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TOWARD A BETTER UNDERSTANDING OF HELICOPTER STABILITY DERIVATIVES

Raymond S. Hansen

U.S. Army Aeromechanics Laboratory
NASA Ames Research Cemter
Moffett Field, California 94035 U.S.A.

ABSTRACT

An amended six-degree-of-freedom helicopter stability and control
derivative model was developed in which body acceleration and control-rate
deriviitives were included in the Taylor series expansion. These additional
deriv:.tives were derived from consideration of the effects of the higher—order
rotor-flapping dynamics, which are known to be inadequately represented in the
conventional six-degree-of-freedom, quasi-static stability-derivative model.
The amended model was found to be a substantial improvement over the conven-
tional model, effectively doubling the usable bandwidth aad providing a more
accurate representation of the short-period and cross-—axis characteristics.
Further investigations assessed the applicability of the two stability-
derivative model structures for flight-test parameter identification. Param-
eters were identified using simulation data generated from a higher-order base-
line model having sixth-order rotor tip-path-plane dynamics. Three lower-order
models were identified: one using the conventional stability-derivative model
structure, a second using the amended six-degree-of-freedom model structure,
and a third model having eight degrees of Ireedom that included a simplified
rotor tip-path-plane tilt representation.

LIST OF SYMBOLS

Als = -Blc = main-rotor lateral cyclic pitch-control inmput

Bls = -els = main-rotor longitudinal cyclic pitch-control input

fp = nonlinear equations of motion for fuselage/body

fr = nonlinear equations for higher-order dynamics

FAM'GAM’GKM = gtate, control, and control-rate matrices for the amended

six-degree-of-freedom model

Fg+Fgr:FRrp>FR = submatrices of F resulting from partitioning the state
vector into xg and X

FQS'GQS = gtate and control matrices for the conventional six-degree~of-
freedom quasi-static model

Fr = matrix of body acceleration deriv-tives

GpsGr = gubmatrices of G resulting from partitioning the state vector

into Xp and X

G = matrix of control-rate derivatives



1 = jdentity matrix

Iy = pitch-axis moment of inertia

Ly = rolling-moment derivat: re

M( ) = pitching-moment derivative

N( ) = yawing-moment derivative

P»q»T = roll, pitch, and yaw rates

s = Laplace operator

t = time

u,V,w = Jlongitudinal, lateral, and vertical velocities

u = control vector

Xp = fuselage/body state vector = [Au Av Aw Ap Aq Ar A¢ Ae]T
Xp = state vector for all higher-order dynamics; also can repr.seat

any one of several simplified rotor models (see Table 1)

§Rr’§Rb = components of decomposed rotor response
X() = Jlongitudinal force derivative
Y( ) = lateral force derivative
Z( ) = vertical force derivative
8 = blade-flapping angle, for ith blade:
By = By + Blc cos Yy + Bls sin y; (tip-path-plane assumption)
) = elevator deflection
AC) = jindicates perturbation of quantity in parenthesis
8 = body pitch attitude
8y = blade pitch angle, for ith blade:
eb1 = eo + 91c cos wi + 618 sin wi
oTR = tail-rotor collective pitch input
() = body roll attitude
¥ = main-rotor blade azimuth position, (y = 0 is aft)
(H)? = matrix inverse
()T = matrix transpose
") = time derivative



1. Iatroduction

Stability and control derivatives are used for evaluating helicopter
flight dynamics about a given operating point or trim condition. They are a
source of information about small-perturbation stability and response to control
inputs, and are necessary for a wide variety of applications, including
handling-qualities analysis, flight-control systems design, and real-time
simulation.

Stability and control derivatives are attributed to Bryan (Ref. [1]) who,
in 1911, developed them tv investigate the stability of airplanes. Using his
method, the change in an aerodynamic force or moment associated with each of
the primary six degrees of freedom (6 DOF) of an aircraft is expressed as a
Taylor series consisting of perturbation terms in each of the six primary motion
states and the controls. The series is truncated such that only the linear
terms are retained in the stability-derivative expansion. In the years since,
airplane flight dynamicists recognized that additional unmodeled degrees of
freedom above the basic six contribute to aircraft flight dynamic behavior. Of
significance are air-mass dynamics, which cause a lag in downwash at the hori-
zontal tail, and control-surface dynamics, which are necessary for evaluating
aircraft stick-free stability. In order to approximate these unmodeled degrees
of freedom, flight dynamicists selectively introduced body acceleration and
control-rate derivatives, such as M), 2, and M§ into the stability-derivative
expansion.

Helicopter flight dynamicists have traditionally used the same stability-
derivative expansion formulation as that used for airplane analysis (except that
asymmetric cross-coupling derivatives have been retained), and have justified
their action based on the assumption of the quasi-static perturbation derivative.
The perturbation derivative for the change in pitching moment resulting from a
change in vertical velocity, for example, is defined as:

1 M 1 AM
MOT, T T
y holding all other components of xp and u at trim
value; allowing xg to reach new equilibrium

wherc the change in pitching moment (AM) owing to an instantaneous change in
vertical velocity (Aw) is calculated by suppressing the integration of the body
states (xg), holding the controls (u) at the trim value, and allowing the
higher-order rotor degrees of freedom (xg) to reach their new equilibrium. The
quasi-static stability derivative is the steady-state AM divided by both the
constant~perturbation Aw and the pitch-axis inertia 1I,. (To be strictly
correct, the stability derivative is the limit of this quantity as Aw + O;
however, practical considerations generally require an assessment of linearity
by varying the size of Aw.)

Figure 1 demonstrates the AM '"response" resulting from a constant-
perturbation Aw for several systems. For au ideal six-degree-of-freedom ays-
tem, the M response is instantaneous and time-invariant, indicating that the
system can be perfectly represented using the stability-derivative formulation
of Bryan. For an airplane, the response is very similar. There may be some
initial transients because of aiv-mass dynamics or, perhaps, structural wing
bending; however, for most practical purposes, airplane flight dynamics can be
well modeled by the constant-cocfficient itability derivotives. Inclusion of
body acceleration and control-rate derivatives to approximate the initial tran-
sfents in AM  is generally an attempt to fine-tune an already good model.



For a helicopter, Fig. 1 shows a significant initial transient lasting
about 0.25 sec as the rotor tlaps to its new equilibrium position. The &M
response is made up of two distinct contributions — first, an instantaneous
contribution owing to body and tail aerodynamics, as well as rotor shears trans-
mitted via the blade-hinge offset, and a second transient contribution resulting
from all higher-order degrees of freedom (above the basic six) achieving a new
equilibrium. The quasi-static stability derivative, as advanced by Hohenemser
in 1939 (Ref. [2]), assumes that the rotor instantaneously reaches its new
equilibrium, as is indicated by the dotted line in Fig. 1. The figure shows
that from a strictly 6-DOF point of view, the perturbation derivative is actu-
ally time-varying. The conventional six-degree-of-freedom stability-derivative
model, which has the time-invariant quasi-static stability amd control deriva-
tives as its elements, is a poor approximation, because the dynamics of the
rotor response are not well separated from those of the basic airframe dynamics.

Use of the conventional quasi-static stability-derivative model is ade-
quate for many applications associated with low-frequency (such as phugoicd) and
steady-state fiight-dynamic behavior; however, it is often n.: representative
of the higher frequency short-period dynamics, owing to the strong influence of
the unmodeled rotor modes. In the literature, Ellis (Ref. [3]) discusses the
shortcomings of using the 6-DOF quasi-static model for design analyses of
angular rate and attitude feedback systems, He concluded that use of this con-
ventional model would result in inaccurate estimates of the stability bound-
aries for high-gain feedback systems, and would lead to an overly optimistic
appraisal of true system capabilities. I.. an extensive control system design
effort for the AH-56A (Ref. [4]), it is stated that the use of the 6-DOF quasi-
static derivatives is found to give a deceptive impression of greater aircraft
stability, because the regressing flapping mode is neglected. In Ref. [5], two
optimal controllers are designed, based on a 6-DOF quasi-static model and on a
model that included the rotor tip-path-plane tilt dynamics. It was concluded
that for very tight control, rotor dynamics should be included in designing
such controllers.

Attempts to extract stability and control derivatives from flight data
have raised further questions about the validity of quasi-static derivatives.
Molusis (Ref. [6]) has indicated that identified derivatives can take on con-
siderably different values from those of the analytic perturbation derivatives,
owing to the fact that in flight, the rotor is continuously being excited by
pilot control inputs and turbulence, and is not operating in a quasi-static or
steady-state fashion. Reference {7]) also indicates that for a Bo-105 heli-
copter, there are significant discrepancies between flight-identified values
and manufacturer-supplied analytic and wind-tunnel startup values. Increasing
the a priori weighting made the identified derivatives more consistent with the
startup values, but only at the expense of degraded curve fits with the flight
data. In Ref. [8], Gould and Hindson incorporated selected hody acceleration
and control-rate derivetives in an identification of the larera. -directional
stability characteristics of a teetering-rotor helicopter. In their study,
these derivatives were introduced by assuming that the lags i'. the main-rotor
tip-path-plane response and the side-wash at the tail rotor can each be approxi-
mated by first-order time-constants. No general theory for body-acceleration
and control-rate derivatives exists in the literature, and the implications of
including these terms in the stability-derivative expansion are not clearly
understood.

In spite of all its problems, use of the conventional stability-
derivative formulation persists in the helicopter community. Ferhaps this is



because linear rotor + body models are not readily derived by analytic means
and must be extracted from the more comprehensive nonlinear models. More
likely, it persists because there is a certain loss of physical interpretation
that goes with the higher-order rotor + bodv models. Except in those cases in
which it 1s clearly necessary to go with a higher-order model, it is preferred
to stay in the 6-DOF domain. Because of this, it is necessary to develop a
better understanding of the limitations of the conventional model, and to inves-
tigate potential improvements that can extend its applicability.

2. Helicopter Linear Modeling

General Formulation

The nonlinear differential equations of motion for the dynamics of any
flight vehicle can be written in a partitioned state-vector notation as follows:

g = fp(Xps Xg» Us t) 1)
kg = fR(xp: Xg» Us ) 2

where the first vector differential equation represents the dynamics of the
basic six degrees of fuselage/body motion, and the second vector equation rep-
resents all higher-order dynamics that may be of significance. For a heli-
copter, the second equation would, in its most general form, include rotor-
blade dynamics (e.g., flapping, lead-lag, and torsion), inflow/air-mass
dynamics, control-system dynamics, and bending modes).

Linearization of the nonlinear equations results in equations that are
periodic with rotor azimuth. A constant-coefficient formulation is obtained by
averaging each periodic iterm over one rotor revolution. Further discussion of
the linearization of nonlinear equations for helicopter flight dynamics can be
found in Refs. [9] and [10].

Rotor + Body Models

Linearization and averaging of the nonlinear equations (1) and (2) will
result in the following linear matrix equations of motion:

xg = FgXg + Fpgxg + Ggu (3)

Xp = Fpgxg + Fpxg *+ Ggu (4)
where
xg = (Bu Av Aw Ap Aq ar A¢ a8)T
u = (0B, ARy Abyg 285]T

Xg = state vector for higher-ora - dynamics

Equations (3) and (4) are partitioned in order to specifically break out the
individual effects of the rotor and the body. The FR and Gg matrices alone
represent the dynamics of the isolated rotor (in a wind tunnel, for instance).



The Fp and Gy matrices represent the body-only aerodynamic effects that occur
in the absence of rotor-flapping dynamics. (Direct hub forces and wmoments act-
ing at the rotor head are included in these matrices.) The Fgp and Fpp
matrices account for the rotor-to-body and the body-to-rotor coupling,
respectively.

For many flight-dynamic applications, only the rotor-flapping degrees of
freedom need to be considered in the xgp vector. Table 1 shows several typi-
cal rotor + body models. The nine-degree-of-freedom (9-DOF) model incorporates
the rotor as a three-degree-of-freedom tip-path-plane, with each degree of
freedom represented by a second-order differential equation. This results in
a sixth-order rotor-flapping system of equations which have three periodic nor-
mal modes of motion: the advancing flapping mode, the coning mode, and the
regressing flapping mode.

The advancing (progressing) flapping mode, its frequency being roughly
twice the rotor rotational frequency, is not of significance for helicopter
flight dynamics (Ref. [11]) and should be eliminated; only the coning and
regressing wmodes should be retained. The coning model, as it is called, still
has 9 DUF, but the longitudinal and lateral tip-path-plame tilt equations are
now each of first order and couple to give the regressing flapping mode. The
coning mode is generally only significant for those helicopters that have low
rotor rotational rates, that is, for high gross weight or slowed rotor vehicles.
If the coning mode is also elimirated, one has the 8-DOF tip-pavr’.-plane tilt
model that retains only the regressing mode in addition tc the fusclage/body
modes.

Stability Derivative Models

Mathematical manipulation of equation (4) will yield a solution in terms
of xg, u, and higher-order derivatives. Taking the Laplace transform of
equation (4):

sXg = FpeXp + Fp¥p + Gl )
Solving for Xg(s) gives,
Xg = (sl - FR)™" (FppXp + GRU) (6
The matrix inverse term (sI - FR)'1 may be expressed as an infinite series,
(sl - Fp)™' = -F'(1 + Fg's + Fg?s® + FRlsP + . . 0) €))

This series can be shown to converge absolutely in that region of the s-plane
inside a circle of convergence centered at the origin with a radius equal to the
magnitude of the smallest eigenvalue of FR. That eigenvalue generally corre-
sponds to the rotor regressing mode, and consequently the series is convergent
for the range of frequencies of interest to the flight dynamicist.

Substituting equation (7) back into equation (6), and taking the inverse
Laplace transform will yield the following solution to equation (4):



xg = ~FR'FraXp - FR'Cu - FR’Frgkp - FR°Cgi - Fr'Frpkp - FRoCpii » - . (8

Equation (8) includes terms for the body states, the controls, and all their
higher-order derivatives. It can be easily verified by substitution that it is
a solution to equation (4).

Conventional Quasi-Static Model. The first two terms of the series shown
in equation (8) are identical to the solution from the residualization method of
model order reduction, where %X, is set equal to zero, and the rotor state
vector Xxp can be expressed as a function of Xg and u alone. This is equiva-
lent to tge quasi-static assumption discussed previously, where the rotor is
assumed to reach its new equilibrium instantaneously, and can therefore be
expressed in terms of the immediate body states and control positiomns:

=1 ~1
xR = -Fr FrpXp - Fg Gy 9

Substituting this approximate solution back into equation (3) results in the
standard expression for the quasi-static model:

. -1 -1
ap = (Fp - FpgpFg Frp)xp + (Gp - FpgFg Gplu (10)

Fos Ggs

The quasi-static state matrix Fgpg and control matrix Ggpg are defined as
shown in terms of the fundamental rotor + body submatrices. The elements of the
matrices Fgg and Gog are identical to the conventional quasi-static perturva-
tion derivatives, except that the L, M, and N derivatives now reflect the
effects of vehicle cross-products of inertia, and the usual linearized inertial
terms aave been included.

Amended €-DOF Model. The conventional model can be improved by including
the third and fourth terms of equation (8) in the solution:

¥R = -FR'Fre¥p - FR'Gru - FR’Fpakp - FR'Cyd an

The use of those two additional terms is equivalent to including body-
acceleration and control-rate derivatives in the solution for the higher-order
dynamics. Substituting this solution for the rotor into equation (3) yields the
solution

Xp = FqsXp + Gqsu + (-FprFR’FRB)XB + (-FBRFR’GR)U (12)
S, s’ 000 “umm—, e
F* c*

where the body-acceleration matrix F* and control-rate matrix G* are defined
as shown. It should be noted that in the general case in which xp includes
the effects of the rotor dynamics (i.e., blade flapping, lead-lag, and torsion)
aad the air-mass dynamics (1 e., 1nflow, lag in downwash, etc.), contributions
are introduced into the F* and G* matrices from all of these sources. 1If a
rotor + body model is used as a basis for generating the amended model matrices,
only the "pseudo" unsteady derivatives coming about because of rotor-flapping
dynamics alone will be reflected in the F* and ¢* matrices.



Equation (12) can be rewritten into an alternative form by grouping the
body-acceleration terms to give

kg = (L - F*) 'Foexp + (I - F¥)7'Goqu + (1 - F¥ 6% 13)
*
Fam Gam Cam

where the matrices Fpy, GpM» and GKM are defined as shown.

Rotor-Response Decomposition Models

Rotor-response decomposition models are an intermediate formulation fall-
ing between the rotor + body models and the stability-derivative models. The
idea is to decompose the response of the higher-order states into a response
that is self-induced and a response that is forced by the body motions. Decom~
posing xp as follows,

X = Xg, t* Xp, (14)

where ERr is the response owing to .>tor motions and §Rb is the response

owing to body motions. The differential equation (4) then splits to give

%< = F + 15
xR, = FrEp, *+ Cpv 13)

kg, = FRXR, * FRBXB (16)

A solution for §Rb can be written using the same approach as for eguation (8),
X, = -FR'FReXp - FR'FRefs - IR'FRe¥B - + - - (17)

If only the first term is retained, the assumption is that the body dynamics are
slow compared with the rotor motions, and the rotor response to the _ody motions
only are assumed to be instantaneous. The rotor state vector xp can the. be
written as

xg = Xp_ - FR FReXs (18)
Substituting this into equation (3) yields

g = FosXp + Fpr¥R, + CpY (19)

gy = FRER, + Gpu (20)

where Fgg 18 the astate matrix derived for the conventional quasi-static model
in equat?on (10). An approximation similar to this was used in Ref. [3], except
that the Ggu term was neglected. When this is the case, the combined

rotor + body dynamics can be treated as the product of two transfer functions,
that is, a rotor transfer function }Rr(s)/g(s) multiplying a body transfer

function §B(s)/§Rr(s) (notation usec¢ .ctually implies multiplication of trans-

fer function -atrices).



If the second term of equation (17) is included in the solution (as was
done in the amended model formulation), a solution to xp including body accel-
eration terms can be written:

xg = Xp, - FR'Frexp - Fr Frefs (21)
The differential equations then become

%p = Fayxp + (I - F*)7'Fppxg  + (I - F*)7*CGpu (22)

Xpe = FRER, * CpY (23)

where Fpy is identical to that state matrix used in the amended model equa-
tion (13).

Equations (22) and (23) may provide a particularly good model structure
for combined rotor + body parameter identification. The isolated rotor equa-
tion (23) might already be well known or could be obtained from rotor testing
in a wind tunnel. The matrices in equation (22) could then be identified from
flight testing. (Note, however, that XR, is not directly measurable.)

3. Evaluation of Linear Flight Dynamics Models

Method of Approach

Since the principal purpose of this study is to assess tae effects of the
rotor-flapping dynamics on the 6-DOF stability derivatives, a 9-DOF helicopter
model was chosen as the baseline model — the "absolute'" with which all lower-
order models are to be compared. The model was intentionally chosen to be
linear, in order to avoid any problems in differentiating between linear and
nonlinear effects, and to have only the rotor-flapping dynamics included as the
higher-order modes, in order to assess their effect alone. The additional
degrees of freedom not included (air-mass dynamics, inplane motions, etc.) are
assumed to be quasi-statically lumped into this baseline structure. The model
used was a linear fourteenth-order (sixth-order rotor) model of the CH-53A at a
100-knot, level-flight trim condition (published in Ref. [12]).

The general approach, consisting of two parts, is shown in Fig. 2. The
first involves model-order reduction, where the baseline model is mathematically
reduced into three models — the conventional 6-DOF quasi-static stability-
derivative model, the amended 6-DOF model, and the 8-DOF tip-path-plane tilt
model. The objective is to evaluate the stability-derivative models against the
baseline model and to directly assess the effects of the rotor dynamics on these
models. The 8-DOF model is included because it is the lowest-crder rotor + body
model and represents the next higher model in complexity above the stability-
derivative models.

The second part of the approach is a system-identification npproach in
which three models are identified from baseline model simulation data, using the
structures of each of the evaluation medels. The purpose is to see how well
each of the models can be identified in these idealized conditions. 1t is
expected that the identified models would be sumewhat different from the reduced
models, since the identification is a curve-fitting process that will be attempt-
ing to fit the baseline data with a lower-order model.



The system-identification results are expected to provide guidelines for
the interpretation of stability derivatives extracted from flight data. The
identified models can be considered to represent an upper bound on the quality
of results that can be obtained from flight testing; that bound will probably
be somewhat optimistic considering the measurement and testing difficulties
associated with parameter-identification flight experimentation.

Mathematically Reduced Models

Reduced-order models for the conventional 6-DOF model, the amended 6-DOF
model, and the 8-DOF tip-path-plane model were generated by mathematically
reducing the baseline model. +The baseline model was partitioned into its Fp,
Fgrs FrBs Fr» G, and G matrices, and the tw scability-derivative models were
computed from equations (10) and (13), respeciively. The 8-DOF model was gen-
erated using standard residualization techniques, whereby the baseline model is
partitioned such that the vesidual vectoer is [AB, AB, ABlc A313]T’ and the time-

derivative of this residual vector is set equal to zero.

Couparison of Time-History Responses. Time-histories from simulations
of each of the three mathematically reduced models and the baseline model are
shown in Fig. 3. The control excitation is a 2.1-rad/sec sinusoidal pitch axis
(Bls) input. Only plots for the primary-axis response (pitch rate) and the

cross-axis (roll-rate) responses are shown in Fig. 3, for these satisfactorily
represent the extremes of the comparison.

In the primary axis, the responses from all three reduced-order models
closely resemble the baseline-model response. If the primary-axis response is
considered alone. it could bte concluded cnat the conventional 6-DOF quasi-static
model is adequate fcor predicting handling-qualities behavior. However, there
are considerable differences in the cross-axis response of the four models.
Whereas the 8-DOF model does duplicate the baseline response, the mathematically
reduced conventional model (having the usual stability-derivative formulation)
does not.. This conventional mcdel incorrectly predicts the initial transient
response in the first second, _:d does not correctly predict the phase response
for the subsenuent motion. On tte other hand, the amended 6~DOF model (which
includes the ¢ Jy-acceleration aand control-rate derivatives) does provide a
more reasonable prediction of the roll-rate response, correctly predicting the
initial response direction and the correct phase relationship; however, it does
have some problems in predicting the correct amplitude behavior.

Frequency-Response Comparigson. Phase and amplitude discrepancies in
Fig. 3 prompted a closer inspection of the frequency-response characteristics
of the reduced-order models, in order tu determine the usable bandwidth of each.
(Usable bandwidth can be defined as that bandwidth for which a given model will
duplicate the true frequency-response cnaracteristics.) Normalized amplitude
and phase plots for two transfer functions are shown in Fig. 4. The pitch-rate
response to a pitch-axis input (primary-axis response) and the roll-rate
response to pitch-axis input (cross-axis response) have heen normalized by the
corresponding baseline-model responses. The baseline-model response is then
indicated by the unity axis on the normalized amplitude plot and the zero axis
on the relative phase plot. A frequency range from 0.2 to 5.0 rad/sec is shown,
with the phugoid frequency typically being between 0.2 and 0.5 rad/sec), the
Dutch roll between 1.0 and 2.0 rad/sec, and the short period between 2.C and
5.0 rad/sec.

1n



Although the reduced-order models all duplicate the low-frequency
response characteristics of the baseline model, major discrepancies show up in
the higher-frequency cross-axis response. The conventional model shows a
departure from the baseline response at about 0.3 rad/sec, the amended model
at 0.8 rad/sec, and the 8-DOF model at about 1.3 rad/sec. The usable bandwidth
of the amended model is roughly twice that of the conventional quasi-gtatic
perturbation derivative model.

Eigenvalue Comparison. Characteristic roots for the basic 6-DOF
fuselage/body motion are compared in Fig. 5. As expected, all the models cor-
rectly predict the low-frequency modes, with some slight differences showing
up in the Dutch roll mode, and the significant discrepancies occurring in the
short-period dynamics. Both the 8-DOF and amended models give a g¢~od account-
ing of the baseline short-period eigenvalues; however, the Conventional model,
although it correctly predicts the natural frequency, gives an optimistic esti-
mate of the damping. Note that inclusion of the body-acceleration derivatives
in the amended model is sufficient to modify the state matrix of the conven-
tional model (i.e., Fpaq = (I - F*)~1F, g) and to yield improved short-period
eigenvalues without changing the low-frequency characteristics. This wmight
lead one to conclude that the body-acceleration derivatives alone are respon-
sible for the significant increase in the usable bandwidth of the amended model;
however, that is not the case. Additional analyses of a model that included the
body-acceleration terms but not the control~rate derivatives showed frequency-
response characteristics comparable to those of the conventional model, indicat
ing that the control-rate derivatives are a necessary component of the amended
model.

Identified Models

System identification from analytic models is discussed in Ref. [10].
The procedure used jn this study consists of two parts — parameter identifica-
tion and evaluation of the {dentified models.

Identification from Simulation Data. The baseliie model was excited
using two representative inputs for each of the four control axes, the first
being a doublet with a period of 3 sec and the second a 3-2-1-1 input (intervals
in seconds) that is often used for parameter identification because of wide-band
excitatiot (see Ref. {13]). The doublet was chosen specifically to excite the
short-period aircraft dynamics. The amplitude used for both input waveforms in
all axes was 0.02 rad. The eight maneuvers were simulated for 10 sec each (a
total of 80 sec) and were then sequentially processed, using a least-squares
algorithm. Three sets of parameters were identified, using each of the reduced-
order model structures.

The least-squares algorithm is the standard solution to the equation-
error formulation of the parameter-identification problem and will, in the
absence of measurement noise, yield optimum unbiased parameter estimates. Since
there is no noise associated with the simulation itself, except perhaps negli-
gible computer round-orf and integration routine errors, the least-squares algo-
rithm is best for this application. All unmodeled higher degrees of freedom are
treated as process noise (the assumption when using the equation-error
formulation).

A large amount of data (30 sec in all) was used to assure convergence of

the parameters. It should be noted that using different control input waveforms
and inter-axis amplitudes (i.e., relative amplitudes between control axes) is

11



expected to yield slightly different converged parameter values. The conver-
gence properties generally will depend on control-input waveform, amplitude,

and spectral content, as well as on basic considerations, such as number of
maneuvers, maneuver length, and sample rate. Investigation of all these factors
was beyond the scope of this effort and remains an area for continuing research.

Evaluation of Identified Models. The crucial test for evaluating the
"goodness" of any identified model is simulation and comparisom with an input
not used in the identification. For the evaluation, a 2.l-rad/sec sinusoidal
pitch-axis input was used to drive both the baseline model and the identified
model. The simulated time-histories were then compared.

Figure 6 shows the results of the simulation and comparison of the models.
As done previously for the mathematically reduced models, only the primary axis
(pitch rate) and cross-axis response (roll rate) are shown. Again, there is
very little difference in the primary-axis response, with major discrepancies
occurring in the cross-axis response. The identified model using the conven-
tional model structure is unable to predict the correct cross-axis response,
being grossly in error. It does not even come close to the incorrect reduced
model response of Fig. 3. The amended model, on the other hand, does show con-
siderably better agreement with the actual baseline mocel response and, in fact,
does not display the shortcomings of the mathematically reduced amended model
(Fig. 3), which had the incorrect amplitude behavior.

Identif ied Derivatives and Eigenvalues. 1In addition to the direct com-
parison of the time-history respomses, it was also desirable te evaluate the
stability derivatives and eigenvalues of the identified models. A selection of
several important stability derivatives is shown in Fig. 7, where the identified
derivatives are compared with the time-varying baseline model-perturbation
derivatives.

The baseline reference derivatives are plotted in their 6-DOF time-varying
perturbation form, where the initial value (t = Q) is identical to the coeffi-
cient of the Fp submatrix of the 9-DOF baseline model, and the steady-state
value is the same as the mathematically reduced conventional 6-DOF quasi-static
derivative. The 8-DOF identified derivative is also plotted as an equivalent
6~-"OF time-varying perturbation derivative. 1Its initial value corresponds to
the appropriate coefficient of the identified Fg wmatrix for the 8-DOF model,
and the steady-state value is that derivative value that would result should the
8-DOF identified model be mathematically reduced into quasi-static derivatives.
The conventional 6-LOF stability derivatives are time~invariant and are repre-
sented by a constant-valued line across the plot.

The plots in Fig. 7 show that identification of parameters, using the
conventional 6-DOF model structure, will yield derivative values that are quan-
titatively different from the conventional (i.e., mathematically reduced) quasi-
static derivative (this was first noted in Ref. [6]). The identified deriva~
tives are always smaller in magnitude than the conventional value, but are in
all cases within the extremes of the fluctuations of the time varying baseline
derivative. This indicates that for the data used in the identification, the
rotor is not operating in its steady-state equilibrium; rather, because of
excitation from the control inputs and body motions, it is operating in a tran-
sient manner.

The 8-DOF time-varying derivatives generally attempt to duplicate the
dynamic nature of the time-varying baseline derivative. In most cases, its
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steady-state values are closer to the conventional derivative (i.e., mathemati-
cally reduced) values than the identified values from the conventional 6-DOF
stability derivative model.

The eigenvalues for each of the identified models are shown in Fig. 8
(body roots only). All models compare favorably with the lower frequency base-
line characteristic roots; however, there are marked discrepancies in the short-
period roots. The short-period eigenvalues for the identified 8-DOF wmodel show
fairly good agreement with the baseline model roots, correctly estimating the
natuial frequency but slightly underestimating the damping. The eigenvalues of
the model identified using the amended-model structure, although still periodic,
greatly overpredict the short-period damping, and are not in as good agreement
with the baseline roots as they were for the amended reduced model in Fig. 5.
The eigenvalues of the model identified using the conventional model structure
are aperiodic and provide even worse correlation.

It is interesting to note that the discrepancies in the short-period
eigenvalues can be shown to be related to the low values of the identified
derivatives. Since the trace of any square matrix (i.e., the sum of the diag-
onal elements) is equal to the sum of the eigenvalues of that matrix (see
Ref. [14]), the sum of the damping derivatives Xys Yvs 2y Lp, Mq» and Ny for
a given 6~DOF model will be equal to the sum of the real parts of the eigen-
values of that model (the imaginary parts cancel out). Evidence of the lcwer
parameter estimates can be seen in Fig. 8, where the mean of the real parts of
the short-period eigenvalues (for either of the 6-DOF identified models) is
visibly less than that for the baseline model. This is an indication that the
accuracy of ilentification of the helicopter short-term response is likely to
have a strong effect on the values of the parameters identified.

4. Conclusions

The validity of several helicopter models that can be used for flight-
dynamics analysis has been investigated. The purpose of the study was to assess
the effect of the rotor-flapping dynamics on the helicopter handling-qualities
motion spectrum, and to evaluate various simplified wmodel representations. The
effects of nonlinearities and additional degrees of freedom above the rotor tip-
path-plane flapping dynamics were not included in the analysis.

Three models were investigated — the conventional 6-DOF model, which is
composed of the conventional quasi-static stability derivatives; an amended
6-DOF model, which includes body-acceleration and control-rate derivatives; and
the 8-DOF tip-path-plane tilt model, which is evaluated because it represents
the next higher level of complexity above the 6-DOF stability-derivative models.
Another uodel, a linear 9-DOF (fourteenth order) body + rotor model, which
includes rotor advancing, coning, and regressing flapping modes, in addition to
the fuselage/body modes of motion, was used as a baseline model. It was from
this baseline model that the mathematically reduced models were generated, and
it was against this model that all the lower-order models, including the iden-
tified models, were evaluated.

System identification of models using each of the three model structures
was undertaken in order to assess the effects of the higher-order rotor dynam-
ics on parameter identification and to determine how well the parameters could
be identified under these idealized circumstances. The identified derivatives
provide an upper bound on the quality of results that can be obtained from
flight-test stability derivative extraction using dynamic testing techniques.
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The following conclusions can be made about the mathematically r duced
models:

1. The conventional quasi-static stability derivative model was found
to have problems in predicting the short-period cross-axis response.

2. The amended model, which included the body-acceleration and control-
rate derivatives, essentially doubled the usable bandwidth and resulted in
better predictions of the helicopter cross-coupling dynamics.

3. The 8-DOF rodel provi‘~d the best correlation with the baseline model
dynamics.

The following conclusions can be made about the identified models:

1. Parameters identified using the conventional model structure were
grossly in error, and were unable to predict the helicopter cross-axis response.

2. Parameters identified using the amended model structure [eq. (13)]
were able to predict accurately the-helicopter cross-coupling behavior.

3. The 8-DOF identified mode] provided little noticeable improvement
over the amended model in the time-history comparisons, but did provide better
agreement with the baseline short-period eigenvalues and with manv stability
derivatives.

4. Derivatives identified under the conditions of this study were ¢ . .n-
titatively differeat from the conventional derivatives currently used by heli-
copter flight dynamicists. True helicopter 6-DOF perturbation deriv-tives are
time-varying, and identified derivatives reflect this by effectives '"averaging"
the time variations of the derivative.
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TABLE 1.- ROTOR + BODY MODELS

—
Rotor + body Rotor model Rotor states Rotor modes | Order
model
—
9 LOF Sec~1d-order xR = [BosBy_sBi_sBosBy »By 1T Advancing 14
(baseline) " p-path-plane | ¢ s ¢ s flapping |[(8+6)
dynamics Coning
Regressing
flapping
{ Coning Lecond-order XR = [Bo’Blc'Bls’éo]T Coning 12
coning Regressing [(8+4)
First-ocrder flapping
ti, »ath-plane
tilt
8 DOF Tip-path-plane | xp = lslc’Bls]T Regressing 10
tilt only flapping [(8+2)
(first order
each DOF)
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Fig. 1. AM response to a constant-perturbation Aw for an ideal six-degree-
of-freedom system, an airplane, and a helicopter.
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Fig. 5. Eigenvalues of mathematically reduced models.



OF POOR QUALITY

ORIGINAL PAGE is

-3nduy syxe-ys3rd [eprosnuls o3 Isuodsai — sTapou poT3TIuapT-meIs4is ‘9 314

%05 "JWIL %8s ‘JWIL
9 ] v € Z L 0 . 9 1] v £ rA i 0. .
T T T Y Y L= T T T “T T -
0 — o 13QOW
T ~—— - Q3aNIWY
1 1 5 i i 1 4 i L i i L
. T T L T -
%Il\b'. 0o = 13A0N
©°
Qo - IVYNOILNIANOD
- -~
r (2]
A 1 ! 1 1 L X . X
> <]
= -4
m =
T L'~ 8 m
T T T T ~
1 % 3
(1] w
e e ® 1s00wzoas
1 1 1 1 1 —.. 1 ] 1 1 It L
Y T Y T T L= l-
j\ ] 0 0 7I3Q0W INIT3SVE
1 1 | i 1 P L L A L A F.

3ISNOdS3Y SIXV SSOHD ISNOJSIY SIXV AdVYWIYd

21



ORIGINAL PAGE IS
OF POOR QUALITY

*S9ATIBATISP PITITIUIPT jJo uostiedwony 7 8yg

%8s ‘JWIL
oL 2 9 v A 0 0l 8 9 v c (1] oL 8 9 v 'A o
T 9- T T T Y 8- T T T T -
e mmrm - m . - - mag - l'l"ll"/ k—
N\
- {v- 0
N \\
- s 2- L d 4
1
005/ ey @51 W/
- gl - -
0 s ~ 4z
. A 1 | Z 1 1 1 . £
0L0°- ¥ 020~
590" 510"~
090°- ﬂ. oL0'-
T “ mmcl - 500 -
sas/p A
1 Il A 4 OWOI -4 'l 4 1 Q

(3°NLONYLE 13GOW TYNOILNIANOD) A3141LN3IQI 4009 -------

(IAILVAIYIA ONIAYVA 3WIL) GII411N3A1 4008 = = =
(IAILYAIYNIA NOILYSHNLYId ONIAHVA IWIL ) INIT3SVE

22



ORIGINAL PAGE 13
OF POOR QUALITY

x BASELINE MODEL*
A 8 DOF MODEL*

- (J

O CONVENTIONALMODEL T 2
O AMENDED MODEL
DUTCH
roLL ©
A T
X SHORT
PERIOD
PHUGGOID
2
o)
-2 - ® 1
X
A 4+ 1

*FUSELAGE/BODY ROOT ONLY

ROTOR FLAPPING MODES NOT SHOWN

Fig. 8. Eigenvalues of identified models.



