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A NUMERICAL SIMULATION OF TRANSITION IN

PLANE CHANNEL FLOW

By

G. Goglial and Sedat Biringen2

SUMMARY

This paper involves a numerical simulation of the final stages of

transition to turbulence in plane channel flow at a Reynolds number of 7500.

Three-dimensional, incompressible Navier-Stokes equations are numerically

integrated to obtain the tune-evolution of two- and three-dimensional fi-

nite-amplitude disturbances. Computations are performed on the CYBER-203

vector processor for a 32x 33x 32 grid. Solutions indicate the existence of

structures similar to these observed in the laboratory and which are charac-

teristic of various stages of transition that lead to final breakdown.

Details of the resulting flow field after breakdown indicate the evolution

of streak--like formations found in turbulent flows. Although the flow field

does approach a steady-state (turbulent channel flow), implementation of

subgrid-scale terms are necessary to obtain proper turbulent statistics.

1. INTRODUCTION

Recent experiments by Nishioka, Asia b Iida (1981) have shown that

transition to turbulence in a plane channel flow follows a sequence of

events similar to that observed by Klebanoff, Tidstrom S Sargent (1962) in

the boundary-laver transition. In this work, a direct numerical integration

of the Navier-Stokes equations is performed in an attempt to simulate these

events in plane channel flow, during the later stages of transition.

In their experiments, Nishioka et al. (1981) used a vibrating ribbon

technique to generate two-dimensional disturbances fixed at 72 Hz. To

l Eminent Professor/Chairman, Department of Mechanical Engineering and

Mechanics, Old Dominion University, Norfolk, Virginia.

` Research Associate Professor, Department of Mechanical Engineering and
Mechanics, Old Dominion 1niversit y , Norfolk, Virginia.



excite the fully developed flow in a channel with a 27.4 aspect ratio. They

measured the streamwise mean and fluctuating velocities, U 1 and ui, re-

spectively, at a. fixed streamwise location at a subcritical (linearly sta-

ble) Reynolds number, Re ° 5000 and simulated the various stages of transi-

tion by varying the disturbance amplitude. Their observations show that

subcritical instability takes place at a threshold amplitude of 
(u)lmax/U

= 0.01, where Uo is the mean velocity at the channel centerline. The

evolution of this instability is evidenced by the intensification of the

spanwise variation of the wavefront which develops into a peak-valley

structure. Nishioka et al. (1981) observed that flow development follows

then a trend which is similar to transition in the boundary-layer (Klebanoff

et al. 1962, Kovasznay, Komoda 6 Vasudeva 1962): local shear layers are

formed away from the wall at spanwise peak positions (ul/U o = 0.11). In

rapid succession, two-, three-, five- and multi-spike stages are observed

with increasing amplitude of the primary disturbance. Nishioka et al.

(1981) present evidence that in the final stages of transition, the flow

starts to develop structures very similar to those found in fully developed

wall turbulence. During this stage, the flow field is characterized by the

development of a viscous sublayer, occurrence of the typical "streaks" close

to the wall and the formation of horseshoe vortices sometimes referred to as

the building blocks of wall turbulence (Theodorsen 1954). The present work

attempts to simulate this sequence of events.

Direct numerical integrations of the Navier-Stokes equations for the

simulation of channel-flow transition has been the subject of some previous

investigations. George & Hellums (1972) and Fasel, Bestek b Schefenacker

(1977) used the two-dimensional Navier-Stokes equations to investigate the

stability of channel flow to two-dimensional finite-amplitude disturbances.

George & Hellum (1972) studied the relationship between critical amplitude

and Reynolds number and found a minimum Reynolds number, Re = 3500, below

which their predictions remained stabie. This is contrary to experimental

evidence (e.g., Kao b Park 1970) which indicates instability of plane chan-

nel flow to finite-amplitude disturbances at Reynolds number as low as 1000.

Fasel et al. (1977) investigated the effects of disturbance amplitude on

transition at subcritical and supercritical Reynolds numbers. The y found
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that increasing amplitude (ui/Uo = 0.06) of two-dimensional disturbances can

drive plane channel flow to instability at a subcritical Reynolds number, Re

= 5000. Although some insight into finite-amplitude instability of two-

dimensional disturbances can be obtained from such calculations, a proper

simulation of the transition process requires the u:3e of the three-dimen-

sional Navier-Stokes equations. Once the process extends into the nonlinear

regime, transition becomes increasingly three-dimensional so that for a

relistic (physically plausible) representation of flow breakdown, spanwise

variations of the flow field variables must be accounted for. It is also

well known that creation of vorticity through vortex stretching, an essen-

tial ingredient of transition, can take place only in a three-dimensional

flow field. Hence, numerical solutions of the two-dimensional Navier-Stokes

equations cannot represent energy transfer down the wave-number spectrum,

which is the basic mechanisms of laminar flow transition to turbulence an3

the result of the vortex stretching mechanism.

Effects of three dimensionality on transition have first been document-

ed in detail by Klebanoff et al. (1962). Accordingly, three-dimensionality

manifests itself mainly in the spanwise velocity variations resulting in the

production of treamwise vorticity which, in turn, interacts with the span-

wise vorticity and drives the flow to breakdown. Orszag & Kells (1980) and

Patera & Orszag (1981) have expanded on this idea to study the susceptibil-

ity of plane channel flow to three-dimensional disturbances by numerically

integrating the three-dimensional Navier-Stokes equations. Their cou 4-+uta-

tions at subcritical ttevnolds numbers revealed some interesting aspects of

subcritical transition. They found that initial disturbances, which are

finite-amplitude two-dimensional Orr-Sommerfeld eigensolutions, decay slowly

and, as expected, rate of decay increases with decreasing Reynolds n-=ber.

They also found that the addition of three-dimensional, finite-amplitude

disturbances promote rapid instabilit y at Reynolds numbers as low as 1000,

which is in good agreement with the experiments of Kao & Park (1970). Their

results suggest a similar tendency of the flow to instability even for

small-amplitude, three-dimensional disturbances. They concl-.de that the

mechanism that drives plane channel flow to instability is t,1e interaction

of two-dimensional and three-dimensional disturbances, supporting the idea

3



that three-dimensionality is central to transition in plane channel flow.

In a more recent work, Kleiser (1982) incorporated r spectral method to

solve the three-dimensional Navier-Stokes equations starting with weakly

three-dimensional initial conditions. Comparisons of his results with the

experiments of Nishioka, Asai & Iida (1980) up to the first spike stage are

favorable even from a quantitative point of view supporting the idea that

direct numerical simulations can be used as a mean of investigating the

nonlinear transition process.

It is apparent that the complete simulation of transition requires the

inclusion of non-linearity and three-dimensionality as the fundamential

characteristics of the flow field. These effects are of primary importance

in the present work wherein the main emphasis is on the final stages of

transition. Hence, for an accurate representation of the underlying physi-

cal phenomena that take place during this stage of transition, the present

simulation has been done by using the full three-dimensional, time-dependent

Navier-Stokes equations. In order to drive the flow to instability and

transition rapidly, calculations are performed at a linearly unstable

Reynolds number (Re a 7500), with finite-amplitude two- and three-dimen-

sional eigensolutions of the Orr-Sommerfeld equation used as the initial

conditions. No attempt is made in this work to investigate the effects of

different initial condition; or of Reynolds numbers. In section 2, the

numerical methods used in the present study are briefly discussed. In

section 3, results of calculations are presented and compared with the

experiments of Nishioka et al. (1981). Finally, section 4 contains a sum-

mary of results and some concludi^g remarks.

2. THE CALCULATION PROCEDURE

The calculation procedure is based on the incompressible Navier-Stokes

equations in primitive-variable form,

au.	 au.	 '	 a2u.

1 + u	 1— 1 ap + v	 1	 (1)

at	 ax 	 p ax 	 axzaxX

and the continuity equation,
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au.
1 . 0	 (2)

al.

where u 	 are the velocities along the x i directions, p is the density,

v is the kinematic viscosity and p is the total hydrostatic pressure.

The equations are non-dimensionalized by the mean centerline velocity Uo

and the chancel half-width, h. The flow is assumed to be driven by a con-

stant mean pressure gradient 2/Re, where Re is the Reynolds number given by

Uoh/v. Also, the convective terms are put into a form which prevents

occurrence of nonlinear instability in the numerical solution procedure by

ensuring conservation of momentum and energy (Mansour, Ferziger, 6 Reynolds

1978). The final form of the Navier-Stokes equations reads,

au i au i	auX
	 a	 2	 1	

a2,1
+ u , (

	

—

at	 ax 
	

ax 	 Re i1	 Re axXaxz

'
where P i p/p + 1— u z u 

X 
is the pressure head and 6 i is the Kronecker

delta.	 2

The flow is assumed to be periodic in the streamwise x  and the span-

wise x 3 directions along which the flow field variables can be expanded in

terms of Fourier series. This enables the use of the pseudo-spectral method

(Orszag 1972) to calculate the spatial derivatives along x l andx 3 by

use of discrete Fourier transforms. Considering transforms in the x l

-direction, along which there are Ni equally spaced mesh points, the veloc-

ity component u l can be written as

N/2-1

u l (x l ) _	 ul(kl)elkill

n l =-N/2

where x, = mOx l , m = 0,1,...,N-1 and k l = 2 M 1 0x 1 • Accordingly, the Fourier

transform of u l is

N l-1

u l (k l )	 1 C	 u l (x l )e
-iklxl	

(5)

N, m=()

(4)
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The spatial derivative of u l along x l can now be written as

2ul(xl)	 N1/2 -1
ikY	 lul(kl)elklxl	 (6)

ax l 	nl--Nl/2

The derivative can be computed by forming the Fourier transform of ul(xl),

multiplying the result by ikl and computing the inverse transform. For

periodic functions, the pseudo-spectral method provides a means by which the

spatial derivatives are evaluated with maximum accuracy for a given number

of grid points. Along the x 2-direction, a mesh stretching that concentrates

grid points close to the solid walls is employed. The resulting mesh

enables the resolution of the sublayer that is formed during transition for

y+ < 2, where y+ is the coordinate along x 2 , in wall units. Spatial

derivatives along x 2 are evaluated by a second-order finite-difference

scheme on this non-uniform mesh.

The governing equations were numerically integrated by the semi-implic-

it method of Moin, Reynolds & Ferziger (1978). This procedure employs the

explicit Adams-Bashforth method for the convective terms and the implicit

Crank-Nicholson method for pressure and for the viscous diffusion terms. In

order to start the two time-level Adams-Bashforth method, the Euler-implicit

method is used at the first time step.

Once the governing equations are discretized in time, a two-dimensional

Fourier transform along the periodic directions x l and x 3 transforms the

equations into the k 1-k 3 wave-number space. The transformed equations are

written below in block-tridiagonal form for inversion along x2

A Fn+l + B Fn+l + C F7
+1
 = R 	 (7)

— ^j+1 — -i	 — -3-1	 -]

In (7), A, B, and C are coefficient matrices, F^
+1
 is the solution vector at

the advanced time level, n+l, and at the x 2-directional node, j; R^ is the

right-hand side vector that contains the convective, diffusive and pressure

terms at the previous time levels. These are given as

6



ORIGINAL PAGE IS
OF POOR QUALITYu l C2^	 0	 0	 0

a 2 0	 C2^	 0	 0
F = A =

u 3 0	 0	 C1^	 0

P 0	 0	 C2 .	 -Re -Cl .
L	 >

B2^	 0	 0	 -+(k1)^Re	 A2^

0	 B2^	 0	 +-(k3)^Re	 0

B	 C =

+(k1).l	
+ ( k 3)

J
	B1^	 0	 0

0	 0	 B2	 -ReBI.	 I 0
L

0	 0	 0

A2.
3
	0	 0

0	 Ali	 0

0	 A2^ -Re -Ali

and

R l = 0

2u1 ^a2ul a2ul	
n

n a2u1

R 2	 Re -	 + + +	 aP	 _ 2Re	 3 H 1 _ 1 H i-1 _

AT 2
ax 

1 2
ax 3

ax 1 2 2 2
3x2

2u2 a2u2 a 2u2	
n

n 32u2

R 3	 Re -	 + + +	 aP	 - 2Re	 3 Hi _ 1 H2-1 _

AT 2
ax 1

2

3x3
ax 2 2 2 2

3x2

r
2u 32u3 a2u3 n323

aP- / 3 a2u3
R ,

4

-	

+ +	 1 + - 2Re
Hn3 1 Hn-1-	 3 -

AT 2

ax}
2	 1

3x3 ^/
ax3 \2 2 2ax2

also,

2Re + (k 2

1 + K 

2

3)LAT

	

(

au i	auR

	

fix.	 ax.
(no summation over i)
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	R.	 R'.

	

J	 J

Coefficients of the finite-difference operators that appear in the matrices

A, B, and C are given as

and,

B2.
J 
_ -2/A.

J+1J
A., A2 J.	

J
= 2/A.	

J
(A.+1
	 J
+ A.)C2. = 2/A.+1(A.+l. + Y .

J	 J	 J	 J

C1.
J 

= Al 
J
.	

J
a 1/(A.

+1
 - A.

J )

A.	 (x2)- (x2)^ +1 - (x2)^

Since all the flow variables in the solution vector contain an imaginary and

a real part, the block-inversion process is applied twice for each pair of

k l and k 3 , which are the wavenumbers along x l and x 3 , respectively.

The assumption of periodicity in x l and x 3 eliminates the necessity

of applying explicit boundary conditions along these directions. However,

due to the presence of solid boundaries along the x 2-direction, no-slip

boundary conditions are imposed on u l , u 2 , and u 3 and the pressure at

the wall is calculated by a second order approximation from the interior of

the flow field. That the pressure boundary conditions are consistent with

the x 2 -momentum equation at the wall, has been shown by Moin et al. (1978).

Initial conditions were prescribed from the two- and three-dimensional

eigensolutions of the Orr-Sommerfeld equation by considering that even for

subcritical Reynolds numbers, plane channel flow c.An be driven to instabili-

ty if the least stable two-dimensional finite-amplitude Orr-Sommerfeld

eigenmodes are interacted with finite-amplitude three-dimensional eigenmodes

(Orszag 6 Kells 1981). The most explosive situation arises when the three-

dimensional eigenmodes are aligned with the main flow direction at ±45 to

±60 degrees. Accordingly, we have used the following initial condition

iox l 	44-i8x3
u(x) = U(x 2 ,0,0) + u, D (x2)e	 ^ u 3D (x 2 )e

lODCl
	 (8)
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Here, U(x2 ,0,0) is the parabolic velocity profile of plane channel floe.

The eigenfunctions u 2D(x2) and u 3D (x2) correspond to two-dimensic•.al and

three-dimensional solutions of the Orr-Sommerfeld equation at Re - 7500,

respectively. The two-dimensional solution was obtained for a - 1 whereas,

t'ie three-dimensional solution was obtained for a - 1; B - t 1. A computer

program, which essentially uses the Kaplan filtering technique, was used for

the solution of the Orr-Sommerfeld equation (Reynolds 1967). The final

amplitudes were chosen so that the maximum value of the x l -directional two-

dimensional disturbance was set equal to O.11Uo and the maximum amplitudes

of the xl-directional three-dimensional disturbances were each set equal to

0.05Uo,

3. RESULTS AND DISCUSSION

The finite-difference system (7) was solved on the CYBER-203 vector

processor at NASA/Langley Research Center. A 32 x 33x 32 mesh was employed

along the xl -, x2-, and x3-directions, respectively. The computer code was

fully vectorized and vectorized library subroutines were used for the main

computational operations that the solution technique employs. These vector

operations mainly are one-dimensional fast Fouri.>r transform (FFT) to cal-

culate s patial derivatives with the pseudo-spectral method, two-dimensional

FFT to transform the equations into k l -k 3 wave-number space and block-

tridiagonal matrix inversion along x2. For the FFT operations, typical

vector lengths were around 1000, which is an optimal vector length to take

full advantage of the vector processor. For the block-tridagonal matrix

inversion (which is essentially a scalar operation) a vectorized subroutine

that inverts a large number of tridiagonal systems simultaneously, was used.

This procedure decreases CPU time significantly by reducing the number of

scalar operations required to invert each system separately. The fully

vectorized code takes about 5 sec. of CPU time per time step for the 32x33x

32 mesh to solve the finite-difference system (7) on a computational box, in

which the flow is confined between rigid walls at x 2 = ± 1. Periodicity

lengths (box lengths) along xi and x3 were chosen so that the smallest

wave numbers allowed in the computational domain were equal to a = 1 and B =

1, respectively, i.e., the box length was set equal to 27 olong these

directions.

9
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It should be recalled that the time-advancement scheme employed in this

work is partly explicit (on the convective terms) and partly implicit (on

the diffusion and pressure terms). Although in view of linear stability

analysis, implicit methods are unconditionally stable (extrapolation to

nonlinear equations is sometime vaRue), the mixed nature of the present

scheme as well as the time-accurate nature of the problem under investiga-

tion necessitate adherence to stabilit y bounds of explicit schemes. There-

fore, in all the calculations reported here, tho convective stability condi-

tion (the Courant-Friedrichs-Lewv condition) that requires the Courant

number (C.N.) to be always less than one and the diffusive stability condi-

tion were obeyed. With (Ax
2 )
	 - 0.00694 and 0.02 < AT < 0.05, where AT
min

is the non-dimensional time-step, through the course of the calculations to

C.N. varied as

ul	 u?	 u3

C.N. = A	 +	 +	 G 0.4	 (9)
Ax,	 Ax;	 Ax3 max

whereas the diffusive stabilitv criterion, D, varied as

D = I	
AT	

i 0.14	 (10)

min
Re (0x)` .

so that the diffusive stabilit y condition which requires D \ 0.5, was also

alwa ys satisfied.

In the subsequent parts of this section, results obtained from the

numerical integration of the finite-difference s y stem (7) for the evolution

of the initial disturbances are compared with the experiments of Nishioka et

al. (1981).	 It should, however, be noted that there are several differences

existing between the conditions of this experiment and the present condi-

tions. First, periodic boundar y conditions employed in the computation

along x, and x j are not realized in the laboratory where the flow is

periodic in time. Second, because of periodicit y , the computational flow

field evolves in time, not in space as in the laborator y . Otte justification

to the first difference can be advanced on the basis of previous numerical

experiments, in which CranSitiofl simulations of the flat-plate boundary

10



layer (Orszag 1976) and of the plane channel flow (Fasel et al. 1977) with

proper inflow-outflow boundary conditions gave similar results to those

simulations where periodic boundary conditions were applied. Therefore, it

could be expected that the periodic boundary conditions of the present com-

putations should not introduce any significant consequences for comparisons

with the laboratory flow. The assumption of streamwise periodicity which

implies the evolution of the flow in time (not in space) enables the most

efficient use of available computer resolution by resolving only one wave-

length. This assumption can be justified on the grounds that in an advected

coordinate frame, the spatial evolution of the laboratory flow- is essential-

ly equivalent to temporal growth (Orszag 6 Kells 1980). A third difference

between the experiment and the computation is the Reynolds number. The

laboratory flow has a subcritical Reynolds number, Re - 5000, whereas the

computation was done at Re - 7500 which is linearly unstable for this flow.

This selection of the Reynolds number was due to the necessity of forcing

the computations into transition and breakdown with the least amount of

computer expenses. It should be noted that in their experiments, Nishioka

et al. obtained laminar channel flow up to Reynolds numbers around 9000, and

found that wall phenomena which are characteristic of the final stages of

transition are independent of Reynolds n!®bers. Hence, the difference

between the Reynolds numbers of the experiment and the computation should

not have any important consequences for the qualitative comparisons between

the two sets of results.

During the computations, data were stored at approximately every 100

time-steps and results at these instances were compared with those of

Nishioka et al. (1981) for the various stages of transition. The set of

data obtained from the computation that most closely matches a given stage

in the laboratory flow is used for comparison with that stage in the experi-

ment. Hence, comparisons are necessarily of a qualitative nature.

In figure 1, a history of the time-evolution of the flow is given in

terms of the maximum amplitude of the two-dimensional primary disturbance,

its two-dimensional harmonic and the three-dimensional primary disturbanc

The trends displayed by these quantities are generally similar to the

. tilts of Orszag S Kells (1980) which they obtained from computations per-
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formed at Re = 1250. The main features of these trends are the rapid

decrease in the two-dimensional primary-wave amplitude and the rapid

increase of the amplitude of its harmonic. Also, the three-dimensional

primary-wave amplitude first increases, then decreases at around T - 40. In

the present calculations, fluctuating variations of the amplitudes are

observed to set in as early as T - 18 but, even at later times, the fluctua-

tions are more controlled than those indicated by the results of Orszag &

Kells (1980). That no "explosive" instabilities were found in the present

computations is in accord with the findings of Nishioka, Asai & Tida (1980),

which implies that breakdown in channel flow is as gradual as the growth of

instabilities found in free shear flows.

Plane-averaged (over the x l - x 3 plane) flow-field quantities which are

representative of various stages of transition are shown in figures 2-7.

Plots of plane-averaged (mean) velocity profiles, u l , are shown in figure

2 for laminar (initial), late transition and "early-turbulence" stages at T

0, T = 42 and T = 50, respectively. The u l distribution at T - 50 has a

strong resemblance to the turbulent channel flow profile, with increased

velocity gradient at the wall and with a full profile indicative of turbu-

lent mixing. Although, as expected, <u l> profiles do not show any fluctua-

tions (or inflexions), plots of instantaneous velocity profiles do show very

strong inflexions, especially in the regions close to the walls (fig'ire 3).

This indicates that the interaction of two- and three-dimensional waves

close to the walls is the central mechanism that drives the flow to insta-

bility. This is in accord with the idea that the flow will undergo transi-

tion only for a selected band of spanwise wavenumbers, the most "dangerous"

of which result in three-dimensional disturbances with maxima occurring

close to the walls (Orszag b Kells 1980). In figure 4, the velocity profile

<u + ` 	 <u 1 >/u 2 versus v+ = x 2 u 2 /v is plotted; here u 2 is the friction

velocit y and is calculated from d <u i >/dx 2 at the wall. Although the plots

indicate the formation of a sublaver, and the change from T - 42 to T = 50

shows a gradual approach to the law-of-the-wall, the difference is still

especially apparent in the logarithmic region. The values obtained from

figure 8 of Nishioka et al. (1981) provides a fairly good comparison with

the computation at T = 42; in fact, computational results at T - 42 will

be presented as representing the five-spike stage of the experiment. At

12



At T - 42, the Reynolds number based on the friction velocity is equal to

196 and, as expected, is considerably larger than its initial (laminar)

value of 122.

Plots of plane-averaged fluctuation intensities, <(u l - <ul >)2 >, are

shown in figure 5 at various T. There are several interesting features of

this figure. Firstly, at T - 12, the shift in the position of peak ampli-

tude towards the channel center (x2 - 0.4), as well as the increase in the

maximum amplitude, indicate that the computation is developing in a manner

compatible with the experimental observations pertaining to this stage of

the transition process (Tani 1969). In addition to this, it will be shown

later that there is a substantial increase in the spanwise vorticity, wy,

away from the wall at around x2 = 0.4. Secondly, in accordance with the

laboratory flow of Nishioka et al. (1981) at later stages in computation

(e.g. at T - 42), the intensity profiles display a second peak occurring

close to the wall which should be associated with turbulence production.

However, in spite of these similarities, a comparison of the computational

results at T - 42 and the five-spike stage of the experiment (Nishioka et

al.) shows that the locations of the peak positions do not coincide and the

peak value obtained in the experiment is about 15 percent greater than that

obtained from the computation.

Spanwise variations of u l and u3 at T - 42 are plotted at various

distances along x2 in figures 6 and 7, respectively. These figures

indicate that at this stage the flow is highly three-dimensional; however,

the spanwise symmetry imposed by the initial conditions is sill retained.

An estimate of the flow field resolution along x 3 can be obtained from the

spanwise distance between peak position, X. Nondimensionalized by u2 and

V typically a = 120. This is larger than but comparable to a = 80, which

is the typical spanwise length in the laboratory flow during the five-spike

stage (Nishioka et al. 1981). It should be noted that the spanwise charac-

teristic length in wall turbulence is about 100. It could, therefore, be

asserted that, at this stage present results are representative of initial

wall turbulence.

A more detailed description of the transition process can be obtained

au l

from contour plots of equi-shear lines, — (which correspond to approximate
ax2
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1

spanwise vorticity, wZ ) in the x 1 - x 2 plane at the position of maximum

u l/Uo . Computational result.; that correspond to the various stages of Che

laboratory flow are presente9 in figures 8-12. In figures 9a - lla, figures

4-6 of Nishioka et al. (1981) are also presented for comparison with the

present computations. In fig:tre 8, contour plots corresponding to the ini-

tial conditions and in figure 9, contour plots corresponding to the "one

spike" stage (T - 0 and T - 12, respectively) are shown. In joth the

laboratory flow and the computation, the typical head of the shear layer

appears very clearly at the one--spike stage, indicating the formation of a

shear layer away from the wall a^. about x 2 - 0.4 due to the induced velocity

from the streamwise vortex system. In the experiment' 	 sudden dip of the

f

	

	
shear layer from the high-velocity outer flow to the low velocity region

appears as a kink. This is not very clear in the computation and can be

attributed to inadequate resolution along x 2 in the outer portions (close

to the centerline) of the flow field. Inadequate mesh spacing in these

portions of the flow field away from the wall manifests itself in the com-

parison of contour levels and concentrations of approximate spanwise

vorticity inside the "head" of the shear layer. This comparison mainly

reveals that the laboratory flow exhibits higher vorticity levels than are

indicated by the computation. However, since the mesh is finely clustered

along x 2 close to the wall, vorticit y concentrations in this region are

adequately resolved by the numerical simulation.

Figure 10 shows equi-shear lines at T - 22 corresponding to the three-

spike stage of the laboratory flow. In both the experiment and the computa-

tion, due to the secondary instability manifested in the previous stage,

breakdown of fljw structures into smaller scales are observed. In the

experiment, the growth of the kinked portions of the equi-shear lines into

the so-called "hairpin eddies" is clearly depicted. The computation dis-

plays a similar evolution, with the head of the shear layer lifted up to-

wards the channel centerline, and the kink in the shear layer being quite

apparent in this stage of the computation. Simultaneously with this activi-

ty taking place in the outer (high speed) portions of the flow field, both

the experiment and the computation show an intense shear layer developing

close to the wall, which is indicative of turbulence generation. Although

it is generally agreed that hairpin eddies which are lifted towards the

centerline erupt into turbulent spots, it seems likely that wall-turbulence

14



is also closely associated with vorticity dynamics that take place simulta-

neously with the eruption of hairpin eddies. Contours of equi.-shear lines

at T - 42 corresponding to the five-spike stage of the experiment are shown

in figure 11. The intense shear-layer developed in the wall region is ap-

parent in both the experiment and the computation. Vorticity levels in the

laboratory flow and the computation are comparable but the laboratory flow

indicates generally higher levels. The most significant feature in figure

11 is the existence of distinct vortex structures in the wall region both in

the laboratory flow and in the computation. These vortices are aligned

close to 45° to the mean flow direction and show a close resemblance to the

energetic horseshoe vortices which are characteristic of wall-turbulence.

It is these vortices (turbulent eddies) that are mainly responsible for

extracting energy from the mean shear (Tennekes S Lumley 1974, p. 41). In

figure 12, equi-shear lines are shown at T - 50. Here, all high-shear con-

centration and intense vorticity dynamics are confined to the wall region.

Also,	 )w field is characterized by scales which are much smaller than

those observed in the earlier stages, somewhat indicating that the flow

field at this stage assumes a turbulent-like character.

Contours of streamwise vorticity, Wx, are shown in figures 13-17 at

various instances in time in the x2 - x3 plane at the position of maximum

ul /Uo. Figure 13 displays that at T - 0, the counter-rotating vortex

system which is due to the prescrired initial conditions is relatively weak

and there are no vorticity concentrations close to the wall. Figure 14

shows W x at T - 12, corresponding to the one-spike stage of the labora-

tory flow. At this stage in the simulation, the initial counter-rotating

vortex system is still evident and there is an enhancement and concentration

of streamwise vorticity close to the wall. 	 Streamwise vorticity contours

corresponding to the three-spike stage of the laboratory flow are shown in

figures 15 at T - 22, where wx is enhanced and its magnitude is compara-

ble to the lateral component, wz. In addition to this enhancement of

Wx, figure 15 displays occurrence of patches of vorticity of scales much

smaller than the initial counter-rotating vortices. Formation of alternat-

ing positive (solid lines) and negative (dashed lines) vorticity regions

close to the wall is also evident from this figure. Figure 16 and 17 show

contours of streamwise vorticity during the multi-spike and early-turbulence

15



stages, i.e. at T = 42 and T = 50, respectively. In these figures, the

major features are further enhancement of streamwise vorticity, breakdown

into smaller scales and concentration of streamwise vorticity close to the

walls. Details of wx contours in the vicinity of the wall are shown in

figure 18 at T = 50 where the region between the lower wall (x2 = -1.0) and

x2 = -0.92 is magnified. The most interesting aspect of this figure is the

distinct pattern of alternating regions of very high concentrations of posi-

tive and very high concentrations of negative vorticity; however, due to

magnification contour lines are distorted in this figure. The alternating

streamwise-vorticity region is usually associated with an induced velocity

field that is responsible for vorticity production during the final stages

of the transition process (Komoda 1967). It should also be noted that the

alternating structure of positive and negative concentrations of vorticity

close to the wall is a very distinct feature of fully developed wall-turbu-

lence (Moin & Kim 1981).

The mechanism that is responsible for the generation of vorticity con-

centrations is usually explained as vortex stretching (and deformation) by

the mean flow. The stretching and deformation moves downstream with a

translation velocity that induces lower local mean velocity of the upstream

edge of the vorticity layer than its downstream edge (Komoda 1967). An

examination of contours of mean velocity (figure 19) along with the spanwise

vorticity contours at T = 22 (figure 10) in the x l - x2 plane at the posi-

tion of maximum u l /Uo clearly shows a similar trend. The nose of the

negative streamwise vorticity layer (which corresponds approximately to

regions with high concentrations of equi-shear lines) is generally associ-

ated with higher velocities than the upstream region and large variations of

the local mean velocity exist within the layer.

Normal velocity, u2 , contours are shown in figures 21-24 during the

three-spike, multi-spike and early-turbulence stages at the position of

maximum ul /Uo . Figure_ 20 shows u2-contours in the xl - x2 plane at T =

22, corresponding to the three-spike stage of the laboratory flow. In this

figure, there is clear evidence of the beginning of an alternating up- and

-down flow similar to the pattern described by Kovasznay et al. (1967),

which is characterized by the intense updrift accompanied by fluid drifting
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down at both sides. This alternating structure of up-and-down flow in the

x l - x2 plane is more evident at T - 42 (figure 21), corresponding to the

multi-spike stage of the experiment. Also in this figure, alternating

regions of fluid with scales much smaller than those at T - 22, are clearly

depicted. In figure 22 and 23, normal velocity contours are shown in the

X2 - x 3 plane at T - 42 and T - 50 corresponding to the multi-spike and

early-turbulence stages, respectively. These contours are plotted in the

region between the lower wall (x 2 = -1.0) and x 2 - -0.92. In these figures,

the development of the up-and-down pattern of the fluid close to the wall is

observed; the contours at T - 50 display alternating structures very similar

to the characteristic streak-like structures found in the wall region of

turbulent channel flow (Moin 6 Kim 1981).

4. SUMMARY AND CONCLUDING REMARKS

In this study, final stages of transition to turbulence in plane chan-

nel flow have been simulated by a direct numerical solution of the Navier-

Stokes equations. Results were compared with the experiments of Nishioka et

al. (1981) and it was found that, in spite of the limited resolution of the

32x33x32 grid employed in the computations, the simulation was capable of

reproducing most of the essential features of wall phenomena observed in the

laboratory flow. Grid resolution in the x l - and x 3-directions, along v•nich

the flow is periodic, was found to be adequate to capture the sequence of

events that lead to early turbulence. Vorticity and velocity contours in

the vicinity of the lower wall indicated formation of horseshoe vortices

and, at later stages, streak-like structures alternating in the spanwise

direction. Typically, the spanwise characteristic length, a, inferred

from the spanwise variations of u l and u 3 , was found to be around a

120, which is close to a - 100 of fully developed wall turbu'.snce. In

agreement with the experiment, it was found that during the later stages of

transition, flow field statistics indicate the formation of a laminar

sublayer; however, the development of the logarithmic region and hence the

approach to fully developed turbulence is slow.

The main deficiency of this study inevitably stems from limited spatial

resolution and manifests itself in several ways. Firstly, at later stages

"4
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of the computation, e.g. for T - 42, the computation was not able to main-

tain the total disturbance energy (turbulent kinetic energy). This is not

surprising and can be explained on the grounds that close to the wall, the

available mesh is not able to resolve the characteristic large-scale struc-

tures, which appear as finely spaced streaks. Insufficient mesh resolution

could also result in lower gradients of the mean velocity in the viscous

sublayer. The combined effect of these is less turbulence production and

therefore indefinitely decaying turbulent kinetic energy. Secondly, the

finite cut-off wave numbers along xl and x3 prevent energy transfer down

the wave-number space. Accordingly, at large T, pollution of Fourier

modes and accumulation of excess energy at low wave numbers become very

significant sources of inaccuracy. Hence, proper simulation of transition

beyond the early turbulence stage necessitates the use of the higher grid

resolution and even then, the incorporation of subgrid scale turbulence

modeling for an accurate and realistic representation of the flow field

phenomena.
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Figure 21. Contour plots of u 2 in the x l , x 2 plane at T = 42; contours

from -0.22 to 0.20.
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Figure 22. Contour plots of u 2 in the x-1 , x 3 plane at T = 42 in the
vicinity of the lower wall; contours from -0.135 to 0,135.
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Figure 23. Contour plots of u 2 in the x 2 , x3 plane at I - 50 in ch

vicinity of the lower wall; contours from -0.135 to 0,135'
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