

(6.36)

(6,37)

( gr (t)) D1 C.	 (6.38)

Substituting eq. (6.38) into eq. (6,34) and omitting the second term

on the right-hand side of the latter equation,^we have

(qr(t)) l,. 
1.02 {'r}

 T 
{r0},	 ( 6 .39)

P	 2w
r

)
(gr (t)) p2 = Qre 

3 (WftOr
,	 (6.40)

(gr(t))p2 . Jw	
i (wf t^•V^r)

fQe	 ,	 (6.41)

(gr (t)) p2 = -wf 

2 J (wft+fir)
Qe	 (6.42)

Substituting eqs. (6.40), (6.41), and (6.42) into eq. (6.43) and

omitting the first term on the right-hand side of the latter

equation we have,
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i
{`fir}T{FOr}	

J (wft •i-ter)
{qr (t)}p2 	2	 e	 (6.43)

wr -wf+j24r ^fwr

Rewriting the complex number in equation (6.43) in terms of the

magnitude and phase angle, eq. (6.43) becomes

{(Dr}T{FOd!" J Wft r)

(w3 r -wf2) +(24rwfwr,)2eidr

or,

{-Dr} {F0r}e
{qr (t)}p2 =	 ^	 (6.44)

(wr2-wf2) 2+(2wfwr)2

where

L ^rwfwr

ar	
arctan	

Z	
2	 (6,45)

wr -wf

Let ^r -ar 	 er. Then eq. (6.44) is reduced to

3 (wE t+^ )
{(D

r }T
{F }eOr	 rr

(gr(t))p2

( wr2-wf 2 ) 2+(2 4rwfwr) 2

The general solution for the r-th mode can be written as

t
qr (t)	 a 

^rwr 
[Crcoswdr t + Drsinw

drtl + 1 2 {fir}T{FO} +

T	 J (wft+8r) 2wr

{fir} {FO,r}e

+	 (6.46)

wi, 2 -wf 2 )+(2 Crwfwr) 2
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The equation above can be rewritten for a very general case as

n

	

- c w t	 n
{qr (t)}	 E e r r CCrcoswdr t + Drsinwdrt] + E	 12

{fir}T{F0^rul	 r•l 2w
r

n	 {Sp }T {F }e	 f	 r)
+ E	

r	 Or 

^ (w t+e	

!	 (6.47)r l	 (wr2_wf ) +(2grwfwr)

or as

qr(t) - e rwr t [Crcoswdrt + Drsinwdrt] + 
2W 2 {fir

}T{F0} .^.,

r.

(w ,.+e

[fir }T{F^Or
}e	

f	
r

+/^	
r m 1,2,3,...,n.	 (6.48)

3 ( wx -wf ) +(2^rwfwr)

For convenience in further calculations, the equation above can be

rewritten as

- rwrC{qr (t)} . e [Crcoswdrt + Drsinwdrt] + 1 2 [^] T {F0 } +
2w

r

+ [0] T

{FOs
}sin(wft+er ) + —[0]T {FOt}cos (wft+8r)

(wr -wf ) +(2^rwrw7 
/(W 

r 

2
_W f  ) +w)2

r = 1,2,3,...,n. 	 (6,49)

where:
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{Fo }

	
( ) + {Foc}
	

(6,50)

^r = arctan FOs
	 r	 1,2, ... ,n,	 (6.51)

Oc
r

`'r 
= arctan	

4rwrf	
, r - 1,2,...,n, (6.52)

Sir-wf
and

6r	 ^r - 6
r , r - 1,2,3,...,n.	 (6.53)

To define the vectors of constants {C} and (D), we apply the

initial conditions given as the vectors of initial displacements and

initial velocities {x(0)} and {x(0)}. To apply the initial conditions

from the original system to a new, transformed system, we use egs.

(5.69) and (5.70) at t - 0.

L.

{x(0) } - [@] {q(0) }	 (6.54)

{x(0)}	 [ p ){q(0)}.	 (6.55)

From equations (6.54) and ($.55), we have

{q(0)1 _ [(1
-l {x(0) }	 (6.56)

{;( 0 )), - ['t1-1{x(0) }.	 (6.57)

In order to avoid the inversion of matrix [fl, we are using the

orthogonality relation derived in Chapter 5

I'M T [m] ID] - [1)	 (6.58)
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where M is the identity matrix. Postmul

by ITT-1 , we have

10I
-1

 = 
(0] T

 (ml .

Substituting eq. (6.59) into eqs. (6.56) a

. a

{q(0) } 
_ ((p)T 

(m] {x(0) }	 (6.60)

{q(0)}	 [O]T[m]{x(0)}.	 (6.61)

At the time t	 0, eq. (6.49) reduces to

T	 {(}T{FOs}siner	 r

qr (0) Cr + 1 {fir } {FO }	 _____ +

2mr	
3

 (W 2
_-wf ) +(2Crwrwf)

{fi}T{F}coser	
Oc	

r	
r	 1,2,3,...,n. (6.62)

Substituting eq. (6.60) into eq. (6.62), we calculate the vector of

constants {C}

T	 {(D .} T {F }sine	

r

Cr	 {(pr }T (ml:ir (0) _ 1 2
{,pr } {FO } -	 r.	 Os	 r	 -

2Wr 	(Wr2_wE 2 ) 2+(2 4rwrwf) 2

{,k r  }T{FOc }cos8r

-

	

	 s r = 1r2a3, ... ,n.	 (6.63)

/(Wr _Wf ') +(2 ^ W Wf^l

Finding the first derivative of eq. (6.49), we have
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{qr (t)} _ ^rwre- ^rWrt (Crcosw
dr

t + Drsinwdr tl +

-^Wt
+ e r r (-Crwdrsinwdrt + Drwdreoswdrt) +

Wf
{0r }T{FOs

}cos(Wf t+6r )	 W
f{,Dr

}T
{FOc}

sin (Wft+er)

+ (W 2-w 2 ) 2
- - W Wf) 2 	(w	 2)2+ 	 2r2_Wf (2:`^,^rWf)

r f	 r r

r - 1,2,3,...,n.	 (6.64)

At time t = '0, eq, (6.64) becomes

•	 wf{fir}
T
{FOs

}cos8r
{qr(0)}	

r 
W 

r 
C 
r # DrWdr +
	 -

(Wr 2-Wf 2 ) 2+(2
^ rWrwf)2

Wf {'Pr }T{FOc
}sins

r	 , r - 1,2,3,... ,n. (6,65)

(W3 r"-wf 2) +(^ ) 2

Substituting eq. (6.62) into eq. (6.65), we calculate the vector of

constants Dr , and in a similar manner, we calculate the vector of

constants Cr

W {^ IT {F}cosh
Dr 

w1 110
r }T {mlxr (0) - ^rWrCr _ 

t r	 Os	 r

dr	 (Wr 2-wf 2 ) 2+(2 4rWrWf ) 2

W 
{(p IT 

{F }sine
+	 f r	 Oc	 r	 r = 1,2,3,...,n.	 (6.66)

(Wr2_Wf2)2+(2^rwrw£)2

97
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The vector Cr is defined by eq. ( 6.63). Now we can find the complete

solution vector of the transformed system {q(t)}. Finally, the dis-

placements of masses are obtained by superposition of the response in

each mode

{x(t)} _ (0j{q(t)1.	 (6.67)

Very of ten, only the steady state response of eq. (6.49) is of

interest to us. For this case, xr (0) - 0, and xr (0) - 0, r - 192,3,...,

n, and eq. (6.49) is reduced to only the particular solution,

{O }T {F }sin(W t+6 )
qr(t) 12 r 

{FO{,}T} +	 r	 0s	 f r	 +

2Wr	
(Wr -Wf ) 2+(2 

^rWrWf ) 2

{(r}T{F0c}cos(Wft+6r)

	

+	 , r	 112,3,...,n.	 (6.68)

(Wr2
-Wf 2 ) +(2 ^rWrWf) 2

The vector of phase angles between the harmonic forcing-function

vectors and the displacement vectors, 6 r , r = 1 12,3,...,n, is given by

eq. (5.62). The modal amplitudes of sine and cosine forcing functions

are given as

T( CD r } {F0s}sin((Ijft+Br)

	

(Q) _	 r = 1,2,3,...,n,	 (6.69)
s r
	

(W 2_.w 2) 2+	 2
(2 w w )

r	 f	 r r f

and	
I

1
3
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{fir }T (F Os^ cos(wf t+6r)

c r	 /( r2 -wf2^
2 +(2

4rWrWf)

2

The dynamic amplification factor in a mode is defined by the analogy

for single-degree-of-freedom system. Riven in Appendix A. The vector

of the dynamic magnification factors in modes is defined as the ratios

of the steady-state modal amplitude Q  to the vector of the static

modal« deflections (Qr)st:

Q
D r = 

(Q)	
, r = 1,2,3,...n.	 (6,71)

q	 r st

The quantity above is usually given for a particular component of a

harmonic forcing function. The response due to a sine forcing function

in eq. (6.68) can be written in terms of modal amplitude:

qr (t) - Qrsin(Wf t + 8r), r = 1,2,3,...,n,

where Q  is the vector of modal amplitudes of the sine function, written

as,

{(DdT(F
Os}sin6r

Or 	 r	 1,2,31...,n (6.72)

(w	
2

r2-Wf 2 } 2+(2 ^rwrwf) 

Observing eq. (6.34), the static displacement at the r-th mode is

(gr ) st w [12'{fir }T{F0} + {fir}T{FOs)sin^r + {fir}T{FOc}cos'rr

(6.73)

,
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We can expand equation; (6.73) for a very general case:

(gr)st M wr2[!, [,Pr JT{FO} + {fir}T{FOs}sing + {fir}T{FOc
}cos^r

r = 1,2,3,...,n.	 (6.74)

The maximum dynamic steady-state displacement from eq. (6.68) is

{0 IT (F.	 }

4r ' 1 2 {or 
IT 

{FO }+	 Oc
2wr 	 3 (wr2_wf2)2+(2Cr rwf)2

r = 1,2,3,....n.	 (6.75)

The dynamic magnification factor in a mode is

Dr = (gr)st, r = 1,2,3,...,n.	 (6.76)
r

As a very important characteristic of the system, the damping

in a triode can be defined by one of several methods given in Appendix A

for a damped single-degree-of-freedom system. Amount of damping in a

mode is usually determined by measurement for a particular structure

or by analogy with the damping of a similar structure. To define the

damping in a mode, eq. (6.34) can be set for a free vibration:

qr(t) - 2^rwrgr(t) + wr2q = 0, r - 1,2,3,...,n.	 (6.77)

Letting qr (t) - Arept , eq. (6.77) becomes

[p2 + 24 
r r	 r

W p+ w 2J A 
r 

ept = 0.

100
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Solving the equation above,' we have

pl
► 2	

.. rwr ±	 3 44r2wr z 	4wr 2 , r - 1,2,3, ...,n.	 (6.78)

We concluded in Appendix A, that transition between the imaginary

and real roots of the characteristic equation (eq. (6.78)) occurs when

44r2wr2 - 4wr2 ,	 (6.79)

or

4r - 1.0,

where t  is the ratio of the actual damping in the r-th mode to

the critical damping in the r -th mode

C

4r = (C
.Crr)	 (6.80)

cr r

From eq. ( 6.79), the critical damping in the r-th mode is

(Ccr)r . 2w
(6.81)

The actual damping in the r -th mode is

Cr	 2^rwr,	 (6.82)

or, for a very general case,

	

(Ccr)r = 2w 
r , r = 1,2,3,...,n,	 (6.83)

and

	

Cr = 2^rwr, r - 1,2',3, ...,n.	 (6.84)
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Again, by the analogy given in Appendix A, the vibration in a mode

is conventionally classified with respect to the degree of damping

as

1. Critically damped when 4r = 1.0,

2, Overdamped when 4r > 1.0,

3. Underdamped when 4r < 1.0.

In previous derivations we assumed that we had an underdamped

case or oscillatory motion, which is the only case of interest in

engineering application.

Once more, the same question arises regarding how many modes

we must take in order to have the solution accurate enough for an

engineering analysis. Since, for the dynamic cases, inertial

forces of the system are very important, we usually want to know

how well we model our system dynamically, Since we usually discretize

the system in modal analysis, a very good indication of amount of

mass taken into consideration is "the effective modal mass." For

the r-th mode, this quantity is defined as

{1)1 m {(Pr){,prITfm) {l)

(reff)r	
M	 r r	 1,2,3,...,n,	 (6.85)
r

or, in a summation form,

n
2

i=lmi'Dr

(Mef£ ) r	 n 2	
r = 1,2,3,...,n.	 (6.86)

mi
(P
irl 

Where m  is the mass at the i-th point, 
{,IT 

is a row matrix of ones,

and Mr is the modal mass in the r-th made defined by



n

r '^ £ mi"ir2' r = 1,20,...,n,	 (6.87)
is

A good indication that the inertia forces have been accurately

measured in modal analysis is usually that the effective mass is

dt least 95% of the actual mass of the system. Since the modal

parameters for higher modes cannot be calculated correctly, inclusion

of higher modes usually does little to. increase the accuracy of

the calculation. For structural systems with homogenous material

characteristics, the first several modes are most often enough to

calculate the dynamic response of the systeia.

f
f
f
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Chapter 7

MODAL ANALYSIS PERFORMED ON FIVE BLADE MODELS USING A

NICOLET 660A DUAL-CHANNEL FFT ANALYZER

7.1. Introduction

In the previous chapter, we discussed the concepts which have

to be considered during modal testing using FFT analyzers. In this

chapter, we are going to give a brief description of how to conduct

the modal testing properly using a Nicolet 660A Dual-Channel FFT

Analyzer when impulsive excitation is chosen. Selection and

calibration of the impact hammer will also t e discussed, and the

results of testing performed on five models will be presented.

7.2. An Experimental Technique

Impulsive testing utilizes short-duration transient force inputs

(with corresponding broadband spectra) to excite all frequencies in

the structure simultaneously for a chosen frequency range. Modern

measurement instrumentation (,such as the Nicolet 660A) is fully

capable of performing the modal analysis when the impulsive

excitation is used.

Impulsive testing is normally conducted using some forth of an

instrumented hammer. A force transducer is mounted on the head of

the hammer, and measures the force input to the structure, An

accelerometer is used to measure the response of the structure. By

far the most popular technique for impulsive excitation is to mount

an accelerometer at a fixed location and excite the structure at a

4
	 multiplicity of locations, using a hammer with a force transducer on its
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face to impulse the system at many locations. The data are analyzed

with a dual-channel. FFT analyzer, using the impulse force as a transient

capture trigger condition. These two transient. time histories are

Fourier-transformed to yield the input and output spectra. The

resultant ratio of the output and input spectra is the desired frequency-

response function.

Usually, the results of several transient excitations are

ensemble-averaged. Then the signals are Fourier-transformed and the

transfer function is displayed on the screen of the analyzer. The

impulse hammer (excitation system) with sensitivity S a (mV/lb) is

attached to channel A of the FFT analyzer. The accelerometer (response

transducer), with a sensitivity of Sb(,-V/g), is attached to channel B

of the analyzer. Based upon a preliminary examination of the structure,

the input attenuator of channel A is set to a full-scale value of Fa,

and the input attenuator of channel B is set to a level of Fb.

The levels of Fa and Fb can only be obtained by trial measurements

on the structure.

The structure to be examined is marked, Ott M spacial locations.

The response transducer (accelerometer) is fastened to the structure

at one location. This transducer should be located in a local "hot

spot" so that it will be capable of responding to all modes. Starting

from the response--transducer location, the structure is impacted a

number of times at each spatial location. Each spatial location is

impacted until the coherence function (a function which indicates

the validity of the transfer function) approaches unity across the

selected frequency-analysis range. The first impact will always produce

a coherence function equal to unity. It is essential that each
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location is impacted more than once, so that the coherence function

may be used as a valid indicator of the quality of acquired data.

The first impact point is of particular importance.

A complete description of a mode contains four pieces of infor-

mation. At the n-th mode:

1. Natural frequency of the n-th mode (fn),

2. Amplification factor of the n-th mode (Qn),

3. "Weight" of the n-th mode; in indication of how much

structural mass is in motion in the n-th mode ( n),

4. MQtiQn of the m-th. location in the n-th. mode

(.Om, n ) .

Within a given frequency range, N resonances may exist, Hence,

n ranges from 1 to N. If M locations within the structure are

measured, then m ranges from 1 to M. Each of the N mode shapes may

be normalized so that the maximum displacement (for example, at the

p-th location) is equal to one unit. The choice of mode shape

normalization affects the mod4,,, weight Wn . The modal weight is

defined by the summation

M
W '^ E, W ( Om ) 

2
n m=1 m ,n (7111

where 
m 

is the physical weight at the m-th location.

At the first impact point, both input and response readings

are made at the same spacial location, The input/output relation-

ships associated with this spacial location are used as a guide to

interpret all subsequent measurements. The resonant frequencies

of a structure are independent of the spacial location from which

they are measured. The resonant frequencies of N modes are detected
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by identifying the N peaks in the imaginary part of the displayed

transfer function. The quality factor Q's of the N modes are

measured using information from the displayed real part of transfer

function, and are defined as

s 1	 (fa/f b ) 2 + l
(7.2)

Qn 2^ 
(f a/f b)n 1

where

fa = frequency above resonance, where the real part

of the transfer function reaches a peak,

and

f  = frequency below resonance, were the real part_ of the
L

transfer function reaches a peak of opposite sign.

We showed in section 7.4.3 that the quality factor in a mode•is

directly related to the amount of damping in a mode. The first

measured transfer function dent f ies the parameter f n and Qn over the.

range of 1 < n < N.

Mode shapea can be estimated directly from frequency-response func-

tions. The mode shape is estimated by measuring quadrature (imaginary)
i

response values from all of the measured transfer functions at each

resonant frequency. At each of these frequencies, the quadrature

components of the response functions are distributed in proportion

to the displacement at each of the measured locations thraughout the

structure. That is, they are distributed in an approximation of the

mode shape associated with that resonance.

The imaginary values from the driving-point transfer function at

each of the N resonances should be measured and retained to normalize
i
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subsequent data. The N quadrature points, imAC bb (fn), must be

retained. The driving-point location, a, is subsequently moved

through the sequence of predefined spatial locations. At each of the

M locations, the imaginary part of the transfer function is measured

at the N preselected resonant frequencies. The quadrature values.,

IMAGS b (fa), are measured and retained for all values between 1 and
r

M and all values of n between 1 and N.

If all measurements can be acquired without changing the input

attenuators of channel A or channel B, then a single scale factor is

sufficient to relate physical and electrical units. The constant,

kc , may be retained where

kc = -SbFa/SaFb .	 (7.3)

The coefficient, kc , relates the voltage gain measured by the

analyzer to physical measurements in the structure. If the imaginary

part of`the transfer function, IMAGab (fn), is read at the n-th

resonant frequency, it is related to the physical parameters of the

system by the equation

IMAGa b(fn)	 kC% Oa n^b,n.
	 (7,4)

'	 n

At any frequency, fn, the stored quadrature components, IMAGa b(fdo

will have a local minimum occurring at some special location a - p.

The components IMAG p,b (f n) are of particular importance. These are

used to compute the "weight" of each mode and to normalize the

retained quadrature components from each mode to arrive at the spatial

vectors ^a,n:

i
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k 
cQn 

IMAG 
bb 

(f n)

n	
INAG2 (f n)

r̀ IAGa . 
b (-

f
-
n
-^
)
,	 (7.6 )

a,n IMAGppb(f

These shape functions are approximations, because the measured shape

(in response to a single-point excitation) is actually q, Linear summation

of all of the mode .shapes of the system. If the resonances are broadly

spaced in frequency and high "Q" in nature (Q - 5 or greater), then

the interaction between the modes is minimal and the distortion of any

given mode shape by contribution from other modes is not significant.

7.3. calibration of an Impact Hammer

An impact hammer of 12.5 (lb] equipped with a light Teflon tip

and the Kistler Instrument Quartz Force 'Transducer Model 901A-903

were selected, and the force transducer output was fed directly to

channel A of a Nicolet 660A Dual-Channel FFT analyzer. In Fig. 7.1,

the FFT analyzer and impact hammer kit, (impact tips and weight

extenders) are shown. Preliminary testing on models showed that an

impact hammer with a light Teflon tip and without weight extenders

was enough to excite all frequencies in a frequency range of 0-2 'KHz

for all five models. A freely supported mass of 10.437 [lb] (steel

cylinder) was impacted. An Endevco Piezoelectronic Accelerometer,

Model 2233, was mounted at the center of one face of a steel cylinder

of an impact hammer and the Teflon tip at the center of the opposite

side was used as an impact surface. (The mass was impacted through

the center of gravity.) A piezoelectric accelerometer is a self

r-
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(b)

Figure	 (a) The control table of the Nicolet 660A Dual-Channel

FFT analyzer; (b) The impact hammer kit (hacuner,

impact tips, and eNtenders).
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generating transducer which generates an electrical output signal

that is proportional to its acceleration. An Endevco Input Amplifier,

Model 2614B, with an amplification of 10 was used to amplify the

signal generated by the accelerometer. This signal was fed to channel

B of the FFT analyzer. The whole calibration was performed in a

frequency domain of 0-2 KHz.

An ensemble-average of a number of impacts was done, and the

calibration factor was calculated in the following manner:

The unitless constant k was calculated as:

k' 
F(W)

c 	 A.(W)

k _ 
6950.65 

14c 486.73	 .296	 (7.6)

k . 14.296
c

where

F(W) is the average value of the Fourier-transformed force

signal in a frequency range of 0-2 KHz,

A(W) is the average value of the Fourier--transformed acceler-

ation signal in a frequency range of 0-2 KHz.

The mass of an impacted cylinder was calculated as:

	

me 
-
R 

- 0.0270 [lbsec 2 /in].	 (7.7)

The sensitivity of the accelerometer was

Ea = 37.5 [mV/g].	 (7.8)

The total sensitivity of an accelerometer in engineering units was

found by

r,

E



^G

E 32/2

Sa Ampl. Factor
[V/in/sec2].

The expression above was multiplied by 
Y 

since the signals were

displayed on the screen of FFT by their RMS values.

S . 37.5x10 -3x /2—/2
a	 10

S - 0.686x10-5	
V 

2	 (7.10)
a	 sec

This was the total sensitivity of the accelerometer and in-line

amplifier with a voltage gain of 10.

The sensitivity of the force transducer was not known. The

force transducer system was calculated using eq. (b) derived in

Appendix B. The two total sensitivities are related as follows:

t	 A(w)	
m

k^
	S 

S 

f	
(7.11)

i a
i

where

m is the mass of an impacted cylinder
Cl

t	
and

S f is the total sensitivity of the force-transducer impact-

hamer system.

Thus, from eq. (7.11), we obtain

Sf	
cSa8 - [mV/lb l
	

(7.12)

_ 14.296 x 37.5 x 10-3 x 32/2
S f 	 10.437x10

Again, eq. (7.12) is multiplied by v to get the values on the screen

x
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in engineering units (zero to peak).

Sf = 0.363 x 10-2 (V/lb]	 (7.13)

This technique has the added advantage of being able to calibrate

an accelerometer and impact hammer as a matched set. I£ the

accelerometer used to measure the response of the suspended mass is

the same accelerometer that is used during the modal test, then any

error in the accelerometer measurement for the suspended mass will

automatically be introduced into the impact hammer calibration.

This error will then be eliminated when the ratio of acceleration to

force is calculated, since it will be in both the numerator and

denominator. Therefore, the accuracy of the calibration of the

matched set of transducers depends on the accuracy to which the

calibration mass is known. A very good low-frequency calibration

can be obtained using this technique. The high-frequency limit is

determined by the frequency response of the accelerometer and the

mass. Figures 7.2 and 7,3 show the setup for the impact hammer

calibration.

7.4. Geometrical and Material Properties of Blade Models

The modal testing was performed on five blade models. Three

aluminum blade models had NACA four-digit symmetrical airfoils as

their cross-sectional ar ; .,s. The other two blade models were of

aluminum and steel, ;:,td had identical rectangular cross-sectional

areas and comparable lengths. The problem was to relate the damping

of the geometrically identical models made of different materials, and

to observe the damping of the models made of the same material



d
a^

U

a
^i

u

114

aJuu
O N
P-4 %D

H

u

j ^^

0-4	 ld r^-1

d N H
.-1 u a ,•
L ^+ U G!

r

T

a
a
0y N

i
V S N

wa^i w

I w c' 0u^
cud
aa)

ol
u)

^/ O

u I

u I

J^J ' I
I

IJ
'

HC7

• U

6

yi

0
N 1U

J O
'I
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Figure 7.3. Test setup for calibration of the impact hammer.



kr

(aluminum), but having different cross-sectional areas,

As a very important concept, damping for the same family of

t	 models could be much more easily handled if we could get it in a

scaled form with respect to the chord and the thickness, These

blade models are shown in Fig. 7.4. Geometrical and material

properties of these models are given in Table 7,1. The sixth model

was an aluminum curved blade, as shown in Fig. 7.5. The objective of

this test was just to measure natural frequencies. A different

setup was used for testing of the sixth model.

7.5. The Modal-Testing Procedure

The modal testing was performed on the five blade models

described earlier by the Nicolet 660A Dual-Channel FFT Analyzer using

impulsive excitation. The accelerometer was bonded beneath the tip

of the blade (using adhesive). The "'target" points were bonded to

the upper surface of the blade, along the elastic line (a locus of

shear centers). Only four points equally spaced counting from the

tip were used as impacting points. Since the data were analyzed

over a,2 KHz range, all frequencies should be excited in that range.

To accomplish this, extreme care was taken to locate the target

points properly. The nodal points for the first five modes were

defined and good arrangement of the impact points was done to avoid

their location at any of the nodal points. Figure 7.6 shows the

arrangement of the nodal points of the blades for the first five

modes. For this type of model, the first 5-6 natural frequencies

are within the chosen frequency range of 2 KHz.
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Figure 7.4. The blade modes used for modal testing.
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Material: Aluminum
Thickness: 0.125"

Figure 1.5. Top view of a curved beam model.
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1st Mode	
0.2262

2nd Mode	
0.4992

0.132

Z

rd Mode

0.6442

0.0942

4th Mode
0.721.

0.500E

5th Mode

Figure 7.6. The nodal points of the first five modes. (The modal

shapes are greatly exaggerat--d.)
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The accelerometer's signal was conditioned by an Ende;rco Input

Amplifier, Model 2616B, with a voltage gain of 10. During the

calibration procedure, we defined the total sensitivity as

Sa - 0.686 x 10-5	 V 2	 The blade models were excited byi.n/sec
impacting the targets with an impact hammer, shown in Fig. 7.1(b).

A force transducer, Kistler Instrument Quartz, Model 901A-903,

was mounted to the machined face of the hammer with a threaded stud.

A plastic tip (Teflon) was mounted to the force transducer to serve

as the striking surface. The reason for its mounting was discussed

in the previous chapter. During the calibration procedure, we defined.

the total sensitivity of the force transducer and impact hammer

system as 3f . 0.363 x 10-` lb

We discussed earlier the importance of ensemble-averaging both

signals in the time domain. When the signals recovered from noise,

they were Fourier-transformed and the transfer function was calculated.

To obtain above both transient signals in the time domain, they

were captured and stored. The best way to do this is by automatic

capturing of the signals. Working with this analyzer, we set the

trigger on channel A (force signal) to activate the system (capturing

and storing) of both signals at the 
16 

of the maximum amplitude..

Also, the type of averaging was chosen so that besides the automatic

triggering, capturing and storing the averaging was done automatically.

The blade was struck a number of times until the satisfactory

coherence function was observed on the screen of the FFT analyzer.

The stable data were considered when the coherence function exceeded

a value of 0.9 around each resonance. This was an indication of
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valid data free from nonlinear effects and noise contamination.

Since the trigger was very sensitive on the Level of the force signal,

enough time was allowed between two impacts for the transient

vibration of the model to die out completely. By our oboervation,

this period was usually to two minutes, The whole process of

averaging and the capturing of signals was observed on the screen.

When good coherence was reached, the transfer function was calculated

and displayed on the screen. Also, this function could be described

in all three modes: Bode plot, Nyquist plot, and real and imaginary

part vs. Frequency. 'then, the picture from the screen was reproduced

on the paper by the plotter attached to the FFT analyzer. The same

procedure was repeated for all target points of the blade. The setup

for modal testing used is shown in Fig. 7.7. Figure 7.8 shows all

components of the setup ready for testing. This test was performed

in the structural area of the Department of Aerospace Engineering

of The Pennsylvania "State University during Fobruary and March, 1982.

7.6. The Results Obtained by Modal. Testing

The objective of this test was to analyze the natural frequencies

and modal damping of the blade models. Ths mode shapes were not

analyzed, since a very good conditioning of both signals was required.

The accuracy in measurement of mode shapes directly depends on the

accuracy of the determined relationship between electrical and

engineering units. For accurate measurement of frequencies and

damping, we do not need such an accurate conditioning of the signals.

Frequencies and damping were calculated from the point transfer-

function of the blade. The point transfer-function is calculated

F,
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•Blade Model

Input Amplif ier4.

i
jr

1 .,

(a)

Targeted Points

•e^Accelerometcr

Impact Ilsmmer

Power a u p p i y J! .'^'^.+?^s 7	 Mmax ,A-4

(b)

Figur,	 the setup for modal testing; (a) the blade model of the

test stand, (b) the components of the setup.

^	 :E
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for the station where the input and output signals are taken from

the same point on the blade. In our case, this point was the first

target point at the tip (the target and accelerometer were aligned

at the same axis). Since the natural frequencies and damping are

the global property of the linear structure, any arrangement of the

impact point and accelerometer should give the same natural frequencies

and damping. The measurements and plots were made for four different

locations of impact points, and good agreement was observed.

When good coherence was reached, the transfer function was dis-

played on the screen of the FFT analyzer, and the frequencies were

read accurately, but using the cursor line, as digital numbers.

Figure 7.Q shows the moments of impacting with the blade. Figure

7.9(a) shows impacting, with target No. 1, and Fig. 7.9(b) shows

impacting with target No. 4. Figure 7.10 presents the test setup

for modal testing of a steel blade. Since we do not have enough

space to show all graphs reproduced from the analyzer screen, only

those graphs typical of all blade models will be shown

including an aluminum blade model having NACA 0015 as its cross

section, and a steel blade model having a rectangular cross section.

The complete results for all five models are given in Table

7.2. They will be used in the following chapter in the numerical

model of the dynamic response of the blades. At this point, we

cannot make any conclusion concerning the data measured. A preliminary

check shows that at least we have good agreement regarding natural

	

,g<
	 frequencies compared with the natural frequencies of continuous

beam models. Also, we observe that the damping is concentrated

	

'	 in the first three or four modes.

L
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I -

mpact Hammer

Z^--c

I

	 1st Target Point

Input Ampl if ierl

"igure - .9. Blade model at the stand; ( a) giving the impulse to the
point 1 and taking the output from point 1, (b) giving
the impulse to the point 4 and taking the output from
point 1.
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(a) The steel blade at the test stand.
for modal testing of the steel blade.
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(a)

Curved Beam

Shaker —^-

Vibration Signature Analyzer,,kj

celerometer

Figure	 (a) A curved blade model at the test stand, (b) the
test setup for measuring frequencies of a curved blade.
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Figure 7.25. (a) Natural frequencies of a curved blade swept by a

2	 vibration analyzer over a bandwidth of 0-1000 [Hz),

(b) natural frequencies swept over a bandwidth of 0-100
[Hz I .
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CI	 Chapter 8

NUMERICAL MODELING AND RESULTS OF THE DYNAMIC FLEXURAL

RESPONSE OF UNIFORM PROPELLER BLADES

8.1. Introduction

This chapter is a summary and discussion of the results and

findings of this study. A small computer code was developed to

perform a complete modal analysis of all five blade models, including

the dynamic response of the models as undamped and damped multi- 	
4

degree -of-freedom systems. The data obtained experimenta l ly by

using the FFT analyzer, which were analyzed in Chapter 7, will ^=

used for a damped c ase. Some important results of numerical modal

analysis will be shown and discussed. A very brief description of

the computer program will be given in the last section. A flowchart

of the computer program is given to Appendix C.

8.2. Formulation of the Equation of Motion

Since we are going to model the blades as undamped multi-degree-

of-freedom free-vibration cases, the formulations of the [m] and (k]

mstrices are necessary. In section 5.4, 4!e gave a detailed description

of methods for deriving the mass matrix (m]. We found it convenient

to assemble this matrix as a diagonal matrix having only diagonal

terms and lumped masses. A schematic representation of this model

is given in Fig. 8.1.

The formulation of the stiffness matrix (k] is done in the

following manner. First, the matrix of flexibility influence

coefficients is found; then, by inversion of this matrix, (k] is
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Figure 8.1. (a) Schematic of the blade model, (b) masses lumped at

each node of the model segment, (c) final arrangement of
the lumped masses of the blade model.
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computed. Both of them have to be symmetric matrices. The matrix (k)

can also be calculated by using the direct stiffness method. The

computer program is capable of handling the equation system when

we have a full-mass matrix (m). The program is run for two cases:

when the order of these matrices is 8x8, and when it is 10x10. The

program is capable of handling larger arrays.

8.3. Elgenvalues, Natural Frequencies and Eigenvectors

Since the accurate calculation of these parameters is very

important for the dynamic analysis of the models, extreme care and

rigorousness was taken in the process of setting up the algorithm

of computer program. The governing equations of motion can be written

as

(m] U(t) ) + (k] fx(t) ) - {0).	 (8.1)

The Jacobi method is used to calculate all eigenvalues and correspondiLig

eigenve-tors of the generalized eigenproblem

(k) (01 - W2 (m1 [m1.	 (8.2)

The program basically transforms the initial system of equation (8.1)

into a new system having only the diagonal elements in both matrices.

This is a so-called modal system of equations, using the modal

mass matrix (`iJ and modal stiffness matrix N instead of matrices

[m] and (k]. In Chapter 5, we showed that the following relationship

exists:

101 (mJ f01 - r'tJ, 	 (8.3)
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and

{

[fl [kl [^] - N	 (8.4)

where the matrix [o] is called the modal matrix or array of eigen-

vectors of the system. Also, in Chapter 5 we showed that we could

scale the eigenvector matrix in a certain manner to get t ine identity

matrix [I] instead of the matrix (Ma. We established the following

relations:

and

[01 (k] [o ] _ 1W ;41	 (8.6)

where [fl is the matrix of scaled eigenvectors. We showed also

that it is much more convenient to work with unit masses, where we

could avoid some computational expenses during the dynamic analysis

of the system, especially for imposing the initial conditions of

the system. We will be working with the scaled system of equations

throughout the rest of the program. In order to visualize the

deformation pattern, it is convenient to scale eigenvectors in a

similar manner as to how unit vectors are defined. Then they have

values only between zero and one, and it is easy to see the relative

motion of certain points of the system in different modes. The

natural frequencies are also calculated when the blades are modelled

as continuous beams (Bernoulli-Euler Model). In Table 8.1, the

frequencies are given for all five models for the first eight modes.

Comparison is usually satisfactory among the three approaches used

up to the fifth mode. A continuous system and lumped parameter

system are used as numerical approaches to identify the first eight
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frequencies. Only the first five frequencies are measured by the

FFT analyzer (since the frequency range chosen was 0-2 KHz).

In Fig. 8.2, the deformation pattern is given for the first five

modes (greatly exaggerated). Also, pictorial representation of

every element of the modal matrix is given. This is given only for

five modes, although the pattern is the same for any number of modes.

In Table 8.2, the normalized mode shapes are given for blades having

NACA 0015 airfoil cross sections. The system of notation corresponds

exactly to the pattern given in Fig. 8.2.

8.4. Identification of Modal Parameters Including Damping

In a previous section, we showed the natural frequencies and

modal shapes for soma, of the blade models we studied. In this

section, we are going to introduce the damping measured and analyzed

in Chapter 7, then perform a complete modal analysis of blade models

modeled as damped multi-degree-of-freedom systems. We assume that

the natural frequencies and modal shapes are not seriously affected

by introducing the damping, which isvalid for systems having light

damping. As we described earlier, the damping ratios are measured

in the first five modes. Measured data cannot be used directly in

an analytical model without modification.

In Chapter 6, it was shown that we have to impose some

conditions under which the modal matrix decouples the equation of

motion for the damped multi-degree-of-freedom system. The damping

forces could be decoupled only if the damping matrix is a linear

combination of the mass matrix [m] and stiffness matrix [k]. The

damping ratios are measured only in the first five modus. in the

149
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analytical model, the damping ratios in the rest of the modes are

taken to be zero, and the least-squares approximation straight line

fits through these points, start .ig at the origin. The damping

ratios modeled in this manner satisfy eq. (6.13), which is rewritten

here as

{^i} [c ] {,p^ }	 f2wici4 6ij ,	 (8.7)

where 'S i is the modal damping ratio and 
6 i is the Kronecker delta

(aij	 1, for i - J, 6i3 - 0, for 1 ¢ J). Using the transformation

matrix of scaled eigenvectors I01 and eqs. (8.5) and (8.6), the

governing equation of free vibration of an undamped multi-degree -ojj-

freedom system becomes

[I] {9(t) } + C2W4J {q(t) I + NLj {q( t) } - {0 },	 ((8.8)

where the relation between original and modal displacements is given

by

	

{x(t) } - [01 {q(t) }.	 (8.9)

We have defined the necessary parameters for uncoupling the

equations of motion. Since we have imposed some conditions on the

damping ratios obtained by measurement in order to decouple the

damping forces, the related parameters such as the amplification

factor, critical damping, damping in a mode, and damped natural

frequencies have new values. These parameters are given for all

five models in the first 8 modes in Table 8.3. Since we do not

have much interest in a free vibration, most of these parameters

^r
	 will be used in the following section, where we are going to
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consider the dynamic response of the blade me

and undamped multi-degree-of-freedom systems.

8.5. The Dynamic Response of Blade Models Modeled by Modal Analysis

as Undamped and Damped Multi-Degree-of-Freedom Systems

In Chapter 6, we defined analytically the dynamic response of

blade models modeled as multi-degree-of-freedom systems. The

excitation force ,was assumed to be one harmonic of the Fourier

series. The equation of motion for an n-degree-of-freedom system

was given as

[m] {X(t) } + (c] (X( t) } + [k] {x (t) }	 {F ( t) } 2 {FO } +

J (wft+^i)
+ {FOr }e	 , i - 1,2,3,...,n.	 (8.10)

Quantities 
{FOr} 

and ^ i are defined by

{FOr} ' {Fo3 	 } + {FO }^,	 (*.11)

and

arctan ^(FOc)i	 i	 1,2 3 .., n.	 (8.12)
i	 ' '	 '

(Foc ) i

The equations above are written assuming that the vector of the

excitation forces can be written as

{F(t)} - l{ FO } + {FOs}sinwf t + {FOc)coswft.	 (8.13)

Premultiplying eq. (8.10) by I(P] T and using linear transformation

{x(t)} - (I l{q(t)}, eq. (8.10) becomes
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(I] {q(t) } + [2^UQ (q (t) } + [24 {q(t) } . 2 D] T (FO } +

'	 T	 9 (Wf t+^i)
[0] {FOr }e	 , i - 1,2,3, ... ,n.	 (8.14)

This is a so -called modal equation which decouples the system of

equations into n independent equations. Then we'showed how to obtain

the homogenous and particular solution of eq. (8.14). Finally, the

displacement of the system was transformed into the original coordinate

system by transformation {x( 01 - [0] {q( t ) h

The computer code has been developed for a simpler mode

(regarding the excitation forces) than the analytical model developed

in Chapter 5. For the test program, it is assumed that the

excitation force is of the type F - sinWf t, and that it acts at

the tip of the blade. Also, the dynamic response (steady-state) is

defined when the blades are modeled as a continuous system. The

main idea in this study was to compare the response obtained by

two approaches. Also, the initial conditions are assumed to be zero.

The procedure of imposing initial conditions was given in Chapter 6.

This could be done easily by carrying out the calculation in a matrix

notation. The procedure for calculating the dynamic response is

implemented in a computer code for cases when the blade models are

modeled either as undamped or damped multi-degree-of-freedom systems.

For an undamped case with a given excitation force and initial

conditions equal zero, eq. (8.14) is reduced to

2	 T(I] {q(t) } + N^J (q(t) }	 [ ](FOs Isin(wf t) ,	 (8,15)

V_
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x-^ 

where the term on the right-hand side represents the scaled modal

force or the excitation Force in a new transformed system. The

steady-state response of the system given by the equation above for

the r-th mode is given as

T

qr (t) *	 r2	 Zs si n(Wft), r - 1,2,3,...,n.	 (8.16)

W ^f

The final displacements of masses are obtained by superposition of

the response in each mode:

	

{x(t) } _ [ IM {q(t) }.	 (8.17)

For the damped case with a given excitation force and initial

conditions equal zero, eq. (8.14) reduced to

[I]{q(t)} + (2m{ q ( t)} + [W2 I{q ( t)} _ IMT{F0s}sin(Wft).

(8.18)

The steady-state response of the system given by eq. (8,18) for the

r-th mode is as follows:

q	 Im	
r	 Os 

gw
(0 IT IF }e f

t

=	 (8,19)(t)	 ,r	 Wr2-Wf2+ j 2 ^rwrcu f

^(Wtd)
{fi}

T{FOs
}e f r

qr (t)	 Im	
r	

(8.20)

(Wr2-Wf2)2+(2^rWrWf)
2

where

2^ w w

	

8 = arctan ( 2 r 2).	 (8.21)r
W  _.Wf

or
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Equation (8.20) can be written as

(0r}T(FOs)sin(wft-dr)
qr (t) 	 (8.22)

(wr2 -w
f 2 ) 2

+(2 4rwrwf ) 2

The same procedure can be applied for any of n decoupled equations

of motion. The final displacement of lumped masses is as:

{x(t) I _ [IDl{q(t)1.	 (8.23)

8.6. Predicted Results for the Dynamic Response of Blades

in section 8.5, we gave the outline of the model used in a

computer program: We decoupled the equation of motion, getting the

scaled modal equation of motion. The coefficients and excitation

forces of eq. (8.18) are given for all eight modes in Table 8.4. As

we have already stated, the frequency of the excitation force lies

between the first and second natural frequencies of the blade models.

The steady-state response is predicted by two approaches:

when the system is modeled as a continuous or as a lumped parameter

system. The response of the tip point along the first half of the

time period of the excitation force (at 10 instants of time) is

given in, Table 8.5. A good agreement is obtained by the two

different approaches over the entire interval of time considered.

To obtain an insight on the participation of damping in a

dynamic response and relate it to the dynamic response of an undamped

system, responses in both approaches are calculated along the two 	 ?

time periods of the excitation force. In Table 8.6, the responses

are given by the two approaches when the excitation force reaches

6
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its peak. The displacements are given at eight stations along the

blade. Also, the ratios of undamped and damped responses at all

stations are given. This is one of the most important findings we

have obtained so far, for it shows how much less the response of the

damped system is as compared to that of the undamped system. For

our models, at the excitation frequency of 400 (rad/sec), this

ratio is about 1:20. We cannot take this information as the definite

parameter of our system, it is only true when the system is driven

at a frequency of 400 (rad/sec]. At different frequencies, this

ratio will be different, and generally it will tend to increase if

we are driving the system closer to the natural frequency. For our

models, this ratio is fairly high. Knowing that the low natural

frequencies are closely spaced, when we are ` driving the system

between the first and second natural frequencies we are fairly

close to the resonance where damping becomes a very important parameter

of the system. Also, for the thickest blade, we get a very uniform

ratio between the undamped and damped responses at the stations

along the blade. When thinner blades are used, this ratio is not

so well (uniformly) distributed. Taking into account the

geometrical and material, characteristics of the blade, and the

condition of the dynamic load (the amplitude of the excitation force

is l lb.), we might be very close to the borderline of the elastic

range of the blades.

Also, another very important observation is that when the blades

are driven (numerically) at a frequency less than the first natural

frequency, the response of the blades at stations along the length is
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very close to the static displacement of the load at that instant

of time. In other words, the response of the system at the frequencies

below the firsit natural frequency is directly dependent on the

stiffness of the system. At frequencies higher than the first but

not close to the second natural frequency, the response depends o*x

the mass of the system. This is very well documented An Table 8.6

for all blade models.

From the results above, we can make a very important statement

about the resonant motion of mechanical vibratory systems with widely-

spaced modes. Basically, each resonance is characterized by three

zones of activity. At frequennC4 ^s below the resonance, the activity

of the structural system is controlled by stiffness terms, which

are proportional to the displacement and contain phases. At the

resonant frequency, all restoring forces come from the damping

terms, which are proportional to the velocity of the driving point.

At frequencies above the resonance, the restoring force is

dominated by the inertial mass terms, which are proportional to the

acceleration at the driving point.
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Chapter

CONCLUSIONS

An analytical model and the experimental results have been

obtained for prediction of the torsional stiffness of five blade

models having NACA four-digit symmetrical airfoil cross sections.

These five models, three with the airfoil cross sections and two

with rectangular cross sections (aluminum and steel), were modeled

by modal analysis as either undamped or damped multi-degree-of-

freedom systems. The complete identification of modal parameters

for both cases was carried out.

The dynamic response of undamped and damped blades was

calculated. The excitation force F(t) - sin(W ft) was acting at

the tip of the beam. The natural frequencies and .r=ping at

particular modes were obtained by testing with a Nicolet 660A Dual-

Channel Vibration Analyzer. Based on the measured data, the

analytical model was used to model damping in such a manner as to

get a decoupled equation of motion. A small code was developed to

identify all modal parameters and to predict the dynamic response

of undamped and damped blade models which were modeled as multi-degree-

of-freedom systems.

From the analytical, experimental, and numerical phases of this

study, the following conclusions can be made:

1. Fairly accurate results were obtained for the torsional

stiffness of blade models having NACA four-digit symmetrical airfoil

" '°	 cross sections.
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2. The results for torsional stiffness have been scaled in

non-dimensional form, such that for any model of an arbitrary

length having a NACA four-digit cross section, the torsional constant

can be calculated as product of the torsional stiffness, the scaling

factor, and the reciprocal value of the length.

3. Predicted values of natural frequencies were in good

agreement with experimental results obtained by the FFT analyzer.

4. The modal parameters were identified when either undamped

or damped blade models were considered. They were essential for

dynamic analysis of multi-degree-of-freedom systems.

5. A good agreement was obtained between the continuous

and lumped parameter models for the dynamic response of the blade

when the tip of the blade was subjected to a harmonic force of
	

it

F(t) - sin(W 0.

6. The dynamic response of the five blade models was predicted

using the same excitation force. The damping obtained in the

experimental phase was modeled analytically and included in the 	 e

calculation of dynamic response.

7. A comparison of undamped and damped responses of the

blades ŝas made— for the same load conditions. The ratio was

determined, and was very much dependent on the forcing frequency

and the amount of damping in the system.

8. A much better insight into the damping of aluminum blades

and its influence on the dynamic response of blades was obtained.

This is of special interest when considering a system driven on

high frequencies which are fairly close to resonance.
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Several recommendations For future work can be made from this

study, as follows:

1. Since the torsional vibration mode has to be considered

in propeller, rotor, and turbomachinery blade dynamics, accurate

calculation of torsional stiffness is of special interest. This

study could be used as a basis for the development of a small

finite-element code using Galerkin's method. Experience has shown

that this method is more accurate and universal than other approximate

methods in boundary-value problems. References such as Richards (62),

Vemuri and Karplus (88), Seg.erlind (73), and Rao (61) give a very

elaborate treatment of boundary-value problems by employing the

finite-element approach and Galerkin's approach.

2. With the information on the amount of damping in the

system provided in this study, this model can be related to another

model which may be more convenient in application. The best way

to relate the two models is to equate the dissipation of energy

per cycle for both models. Knowing the damped dynamic response, the

damping constants of dashpots located at the nodal points could be

calculated.

3. For the experimental phase, it is recommended that a

modern FFT analyzer be adapted for modal analysis in aitructural

dynamics, with an option in the methods for identification of

modal parameters. Using these analyzers, one would be able to

visualize the system and to observe the deformation pattern during

different load conditions (transient and steady state).

4. The concepts of this study for rhr .analytical and

experimental phases can be used for identification of modal

IL
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u	
parameters in the torsional mode of vibration. With a slight

modification, the computer program is capable of handling the

torsional vibration on a fall, scale.

5. The most difficult task one faces is to develop gradually

the analytical and computational procedure for dynamic response of

real blades. In order to accomplish that, one must consider the

complicated geometry of blades, the strong coupling between

flexural and torsional nodes of vibration, centrifugal stiffening,

the effect of the Coriolis force for thin and long blades, and

unsteady excitation forces varying along the length and azimuth

of blades.

ri
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Appendix A

MODAL PARAMETERS IDENTIFICATION

A,l. Introduction

Before we start considering the techniques for modal parameters

identification, it is instructive to describe the distribution of

the magnitudes of the transfer functions along the frequency range

in real structural systems.

When a structure is excited by a broad-band input force, many

of its modes of vibration (degrees-of-freedom) are excited simul-

taneously. Since the structure is assumed to behave in a linear

manner, its transfer functions are really the sums of the resonance

curves for each of its modes of vibration, as shown in Figure A.1-.

In other words, at any given frequency, the transfer function

represents the sum of all the modes of motion which have been

excited. However, near the natural frequency of a particular mode,

its contribution to the overall motion is generally the greatest.

The degree of mode overlap, i.e.., the contribution of the tails of

adjacent modal resonant curves to the transfer-function magnitude

at a mode's natural frequency, is governed by the amount of damping

of the modes and their frequency separation. Figure A.1 illustrates

light and heavy modal overlap. Figure A.l(b) shows modes with

light damping and sufficient separation so that there is a little

modal overlap. Figure A.l(c) shows modes with heavy damping

such that there is plenty of modal overlap.

In cases where modal overlap is light, the transfer function

data can bp considered in the vicinity of each modal resonance as if
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it were a single-degree-of-freedom system. In other words, it is

assumed that contribution of the tails of adjacent modes near each

modal resonance is negligibly small. On the contrary, when modal

overlap is heavy, a single-degree-of-freedom for modal parameter

identification will not work; the parameters of all the modes muse

be identified simultaneously.

Usually, four residue-extraction techniques are used and named

by the method:

1. Quadrature response

2. peak picking

3. Circle fitting

k. Least squares.

In the following sections, a detailed treatment and application is

given for all four medal parameter identification techniques.
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A.2. Mode Identification by the Frequency Response

The accuracy of the residue estimate obtained by this method

is a function of how well each mode of the system is represented

by a single-degree-of-freedom model. The magnitude of the complex

frequency function for the r-th mode lh(.r)l is determined from

Ih(j wr ) I- h(wr ) •h (Wr
	

(A.1)
y

where h Q _) is the complex conjugate of the frequency response

function
*	 R

h QWr) 	 2	 ,	 (A.2)
1 _ ( W _ J2^r( )

r	 r



k Pt

1hj4 QW)
I -	 W 2
	 2

(1-(t)) + (2 ^r (t) )
r	 r

r,

(A.3)

Thus,

I h ( Q )I — Qr	 1
q^

(A.5)

where Rr is the modal residue and ;r and n are defined by the

control theory approach. The plot of Ih(Wr)1 is shown in Figure A.2.

The peak amplitude of the frequency-response function is obtained

by differentiating eq. (A.3) with respect to W and letting the result

equal zero. The peak occurs when

W 
	 i 1-2: 1r	 (A.4)

Thus, the peak of the magnitude of the frequency response function

occurs at a frequency less than both 
W  and 

SIr . For very lightly

damped systems, the peak occurs at approximately the undamped

natural frequency S2 .
r

The maximum value of jh(W 
r )I for a single-degree -of-freedom

system in the r-th mode is referred to as the "Qr " of the system.

When a system has a light damping,

An approximate value of damping for a single-degree-of -freedom

f

	

	 system can be computed by using the frequency difference between

the system's half-power points. The half-power points are defined

as the amplitude
jh(Wr)12max

(t	
2^------- (A.6)
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or in terms of the magnitude Jh(w)j, when it is equal to ' I Q r". The

half-power points occur when

2	 2
(4r ) Y(2 	 2 2	 2	 (A. 7)
YTr
	 (1 - ( M) > + ( 2 4r If-)

r	 r

Assuming light damping in the r-th mode, 4r << 1. eq. (A.7) becomes

2
() - l + 24r .	 (A.8)

r

Now, let the roots of eq. (A.8) be equal to the frequencies W  and

w2 . Then the difference of these two frequencies is referred to

as the bandwidth of the resonance

W2 - wl s r - bandwidth.

For lightly-damped structures,

A r 
= 2Z; a .	 (A.9)

The approximate damping ratio of the system can be obtained from

the magnitude of the frequency-response function by

Ow

Ir	 2S'Zr	
(A. 10)

r

The identical procedure can be repeated for the other modes. We

derived the formulas above under the condition of light modal

overlap (the modes are well spaced along the frequency range).

i
i

A

f
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A.3. Mode Identification by the Peak Picking Method

The peak picking method is essentially a single-degree-of-

freedom system technique. Again, as in the previous case, the

accuracy of the residue estimate is a function of how well each

mode of the system is prese^ -,ted by a single-degree-of-freedom

system model. From system dynamics it is known that the properties

oi: the transfer function for a single-degree-of-freedom system in

the r-th mode could be determined from measurements of the frequency

response function, expressed in terms of its poles and residues as:

R	 R

	

h(11r) ' 2j (j wr-p^ 2j (^Wr_ P	
(A.11)

For the single-degree-of-freedom system, the residue is seen to be

real value, given by

R =	 lam	 _ 1	 (A.12)
r wr^ 

-mwdr

In general, the residue may be considered complex and may be

expressed as
a

R 

	

I Rr le jej r s I Rr 1(a r +j 

br) '.	

(A.13)

where 
IRr I 

is the magnitude of the residue

	

IRr I = /Re 
2 

(R. r ) Im2 (Rr )	 (A.14)

and a is the phase angle of the residue in the r-th mode
r

Im(R )
CLr = arctan 

Re(Rr)	
(A.15)

r
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The constants a and b are expresser as

a = Cosa
r	 r

br - sinar .	 (A.16)

Substituting the expressions above for R  in eq. (A.11), we have

JR I a (W -W)+b	 W	 ( R( b (W -W) -a	 W
r	 r dr	 rrr	 r	 r dr	 rrr +

h(Wr)	

2	 (Wdr-W)2+(4rw)2 +	
2	 (Wdr-W)2+(4rW)2

+ jR
r 	 rI a (Wdr +W)+brr r11)	 IRr 	 rdrI b (W +w)-a r ^r 

Wr_j	 ,
2	 (Wdr )2+(4rw)2
	 2
	 (Wdr 

A)) 2+( 
CrW) 2

(A.17)

In eq. (A.17), the real and imaginary parts of the frequency-response

function are explicitly revealed. Again, the first two terms

represent the contribution of the positive pole, while the last two

terms represent the contribution of the negative pole.

For the purpose of graphic interpretation, it is useful to

rewrite equation (A.17) in a dimensionless form. To accomplish this,

we divide eq. (A.17) by the static frequency-response function:

/--2—
a 3 1-^ + b

hr (0) = IRrI 
r	 r 	 r r = IR= I W	 (A.18)

	

r	 r

Fora single-degree-of- greedom system, the static frequency-response

function is simply the inverse of the spring constant. The following

dimensionless frequencies are also defined as:
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y - w and
r

Ww r _ 3 1- -	(A.19)
r

Equation (A.17) may be rewritten as

	

' h(Wr )	 1 qr( O-Y)+bJr	 r(0-Y)-ar4r

	

hr 0	
2A ( a--Y)

2}r2	 + 2A 
0-Y) 

2
+ r2	 +

+ 1 ar(R+Y)+br4r 	 br(E3+'Y)+ar r
(A.20)

(0+y) 2+4r 2	
2A	 (0+_y)`+4= 2 .

Equation (A.20) is shown graphically for various values of the damping

ratio in Fig. A.3. For all curves in this figure, the residue is

taken as real (a - 1, b - 0). 'Thus, Fig. A.3 represents the frequency-

response function for a single-degree-of-freedom system.. Figure A.3(a)

shows the real part of eq. (A.20), while Fig. A.3(b) shows the imaginary

part. It should be noted that the real part is symmetric in frequency,

while the imaginary part is anti-symmetric. This property is called

conjugate evenness, and is characteristic of structures with real

residues. Since, for structural systems, we have interest only in

a positive frequency range, eq. (A.20) is plotted in Fig. A.4 for

positive frequencies only. In this figure, the residue is real and

the damping ratio of 0.05 is selected. The parameters of interest

in this figure are the frequencies at which the real and imaginary

parts of the frequency response function have extremes.
F

4 a
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The frequency corresponding to the negative peak in Fig. A.4(b)

(imaginary part) is found by equating the frequency derivative of

the imaginary part of eq. (A.17) to zero. For a real residue, the

imaginary part of eq. (A.17) is

Im (h(wr ) I	
2	 - r2r	

2 - RZ	
^r2r	

2	
(A.21)

(wdr-w) +( trwr)	 (wdr+W) +(fir r)

Equating the derivative to zero Gives

^ w (W -W)

K Im [h ( wr ) ]	 0 - -J r.lr 	 r r	 2 - ^Ar j ^rWrer (w) .	 (A.22)

Fwar-u^^
In eq. (A.22), the term C(W) represents the contribution of the

negative pole. For frequencies near the natural frequency of the

system, this term is negligible

Neglecting this term, equation (A.22) indicates that the peak in

the imaginary display of Fig. A . 4(b) occurs at

W - Wdr-	 ' (A.24)

That is, the peak in the imaginary part of the frequency response

function is at the damped natural frequency of the system. If we

consider the real part of the frequency response shown in Fig.

A.3(a), near the damped natural frequency this function has two

extreme values, one positive and one negative. The frequency at
*F

which these extremes occur is found by equating the frequency derivative

a
!f

j

i
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of the real part of eq. (A.17) to zero. F

real part of eq. (A.17) is

R (h(w )] R 	 dr
-w)	

+ R 	 (wdr+w) . (A.25)e	 r	
2 (wdr-w) 

2
+"rw,d 2	 2 (wdr+w) 2+(4rwr ) 2

Equating the derivative of this expression to zero gives

R 
	

(wdr-
w) 	 R

d Re (h (wr)] * 0 2 .	 2- Z er(w). (A.26)

[(Wdr- 	 rw2) +(^wr)
2

In the expression above, ' the term EP) again represents the contribu-

tion of the negative pole. For frequencies near the natural frequency

of the system, this term is negligible:

Er (w"wr ) - 12 .	 (A.27)
4w

Neglecting this term, eq. (A.26) indicates that the extremes in the

real display of Fig. A.4(a) occur at

W - wdr 
+ 4rw.	 (A.28)

The difference between these two frequencies is

Qw - 4r r .

The damping is then estimated from

AW
4r wr

(A.29)



1,86

The damping properties at resonance in the r-th mode can be described

by an amplification factor Q r . The amplification factor Q r is

related to the viscous damping f, 4c-^or, ^, by the relationship

Qr . 2	 (A.30)

where Cr is the damping ratio of actual and critical damping of the

system in the r-th mode. This method is the most precise in practical

implementation, particularly when dealing with high Q modes. It

has the distinct advantage of being directly applicable to the real

part of the transfer function. From Fig. A . 4(a), we have

(War /Wbr ) 2 + 1Q	
2	

(A.31)
r ( 

ar/^br)_ 1
4

t

where
1

1 War frequency above resonance in the r-th mode, where the real

part of the frequency transfer function reaches the peak.

`sbr frequency below resonance in the r-th mode, where the real

part of frequency transfer function reaches the peak of the

opposite sign.
4

To summarize, the essence of the peak-picking identification method
I

is, therefore, the determination of the three frequencies associated

with the extreme in the real and imaginary representation of the

frequency response function. This method is effective under the

following conditions:

1. The frequency response function has real, or very

nearly real, residues.

l
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Z. The frequency response function can be approximated by the

sum of the frequency response functions of several single-degree-of

freedom systems whose natural frequencies are distinct and "well

separated."

3. The influence of the negative poles on the measured

(positive frequency) frequency response function is negligible, for

moderate and high damping may not be consistent with the accurate

determination of the modal damping ratios.

Whether or not adequate separation of poles exists in a given

frequency response function is a matter of judgment and experience.

In general, a minimum of five half-power bandwidths (Aw) should

separate modes For adequate measur ement nurposes. Two extreme

examples are shown in Figs. A.5 and A.6.

Figure A,5 shows two "well-separated" modes. Between resonances,

Ciotti the real and .imaginary parts of this frequency response function

are relatively flat. Figure A.6 shows two "poorly separated" modes.

The effect of one mode on the other is quite apparent, especially in

the real part of the frequency resp Ase function. Similar phenomena

can be observed if the magnitude of the frequency response function

is plotted.
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Appendix B

SYSTEM EXCITATION AND EXPERIMENTAL TECHNIQUE

B.1. Introduction

The transfer characteristics may be measured by isolating the

structure from its normal environmental loading and subjecting it

to an excitation of a simplex nature. In practice, the structure

is subjected to a force introduced at a single point with a fixed

orientation, and the resultant motions are measured at one or more

fixed points. This permits measurement of a series of transfer

functions, thus characterizing the structure.

Each transfer function provides two pieces of cause/effect

information:

1. The ratio of force/motion (as a function of frequency)

relating the force input point and the motional response

point.

2. The degree of phase lag (as a function of frequency)

between the force and motion introduced by the structural

path.

As we stated previously, the transfer functions identify the

resonant frequencies, damping characteristics, mode shapes, stiffness,

and inertia of the structure.

Six transfer-function types are frequently measured. These are:

1. Compliance = Displacement/Force

2. Mobility = Velocity/Force

3. Inertance = Acceleration/Force



4 Apparent Stiffness - Force /Displacement

S. Impedance - Force/Velocity

6. Apparent Mass . Force/Acceleration

All six of the descriptive transfer functions are interrelated by

simple aignbraic operations. Having knowledge of one of the six

frequancy response forms is equivalent to having knowledge of all

six. The nature of available instrumentation, local conventions

and history, and problem specifics normally dictate the selection

of one of the six functions for measurement.

B.2. System Ez_citation

The transfer functions can be measured using three broadly

different test procedures. These techniques are called swept sine,

random, and impulsive excitation. There is no "right" technique

for all problems. Modern FFT analyzers are fully capable of

performing analyses for all three types of testing. The following

is a summary of all three techniques.

Swept-sine testing is the oldest of the three techniques. In

this procedure, the structure is subjected to sinusoidal excitation,

and the frequency of the sinusoid is slowly swept through a range

of frequencies. If the sweep rate_ is sufficiently slow (as

determined both by the structure and the measurement equipment),

the transfer functions computed from this technique are identical

to the results obtained by "resting" at a sequence of frequencies.

In random excitation, testing for the source of excitation is

provided by a broad-band noise generator which produces an output

signal with a "white" spectrum (a spectrum flat to at least the

191
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f;	 bandwidth of the analysis). Probability distribution of the broad-

band excitation is Gaussian. This source of excitation is fed

through a mass-compensation network, if required, for the examination
.

of the light structures with high "Q" modes, then through a power

amplifier to the drive uoil of the shaker. Both the excitation

force and the response variable are measured simultaneously using

a dual-channel FFT analyzer.

The methodology for impact testing involves striking the

structure with an impactor, usually a hand-held hammer, which has

a load cell attached to measure the force input. The input and

output, usually accelerations, are simultaneously measured. The

two signals are Fourier--transformed, aad the frequency response

ratio is formed. It is assumed that the impulse is of sufficiently

short duration to have the necess&ry frequency content to excite

all frequencies in the band of interest simultaneously. Since this

technique is very much of interest in this area of study, it is

going to be treated in detail in the following sections.

To summarize, sinusoidal testing is the slowest but most

precise procedure for performing frequency response measurements.

Impulsive force-input techniques are the fastest but least precise.

Sinusoidal techniques have retained their popularity throughout

history. Transient techniques have come into recent vogue as a

means of performing rapid analysis on complex problems. The quick

"look-see" capability offered by impulsive techniques is often

sufficient to solve a problem. Frequently, initial studies are

conducted using impulsive techniques, and higher-resolution information

is gathered (where required) using either the random or swept-sine
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techniques.

FFT processing analyzers have gained enormous popularity because

they are capable of performing transfer-function measurements using

any of the three types of excitation.

B.3. Impulsive Testing

This procedure utilizes short-duration inputs (with corresponding

broad-band spectra) to excite all frequencies in the structure

simultaneously. Impulsive testing is normally conducted using

some form of an instrumented hammer such as that shown in Fig. B.I.

A force transducer is mounted either on the head of the hammer or

on that portion of the structure to be impacted.

An accelerometer is used to measure the response of the

structure. By far the most popular technique for impulsive

excitation is to mount an accelerometer at a fixed location and to

excite the structure at a multiplicity of locations using a hammer

with a force transducer on its face to impact the system at many

points. The data is analyzed with a dual-channel FFT analyzer.

Each time the structure is impacted with the hammer, both the

impulse and the response acceleration are captured by the FFT

analyzer, using the impulse force as a transient-capture trigger

condition. These t,:ao transient histories are Fourier-transformed to

yield the input anc^ output spectra. The resultant ratio of the

output and input spectra is the desired transfer function.

Usually, the results of several transient excitations are

averaged. In this situation, the most desirable procedure is to

compute the cross-spectrum between the input and response, and the



ORIGINAL PAGE IS
OF POOR QUALITY

bINI4̂̀
 I

^I

C
r.0
^I
ca I
t0 I

AHN

wV

IIb V4I

C6	 cl^

^ I ul
I	 I 0^

ofH ^w^ ^ l

01
w
w
"Iu

v^

^I
of
^I

vl
u

dl

,J



power spectrum of the input. The resultant averaged transfer

characteristic is derived by divi(Ung the cross-spectrum by the input

power spectrum.

There are several advantages to impulsive testing. It is,

by far, the most rapid technique that can be applied to the study of

a complex structure. Its fundamental advantage is that no shaker

system needs to be mounted to the test object. The testing time

required for each spacial position on the structure is determined

by the number of times the tester wishes to impact the structure

with a hammer. Because the response transducer is mounted at a

fixed location, no time is required to move the response transducer

from point to point and, of course, a hammer may be easily moved

from one point on the structure to another.

5

	

	 Some disadvantages of impulsive testing, however, also exist,

as follows:

1. Impulsive techniques impose stringent requirements on the

analysis instrumentation. Specifically, the FFT analyzer must

have considerable more dynamic range than is required for sinusoidal

or random testing.

2. Precision of the results is strongly affected by the care

with which data is initially acquired. If the signal-,conditioning

amplifier or analog-to-digital converters of the FFT analyzer are

allowed to momentarily overload during the acquisition of a

transient, the results are grossly affected.

3. It is important to match the duration of the impulsive

force input to the band of f equencies to be analyzed. This requires
r,, s	 •
^ r
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selecting the mass and geometry of the hammer as well as the nature

of the material and the hammer/structure interface to "shone"

the input pulse.

4. The mass of the striking "tip" between the force transducer

(mounted on the face of the hammer) and the structure can introduce

errors when exciting light structures. Unfortunately, there is no

currently-available technique for performing on-line mass cancellation.

The results of impulsive testing have lower signal-to-noise ratios

than those from any other form of excitation.

B.4. Impactor Selection

The impactor is usually a hand-held hammer instrumented with

a force transducer. The force transducer has an impact cap attacked

to it, and the hammer may have an extension attached to it. The

hammer could be very small, weighing only a few ounces, or as large

as a sledge hammer.

The frequency content of a force pulse is determined by its

shape. Often it is desirable to shape the pulse to ensure that

the impact excites the structure in a particular desired frequency

range.. The three parameters which characterize the pulse are:

1. Pulse height. This is largely controlled by the impact

velocity. A higher impact velocity would require a larger force to

decelerate a given mass, resulting in an increase in pulse height.

2. Rise time. This can be controlled by the choise of impact

caps. If the impact cap is thought of as a spring, it seems

reasonable that an impact with a soft spring (soft impact cap, such

as rubber or plastic) would have a longer rise time than an impact

r
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with a hard spring (Turd impact cap).

3. Pulse width. To a certain extent, the pulse width can be

controlled by the use of extenders to change the hammer mass. For

example, a larger mass (hammer with extender) moving at the same

velocity will have a larger amount of kinetic energy and require a

longer time to be stopped by a given spring (the impact cap).

This produces a wider pulse.

It is necessary to point out that methods of shaping the pulse

are all interactive. For example, installing a softer impact cap will

increase the pulse width as well a;x increase the rise time. It is

best to try various configurations of impact caps, extenders, and

impact velocities and Fourier-transform the time signals to ensure

that the desired frequencies are being excited.

B.S. Hammer Calibration

In order to calibrate the frequency response plots generated

by impact testing, it is necessary to dynamically calibrate the

load cell which is part of the hammer structure. In Fig. B.2, a

typical calibration setup for an impact hammer and accelerometer is

shown.

On impact, the structure experiences the force which is

necessary to stop the entire hammer assembly. The load cell's

crystal element experiences only the force necessary to stop the

mass of the hammer head and extender. It does not sense the force

component necessary to stop the mass of the impact cap and the

load cell's seismic mass. Because of this, the sensitivity of the

{	 load cell appears to change as the mass of the impact cap and the
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Figure B.2(a). Typical calibration setup for an impact hammer and
accelerometer set, (b) typical impact hammer with
a load cell.
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mass of the hammer are changed. Increasing the ratio of the hammer

head plus extender to the total mass of the hammer structure

decreases the apparent sensitivity change, but as the total mass

increases, it can introduce problems of multiple impacts and

penetration. The mathematical model of hammer calibration is given	 y	 {

in the fallowing text.

The hammer calibration involves testing of the functional'

transfer behavior of a test object, with a known mass acting as a

3
rigid body employed as the test object. For scaling a test object

measurement, only the ratio of the accelerometer sensitivity to

the hammer sensitivity (5a/Sf) is needed. However, the actual

sensitivity of the hammer I'S f " can be determined from equation (b) 	
r

in Fig. B.3 when a precision quartz accelerometer with a known

sensitivity I 'S a" is employed as a reference. The "sensitivity" of

a load cell or hammer structure is just another way of expressing

its functional transfer behavior. Calibration (scaling) factors

can be calculated from the peaks of the time-varying signals from

the ratio of their frequency compotients.

The sensitivity of a hammer differs from the static sensitivity

of its force-sensor component because of the normal behavior of the

hammer structure. The force experienced by the crystal sensing

elements sandwiched within the hammer structure is not the same

as the force applied on the test object. For this reason, the hammer

assembly ought to be calibrated as it is used. To test small

hammers, a several-pound cylindrical mass with the accelerometer

attached and suspended with a long leads should be used, For a given
t

I
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hammer struature, the sensitivity of the moving hammer differs from

its static sensitivity by a constant percentage proportional to

the ratio of the mass of the tip and cap in front of the crystals to

the total mass of the hammer assembly.

Three methods of scaling a frequency response measurement are:

1. Inserting the average sensitivities supplied by the

manufacturer.

2. Measuring and using the "ratio" of sensitivities as out-

lined above.

3. Calibrating the hammer sensitivity, using an accelerometer

as a reference.

With methods 2 and 3 $ an average scaling f:c*_=r can be estimated

or a scaling factor at each discrete frequency in the spectrum of

interest can be measured and used, thus compensating for any

anomalies in the hammer or motion-sensor behavior.

Behavior objectives for 'hammer and sensor structures are straight

lines relating input and output and their ratio (sensitivity) with

frequency. In other words, ideal sensors treat amplitudes proportion-

ally and frequencies the same, and do not delay the signal. The

results for one typical impact hammer are given in Fig. B.4.
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Appendix C

FLOW CHART FOR THE COMPUTER PROGRAM FOR PREDICTION OF

DYNAMIC FLEXURAL RESPONSES OF PROPELLER BLADES

Start

Main

I	 Call subroutine INPUT

Subroutine INPUT

1. Read and print material and geometrical properties of model,
2. Read and print the amplitudes, frequency, and time increment

of the forcing function,
3. Read and print the initial displacements and initial velocities

at nodal points.
4. Calculate the cross-sectional area and cross-sectional moment

of inertia for an N.A.C.A. four-digit symmetrical airfoil
sectional amk.

Main Program.

1. Calculate and print lumped masses at all nodal points.
2. Calculate and print flexibility influence coefficients.
3. Call function SIMUL.
4. CalculateA and print the stiffness influence coefficients matrix

by inversion of the flexibility influence coefficients matrix.

Call function SIMUL

Function SIMUL

1. When INDIC is negative, SI14UL computes the inverse of the 11 by
N matrix in place.

2. When INDIC is zero, SIMUL computes the N solutions Xl(1)..X(N)
couresponding to the set of linear equations.

3. When INDIC is positive, the set of equations is solved, but the
inverse is not computed in place.
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Main Program

I	 Call subroutine JAC09I

Subroutine JACOBI
This subroutine solves the generalized eigenproblem using the
generalized Jacobi iteration.

Input variables
A(N,N)	 - Stiffness matrix (assumed ,positive-definite).
B(N,N)	 - Mass matrix (assumed positive-definite)
X(N,N) - Matrix storing eigenvalues on solution exit
EIGV(N) - Vector storing eigenvalues on solution exit
D(N)	 - Working vector
N	 - Order of matrices A and B
RTOL	 - Convergence tolerance (usually set to 10**-12)
NSMAX	 - Maximum number of sweeps allowed (set to 15)
IFPR	 • Flag for printing during iteration

EQ-O No printing
EQ-1 Intermediate results are printed

IOUT	 - Output device number

Output variables
All eigenvectors are stored columnwise
A.(N,N)	 - Diagonalized stiffness matrix
B(N,N) . Diagonalized mass matrix
X(N,N)	 - Eigenvectors
XS(N,N) - Scaled eigenvectors XS(I,J)TR*M1(I,J)*XS(I,J)*(I)
XL(N,N) - Orthonormalized eigenvectors
EIGV(N) - Eigenvectors

The eigenvalues and corresponding eigenvectors are not calculated
in an ascending or descending order.

Main program

Call subroutine MODAL

204
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2

Subroutine MODAL
This subroutine defines and prints out the following parameters:

1. The coefficients of the modal equation.
2. The orthogonality relations of eigenvectors.
3. Modal mass and modal stiffness.
4. Effective mass in a mode.
5. The perc;,;:,itage of total mass taken into consideration by modal

analysis,
6. The participation factor (modal force),
7. Natural frequencies sorted in an ascending order,
8. Critical damping, amplification factor, damping ratio, and

damping coefficients in a particular mode.

Main program

Call subroutine SORT

Subroutine SORT
This subroutine defines and prints out the following parameters;

1, The eigenvalues and corresponding eigenvectors sorted in an
ascending order.

2. Natural frequencies obtained from a continuous beam model.
3. First five natural frequencies measured by FFT analyzer.

Scaled eigenvectors sorted Jn an ascending order columnwise
represent the modal shapes in a particular mode,

Main program

I	 Call subroutine EXACT	 I

r
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Subroutine EXACT

This subroutine calculates and prints out the dynamic response
of the blade modeled as a coui.inuous cantilever beam, subjected to
a harmonic force of F - FO*SIN (OMEGAF*T) at the tip, The
Bernoulli-Eul.er equation for a continuous beam is used and appro-
priate boundary conditions are applied. This program gives the
steady-state response of the system and does not take into account
the transient solution. Damping is neglected. The displacements
are calculated at all N nodal points (along the length) at each
time-step interval through two time periods of forcing frequency.

In

Call subroutine RESF

Subroutine RESF

Subroutine RESF calculates the dynamic response of the uniform
continuous blade (cantilever beam) modeled by modal analysis with
the damping neglected. A decoupled .system of equations is used.
For the complete response, the solution of all N equations,
11,2,..,N, is calculated, and then the nodal-point displacement
are obtained by superposition of the response in each mode. In,tia
conditions are taken into account for the transient is added to the
steady-state response.

The test program calculates and prints out only a steady-
state response of the blade subjected to a harmonic force of
F . FO*SIN (ORECAF*T) at the tip, Initial conditions are assumed
to be zero (the system is driven from the rest). The displacements
are calculated at all N nodal points (along the length) at each
time-step interval during two time periods of forcing frequency*

main program

Call subroutine LEAST

4



Subroutine

Subroutine LEAST does a line
measured data (damping ratios vs.
is to decouple the damping forces
msnner similar to that in which t
are uncoupled. This information
calculation of the damping modal

ar least-square approximation of
natural frequencies). The idea
in equations of motion in a

he elastic and inertial forces
is going to be used later on for
matrix and the full-damping matrix.

L	 Main program

I	 Call subroutine DAMP

Subroutine DAMP

Subroutine DAMP defines the conditions under which the
damping forces are uncoupled. The uncoupling of the equations of
motion is possible only by imposing some restrictions or conditions
on the functional expression for the damping coefficients. The
damping normally present in structure does not affect the calcu-
lation of natural frequencies and modal shapes of the system.

This subroutine defines a system-damping matrix by employing
a particular form of proportional damping called Rayleigh damping,
composed of a linear combination of the mass and stiffness matrices
CDMP(I,J) - ALPHA*MI(I,J) + BETA*STF(I,J). Coefficients alpha and
beta are defined using the straight line XI(I) vas. OMEGA(I) obtained
by subroutine LEAST and assuming that the form of proportional
damping is:

XS(I,J)TR*(ALPHA*M1(I,J) + BETA*STF(,I,J))*XS(I,J) - 2*OMEGA(I)*
XI(I). Values of the scaled damping matrix and full-damping matrix
are ca,culated and printed. Damped and undamped natural frequencies
are printed for the number of modes chosen by the program.

5
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Main

Call subroutine DRESP 	 I

Subroutine DRESP

This subroutine calculates the dynamic response of a uniform
continuous blade (cantilever beam) modeled by modal analysis, with
the damping included. The damping characteristics of the blade
can be represented appropriately by using proportional damping in
a mode superposition. An uncoupled system of equations is used.
For the complete response, the solution to all N equations,
I - 1,2,...,N, is obtained and the nodal point displacements are
calculated by superposition of the response in each mode, Initial
conditions are taken into account, and the transient response is
added to the steady-state response,

The test program calculates and prints out only the steady-
state response of a blade subjected to a harmonic force of F - FO*
SIN(OMEGAF*T) at the tip. Initial conditions are assumed to be
zero (the system is driven from the rest). The displacements are
calculated at N nodal points (along the length) at each time-step
interval during two time periods of forcing frequency,

I	 Main Program	 I

Stop
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