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TURBULENT SOLUTION OF THE NAVIEF—STOKES EQUATIONS

FOR UNIFORM SHEAR FLOW

R. G. Deissler

National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

To study the nonlinear physics of uniform turbulent shear flow, the unav-

eraged Navier—Stokes equations are solved numerically. This extends our pre—

o	 vious work in which mean gradients were absent. For initial conditions, modi-N
w	 fied three—dimensional—cosine velocity fluctuations are used. The boundary

conditions are modified periodic conditions on a stationary three—dimensional

numerical grid. A uniform mean shear is superimposed on the initial and boun-

dary conditions. The three components of the mean—square velocity fluctua-

tions are initially equal for the conditions chosen. As in the case of no

shear the initially nonranoom, flow develops into an apparently random turbu-

lence at higher Reynolds number. Thus, randomness or turbulence can appar-

ently arise as a consequence of the structure of the Navier—Stokes equations.

Except, for an `,nitial period of aujustment, all fluctuating components grow

with time. The initial equality of the three intensity components is de-

stroyed by the shear, the transverse components becoming smaller than the

longitudinal one, in agreement with experiment. Also, the shear creates a

small—scale structure ii-, the turbulence. 	 Fne nonlinear solutions are compareo

witn linearizea ones.



INTRODUCTION

This is an extension of our work in which the development of isotropic

turbulence was examined numerically. I In that work the nonlinear transfer

of energy to smaller scales of motion and turbulent dissipation were studied.

Another important process is the production of turbulence by a mean

shear. Most turbulent flows, both those occurring in nature and those which

are manmade, are in fact shear flows, where the turbulence is proauced and

maintained by the shear. because of the added complexity, the nonlinear prob-

lem of turbulent shear flow is even more difficult than that of isotropic tur-

bulence. So it is not surprising that little progress has been maae in ou-

twining an analytical solution from first principles. An attempt to obtain a

numerical solution would seem to ue in order.

Conceptually, the simplest turbulent snear flow (although certainly not

the simplest to produce experimentally`) is one in which the turbulence is

homogeneous and uniforml y sheared. At least two significant numerical studies

of that type of turbulence have recently been made. S ' g In both of those

studies random initial conditions with a range of eddy sizes were used.

In the spirit of Ket. 1, the present numerical study of uniformly-sheared

turoulence starts with simple determinate initial conditions which possess a

single length Scam.	 In this way we can study how tree turoulence develops

rrom nonturbulent initial conditions. Moreover much higher ReynoIuvalumUer

tiows can ue calcuiuted with a given numerical grin whan a single length scale

is initially present, at least for early and moderate tidies. 	 Some results

using a perturbation series were outaineu in refs. S and e, but the calcula-

tions cuu ld not be cdrrieu very tar in time. Moreover the components of the

i n i tl a l i nt rns i ( 1 e4 were not oqua l , as t nWV are tied'.



As will be seen, several interesting results which could not be obtained

in the previous work on turbulent shear flow are obtained in the present

study. One of the sigrliticant findings is that toe structure of toe turbu-

lence produced in the presence of :i strong shear is much finer than that pro-

duced in its absence.

THE	 _NEAh PROBLEM

As 
III
	 1, the Navier-Stokes and ;-untinuity equations for an incompres-

siole fluid are written in dimensionless form as

au i 	a(uiux)	 a p	 a u 
+	 (1)

at = - --ax h - - ax l	a x 
k 

a x k

and

au.

K = U
rt	

,	 (2)

h

where

X	 x

P= ^^ ; P	 t. _ V t	 a n a x = 1U i	 `— U 1	
1	 x'

V `	
x0

Note toaL. tile Stirs Orl	 quantities are OlilltteU tor' COrrespolloing

,jimens1unIe5s giJalititIes, 	 ine subscripts Can take on the values 1, L, ano 3,

31 IC a rE'pt'at(',: sot)s(:r'lpt 111 a t.t'rill 1tUICateS d SUlllllldtl Of) , 	 The quail tlty

t
U	 1S arl 11lStr_ilitan000S 4t'1OLItV t - 011lpollent,	 X i	 1S a SpdC	 1ndtt',	 x

i
x

,I 	 !enytll,	 t	 is the tin g e,	 0	 iS the density,	 v	 is the

hinellidtl	 1	 ly, 6114	 p	 15 tihe 111StdntarleOUS pressure,	 Di Orcer i.0

o[ltdlrl col	 Ct!;Jdtltlfl for tllfl plt'SSUrC, we tdKt' l Ulu ulver'CJeflke of

dn,; .1,) ►llv tnt , continuity f_g. ^^') t^^ yet

i



^_ L k

axs axi  ax^'

2— 	a2(u u )	

(3)

In the remainder of the analysis it will be found convenient to use the set of

•	 Eqs. (1) and (3), rather than Eqs. (1) and (2).

The expression assumed for the initial disturbance is, in dimensionless

form

dU
u i=

	

	 a^ cos ^n• ^C + a il	 x2	 (4)
n=

where

r. 0 *n 9 zn	 4*n,
a i = v ai	 = x0

and

Ui 
vG 

Ui

The quantity a^ n is an initial velocity amplitude or Fourier coefficient

of the disturbance, ^*n is an initial wave number vector, U i * is a mean

velocity component, and a ij is the Kronecker delta (equals 1 for i = j and

*	 *n *	 n
0 for i 4 j). The quantities qn• x are dot products (q • x = ql xl

+
	

X2 + q3 x
3 ). Equation (4) reduces to the initial condition in Ref. 1

for dUl /dx2 = 0 (no shear). In order to satisfy the continuity condition,

Eq. (2).

angn = 0.	 (5)

For the present work, as in Ref. 1, we set
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ai = k(2, 1, 1), ai = k(1, 2, 1), ai = k (1, 1, 2)9

qi 	 qi	 (1, -1, 1), and qi	 (1, 1, -1)9

where k is a quantity that fixes the Reynolds number. In addition to satis-

fying continuity, Eqs. (6) give

1 " 2	 3	 0

at the initial time, where u i = u  - 6i1 U 1 and the overbars indicate

averaged values. Thus, Eqs. (4) and (6) give a particularly simple initial

condition, in that we need be concerned with only one component of the mean-

square velocity. Note that it is necessary to have at least three terms in

the summation in Eq. (4) to satisfy Eq. (7).

In order to carry out the numerical solution of Eqs. (1) and (3) subject

to initial conditions (4) and (6), we use a stationary cubical grid with a

maximum of 323 points and with faces at x i = 0 and 2x. For boundary

conditions we assume modified periodicity. That is, we let

(ui)x^ 2w+bj - (ui)xj bj + 6i1 6 j2 2w dU 1 /dx2	(8)

and

W x j= 2e+bj = W x
j
= b 
	 (9)

for any bj . Note that Eq. (8) is not a tensor equation. It is the usual

periodicity condition, but with a superimposed mean shear, and is consistent

with the initial condition given by Eq. (4). Equation (8) is used to calcu-

late numerical derivatives at the boundaries.
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The spacial- and time-differencing schemes are essentially those used by

Clark et al. 7 and in Ref. 1. That is, for the spacial derivatives in

Eqs. (1) and (3) we use centered fourth-order difference expressions. $ For

time-differencing we use a predictor-corrector method with a second-order

(leap-frog) predictor and a third-order (Adams-Moulton) corrector. 9 The

Poisson equation for the pressure (Eq. (3)) is solved directly (no iteration)

by a fast Fourier-transform method. This method preserves continuity quite

well (v- u . 0) .

Some of the results will be extrapolated to zero mesh size in an Effort to

obtain more accuracy. The method of fourth-order extrapolation in Ref. 1,

winch is consistent with fourth-order differencing, is used here. However to

increase the accuracy, more of the grid-point spacings are chosen close to

zero: 3"2 3 , 24 3 , and 16 3 grid points, rather than the 32 3 , 16 3 , and 8 3 points

in Ref. 1 are used. Equation (10) in Ref. 1 must then be replaced by

t c 3 1.6814 t  - 0.7182 t 2 + 0.0368 t 3 ,	 (10)

where t1, t2, and t3 are respectively values of t calculated for

32 3 , 243 , and 16 grid points at a fixed ui, and t 	 is corrected value

of t at that ^
i.

In order to study the processes occurring in sheared turbulence, it is

convenient to break the instantaneous velocities and pressures in Eqs. (1) and

(3) into mean and fluctuating components; thus, set u i = U i + u  and p

= P + p. Then, if averages are taken, and the averaged equations are sub-

tracted from the unaveraged ones, we get, for uniformly-sheared homogeneous

fluctuations

a u 
i
	 dUl	 dUl	 a u i _

	 a	 _ a	
a 

2 
u i

at - -a il dx 2 u 2	 dx2 x 2 ax l	axk (uiuk)	 2x; + ax k axe	 ( 11)

b



and

2 	 dU au - a 2 ( u u )
ax ax	

-Z 
dx, ax 2 	ax axe	 112)

k	 k	 2	 1	 k	 t

For Eqs. (11) and (12) the initial and boundary conditions given by Eqs. (4),

(8), and (9) become

ui tn=

a^ cos 4 n• 1,	 (13)

(ui)xj=2w+bi = ( u i ) x= bJ .	 (14)

and

(P)x .=2n+b . = (P)x .	 (15)

J	 J	 J

for any bi.

From Eqs. (11) and (12) written at a point P and similar equations writ-

ten at a point P', we can construct the following two-point correlation equa-

tions for uniformly-sheared homogeneous fluctuations 10:

dU	 dU	 dUa	 . —LIT = b.	 1 u u — 6.	 l u u - 1 r a u u r
at 1	 ^1 dx 2 2	 ^1 dx 2 i 2	 dx 2 2 arl

—6-
a	

_	 a 2 " j

- ax (u i ` k - u i u k^ ) + zr. Pu - ar. u p + 2 ar ar	 (16)k	 j	 t	 1

a 2 uu p	 dUl a û i 2 a 2 u^^ui
ar k ark	 2 Tx 

2
	 ar I	ark ari	 (17)
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and

a2 pu	 dU a — u a2 u uu^

arka k 2Tx2r 1 are ark

where the unprimed and primed quantities are measured at P and P',

respectively, and r i = x^ - x i . Equations (16) to (18) show that the two

point correlations for uniformly-sheared turbulence are functions only of

and not of t That is, the turbulence is homogeneous. That is not the case

for nonuniformly-sheared turbulence, for instance for U 1 proportional to

x2 instead of to x2.

A single-point correlation equation for u 
i 
u 
i 
can be written as

dU	 dU
a uu. _ - a 	 1 uu - .E	 1 u.0 - u. p - u aP

ii	 at i 1 ^ . 2	 ^1 ^ i 2	 3 ax,	 i ax k

a U.	 a u^

+ u j ax t ax  + u i ax i axt	 (19)

Equations (16) to (19) are useful for studying the processes occurring in uni-

formly-sheared turbulence.

THE LINEAk?ZED PROBLEM

Equations (11) and (12) are linearized by neglecting the terms

a(u i u k )/axk and a 2 (uk ut )/axk axL . The numerical solution, with initial and

periodic boundary conditions given by Eqs. (13) to (15), then proceeds as in

the nonlinear case.

We can obtain an analytical solution for unbounded linearized fluctuations

by using unbounded three-dimensional Fourier transforms as in Ref. 10. The

solution does not satisfy constant periodic boundary conditions. Instead of

working with the averaqed equatiois used in Ref. 10, it is instructive to work

(18)

3
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with the unaveraged ones, and use the initial condition given by Eq. (13),

instead of those in Ref. 10. In this case the Fourier transforms must be gen-

eralized functions (a series of delta functions), but the method of solution

is the same as that in Ref. 10. Since u2 is the velocity component which

is critical in maintaining the fluctuations against the aissipation,
11,12

 we

will, for brevity, calculate only that component. Equation (11) for u2

and Eq. (12), when linearized, are independent of u 	 and u 3 . The solu-

tion obtained by using the initial condition (13) is

3

u2=T UZ cos ( ^n . ^ - ag ntx 2)	 (20)

p =	 p  sin (4'4 - ag ntx 21	 (21)

n=1 	 //

where

7
n n'

	

U  =	
a 2	 exp -t (q n 2

 - agn g n t + 1 
a2 g n t2	

(22)

	

n	 ig2t + a2 q1t 2

	

q	 - 2ag 

2

	

n n n	 2	 2
Pn -	 -2aa2g1	

exp -t qn - agig2t + 1 a2 gi t 2	 (23)

) 
7'

(qn

	

2	 2
- 2aglg n t + a2gl t2

2	 2	 Z	 2

a = dU 1 /dx 2 , qn = q 	 + q2 + q3 ,a nd th e ai and qn are as given in the

initial conditions (Eqs. (13) and (6)). Mean values are obtained by

integrating over all space. For instance,

put	 7 P^,2.	 (24)
 :L

n=1

9
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It is clear from the form of Eqs. (20) and (21) that the solution does not

satisfy constant periodic boundary conditions. By omitting the term

-(dJ,/dx 2 )x 2 au i /ax 1 as well as the nonlinear terms in Eqs. (11) and (12), we

can, however, obtain a simple analytical solution which satisfies those

conditions:

3	
nn

q q	 2

u 2 -	 a2 exp t 2a	 - q 	 cos ^n• ^C,	 (25)

n=1	 q n

3
	n n	 n np = -	

2a 2 exp t 2a --7 - q n2	 sin ^ n

	

• ^C._E•^C.(26)
n	 n

n=1	 q	 q

This solution is useful for checking the numerical calculations and for study-

ing the effect of the term (dU 1 /dx 2 )x 2 au 2 /ax l on the fluctuations.

For discussing the linearized case for constant periodic boundary condi-

tions, it is convenient to convert Eqs. (11) and (12) to a spectral form by

taking their three-dimensional Fourier transforms. This gives, for u 2 , on

neglecting nonlinear terms,

n	 n	 n
aq	 22 _	 n	 1	 n 	 n + 2 + n	 n +	 Zag1K2"Z	 (27)
at	

ag1rK2 ^2(K1,K2 - KZ,K3) - q
1

	K2	
q 23 ^	

+	

272	
n	 2	 nu

K2	 q1 K2 + q3

where

	

/!' n 	
^• I

^2(K) _ - J
	 dx2
 ff uz(^`)e-iK dx 1 dx3

8n
(28)

10
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u n ( ) _	
g2(K)eiK 1 dK l dK 31	(28a)

k2:--W

333

2] n	 n	 (29)u 2 =	 u2' • 2 =	 •2'
n.-3	 n.-3

K is the waverumber vector, and 92 is the Fourier transform of u2.

Note that a finite transform is used in the x 2-direction in order to satisfy

periodic boundary conditions at x2 	 -r,w. The initial condition on

• 2 is given by

Ĉ 2 /	 7 a2 6	 n a \K1 - ql/ a CK3 - q3)
0	 K2 g2

where 6(x) is the Dirac delta function 	 6(K1 - g n)f(K 1 )dK l = f (qn

40	 1 ))

and 6 qr is again the Kronecker delta	 6	 n f(K 2 ) = f(q n .
K 2 g2	\\

RESULTS AND DISCUSSION

As mentioned earlier, the u 2 -component of the velocity fluctuation (in

the direction of the mean velocity gradient) is crucial in maintaining the

turbulence against the dissipation. 
11,12 

Therefore when, for brevity, only

one component of the velocity fluctuation is discussed, that component is

chosen as u2 . More will be said about the maintenance of the turbulence

later.	
1/2

	

Figure 1 shows the evolution of u2/ 
0	

at a tixed point in space for

a high Reynolds number, as calculated from the full nonlinear equations. 	 In

(30)

11



spite of the nonrandom initial conditions (Eqs. (13) and (6)), the velocity

fluctuations have the appearance of those for a random turbulence. The dashed
1/2

curves for u2 /uo	 are for initial conditions perturbed approximately

0.1 percent. The perturbed curves at first follow the unperturbed ones but

eventually depart sharply. Although the appearance of the curves in Figs. 1(a)

and in 1(b) differs considerably, the perturbed curves in the two figures take

about the same length of time to break away from the unperturbed ones. A very

small perturbation of initial conditions causes a large change in the values

of u2 except at small times. On the other hand the root-mean-square

values of the velocities change smoothly with time and are unaffected by the

perturbation of the inital conditions. These features are characteristic of

turbulence. (Although the root-mearr-square curve in Fig. 1(a) appears trot i-

zontal, it eventually goes smoothly to zero when extended.)

112

A striking feature of the curves for u21 0 in Fig. 1 is the small
scale structure exhibited for sheared turbulence (Fig. 1(b)) when compared with

the structure for no shear (Fig. 1(a)). This shear-related small-scale struc-

ture is produced by the term -(dUl/dx 2 )x 2 au i laxl in Eq. (11), from which

is obtained the term -(dU 1 /dx2 )r2 au i varl	in the correlation Eq. (16).

If we take the Fourier transform of that term we get the mean-gradient trans-

fer term in the spectral equation corresponding to Eq. (16). 10 Its effect

in transferring energy to small-scale components is similar to that if the

nonlinear transfer term (the Fourier transform of the triple-correlation term

in Eq. (16)). The production of the small-scale structure by the shear might

be thought of as due to a stretching of the random vortex lines in the turbu-

lence by the mean gradient.

12



Although we first discussed a mean-gradient transfer term in 1961, 10 the

present results give the first graphic demonstration of the ef'ectiveness of that

term in producing a small-scale structure in turbulence. ;Jince that is a linear

effect, we can study it either by the full nonlinear solutions already considered

in Fig. 1 (which contain linear as well as nonlinear effects), or by linearized

solutions. Velocity fluctuations obtained by the latter are plotted in Fig. 2

(Eq. (20)). The presence of small structure in the curves for dU 1 /dx2 = 4434,

and its absence in those for dU 1 /dx 2 = 0 are apparent. The curve for no

shear decays monotonically to zero when extended. This is in contrast to the

nonlinear case in Fig. 1(a) for no shear, where at least larger fluctuations

are present. The linearized curves for dU 1 /dx2 = 4434 in Fig. 2 follow

closely the nonlinear ones in Fig. 1(b) for small times. Likewise the linear-

ized curves in Fig. 2 for periodic boundary conditions follow closely those

for unbounded conditions for small times. For larger times the fluctuations

for unbounded conditions continue to decay, whereas those for constant peri-

odic boundary conditions grow. The development of structure in the curves for

unbounded conditions is produced by the term ag itx 2 in the argument

of the cosine in Eq. (20) (a = dU 1 /dx 2 ). This term arises from the term

-ax 2 au 2 /ax 1 in Eq. (11), as is evident from its absence in Eq. (25),

where the term - ax2 au2 /ax 1 has been neglected. For constant periodic

boundary conditions, small-scale structure in the fluctuations or the transfer

of energy hetween wave numbers is produced by the term containing the summation

over K2 in Eq. (27). That term is the Fourier transform of -ax2 8u2/3x,

in Eq. (11). From its form we see that it can produce a complicated inter-

wavenumber interaction. The quantity T2 at each K 2 interacts with 92

at every other allowable K 2 . Evidently a difference between the solutions

for unbounded conditions and those for constant periodic conditions is that

13



only fluctuations at integral values of K 2 are possible when periodic

conditions are imposed, whereas for unbounded conditions, fluctuations are

possible at all values of K2.

Although the linear term -ax2 au2 /ax1 is effective in producing

oscillations, even in the absence of nonlinear effects (Fig. 2), the curves

lack the random appearance of those in Fig. 1(b). Evidently the only way we

can have a linear turbulent solution is to put the turbulence in the initial

ccnditions, as in Ref. 10. Both -ax2 au 2 /ax I and the nonlinear terms

in Eq. (11) are necessary to produce the small-scale turbulence in Fig. 1(b)

from nonrandom initial conditions. The former acts like a chopper which chops

the flow into small-scale components. While the latter also do that, their

most visible effect here is to produce randomization. As in Ref. 1, the ran-

domization might occur as a result of the presence of strange attractors in

the flow, by proliferation of eddies or harmonic components (with the loss of

identity of the individual eddies), or by both (see kef. 1 for a discussion of

these possibilities).

According to Eq. (20), the manufacture of small-scale fluctuations takes

place only in the x 2- direction. Figure 3 shows how this has taken place

at a moderate time for a linearized case. A similar plot for the nonlinear

case is shown in Fig. 4. The randomizing e f fect of the nonlinear terms is

evident.	
112

Figure 5 shows ug/ 
0	

for the nonlinear case, plotted against x1,

rather than against x 2 as in Fig. 4. The curves show some development of

small-scale structure in the x I - direction due to the interaction of the

directional components in the nonlinear case. For the linearized flows devel-

opment of structure occurs only in the x2- direction.

14
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Cross-correlation coefficients u i u
j
/u	 (i 4 3) are plotted

against dimensionless time for the nonlinear case in Fig. 6. Although u

3 7 = 3 at t = 0, the initial cross correlations are not zero but are all
positive and equal. However because of the apparent randomization of the flow

u2 u3 and u1 u3 approach zero as time increases. On the other hand the values

of the turbulent shear stress u1 u2 change from positive to negative and

remain negative because of the dynamics of the imposed mean shear. The

presence of the mean velocity gradient dU 1 /dx 2 causes u 1 to be likely

negative when u 2 is positive, so that u02 , the correlation between the

two, is negative. The waviness in the curves in Fig. 6, as well as that in

some of the curves in later figures (e.g., Fig. 9), is probably caused by non-

random structure in the flow, possibly that produced by the linear term

-(dU l /dx2 )x2 au i /ax 1	 in Eq. (11) (Fig. 2).

The evolution of the mean-square components of the velocity fluctuations

is plotted in Fig. 7. After air initial adjustment period all of the compo-

nents increase with time, in agreement with experiment 
13 

and the

numerical results in Ref. 3. The numerical results in Ref. 4, on the

other hand, show 
u2 

and u3 decreasing at all times. Those results are
apparently related to the use of periodic boundary conditions on a sheared

numerical grid rather than on a stationary one. Reference 3 also used a

sheared grid but applied a correction (the grid was remeshed), so that the

results are similar to the present ones in Fig. 7 for a stationary grid.

Our u - component is the largest of the three, u2 is smallest, and
3 lies slightly above u2, in agreement with experiment '3 and previous

numerical results.

The effect of discretization error on the numerical results for 
u2 

is

shown in Fig. 8. Curves are plotted for 16 3 , 24 3 , and 32 3 grid

15
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points, together with a fourth-order extrapolation to zero grid-point spacing

(an infinite number of grid points). The differences between the results for

323 points and the fourth-order extrapolation are small, but increase some-

what at large times.

Figure 9 shows the evolution of velocity pressure-gradient correiations.

(Parts of some of the curves are omitted to avoid confusion.) The velocity

pressure-gradient terms in the one-point correlation equation (Eq. (19)), to-

gether with the production terms, are responsible for maintaining the turbu-

lence against the dissipation (given by the last two terms in Eq. (19)).

There are no production terms in the equations for a 2/at and a 3/at

(ail u j ut au 
1/ 

ax 	 and a jl J i u 2 au 1 /ax 2 are zero) . Thus 
2 

and 3

generally receive energy only from the 1 - component, whose equation has

a nonzero production term. Equation (19) shows that in order to do that,

u  Wax 	 and u  ap ax j must be negative for i = j - 2, 3 and positive

for i = j = 1. Figure 9 shows that is actually the case for constant periodic

boundary conditions except for an initial adjustment period, so that the turbu-

lence is maintained (Fig. 7). The maintenance of the u - or u 2-component is

particularly critical because if u 2 goes to zero, the Reynolds shear stress

u 1 u2 in the production term of the 3 - equation (see Eq. 19)) will go to

zero and there will be nothing to keep the turbulence going. All the compo-

nents will then eventually decay. That is what happens in the linearized

analysis for unbounded turbulence in Fig. 9 and Ref. 10.

A comparison between the nonlinear results for 2 and various linearized

solutions is given in Fig. 10. The same initial conditions are used for all

the cases (Eqs. (4) or (13) and (6)). For all of the results, except those for

the unbounded linearized case (obtained by using unbounded Fourier transforms

(Eq. (20)), the crucial 
u2 

component eventually increases, so that the

16
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turbulence or fluctuations are maintained. In the unbounded linearized case

u2 decreases at all times. That was expected, since the 2 - results for

that case in Refs. 10 and 11 (for different initial conditions) decreased

at all times. Somewhat unexpected are the linearized results for constant

periodic boundary conditions, which show that the fluctuations a^: maintained

for those cases. Whereas Fig 9. shows that in the unbounded case the

velocity pressure-gradient correlations remove energy from the 2 - component

and cause the fluctuations to decay as in Ref. 10, the imposition of constant

periodic boundary conditions changes the sign of those correlations and brings

energy into u2	so that the fluctuations are maintained. Equation (25),

which satisfies periodic boundary conditions, shows that, at least when the

term -(dU I /dx 2 )x 2 au i /ax 1 in Eq. (11) is neglected, 2 increases at large

4
times if 2ag n gn > q 	 for at least one n.

Comparison of the linearized case for periodic boundary conditions in

Fig. 10 with the corresponding nonlinear case shows that the nonlinear terms

have a stabilizing influence. That is, the values of 2 increase more

slowly for the nonlinear case. Moreover comparison of the curve for the

linearized case with periodic boundary conditions and with the term

-(dU 1 /dx 2 )x 2 au 2 /ax 1 in Eq. (11) missing (Eq. (25)) with the corresponding

curve for that term included shows that the presence of that term also has a

stabilizing influence. Since neglect of that term is equivalent to neglecting
10

the mean-gradient-transfer term in the spectral equation for u2 , we can

consider the latter term as stabilizing. Thus both the nonlinear transfer term

associated with triple correlations and the linear mean-gradient transfer term

in the spectral equation for 2 are stabilizing. The reason is that both

terms transfer energy to small eddies where it is dissipated more easily.

17
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It is of interest that the one-point correlation equation for auiu^/at

(Eq. (19)) contains neither a term associated with velocity-gradient transfer

nor with nonlinear transfer. That is, both of those processes give zero

direct contribution to the rate of charge of u i u
j

; they only change the

distribution of energy among the various spectral components or eddy sizes.

This spectral transfer, of course, still affect the way in which u 
i 
u i

evolves (see Fig. 10). Even though Eq. (19) contains no transfer terms, the

transfer of energy among the various spectral components of the velocity alters

the terms that do appear in Eq. (19), so that au i u^/at is affected indirectly.

That is not a small effect.

The modified linear solution given by Eqs. (25) and (26) (dash-dot-dot

curve in Fig. 10) is the simplest solution in which the fluctuations can be

maintained against the dissipation. In obtaining it the only mean-gradient

term retained in the equations for u 2 (Eqs. (11) and (12), i = 2) is

-2(dU 1 /dx2 )au2 /3x l , a source term in the Poisson equation for the pressure.

If that term is also neglected, u2 decays and, as discussed earlier, all of

the components of the fluctuations decay. Moreover, as shown in Fig. 10 and

already discussed, the term -(dU 1 /dx 2 )x 2 au i /ax 1	 in Eq. (11) is stabilizing,

so it is of no help in maintaining the fluctuations. Thus, at least in the

linearized case, the presence of the source term -2(dU 1 /dx2 )au2 /ax l in the

Poisson equation for the pressure is necessary for maintaining the fluctua-

r

	 tions. That term should play a similar important role in the maintenance of

!	
nonlinear turbulence, although in that case it is hard to separate the linear

effects from the nonlinear ones. In particular, the role of the nonlinear

source term in the Poission equation for the pressure remains unclear, al-

though it may have an effect similar to that of the linear source term.

18	 1
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Figures 11 and 12 show the approach to isotropy of nonlinear uniformly

sheared turbulence when the shear is suddenly removed. Although the shear

produces considerable anisotropy, the components 
ui 

of the mean-square

fluctuation approach equality upon removal of the shear and remain equal. The

velocity pressure-gradient correlations in Eq. (19) are thus successful in

transferring energy among the various directional-components in such a way that

eauality of the 7
	

is produced. We note that 
u	

continues to increase

for a short time after the shear is removed, probably because it receives

energy from both u and 3.

In addition to equality of the 
ui
z ero cross-correlations u i u^ are

required for isotropy. Figure 12 shows that u 1 u2 , which is nonzero when the

I:
	 turbulence is sheared, approaches zero when the shear is removed, and along

with the other cross-correlations, remains close to zero. The destruction

of u1 u2 , apparently by nonlinear randomization effects, occurs over a finite

time period rather than instantaneously on removal of the shear.

Another expected effect of removal of the mean shear is that the small

scale structure produced by the term -(dU 1 /dx2 )x2 au i /ax I in Eq. (11) should

die out. According to Fig. 13, that occurs almost immediately when dU1/cx2

goes to zero, evidently because of the large fluctuating shear stresses between

the small-scale eddies.

CONCLUDING REMARKS

According to our results for both sheared and unsheared flow at higher

Reynolds number, the nonlinear structure of the Navier-Stokes equations is

such that an apparently random turbulence can develop from nonrandom initial

conditions. The presence of a mean gradient, in addition to producing a non-

zero turbulent shear stress, produces small-scale fluctuations in the flow.
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These can be attributed to a mean-gradient transfer term in the spectral equa-

tion for the velocity fluctuations, 10 or to an equivalent term in Eq. (16)

or (11). However the small-scale fluctuations produced by that term alone

(linear solution) are essentially nonrandom. Evidently the only way we can

have a linear turbulent solution is to put the turbulence in the initial con-

ditions, as in Ref. 10. In order to produce the observed small-scale turbu-

lence from nonrandom initial conditions, the presence of both the linear mean-

gradient transfer term and the nonlinear terms in the equations is necessary.

I	 The former term, or its equivalent in Eq. (16) or (11), acts like a chopper

which chops the flow into small-scale components, and the latter terms, while

tire:; also produce small-scale components, act most visibly here as randomizers.

1	 In all of the cases calculated with constant periodic boundary conditions,

including both linear and nonlinear flows, the velocity pressure-gradient cor-

relations are successful in distributing the energy among the directional com-

ponents (Fig. 9), so that the turbulence or the fluctuations are maintained.

This is in spite of the presence of a production term in the equation for only

one of the components. Botn the linear mean-gradient transfer term and the

nonlinear terms mentioned in the last paragraph have a stabilizing effect.

That is, they cause the fluctuations to increase at a slower rate. 	 It is

snown that, at least for the linearized solution with constant periodic boun-

dary conditions, a mean-gradient source term in the Posisson equation for the

pressure is necessary for maintaining the fluctuations against the dissipa-

tion.	 That term should play a similar important role in Lire maintenance of

nonlinear turuulence, although in that case it is hard to separate the linear

eftects frow the nonlinear ones. 	 In particular, the role of the nonlinear

sotxce term in the Poisson equation for the pressure remains unclear, although

20



it may have an effect similar to that of the linear source term. For the lin-

earized unbounded solution (obtained by using unbounded Fourier transforms)

the fluctuations decay, as expected from the results of Ref. 10.

When the mean-velocity gradient is suddenly removed, the turbulent shear

stress goes to zero in a finite time period, and the velocity pressure-

gradient correlations cause the turbulence to attain the isotropic state. The

intensities of the directional components become and remain equal. In addi-

tion, the small-scale structure produced by the mean-gradient transfer term

quickly vanishes.

ACKNOWLEDGMENT

I should like to acknowledge the considerable work of Frank Molls in carrying

out the programming and numerical computations for the results given in the

paper.

REFERENCES

1. R. G. Deissler, Phys. Fluids 24, 1595 (1981).

2. F. H. Champagne, V. G. Harris, and S. Corrsin, J. Fluid Mech. 41, 81

(1970).

3. R. S. Rogallo, NASA TM-81315 (1981).

4. S. Shaanan, J. H. Ferziger, and W. C. Reynolds, Rept. No. TF-6,

Thermosciences Div., Dept. of Mech. Eng., Stanford Univ. (1975).

5. S. Corrsin and W. Kollmann, in Turbulence in Internal Flows, edited by S.

N. B. Murthy (Hemisphere, Washington, 1977). p. 11.

6. R. G. Deissler and B. M. Rosenbaum, NASA TND-7284 (1973).

7. R. A. Clark, J. H. Ferziger, and W. C. Reynolds, J. Fluid Mech. 91, 1

(1979).

8. J. M. McCormick and M. G. Salvadure, Numerical Methods in Fortran

(Prentice-Hall, Englewood Cliffs, New Jersey, 1964), p. 38.

a^

21



9. F. Ceschino and J. K untzmann, Numerical Solution of Initial Value Problems

(Prentice-Hall, Englewood Cliffs, New Jersey, 1966), p. 141, example 2,

and p. 143.

10. R. G. Deissler, Phvs. Fluids 4, 1187 (1961).

11. R. G. Deissler, Phys. Fluids 13, 1868 (1970).

12. R. G. Deissler, Phys. Fluids 15, 1918 (1972).

13. V. G. Harris, J. A. H. Graham and S. Corrsin, J. Fluid Mech. 81, 657

(1977).

j	 22



ORIGINAL PAGE IS
OF POOR QUALITY

1/2

T	 In	 1n
4	 u2 u0	 P	 2

` u 2	 u0

T	 ^

0

ccl

C	 \	 /

UNPERTURBED INITIAL CONDITIONS-2	
— — — — INITIAL CONDITIONS PERTURBED - 0. IS

N7

-4

- 61 	 1	 1	 1	 I	 I	 I	 I	 I	 I

0	 .0005	 .0010	 .0015	 ao20	 .0025	 .0030	 .0035	 .0040	 DD45
I

1a) c1U l ldx 2 ' 0

Figure 1. - Effect of uniform shear on calculated evolution of nonlinmr turbulent velocity fluctuations (normalized by Initial
( _ ll 2	

\I
condition) for a high Reynolds number\u^ ^q Iv • 1108/. Root- mean-square fluctuations are specially averaged &xi
7016. x  - x2 • 9708, x 3 • 3708 fur unaveragedfluctuations,

6

4F—
M

^ I

y l^ it i	 1
2 1/2	 In	 ll2 i ^1

I	 M

^^2r	 U	 ^^ I I I
I	 II

I	 11... NO i I I I I	 I

1
^Ir ' 0 LI

I
I	 fl I

I	 Io II

1	 ^

II I I

^ I ^.^ I II
11

1	 I
IIIw

UNPERTURBED INITIAI CONDITIONS

j

I 11
— — — — INITIAL CONDITIONS PERTURBED- 0. 1'L

J I^

-4

-61
^	 I

- — L--^ —L -- L. --- L-- - -^-

I
I

--	 1 -
0 .0005	 .0010	 .0015	 .0020 .0025 .0030 .0035 .0040	 .0045

1bl dU l ldx 2 • 4434

Figure 1. Ccncluded



ISO

100

50
N

LF 0

50

1

1

0

-I

ORIGINAL PAGE IS
OF POOR QUALITY

8
CONSTANT PERIODIC BOUNDARY CONDITIONS

— — UNBOUNDED ([Qs. 1101 AND (7111

4	 dU1*1

O

0

0	 .0010	 (A20	 .0030	 OD40	 OD50
I

figure 1. - CGlculated evolution of lineirired velocity
fluclions (normalized by initial condition).

llc

dUlkbf1 • 44M. uh x0)50 • 1108. x l ' x1 • 91If3,
x3 . 3 , 0B. a x l ir714

100	 V	 v	 -1

- .-- 1 --1 -1150	 3
0	 4	 8	 1. 2 	1.6	 11

1112

figure 3. - I Inetflled solution for a I4
vs x, for unbounded fluctuations IEp.
(101`x ) 9118. 1 3 3118. dUlldxl

_IQ

	

4434. u'	 x0 V	 1100.

I



L_	 I	 I_	 -i
B	 1.2	 1.6	 f it

Nonlineir solution for uA vs x2
12



INS
7

ORIGINAL PAGE IS
OF POOR QUALITY

,. z

c_	
8

I^

6
0	 001	 .002	 W3

I

Figure 6. - Calculated cross-correlation coefficients plot-
ted aoinst dimensionless time.

In
lv • 1108. ex; •LOU I t 2 - U3/. u 6 b	 ,Ina

0	 .001	 .002	 .003	 .004

t

Figure ) - Calculated evolution of mean- q uare velocity
117

components. dU l lmi 2 • 4434 u	 x0 v - 1108.
Ax  • fr116.



'H-

)LATION)

ORIGINAL FAM M
OF POOR QUALITY

NUMBER OF

e

0	 .001	 .002	 .003	 .004

t

Figure 8, - Effect of numerical grid-point spacing on
_	 _ln
uj. dU l /dx 2 . 1434 u`6 x jv - ll0&

J^f '
3

/^i• 1
2	 LINEARIZED

1	 ; SOLUTION,
t	 UNBOUNDED,

i - 21Ep. 1201)
— 1	 ^`_	 J

'NONLINEAR SOLUTION, IONSTANT
s	 /^	 PERIODIC BOUND CONDITIONS

0	 _ __.d_____________
`	 i3

i-2

LINEARIZED
1

-1	 RIZED,
CONS	 PERIODICTANT	 1
BOUNDARY

-2	 CONDITIONS, i - 2 -

I

-3L---.
---	 ----- I - --L - - -- J

0	 .0n1	 .002	 .003	 .004

t

Figure 9. - Calculated evolution of velocity pressur,-grad-
_ 112

ient correlations, dU l dx 2 - 4434. ul	 x0 ly - 1108.
Ax i - a i 16.

A



ORIGINAL PAGE 18
OF POOR QUALITY

I

LINEARIZED SOLUTION, I
CONSTANT PERIODIC
BOUNDARY

CONDITIONS	 I
3

LINEARIZED MEAN-	 I
GRADIENT TRANSFER
TERM MISSING.

2	 CONSTANT PERIODIC'
BOUNDARY
CONDITIONS	 j

NONLINEAR SOLUTION
1	 CONSTANT PERIODIC

BOUNDARY CONDITIONS

LINEARIZED, UNBOUNDED (Lq. 1201)
^^^_ I	 J	 I

0	 .001	 .001	 .003	 .004

t

Figure 10. - `.volution of u^ for various linear and non-
_ V2

linear solutions. dU 1 16 2 • 4434 u^6	 xO v • 110&

.0015	 0025	 0015 	(X145
	

(XI55	 .0D65	 .0015

I purr I I - Calculated approach to isMropv of unllorm-
Iv-sheared turbulence upon %udden remcwal of the

En

	

%hMr, u 0	 x0 v • 1108,



ORIGINOR QUALITY

OF F`0

J

II

1

4

^	 13

-^	 " 1 2
4

dU l 	i	 dul

8	
dx2 -4434	 dx 2 • 0

.0015	 .0025	 .0035	 .0045	 .0055	 .0065	 .0075

1

Figure lZ - Calculated evolution of cross-correlation
coefficients upon sudden removal of uniform shear.
_12
u'0	

x0f 
v • 1108.

4

0

4

-8 l
	 1	 1	 1	 1	 1	 1

.0015	 .0025	 .0035	 .0045	 .0055	 .0065
t

Figure 13. - Effect of removal of uniform shear on struc-
_ 112 I

ture of tu rbulence. u°0x 0 v • 1108.


	GeneralDisclaimer.pdf
	1982024758.pdf
	0086A02.pdf
	0086A03.pdf
	0086A04.pdf
	0086A05.pdf
	0086A06.pdf
	0086A07.pdf
	0086A08.pdf
	0086A09.pdf
	0086A10.pdf
	0086A11.pdf
	0086A12.pdf
	0086A13.pdf
	0086A14.pdf
	0086B01.pdf
	0086B02.pdf
	0086B03.pdf
	0086B04.pdf
	0086B05.pdf
	0086B06.pdf
	0086B07.pdf
	0086B08.pdf
	0086B09.pdf
	0086B10.pdf
	0086B11.pdf
	0086B12.pdf
	0086B13.pdf
	0086B14.pdf
	0086C01.pdf
	0086C02.pdf
	0086C03.pdf


