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FOREHORD

This document presents the results of a contract study performed for the

National Aeronautics and Space Administration (NASA) by the Douglas Aircraft

Company, t4cDonnell Douglas Corporation. This work was part of the Energy

Efficient Transport (EET) project of the Aircraft Energy Efficiency (ACEE)

program. Specifically, the study was one task in the contract, Selected

Advanced Aerodynamic and Active Control Concepts Development. The activity

included the preliminary design of an optimized \'IJing-winglet aircraft

configuration and comparison of its operating characteristics with an ad­

vanced technology conventional wing commercial transport.
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SYMBOLS

The longitudinal aerodynamic characteristics presented in this report

are referred to the stability-axis system. Force and moment data have been

reduced to coefficient form based on trapezoidal wing area. All dimensional

values are given in both International System of Units (SI) and U.S. Customary

Units, the principal measurements and calculations using the latter (see

Reference 1).

Coefficients and symbols used herein are defined as follows:

A

Ac

AR

C
Dinduced

CD
parasite

C
Dtotal

enclosed area

area of cover panel

wing aspect ratio

induced drag coefficient

parasite drag coefficient

total aircraft drag coefficient

lift coefficient

aircraft lift coefficient

maximum lift coefficient of wing without
flap deflection of dynamic effects

maximum lift coefficient at minimum speed

lift coefficient at minimum unstick speed

tail-off lift coefficient

lift coefficient at minimum unstick speed
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L/Dtrimmed

M

s

c

e

Fe

h

1

s

t

winglet normal force coefficient

wing root bending moment

box structural chord

bending stiffness

wing bending rigidity of configuration WW7

torsional stiffness

wing torsional rigidity of configuration WW7

trimmed lift-to-drag-ratio

limit vertical bending moment about elastic
axis

area of wing

gust velocity

dive speed

flutter speed

wing-winglet configuration designation

elastic axis stations

span of wing

airfoil chord

induced drag efficiency factor

estimated typical compression allowable

equivalent allowable stress

one-half of thickness

winglet spanwise length

spanwise distance along winglet

maximum airfoil thickness
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x

y

z

6C
Dcompressibility

ACLmaxflap

ACm

w

streamwise coordinate

spanwise coordinate

vertical coordinate

angle of attack

wing section incidence angle

drag coefficient resulting from fluid
compressibility

drag coefficient resulting from:trirnmi.ng
aircraft moments

flap incremental lift coefficient

increment in maximum lift coefficient
resulting from deflection of trailing
edge flap

increment in maximum lift coefficient
resulting from deflection of variable
camber Krueger flap

increment in lift coefficient resulting
from trimming aircraft moments

increment in lift coefficient resulting
from dynamic deceleration of aircraft

incremental pitching moment coefficient

difference between wing-winglet and baseline
aircraft incremental flap drag coefficient

span increments between XEA stations

flap deflection

effective flap deflection

spoiler deflection

nondimensional spanwise location

bending material weight
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SUMMARY

This report presents the design of an aircraft which from the initial

conceptual stages employs an integrated wing and winglet lift system. Compari­

son was made with a conventional baseline configuration employing a high-aspect­

ratio supercritical wing. An optimized wing-winglet combination was selected

from four proposed configurations for which aerodynamic, structural, and weight

characteristics were evaluated. Each candidate wing-winglet configuration was

constrained to the same induced drag coefficient as the baseline aircraft. The

selected wing-winglet configuration was resized for a specific medium-range

mission requirement, and operating costs were estimated for a typical mission.

Study results indicated that the wing-winglet aircraft was lighter and could

complete the specified mission at less cost than the conventional wing aircraft.

These indications were sensitive to the impact of flutter characteristics and,

to a lesser extent, to the performance of the high-lift system. Further study

in these areas is recommended to reduce uncertainty in future development.





INTRODUCTION

The aerodynamic ramifications of nonplanar wing configurations have long

been known and they have often been suggested as a technique for reduction of

aerodynamic induced drag. However, since a wing tip extension is always

aerodynamically more efficient than a comparably sized nonplanar configuration,

wing tip devices have rarely been applied to transport aircraft. Nevertheless,

when the aerodynamic benefits of wing tip devices are considered in combination

with structural aspects and physical constraints (e.g., maximum wing span

feasible for existing ramp facilities), the nonplanar wing configuration

becomes a more attractive candidate for transport aircraft. R. T. Whitcomb

(References 2, 3, and 4) has recently developed and refined the application

of wing tip devices which have been named IIwinglets. 1I The winglet (a small,

nearly vertical, winglike surface) effectively increases the span of a conven­

tional wing but additionally is carefully tailored to carry the requisite

aerodynamic loading without significant viscous or compressibility interference

at cruise Mach numbers.

The majority of winglet development efforts have been oriented toward

modification of existing aircraft to enhance their capabilities and performance.

The effectiveness of a wing tip modification, either tip extension or winglet,

in a retrofit application is controlled by the existing aerodynamic and struc­

tural characteristics of the configuration. For example, winglet induced drag

reduction potential is directly influenced by the magnitude of wing tip load­

ing, and similarly, structural capabilities of a particular wing may signifi­

cantly influence the choice and size of the tip device. Although winglets

appear to be a viable device for a retrofit application, the use of an existing

wing complicates and restricts the potential gains which are achievable.



In contrast to the retrofit concept where aerodynamic loading and

structural properties of an existing wing strongly influence any wing-winglet

design, the present study considered the develpment of an advanced commercial

aircraft which from the outset was designed to employ a wing and winglet

operating in conjunction with each other as a unified lifting system. In order

to simplify the evaluation of various wing-winglet conbinations, the aerody­

namic characteristics of each configuration were constrained to the same values

as for the baseline airplane and the lIoptimum ll constrained wing-winglet was the

one chosen solely on the basis of mimimum structural weight. This approach

facilitated structural and aerodynamic design of the wing-winglet combination

as a system rather than as a remedial device attached to a wing initially

intended to operate independently. Therefore, a more effective exploitation

of the winglet concept should be possible. The objective of the present study

was to evaluate the benefits of an advanced commercial transport with a wing­

winglet (optimized within the constraints stated below) in relation to one

with a conventional wing design.

The design and configuration selection process has been conducted for

mission requirements regarded as typical for a large and important class of

aircraft. The conventional aircraft was based on thorough investigation and

definition in separate Douglas Aircraft Company studies. Included in the wing­

let configuration selection process were aerodynamic analysis, structural

design (including allowance for maneuver capability, gust loads, and adequate

flutter margin), and weight estimation for a series of parametrically selected

candidate wing-winglet combinations. The best wing-winglet configuration was

then selected for sizing and performance evaluation so that the operating

characteristics could be estimated and compared with those of the conventional

baseline aircraft.
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Evaluation of the conventional baseline and wing-winglet aircraft was

based primarily on direct operating costs, but other parameters such as fuel

use were also examined.

The basic mission requirements for which both the wing-winglet configura­

tion and conventional baseline aircraft were designed are given in Table 1.

The mission used in evaluating the aircraft consisted of the l389-kilometer

(750-nautical-mile) trip specified in Table 2, and represents a typical appli­

cation of an aircraft designed to the requirements of Table 1. The baseline

aircraft is shown in Figure 1 and its geometric characteristics are given in

the table insert of the figure. The baseline aircraft was the DC-X-200 commer­

cial passenger transport which was envisioned as a derivative of the DC-10

aircraft. The baseline aircraft featured a shortened DC-10 fuselage of 230­

seat nominal capacity. Aerodynamic features of the DC-X-200 included a high­

aspect-ratio planform wing with supercritical airfoils. The high-lift system

consisted of a full-span variable camber Krueger leading-edge flap and an

80-percent span high-extension two-segment flap. The configuration included

a longitudinal stability augmentation system that allowed operation at a

center-of gravity range aft of that of an unaugmented aircraft.

Table 1
AIRCRAFT MISSION REQUIREMENTS

Payload

Range

Initial Cruise Altitude

Initial Cruise Mach Number

Approach Speed

21,390 kilograms (47,150 pounds)
(230 passengers and baggage)

5844 kilometers (2620 nautical miles)
equivalent still air distance

10,363 meters (34,000 feet)

0.80

241 kilometers/hour (130 knots) or less

Specified Engines GE CF6-45; field length not specified.
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CHARACTERISTICS DATA

WING
HORiZONTAL VERTICAL

ITEM REF ADJUSTED TAIL TAIL

AREA, SQ FT 2175 2367.4 682 405.
ASPECT RATIO 10.85 9.97 3.8 1.8
TAPER RATIO .1407 1.250) .35 .35
SWEEP D;EG, Cf4 30° 30° 35°
DIHEDRAL. Cf4 +4° +100 -
TAIL VOLUME - 1.13 -

PAYLOAD CAPACITY""

• FIRST CLASS • 6 ABREAST AT 38 IN. PITCH" 20 I 8.7%1
TOURiST CLASS· 9 ABREAST AT 34 IN. PITCH· 210 (91.3%)

TOTAL· 230 SEATS

• UPPER (CONVENTIONAL) GALLEYS

• CARGO VOLUME -..

~~~;'E~RgA~AY : 1~ tg:~ g~+~:~~~~ ~+ ~~: =t: : ~~~ =~:
AFT BAY • BULK • 510 FT3

TOTAL ... 3354 FT3

237 IN. 0.0.
DC·10

NOSE LANDING GEAR
37x14-14 TIRE
DUAL

153 FT7.619 IN.
11843.4281

'i AIRPLANE 1

.----.. .....-

FIGURE 1. BASELINE ADVANCED COMMERCIAL TRANSPORT
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FIGURE 1. BASELINE ADVANCED COMMERCIAL TRANSPORT (CONCLUDED)

5



Flight Segment

Taxi Out

Take Off

Climb

Cruise

Descent

Approach

Taxi In

Table 2

TYPICAL MISSION PROFILE

Reguirements

5 minutes at taxi thrust

Climb to 457 meters (1500 feet)

Maximum climb thrust, long range climb schedule
to initial cruise altitude

Constant Mach number, step cruise technique
(31,000, 35,000, 39,000 feet)
1389 kilometer (750 nautical mile) mission
at best constant odd altitude

Employ long range speed schedule to sea level

4 minutes at approach thrust

3 minutes at taxi thrust

Reserve fuel based on FAR 121.639 as follows:

Climb from sea level to 9144 meters (30,000 feet) using maximum climb
thrust and long range speed schedule, cruise at 9144 meters (30,000 feet)
at 99 percent maximum specific range, descend to sea level for total
distance to alternate of 370.4 kilometers (200 nautical miles) and
cruise for 45 minutes at 9144 meters (30,000 feet) at 99 percent maximum
specific range.

During the wing-winglet configuration selection phase of the study, the

basic aerodynamic capability of the baseline aircraft was maintained for all

candidate wing-winglet configurations and therefore the merit of each configu­

ration was measured solely by weight saving relative to the baseline. This

procedure of conserving the baseline aircraft aerodynamic characteristics

employs the baseline lift/drag design point and eliminates a substantial number

of stages from the wing-winglet design process that would be required without

6



use of the baseline aircraft as a starting point. Basic aerodynamic character­

istics which were conserved include induced drag coefficient, compressibility

drag effects, cruise lift coefficient, lateral aircraft stability, buffet

margin, and high-lift capability.
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SELECTION OF WING-WINGLET CONFIGURATION

Most of the present study effort involved the determination of an optimum

(within the practical constraints of a preliminary feasibility study) wing­

winglet configuration. As a basis for the optimization, a series of wing­

winglet configurations was designed with essentially identical aerodynamic

characteristics so that they could be judged on their weight. The weight

estimation was supported by structural strength and stiffness analyses,

including the impact of flutter. An alternative design approach, maintaining

fixed weight and evaluating configurations based on aerodynamic improvement,

could have been applied to obtain an lIoptimum ll wing-winglet combination.

However, this alternative was beyond the scope of the study.

Wing Design Rules

Since it was desired to match the basic performance characteristics of

the baseline aircraft with each wing-winglet design, a series of rules was

derived to ensure that all designs were aerodynamically equivalent. No

transonic flow calculations were feasible for the nonplanar winglet configura­

tions, and consequently, to preserve the impact of compressibility effects on

the lift-system performance, certain baseline geometric characteristics were

maintained for the winglet design.

The first rule required that the induced drag coefficient of the winglet

configuration match the baseline value. As will be shown later, the assump­

tion of equal induced drag implied a wing span length for a given drag

efficiency factor. The second rule required the trapezoidal wing area of

each wing-winglet configuration to be the same as that of the baseline wing.

This rule ensured nearly constant cruise lift coefficients for all configura­

tions since the gross weights of the baseline and wing-winglet configuration

9



were not expected to differ significantly. Subsequent to the wing-winglet

configuration selection, a resizing of the aircraft was performed to determine

the final wing area.

In an attempt to maintain the transonic cruise capability of the baseline

wing, the baseline leading edge sweep of 32.9 degrees and trailing edge sweep

of 20.3 degrees were applied to the winglet configurations. Additionally, the

baseline aircraft supercritical airfoil sections were identically employed on

the wing-winglet planform with corresponding aerodynamic definition points as

shown in Figure 2. Furthermore, the inboard leading edge extension (located

/ ROOT AIRFOIL, tIc = 0.150

TRAILING EDGE
BREAK AIRFOIL, tIc

rLEADING EDGE BREAK, AIRFOIL, tIc = 0.114

TIP AIRFOIL,

0, • 07

FIGURE 2. AIRFOIL DEFINITION FOR WING-WINGLET CONFIGURATION
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between the pylon location of 7.72 meters [304 inches] and the root) of the

baseline wing was employed in the wing-winglet combinations. The leading edge

extension was intended to maintain swept isobars on the inboard panel of the

wing at cruise Mach numbers. This configuration has been shown in previous

studies (reported in Reference 5) to provide significant improvement over a

straight leading edge for the baseline wing. The inboard leading-edge exten­

sion tapers from 10 percent of the trapezoidal chord at the wing root to zero

at the pylon location.

An important physical constraint which must be imposed on any practical

configuration is adequate provision for the main landing gear in the retracted

position. The gear pivot location was specified to be at a spanwise distance

of 5.59 meters (220 inches) outboard of the wing root and 0.38 meter (15

inches) forward of the 0.666 mean aerodynamic chord point. In order to

provide storage for the gear, an inboard wing trailing edge extension was

required which passed through a point 1.96 meters (77 inches) aft of the gear

pivot point. A sketch of the geometric requirements of the wing for gear

storage is given in Figure 3. Geometric requirements for locating and housing

the landing gear were derived from Douglas Aircraft Company studies of the

baseline aircraft.

The third wing design rule specified a wing dihedral angle of 4 degrees

for lateral stability requirements. Since the winglet is a dihedral surface,

this could increase the lateral stability of the configuration beyond the

baseline value.

The above wing specifications define the wing except for the span which

is determined by the induced drag efficiency level.

11



-C.6% MAC - 0.38 M (15 IN.)

5.59 M
(220 IN.)

POINT 1.96 M (77 IN.) AFT OF GEAR LOCATION THROUGH
WHICH TRAILING EDGE EXTENSION PASSES

FIGURE 3. ILLUSTRATION OF WING PL.ANFORM DESIGN RULES

Winglet Design Rules,

A set of design specifications, similar to those developed for the wing

design, based on NASA development programs and Douglas Aircraft Company

experience, was prescribed for the upper surface winglet design. Since no

wind tunnel test of the final configuration was feasible in the current study,

it was decided that conservative design rules based on proven results should

be employed. Therefore the winglets of each design were basically modeled

after the successful application of Reference 2. In Reference 2, a winglet

dihedral of 75 degrees and a winglet taper ratio of 0.3 were employed. Addi­

tionally, the midchord sweep of the wing and winglet were equated, and the

wing tip trailing edge and winglet root trailing edge were kept coincident to

avoid superposition of wing-winglet velocity peaks. The span of the winglet

was based on the span of the wing since span ratio appeared to be an appro­

priate scaling for maintaining the induced drag effectiveness of the NASA

Whitcomb configurations. The span of all winglets was 14.8 percent of the

wing semispan. As a result of the cooperative NASA/Douglas Aircraft Company

12



wind tunnel tests, which are reported in Reference 6, it was decided to employ

a winglet root chord of 77 percent of the wing tip chord in contrast to the

earlier Whitcomb value of 65 percent. The increased winglet chord reduced

the section normal force coefficient of the winglet to values which could be

achieved without aerodynamic buffet. The airfoil section selected for the

winglet is the NASA modified General Aviation-type airfoil of Table 3. This

airfoil has been employed effectively in previous winglet applications, includ­

ing those reported on in References 2 and 6.

Early in the study it was decided to employ only an upper-surface winglet,

primarily for simplicity. It was assumed that a lower winglet could be incor­

porated in more refined designs. From previous experience it was presumed

that the lower winglet would produce an additional benefit and hence it was

believed that its omission represented design conservatism.

Aerodynamic Design

As previously mentioned, the design procedure implied that all benefits

of the incorporation of a winglet in the lift system design would be realized

in weight'reductions while the aerodynamic characteristics were conserved.

This philosophy facilitated a practical configuration selection without the

exhaustive design study required for an entirely new design. This simplifica­

tion did not significantly restrict the design since the optimized wing-winglet

configuration was resized for the evaluation.

Wing-Winglet Planform Specification. - The wing and winglet design rules

described earlier were sufficient to completely specify a configuration except

for the most significant parameter - span. Therefore, a series of wing-winglet

13



Table 3

AIRFOIL COORDINATES FOR WINGLETS

x/c z/c for -
Upper Lower

Surface Surface

0.0 0.0 0.0
0.0020 0.0077 -0.0032
0.0050 0.0119 -0.0041
0.0125 0.0179 -0.0060
0.0250 0.0249 -0.0077
0.0375 0.0296 -0.0090
0.0500 0.0333 -0.0100
0.0750 0.0389 -0.0118
0.1000 0.0433 -0.0132
0.1250 0.0469 -0.0144

0.1500 0.0499 -0.0154
0.1750 0.0525 -0.0161
0.2000 0.0547 -0.0167
0.2500 0.0581 -0.0175
0.3000 0.0605 -0.0176
0.3500 0.0621 -0.0174
0.4000 0.0628 -0.0168
0.4500 0.0627 -0.0158
0.5000 0.0618 -0.0144
0.5500 0.0599 -0.0122

0.5750 0.0587 -0.0106
0.6000 0.0572 -0.0090
0.6250 0.0554 -0.0071
0.6500 0.0533 -0.0052
0.6750 0.0508 -0.0033
0.7000 0.0481 -0.0015
0.7250 0.0451 0.0004
0.7500 0.0419 0;0020
0.7750 0.0384 0.0036
0.8000 0.0349 0.0049

0.8250 0.0311 0.0060
0.8500 0.0270 0.0065
0.8750 0.0228 0.0064
0.9000 0.0184 0.0059
0.9250 0.0138 0.0045
0.9500 0.0089 0.0021
0.9750 0.0038 -0.0013
1.0000 -0.0020 -0.ob67
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combinations with varying spans was designed to have nearly equivalent

aerodynamic characteristics (in particular the same induced-drag coefficient)

as the baseline aircraft.

Maintaining constant induced drag at a specified lift while varying the

configuration span required a variety of spanwise load distributions among the

competing designs. A minimum span exists for the wing-winglet combination

beyond which the required induced drag cannot be maintained. At this minimum

span the wing-winglet combination is loaded for its minimum induced drag. At

spans greater than the minimum value, the spanwise distribution of load may be

altered from that for minimum induced drag in a manner that is advantageous

from a structural viewpoint.

Figure 4 presents the relationship between wing root bending moment ratio

and drag efficiency factor for an isolated planar wing and the appropriate

wing-winglet combination. The adherence to the baseline-induced drag for all

wing-winglet combinations of different spans required variation of the span­

wise aerodynamic load distribution. The proper loading which resulted in the

desired drag value was determined by employing the numerical method of

Reference 7. This method analyzes the wing-winglet configuration in the far

downstream field (Trefftz plane), and predicts minimum induced-drag aerody­

namic loadings subject to root bending moment and other optional constraints.

Using this method, the root bending design points of Figure 4 were employed

as input constraints and the optimum loadings were calculated for each wing­

winglet configuration. Aerodynamic loadings for the winglets were obtained

simultaneously with the wing-load distributions.
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FIGURE 4. DRAG FOR SPECIFIED ROOT BENDING MOMENT

Wing root bending moment is probably the best single parameter for eval­

uating the impact of aerodynamic loading on wing structural weight. Higher

root bending moments generally imply higher wing weights, but of course

detailed structural analyses are required to quantify the weight impact. Drag

efficiency factor, e, is a simple way of expressing the level of inviscid

induced drag relative to the minimum induced drag for a given lift system so

that

= mlnlmum possible induced drag
actual induced drage

e =
C 2

L
C 1TAR
Dinduced

(1 )
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Therefore, the lift-induced drag coefficient (ignoring twist drag) can be
CD

Co
induced

expressed in terms of the efficiency factor as

C 2
=_L_

1TARe
(2)

where CL is the aircraft lift coefficient and AR is the wing aspect ratio,

b2/S.

Classical lifting line theory predicts a maximum value of the efficiency

factor of 1.0 for a planar wing whereas nonplanar configurations, such as

wing-winglet combinations, may achieve maximum efficiency factors greater

than 1.0 (if the minimum induced drag is based on the span of the wing with­

out the winglet). For a conventional planar wing, the optimum aerodynamic­

structural-weight design point is usually at a drag efficiency factor which

is a few percentage points less than the maximum value. By analogy, it was

anticipated that the optimum design point for a wing-winglet combination would

be somewhat less than the maximum value. This maximum value (1.21) was pre­

dicted independently by the methods of References 7 and 8.

Figure 4 indicates that, except at the maximum drag efficency condition,

two root bending moment values exist for each drag efficiency value. Normally

only the lower value of root bending moment would be of interest since the

higher root bending moment implies unnecessary weight penalty with no aero­

dynamic benefit. Four configurations, ranging from the aerodynamic optimum

to 20-percent reduction from optimum in efficiency factor, were selected for

detailed aerodynamic-structural-weight design, analysis, and evaluation.

These four cases are indicated in Figure 5 as WW2, WW4, WW5, and WW7.

The spans of the various configurations were uniquely determined from the

specification of the drag efficiency factor since the induced-drag coefficient

17
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FIGURE 5. PLANFORMS FOR WING·WINGLET OPTIMIZATION

was conserved at the design lift coefficient for all designs. From Equation 2,

the wing aspect ratio can be determined as
CL2

AR =
TIe Co

induced

and, consequently, the wing span is given by

b =
'TIe C

\/ °induced

where S is the reference wing area.

(3)

(4)

The design lift coefficient was 0.60 and the baseline reference area of

202.1 square meters (2175 square feet) was initially applied to all configura­

tions. Therefore, the span of any configuration could be determined from

Equation 4 where the drag efficiency factor and baseline drag coefficient,

Co ' was known.
induced
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Applying Equation 4 and the wing-winglet design rules described previously

yielded the wing planforms of Figure 5 for the design points illustrated in

Figure 4. The wing-winglet planforms are contrasted with the baseline wing

planform in Figure 5. All planforms conform to the rule specifying the

trapezoidal wing area. Note that the outboard trailing edge break of the

baseline wing has been eliminated. The function of this break was to smooth

the inboard trailing edge break. Since the wing-winglet planforms were of

lower geometrical aspect ratio, the outboard break was not required. Winglet

geometry is exemplified in Figure 6. According to the winglet design rules,

the individual configuration winglets are scaled relative to the wing span;

therefore, each winglet design is unique.

FIGURE 6. WINGLET PLANFORM FOR WING·WINGLET COMBINATION WW4
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Spanwise Loading. - As previously mentioned in the foregoing paragraph,

the minimum induced-drag aerodynamic load distribution was predicted by use

of the numerical method of Reference 6. The discussion also identified the

root bending moment design points.

The spanwise lift distribution for four wing-winglet configurations that

were selected for study is shown in Figure 7. Typically, the shorter-span

configurations have higher tip loadings and therefore higher root bending

moments. In addition to the impact of high outboard lift coefficients (which

are characteristic of the short span configurations) on root bending moment,

the higher lift coefficients may also cause premature buffet onset. In fact,

the tip section lift coefficient of wing-winglet configuration WW2 was judged

to the unacceptable from the buffet viewpoint and, consequently, this config­

uration was eliminated from consideration. Configuration WW7 was the shortest

span configuration with outboard lift coefficients equivalent to those of the

baseline aircraft.

Wing-Winglet Twist Distribution. - In order to obtain the desired wing

and winglet loadings, the finite-element lifting surface analysis of Refer­

ence 9 was employed to design the twist distribution for both wings and wing­

lets. This method, applied in its design mode, represents each aerodynamic

surface by a mean plane and divides each surface into numerous elements. Each

analysis element is represented by an elementary vorticity distribution (EVD)

and a control point is employed on each element at which a tangential flow

condition is imposed.
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The method employs as inputs airfoil section camber lines, the wing­

winglet planforms of Figure 5, and corresponding loadings of Figure 7 to cal­

culate the required twist for each wing and winglet. Example wing and

winglet twist distributions are shown in Figures 8 and 9, respectively, for

the WW7 configuration. In most cases, some manual adjustment to the predicted

twist was required to actually obtain the desired loading for both wing and

winglet surfaces. The manual adjustments were necessitated by the lineariza­

tions and planar approximation made using the method of Reference 9 in the

design mode.

Analysis of Wing-Winglet Configurations. - Each wing-winglet configura­

tion, including the associated twist distributions and airfoil cambers, was

evaluated by application of the method of Reference 9 applied in the analysis

mode. A major objective of the analysis was verification of the induced-drag

value at the design lift coefficient where the intent was to match the base­

line aircraft induced-drag coefficient value. A secondary objective was

derivation of aerodynamic loads for input to the structural design process .

. This analysis was required to verify the aerodynamic characteristics of each

wing-winglet combination since the method of Reference 9 in the design mode

employs small angle approximations and planarizations whereas the analysis

mode is not limited to small angles and is nonplanar. Additionally, the

analysis mode of the method of Reference 9 has previously been employed

successfully to predict winglet performance. It was concluded that the
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results of the analysis mode were acceptable for verification of the aero­

dynamic characteristics of each design.

Figures 10, 11, and 12 illustrate various views of the analysis elements

employed within the finite element theory of Reference 9 for one of the wing­

wing1et configurations. The apparent mismatch in elements along streamwise

rows is the result of a limitation of the analysis to planar rectangular

analysis elements; however, this mismatch has been shown to be of only minor

analytical significance.

An example wing-winglet induced-drag polar predicted by the analysis of

Reference 9 is compared in Figure 13 with a polar for the baseline aircraft

predicted by the same method. For all wing-wing1et configurations, the

induced-drag coefficient matched the baseline value at the design lift

coefficient of 0.60. For Configuration WW7 (see Figure 13), the entire

wing1et and baseline drag po1ars are coincident throughout the lift range.

However, typically the winglet drag matched the baseline value only at the

design lift coefficient.
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Aerodynamic Inputs to Structural Analysis. - General aerodynamic loadings

of the wing and winglets were obtained by the method of Reference 8 as pre­

viously described. The aerodynamic loadings of the wing and winglet at

critical design flight conditions were calculated in an iterative manner,

employing initial elastic twist incidences to calculate updated aerodynamic

loads. A second cycle of aerodynamic loading calculations based on updated

elasti~ twist angles was obtained. These results indicated in general that

a third cycle was unnecessary.
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FIGURE 13. COMPARISON OF BASELINE AND WING-WING LET INDUCED DRAG
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Structural Analysis

To determine the structural characteristics of the wing-winglet configura­

tion, both ultimate and flutter modes were considered. Each wing-winglet

configuration structure was initially sized for the ultimate mode requirements

from which the associated rigidities were derived for flutter evaluation. The

structural sizing was then adjusted as necessary to meet the predicted flutter

requirements. Analyses described in this section supported both the config­

uration definition and final configuration evaluation phases.

Strength Analysis. - All configurations, including the conventional base­

line design, were subjected to the criteria of FAR Part 25 (Reference 10).

Critical maneuver and gust conditions were investigated. The winglet and tip

portions of the wing for winglet configurations were determined to be lateral­

gust-critical and the wing maneuver-critical. The maneuver and gust conditions

selected as critical (from 12 candidate conditions examined) are given in

Table 4. All gross weights in the table reflect the fuel expenditure needed

to reach the relevant altitude. The total wing load includes horizontal tail

and winglet effects. The conditions of Table 4 were applied to all

configurations.

In addition to the aeroelastic section twist angles the structural

analysis predicted section shear, moment, and torque loads which also included

the relieving effect of estimated structural and fuel weight. The wing sec­

tions at selected representative stations were then sized for the predicted

loads and this resulted in the specification of wing rigidities and inertias.

A typical final load calculation is given in Table 5 for wing-winglet config­

uration WW7 at critical maneuver condition 2. The wing-winglet structure was

sized and the resultant rigidity of each configuration was evaluated. Table 6
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Table 4

STRUCTURAL DESIGN CONDITIONS

CONDITION NO. 2 12 5

TYPE Maneuver Maneuver Lateral Gust

Gross Weight, kg (1 b) 136,303 138,866 125,191
(300,500) (306,150) (276,000)

Altitude, m (ft) 7,437 1,524 10,973
(24,400) (5,000) (36,000)

Load Factor, NA 2.5 2.5 1.0

~1ach No., M 0.840 0.560 0.800
w
0 Velocity, km/hr (keas) 634.9 625.8 463.0

(342.8) (337.9) (250.0)

Horizontal Tail Load, kg (1 b) 14,061 3,254 6,804
(-31,000) (7,770) (-15,000)

Total Wing Load, kg (lb) 354,824 343,643 131,994
(782,260) (757,610) (291,000)

Gust Velocity, Ude , m/sec (ft/sec) 15
(50)

Flap Deflection, of (deg) 0 0 0

Spoiler Deflection, 0SP (deg) 0 30 0



Table 5

WINGLET WW7 WING DISTRIBUTED LOADS
(SI UNITS)

NET LOAD DISTRIBUTIONS IN ELASTIC AXIS SYSTEM

SECTION VERTICAL HORIZONTAL LATERAL VERTICAL HORIZONTAL
LIFT SHEAR SHEAR SHEAR MOMENT MOMENT TORQUE

COEFFICIENT (kN) (kN) (kN) STATION (m) (kN'm) (kN'm) (kN 'm)

0.5114 1 -0.1 -236 0 7179208 1638927 -9857
0.6251 294 -0.1 -237 2.995 7617491 1640263 -10028
0.6253 791 5 -232 3.000 7614499 1620263 -4587282
0.6255 791 5 -232 3.005 7610453 1619923 -4586049
0.6257 805 81 -156 3.010 8890565 1293123 -880712
0.6590 778 79 -140 3.810 8169495 1223717 -850270
0.7177 722 74 -131 5.080 7082798 1091719 -805126
0.7837 654 69 -121 6.350 6082557 960670 -750875
0.8670 569 64 -111 7.720 5118487 827032 -705379
0.8685 705 62 -108 7.750 4848790 748103 -292918
0.9348 620 60 -104 9.010 3890137 661688 -245250
0.9350 621 63 -103 9.020 3897658 639842 -38472

w 0.9530 579 62 -102 9.650 3447636 593853 -20071....
0.9612 545 59 -97 10.160 3113619 548193 -10461
0.9701 461 54 -88 11.430 2364971 450185 10768
0.9722 383 49 -78 12.700 1737837 358898 23025
0.9715 310 44 -69 13.970 1232941 278957 31017
0.9688 251 39 -62 15.240 812197 209507 36167
0.9653 185 36 -55 16!510 500022 148813 39086
0.9492 127 32 -49 17.780 276321 95493 39385
0.9416 111 31 -47 18.180 222997 79887 38927
0.9225 89 30 -45 18.640 170212 62513 38142
0.9041 73 30 -45 19.050 131648 48207 38298
0.8858 60 29 -44 19.410 103731 35619 37834
0.8630 50 29 -43 19.710 84126 25271 37632
0.8603 42 29 -42 19.960 70504 16757 37392
0.8692 36 29 -42 20.150 61829 10238 37076
0.8614 31 29 -42 20.290 56519 5468 36805
0.8275 28 29 -42 20.380 53692 2718 36672
0.1504 28 29 -42 20.399 52884 1949 36786
0.0753 27 29 -42 20.401 52785 1683 36816
0.0 0 0 0 20.404 0 0 0



Table 5 (Continued)

WINGLET WW7 WING DISTRIBUTED LOADS
(CUSTOMARY UNITS)

NET LOAD DISTRIBUTIONS IN ELASTIC AXIS SYSTEM

SECTION VERTICAL HORIZONTAL LATERAL VERTICAL HORIZONTAL
LIFT SHEAR SHEAR SHEAR STATION MOMENT MOMENT TORQUE

COEFFICIENT (LB) (LB) (LB) ( IN. ) (IN.-LB) (IN. -LB) (IN.-LB)

0.5114 232 -20 -53230 0.0 63541360 14505064 -87238
0.6251 -65978 -20 -53198 117.900 67417392 14516899 -88747
0.6253 177772 1080 -52133 118.100 67390912 14339887 -40599008
0.6255 177716 1080 -52130 118.300 67355104 14336868 -40588096
0.6257 180905 18278 -35030 118.500 78684528 11444575 -7784602
0.6599 174720 17839 -34129 150.000 72302816 10830319 -7525177
0.7177 162275 16726 -31844 200.000 62685184 9662086 -7125819
0.7837 146928 15572 -29473 250.000 53832704 8502255 -6716299
0.8670 127958 14403 -27075 303.900 45300352 7319516 -6242842
0.8685 158394 13865 -26233 304.900 42913440 6621495 -2592428
0.9348 139338 13448 -25369 354.700 34429040 5856167 -2170546
0.9350 139576 14059 -23224 354.900 34495600 5662819 -340486

w 0.9530 129993 13825 -22798 380.000 30512752 5255799 -177633
!'J

0.9612 122370 13256 -21772 400.000 27556592 4851691 -92582
0.9701 103695 12174 -19821 450.000 20930800 3984294 95302
0.9722 86117 10956 -17625 500.000 15380449 3176370 203780
0.9715 69689 9832 -15599 550.000 10823442 2468865 274510
0.9688 54391 8841 -13813 600.000 7188222 1854209 320090
0.9653 40086 8007 -12308 650.000 4425366 1317048 345481
0.9492 27541 7274 -10986 700.000 2445532 845152 348572
0.9416 23955 7063 -10598 715.700 1973598 707025 344514
0.9225 19904 6814 -10165 733.900 1506433 553261 337572
0.9041 16391 6736 -10012 749.900 1165129 426647 338946
0.8858 13579 6599 -9773 764.000 918056 315241 334844
0.8630 11315 6522 -9634 775.900 744547 223655 333059
0.8603 9499 6461 -9527 785.800 623985 148307 330934
0.8692 7979 6443 -9492 793.400 547203 90603 328135
0.8614 6909 6426 -9463 798.900 500211 48994 325732
0.8275 6283 6417 -9447 802.200 475195 24056 324562
0.1504 6190 6415 -9443 803.100 468039 17248 325567
0.0753 6189 6415 -9443 803.200 467164 16493 325834
0.0 0 0 0 803.300 0 0 0



Table 6

WING BOX WEIGHT AND RIGIDITY OF CONFIGURATION WW7

SI UNITS

CD CD CD 0 0 0 CD G) CD @ @ @ @ @ @ @ @
m m m m-kg Criti cal PA m4 m2 m m 4 kg/m m kg/sidem m

n Yew tic C t r~ (l0-6) Condition Fe (10-3) I Ac Cs t sk J w XEA t.X EA t.W

0 0 0.1500 11.20 1.37 0.9065 2 317,000 0.0289 0.04240 3.91 0.00650 0.053336 234.7 0
3.01 706.2

0.148 3.01 0.1500 9.15 1.37 0.9065 2 317,000 0.0289 0.04240 3.91 0.00650 0.053336 234.7 3.01
2.30 539.3

0.249 5.08 0.1415 7.74 1.09 0.7223 2 317,000 0.0183 0.04235 3.02 0.00841 0.033648 234.5 5.31
2.95 727.6

w 0.378 7.72 0.1232 5.93 0.73 0.5219 2 310,000 0.0090 0.04685 2.36 0.01191 0.017186 259.3 8.26w 2.13 507.1
0.473 9.65 0.1185 5.10 0.60 0.3515 2 303,000 0.0052 0.03900 1. 98 0.01181 0.009823 215.9 10.39

3.48 607.8
0.622 12.70 0.1185 4.26 0.50 0.1772 2 296,000 0.0022 0.02409 1.60 0.00904 0.004200 133.4 13.87

4.34 417.3
0.809 16.51 0.1185 3.21 0.38 0.0517 12 262,000 0.00059 0.01060 1.12 0.00569 0.001030 58.8 18.21

2.44 117.0
0.914 18.64 0.1185 2.62 0.31 0.0184 5 179,000 0.00023 0.00674 0.86 0.00467 0.000431 37.3 20.65

2.06 58.5
1.000 20.40 0.1185 2.13 0.25 0.0079 5 179,000 0.000082 0.00356 0.70 0.00312 0.000151 19.6 22.71

3680.9

See Continuation for Explanatory Notes



Table 6 (Continued)

CUSTOt~ARY UNITS

IN.
n Ycw tic

IN. IN. IN.-LB CRITICAL PSI IN. 4
C t It (lO-6) CONDITION Fe (lo-3) I

@ @
IN. 2 IN.
Ac Cs

@ @ @ @ @
HI. 4 LB/IN. IN. IN. LB/SIDE
J '" XEA lIXEA 1I\~

0.148 118.5 0.1500 360.2 54.04

0.249 200.0 0.1415 304.6 43.10

0.378 303.9 0.1232 233.6 28.78

0.473 380.0 0.1185 200.9 23.81

0.622 500.0 0.1185 167.8 19.88

0.809 650.0 0.1185 126.3 14.97

0.914 733.9 0.1185 103.1 12.22

1.000 803.2 0.1185 83.9

0.256 128,140 13.14 118.5

69,320 65.72 154

69,320 65.72 154

44,060 65.64 119

118.5 1557

90.5 1189

116 1604

34 1118

137 1340

171 920

96 258

Rl 129

o

7.47 546

3.29 717

2.09 813

1.1fJ 894

80,840 13.13 209

41,290 14.52 325

23,600 12.09 40Q

10,090

2,475

1,035

362

0.256 128,140 13.14

0.331

0.469

0.465

0.356

0.224

0.184

27.5 fJ.123

93

78

63

44

34

5.52197

21,730 72.61

12,380 60.45

5,330 37.34

1,330 16.43

564 10.45

46

46

46

45

44

43

38

26

26

2

2

2

2

2

2

12

5

5

78.68

78.68

62.69

45.30

30.51

15.38

4.486

1.593

0.68779.94

0.1500 441.1 54.04oo

~ t/ = NAXIMUM AIRFOIL THICKNESS
~ c AERODYNAMIC CHORD

~ Ycw
\.lAY n = b/2 ; b/2 = 803.266 in.

8115

'" = [lENDING MATERIAL \~EIGHT (#/INCH of ELASTIC AXIS SPAN)
= 2 Ac p = 0.2 @

Cs = BOX STRUCTURAL CHORD (NORMAL TO ELASTIC AXIS)
- Ac ~t sk = Kt = 0.60 C

s
= 0.60 \UIf\l.JI

- Ac t-t = C; K = skit ~O.60
s 2 2 t

J = TORSIONAL STIFFNESS =~ = 4 (0.85 t Cs~

5ds 2 (Cs + 0.85 t)

tSk
1.4455 2 11 2 1

+ 0.85 5
A = ENCLOSED AREA:;:::. 0.85 h Cs ; dS = PE HIETER; JlSSlIME t sk = CONSTAIn

XEA = ELASTIC AXIS STATIONS

lIXEA = SPAN INCREMENTS BE~AEEN XEA STATIONS

1I~1 = "'ave lIX EA = @ Q§)

@
@

= 2.76~G·
(-0

r·t = LI~IIT VERTICAL BENDING MOMENT ABOUT ELASTIC AXIS
(WHICH IS LOCATED MIDWAY BEn4EEN FRONT AND REAR SPARS)

SEE TABLE 8 FOR CONDITION DEFINITION

Fe = EQUIVALENT ALLOWABLE STRESS ~0.90 FCult
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summarizes the wing box sizing and rigidity results for the WW7 configuration.

Identical procedures were completed for each wing and wing1et structure.

Flutter Analysis. - Since the shortest wing-wing1et configuration (WW2)

was unacceptable from an aerodynamic buffet viewpoint, only the remaining

three configurations - WW4, WW5, and WW7 (see Figure 5) - were analyzed for

flutter integrity. The flutter analysis idealization represented the fuselage,

wing, wing1et, and engine pylon flexibility but the empennage was considered

to be rigid.

Figure 14 shows the spanwise distributions of wing rigidities for the WW4

wing-wing1et configuration as prescribed by the ultimate strength analysis

described in the previous section.

Experience has indicated that for configurations such as the DC-10 and

present baseline aircraft, the flutter speeds associated with antisymmetric

motion are very high and not critical. Therefore, only symmetric flutter

modes were analyzed. Unsteady aerodynamic influence coefficients were

calculated for symmetric motion at a Mach number of 0.79 by application of

the doublet lattice method of Reference 11. This method is a finite-element

aerodynamic lifting surface analysis which represents the lifting surface by

a network of line-doublet potential-flow singularities and employs a control

point on each element to impose inviscid tangential flow conditions. This

method employs an inviscid unsteady potential flow theory. All aerodynamic

coupling among the fuselage, wing, winglet, nacelle, pylon, and horizontal

stabilizer was modeled. The theoretical aerodynamic influence coefficients

were weighted to reflect available estimated steady aerodynamic data which

were collected from wind tunnel tests of comparable configurations.
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The modal representation employed consisted of 3 rigid body modes,

10 flexible wing modes, 5 flexible winglet modes, 1 wing roll mode,

3 flexible pylon modes, and 7 fuselage modes.

With respect to the flutter evaluation, certain qualifications need to be

recognized. First, the degree of confidence usually associated with conven­

tional wing flutter analysis was not possible since experimental flutter

results for a similar wing-winglet configuration were not available for a
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methodology confirmation. Low- and high-speed wind tunnel tests employing

elastic flutter models are required to remove this uncertainty. Secondly,

the coupling of steady and unsteady aerodynamic effects, which is usually a

negligible second order effect on a conventional wing, has been ignored in the

present analysis. However this coupling may be as significant for the wing­

winglet combination as it is for T-tail configurations. Finally, since all

configurations employed advanced supercritical airfoils, their nonlinear

compressible characteristics may impact the flutter aerodynamics. In the

flutter evaluation, the change of lift curve slope at high subsonic Mach

number and low lift coefficient requires futher investigation. The effect

pertains to the baseline as well as the wing-winglet configurations, and

has not been evaluated for flutter to date.

The flutter analyses were performed for the entire fuel schedule. As shown

in the sUll1l1ary of computed flutter speeds (Figure 15), two flutter modes exist

for each wing-winglet configuration. The lower-frequency (3.5 Hz) mode is the

basic wing inner panel bending/torsion mode which is evident even without the

presence of the winglet. For low fuel conditions (less than 20 percent fuel),

this flutter mode is of the "mild humping ll type (damping decreases gradually

as airspeed increases). Note that the W~J7 configuration treets th/;! flutter margin

re~uirement (i.e., flutter speed in excess of 1.2 times the dive spee~) for this

f.1ode, while the other tvw configurations (W~J4 ,lnd WW!-j) do not.

In addition to the 3.5-Hz mode, a higher frequency (4.5-Hz) flutter mode

was predicted for each of the wing-winglet configurations. The higher frequency

mode was an outer wing torsion mode introduced by the large vertical displacement

between the winglet center of mass and the wing plane. As a result, the flutter

speed is very sensitive to wing span. The predicted flutter speed for this
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mode, as indicated in Figure 15, was below the requirement only for the longest

span configuration (WW5). The other configurations (WW7 and WW4) were acceptable.

An assessment was made of the additional structural weight needed to increase

the flutter speeds of the deficient configurations to the required margin of 20

percent in excess of the dive speed. Analysis of the WW7 configuration indicated

that the ultimate-strength design met the required flutter criteria. Predictions

indicated that the WW4configuration was deficient in flutter speed margin only

for the wing inner panel bending/torsion 3.5-Hz mode. Analysis showed that

structural stiffening of the inner panel, resulting in a 318-kilogram (700­

pound) weight addition, would increase the flutter speed to the required value.

The distribution of added structure was based on formal optimization analyses

of the baseline aircraft. For the WW5 configuration, the flutter weight penalty

was determined to also be approximately 318 kilograms (700 pounds) to provide
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sufficient flutter margin for the 3.5-Hz mode. However, the outer wing also

required stiffening to meet the flutter speed criteria of the 4.5-Hz mode. The

precise amount of the additional stiffening was not determined since it was

clearly more than several hundred kilograms and therefore disqualified the

WW5 configuration from further contention.

Detailed Weight Evaluation

The weight of the basic wing-winglet lift systems was evaluated for con­

figuration selection and configuration resizing. A weight breakdown of the

resized configuration was prepared for input to the direct-operating-costs

evaluations. All these estimations employed similar methodology.

Three basic techniques were employed in the weight estimation. First,

portions of the aircraft were common with the parent DC-10 aircraft and, con­

sequently, these common components have known weight characteristics which

were incorporated into the weight estimates. In the second technique, weights

for new major structural components were derived using multistation analysis

techniques which consider design criteria, geometry, and loads. fhe third

technique predicted the weights for the remaining new structure and systems by

application of parametric relationships isolated during post-design analyses

of production aircraft.

During the configuration selection phase of the present study, incremen­

tal wing-winglet configuration weights relative to the baseline aircraft were

examined since only wing structure changes were of interest. For all config-
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urations, the trapezoidal wing area was maintained constant at 202.1 square

meters (2175 square feet) to ensure a consistent comparison.

Table 7 presents the basic geometrical characteristics of the baseline

aircraft and wing-winglet aircraft, as well as a tabulation of weight increments

(relative to the baseline aircraft) of various wing components for the wing­

winglet combination. The bending material estimate given in Table 7 was ob­

tained directly from the static structural analysis described earlier which

considered gust- and maneuver-load ultimate strength requirements. The weight

of additional structure (in excess of static requirements), which was considered

to be needed to meet dynamic structural requirements, is listed as a flutter

penalty. All other categories given in Table 7 are in addition to these static

and dynamic structural requirements.
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Table 7

COMPARISON OF BASELINE AND WING-WINGLET CONFIGURATION ESTIMATED WEIGHTS
BASELINE lHNG-WINGLET

BASIC \HNG TRAP WING HW2 WW4 vM5 WW7

Wing Area/WingSemispan, 202.1/23.41 202.1/19.92 202.1/20.97 202.1/22.19 202.1/20.40

m2/m (ft2/in.) (2175/921.7) (2175/784.3) (2175/825.5) (2175/873.5) (2175/803.2)

Aspect Ratio 10.85 7.856 8.702 9.745 8.241

Taper Ratio .1407 .2964 .2490 .1950 .2742

Quarter 30° 30° 30° 30° 30°

WINGLET (ONE SIDE)

Area/Span m2/m (ft2/in) 3.33/2.95 2.83/3.10 2.42/3.28 3.22/3.02
(35.88/116.l) (32.11/122.2) (26.13/129.3) (34.67/118.7)

Aspect Ratio 2.608 3.23 4.442 2.831

Taper Ratio .300 .300 .300 .300

TAKEOFF GROSS WEIGHT, 138,798 138,798 138,798 138,798 138,798
kg (lb) (306,000) (306,000) (306,000) (306,000) (306,000)

FLAPERON No No No No No

BENDING MATERIAL 8,100 7,496 7,413 7,731 7,362
(17,858) (16,526) (16,342) (17,044) (16,230)

BENDI NG fMTERIAL -604 -688 -369 -738
(-1332) (-1516) (-814) (-1628)

SPAR HEBS -49 -30 -13 -40
(-107) (-67) (-29) (-88)

RIBS 96 64 30 80
(+211 ) (+140) (+66) (+177)

WINGLET AND ATTACH 303 278 262 295
(+669) (+612) (+578) (+650)

LEADING EDGE -93 -74 -56 -69
(-204) (-164) (-124) (-152)

LEADING EDGE FLAPS -127 -104 -82 -97
(-280) (-230) (-180) (-214)

TRAILING EDGE 131 103 76 92
(+288) (+228) (+168) (+202)

SPOILERS -67 -81 -94 -76
(-148) (-178) (-208) (-167)

FLAPS 0 0 0 0

AILERON 7 5 4 8
(+16) (+12) (+8) (+18)

TIP -17 -17 -17 -17
(-38) (-38) (-38) (-38)

SUB-TOTAL -420 -545 -260 -562
(-925) (-120l) (-573) (-1240)

FLUTTER PENALTY >318 318 >318 0(+>700) (+700) (+>700)

TOTAL INCREMENTAL WEIGHT -102 -227 58 -562
(-225) (-501) (+127) (-1240)
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Configuration Selection

The combination of the aerodynamic design, structural analysis and weight

estimation results in four wing-wing1et configurations of nearly equivalent

aerodynamic capabilities but varying structure and weight characteristics.

Table. 8 compares each \'/ing-\t/ing1et configuration \</ith the baseline aircraft

employing a conventional wing. At the left side of the table, the aerodynamic

induced-drag efficiency factor and geometrical characteristics are tabulated.

The right half of the table gives the weights. Although wing bending material

weight is significant for the wing-wing1et designs, the weight associated with

meeting the flutter requirement is a nearly dominant factor in determining the

total configuration weight increment relative to the baseline wing.

The relative weight results described above are shown in Figure 17. The

three components of incremental configuration weight of Table 8 are given in

Figure 17, including: wing bending material incremental weight; bending mater­

ial with wing1et and miscellaneous weights such as flaps and slats (total wing­

wing1et weight exclusive of flutter penalty); and total weight of the wing­

wing1et system. Although all three components appear to have a minimum at the

same design point, it is evident that the slope of the weight curve is increased

significantly by inclusion of flutter-related weight. The shortest span config­

uration which satisfies a simple buffet requirement (WW7) is also the lightest

wing-wing1et design. Therefore, this configuration was selected for evaluation

and comparison with the baseline wing.

An aircraft configuration based on combination WW7 is shown in the three­

view drawing of Figure 18. The characteristics shown in this figure are based
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Table 8

WING-WINGLET CONFIGURATION CHARACTERISTICS

CONFIGURATION CONFIGURATION WEIGHT
WEIGHT RELATIVE TO BASELINE

WING WINGLET kg (lb) kg (lb)

Q).. ........
0:: s::
0 ........ .,... -J -J -JU c.l'

r- s:: ........ c::( >- c::( c::( V'l z:
U .,... ...... r- ...... ...... ...... ......

z: c::( ........ E 0:: -J 0:: 0:: :E a ........
0 l.L. 0 ........ LLJ c::( LLJ LLJ => V'l

...... E ...... s:: .. r- z: r- r- O -J r-

r- >- r- .,... a c::( I.LJ c::( c::( z: U z:
c::( U .. c::( ........ 0:: :E 0.. :E :Ec::( r z: LLJ

0:: z: z: 0:: 0 ...... :E

=> LLJ c::( E :I: c.l' 0:: c.l' c.l' r- ........ 0:: LLJ

c.l' ...... 0.. r- U z: LLJ z: z: LLJ LLJ 0::

...... U V'l U .. ...... r- ...... ...... -J -Jr- ......

l.L. ...... ...... LLJ z: r- a r- a a c.l' c::(r-=>

z: l.L. :E 0.. c::( 0 z: => z: z: z: r- => 0"

0 l.L. I.LJ V'l 0.. 0 LLJ -J LLJ LLJ ...... o -J LLJ

U LLJ V'l c::( V'l 0:: co l.L. co co :::;: r-l.L.0::

Baseline 0.90 23.41 10.85 - - 8,100 0 - - -
(921. 7) (17,858)

WW5 0.97 22.19 9.73 3.284 1.15 7,731 >318 -369 -260 >58
(873.5) (129.3) (45.1) (17,044) (>700) (-814 ) (-573) (>127)

WW4 1.09 20.97 8.70 3.104 1.48 7,413 318 -688 -545 -227
(825.5) (122.2) (58.2) (16,342) (700) (-1516) (-1201) (-501 )

WW7 1. 15· 20.40 8.24 3.020 1.64 7,362 0 -738 -562 -562
(803.3) (118.9) (64.6) (16,230) (-1628) (-1240) (-1240)

WW2B 1. 21 19.92 7.86 2.949 1.79 7,496 UNKNmm -604 -420 UNKNOWN
(784.3) (116.1) (70.4) (16,526) (-1332) (-925)
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on the preliminary size aircraft (e.g., 202.l-square meter, or 2l75-square foot,

wing trapezoidal area) and do not reflect the final sizing of the aircraft.
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CHARACTERISTICS DATA

CD HORIZONTAL VERTICAL
ITEM WING TAIL TAIL

AREA, SO m (SO FT) 202.1 56.7 37.6
(2175) (610) (405)

ASPECT RATIO 8.24 3.8 1.6

TAPER RATIO 0.27 0.35 0.35

SWEEP, cf4 30° 30° 35°

DIHEDRAL, cf4 4° 10° -

8·GEN·25884

FIGURE 18. SELECTED WING-WINGLET CONFIGURATION
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EVALUATION OF THE SELECTED HING-WINGLET CONFIGURATION

At the conclusion of the configuration selection phase of the study, a basic

wing-winglet combination was available for comparison with a conventionally

designed wing. Detailed aerodynamic characteristics were first estimated to

facilitate sizing-performance calculations. The aircraft were then resized and

performance was estimated for a typical mission. Direct operating costs were

then estimated and evaluated.

Estimation of Aerodynamic Characteristics of
Final Wing-Winglet Configuration

For the preliminary configuration selection phases, only load distribution

and lift-induced drag were of significance. In the detailed evaluation, cruise

and high-lift aerodynamic characteristics were estimated (using conventional

methods) in conjunction with the lifting surface numerical analysis method of

Reference 9. In addition, the estimates of previously determined character-

istics were refined.

Cruise-drag characteristics were estimated by summing parasite, induced,

compressibility, and trim drag contributions:

C
°total

= Co + CD + ~CD + ~CD
parasite induced compressibility trim

Parasite drag, consisting of skin friction, form, and roughness drag, was esti­

mated by applying Clutter skin friction coefficient tables (Reference 12),

accounting for the configuration geometry and local Reynolds number. The
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cruise-induced drag was based on application of the analysis of Reference 9 and

the results are shown in Figure 13. The wing-winglet configuration was designed

to match the baseline-induced drag at the design lift coefficient (CL = 0.60).

However s the induced drag differed slightly from the baseline values at off­

design lift coefficients. Tail-off compressibility drag was assumed to be iden­

tical to that of the baseline aircraft. However s a reduction in wing-winglet

tail cQmpressibility drags relative to the baseline values was estimated as a

result of the smaller wing-winglet tail size. The trim drag was calculated by

employing moments and downwash at the horizontal tail which were estimated by

lifting surface theory analysis of the wing-winglet configuration. Table 9

provides estimated drag components for both the baseline and final wing-winglet

configuration at the trimmed lift condition as well as the associated incremental

values.

Table 9

DRAG COMPONENT ESTIMATES FOR THE BASELINE
AND WING-WINGLET AIRCRAFT

CDparasite & CDinduced bCDcompressibi1ity bCDtrim CDtotal
interference

Baseline 0.0185 0.0112 0.0022

Wing-Winglet 0.0182 0.0112 0.0022

Increments
vJing-Wing1et- -0.0003 +0.0 0.01
Baseline

0.0013 0.0332

0.0011 0.0327

-0.0001 -0.00041

Above values are at aircraft lift coefficient of 0.55 which is the approximate
trimmed cruise lift coefficient.

Above values are based on wing reference value of 202.1 square meters (2175 square
feet) .
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As in the case of the baseline aircraft, high-lift characteristics were

generated for the wing-winglet configuration by employing conventional methods

(modified version of Reference 13) in conjunction with predictions based on

results of the numerical lifting surface analysis of Reference 9. For example,

the aircraft maximum lift coefficient was estimated by adjusting the basic wing

maximum lift value by increments resulting from the variable-camber Krueger,

trailing-edge flap system, trim lift penalty, and dynamic contributions:

Basic wing maximum lift capability was assumed to be the same as for the base­

line aircraft even though analysis indicated the possibility that the winglet

airfoils may require additional sectional maximum-lift capability at the root.

Presumably this additional capability could be provided by a winglet root lead­

ing edge extension. The impact of the additional maximum lift capability

requirement was expected to be minimal and was neglected. The CLmaxv . and
mln

lift-to-drag ratios predicted for the wing-winglet and baseline aircraft are

presented in Figures 19 and 20, respectively.

The lower-than-baseline maximum lift values of the wing-winglet combination,

evident in Figure 19, resulted from the smaller flapped wing area of the lower­

aspect-ratio wing-winglet planform. Slightly degraded wing-winglet lift-to-

drag ratios of Figure 20 were estimated based on the inability of the winglet to

reduce the induced drag of the flap-dominated configuration as effectively as for

the cruise configuration. The "bend" in the landing lift-to-drag ratio curves,

which is apparent in Figure 20, resulted from the requirement for additional

deflection of the flaps at lift coefficients above the maximum value obtainable

with the initial flap deflection (20°/10°).
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The flap maximum-lift increments for both the baseline and wing-winglet

aircraft were estimated by employing unpublished Douglas Aircraft Company two­

dimensional experimental data for the proposed two-segment flap. Conversion of

the two-dimensional values to three-dimensional maximum-lift increments was per­

formed via a two-dimensional to three-dimensional analogy based on flap system

. areas and chords.

Low-speed drag was estimated by augmenting the baseline aircraft drag polars

with increments (relative to the baseline) for the basic wing-winglet (parasite

and induced) drag and the flap induced drag. This approach permitted the use of

the baseline aircraft flap parasite drag estimates. Incremental values pre­

dicted using the method of Reference 8 were also employed to generate lift curves
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and pitching moments for estimation of lift coefficient at minimum unstick speed

(CLV ) and trimmed lift. Figures 21 and 22 give the predicted high-lift system
mu

increments in high-lift-system induced drag, flap lift, and pitching moment. The

estimated high-lift characteristics of the wing-wing1et configuration indicate

only a small degradation compared to the characteristics of the higher-aspect­

ratio baseline design.
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Estimation of Weight Characteristics of the
Selected Wing-Winglet Configuration

Subsequent to the selection of the final wing-winglet configuration, a

detailed weight evaluation was performed for the final configuration based

on the wing structural drawing of Figure 16. The product of this detailed

weight evaluation was a set of weight equations which were input directly to

configuration sizing/performance numerical analysis.

The final weight estimation function entailed the calculation of a weight

breakdown for the various components of the resized baseline and wing-winglet

aircraft. Tables 10 and 11 present the weight breakdown for the baseline-and

final wing-winglet aircraft. The tables include definition of new and co~on

weight for cost estimating purposes. Components of IIcommon \'Ieight ll are in

current DC-10 production.
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Table 10

WEIGHT BREAKDOWN OF RESIZED BASELINE AIRCRAFT

All \Ieights in Kilograms (Pounds)

Horizontal Area - gross/exposed,
m2 (ft2)

Vertical Area - exposed, m2 (ft2)

Max. Takeoff Weight

Max. Landing Weight

Max. Zero Fuel Weight

Max. Fuel Capacity @
802.8 kg/m3 (6.7 1b/gal)

Basic Wing Area, m2 (ft2)

Tail Arm Horiz/Vert, m (in)

Engines

Thrust/Engine, kN (lb)

133,809
(295,000 )

117,933
(260,000)

108,862
(240,000)

39,462
(87,000)

208
(2,240)

64/53
(684)(572)

38
(405)

18.5/17.6
(728.5/691.5)

2/CF6-45

200.16
(45,000)

3,066 0
(5,760)

Total

Wing 15,943
(35,148)

Horizontal 1,447
(3,190)

Verti ca1 1,243
(2,740)

Fuselage 15,676
(34,560)

Gear (less rolling assembly) 3,683
(8,120)

Sub-Total 37,992
(83,758)

Propulsion (less engines) 3,928
(8,660)

Fuel System 599
(1,320)

Sub-Total 4,527
(9,980)

Common

6,210
(13,690)

492
(1,084)

6,701
(14,774)

2,948
(6,500)

118
(260)

53

(1)

Gage

2,889
(6,370)

2,889
(6,370)

(2)
Estimated

DC-10 Cost
New Commonality (%)

15,943 0
(35,148)

1,447 0
(3,190)

1,243 0
(2,740)

6,577 52.5
(14,500)

3,191 13.3
(7,036)

28,401 23.0
(62,614)

980 75.1
(2,160)

481 19.7
(1,060)

1,461 67.7
(3,220)



Table 10 (Continued)

Flight Controls 2,173 200 1,973 9.2(4,790) (440) (4,350)
Hydraul ics 1,000 458 227 315 61. 7(2,205) (1,010) (500) (695)
APU 562 73 490 12.9(1,240) (160) (1,080)
Instruments 582 341 242 58.5(1,284) (751) (533)
Air-Conditioning 925 812 113 87.7(2,040) (1,790) (250)
Pneumatics 579 337 242 58.2(1 ,276) (743) (533)
Electrical 1,352 1,005 347 74.3(2,980) (2,215) (765)
Lighting 662 576 86 87.0(1,460) (1,270) (190)
Avionics 686 586 100 85.0(1,512) (1,291) (221)
Furnishings

Fixed 6,808 5,480 421 908 84.8(15,010) (12,081 (928) (2,001)
Seats 3,456 3,456 100.0(7,620) (7,620)

Galleys 1,449 1,449 100.0(3,195) (3,195)

Anti-Ice 172' 92 80 53.4(380) (203) (177)

Aux. Gear 23 23 70.0(50) (50)
Sub-Total 20,431 14,864 670 4,896 75.1(45,042) (32,769) (1,478) (10,795)

Cost Weight 62,949 24,631 3,560 34,758 43.09(138,780) (54,303) (7,848) (76,629)
Engines 7,960 7,960 100.0(l7 ,550) (17,550)

Rolling Assembly 2,354 159 2,195 6.7(5,190) (350) (4,840)
Manufacturer's Empty Weight 73,264 32,750 3,560 36,953 48.10(161,520) (72,203) (7,848) (81,469)

Op. Items + Weight Allow. 5,974
(13,170)

Operating Empty Weight 79,237
(174,690)

(1) Gage weight is assumed to be 30% new and 70% common.
(2) Estimated cost commonality = common + 70% gage.
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Table 11

WEIGHT BREAKDOWN FOR FINAL RESIZED WING-WINGLET CONFIGURATION
All Heights in Kilograms (Pounds)

(2)
Estimated

DC-lO Cost
New Commonality (%)

15,435 0
(34,028)

1,397 0
(3,080)

1,238 0
(2,730)

6,577 52.5
(14,500)

3,155 18.5
(6,956)

27,802 23.3
(61,294)

980 75.1
(2,160)

483 19.6
(1,065)

1,463 67.7
(3,225)

o

(l)

Gage

2,885
(6,360)

2,885
(6,360)

Common

3,066
(6,760)

6,205
(13,680)

492
(1,084)

6,697
(14,764)

2,948
(6,500)

118
(260)

Total

3,647
(8,040)

3,928
(8,660)

601
(1,325)

4,529
(9,985)

15,435
(34,028)

200.16
(45,000)

37,384
(82,418)

1,397
(3,080)

1,238
(2,730)

15,667
(34,540)

132,448
(292,000)

117,479
(259,000)

112,490
(248,000)

41,186
(90,800)

209
(2,255)

61/51
(657/548)

38
(405)

18.6/17.7
(734.3/697.3)

2/CF6-45

Max. Takeoff Weight

Max. Landing Weight

Max. Zero Fuel Weight

Sub-Total

Vertical

Sub-Total

Wing

Max. Fuel Capacity @
802.8 kg/m3 (6.7 lb/gal)

Basic Wing Area, m2 (ft2)

Tail-Arm Horiz/Vert, m (in)

Fuselage

Hori zontal

Fuel System

Engines

Thrust/Engine, kN (lb)

Propulsion (less engines)

Gear (less rolling assembly)

HQri~Q~tal Area - gross/exposed
. m2 (ft2)

Vertical Area ~ exposed, m2 (ft2)
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Table 11 (Continued)

Flight Controls 2,159 200 1,960 9.2
(4,760) (440) (4,320)

Hydraulics 998 458 227 313 61. 8
(2,200) (1,010) (500) (690)

APU 562 73 490 12.9
(1,240) (160) (1,080)

Instruments 582 341 242 58.5
(1,284) (751) (533)

A~r Conditioning 925 812 113 87.7
(2,040) (1,790) (250)

Pneumatics . 579 337 242 58.2
(1,276) (743) (533)

Electrical 1,352 1,005 347 74.3
(2,980) (2,215) (765)

Lighting 662 576 86 87.0
(1,460) (1,270) (190)

Avionics 686 586 100 85.0
(1,512) (1,291 ) (221)

Furnishings

Fixed 6,808 5,480 421 908 84.8
(15,010) (12,081) (928) (2,001)

Seats 3,456 3,456 100.0
(7,620) (7,620)

Galleys 1,449 1,449 100.0
(3,195) (3,195)

Anti-Ice 172 92 80 53.4
(380) (203) (177)

Aux. Gear 23 23 70.0
(50) (50)

Sub-Total 20,415 14,864 670 4,881 75.1
(45,OO7) (32,769) (1,478) (10,760)

Cost Weiqht 62,328 24,627 3,555 34,146 43.50
(137,410) (54,293) (7,838) (75;2i9)

Engines 7,960 7,960 100.0
(17,550) (17,550)

Rolling Assembly 2,331 145 2,173 6.8
(5,140) (350) (4,790)

Manufacturer's Empty Weight 72,620 32,746 3,555 36,318 48.52
(160,100) (72,193) (7,838) (80,069)

Op; Items + Weight Allow. 5,974
(13,170)

Operating Empty Weight 78,593
(173,270)

(1) Gage weight is assumed to be 30% new and 70% common.
(2) Estimated cost commonality = common + 70% gage.
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Sizing Study

In the configuration selection phase, a trapezoidal wing area of 202.1

square meters (2175 square feet) was employed to enable a consistent comparison

of competing wing-winglet designs with varying wing aspect ratios. Prior to

the sizing study, an evaluation was made of the design status of the baseline

aircraft. From this evaluation it was determined that small changes should be

made to the baseline aerodynamic characteristics to ensure consistent comparison

with the wing-winglet aircraft.
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Accordingly, both the baseline and chosen wing-winglet aircraft were

resized to determine the wing area and minimum takeoff gross weight needed to

meet the design requirements of Table 1.

The sizing process was accomplished by utilizing the sizing feature of a

combined sizing/performance computer analysis. This computer program,

designed specifically for parametric aircraft sizing studies at the

preliminary design level, employs classical equations of motion.

Starting with an initial estimate for takeoff gross weight, the program

58



- -WING·WINGLET

-BASELINE AIRCRAFT

2.0

a =

INVISCID ANALYSIS

ESTIMATE -----,

-1.0-0.8-0.6-0.4-0.2

INVISCID ANALYSIS ESTIMATE

o
5

40302010o
o

0­
Cl:
.J

.JIL 1.6
U

~
f­
2
w
u
:t 1.2
wo
U
f­
u.
...J

...J

~ 0.8
2
w
:2:
w
II:
U
2

~ 0.4
...J
u.

EFFECTIVE FLAP DEFLECTION, of (DEG)
. eft

AC AT a = CONSTANT
m

INCREMENTAL PITCHING MOMENT COEFFICIENT AT CONSTANT
ANGLE OF ATTACK, ACm

FIGURE 22. COMPARISON OF FLAP EFFECTIVENESS AND PITCHING MOMENTS OF BASELINE AND WING-WING LET AIRCRAFT



calculates the total fuel required to complete the input mission profile. The

weights subprogram is then called to calculate the operator1s empty weight for

the particular wing area, engine size, and takeoff gross weight. Available

payload (takeoff gross weight minus operator's empty weight minus total fuel

required) is then compared with the design payload required. A new takeoff

gross weight is selected and the mission calculations are repeated until the

correct payload is achieved. When the mission balance is complete, the program

calculates approach speed at the mission landing weight.

Program inputs include drag data in the form of efficiency factor, parasite

drag equivalent flat plate area, and compressibility drag. Additional aero­

dynamic input data specify the lift coefficient at minimum speed and the buffet

lift coefficient. The aircraft operating empty weight is provided to the sizing

analysis in the form of weight equations expressed in terms of the independent

variables of wing area and takeoff gross weight. Engine characteristics were

supplied in tabular form with net thrust and fuel flow as a function of Mach

number, pressure altitude, and temperature for maximum climb, maximum cruise,

and at flight idle power settings. Additionally, engine fuel flow for cruise

rating is also stored as a function of (partial) power settings.

The aircraft was optimally sized within the analysis program by determining

the takeoff gross weight and wing area needed to meet approach speed and initial

cruise altitude requirements for the specified design range and payload. Results

of the sizing process are summarized in Table 12 for both the baseline and wing­

winglet aircraft. Table 12 indicates that the wing-winglet aircraft has a

larger wing area but is lighter than the baseline aircraft.
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Table 12

SIZING AND PERFORMANCE RESULTS FOR BASELINE AND WING-WINGLET AIRCRAFT

Baseline Wing-Winglet
Aircraft Configuration

Engines GE CF6-45 GE CF6-45
No. 2 2
Sea Level Static Thrust/Engine 200.16 kN 200.16 kN)

of-' (45,000 lb) (45,000 lb)::s
0- 230 230l:: Passengers

1-4

01 Design Payload 21,390 kg 21,390 kg
l::.... (47,150 lb) (47,150 lb)
N....

Design Range 4855 km 4855 km(/)

(2620 n mi) (2620 n mi)
Cruise Mach 0.80 0.80

Maximum Takeoff Gross Weight 133,825 kg 132,473 kg
(295,035 lb) (292,055 lb)

Operating Empty Weight 79,255 kg 78,573 kg
(174,728 lb) (l73,270 lb)

Operational Landing Weight 106,032 kg 105,283 kg
(233,762 lb) (232,111 lb)

Landing Flaps 20/10 deg 20/10 deg
II)

Approach Speed 241 km/hr 241 km/hrof-'....
::s (130 kn) (l30 kn)
II)
Q)

Initial Cruise Altitude 10,394 m 10,485 m0:::

01 (34,100 ft) (34,400 ft)
l::....

84°FN Takeoff Field Length at SL, 2286 m 2362 m....
(/) (7500 ft) (7750 ft)

Wing Area 208 sq m 209 sq m
(2242 sq ft) (2255 sq ft)

Parasite Drag Equivalent 3.880 sq m 3.808 sq m
Flat Plate Area (41.776 sq ft) (40.985 sq ft)
Aspect Ratio 10.85 8.24

750-n mi Mission

l::1I) Block Time 2.021 hr 2.022 hr
O+)

8275.7 kg........ Block Fuel 8151.9 kg
Vl::S
11)11) (18,245 lb) (l7,972 lb).... (])

::EO:::
Constant Altitude 11 ,278 m 11 ,278 m

(37,OOO ft) (37,OOO ft)
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Subsequent to the sizing calculation, the flight characteristics of the

resized aircraft were then determined. The flight mission profile is specified

in Table 2. The block data results for baseline and resized wing-wing1et air-

craft are given in the lower part of Table 13. These block data were employed

in the direct operating cost calculations.

Table 13

INPUTS TO DIRECT OPERATING COSTS EVALUATION

Input Baseline Wing-Winglet

Engine
Model GE CF6-50 GE CF6-50
Number 2 2
Sea Level Static Thrust 200.16 kN/engine 200. 16 kN/engine

(45,000 1b/engine) (45,000 1b/engine)
Extra Derate 25 percent 25 percent

Weight
Maximum Takeoff 295,035 1b 292,055 1b
Cost Weight 138,780 1b 137,410 11'

Prices
Total Aircraft $23,902,000 $23,842,000
Engine $1,873,000 $1,873,000
Fuel $0. 13/1 iter $0.13/1 iter

($0.50/ga11on) ($0.50/ga11on}

Capacity
Passenger Seats 230 230
Cockpit Crew 3 3

Block Data
Stage Length 1389 km 1385. km

(750 n mi) (750 n mi)
Block Fuel 8276 kg 8152 kg

(18,245 1b) (17,972 1b)
Block Time 2.021 hr 2.022 hr
Flight Time 1.888 hr 1.889 hr
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Direct Operating Costs Evaluation

The direct operating costs (DOC) were estimated for both the baseline and

wing-wing1et aircraft by employing modified versions of the Air Transport Associ­

ation DOC equations which are outlined in Reference 14. The modifications con­

sist of updating the equations to reflect recent operating experience and current

prices. DOCs were calculated in 1978 dollars with a fuel cost of 13 cents per

liter (50 cents per gallon). Maintenance cost estimates were based on the first

5 years average since this period is generally of principal interest to the air­

line operators. An aircraft productivity of 1,852,000 kilometers (1,000,000

nautical miles) per year was assumed. Additionally, a 16-year depreciation

period with a residual value of 0.16 of the original cost was employed. Deve1~

opment costs were estimated to be -$754,260,000 for the baseline aircraft and

$755,150,000 for the wing-wing1et configuration. Even though the latter number

includes $5,000,000 dollars for wing1et development, the wing-wing1et develop­

ment expense is estimated to be only slightly greater than the baseline expense

since the wing-wing1et aircraft is smaller in size than the baseline aircraft.

Since the development costs were distributed over 400 aircraft (with a 20-percent

pretax profit), the impact of development costs on the relative price of the two

aircraft is relatively insignificant.
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Comparison of Wing-Wing1et and Conventional Wing Aircraft

The DOCs for both the baseline and wing-wing1et aircraft are given in

Table 14 for the mission of Table 2. Comparison of the DOC totals for the two

aircraft indicates a 0.7-percent lower DOC for the optimized wing-wing1et air­

craft than for the conventional wing aircraft. This DOC increment is considered

Table 14

RESULTS OF DIRECT OPERATING COSTS CALCULATION
(Mission Given in Table 2)

Component

Cockpit Crew

Depreciation
- Airframe
- Engines

Insurance

Landing Fee

Airframe Maintenance
- Labor

'- r~ateria1

Cost Per Flight ($)
Baseline

746.32

918.36
197.54

134.45

221.28

307.29
126.60

Cost Per Flight ($)
\~i ng-Wi ng1 et

744.86

915.62
197.54

134.11

219.04

306.24
126.35

Engine Maintenance
- Labor
- Materi a1

Fuel

Total

Cost Per Nautical Mile

Cost Per Seat Mile

88.52 88.55
109.39 109.43

1361. 57 1341. 19

4211. 32 4182.95

$ 5.6151 $ 5.5773

$ 0.0244 $ 0.0242
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to be significant, and indicates that development of the optimized wing-winglet

concept warrants further investigation. The wing-winglet configuration consumed

1.5 percent less fuel than the baseline aircraft for the specified mission. In

fact, fuel consumption reduction was responsible for a substantial portion

(72 percent) of the wing-winglet aircraft DOC benefit. The wing-winglet concept

therefore warrants further development in view of the energy saving potential.
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CONCLUSIONS AND RECOMMENDATIONS

This study of an integrated wing and winglet lift system applied to a

medium-range advanced commercial aircraft has yielded favorable indications of

the advantage of the wing-winglet system. This advantage is reflected in sig­

nificantly lower direct operating costs and includes substantial energy savings.

DOC calculations indicate that the present optimized wing-winglet configuration

can complete a typical l389-kilometer (750-nautical-mile) mission at a 0.7 per­

cent lower cost than the comparable conventional wing aircraft. Most of the

reduction in operating costs results from lower fuel consumption.

Apart from these results, the study concl udes that the selection of the opti­

mum wi ng-winglet design was strongly influenced by flutter requirements. Although

the final wing-winglet configuration was predicted to have zero flutter penalty,

any significant revision in flutter performance of the wing-winglet system could

certainly impact the configuration definition, and perhaps affect the advantage

described above. Therefore, additional investigation of the flutter characteristics

of wing-wi'nglet systems is recommended in order to confirm their potential benefits.

Additionally, although no specific problems were identified during the wing­

winglet high-lift-system analysis, some uncertainty in achievable low-speed

performance, resulting from lack of experience with winglet high-lift systems,

has been identified. Consequently, further investigation of low-speed winglet

aerodynamics is recommended.

Under the stated design rules and guidelines, the wing-wlnglet combination

provided a lighter lift system than a comparably performing high-aspect-ratio

conventional wing. However, this result cannot necessarily be generalized to all

aircraft configurations.
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In conclusion, the study shows that estimated DOC and fuel savings are of

sufficient magnitude to sustain interest in further development of an aircraft

designed with a winglet from its inception.
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