
Top Down Implementation Plan for System
Performance Test saftware

G. W. Jacobson and A. Spinak
Operations Sustaining Engineering Section

This article describes the Top Down implementarion plhn USBd by the OperattOM Sus-
taining Engineering Section for the development of System Performnnce Test softwme
dwing the Mark IV-A em The plan is based upon the identijkation of the hierarchica4
relationship of the individual elements of tht Sofhyme design, the development of a
sequence of functionally oriented denwnstmble steps, the allocation of subroutines to
the specifw step where they are first required, and objective status reporting. The results
are meaningful determhatwn of milestones. improved managerial visibility, better project
control, and ultimately a successful softwrrre development.

1. Introduction
The Mark IV-A era represents significant changes in the

operating environment ana the hardware confwration within
the DSN. System Performance Test (SPT) software will be
needed to test and verify the operational integrity of the DSN
during the Mark IV-A implementation.

The SPT software package being developed by the Opera-
tions Sustaining Engineering Section will consist of a test exec-
utive and a set of seven applications tasks. Basically, the exec-
utive distributes input data to the applications, provides
resource allocation services, and performs common processing
functions such as dumping, display generation, and test proce- *

dure reading. The application tasks are each designed to test a
particular system. Tracking, Telemetry. Command, Monitor
and Control, Very Long Baseline Interferometry. Radio
Science, and Frequency and Timing will all be supported by
SPT software for the Mark IV-A ccdigcration.

The SPT software will reside in the System Performance
Test Assembly (SPTA). The SPTA. which also serves as the

backup Complex Monitor and Control (CMC) computer, will
be a ivlodcomp Classic 7 U S . The operating system will be a
mc dified version of the MAX IV Operating System supplied
by the computer manufacturer.

The software development effort for the Mark IV-A Proj-
ect, summarized above, represents the largest project under-
taken by the SPT Software Support Group. To achieve the
technical, budgetary, and scheduling goals of the project, a
top down implementation plan has been created that always
develops and maintains the SPT system in a continually
cycling, demonstrable fashion. It is the intent of this paper to
describe the history, justification, and components of the SPT
implementation plan.

II. Background
The success of large software development efforts has

improved throughout the industry. These improvements are
largely attributable to the application of a technological wave
of new approaches that have been loosely referred to as

structured programming. More explicitly. the new technologies
include replacement of flowcharts via usage of design Ian-
pages. elimination of the GOTO by confinement to a small
complete set of logical constructs, increased emphasis and
formalization of the role of the pmgramnuig support librar-
ian, increased emphasis on reviews via usage of either struc-
tured walk-throughs or inspection teams, and a reorganization
of programming personnel into the chief programmer team
formation. Unfortunately. despite the considerable progress
that has been made. many projects still fail to meet their
schedule, have cost O ~ ~ T N I I S , and the end product never
quite operates as reliably as intended. In any event, even for
supposedly successful projects. the cost of software is :till
too high.

A majr.; reason for these continuing software dificulties
ana continued high costs. despite advances in technique, is
that the impact af the aforementioned technical advances
is limited when constrained by the effects of traditional
management techniques. All of the previously mentioned
structured yrogrmminp techniques deal with the program-
mer and piogramming. None deal directly with the issues
of planning and managing a large-scale software development.
The industry is generallv using the same planning and nian-
aging approaches it has always used. and these have fre-
quently proven to be unsuccessful. The result is that the
manager continues to have little visibility 3nd little effective
~unt ro l over the developing system. I f thc manager had a
mechanism that permitted him to arrivc at a meaningful
implementation plan: permitted him to objectively assess
the project's status as it developed; provided him clear visi-
bility of the development activity; considered cost. schedule.
manpower and the chosen design, then the manager would
be in a position to truly manage the project and lead it to
a successful conclusion at minimal cost.

The SPT top down implementation plan fils this gap. The
SPT plan is t o management what structured programming is
to the programmer. As with structured programming, which is
complemented by thc SPT plan. the SPT plan improves visibil-
ity, meaningfulness and orderliness. I t allows the manager t o
start the project off on thc rlpht path. closely monitor the
software developnient as it progresses. and ultimately to bring
the project to the desired successful conclusion.

111. Implementation Plan Selection Crlterla
The top down n i c t l i d ~ppears to have been first cspouscd

by Dr. 11. D. Mills of IBM. Though this discussion. and other
discussions in the computing literature. advocated top down

implementation, little advice was presented on how to plan a
top down implementation. Stating that a computer program
should be .mphen ted in a top down sequence is insumdent
for a large software development. Due to the complexity of
its hierarchical structure, literally thousands of top down
implementation sequences m y be possible. Thus, selecting
the proper top down implementation sequence becomes a
very significant issue.

For example, one could implement all the submutines at
a particular level for the entire system, foUowed by all the
subroutines at the next level acco9s the system. and so on,
until finally the bottom level subroutines are implemented.
There are those in the industry who advocate this sequence.
This would be top down, but in our opinion, represents an
inferior implementation sequence. This is because bottom level
subroutines usually are required to provide a demonstration of
a complete operational ,ystem function. Thus, for most of the
system's development. very few operational functions would
be denrltnstrable. Howewr -arly functional demonstrability is
one of the main benefits .hat should be achieved from top
down implementation. Alternatively, many top down se-
quences might conflict with expected equipment delivery
dates.

Thus. selecting the most appropriate top down implementa-
tion sequence is an important issue. The SPT plan is using a
comprehensive methodology which has been developed for
creating and maintaining an optimal top down implementa-
tion plan. This technique provides broad benefits to the
ensuing software development.

IV. Top Down Concepts
Top down design refers to a method of designing a compu-

ter program wherein higher level or calling segments are
designed bcfore lowei lewl or called segments. This does not
mean that all segments at one level mwt be designed. or
named, before creating the design. or name. of any segments
at the next level. I t means that if one were to consider the
system's subroutine hierarchy as 3 treelike structure. then
along each branch o f the tree. Pubroutines are defmed and
chosen for design. starting from t1.e fop of the hierarchy and
working down.

Top down iniplementation refers to the development of a
computer program in a downward hierarchical sequence along
each branch of the program's subroutine hicrarchy. Design,
documentation. coding, integration and testing usually arc

191

concurrently performed on different portions of the develop
ing system. In a top down sequence, these are performed alung
each branch simultarmL .y under development.

V. Pnsparation of the SPT Top Down
Implementation Plan

A viable software implementation plan can only be pre-
pared after a sufficient quantity of system analysis activities
have occurred and before the detailed implementation has
begun. The plan is then used to launch the implementation
phase for a large-scale software development. In operation,
the SPT approach is based upon the utilization and interplay
of three documents. They are the Subroutine Hierarchy. the
Network of Demonstrable Functions (NDF), and the Software
Status Report.

In a nutshell, the Subroutine Hierarchy represents a design
abstract for the computer software. The Network of Rmon-
strable Functions represents a functional abstract of the opera-
tionai system. The Software Status Report relates the software
design to the NDF system functions for the purpose of sched-
uling tlie wftware and nlaintaining the status of soitware
development. The m;lin point of this nutshell description is
that attentive prcparation of these documents results in a
meaningful schedule that allows maiiageiiient to have real
visibility in areas such as the softwarc's true status, cost to
completion. and time to completion.

VI. Subroutine Hierarchy
The Subroutine Hierarchy is a high-level rcprcscntation of

the structure of thc hicrarchical design u i the cotiiputcr p r o -
gram. I t readily conveys a high-level tiiiage o i the design being
rcprcscnted. sliowuig a11 o f the parts constituting the dcsign,
t l w r hierarchical rchtionship to each uthcr. their categories
and, to a degree. their lunctions. All of tlie segments must
represent siiiall subroutiiics. perhaps averaging 2.S to 50
lughsr-order language strtcinsnts.

'The Subroutme Ilierarchy c \~~lvcs ils ttic design and the
software cvolvc. 1iitti.tily. when thc ititplemcntation plan is
first prepared. the Subroutiiic tlierarchy reprcscnts the inten-
ded design structure of the computer program. At completion
ol' ~ h c software dcvclopitient, i t rcprcseiits thc actual structure
of tlie coiiiputcr prograrii At ,111 tntcriiicdiatc s t q c s . 11 is Acpt
current and rcprcwnts the ciirrc1ii :, prolccted blrticturc of [he
progratii.

bur J I~tgc cutiiputsr progrJiii. with perl iaps UIIU thousand
or niorc subroutines. the subroutines may be treated in a
stataticrl tiianticr foi the purposes of making esttniates.

scheJules and plans This is one of the prindples of the SPT
approach. Nsmely. by partitioning a large computer program
into its elemental pieces (subroutines). the effects of isolated
misjudgement (e.g., size or complexity) relative to any indi-
vidual subroutine tend to average out over the total program
development, and do not affect the overall outcome. The
effect of frequent misjudgement of the same characteristic of
many subroutines (e.g., development time) tends to become
quickly apparent and serves as a reliable indicator of develop-
ment trends and ultimate results (if not corrected).

The Subroutine Hierarchy enables the software designers to
conveniently conceptualite about the program and its parts,
and to visualize the hierarchical organization of the nrogram.
It communicates in an overall conceptual manner the struc-
ture of the design. It is the essential design element, repre-
senting the components of the program's design for the pur-
pose of planning and tracking the implementation of that
design. I t thus becomes the primary determinant in estimates
01 'ost and memory size for the computer program.

Figure 1 shows a portion of the subroutine hierarchy for
the SPT Project. Due to the large number of subroutines. the
hierarchical structure is represented in a horizontal rather
thaii vertical (or treelike) manner. Varying hierarchical levels
are represented by varying levels of indentation. The hierarchy
identifies both the symbolic name and dcscriptive name of
the subroutine. It identifies the particular step in the SPT
~mplenientation plan where the subroutine will be first
required. (The next section will elaborate on the defmition
of steps.) Only the first occurrence of a subroutine in the tree
is expanded to the bottom level. Subsequent occurrences of
any subroutine use a reference nunrber to identify the line
number of the firs' occurrence. If the subroutine itself invokes
other subroutines, an asterisk is used to indicate the full
expansion ciln be fvuiid at that first occurrence.

VII. Network of Demonstrable Functions
The structure of the software desigr. and the identification

0 1 tlie conqtituent subroutines have been described as part
of preparing the Subroutine Hierarchy. No discussion has yet
occurred relative to the development sequence of these sub-
routines, nor relative to the individual milestones that will be
scheduled and tracked during the development. This is where
the N I X comes i n t o play.

Thc NDF IS that part of the SIT iniplcnicntation plan that
tdctttilies the individual increments. or steps, and the scquencc
uf developnieiit for those steps. The steps are scheduled.
developed. trackcd. integrated, tested and eventually internall)
accepted. I n other words, on the surface i t is a "Pert-like net-
work." Beneath the surface there arc a nuniber of aspects of

192

the NDF that must be explained before its value can be fully
grasped.

First of all, the NDF must be created by personnel that
have an in-depth functional understanding of the application,
its requirements, and the expected operational characteristics
of the system. The personnel assigned to the NDF task will
have acquired the necessary knowledge as a result of their
prior system analysis activities. If they do not have this know-
ledge. they must first acquire it before they can hope to create
a meamgful. detailed, functionally oriented plan of demun-
strable steps.

Secondly, the NDF steps arc oriented t$)wards functions
from the user's standpoint, not frqm the programmer's stand-
point. For example, "output directivelmenl; index" is a typi-
cal step. This is as opposed to "burld test configuration table,"
which would occur internally within the computer and not
provide the user direct observation of the step having oc-
curred. On the other hand, a step such as "print test confgur-
ation table" could be demonstrated to the user. Successful
demonstration of this would imply successlul construction
of the test configuration table.

This leads us into the third rmportant aspect of the NDF.
To the maximum extent possible, steps of the NDF should be
reddily demorrstrable to an observer who is not a programmer.
Those few steps that are not readily demonstrable to such an
observer must, nevertheless. still be demonstrable. This demon-
strability is the only basis upon which an objective determina-
tion can be made as to the completion of the step.

Thc principle of demonstrability leads us to a fourth
important aspect of the NDF. The development q u e n c e of
demonstrable steps must correspond to a natural functional
wquence of increasing functional capability. To put it anuther
way, Irom the user's operational stsndpoint, i t must be a
sequence which demonstrates "first things first .'*

A f i f th iiiiportant aspect of the NDF is that the steps must
cacti add on to an already cycling jystein. Each new step must
bc directly integrated into the cycling system. producing a
continuously increasing functional capability that is always
demonstrable. Steps required t o dernonstratc a new step must
be implemented and integrated prior to the integration of the
new s:ep. I n terms o f subroutines. h i s means that for a partic-
ular step, those subroutines that :ire required fix invoking a
particuhr segment of that step must be implemented as part
o f that step o r us part of a prior step. In order words. thc
desigr~ must he impleriientcd in ,I top down sequencc along
each brunch o f the subroutine hierarchy. Lower level sub-

routines that are not required for demonstration of the pa&:
ular step are to be left as stubs until a step requiriq those
subroutines is undertaken.

One fmal aspect of importance is that the steps must fit
together to comprise functional pths of the system. In
actuality, to create the NDF, the functional paths are defined
fm, and the paths are then broken down into a sequence of
steps. Each path corresponds to I! relatively independent (but
not necessarily totally independent) major function of the
operational system.

As lir. example, the Telemetry Path of the S I T NDF is
shown in Fig. 3. The Telemetry Path itself consists of a main
path, a long loop path, and an Automatic Total Recall Sub-
system (ATRS) path. For ease of reference, each step is given a
number, preceded by a path identifier. Increments of 10 u e
used to allow insertion of additional steps, should this prove
necessary because of changing requirements or priorities.
Dashed lines between paths imply dependencies; with respect
to Fig.2, implementation of t h ~ ATRS path is dependent
upon completion of the capability to accept directives.

VIII. Software Status Report
The Software Status Report tics the Subroutine Hierarchy

and the NDF together by relating the design elements to thc
demonstrable steps. This is the fundamental point from whch
the value of the Software Status Report, and even the SFT
Imp!ementation methodology, is derived. The Software Status
Report meaningfully relates the design to demonstrable
functions and the corresponding schedules.

In concept. the document is very simple. For a c h step
froni the NDF, the corresponding required subroutines from
the hierarchy are listed. Each subroutine is dlocated t o a
angle step, the first step from the NDF that requires the par-
ticular subroutine. Consequently, the subroutines listed under
a particular step are just those subroutines still required for
denionstratioil of the particular step's function. Other sub-
routines may also be rcquired for the step. but they would
not be listed with the step if some prior step already required
ttic subroutines. For status tracking purposes, columns are
provided where design, code, documentation. test size and
other status fields can be chccked off for each subroutine.
These fields will be recorded as complete or will contain the
date set for completion. No attempt is made to allow per-
centage estimates of completion by the programmer. Statisti-
cal data provided in the Software Status Report is based on
treatment of individual segments as statistical equivalents.
I n addition, the Software Status Report includes a description
of each step. i.e.. the function that is being demonstrated by

193

the particular step. The report also identEis the qudifhtions
or limitations, if any, that apply to the step’s demonstration
and the requirements that the step fulfills.

Whereas in concept the Software Status Repor+ is very
straightforward. creation U; the report requires a thorough
functional understandmg of the system and of the corres-
ponding design as represented by the Subroutine Hierarchy.
Only with such knowledge as a base could the programming
staff hope to allocate specific subroutines to each NDF step.

Thus, the Software Status Report contains all of the
s tep from the NDF and all of the assigned subroutines from
the hierarchy, along with the development status for each sub-
routine and step. With automated support, highly objective
status reports are easily generated from t3is data base. Tech-
nical and administrative management are provided accurate
visibilitv into the status of the total software development.

Figure 3 shows the Software Status Report for a typical
step from the SPT Implementation Plan. Fig.4 provides a
brief description of each of the fields on the report. Fig. 5
contains a Managemept Summary for one of the paths on
the SPT NDF.

IX. Summary
The SPT approach to top down implementation planning

is based on certain premises. One of these premises is that by
minimizing or eliminating large unknowns, management has
the best chance of accomplishing the project’s goals. If there
is some large functional area for which ma-agement has little
basis, other than someone’s intuition, for expecting the imple-
mentation to take say six months, with a partifilar size staff,
as opposed to say three years, then the project is L a precari-
ous position. A large nebulous function which has oidy been
quantified at its tou! level by intuition, even though based on
experierlce, is a dangerous unknown. The obvious way to get
better control of I big unknown is by reducing it to marry
small pieces, some of which may be small unknowns. To put
it in other terms, analyzing the task and breaking it down into
many smaller. pieces eliminates the risk of the large unknowns.
There may still be some unknowns or surprises, but the poten-
tial absolute effect of a misjudgement relative to a small task
is ping to be mherently smaller than for a misjudgement
associatej with the much larger original task. An important
additional aspect is that in the process of decomposing the

original function, understandhag occurs, and for the most part,
comprehension replaces intuit!on.

Also, by decomposing a system into a large number of
small pieces, a point is reached where the individual pieces can
be *rated for planning purposes as statistidly equivalent. At
the management level, the differences in gize or complexity of
individual small subroutfnes is of minimal importance. As sub-
routines are implemented, actual data should be used to u p
date the estimated statistical characteristics of the average sub-
routine. For example, suppose an original memory allocation
of 128K is made for 2000 subroutines. This averages 64 mem-
ory cells per subroutine. Suppose, after 200 subroutines have
been implemented, lSO00 cells have Seen used. This would
show an actual average of 75 cells per subroutine with the
trend total being ISOK for all 2000 subroutines. Thus, with
only 10% of the segments implemented, a reliable danger
signal has been raised, and the signal indudes the magnitude
of the forecasted overrun. With such an early warning, manage-
ment still has time to take some appropriate effective action
to act upon the issue before it becomes an actual problem.

The key basis for planning and tracking the implementation
is assigning the implemec s ion of each subroutine to a single
step. This is where it all ..omes together. But it must be done
with a qeat deal of care and precision. The correlation be-
tween the Subroutine Hierarchy and the Software Status
Report must be accurate. When design or plan changes occur,
and they wiU, changes must be made to both documents.
Both of these documents should be looked upon as evolving
documents, but they must evolve concurrently and in parallel.

Why does this “single step” premise form the basis to the
SPT approach to implementation planning? Because every-
thing is accounted for. Each subroutine appears for implemen-
tation on only one step - the Trst step that requires the sub-
routine. The effort required for e x h step can be considered
to be a function of the number of subroutines in the step. The
programming implementation budget can be sprtad over the
steps in proportion to the number of segments in each step.
Then, if you are on schedule, you are on budget. Subroutines
don’t appear redundantly (on more than one step) to confuse
Lhe bookkeepivg. Everything balances and all subroutines are
ab!e to be tracked. A full decomposition of the system into
subroutines and a careful and complete assignment of those
subroutines to a series of well-defmed, demonstrable steps is
of fundamental importance to successful usage of the S l T
methodology.

SYMBOLIC NAME
1 2 3 4 5 6 7 8 9 . DESCRIPTIVE NAME CLASS LINE REFER

/STEP NUM NUM

. . . .

. . . .

. . . .

. . . .

. . . .

. . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. CSTMAC

. . CDBCOM

. . CSHDGB

. . CDBADD

. . CSTMEV

. . . CDBADD

. . . CSHDCB

. . . CDBSUB

. . . CDBCOM
CSRCRP
. CSCHEK
CSSUPD
. CSTMSU
. . CDBCOM
. . CDBADD
. . CDBSUB
CSCCLO
. CSiIDCB
. CSCIqr'K
CSMOLiP
. CS'iffiB
. CHXASC
. CEFMSC
. CSCHEK
. CSTIRM
CSTW@V

~~

ACTIVE MODE PREDICTOR
DOUBLE INTEGER COMPARE
HSD BIT ACQUIRE
DOUBLE INTEGER ADD
EVENT PREDICTOR

DOUBLE INTEGER ADD
HSD BIT ACQUIRE
DOUBLE INTEGER SUBTRACT
DOUBLE IYTEGER COMPARE

RECALL QUEUE RESPONSE PROC.
STATUS CHECK

SUSPEND RESPONSE PROC.
MODEL RE-ADJUST

DOUBLE lNTECER COMPARE
DOUBLE INTEGER ADD
W?IBLE INTEGER SUBTRACT

CONTROL CENTER RESPONSE PROC.
HSD 3lT ACQUIRE
STATUS CHECK

MODE CHANGE RESPONSE PROC.
HSD BIT ACQUIRE
HEX TO ASCII CONV.
DISPLAY EVENT MESSAGE
STATUS CHECK
RADIATION TIME TEST

WINDOW OVERRIDE RESPONSE PROC.

C90 287
288 *7

289

290

C50 29 1

29 2 211

29 3 195

294 284

295 191

C90 296

297 258.

c13a 298

C130 299

300 197

30 1 211

302 284

C60 303

304 195

305 258*

ClOO 306

307 195

308 217

309 31

310 258'

31 1 281.

Cl20 312

ORIGlWAL PAGE 0s
OF POQR QUALITY

p,;

S T F P 010

DFXRWTION:
T d e r Operator Entry t o SYMBIONT

This step provides an operator enteral directive to tkc Symbiont.

INTENT:
This step demoartrates that an operator entered dkctive b
placed in an SSB andenteredin the Symbiont Queue.Thissbep
simulates the aentual LMC, LAN Handler. FIDY to Symbiont
interface. This also provides a basic buffet and queue manage
men: mffhaniyh

SOURCE:

AUTHOR: A. Splnak

DUE DATE: 03/02/82

CdORDINATOR: T. CREER
STATUS: DATE TYPE
DSGN RVU: 02/09/82 TEAM
TEST: 03/11/82 ACCEPTED
ANOMALIES: 0

NOTES:
Most or all of this step's software is in the nature of a tempo-
rary wortaround or Environmental Interface Module (EM). T o
prove, the SSB and the Symbiont Queue should be checked.
N o queue boundary conditions will be demonstrated.

SEGMENTS DESCRIPTION 'ODE - - QA CMP LINES
- - - _ DESlGiJ - - - _ _ _

cL DATE PERSON ST DATE PERSON ST

SlOiNP
SIOPOM

SIOPAK
SIOCBB

SIOSSB

SICLNK

OROtNQ
ORQlNl
OPOPQL'

GBI QUt
GQlhlT

' T H Q l

SPINIT

GHINI'I
GBPOOL

(;rTBri

OPEXATOR 2 SPT SIMUCATION

PARSE 0PE.RATOR MCSSACE
PACK CD SSB

LOAD TEST COMM BUFF bLOCK
LOAIJ TES r SSH BLOCK

C'HANCC LINK ID

PLACt. NODI: ON QUtUF.
IKIT I-REE Q KODL POOL

POP I REI: QUFUE NODE
I/I TO QUEUE CNTRY

111- TO lNlT QCFtTES

PUSH I REF QUEtiE NODE
S?T INITIALIZATION
V I TO INITIALIZF. BUl-l ERS
l/l TO RFLEASE Bl'I.I.FR

l/l- TO GI 'I HUl'l-t:R

I
1

I

S

S

S

I
I
!

I

I
I

I
1

I
I

02/01/82

02/02/82

02/03/82

02/02/82

02/0SlSZ

02/05/82

02/02/82

02/04/82

02/05/82

021 10182

02/22/82

02/2?182

021221'82

MJB 02/11/82

MJB * 02/11/82

TO 02/11/82

TCC

TCG

MJB
TO
TO

MJB

TCC
MJB

M J B

MJL

*
t

8

t

t

*
t

8

02/16/82

02/16/82

02/16/82

02/12/82

02/12/82

02/12/82

021 15/82

03lOS/82

03/05/82

03/05/82

MJB

MJB

TO

*
t

t

MJB
TCC

TO
TO
TO

MJB

TCC

TO
MJB

MJB

8

t

t

t

t

t

t

t

*
t

* 21

21

30
0

0

0

51

14

15

35

I4

16

42

58

55

56

t

t

t

*
*
t

t

t

t

*
t

t

ng. 3. softwars stetus rsport--etep 010

197

STEF': NUMBER AND NAME OF THE STEP

DESCRIPTION:
DESCRIPTION OL- THE SVSTEM FUNCTIONS AND CAPABILITIES IMPLEMENTED IN THIS STEP AND A CONCISE S u y U A R l u T w m
OF THE DEMONSfRATIONS TO BE TESTED' (IlP TO 3 LINES)

INTENT:
EXPLANATORY INFORMATION THAT IS USEFUL IN INTERPRETATlON AND COYPREHENSION OF THE SfEP. (UP fo 5 -1

SOURCE.
AUTHOR:
DUE DATE:
COORDINATOR:
STATUS. DATE N P E
DSGN RVU

REFERENCE TO THE REQUIREMENTS MET BY THIS S W .
ORIGINATOR OF THIS STEP INPUT.
DATE WHEN THE STEP WILL BE COMPLETED AND READY FOR ACCEPTANCE.
COORDINATOR OF THE IMPLEMENTATION OF THE STEP AT THE DETAIL LEVEL.

DESIGN REVIFW DATE
TEST STATUS DATE

N P E OF REVIEW (TEAM. CDE O R PROC)

N P E OF TES71NG (CHECKOUT OR ACCEPTED)
(IF TYPF IS BLANK. DATE IS PLANNED DA IF)
(ELSE DATE IS ACTUAL DATE)

ANOMALIES. NUMBFR 01: OUTSTANDING ANOMALIES
NOTFS

NOTFS NHICH WOULD BF HFLPFUL IN EXPLAINING TIiE STEP AND ITS IHPLEMEhTATION. (UP TO 5 LINES)

THF SEGMENT COLUMNS ARE AS FOLLOWS:
STEP NO - STEP NUHGER
SECMFNTS SI..CMEhT NAMFS
DESCRIPTION - SECMFNT DESCRIPTION

C'L CLASSIFICATIOY CODE (I-IMPLEMENT, S-STUB. U-UNDEFINED)
DESIGN DATE - PLANNED DATT O F DFSIGN COMPLETION

DESIGN PERSON - INITIALS 01: PERSON RESPONSIBLE FOR THE SEGMENTS DESIGN
DFSIGN ST
CODE DATF
CODF PFRSUN
CODE ST

QA
CMP
LINFS

DESIGN STATUS (* IF COMPLETED)
PL 4NNED DATE OF CODE COMPLETION

- INITIALS O F PERSON RFSPONSIBLE FOR CODING OF THE SEGMENT

CODE STATUS (* IF COMPLETFD OR IF REJECTED)
QA STATUS CODF (* IF ACTEPTFD)
COMPILATION COUF (* FOR CLEAN COMPILF)
NUMBFR 01: L!NES IN ACCICPTED StGMENT

sl f .P
NUN SfEP NAME C UNIQ CUY D E S N CODE CMP Tfsf ACm DAm WE LMES

-
ICdtLLirc Command Tulr 16 16 0 0 0 0 0 0

(;mcnw Commrpd Fdc 9 25 0 0 0 0 0 0

Ahxpt & CbaA lamnw Blucb I? 31 0 0 0 0 0 0

pmw Cuntrul d status Blo& 8 4s 0 0 0 0 0 0

P t~ F n n t t h - k 9 54 0 0 0 0 0 0
Transmit Blur* IO ('PA IZ 66 0 0 0 0 0 0

16 82 0 0 0 0 0

M 0 0 0 F 0

f 91 0 0 0 0

*
0

0

0

199

I .

