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DESIGN OF ANALYTICAL FAILURE-DETECTION SYSTEMS USING SECONDARY OBSERVERS

M. Sidar*

Ames Research Center

SUMMARY

The problem of designing analytical failure-detection systems (FDS) for sensors

and actuators, using observers, is addressed. These failure-detection systems can

be applied to linear, constant, and possibly time-varying multi-input, multi-output

systems with measurement noise. The use of observers in FDS is related to the exam-

ination of the n-dimensional observer error vector which carries the necessary

information on possible failures. The problem is that in practical systems, in which

only some of the components of the state vector are measured, one has access only to
the m-dimensional observer-output error vector, with m ! n. In order to cope with

these cases, a secondary observer is synthesized to reconstruct the entire observer-

error vector from the observer output error vector. This approach leads toward the

design of highly sensitive and reliable FDS, with the possibility of obtaining a

unique fingerprint for every possible failure (abrupt or soft). The use of the

secondary observers allows us also to solve the measurement noise problem in a very

efficient way. Further, in order to keep the observer's (or Kalman filter) false-

alarm rate (FAR) under a certain specified value, it is necessary to have an accept-

able matching between the observer (or Kalman filter) models and the system

parameters. Only properly designed adaptive observers are able to detect abrupt

changes in the system (actuator, sensor failures, etc.) with adequate reliability and
FAR. A previously developed adaptive observer algorithm is used here to maintain the

desired system-observer model matching, despite initial mismatching or system param-

eter variations. Conditions for convergence for the adaptive process are obtained,

leading to a simple adaptive law (algorithm) with the possibility of an a priori

choice of fixed adaptive gains. Simulation results show good tracking performance

with small observer output errors, while accurate and fast parameter identification,
in both deterministic and stochastic cases, is obtained.

I. INTRODUCTION

The use of the analytical redundancy approach for sensor and actuator failure

detection in complex, dynamic control systems is by now widely accepted as a feasible

concept for redundancy management (refs. 1-3). Besides an appreciable saving in cost,

volume, and weight, the analytical failure-detection systems have to provide at least

the same high performances as the classical voting systems, which are based on simple
" threshold examinations and on some crude decision logic. In aeronautical designs,

and in particular for flight-control purposes, values of mission abort probability

(MAP) of 10-4 to 10-5 per flight hour, associated with typical false-alarm rates (FAR)

of 10-3 to i0-%, are rather commonly imposed by operational requirements (ref. i).

To compete successfully with the triple and quadruple redundant systems based

exclusively on voting schemes, the analytical-redundant failure-detection systems
have to exhibit certain basic features. For example:

*NRC Senior Research Associate.



i. Simplicity and fault-tolerant properties in both the software conception

and the hardware implementation.

2. High reliability and high probability of failure detection.

3. Low false-alarm rates, despite external disturbances such as wind gusts,

abrupt maneuvering (in flight-control systems), instrumentation noise, and, in some

cases, process noise.

4. Ability to determine, as precisely and as rapidly as possible, the failure

source, the extent of the failure, and in some cases, the time of failure.

5. In addition to abrupt failure detection (mainly for sensor and actuator

failures), the analytical-redundancy schemes have to handle the problem of soft-

failures detection, such as the detection of biases or scale factor changes in the

instrumentation, some degradations in actuator performances, etc.

Two principal analytical concepts are used in guidance and flight control for

analytical failure-detection purposes:

i. Kalman filters (ref. 3-13) where the innovation sequence _(t) is tested for
unbiasedness and whiteness (orthogonality condition test).

2. Linear observers (refs. 3-15) (full- and reduced-order) in which the error

between the measured output and the reconstructed one, for example, the so-called

residual errors _(t), are tested for failure assessment. The gains of those
observers are determined such that _(t) will reveal the occurrence of a specific
failure.

It is useful at this point to remark that results reported or published so far

are based on the assumption that the dynamic system has fixed and known parameters.

Another important problem is that in practical cases the dimension (i x m) of

the observer-output error vector _(t) is lower than the dimension of the observer

error vector _(t), of dimension (T x n), Where m _ n. In this case, much of the
information about failures is contained in those components of _(t), which are not
accessible for measurement. Thus, failure events (hard and soft failures) are not

easily detected and, certainly, are not detected in a unique way. By analyzing the

!(t) vector only, one may obtain a failure-detection system (FDS) with a low failure-
detection sensitivity and a nonunique fingerprint for a specific system failure.

This crucial problem of designing observers for FDS's with a unique fingerprint for

a specific failure has been addressed in the past by various contributors (refs. 5,

9, and 14).

In reference 5 an attempt is made, by using a certain transformation of the

observer output residual vector _(t), to obtain a fingerprint related to a specific

failure in the system actuators or sensors. This approach does not assure uniqueness

and leads to a low-sensitivity failure detection with the probability of a high false-
alarm rate (FAR). Besides, the design procedure is cumbersome, and the algorithm

includes some difficult numerical procedures. In reference 9, the approach to solving

the failure-detection problem is similar to that of reference 5, using a somewhat

different algorithm in order to obtain the transformation matrix and taking into

account the possibility of stochastic random noise in the output measurement.

Reference 14 describes a possible approach to the design for instrument failure detec-

tion only, for uncertain linear systems. But in using this approach, one encounters

the same difficulties as in the other approaches, because only the limited amount of

information contained in _(t) is examined.
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The approach taken in the work described herein is more comprehensive. It uses

a secondary observer to reconstruct the vector _e(t), from the measured error vector
_(t), obtained from the primary observer. The purpose of the secondary observer is
twofold:

: i. To produce the n-dimensional error vector _e(t) needed for a correct, unique,
and high-sensitivity failure assessment.

2. To reduce the susceptibility of the FDS to measurement noise, by using

steady-state Kalman (filter) optimal gains.

By this approach one obtains a sensitivity-enhanced FDS with unique failure-

fingerprints, and the effect of the measurement noise is reduced. It is appropriate

here to point out that in order to be of practical value in applications and to

provide reliable systems, the major problem of failure-detection and analytical

redundancy theory is to achieve the conflicting objectives of low noise sensitivity,

low false-alarm rate (considering noise) and high failure-detection sensitivity.

As stated before, a common assumption used in the references mentioned above,

is that the dynamic system has coi_stant parameters. Moreover, in some FDS's one has

to use decision algorithms, especially for the detection of soft-failures and for the
assessment of the extent of failures. Most of the decision algorithms -- such as

sequential likelihood ratio test (SLRT) for mean values and functional compatibility
(refs. 8, ii, 12, and 13); generalized likelihood ratio (GLR) approach (refs. 4 to 7);

and recursive GLR (refs. 7, 8, 12) -- assume also (with the exception of ref. 7) that

the dynamic system is known and constant.

As will be shown later in this report, it is absolutely necessary when using

either observers or Kalman filters, that those devices be "matched" to the dynamic

system in order to obtain low observer-output errors and, therefore, low false-alarm

rates. A good matching will also provide adequate properties to the decision algo-
rithms in order to assess the time, the place, and the extent of the failure without

errors (see ref. 15).

At this point it is worth noting that when the plant parameter variations are
themselves the results of some kind of failures, the adaptive matching of the

observer to the plant may unintentionally "cover up" those failures. For this reason,

it is expected that a complete FDS would include also some on-line parameter-
identification procedure to support the failure-detection algorithm. However, it

seems possible to relax this need, if the adaptive observers are time-varying and if

observer parameters are updated deterministically in open loop, by having parameters
stored as a function of flight condition or by changing the parameters according to

air data computer outputs.

A complete parameter-adaptive and tracking observer for linear, multi-input,
- multi-output FDS's, incorporating primary and secondary observers, is designed, pre-

sented, and analyzed for convergence and stability in this report.

" A short overview of observers (Kalman filters) for failure-detection purposes is

presented in section 2 in the interest of completeness.

The secondary observer concept for the deterministic case is introduced in
section 3. Different schemes for FDS's, based on mixed primary and secondary

observers, are introduced and discussed.



The effect of the measurement noise is discussed in section 4, where the design
of FDS's in a stochastic environment is presented.

In sections 5 and 6, an algorithm for adaptive and tracking observer design is

presented, together with the appropriate conditions for convergence and stability•

Simulation results for a deterministic and stochastic multi-input, multi-output,
linear, constant, and time-varying system, are presented and discussed in section 7.

Concluding remarks and some suggestions for further study and research are presented
in section 8.

An alternative scheme for implementing observers is given in appendix A; use of

linear quadratic theory to obtain an asymptotically-stable-in-the-large solution for

the FDS adaptive observer is described in appendix B; and the proof for conditions
necessary for convergence and stability is given in appendix C.

2. FAILURE-DETECTION SYSTEMS BASED ON OBSERVERS

As pointed out in the Introduction, various analytical redundant schemes for

FDS's are based on the utilization of observers of full or reduced order (refs. 1-5,

13-15). Besides the possibility of enhancing the detectability of certain specific
failures in a unique way, the analytical redundancy FDS's based on the use of

observers lead also to important hardware savings (see, for example, fig. 3 in

ref. 15). In the interest of completeness, this section presents a short discussion

of some of the basic notions related to the observer theory. First, we shall assume

the following mathematical model for the linear dynamic system under consideration:

A

_(t) = A _(t) + B _(t)

Z(t) = C _(t) (i)

where _(t) is the (n x i) state vector, and X(t) is the (m x I) measurement vector,
with m ! n. The system is assumed both completely controllable and observable. The

well-known observer model ("matched" case) (ref. 4) is described by

^ ^

_(t) = A _(t) + K[_(t) - C _(t)] + B._(t) (2)

where x(t) is the (n x i) estimated (or reconstructed) state vector,-and K is a

fixed-gain matrix (n x m), with constant entries. This model does not take into con-

sideration various external perturbations and noises that affect the observer output

and that can cause high FAR's. The observer error, !(t) (residual), is defined by

_(t) _ _(t) - _(t) (3) -

and the observer output error (output residual) is defined as

^

!(t) i(t)-z(t) (4)

The output residual vector !(t) is the quantity that one has access to and

therefore it can be used for failure detection and assessment. A block diagram of a
failure-detection scheme with an observer is presented in figure i.



From equations (i) to (3), the following differential equation is obtained:

e'(t) = (A - KC) e(t) (5)

One method of choosing the gain matrix K is to place the eigenvalues of the

: matrix (A - KC) so that all of them have negative real parts (refs. 9 and i0). Under
these conditions, the observer will be stable and, as t . _, e(t) and __(t) will go

to zero. Therefore, after a short initial transient, the estimated state _x(t) will

follow x(t) such that _x(t) _ _x(t),_t_[t ° , _], although the only measurable vector
is Z(t).

A second approach for choosing K is to enhance the observer's probability of
failure detection. After the transient has died out, and if a hard failure of one of

the actuators or sensors occurs at t = Tf, then a jump in e(t) will be observed at

Tf, and the vector e(t) # 0, for all t > Tf (see fig. 2). Indeed, one has to

remember that by using one (primary) observer, the only access we have for error mea-

surements and analysis is to the (I x m) vector _(t). The information about fail-

ures, included in _(t), is only partial, and if the output's vector dimension m is
much lower than the system's order n, the failure detection may be insensitive,

nonunique, and have a high FAR.

To better illustrate the second approach, let us examine the case of an actuator

failure (ith actuator), and the possibility of enhancing the detection of this event.

From equations (i) to (3), one obtains the following result:

e(t) = (A - KC) e + b.u. (6)

where b. is the ith column of the time-invariant matrix B, and u. is the ith
1

control-_f the system. The solution of equation (6) is given by:

e(t) = exp [(A - KC)(t - T )] • e(T o)-- O --

+ exp [(A - KC) (T-To)] ui(T) dT --ib" (7)

T
o

The first term is negligible (in both the deterministic and the stochastic cases),

since we assume that the failure occurs at some time Tf during the system's opera-

tion, after the initial transient has died-out (TO << Tf). Let us assume that the
effects of measurement noise and other perturbations on e(t) are small. Therefore,
the term containing the abrupt failure information is the second one. Choosing, for

C = I (this being a very special and simple case with n = m)

(8)
(A - KC) A= -I •

where I is the (n x n) identity matrix and T is a convenient, arbitrarily chosen

time-constant (ref. 15), one gets:



t I(T - Tf)] ui(T)

T _ b[ exp • d T (9)! (t) = --1

Tf

_t > Tf

Therefore, the error vector !(t) will point in a specific direction in the En
space, for example, in the direction defined by bo, associated with the failure of

the ith actuator• Since the only access one has _ the system is by measuring the

vector !(t), the measured residual will point in the direction of C_i. Since, in
general, the matrix C is an (m x n) matrix, it may very well happen that the vector

Cb_i will have only a few components or, perhaps, even none if bi is the null space

of C. If, for instance, m = 2 and n = 6, one measures only two components of _(t)
and not necessarily the most sensitive ones (see the example and simulation results
in section 7).

By a similar treatment, one is able to show how sensor failures can be detected,

but in this case _(t) lies in a two-dimensional plane. In such a case, it is
possible to arrive at a feasible scheme, so that the detection of the failed sensor

will be simple and unique. As will be shown later, by processing the information

with a secondary observer in an optimal way, a failure direction may be determined,

even in the presence of measurement noise.

The following is an alternative way to look at observers as failure-sensitive

devices. Suppose we look again at the observer's equation (2); one can rewrite that

differential equation in the following form:

• ^

_(t) = Q _(t) + K _(t) + B u(t) (I0)

where

Q =AA - KC (11)

Then it is possible to write the solution of equation (lO) as a linear combination of
three vector functions:

_(t) = W(t)_(0) + _(t) + _(t) (12)

where the functions W(t), _(t), and _(t) are the solutions of the following differ-
ential equations with appropriate initial conditions (see appendix A):

W(t) = QW(t) w(O) = I (iBa)

i(t) = Q_(t) + K_(t) _(0) = 0 (13b)

i(t): Q_(t) + B_(t) _(0) = 0 (13c)

The matrix differential equation (13a) determines the transient of the observer

and, therefore, is of no practical importance for failure detection, since we are

assuming that the transient is very short and that the failures may occur in the

system after this transient died out. By looking now at figure 3 it is easy to see

that sensor failures will affect only the vector !(t), and that actuator and system



failures will affect both vectors _(t) and [(t). Moreover, figure 3 shows that

measurement noise is affecting only the vector ¢(t); this fact will be taken into

consideration later. Implementing an observer in the FDS in the form suggested

by equations (12) and (13) (as shown in fig. 3), makes it possible to make an
immediate distinction between sensor and actuator failures simply by examining the

- vectors _(t) and _(t).

Let us examine again the case in which m = n. In this case it is possible not

only to locate arbitrarily the eigenvalues of the matrix Q but also to determine
the entries of Q in any arbitrary way. If one chooses, for instance, Q = I, one
obtains because of the initial conditions of equations (13),

w..(t) = wii(t)
ii i = 1,2,..., n

w..(t) = 0 _t (14)
ij

n

i(t) = !(t) + _ k_i Yi(t) (15)
i=l

being the ith column of the matrix K. Similarly, one obtains for _(t) the
following differential equation:

n

0(t) = p(t) + _b. • uj(t) (16)
__ __ i=_-- ]

where bj is the jth column of the matrix B. In order to implement the observer
in this--configuration, we need to solve (in this case) only (i + 2n) first-order

differential equations, a relatively easy task. The benefit of such an observer

implementation is obvious: by measuring each of the components of !(t) and _(t),

one can assess immediately when and where the failure occurred, as well as the extent
of the failure. In this manner, for m = n, the fingerprint of every possible fail-

ure is unique. In some applications it may be worthwhile to use additional sensors

(if possible), in order to arrive at the situation where m = n.

The problem becomes more complicated for the output measurement case when m < n.
In this case, although we still can place the poles of the Q matrix arbitrarily,

one cannot, in general, obtain Q = I. Therefore, the number of integrations will

increase, to n(2 + n).

For this reason, when m < n, a practical way to solve the FDS problem is to

introduce the concept of the secondary observer, as explained in the next section.

3. DESIGN OF FAILURE-DETECTION SYSTEMS WITH PRIMARY AND SECONDARY OBSERVERS

As explained in section 2, the determination of a failure can be made in a

reliable and unique way only by examining the (i x n) observer error vector !(t).
Since, when m < n, one has access only to the (I x m) observer output error !(t),

we are proposing here to implement a novel concept and to use a secondary observer

in order to reconstruct the (i x n) error vector _(t). The proposed implementation

is shown, schematically, in figure 4.



We propose for the second observer's differential equation the following
structure:

!(t) = T _(t) + L[! - C $_] (17)

where T is a fixed (n × n) matrix (to be determined later) and L is a (n x m)

gain matrix (arbitrarily chosen, for the time being).

Let us now define the second observer's error vector 6(t), as following:

!(t) _ !(t) - _(t) (18)

Since the differential equation for !(t), as given in equation (5), was

$(t) = (A - KC) e(t) (19)

one can obtain, from equations (17)-(19), the following result:

_(t) = (A - KC - LC) _e(t) - (T - LC) _$(t) (20)

By choosing

T =& A - KC (21)

one gets

_(t) = (A - KC - LC) _(t) (22)

If the eigenvalues of the (n x n) matrix (A - KC - LC) are adequately located

in the left half-plane, the solution of equation (22) will be asymptotically stable

and will vanish as t goes to infinity:

lim !(t) = 0 (23)
t._

The output of the second observer e(t), which is the reconstructed error vector of

the first observer, will follow _(t) after a short, initial transient.

From equations (17) and (21) one finally obtains the second observer's differ-

ential equation:

_(t) = (A - KC) e(t) + L[_(t) - C$(t)] (24)

The input of the second observer is the first observer's output error vector _(t).

To illustrate in a better way how the second observer reconstructs the whole error^

vector of the first observer, the evolution of the time functions ei(t ) and ei(t )
for i = i, 2, 3, for a third-order system (see details in sec. 7) with two outputs,
is plotted in figure 5.

Figure 6 shows in a more detailed form and with different scale factors, the

evolution of every component of the vector _(t) versus the corresponding component

of vector _(t). Also, note that the most sensitive component of e(t) is e3(t )



and that it could not be observed without the second observer. From figures 5 and 6,^

it is easy to see effective tracking and the zeroing of _(t) following _(t), after
a short transient. In our case, this transient is of little interest, because our

aim is to discover the changes in _(t) owing to possible system failures.

- Equations (19) and (24) suggest that the entire system, including the use of the
error vector of the first observer and the output vector of the second observer as

state variables, can be represented in the following augmented form (which will be of

use later on):

i(t) = • _(t) (25)

LC A - KC - LC

where yT _ [e, e]. Note that this representation is valid only for the nonfailure
case and only when the observers are matched to the system dynamics.

Let us now examine in the sequel the modeling problem of two of the most impor-
tant kind of failures: sensor failures and actuator failures.

Modeling Sensor Failures

Suppose, in this case, that one of the system's measurement sensors fails

(completely) at some time Tf and that no more than one failure will occur at the
same time. Under the condition of sensor failure, the dynamic system equations
will be

_(t) = A x(t) + B£(t) (26)

I_(t) = _(t)
Cf

where Cf is the measurement matrix, considering the failure of one of the sensors.

We will also define a new matrix AC,

AC _ C - Cf (27)

where C is the nominal (no-failure) measurement matrix and AC is an (m × n)

matrix with all entries zero, besides one specific entry Acij, modeling for the ijth
sensor failure. Actually, since we are measuring the outputs by using only distinct

measurements, the matrix AC will have all zero entries, besides one unity entry at

the ith sensor which failed. Taking into account equation (27), the first observer
differential equation will be:

_(t) = A _(t) + K[_ - Cx_]+ B _(t)

= Ax__(t)+ K[cf_ - C_] + B_(t) (28)

Making use of equation (3), one obtains

_e(t) = (A - KC) _e(t) + K.AC.x_(t) (29)



or, in terms of the estimated state x(t),

_e(t) = (A- KC f) _e(t) + K.AC._x(t) (30)

The first observer output error will be given by

!(t) = .y_- Cx = Ce - AC.x (31)

The second observer equation (24) will have, for the sensor-failure case, the follow-

ing form :

e(t) : (A - KC - LC) _$(t) + L.Cf_e(t) - L.AC.x_(t) (32)

From equations (27) and (30) one can easily obtain the differential equation for

the first-observer error vector _e(t), for t > Tf, given that a sensor failure
occurred at Tf:

= (A- KCf) e(t) + k..x.(t) (33)$(t)

^

The vector ki is the ith column of the fixed gain matrix K, and xi(t) is the

scalar, ith component of the reconstructed (estimated) state vector _(t). From
equation (33), it is also clear that the vector ki._i(t), referred to below as the

ith sensor-failure fingerprint vector, is acting as a driving (input) function for

equation (33). From equations (32) and (33), one can also conclude that after a

short transient starting at Tf, the vector _(t) will also be pointing in a fixed
direction in the En space. Following the discussion of actuator-failure modeling,

we shall return to consider this problem in more detail.

Modeling Actuator Failures

In equation (6), we already obtained the differential equation for _(t), given

that the ith actuator failed at Tf:

_$(t) = (A - KC) _e(t) + b i ui(t) (6)

where the vector b_i is the ith column of the matrix B, and the scalar ui(t) is
the ith component of the control vector. This equation is, formally, similar to

equation (33) and, therefore, we can conclude that the modeling of sensor and
actuator failures, being formally similar, will make possible a unique treatment in

the sequel. At this point it should be mentioned that using the same approach, one

could easily obtain similar models for sensor bias errors, scale factor failures,
etc.

We shall now discuss in more detail the unified approach of the failure-

fingerprint problem. From equations (6) and (33) we can note, in a general way,

that after a failure the vector !(t) will be the solution of the following type of
differential equation:

e(t) = Q.e(t) + Bi.f.(t) (34)

A A

with Q = A - KC and where B. A=k. and f.(t) = xi(t) for a sensor failure,
and

--i --I 1

i0



where _i _ b--iand fi(t) _ ui(t) for an actuator failure. From equation (34), it is
clear that for every possible failure, a certain direction for the vector _(t) in

En [and, therefore, for the vector _(t)] can be chosen, such that every failure

will now have its own distinct fingerprint. To implement such a failure fingerprint

one has to fulfill the following condition:

rank [_-i'QBi'- ..... Qn-IB']-I= i (35)

Therefore, it is possible to dedicate a pair of primary and secondary observers for

every type of failure detection. The matrices K and L make possible both the
fulfillment of the condition expressed by equation (35) and the arbitrary location

of the observers' poles.

This design approach, although demanding an additional computational effort,

offers a general and practical solution to the failure-detection problem via the ^

second-observer concept, making use of the entire (reconstructed) error vector _(t).

In the sequel we shall call this design method the "failure-dedicated, multiple-
observer-pairs" approach.

In some cases, in order to reduce the computational effort whenever needed, one

can use a single pair of primary and secondary observers for the failure-detection

system. In such a case we cannot allocate a priori, for _(t) and _e(t), a desired
direction in En associated with a specific failure. Instead, the vector _(t) will

provide a definite and unique fingerprint associated with every failure, although

this time, unspecified in advance. Nonetheless, by simulating the various possible

failures, one can obtain, in advance, the various failure fingerprints and thereby

easily determine from e(t) when the failure occurred and what failed in the system.
The simulation results d--iscussedin section 7 show some of the fingerprints obtained
in those cases for various sensor and actuator failures.

An intermediate way to solve the FDS problem is to use a limited number of

dedicated pairs of primary and secondary observers, optimized for some important

systems failures to be determined in a unique manner, and still maintaining the

possibility of determining the occurrence of various failures by examining the

fingerprint of _(t).

4. FDS WITH PRIMPiRY AND SECONDARY OBSERVERS IN A STOCHASTIC ENVIRONMENT

One of the important questions that must be asked when analyzing and designing
FDS's based on observers is the following: What is the extent of the effect of

measurement noise on the FDS false-alarm rate? This question was addressed by others

(e.g., in refs. 5, 9, 14, and 15), but the problem was never solved in a satisfactory
manner. With the use of a single observer, it is possible to reduce the influence of

the measurement noise by choosing the gain matrix K such that the observer will be

less susceptible to noise. But this can be done only at the expense of the observer's

sensitivity with respect to the failure-detection task, such that from the overall

FAR point of view the benefits of this approach are very questionable. The use of

primary and secondary observer pairs allows the noise-reduction problem to be solved

without sacrificing the sensitivity of the FDS. The solution to the measurement-

noise question is as follows. First, one chooses the gain matrix K of the first
observer such that the desired fingerprint with respect to some specific failure is

obtained, the direction of _(t) in E_n being specified. Then, by choosing the

ii



gain matrix L of the second observer as the optimal steady-state (Kalman) filter
gain, one obtains the smoothed vector e(t).

When measurement noise n(t) is present, the system dynamics is given by

x(t) = A x(t) + B u(t)
(36)

y(t) = C x(t) + n(t)

It is easy to show that the first-observer error differential equation will be

"_e(t)= (A - KC) e(t) - K n(t) (37)

and that the second-observer's output _(t) will satisfy the following differential
equation:

e(t) = (A - KC - LC) _(t) + L __(t) (38)

The primary and secondary observer pair is described by the augmented system
dynamics [eq. (39)]:

[A°1i(t) = y_(t) - K' n (39)

LC A - KC - LC

where y!(t) = [e_T(t), e!(t)] and the (2n x m) matrix K' is defined as

K' A [ K_]= -._ (40)

Note the formal similarity between equations (37) and (39), which helps to explain
the procedure described above.

As explained before, the suitable choice of the gain matrices K and L in

equation (39) allows one to design an FDS that is both sensitive in terms of event

(failure) detection and minimally susceptible to measurement noise.

5. ADAPTIVE, PARAMETER TRACKING, PRIMARY AND SECONDARY OBSERVERS
FOR A FAILURE-DETECTION SYSTEM

In sections 2-4 we tacitly assumed that the parameters of the dynamical system

are constant and known and that the primary and the secondary observers are "matched"

to the dynamic (real) system. Unfortunately, in practical applications the system
parameters are not exactly known and may even vary with time. Such is the case, in

flight-control and guidance systems. This problem was solved, and presented for an

FDS that included a single observer, in reference 15. The same reference also

includes a short review of the state of the art of adaptive observers, reviewing in
particular references 16-24. In reference 25, a method of analysis is presented and

an attempt is made to develop a unified method for analysis of adaptive processes.
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In this section, an analysis is carried out to show the influence of non-

matching conditions on the FAR of failure-detection systems. This condition occurs
when the observer (or KF parameters) does not match or track the dynamic system

parameters, which are time-varying. As stated above, this is crucial in aero-

nautical engineering applications of FDS and analytical redundancy concepts, where

: plant parameter variations are caused by dynamic pressure variations in different
flight conditions. The effects on the FAR of mismatching the actual plant and the

analytic observer (or FK), including primary and secondary observers, will be dis-

cussed subsequently.

First, the mismatched primary observer case will be treated, and we shall

assume that the analytical implementation of the primary observer is according to

the following observer model:

_(t) = (A + AA) x(t) + K[_(t) - C x(t)] + (B + AB) u(t) (41)

Accordingly, the primary observer residual error will be the solution of the follow-

ing linear differential equation:

_(t) = (A - KC) e(t) - AA.x(t) - AB.u(t) (42)

where AA and AB represent the difference between the parameters of the real plant

and those of the primary observer. It is easy to see that the last two terms in

equation (42) will cause a high residual e(t), even after the initial transient has

died out. The large value of e(t) is directly responsible for an unacceptably high

FAR. Acceptable values of FAR will be obtained only for observers that are matched

to the plant dynamics. In order to see the effects of AA and AB on e(t) and _(t),
the effect of three parameter changes in the plant dynamics on e(t) is shown in

figure 7. From figure 7 it is clear that the errors are very large, leading to a

prohibitive FAR. (For more details see the simulation results in sec. 7.) Using

design methods based on the "robust observer" approach will not be of much use,

because that approach will lead to observers that are insensitive to failures.

Therefore, it is easy to see the need for adaptive observers that can track the plant

parameter variations in FDS applications.

The same "mismatching" problem can also cause serious problems in the FDS,

including the Kalman filters used to reduce measurement noise influence on the FAR.
In this case, a notable change in the basic characteristics of the innovation

sequence will be caused by mismatching conditions. Let us define the dynamic system

(plant) equation by

x(t) = Ax(t) + Bu(t) + F.w(t) (43)

where w(t) is the (q x i) noise input vector, assumed to be white and Gaussian.

The measurement vector y(t), (n x I), is contaminated by white noise n(t), with

E[n] = 0 and E[n(t)n__T(s)]= Ql_(t - s):

y(t) = C .x(t) + n(t) (44)

Assume, for simplification, only plant-parameter variations causing the follow-

ing mismatching conditions:

A=A A+AA

(45)

_AK+aK
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where A and K are the matrices used in the Kalman filter implementation. The

equation of the Kalman filter is given by

_(t) = _._x(t) + _Cy(t) - C _(t)] (46)

Define _x(t) as the best estimate for the ideal matching conditions and Ax(t) as the "
change in the estimate owing to mismatching:

_(t) =A_(t) + Ax_(t) (47)

Denote also __(t) as the innovation vector for the mismatched system and _(t) as
the innovation of the ideal-matched KF-system. Based on linearity property, one can
write

_(t) A____(t) + A___(t) (48)

From equations (44), (47), and (48) one obtains

_(t) = _(t) - C.&x(t) (49)

where A_(t) is the solution of the following differential equation:

&_(t) = (A - KC) Ax(t) + AK._(t) + AA._(t) (50)

It is clear from equations (49) and (50), and also shown explicitly in figure 8, that
the stochastic process _(t), which is the actual innovation vector, will be a

colored noise process, with E[_(t)] # 0. Therefore, no adequate test can be made

on _(t) in order to detect a failure in a reliable way, for example, with a very
low, admissible FAR.

In conclusion, to obtain an adequate FAR in a failure-detection system, it is

absolutely necessary to have good matching between the observer's (or KF) model

parameters and the parameters of the dynamic, real plant. In what follows in this
section we introduce an algorithm for an adaptive pair, primary-secondary observer

design, the adaptation law providing also for parameter identification and tracking.

The approach presented here is basically similar to the method presented in

reference 15 and is based on a simple, yet effective, adaptive law (algorithm) for

linear, possibly time-varying, multi-input, multi-output systems. The adaptive law

makes use of a-priori-determined adaptive gains and does not require solution of

additional differential equations. Therefore, the computational effort required is

suitable for the practical needs and objectives of real-time, on-line, simple

adaptive observers for failure-detection systems.

As shown previously in equations (41) and (42), the model of the mismatched

primary observer leads to an augmented observer output residual !(t), which is

given by ! = C !(t), where _(t) will be the solution of the differential equation

_(t) = (A - KC) _(t) - &A._(t) - AB._(t) (51)

To compensate for AA and AB, in both the primary and the secondary observers, it is

proposed here to change the entries of the observer matrices Ao and Bo according
to the following adaptation laws (algorithm):

14



AA = M _(t).x_T(t) (52a)
o

AB = N e(t)._r(t) (52b)
O _

or, in the discrete case, according to

AA (k) = M _(k).ST(k) (53a)O

AB (k) = N e(k).ur(k) (53b)
O -- --

with k = 1,2,...

The algorithm (52) is based on measurable values, such as the observer output

(the estimated state) _(t), the plant (and the observer) input u(t), and _(t), the

second observer output vector. The matrices M(n x n) and N(n x n) are to be chosen

in such a way that convergence and good tracking are provided. As shown in the next

two sections, the adaptive algorithm introduced here makes possible to

(i) maintain a low value of the first observer output residual error, in spite

of plant parameter variations;

(2) quickly adapt both primary and secondary observer parameters to those of

the dynamic plant; and

(3) to track the varying dynamic plant parameters by the primary-secondary

adaptive observer parameters.

In figure 9, a block diagram of the primary-secondary adaptive observer is

presented; it points out the simplicity of the adaptive law and the fact that this

algorithm only makes use of accessible measurable functions.

Although one has to show that the algorithm proposed in equations (52) provides

for stability and convergence for the entire primary-secondary observer, it is

worthwhile to do, at the beginning, a simple and approximate analysis for the first

observer only, assuming that the matrix Ao of the second observer is also ade-
quately tracking the real dynamic system A matrix.

Substituting equation (52) into equation (51), one gets

• ^

e(t) = (A - KC) e(t) - Ilx_II2M _$(t) - l[_ II2 N _(t)

(54)
(A - KC) e(t) - II_II2 M e(t) - l[u[[2 N e__(t)

Equation (54) can be put in the more compact form:

_(t) = [(A - KC) - [Iii[2M - [I_I12N] _(t) (55)

To obtain an asymptotically-stable-in-the-large (ASIL) solution for the time-

varying, nonlinear, differential equation, several approaches can be taken. The
first is a heuristic one; although the matrix included in the square bracket is time-

varying because of the time-dependent positive scalars IIXI[2 and [I_II2, it is con-

jectured here that by an appropriate choice of M and N, based on a priori knowledge
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of _(t) and _(t), the adaptive algorithm [eq. (52)] can be made asymptotically
convergent. Loosely speaking, the M and N matrices allow us to locate the eigen-

values of this square matrix so that all of them will have negative real values,

providing us with the result: e(t) . 0 as t + _. A second way to obtain an ASIL

solution for equation (55) is to make use of a version of Perron's theorem (refs. 24,

27, and 28) and to determine, accordingly, the entries of the gain matrices M and N.

A more appropriate way to obtain a convergent adaptive law is to determine the gain

matrices M and N by making use of Lyapunov's second method (refs. 15 and 29) and

this approach will be presented in the next section. A fourth method to show that

the algorithm (52) leads to an ASIL solution for the FDS adaptive observer, provided

the parameter changes are small, is to use the linear quadratic regulator theory
results. This new and interesting approach is presented in appendix B.

Given parameter changes in the real, dynamic system, one can now write the

exact primary-secondary observers equations, based on equations (24) and (51), as
follows:

i(t) = Q_(t) + A--A._+ AB.u (56)

where y_T(t) _ [!(t), _e(t)]T

_ [A- KC 0Q _ (57)

[LC A - KC - LC

AA & (58a)

The adaptive algorithm (52) can also be presented in the following alternative
form:

AA = M y(t) xr(t) (59a)
O -- --

_B° = N y(t) uT(t) (59b)

where

_ _ [_ 0 [ M ] (60a)O _ O
I

_ [- 0 'O0 I N ] (NOb)
I

From equation (56) one obtains

i(t)= Q.y_(t) + M I12112y(t) + N llull2_(t)

(61)

: + II II=+ l.l ll ].z(t)
16



By taking into account equations (59) and (60) and by substituting them into

equation (61), one gets

A - KC llil[2 M + ]I_I[2N

i(t) = _(t) (62)
L

LC A - KC - LC

Equation (62) shows that the correct adaptive algorithm for the first observer

is indeed the algorithm given in equation (52), provided that we prove convergency

and stability; on the other hand, one has to adapt the A matrix in the second

observer simultaneously with the first-observer adaptation. Therefore, in the next

section a proof of stability and convergency for the system described by equation (62)
will be presented.

If measurement noise is to be taken into account, the gain matrices K and the

adaptive gain matrices M and N will have to meet some requirements in addition to
those imposed by the appropriate convergency conditions. In this case, a trade-off

is to be made in the choice of M and N, between fast parameter-tracking require-

ments and minimal noise susceptibility. Finally, the gain matrices M and N and, in

particular, the gain matrix K, have to be chosen such that the observer sensitivity
in terms of failure detection will be maximal.

To summarize, besides the necessary convergency conditions, the gains K, L, M,

and N are to be judiciously determined by taking into account such considerations

as (i) the minimum parameter alignment time (rate of convergence), (2) fast-tracking

capabilities, (3) minimum noise susceptibility for minimal FAR, and (4) maximum

sensitivity for high-probability failures detections.

6. CONDITIONS FOR CONVERGENCE AND STABILITY

In the previous section, a procedure for choosing M and N matrices based on a

heuristic approach was discussed briefly. Here, a procedure for determining the

matrices M and N, based on Lyapunov's theorem for asymptotic stability, will be

developed. It will be shown that for a system described by a differential equation

such as equation (62) and that has a general form, such as that of equation (63),

i(t) = W(_,t)._(t) (63)

where

A - KC ll_]]2M + I]_I]2N]

w(_, t) _ (64)

LC A - KC - LC

the solution is uniformly asymptotically stable in the large, about the zero solu-

tion _(t) = 0, which is the equilibrium point, if the entries of the matrix W(y,t)
satisfy certain requirements, provided by some inequality conditions.

Let us consider the following positive-definite scalar quadratic function V(_)
as a candidate for a Lyapunov function:
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V(y) = .YTQY__ (65)

with Q being an arbitrary, constant, diagonal, positive-definite matrix, such that

= 0 if ! = 0
V(_) (66)

I> 0 _ # 0 , _t

In addition, equation (65) provides us with

llm V(_) =

IIzII.o (67)

To obtain ASIL conditions for the system in equation (63),Ain addition to the
conditions in equations (66)and (64), it is necessary that V = dV/dt meet the

following condition:

V(_) < 0 , _t , _ # 0 (68)

We will now proceed to obtain the necessary conditions to be fulfilled by

W(_,t) in order to satisfy conditions in equations (66) to (68). If those conditions
are satisfied, then V(_) from equation (65) will be an adequate Lyapunov function
for the system in equation (63), and the ASIL property will be obtained.

From equations (63) and (65), we get the following expression for V:

= yZ[QW(_,t) + wr(!,t) Q] _ (69)

To satisfy the condition in equation (68), the matrix P _ [QW + WTQ] has to be

negative-definite (ref. 29). The symmetric matrix P is a function of the gains
{K, L, M, N} and depends also on the matrix Q and the functions _(t) and _(t).

We shall proceed further to seek the necessary conditions for the elements Pij of
P such that V < 0. By expanding the quadratic form given in equation (69)
the following expression for V is found.

n n

2 + (qiiw" + YiYj + Y_] (70)= _ _ [qii wii Yi zj qjj wji) qjj wjj
i=i j:l

J

(i_j)

where q.j and wi= are the elements of the matrices Q and W, respectively, and we
take i _ j in t_e cross-terms of the expression (70).

In order to obtain appropriate conditions for convergence and ASIL stability

of the adaptation algorithm from equation (52), it is necessary that the conditions
established in the following theorem hold.

Theorem: In order for the time-varying system described by equations (63) and

(64) to have an ASIL solution (asymptotically stable in the large), about the

singular stable point _ = 0, the following conditions must be satisfied:
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V > 0 , _t , _y _ 0 (71a)

qiiwii < - D < 0 i = 1,2,..., n (71b)

" qjj wjj < - D < 0 j = 1,2,..., n (71c)

> (qiiwij + qjj wji)

_qiiwiiqjjwjj - 2 (71d)

i = 1,2,..., n

j = 1,2,..., n (i # j in the cross-term)

If the conditions of the theorem are satisfied, it is guaranteed that the time

derivative of the Lyapunov function will be negative--definite everywhere in the

2n-dimensional vector space E2n spanned by y_, that is,

< 0 , _t , _y_ # 0 (72)

the function V(_) being, therefore, an admissible Lyapunov function for the system
in equation (63).

The conditions established in equation (71) are not difficult to meet, since

the values of D, qij, and those of the gains mij and nij (contained in wij) can
be arbitrarily chosen. The proof of the theorem is given in appendix C, where it is

also shown that if the conditions given in equations (71b), (71c), and (71d) are
satisfied, the value of the function V will be

n n

-DE E + <0 (73)i=zj=l

From equation (73), it is easy to see that by an appropriate choice of the matrix Q

and of the constant D, it is possible to modify and accelerate the convergence rate

of the adaptation process. But as pointed out before, a trade is to be made between

high convergence rate and susceptibility to possible existing measurement noise.

It should be noted that conditions similar to those in equation (71) can be

obtained by applying Sylvester's theorem for negative definiteness directly to the

system matrix P. This alternative approach is not explicitly shown in this paper,

since the establishment of the ASIL conditions following this approach is associated

with a lengthy and tedious algebraic manipulation. Also, as we already mentioned

" above, we obtained similar conditions by applying linear quadratic regulator theory,
as explained in appendix B.

7. SIMULATION RESULTS

To illustrate the utilization of the proposed approach for FDS's -- namely,

(1) the use of primary and secondary observers for failure detection and (2) the use
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of the adaptive observer algorithm introduced in this paper -- the results obtained

for a linear third-order system with two outputs are shown later. The nominal

system equations are

fx I = -a xI + x2n

x2 = x - c x1
3 n

x3 =b un

with a > 0, b > 0, C > 0 and with two output measurements
n n n

The input u(t) was the sum of sinusoids

1
u(t) = sin _t + _ cos t

In this case u(t) was of a persistently exciting type.

The discretization time chosen was AT = 0.05 sec (a fairly high value). The

simulation results are divided into three groups:

i. In the first group of results (figs. 10-12), the fingerprints obtained for

various sensor and actuator failures are shown. The various components of the

vector e(t) are also shown with appropriate scale factors.

2. In the second group of results (figs. 13-16), the adaptation process of the

primary and secondary observer's pair toward the nominal, constant, plant param-
eters is shown, with and without measurement noise. Also, the three components of

the e(t) vector used for failure detection and assessment, are shown.

3. In the third group of results (figs. 17-19), the adaptation of the primary

and secondary observer pair toward the nominal, time-varying, plant parameters is

shown, with and without measurement noise. Also, the three components of the e(t)

vector are drawn. In all three groups, the gain K of the first observer was chosen
on the basis of a desired fingerprint with respect to a failure, and the gain L of
the second observer had to minimize the effect of the measurement noise on e(t).

In figure i0, the second observer output, for example, the components of the

vector e(t), owing to an abrupt failure of sensor No. 2 at Tf = 3 sec, is shown.

The first observer gain matrix K was chosen according to the condition established

in equation (35) such that the vector _(t) will point in a predetermined and fixed
direction in En for a failure in sensor No. 2.

The first-observer eigenvalues, under those conditions, were Sl = -16 and

s2 3 = -8 ± j8. The optimal gain of the second observer was determined as
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"I0 4 "

L = lO 20

I0 5O

After an initial, short transient of the observers, and under conditions of no-

failure, the three components of _(t) became very small (an order of magnitude of

10-6). As a result of the failure of sensor No. 2 at T_ = 3 sec, one could observe
a short and high transient in all three components of _e_t), in particular in e3(t),

such that a well-defined alarm signal is provided instantly, pointing out that a

failure occurred. The direction of _(t), with its definite fingerprint, determines
that the failure that occurred was in sensor No. 2 Note the difference in scale

factors between the plot of _3(t) and that of _l(t) and _2(t).

In figure ii, the effect of the failure of sensor No. i on i(t) is sho_wn.
Here also the most sensitive component of _(t) was e3(t) (note the different scale

factors). The fingerprint of this failure is distinct and different from the finger-

print of the previous failure.

^

Figure 12 shows the effect of an actuator failure on _(t) and the specific

fingerprint obtained in this case. It is noted that the sensitivity of the FDS with
respect to the actuator failure is quite low, because criterion (35) was implemented

in our example only with respect to a failure of sensor No. 2.

In figure 13, the simultaneous adaptation process of three primary-secondary

observer parameters, ao, bo, and co, is shown. These three parameters converge,
respectively, toward the nominal system parameter values: a = 1.0, b = 1.5, andn
cn = 3.0. The starting values of the observers parameters were ao(O) n= 1.5, bo(O)

= 2.0, and Co(O) = 2.5. Together with the initial parameter mismatching, the follow-
ing mismatching conditions in the initial conditions values were also used:

x1(o) = 1.O x1(o) = 0.0

x2(o) = 0.0 x2(o) = 1.O

x3(o)= 0.0 x3(o)= 1.0

After 6 sec (120 steps), the norm of the parameter error vector dropped to less than

5%. The norm of the second-observer output error vector dropped to less than 10-2

after 5 sec° The normalized values of mi'3 and ni'3 were unity, except the values

of m3j and n3j (j3= i, 2, 3), which were taken as 0.l In figure 14, the various
components of _(t) are shown, and it is easy to see that after the adaptation phase,
_(t) becomes very small again, being valid for failure detection.

In figure 15, the simultaneous adaptation process of three primary-secondary

observer parameters, ao, bo, and Co, while the first output measurement is contami-
nated with white noise, is shown. The noise-to-signal ratio was chosen to be

intentionally high -- about 5% relative to the maximum value of x I. The adaptation

process has essentially the same profile as before, for the same values of mismatch-

ing in the states and in the parameters. The identification accuracy, although

slightly reduced in this case because of the high measurement noise, is still remark-

ably good. As shown in figure 16, the components of _(t), although noisy, are still
very low, giving valid information sources for failure alarm and assessment.
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The effects of parameter changes in the nominal plant on the primary-secondary

adaptive observers adaptation process is shown in figure 17. The nominal system

parameters were widely varied, as shown in the following:

I 1.0 for 0 _< t < I sec

a = 1.0 + 0.2(t - i) for i < t _< 14 sec
n

3.6 for t > 14 sec

= I 2.0 for 0 < t < 3 secbn 2.0 + 0.08(t - 3) for 3 < t _<12 sec

2.72 for t > 12 sec

I 3.0 for 0 < t < 5 secc = 3.0 - 0.01(t - 4) for 4 < t < 18 sec

n / -1.6 for t > 18 sec

While in steady state, the accuracy of the parameter identification was of the
order of 95%. The second-observer output, while in the simultaneous tracking phase

of ao, bo, and Co, following an(t), bn(t) and Cn(t) , was less than unity.

The effects of the output measurement noise of sensor No. I on the adaptation

process and on the parameter-identification accuracy are shown in figure 18. The

adaptation process was only slightly modified by the measurement noise, the noise-to-

signal ratio being deliberately chosen to be high -- about 5%. The identification
accuracy was also only slightly reduced, and in the steady-state phase the three
parameters could be identified with high accuracy, as shown in figure 18. As shown

in figures 18 and 19, the effect of the measurement noise on the adaptation process
and on parameter-identification and failure--detection capabilities was rather minor,

mostly because the gains of the second observer were optimal gains.

8. COMMENTS AND CONCLUSIONS

The problem of designing analytical failure-detection systems, using pairs of

primary and secondary observers for linear, constant, and, possibly, time-varying,

multi-input, multi-output systems, with measurement noise, was described. The use

of a secondary observer permits the reconstruction of the entire error vector _e(t),

which is the major source of information for failure assessment. The _(t) vector

has a unique fingerprint associated with certain classes of failures. Moreover, by

applying criterion (35) the specific fingerprint can be determined a priori, by

choosing the K matrix, thereby enhancing the failure-detection sensitivity and

detectability.

It was also shown that in order to use primary-secondary observers (or Kalman

filters or both) for the purpose of detecting the failures in linear systems, it is

necessary to adapt the observers (or the Kalman filter) to the parameters of the

dynamic system. If this is not done, prohibitive false-alarm rates will result.
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An on-line algorithm for tracking-adaptive primary and secondary observers for

multi-input, multi-output linear systems was introduced, and conditions for con-

vergence and asymptotic stability were developed. Those conditions are established

a priori, such that the use of the algorithm is simple and effective. In the

example shown, in both deterministic and stochastic cases, the adaptive law exhibited

satisfactory accuracy and tracking capabilities by maintaining a low observer output
error and, simultaneously, by identifying the system parameters in an accurate manner.

The effect of the output measurement noise was minor because of the use of the

optimal gain matrix L in the second observer.

Although the results obtained here are encouraging for the detection of sudden

or abrupt actuator and sensor failures, the detection of soft failures remains an

important topic for further research. In particular, it is essential to minimize the
failure-detection time and to do so with a minimal false-alarm rate. To resolve this

problem, one has to implement, in addition to the primary-secondary observers, an

algorithm based on statistical decision theory such as the generalized likelihood

ratio (GLR) or, eventually, the sequential-likelihood-ratio-test (SLRT) approach (see
refs. 2 and 9).

Another topic for additional research is the development of a synthesis tech-

nique for the optimal choice of the matrices L, M, and N in order to maintain low
false-alarm rates associated with high failure-detection sensitivity in stochastic

environments such as those that exist in turbulence or when maneuvering.

Another topic for further research is the reorganization of the adaptive

observer (or KF) and of the whole FDS after a major failure has occurred. This must

be done, no matter what approach and algorithm are used in the analytical failure-

detection system.
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APPENDIX A

ALTERNATIVE IMPLEMENTATION OF OBSERVERS

Given the observer differential equation (i0),

_(t) = Q.x(t) + K _(t) + B u(t) (AI)

we are looking for a solution for _(t) having the following form:

_(t) = W(t)._(0) + !(t) + _(t) (A2)

where the observer's output is the sum of three different time functions." Taking now
the derivative of x(t) from equation (A2), one obtains

_(t) = W(t)._(0) + _(t) + i(t) (A3)

By substituting equation (A2) into (AI), one obtains

_(t) = QW(t) x(0) + Q+(t) + O0(t) + K[(t) + Bu(t) (A4)

By comparing terms between equations (A3) and (A4), one finally gets the follow-

ing differential equations satisfying W(t), !(t), and _(t) in equation (A2), with
the appropriate initial conditions:

W(t) = QW(t) W(0) = I (A5)

i(t) = Q!(t) + Kz(t) 4(0) = 0 (A6)

i(t)= Q_(t) + B_(t) _(0) = 0 (A7)

Since the term W(t)._(0) represents the effect of the initial transient, the
failure-event information is contained in the second and the third terms only. In

particular, sensor failures affect only the function !(t), whereas actuator failures

are affecting both !(t) and _(t). Therefore, the observer form in equation (A2)
will provide the information necessary for failure detection and assessment, instead

of the error-vector examination approach, usually used in this context.

Eventually, the output observer form equation (A2) may be useful for the system
matrix A identification purposes.
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APPENDIX B

ADAPTIVE OBSERVER ALGORITHM VIA LINEAR QUADRATIC REGULATOR THEORY

In this appendix we demonstrate, by invoking well-known results from linear

quadratic regulator theory (LQR) that the adaptive observer algorithm suggested in
equation (52) will indeed insure convergence and ASIL conditions for the primary-

secondary observer pair. In what follows, without any loss of generality, the
existence of ASIL conditions will be demonstrated for a single adaptive observer.

From equation (51), if the system matrices A and B were slightly changed,
one has

e(t) = (A- KC) e(t) -AA • x(t) -AB • u(t) (BI)
-- -- O O --

Let us write equation (BI) in the following more general form:

e = A e + q(t) (B2)

where

A =A A - KC (B3)

q(t) _ -AA • x(t) -AB • u(t) (B4)-- O -- O --

Now, one can ask for the optimal control law _*(t)., such that the following func-
tional

tf

gJ = [ P!+_ Rq] dt (B5)

o

will be minimized. The meaning of the minimization process is obvious: one tries
to minimize and zeroing the error e(t), while the adaptation process is carried out

with a finite, optimal control __*(t).

From linear optimal control theory, the following necessary conditions for

optimality are obtained:

_*(t) = -R-I S(t) _(t) (B6)

where the matrix S(t) is the solution of the well-known nonlinear Riccati equation.

From equations (B4) and B6) one has

-R-I S(t) e(t) = -AA_t) _(t) -AB_t) u(t) (B7)

The question now is under what conditions does equation (B7) hold. Or, in other

words, what does the formal structure of AA (t) and AB (t) have to be in order to

satisfy equation (B7)? A simple inspection _f the term_ of equation (B7) reveals
that it is sufficient to choose the algorithm,
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AA (t) = MCe.x T (B8a)
o

T
AB (t) = NCe.u (B8b)

o

in order to satisfy, at least formally, equation (B7).

Making use of equation (BS) in (B7) and after eliminating _(t), one obtains

R-I S(t) = MC II_ll2 + NC II_II2 (B9)

Since the matrices R, C, and S are known, the values of the entries of the

M and N matrices can be chosen (at least in principle) so that equation (B9) holds.

We are not suggesting that M and N be chosen by using this procedure, because the

purpose of this appendix is only to show that the adaptive algorithm introduced in
equation (52) satisfies also, in some sense, an optimality criterion and therefore

provides adequate stability conditions established on LQR theory grounds.
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APPENDIX C

PROOF OF STABILITY THEOREM

In this appendix, a proof of the theorem stated in section 6, where the condi-

tions in equation (74) for ASIL are established, is given.

From equation (70), the following expression for V is obtained:

n 11

2 + (qii + YiYj= _ _ [qii wii Yi wij qjj wji)i-ij=l
(i#j) (CI)

+ qjj wjj y_.]

where qij and wij are the elements of the matrices Q and W, respectively, and
i _ j is to be taken in the cross-terms of (CI).

For V to be negative-definite, at a first glance it seems to be a good choice
to take

qiiwii -<- D < 0

(c2)

qjj wjj _< - D < 0

and to try to get the rest of the right-hand side of equation (CI) to form a square.
The constant D in equation (C2) is an arbitrary, positive constant. We shall

examine, in the sequel, three different cases.

Case I: We can choose to satisfy the following conditions:

= i wji) (C3a)/qii qjj wii wjj 2 (qii wij + qjj

together with

qiiwii = -D < 0

(C3b)

qjj w..jj= -D < 0

for

i = 1,2,..., n

j = 1,2,..., n (i _ j in the cross-terms)

_y(t) and _t
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In this case, equation (C1) becomes

n n

VI = i=l_ j=l_(-D¥i2 + 2DYiYj _ Dyj)

(i#l) (C4)

n n

= -D _ _ (Yi - yj)2 < 0
i=i j=l

Since Vl is in this case a negative, semi-definite function (Vl < 0), the Lyapunov
stability conditions for ASIL are not met and, therefore, conditions in equation (C3)

are not satisfactory. Despite this fact, it is indicated that the conditions in

equation (C3) be used as an initial, starting condition, in order to obtain a better

feeling for the choice of the gains mij and nij.

Case II: Here, one may choose the conditions

1

_qiiqjjw" w. > (qii + (C5a)li 3J 2 _J qJJ wJ i)

or

I

_qiiqjjw°liw'jj = --2(qiiwij + qjj wji) + 62 (C5b)

for

i = 1,2,..., n

j = 1,2,..., n (i # j in the cross-terms)

_(t) and t

together with the conditions in equation (C3b), whereas 0 is an arbitrary constant.

Substituting, in equation (CI), one gets

n n

• = 2] (C6)

VII i=l_j=I_[-DYi2 _ 2(e2 _ D) Yi Yj - Dyj

(i_j)

If the following choice is made,

62 = D (C7) "

so that the following equality holds,

qiiwij + qjj wji = 0 (C8)

one obtains for ill the following expression:
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n n

i=1j=l

This time, VII is an absolute, negative-deflnite function and, therefore, the con-

ditions in equations (C3b) and (C8) will ensure asymptotic stability in the large.

Case III: In this case, we obtain a set of conditions for ASIL that are easier
to fulfill, and, at the same time, we can fix an a priori, upper bound for V,

increasing the convergence rate of the adaptive algorithm (up to a certain limit,
because of the stochastic measurement noise susceptibility problem). Let us choose

qiiwii < -D < 0

(clo)

qjj wjj < -D < 0

Instead of equation (CI0), one writes

qiiw'll"= -D - D1

w.. = -D - D2 (CII)
qjj 33

i = 1,2,..., n ; j = 1,2,..., n

where D > 0, DI > 0, D2 > 0 are arbitrarily chosen constants. Making use of

equation (CII), one obtains

n n

VIII = _ E [-(D + DI)_i + (qiiwij + qjj wji) YiYJi=l j-i
(i4j) (C12)

-(D + D2) y2l
JJ

or

n n

i=1j=l
(C13)

n n

2 - + qj Wji) y yj + D2Y_]-_"_ _ [DI Yi (qiiwij j i
i=l j=l
(i#j)

Choosing the condition

(qii wij + qjj wji) = _I D2 (C14)2
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one obtains for VIII, the following value:

n n

i=l j=l
(C15)

-2; E
i=l j=i

(i#j)

By comparing equation (C15) with equation (C9), we can easily see that

n n

VIII _ -D _ _l[y_ + y_.] (Cl6a)i=l j=

and, therefore,

Vlll< Vll< 0 (Cl6b)

for _y__(t) and _t.

From equation (All) one has

_q_iwiiqjj w..33= J(D + DI)(D + D2) > _i D2 (C17)

and, therefore, from equation (C14),

(qiiwij + qjj wji)

_qii wii qjj wjj > 2 (C18)

for i = 1,2,..., n; j = 1,2,..., n (i _ j). Summing up, the conditions for ASIL,
formerly established, can be enunciated by the following theorem.

Theorem: For the time-varying system described by equations (63) and (64) to

be asymptotically stable in the large, about the singular stable point y__= 0, the
following conditions are to be satisfied:

V > 0 , _y_ # 0 , _t (Cl9a)

< -D < 0 i = 1,2, . n (Clgb)qiiwii - "" '

qjj w..33< -D < 0 j = 1,2,..., n (C19c)

(qiiwij + qjj w.i)

_qiiwiiqjj w.. > 3 (CI9d)33 - 2

i = 1,2,..., n

j = 1,2,..., n (i _ j in the cross-terms)
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If the conditions of the theorem are satisfied, it is guaranteed that the time deriv-

ative of the Lyapunov function will be negative-definite everywhere in the

2n-dimensional vector space E2n spanned by _, that is,

VIII < 0 (C20)

for _(t) and _t, the function V(y) being therefore an admissible Lyapunov function
for the system in equation (62).
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Figure l.-Schematic block diagram of failure-detection system, including an observer.
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Figure 2.- Observer errors (residuals) for a third-order system, with actuator

failure at Tf = 5 sec.
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Figure 6.- Detailed plot of the first observer error functions vs second observer output functions.
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Figure 14.- The components of the vector _(t) during and after the adaptation process.
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