54/ " N8 32548

TDA Progress Report 42-70

May and June 1982

Top Down Implementation Plan for System
Performance Test Software

G. N. Jacobson and A. Spinak
Operations Sustaining Engingering Section

This article describes the Top Down Implementation Plan used by the Operations Sus-
taining Engineering Section for the development of System Performance Test software
during the Mark IV-A era. The plan is based upon the identification of the hierarchical
relationship of the individual elements of the software design, the development of a
sequence of functionally oriented demonstrable steps, the allocation of subroutines to
the specific step where they are first required, and objective status reporting. The results
are meaningful determination of milestones, improved managerial visibility, better project
control, and ultimately a successful software development.

I. Introduction

The Mark IV-A era represents significant changes in the
operating environment and the hardware configuration within
the DSN. System Performance Test (SPT) software will be
needed to test and verify the operational integrity of the DSN
during the Mark IV-A implementation,

The SPT software package being developed by the Opera-
tions Sustaining Engineering Section will consist of a test exec-
utive and a set of seven applications tasks. Basically, the exec-
utive distributes input data to the applications, provides
resource allocation services, and performs common processing

functions such as dumping, display generation, and test proce-

dure reading. The application tasks are each designed to test a
particular system. Tracking, Telemetry, Command, Monitor
and Control, Very Long Baseline Interferometry, Radio
Science, and Frequency and Timing will all be supported by
SPT software for the Mark IV-A cc.ifiguration.

The SPT software will reside in the System Performance
Test Assembly (SPTA). The SPTA, which also serves as the

190

backup Complex Monitor and Control (CMC) computer, will
be a Modcomp Classic 73845. The operating system will be a
mc dified version of the MAX IV Operating System supplied
by the computer manufacturer.

The software development effort for the Mark IV-A Proj-
ect, summarized above, represents the largest project under-
taken by the SPT Software Support Group. To achieve the
technical, budgetary, and scheduling goals of the project, a
top down implementation plan has been created that always
develops and maintains the SPT system in a continually
cycling, demonstrable fashion. It is the intent of this paper to
describe the history, justification, and components of the SPT
implementation plan.

Il. Background

The success of large software development efforts has
improved throughout the industry. These improvements are
largely attributable to the application of a technological wave
of new approaches that have been loosely referred to as



structured programming. More explicitly. the new technologies
include replacement of flowcharts via usage of design lan-
guages, elimination of the GOTO by confinement to a small
complete set of logical constructs, increased emphasis and
formalization of the role of the programnii'ig support librar-
ian, increased emphasis on reviews via usage of either struc-
tured walk-throughs or inspection teams, and a reorganization
of programming personnel into the chief programmer team
formation. Unfortunately, despite the considerable progress
that has becn made. many projects still fail to meet their
schedule, have cost overruns, and the end product never
quite operates as reliably as intended. In any event, even for
supposedly successful projects, the cost of software is still
too high.

A majc. reason for these continuing software difficulties
and continued high costs, despite advances in technique, is
that the impact of the aforementioned technical advances
is limited when constrained by the effects of traditional
management techniques. All of the previously mentioned
structured progremming techniques deal with the program-
mer and jprogramming. None deal directly with the issues
of planning and managing a large-scale software development.
The industry is generally using the same planning and man-
aging approaches it has always used, and these have fre-
quently proven to be unsuccessful. The result is that the
manager continues to have little visibility and little effective
control over the developing system. If the manager had a
mechanisn: that permitted him to arrive at a meaningful
implementation plan; permitted him to objectively assess
the project’s status as it developed: provided him clear visi-
bility of the development activity; considered cost. schedule,
manpower and the chosen design, then the manager would
be in a position to truly manage the project and lead it to
a successful conclusion at minimal cost.

The SPT top down implementation plan fills this gap. The
SPT plan is to management what structured programming is
to the programmer. As with structured programming, which is
complemented by the SPT plan. the SPT plan improves visibil-
ity, meaningfulness and orderliness. It allows the manager to
start the project off on the right path. closely monitor the
software development as it progresses, and ultimately to bring
the project to the desired successful conclusion.

. Implementation Plan Selection Criteria

The top down method appears to have been first espoused
by Dr. H. D. Mills of IBM. Though this discussion. and other
discussions in the computing literature, advocated top down

implementation, little advice was presented on how to plan a
top down implementation. Stating that a computer program
should be .mplemented in a top down sequence is insufficient
for a large software development. Due to the complexity of
its hierarchical structure, literally thousands of top down
implementation sequences may be possible. Thus, selecting
the proper top down implementation sequence becomes a
very significant issue.

For example, one could implement all the subroutines at
a particular level for the entire system, followed by all the
subroutines at the next level across the system, and so on,
until finally the bottom level subsroutines are implemented.
There are those in the industry who advocate this sequence.
This would be top down, but in our opinion, represents an
inferior implementation sequence. This is because bottom level
subroutines usually are required to provide a demonstration of
a complete operational .ystem function. Thus, for most of the
system’s development, very few operational functions would
be demwunstrable. However -arly functional demonstrability is
on¢ of the main benefits .hat should be achieved from top
down implementation. Alternatively, many top down se-
quences might conflict with expected equipment delivery
dates.

Thus, selecting the most appropriate top down implementa-
tion sequence is an important issue. The SPT plan is using a
comprehensive methodology which has been developed for
creating and maintaining an optimal top down implementa-
tion plan. This technique provides broad benefits to the
ensuing software development.

IV. Top Down Concepts

Top down design refers to a method of designing a compu-
ter program wherein higher level or calling segments are
designed before lower level or called segments. This does not
mean that all segments at one level must be designed, or
named, before creating the design, or name, of any segments
at the next level. 1t means that if one were to consider the
system’s subroutine hierarchy as a treelike structure, then
along each branch of the tree. subroutines are defined and
chosen for design, starting from the top of the hierarchy and
working down.

Top down implementation refers to the development of a
computer program n a downward hierarchical sequence along
each branch of the program’s subroutine hierarchy. Design,
documentation, coding, integration and testing usually are

191



concurrently performed on different portions of the develop-
ing system. In a top down sequence, these are performed alung
each branch simultaneo.. .y under development.

V. Preparation of the SPT Top Down
implementation Plan

A viable software implementation plan can only be pre-
pared after a sufficient quantity of system analysis activities
have occurred and before the detailed implementation has
begun. The plan is then used to launch the implementation
phase for a largescale software development. In operation,
the SPT approach is based upon the utilization and interplay
of three documents. They are the Subroutine Hierarchy, the
Network of Demonstratle Functions (NDF), and the Software
Status Report.

In a nutshell, the Subroutine Hierarchy represents a design
abstract for the computer software. The Network of Dumon-
strable Functions represents a functional abstract of the opera-
tionai system. The Softwaie Status Report relates the software
design to the NDF system functions for the purpose of sched-
uling the scftware and maintaining the status of software
development. The main point of this nutshell description is
that attentive prcparation of these documents results n a
meaningful schedule that allows management to have real
visibility in areas such as the software’s true status, cost to
completion, and time to completion.

VI. Subroutine Hierarchy

The Subroutine Hierarchy 1s a high-level representation of
the structure of the hierarchical design of the computer pro-
gram. It readily conveys a high-level unage of the design being
represented, showing all of the parts constituting the design,
their hierarchical relationship to cach other, their categories
and, to a degree. their functions. All of the segments must
represent  small subroutines, perhaps averaging 25 to 50
lugher-order language statements.

The Subroutine Hierarchy cvolves as the design and the
software evolve. Imtialy, when the implementation plan is
first prepared, the Subrouune Hierarchy represents the inten-
ded design structure of the computer program. At completion
of the software development, it represents the actual structure
ot the computer program At all intermediate stages. it 1s hept
current and represents the current, projected scructure of the
program.

For a large computer program, with perhaps vne thousand

or more subroutines, the subroutines may be treated n a
statistical manner for the purposes of making estimates,

192

schedules and plans This is one of the principles of the SPT
approach. Namely, by partitioning a large computer program
into its elemental pieces (subroutines), the effects of isolated
misjudgement (e.g., size or complexity) relative to any indi-
vidual subroutine tend to average out over the total program
development, and do not affect the overall outcome. The
effect of frequent misjudgement of the same characteristic of
many subroutines (e.g., development time) tends to become
quickly apparent and serves as a reliable indicator of develop-
ment trends and ultimate results (if not corrected).

The Subroutine Hierarchy enables the software designers to
conveniently conceptualize about the program and its parts,
and to visualize the hierarchical organization of the program.
It communicates in an overall conceptual manner the struc-
ture of the design. It is the essential design element, repre-
senting the cumponents of the program’s design for the pur-
pose of planning and tracking the implementation of that
design. It thus becomes the primary determinant in estimates
u; “ost and memory size for the computer program.

Figure 1 shows a portion of the subroutine hierarchy for
the SPT Project. Due to the large number of subroutines, the
hierarchical structure is represented in a horizontal rather
than vertical (or treelike) manner. Varying hierarchical levels
are represented by varying levels of indentation. The hierarchy
identifies both the symbolic name and dcscriptive name of
the subroutine. It identifies the particular step in the SPT
implementation plan where the subroutine will be fisst
required. (The next section will elaborate on the definition
of steps.) Only the first occurrence of a subroutine in the tree
is expanded to the bottom level. Subsequent occurrences of
any subroutine use a reference number to identify the line
number of the first occurrence. If the subroutine itself invokes
other subroutines, an asterisk is used to indicate the full
expanston can be found at that first occurrence.

VIl. Network of Demonstrable Functions

The structure of the software desigr and the identification
of the constituent subroutines have been described as part
of preparing the Subroutine Hierarchy. No discussion has yet
occurred relative to the development sequence of these sub-
routines, nor relative to the individual milestones that will be
scheduled and tracked during the development. This is where
the NDF comes mto play.

The NDF is that part of the SPT implementation plan that
identifies the individual increments, or steps, and the sequence
of development for those steps. The steps are scheduled.
developed, tracked, integrated, tested and eventually internally
accepted. In other words, on the surface it is a “*Pert-like net-
work.”™ Beneath the surface there are a number of aspects of



the NDF that must be explained before its value can be fully
grasped.

First of all, the NDF must be created by personnel that
have an in-depth functional understanding of the application,
its requirements, and the expected operational characteristics
of the system. The personnel assigned to the NDF task will
have acquired the necessary knowledge as a result of their
prior system analysis activities. If they do not have this know-
ledge, they must first acquire it before they can hope to create
a meaningful, detailed, functionally oriented plan of demon-
strable steps.

Secondly, the NDF steps are oriented towards functions
from the user’s standpoint, not from the programmer’s stand-
point. For example, “output directive/menu index” is a typi-
cal step. This is as opposed to “build test configuration table,”
which would occur internally within the computer and not
provide the user direct observation of the step having oc-
curred. On the other hand, a step such as “print test configur-
ation table” could be demonstrated to the user. Successful
demonstration of this would imply successtul consiruction
of the test configuration table.

This leads us into the third important aspect of the NDF.
To the maximum extent possible, steps of the NDF should be
readily demonstrable to an observer who is not a programmer.
Those few steps that are not readily demonstrable to such an
observer must, nevertheless, still be demonstrable. This demon-
strability 1s the only basis upon which an objective determina-
tion can be made as to the completion of the step.

The pnncpie of demonstrability leads us to a fourth
important aspect of the NDF. The development sequence of
demonstrable steps must correspond to a natural functional
sequence of increasing functional capability. To put it another
way, trom the user’s operational standpoint, it must be a
sequence which demonstrates “first things first.”

A fifth important aspect of the NDF s that the steps must
cach add on to an already cycling system. Each new step must
be directly integrated mto the cycling system, producing a
continuously increasing functional capability that is always
demonstrable. Steps required to demonstrate a new step must
be implemented and integrated prior to the integration of the
new step. In terms of subroutines, this means that for a partic-
ular step, those subroutines that are required tor invoking a
particuiar segment of that step must be implemented as part
of that step or as part of a prior step. In order words, the
design must be implemented 1n 4 top down sequence along
each branch of the subroutine hierarchy. Lower level sub-

routines that are not required for demonstration of the pariic:
ular step are to be left as stubs until a step requiring those
subroutines is undertaken.

One final uspect of importance is that the steps must fit
together to corprise functional paths of the system. In
actuality, to create the NDF, the functional paths are defined
first, and the paths are then broken down into a sequence of
steps. Each path corresponds to a relatively independent (but
not necessarily totally independent) major function of the
operational system.

As ar example, the Telemetry Path of the SPT NDF is
shown in Fig. 2. The Telemetry Path itself consists of a main
path, a long loop path, and an Automatic Total Recall Sub-
system (ATRS) path. For ease of reference, each step is given a
number, preceded by a path identifier. Increments of 10 are
used to allow insertion of additional steps, should this prove
necessary because of changing requirements or priorities.
Dashed lines between paths imply dependencies; with respect
to Fig. 2, implementation of the ATRS path is dependent
upon completion of the capability to accept directives.

Vill. Software Status Report

The Software Status Report ties the Subroutine Hierarchy
and the NDF together by relating the design elements to the
demonstrable steps. This is the fundamental point from which
the value of the Software Status Report, and even the SPT
Implementation methodology, is derived. The Software Status
Report meaningfully relates the design to demonstrable
functions and the corresponding schedules.

In concept, the document is very simple. For cach step
from the NDF, the corresponding required subroutines from
the hierarchy are listed. Each subroutine is allocated to a
single step, the first step from the NDF that requires the par-
ticular subroutine. Consequently, the subroutines listed under
a particular step arc just those subroutines still required for
demonstration of the particular step’s function. Other sub-
routines may also be required for the step. but they would
not be listed with the step if some prior step already required
the subroutines. For status tracking purposes, columns are
provided where design, code, documentation. test size and
other status fields can be checked off for each subroutine.
These ficlds will be recorded as complete or will contain the
date set for completion. No atiempt is made to allow per-
centage estimates of completion by the programmer. Statisti-
cal data provided in the Software Status Report is based on
treatment of individual segments as statistical equivalents.
In addition, the Software Status Report includes a description
of each step, i.e.. the function that 1s being demonstrated by

193



the particular step. The report also identifies the qualifications
or limitations, if any, that apply to the step’s demonstration
and the requirements that the step fulfills.

Whereas in concept the Software Status Repor* is very
straightforward, creation .. the report requires a thorough
functional understanding of the system and of the corres-
ponding design as represented by the Subroutine Hierarchy.
Only with such knowledge as a base could the programming
staff hope to allocate specific subroutines to each NDF step.

Thus, the Software Status Report contains all of the
steps from the NDF and all of the assigned subroutines from
the hierarchy, along with the development status for each sub-
routine and step. With automated support, highly objective
status reports are easily generated from this data base. Tech-
nical and administrative management are provided accurate
visibility into the status of the total software development.

Figure 3 shows the Software Status Report for a typical
step from the SPT Implementation Plan. Fig. 4 provides a
brief description of each of the fields on the report. Fig. S
contains a Managemert Summary for one of the paths on
the SPT NDF.

IX. Summary

The SPT approach to top down implementation planning
is based on certain premises. One of these premises is that by
minimizing or eliminating large unknowns, management has
the best chance of accomplishing the project’s goals. If there
is some large functional area for which management has little
basis, other than someone’s intuition, for expecting the imple-
mentation to take say six months, with a particular size staff,
as opposed to say three years, then the project is i a precari-
ous position. A large nebulous function which has only been
quantified at its towal level by intuition, even though bazed on
experience, is a dangerous unknown. The obvious way to get
better control of u big unknown is by reducing it to many
small pieces, some of which may be small unknowns. To put
it in other terms, analyzing the task and breaking it down into
many smaller pieces eliminates the risk of the large unknowns.
There may still be some unknowns or surprises, but the poten-
tial absolute effect of a misjudgement relative to a small task
is going to be inherently smaller than for a misjudgement
associatey with the much larger original task. An important
additional aspect is that in the process of decomposing the

194

uriginal function, understanding occurs, and for the most part,
comprehension replaces intuition.

Also, by decomposing a system into a large number of
small pieces, a point is reached where the individual pieces can
be *reated for planning purposes as statistically equivalent. At
the management level, the differences in size or complexity of
individual small subroutines is of minimal importance. As sub-
routines are implemented, actual data should be used to up-
date the estimated statistical characteristics of the average sub-
routine. For example, suppose an original memory allocation
of 128K is made for 2000 subroutines. This averages 64 mem-
ory cells per subroutine. Suppose, after 200 subroutines have
been implemented, 15000 cells have been used. This would
show an actual average of 75 cells per subroutine with the
trend total being 150K for all 2000 subroutines. Thus, with
only 10% of the segments implemented, a reliable danger
signal hes been raised, and the signal includes the magnitude
of the forecasted overrun. With such an early warning, manage-
ment still has time to take some appropriate effective action
to act upon the issue before it becomes an actual problen.

The key basis for planning and tracking the implementation
is assigning the impleme~ ation of each subroutine to a single
step. This is where it al! omes together. But it must be done
with a great deal of care and precision. The correlation be-
tween the Subroutine Hierarchy and the Software Status
Report must be accurate. When design or plan changes occur,
and they will, changes must be made to both documents.
Both of these documents should be looked upon as evolving
documents, but they must evolve concurrently and in parallel.

Why does this “single step” premise form the basis to the
SPT approach to implementation planning? Because every-
thing is accounted for. Each subroutine appears for implemen-
tation on only one step — the Jrst step that requires the sub-
routine. The effort required for e:xch step can be considered
to be a function of the number of subroutines in the step. The
programming implementation budget can be sprvad over the
steps in pronortion to the number of segments in each step.
Then, if you are on schedule, you are on budget. Subroutines
don’t appear redundantly (on more than one step) to confuse
the bookkeeping, Fverything balances and all subroutines are
able to be tracked. A full decomposition of the system into
subroutines and a careful and complete assignment of those
subroutines to a series of well-defined, demonstrable steps is
of fundamental importance to successful usage of the SPT
methodology.



- "4“05”(;"‘;‘“5 o o DESCRIPTIVE NAME ‘;;:l;“glf IﬁISS Rﬁgf"‘
CSTMAC ACTIVE MODE PREDICTOR 090 287
CDBCOM DOUBLE INTEGER COMPARE 288 )
CSHDGB HSD BIT ACQUIRE 289 ;
CDBADD DOUBLE INTEGER ADD 290
. . . . CSTMEV EVENT PREDICTOR 50 291
. . . . . CDBADD DOUBLE INTEGER ADD 292 m
. . . . . CSHDGB HSD BIT ACQUIRE 293 195
CDBSUB DOUBLE INTEGER SUBTRACT 294 284
. . . CDBCOM DOUBLE IMTEGER COMPARE 295 197
CSRCRP RECALL QUEUE RESPONSE PROC. 090 296
CSCHEK STATUS CHECK 297 258+
CSSUPD SUSPEND RESPONSE PROC. ci3e 298
CSTMSU MODEL RE-ADJUST C130 299
CDBCOM DOUBLE INTEGER COMPARE 300 197
CDBADD DOUBLE INTEGER ADD 301 277
CDBSUB DOYBLE INTEGER SUBTRACT 302 284
CSCCLO CONTROL CENTER RESPONSE PROC. 60 303
CSIIDGB HSD BIT ACQUIRE 104 195
CSCHUK STATUS CHECK 305 258+
CSMOUP MODE CHANGE RESPONSE PROC. C100 306
CS"10GB HSD BIT ACQUIRE 307 195
CHXASC HEX TO ASCII CONV. 108 17
GEFMSG DISPLAY EVENT MESSAGE 309 3
CSCHEK STATUS CHECK 310 258%
. CSTIRM RADIATION TIME TEST a1 281
CSTWOV WINDOW OVERRIDE RESPONSE PROC. C120 312

Fig. 1. Sutroutine Hierarchy

195



196

LN '?'Q,
v, %’
~
@,

LONG LOOP PATH

¥030

"0

/010

ORIGINAL PAGE IS
OF POOR QUALITY

\A')
a"f
e O
1%

i?"o
% i,
"\ "’% s
2
%, ]
N g
%,
’«% ® O
%‘ 2
’3‘%’ %{‘
S
¢' =
2
{',‘%
S, s
¢/
L)
ﬁ’tp
4%
%,%
E) ",
AN %as L
A Y N -
PANALS
({“; N N {%zb -
W\
>
%
o, %b, R
%, z
“
%
5, ",
J’*h, ¥
£
‘4,
'q,b » £
8, 5
‘ %
£ {(
" »,
l'( /’;4 ‘:(
%,a,, . ‘52"4
%r’r ){“"4
v %" b‘b . QJ *»
I = £ Yo7 v
5 ] %,
&7, &,
o, s
» ")_,ér‘} 5, f"&j’,
LY Y
'(b‘q' ‘.f:’/
e, W
J'%'o" 2 “
iy =
)(":b’«'» 7
o s ,
w2 %q?o . ,
we, Q2 ,
‘.
» " ’
4%,
5% L
T, ‘?>J g , ’
-.)‘)’ ‘:1 , Vs
‘.', V4
5 » «
. =
* ol
-
J.
r,

4020 ua¥

010

ATRS PATM

T WAOR 0EXO POINT

O "o ™

Fig.-2. Network of demonstirable functions—tslemstry path



STEP' 010 Transfer Operatos Entry to SYMBIONT
DESCRIPTION:
This step provides an operator entered directive to the Symbiont.

INTENT:

This step demonstrates that an operator entered directive is
placed in an SSB and entered in the Symbiont Queue. This step
simulates the eventual LMC, LAN Handler, FIDM to Symbiont
interface. This also provides a basic buffer and quene manage-

ment mechanism.
SOURCE:
AUTHOR: A. Spinak
DUFE DATE: 03/02/82
CUORDINATOR: T.GREER
STATUS: DATE
DSGN RVU: 02/09/82
TEST: 03/11/82
ANOMALIES: 0
NOTES:

TYPE
TEAM
ACCEPTED

Most or all of this step’s software is in the nature of a tempo-
rary workaround or Environmental Interface Module (EIM). To
prove, the SSB and the Symbiont Queue should be checked.
No queue boundary conditions will be demonstrated.

DESIGN

CODE

SEGMENTS DESCRIPTION CL DATE PERSON ST DATE PERSON ST QA CMP  LINES
SIOiNP OPERATOR 2 SPT SIMULATION | 02/01/82 MJB * n2/11/82 MJB * * 21
SIOPOM PARSE OPERATOR MLSSAGE 1 02/02/82 MJB * 02/11/82 MJB * * 21
SIOPAK PACK CD SSB I 02/03/82 T0 . 02/11/82 TO * * 30
S10CBB LOAD TEST COMM BUFF BLOCK  §

SIOSSB LOAD TEST SSB BLOCK S

SICLNK CHANGL LINK ID S 0
ORQLENQ PLACE NODL ON QUEUE I 02/02/82 TCG * 02/16/82 MJB . . s1
ORQINI INIT FREE Q NODL POOL 1 02/05/82 TCG * 02/16/82 TCG * * 14
OoPOPQU POP I'REL QUFUE NODE ! 02/05/82 MiB ¢ 02/16/82 TO * * 15
GBI QUE I/F TOQUEUE ENTRY | 02/02/82 TO * 02/12/82 TO * * 35
GOQINIT {/ TO INIT QUFULS | 02/04/82 TO * 02/12/82 TO * * 14
~SHOU PUSH | REF QUEUE NODE | 02/05/82 MJB * 02/12/82 MJB * * 16
SPINIT SPT INITIALIZATION 1 02/10/82 TCG ¢ 02/15/82 TCG * * 42
GBINIT I/1 TOINITIALIZE BUT'E ERS | 02/22/82 MJB * 03/05/82 TO * * 58
GBPOOL I/t TORFLEASE BUIFER I 02/22/82 MJB * 03/05/82 MJB * * 55
GFTBUY I'T TUGET BUTTER I 02/22/82 MIB * 03/05/82 MJB * * 56

Fig. 3. Software status report-——step 010

197



STEP: NUMBER AND NAME OF THE STEP
DESCRIPTION:

DESCRIPTION O THE SYSTEM FUNCTIONS AND CAPABILITIES IMPLEMENTED IN THIS STEP AND A CONCISE SUMMARIZATION
OF THE DEMONSTRATIONS TO BE TESTED' (1P TO 3 LINES)

INTENT:
EXPLANATORY INFORMATION THAT IS USEFUL IN INTERPRETATION AND COMPREHENSION OF THE STEP. (UP TO § LINES)
SOURCE. REFERENCE TO THE REQUIREMENTS MET BY THIS STEP.
AUTHOR: ORIGINATOR OF THIS STEP INPUT.
DUE DATE: DATE WHEN THE STEP WILL BE COMPLETED AND READY FOR ACCEPTANCE.
COORDINATOR: COORDINATOR OF THE IMPLEMENTATION OF THE STEP AT THE DETAIL LEVEL.
STATUS: DATE TYPE
DSGN RVU DESIGN REVIEW DATE TYPE OF REVIEW (TEAM. CDE OR PROG)
TEST STATUS DATE TYPE OF TESTING (CHECKOUT OR ACCEPTED)
(IF TYPE IS BLANK, DATE IS PLANNED DA (E)
(ELSE DATE IS ACTUAL DATE)
ANOMALIES. NUMBER OF OUTSTANDING ANOMALIES
NOTFS

NOTFS WHICH WOULD BF HFLPFUL IN EXPLAINING THE STEP AND ITS IMPLEMENTATION. (UP TO 5§ LINES)

THF SEGMENT COLUMNS ARE AS FOLLOWS:

STEP NO - STEP NUMBER

SEGMFNTS SEGMENT NAMES

DESCRIPTION - SEGMENT DESCRIPTION

CL CLASSIFICATION CODE (I-IMPLEMENT, S-STUB, U-UNDEFINED)
DESIGN DATE - PLANNED DATY OF DESIGN COMPLETION

DESIGN PERSON - INITIALS OF PERSON RESPONSIBLE FOR THE SEGMENT'S DESIGN
DFSIGN ST DESIGN STATUS (* IF COMPLETED)

CODE DATF PLANNED DATE OF CODE COMPLETION

CODF PFRSUN - INITIALS OF PERSON RESPONSIBLE FOR CODING OF THE SEGMENT
CODE ST CODE STATUS (* IF COMPLETED OR IF REJECTED)

QA QA STATUS CODF (* IF ACCEPTFD)

CMP COMPILATION CODF (* FOR CLEAN COMPILF)

LINFS NUMBFR OF LINES IN ACCEPTED SEGMENT

Fig. 4. Software status report description

198



PAGE 1S
ORIGINAL QUALITY

Of POOR

on STEP NAME UNIQ CUM DESGN CODE CMP TEST ACEPT LINES
(1} initialize Command Task 16 16 0 0 1] 0 ([ 1]
o2 Generate Command File 9 25 0 0 0 0 0 0
Co3 Acvept & Check Incoming Block 12 37 ( 0 0 0 (U 0
(1) Provess Coatrol & Status Block 8 45 o 0 0 0 0 0
0s P <33 Fvent Block 9 54 0 0 (4] ] 0 0
o6 Transmut Block to CPA 12 66 Q¢ [ (1} 0 0 1]
€07 Transmut Fue to CPA 16 82 0 ) 0 0 ) )
o8 Revall | e Duectory 2 34 ] 0 0 (U 0 0
9 Attach Fide to Queue 7 9 [\] 0 [\] [U 0
1o Inutsate Command Radiation 2 93 [ 0 0 0 0 0
Ccit Modify Standards-and-Lamits Table 18 11 [\] 0 0 0 0 0
12 Transmut Additional Directives 15 126 0 0 0 0 0 (1}
c13 Suspend  Abort, Resume Radition 9 138 0 0 0 0 0 0
Cle Verfy Command Bits i1 140 0 (1] 0 0 [\] (1]
TOTALS 146 146 0 0 0 1] 0 0
PERCENTS 100 0 0 0 0 0 0
PROJIECTION

Fig. 5. Software status report ManagemMent SuMmary



