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CPU

PDE

N\nax

NOMENCLATURE

Channel cross-sectional area, 1-D test problem
Computer processor unit
Error norm

Differential operator of PDE system, length of channel for 1-D test
problem

Partial differential equation

Dependent variable vector of PDE system

Dependent variable

Volume of computational cell, 1-D test problem

Cartesian velocity component

Cartesian velocity component at domain entrance

Cartesian coordinate normal to flow direction, time-like coordinate

Cartesian coordinate in flow direction
Prolongation operator for coarse-to-fine grid interpolation

Restriction operator for fine-to-coarse grid interpolation
Grid 1ndex, positive integer

‘Goal grid' index value of superscript I

Local residual error on grid I

Source term for defect correction

Local truncation error on grid I

Unknown variables on grid I, an error term is
associated with each value

Certified values of dependent variable vector on ‘goal grid'
Integer for identifying the cell location in grid I, positive integer

Number of cells in the analysis domain
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1.0 SUMMARY

The current practice for applied analysis in the aerospace industry is to use
specially selected combinations of coupled zonal models - inviscid, shear
layer, etc. - to approximate the field equations of fluid mechanics for
various applications. The zonal models involve systems of ordinary and
partial differential equations (field equations). These equations are
simulated with numerical methods which possess two types of numerical errors -
residual errors and truncation errors. Residual (solution process) errors
arise due to insufficient iterations of dimplicit algebraic equations by
relaxation or the inversion of ill-conditioned matrices. Truncation (grid
related) errors arise due to the selection of the grid, the grid-related
algebraic equations and the associated boundary and initial conditions.
Residual errors and truncation errors can be very significant. Assessing the
effects of numerical error on the modeling of the field equations is a tedious
and expensive process involving parametric cycling through various tolerances
on residual error and various grid densities and distributions. Grid length-
scale control to properly resolve shock and shear layer singularities is
unavailable except for specialized cases. Because of these difficulties,
numerical error effects are not commonly examined or controlled with precision
using conventional methods of numerical analysis, and this can lead to a
misinterpretation of computed results.

Efficient solution of the equations of fluid mechanics requires the
availability of adaptive mesh generation and numerical error assessment
methods to define numerical errors and guide the grid adjustment process. The
overall goal of this research program is the development of these methods.

The objectives of the work reported herein were to begin development of
algorithms to define error norms (for use as resolution monitors) for
numerical solution of PDE's and to begin development of a multi-level adaptive
grid technique for application to the solution of the various equation sets
used to model fluid flow. The present work is an initial exploratory
investigation of resolution monitors and adaptive grid technology.



The approach was as follows. The 1i1terature on error assessment and
multi-grid methods was briefly reviewed. From this, conventional error
assessment methods were defined and are briefly described. Three variable-
order-accuracy defect-correction approaches were identified. The
one-dimensional (1-D) incompressible potential equation was selected as a test
bed to investigate error assessment and multi-grid methods. A test problem, a
channel with a constriction, was selected for which analytic solutions were
available. The equation was solved for the test problem using point
relaxation for a range of mesh densities and distributions and the various
error assessment techniques were evaluated. The test problem was also solved
using point relaxation and a multi-grid scheme and the characteristics of the
multi-grid method were evaluated.

One result is that multi-grid schemes are promising as a basis for developing
resolution monitors and adaptive grid techniques. Brandt's methodology
appears to be the most suitable approach to adaptive-grid-control. The
present study suggests that the multi-grid technology 1is conceptually
straightforward to apply to conventional computer codes which solve elliptic
problems. A second is that for the test problem, reliable estimates of the
maximum global error were obtained from solution output for a number of grid
levels. From the work completed, it is expected that substantial improvements
are possible for assessing and controlling numerical errors. A third result
is that significant improvement for efficient residual error control was
demonstrated with the test problem. Further work is, however, required to
develop the three key elements: (1) error norms to guide grid adjustment for
truncation error control, (2) methods for efficient residual error control
(relaxation schemes that work well with irregular mesh intervals), and (3)
adaptive mesh structures based on these error norms. The efficient
interaction of these three key elements is necessary to obtain adaptive
solution of the Navier-Stokes equations.

A follow-on research program is recommended which addresses development of the
three key elements defined in the work reported herein and noted above. The
development of these elements would occur simultaneously, utilizing a series
of research computer programs of increasing complexity.

Work reported herein was supported by NASA contract NAS1-16408 and Boeing IR&D
funds.
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2.0 INTRODUCTION

The Navier-Stokes equations with continuity, energy and state equations are
the accepted analytical model for fluids whose constituative properties are
Newtonian. They apply to the flight envelope of most aircraft in the earth's
atmosphere and to all steady and unsteady 1aminar and turbulent flow processes
which influence the performance of these aircraft. The development of
numerical techniques to model the Navier-Stokes equations has been
revolutionary in recent years and the pace is accelerating.

The Navier-Stokes equations are always simplified to related but different
partial differential equations (PDE). These simplified PDE systems are chosen
to model the essential properties of the Navier-Stokes equations for the
intended application. In the solution of many of these flows, it is difficult
to sort out modeling errors from numerical errors. An obvious example is the
use of the Reynolds averaged Navier-Stokes equations for turbulent flow.

Selecting appropriate PDE systems depends upon having an understanding of the
PDE solution properties. These are defined through analytical and numerical
methods. PDE modeling depends upon understanding the numerical results
including distortions induced by numerical errors. It is important to control
these numerical distortions to within tolerances that are consistent with the
intended application. The cost to achieve a given level of accuracy is also
important. The cost/benefit relation must be readily accessible, otherwise
unrealistic 1levels of accuracy may be demanded without real benefits or
insufficient accuracy may occur with misleading results.

The present effort is directed at the physics of smooth steady flows with
interacting singularity regions such as shocks, boundary layers, free shear
layers, flame fronts and contact surfaces. Existing solution techniques for
the equations describing these flows are usually unabie to control the length
scales of the mesh in these singularity regions sufficiently to accurately
resolve these flow features because they are inefficient at the necessary grid
scales. As a consequence, computed results are of Tow accuracy.



Efficient numerical modeling of these equations with systems of algebraic
equations for a grid is difficult because of residual errors in the solution
process and truncation errors. Residual errors occur because of the Gibbs'
effect (wiggles or high frequency oscillations in the solution) and the
stiffness of the equations (acoustic, diffusive and convective stiffness).
Stiffness is defined as slow convergence toward the target of zero residual
errors. Truncation errors are due to the grid selected, the grid related
algebraic equations solved, and the boundary and initial conditions - all used
to approximate the field equations in an analysis domain. These problems are
compounded by the grid requirements of singular flows; grid length scales are
needed near singularities that vary by orders-of-magnitude from those required
in regions of low gradients in flow properties.

Algorithms for numerical solution of the Navier-Stokes equations are sought
which address simultaneously the requirements for
a. grid related algebraic solution procedures for improved reduction of
residual errors
b. error monitors that efficiently assist the grid adjustment process
and optimize the residuals relative to the truncation errors
c. solution procedures which are less sensitive to mesh and permit grid
nesting.

Adaptive grid control is the interaction of these elements to reduce numerical
error. Manual and automatic processes can be used to implement adaptivity. A
balance between computer code development time and computer code user
complexity must be kept in mind.

The multi-level adaptive grid pﬁocedure(l) produces truncation error
estimates as a by-product of the solution procedure which ¢ould be used as a
resolution monitor. This procedure is thus especially attractive as an
approach to the development of automatic PDE solvers which control numerical
errors to a prescribed tolerance.

Work reported herein was supported by NASA Contract NAS1-16408 and Boeing IR&D.



2.1 THE OBJECTIVES OF THE STUDY

The first goal of the research is the development of numerical error
assessment methods for use as grid resolution monitors. The second goal is
adaptive mesh generation methods to refine the grid locally where indicated by
the resolution monitor. The third goal is to improve the efficiency of
residual error control with non-uniform meshes. It is expected that the
availability of this technology will provide significant improvement in the
numerical solution of the PDE's of fluid mechanics. Substantial work is
necessary before this will be possible. The objectives of the present work
were to begin development of algorithms to define error norms and to begin
development of multi-level adaptive grid techniques.(l) The present work is
an initial exploratory investigation of resolution monitors, grid adjustment
methods, and residual error control efficiency.

2.2 THE TECHNICAL APPROACH

Two overall strategies are being used to guide the development of resolution
monitors and adaptive grid methods. The first strategy is to define as early
as possible all of the elements necessary to the development of the desired
technology and to address these simultaneously. The second is to use simple
one-dimensional numerical "test beds" to define and develop the necessary
technology elements. Once the technology elements are defined and developed,
extension of the technology to test bed codes for 2-D and 3-D PDE's of fluid
mechanics should be relatively straightforward. With this background, the
error-norm adaptive grid technology can then be applied to codes for efficient
solution of fluid flow analysis problems.

Specifically for the work reported herein the detailed technical approach was
as follows:

1) The 1Titerature on error assessment and multi-grid methods was briefly
reviewed. Error sources were identified, Section 3.1, and a brief
mathematical description of these is presented in Sections 3.1.1 and
3.1.2. Control of numerical error with filtering and damping and the
necessary interaction with error assessment methods are described in



2)

3)

4)

5)

Section 3.1.3. The problem of efficient residual error control is
discussed in Section 3.1.4.

Conventional approaches to error assessment and control are discussed in
Section 3.2. Three approaches were identified; the conventional
certification process, Section 3.2.1, the engineering approaches, Section
3.2.2, and the error norm approaches, Section 3.2.3.

Four error norm approaches to numerical error assessment were identified.
Conventional error norms are defined in Section 3.2.3.1. A Taylor series
error monitor approach is described in Section 3.2.3.2. Variable order
accuracy algorithms for error assessment are described in Section
3.2.3.3. Multi-grid error norms are then described in Section 3.2.3.4.

Solution of the one-dimensional potential equation was selected as a test
bed to investigate error assessment and multi-grid methods, Section 4.0.
Numerical solution of the potential equation using point relaxation is
described in Section 4.1 and using point relaxation and a multi-grid
procedure, in Section 4.2.

The test problem was solved using the point relaxation and the multi-grid
scheme as described in Section 4.3.

The various error norms were evaluated as described in Section 4.4, and an
adaptive mesh examplie is presented in Section 4.5.

Computed results were evaluated and are discussed in Section 5.0.
Conclusions and recommendations for further work are suggested in Section
6.0 and 7.0.
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3.0 NUMERICAL CONSIDERATIONS

3.1 TYPES OF ERROR SOURCES

The numerical methods for solving PDE's have two types of error sources:
grid-related solution process (residual) errors and grid-placement related
(truncation) errors. Explicit marching techniques (time or space) do not have
residual errors unless there is an implicit equation imbedded in the marching
scheme. Residual errors occur when implicit equations are solved by explicit
marching techniques, specialized relaxation schemes or matrix inversion
processes. Only ideal difference schemes have no truncation-error effects.
Practical flow analysis tools are not ideal. Truncation-error and
residual-error effects produce many curious phenomena which must be understood
in order to develop reliable error norms. The error norms must be able to
detect any spurious or peculiar numerical phenomena.

3.1.1 Mathematical Description

Let
LU=20 3.1.1-1

represent the PDE system of interest.

In discretized operator notation, equation 3.1.1-1 is
LIt = rlogl 3.1.1-2

where L1 is the discretization operator, UI is related to the discretized
dependent variable vector, and TI is the local truncation error and RI is
the local residual error for each cell of the analysis domain. The grid
structure index, I, is related to choices of the grid density distributions
for each selected trial grid where in general the computational grid features
coupled conformal grids with grid nesting in sub-regions. Ideally the grid
adjustments are made in some pattern that tend toward a limiting grid
configuration or 'goal grid.' Thus each unique grid shape is represented by
-an integer value of I. The 'goal grid' is assigned the index Ig, which is
known once the numerical error has been constrained to the desired bound.



An ideal or perfect difference scheme for 3.1.1-2 is one in which the 7local
truncation error does not contaminate the variables of interest, such as
velocity, density, pressure, etc. Only the residual errors impact these
variables. Thus, the user specifies exactly the locations in the geometry at
which values of these variables are desired. With residual error control
within adequate bounds, the accuracy of the result is insured within selected
Timits.

Non-ideal difference schemes are defined as those in which the 1local
truncation error and residual errors simultaneously influence the value of the
decoded variables. Except for specialized difference schemes for model
problems, difference schemes for conventional applied analysis are non-ideal.
Control of both error sources is addressed herein with emphasis on controlling
the truncation error. This subject is closely related to the problem of
proper grid adjustment from an initial state to the 'goal grid' state, with
proper residual control during the grid-adjustment process.

3.1.2 Truncation (Grid Related) Errors

Truncation errors are due to the selection of the grid, the grid related
algebraic equations, and the boundary and initial conditions which approximate
the field equations of interest.

The local truncation error is formally defined as the magnitude that the
left-hand side of (3.1.1-2) yields for each cell when the ‘goal grid' solution
is interpolated (restricted) to a trial grid difference equation minus the
interpolated value of the left-hand side of (3.1.1-2) from the 'goal grid'.
It is set at zero in conventional representations of (3.1.1-2) for all values
of I. In the defect- and deferred-correction methods discussed in Sections
3.2.3.3 and 3.2.3.4, truncation error estimates are used to correct for
truncation error effects. The right-hand side of equation (3.1.1-2) can also
be a high-order accurate truncation error correction.



—

3.1.3 Filtering and Damping Spurious Numerical Waves
The linear wave equation is

uy + uz =0

This equation exhibits many of the features of the convection terms of
Navier-Stokes equations but it is simple enough that the powerful methods of
linear analysis apply. Such analysis indicates that all the numerical methods
that have been applied to model this equation have the following properties:
Control of the phase errors, amplitude error and the Gibbs-effects errors
within selected accuracy bounds depends upon the proper grid density selection
per period of propagation for wavelengths of interest and with properly
designed Gibbs-effects filters. Truncation errors have an accumulative effect
upon the accuracy.

Gibbs-effects errors are high frequency oscillations near the juncture of
sharp changes in gradients. For the linear case, the Gibbs' error wavelength
is about four, seven, sixteen and infinite (zero Gibbs effect) mesh intervals
for eighth, fourth, second, and first order accuracy convective difference
schemes, respectively. For nonlinear cases such as near shocks, the wave
length of the Gibbs-effect error is about two mesh intervals for most schemes
of all orders of accuracy above two. Wavelength smoothing(Z) is very
effective for controlling the amplitude of the Gibbs effect to within chosen
bounds without introducing global damping. Low order accurate Gibbs-effects
filters are especially useful for providing the global damping that is
necessary for removing transient waves from certain types of relaxation
processes. When properly tuned for the most effective use of the grid, the
low order accurate filtering devices while serving to adequately damp the
global waves may not provide sufficiently for the control of the Gibbs'
oscillations within desired bounds. Wavelength filtering in addition to the
global damping is well suited to the control of the Gibbs' oscillations within
desired bounds because the smoothing can be localized as desired.

Intelligent use of smoothing is one of the central difficulties of modeling
transient and steady state analysis involving mixed elliptic/hyperbolic
equations. Where analytical solutions are unavailable, the error norms for
analysis of required accuracy must account somehow for the phase, amplitude



and Gibbs-effects errors. The question whether the solution processes must be
free of Gibbs-effects errors should be treated in future work?

Dissipative and non-dissipative convective difference schemes permit expansion
shocks, artificial gross separation, etc. to form under certain conditions.
Artificial diffusion is added to eradicate the expansion shocks. Tuning the
artificial diffusion coefficients for peak accuracy is troublesome. The goal
of the tuning process is that the artificial diffusion must decay globally and
locally with mesh refinement so that the accuracy of the sonic line shape and
position increase with mesh refinement. The error norm used must ensure this.

3.1.4 Residual Errors

The numerical modeling of the potential equation or of the Navier-Stokes
equations leads to algebraic forms in which the propagation of signals is
retarded as the grid density increases. This stiffness probiem leads to
inefficient reduction of residual errors among the simultaneous system of
algebraic equations, often leading to exponential or power function decrease
in convergence as the grid density increases. Typically diffusive stiffness
is evident in potential flow codes. In Navier-Stokes codes, three stiffness

problems can appear simultaneously or separately - acoustic, convective, or
diffusive stiffness and can be aggravated by non-uniform grid. Any or all of
these factors can undermine the convergence rate severely and can enlarge
errors substantially. The error monitors must be designed to detect slow
convergence or inefficient residual error control. For some error norms this
is a severe requirement. When the Jocal residual error is reduced to some
fraction of the local truncation error, further reduction of the residual is
not cost effective; determination of this fraction is a subject for further
study.

3.2 ERROR ASSESSMENT AND CONTROL

Three approaches are used to assess the accuracy of PDE modeling. The first
is to construct an error difference table with solutions on trial grids of
various mesh densities and distributions. The second is the use of auxiljary
information such as experimental data and related analytical solutions for
various regions of the analysis domain, and the third is the use of the local
truncation and local residual error estimates associated with suitable error
norms and error bounds. These three are referred to as the conventional,

10



engineering (analogical) and the error-norm approaches to certifying the
accuracy of PDE modeling. Direct numerical evidence of the accuracy of the
PDE modeling results from the conventional and error-norm approaches. These
methods have their origins 1in numerical analysis technology. In the
engineering approach no attempt is made at achieving direct evidence.
Inferential reasoning is predominately used. Discussions of this are given in
the following sections.

3.2.1 Conventional Certification Process

The process of numerical error assessment with conventional PDE modeling
techniques is the fo]lowing.(3) A solution of finite difference equations
(simultaneous system of algebraic equations) for a specific discretization of

the analysis domain is generated for different choices of grid density and
grid distribution in the analysis domain. It is common to use a sequence of
grids of the same grid distribution that differ in grid count in each
independent variable direction by factors of two -- 2, 4, 8, 16, 32, etc. The
coarser grids can be generated by deleting every other point of the finer
grids. The effects of the choice of grid distribution are examined by
choosing sequences of grids which have different mesh distributions. The data
from all of these solutions of the grid-related equations is organized by
constructing an error difference table. Solution differences are posted in
order of the coarse-to-fine grids for each grid sequence. The solution
differences are generated by subtracting the values of adjoining pairs of grid
solutions of the dependent variables at all physical locations in the analysis
domain that correspond to the grid coordinates of a grid of a selected
intermediate density. Interpolation is used to relate other grid solutions to
these selected grid coordinates. As the grid density increases the
differences should decay approximately* according to the formal order of
accuracy for some selected mesh distribution. Iterative adjustment of the
grid distribution and density is made until this type of error decay is
realized. If this occurs, extrapolation may be used to solutions at infinite
grid density and reliable estimates of the maximum global error may result.

*Error decay according to the formal order of accuracy is expected globally
but not locally in regions of singularity.

11



The preceding process appears to work best on the modeling of parabolic and
elliptic equations in smooth domains with smooth boundary conditions. For
mixed elliptic/hyperbolic systems, erratic results may occur due to unresolved
singularity regions and/or poor residual error control, and/or Gibbs' error
effects.

A key feature of this method is that grid adjustments are made in some pattern
that tends toward a limiting grid configuration. A way to think about this is
to define a goal grid to which the selected grid sequences must evolve. The
'goal grid' is a grid upon which the solution is sought to some specified
error bound. It should be understood that the 'goal grid' may not be unique
because of grid initialization, grid generator, and grid-equation solver
properties. It is assumed that adequate control of the residual error effects
has been maintained in the process of assessing the truncation error effect.
This is done by developing a sequence of several solutions on each grid choice
with various choices of constraints on the residual tolerances that are used
to terminate the computations for each solution on that grid. Because of the
need to assess the contamination by residual error, the 'goal grid' may not be
the grid of greatest density but it will have the correct shape.

Conventional techniques for developing the data necessary to certify the
accuracy of numerical modeling procedures are limited by the following factors:

1) Costs.

2) Because of (1) above, a very limited number of solutions and thus
sparse information are usually available from which error estimates can
be constructed.

3) Because grid adjustment to control the error within desired bounds is
cumbersome or impractical, arriving at proper grid configurations in
mesh density and distribution is also difficult or impractical.

4) Numerical error during grid refinement may vary erratically, not

monotonically with grid density. Confusion as to grid adjustment needs
can result.

12



5) The software is usually not available for conveniently constructing the
error table. This means that the error assessment process is manpower
intensive. These factors discourage development of the 'goal grid'
solution. Without this, the accuracy of the result is unknown; the
meaning of the result is undefined and useless unless appropriate
external information (user experience) is applied to the result.

The certification process with conventional computer codes utilizes error
information from many grid densities and grid geometries. This 1is a
multi-grid process albeit a very cumbersome and inefficient one. For the
present purposes this technology will be referred to as fixed grid (FG) even
though it is not, when properly used for numerical error assessment. It is
called FG because that is the manner in which it is used in appiications; the
error term associated with each number in the output is set to zero and this
is often ignored in the use of the numbers from the output.

3.2.2 Engineering Approaches
Judgement in engineering applications as to what grid should be selected for

numerically modeling a PDE system is often based upon an exterior body of
knowledge(3) rather than direct numerical evidence. For example,
boundary-layer analysis can be performed with finite difference and related
analysis tools. Mesh refinement studies and conventional error norms can be
used to define the accuracy and grid-choice relationships. Similar studies
can be performed on free shear layer and inviscid model problems with
analytical solutions to establish the accuracy and grid-choice relationships.
The various component features of the physics of the PDE system can be studied
in this manner. The selection of the trial grid for the PDE system of
engineering interest can be made upon the baéis of the physics that is
expected in each flow region of the analysis domain. The grid selection in
the various flow regions of the analysis domain can reflect the desired
accuracy that is required locally and globally for the purposes of the
analysis. Interpretation of the results of numerically modelled PDE systems
involves qualitative aspects of the solution. Inspection is used to insure
that solution features such as wall shear stress, wall boundary layer, free
shear layer, inviscid structure, or shock structure characteristics occur

13



where they are expected. The success of this approach depends on the
knowledge and skill of the analyst and the time allotted for the analysis.
Important physical processes may be inadvertently 1gnored because numerical
errors mask solution properties. For example, artificial diffusion can be
interpreted as turbulent diffusion.

Another approach to grid selection is used in engineering applications as well
and sometimes augments the above approach. It involves the comparisons of
computed and experimentally measured flow properties. Grid and local and
global numerical smoothing adjustments are used to generate favorable
agreement between the computed and measured flow properties. Where
experimental data is available, this approach is preferred to those that are
described above and it encourages the use of analysis for predictive purposes
where favorable agreement occurs.

In engineering approaches, direct numerical evidence is not used to understand
the nature of the numerical properties; rather inferential and analogical
reasoning are used.

3.2.3 Error Norm Approaches

Four possible methods are considered here. The first method is a brief review
of conventional error norms; the second is the use of truncated Taylor series
expansions for an error monitor; the third is the use of variable order
accuracy algorithms; and the fourth is the multi-grid approach. These are
discussed below.

3.2.3.1 Conventional Error Norms

Standard error norms(q) include:

£, = Lot - othjam 3.2.3.1-1

E, = [z(¢I - qa“)zx (912142 3.2.3.1-2
_ I 11, 1 .

E o = L]0 -0 sof 1 3.2.3.1-3

¢ = amplitude
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where ¢I is the dependent variable of the analytical solution restricted to
the coordinate location of grid point I. N is the number of grid points.
¢Il is the discretized solution on grid I. The sums denote component sums
in 2-D and 3-D situations. El’ Ez, and Emax are known as the average
error, the root-mean-square (rms) error and the maximum global error,
respectively. The %nax norm is best applied to non-singular probiems (no
shocks, shear 1layers, or geometry discontinuities) with smooth boundary
conditions although it can be used if the regions of steep gradients are
excluded. E1 and E2 are used for singular perturbation problems including
the steep gradient regions. The use of these definitions as written depends
upon knowing ¢I which 1is not available for cases of general interest.

However, modified forms of these relations may be considered.

For example, equations 3.2.3.1-1 through 3.2.3.1-3 can be given by:

X122 [ g™ - oMM laczy I 3.2.3.1-4
5211’12 = [z((¢12 - ¢11)z/(¢12)2)]1/2 3.2.3.1-5
11,12 _ 12 411, 412

Enae = LG - 0% /01751 3.2.3.1-6

p1d

s s e

where ¢12 is any of ¢11+1 011+2 . ¢12 is also regarded a

higher order accurate solution on grid I1. G(Z) is a weighting factor which
may be used to exclude regions in the analysis domain where the Tlocal
truncation error estimates exceed a selected threshold value. N is the number
of cells in the summation. These error norms should be of general use for
understanding the role of residual and truncation errors, especially when used

with the error norms discussed below.

There are error estimators in addition to the ones 1isted above which should
be considered in any application of interest. For example, certain components
of PDE systems require that kinetic energy, mean vorticity, total pressure,

entropy, mass, etc. should be conserved. Discretized forms of these integral
relations could be constructed which are relevant to the application of
interest.
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3.2.3.2 Taylor Series Error Monitor

The idea of using truncated Taylor series expansions for an error monitor has
been explored and conclusions about the cost effectiveness of such a
development are summarized as follows. Consider a simple harmonic function
such as the y=sin x. From calculus, the derivatives of all orders exist. The
odd-order derivatives vanish when the modulus of the even-order derivatives
are maximum. At the least, pairs of odd-order and even-order derivatives
would have to be approximated by finite difference expressions to prevent

spurious decay of higher-order terms in any proposed error monitor. The
second requirement is that, in regions of the grid with long wavelength
variations of a dependent variables of interest, it must establish how many
pairs of odd and even orders are required to certify the numerical accuracy of
the PDE modeling. The third requirement is that, since high frequency
oscillations (two mesh interval 1limit) can excite two mesh interval
oscillation on all discretized derivative of the order of two and above, this
information must be wused somehow to sort Gibbs errors, geometric
discontinuities, etc. While the Taylor series error monitor idea is
intriguing, it has conceptual and implementation problems. The next section
describes a related but perhaps better approach to error assessment.

3.2.3.3 Variable Order Accuracy Algorithms for Numerical Error Assessment*

Rather than using only mesh refinement to assess numerical error, it is
conceptually reasonable to define numerical algorithms of variable order of
accuracy from which direct error estimates emerge for a given grid. A way to
think about this is to define a sequence of higher order accurate discretized
solutions on the same grid each of which satisfy a certain smoothness
property. The higher order accurate solutions on the grid are regarded as the
trial analytical or reference solutions. The lowest order accurate solution
is regarded as the approximation. The error estimate is performed with
conventional error norms. The error norms of Section 3.2.3.1 are slightly
modified for error assessment by using higher order accurate solution data in
place of the I2 finer grid data. Iteration can be used to determine how high

*  Defect- and deferred-correction schemes are closely related because error
estimates are used to improve the efficiency of residual error control.
Both methods are multigrid methods.
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the order of accuracy must go for reliable error estimates. Grid adjustments
are needed to provide the highest order accurate scheme with sufficient grid

to meet desired accuracy bounds.

To implement the above process, a convergent variable order of accuracy
algorithm approximating the PDE system of interest must be available. For the
boundary layer equations, Wornom presents an approach. Forester(Z)
suggests a method for mixed hyperbolic/parabolic PDE systems using odd-degree
splines although other basis functions can be used. The order of accuracy of
this scheme is selected simply by choosing the appropriate coefficient matrix
that is associated with the desired accuracy. With this method, orders of
accuracy six, ten, fourteen, nineteen, etc. are possible and they are
activated by an input control function. Interpolation is used to initialize
successive solution processes of higher accuracy.

(6) (8)

Lindberg' ™", Pereyra(7) and Stetter have developed an approach which
is related to the one described above but in which certain simplifications are
implemented. Basically Lindberg uses a low order accurate approximation to
the PDE system with a non-zero right-hand-side term that is lagged in the
iteration process. This perturbation operator is a high-order-accurate
discretization (usually fourth order) of the PDE system. The data for the
perturbation operator is derived from the 1low order of accuracy discrete
equation system solution. The perturbation equation is repeatedly solved
until some convergence criterion is satisfied. The output of the perturbation
equation is a correction parameter. It is added to the low order of accuracy
solution to yield a fourth order accurate solution at convergence. Error
estimates are produced with conventional error norms by using the high-order-
accurate solution as an exact representation of the PDE system. The low order
accurate result represents the approximate solution. Lindberg presents many
examples of the efficiency of this defect-correction procedure to reduce
residual and truncation errors. Success is not universal with hyperbolic
problems, however, when some smoothness property is violated. 1t may be
inferred from Lindberg's data that if sufficient smoothing 1is applied to
regions of rapid change in gradient, convergent results are achieved. To make
Lindberg's scheme useful for hyperbolic systems, empirical studies would have
to be performed to develop criteria for how local the smoothing must be
constrained so that the global errors are definable. See Section 5.3 for

related discussion.
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The approaches of references (1-8) presume that some sort of mesh refinement
process toward the 'goal grid' 1is wused. The accuracy of these error
estimators improves dramatically as the accuracy moves toward the one percent
error range. They are useful guides for grid refinement when errors are
larger than ten percent but are not precise in the predicted magnitude. These
approaches are promising for modeling mixed parabolic/elliptical/hyperbolic
systems of equations but are difficult to implement when grid nesting is

required.

Another approach to defect-correction has been proposed by Brandt(g). This
approach suggests variable order of accuracy, nested grids, ennancement of
residual control efficiency and the efficient generation of an error term that
may be useful for numerical error assessment. This approach has been called
the multigrid method but it is misnamed since all numerical assessment and
control schemes are multigrid.* Many variations of this methodology are
possible. Most exampies of this approach(l’e’lo) are for residual control
efficiencies near theoretical limits with uniform grid intervals. Irregular
grids (nested grids) have yet to be widely addressed in this method.

3.2.3.4 Multi-Grid Error Norms

Modifications are suggested in Section 3.2.3.1 to conventional error norms for
assessing numerical error schemes. This is applicable to the FAS-MG (Full
Approximation Storage-Multi-Grid) scheme with one exception. The solution
data at each grid level must be saved before finer grid levels are invoked in
the multi-level solution process. This approach insures that the targets of
residual and truncation errors are zero in the output for the various levels
of grid. If this is not done, solution errors may appear on coarser grids

when in fact none exist.

The FAS-MG scheme estimates local truncation error by interacting coarse and
fine grid solution data. Brandt suggests that the weighted integral

Er = [6(2)|T(2)]dz 3.2.3.4-1

* Brandt's approach could be called defect-correction multi-grid or Tau multi-
grid, TMG.
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is a measure of global error level, Er, where G(z) is eitner zero or unity.
G(z) represents a weighting to exclude singularities in the analysis domain.
T(z) is the 1local truncation error. The discussion in paragraph 3.1.4
suggests that additional error norms should be considered for the control of

residual errors. For example, relationships such as

Ep = [IR(2)]dz 3.2.3.4-2
Epr = [IR(2)]/|T(2)]dz 3.2.3.4-3
may be suggested.

These error norms can be readily generalized for more space dimensions. R(z)
and T(z) are normalized by some suitable reference quantity so that they
cannot exceed unity during the solution process. Singularities in the PDE
modeling are detected by T(z) of the order of unity.
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4.0 NUMERICAL ANALYSIS AND RESULTS

With reference to the technical approach, Section 2.2, solution of a
one-dimensional potential equation was selected as a test bed to evaluate
error assessment and multi-grid methods. Solution of the one-dimensional
potential equation was selected because of its simplicity, only a single
dependent variabie. The equation was solved using a point relaxation scheme
alone and then a multi-gridded point relaxation scheme.

A test problem, a channel flow with a constriction, was selected because
analytical solutions are available for comparisons with the numerical
solutions. The test flow was solved for a range of mesh densities and
distributions and the more promising error assessment techniques were

evaluated. The test problem was also solved with a multi-gridded point
relaxation scheme to understand and evaluate the characteristics of the

multi-grid scheme. A semi-self-adaptive mesh scheme was briefly investigated.
4.1 SOLUTION OF THE 1-D POTENTIAL EQUATION

The discretized 3-D full-potential equation for steady incompressible flow is
restricted to a 1-D analysis tool by deleting the K and L indicies in the Ref.
10 formulation. The total velocity can be computed in many ways. One
formu]ation(IO) yields values of the total velocity in which the truncation
errors in the velocity potential do not contaminate the computation of the
total velocity.

The forms of the 1-D continuity equation for the purposes of the present study
are in terms of the primitive velocity component, W, and the velocity
potential, ¢. They are given by

(WA), = 0 4.1-1
[¢ZA]Z =0 4.1-2
W=9, 4.1-3
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where A is the channel cross section.

The transformed discretized forms of these equation are given by

I I I
OO (D) )y = (N (D)) 07 = Ty - Ry 4.1-4
I_ .1 I
[(¢M+l - ¢M)(CM+%) - (¢M - ¢M-l)(CM-'A)] - TM - RM 4.1"5
I . I

Miese = Ll = Q) (Cpgg) /Byayg)] 4.1-6

I = grid level index, I = 1 coarsest grid, two cells in domain range of
zero and unity for Z/L

Oy, = (20D d /WLy + VL )
Dwee =1 Vi
Ve =1 Z less than zero
Ve 18 = Y(z) 0<Z<L cubic functions
YM+'A =1 Z greater than 1
Wy Oy Oy Mg = Yo /2

residual error due to inexact solution process

=

M = the grid index of cell centers

M = 1, dummy cell for boundary condition data
M = 2, first cell in analysis domain

Ml = Mpax t 1, last cell in analysis domain



=<
N
[}

Wnax + 2, dummy cell for boundary condition data

¢M2 = We (VLMl + VLMZ)/(DM1+%)/2 + Oy, boundary value
0, = ¢2 - We (VL + VL,)/(D,_,}/2 boundary value
M+15,M-% = grid index of cell face of cell M, Lyry -y,
Mmax = grid index of cell face on cell M

We = velocity at entrance of the 1-D channel

Given We, DM+36 for 2<M<Ml, and RM for 2<MdM1, equation 4.1-4 is
solved exactly for Nm+}&by marching from M=2 to Ml. The analytical solution
to equation 4.1-1 is recovered by equation 4.1-4 at any selected z coordinates
if Ry is identically zero during the marching process (round-off error
effects are ignored for practical purposes.) With T& and Ré
selected equal to zero, equation 4.1-4 is regarded as a perfect or ideal
difference scheme. Equation 4.1-5 is regarded a perfect difference scheme in

terms of NM since equation 4.1-4 results from combining equations 4.1-5 and
4-1-6-

Relaxation methods can be used to approximate equation 4.1-5. Two relaxation
equations are

+ I
Oy = CLOOR ) (Cy) + (O ) (Cy /L oC )]

a = o, Richardson scheme 4.1-7a
a =+ , Liebmann scheme 4.1-7b
; = updated

@ﬁ = 0ld value

22



Note that %n is set to zero when deriving equaions 4.1-7 by the manipulation
of 4.1-5.

The FG method of solving equation 4.1-2 is defined by iterating equation
4.1-7a or 4.1-7b until some test on the residual show that this process should
be terminated.

4.2 SOLUTION OF THE 1-D POTENTIAL EQUATION WITH MULTI-GRID

The FAS-MG scheme is more elaborate. It is defined as follows. Equations
4.1-7a and 4.1-7b are modified by inserting a term, RSy, into the numerator
so that they read

+y a 0 1 1
() = LCOM_1)(Cyy) + (O (Cppnd + RSIT/(Cppyp + Cy )
a = 0, Richardson scheme 4.2-1a
a = +, Liebmann scheme 4.2-1b

I_ /70 (alg I 41 I 1 plg I 419 I
RSy = [lIpg(Bydy) = Trg(@y™)) MGy o)™ = (11 (0™ - 110 (2 Gy )

- 1l 1O Sy = (Byrbiy1)(Cyy )11 4.2-1c

R%&is the local truncation error estimated on grid 1 relative to grid Ig
on which RS,%Ig is set to zero. I%Q is the restriction operator for
the conversion of data on grid Ig to a usable form on grid I. The subscripts
in equation 4.2-1c refer to grid I. The process of generating ¢&g data
that is necessary to use equation 4.2-1c is provided in an excellent form by
Brandt (Ref. 8). The variant of this process adapted here (see diagram 1) is
to start on the coarsest grid (Level 1) with equation 4.1-7b. When the mean
residual tolerance of 10'4 or lower (see below) 1is satisfied, standard
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Tinear interpolation of the velocity potential to the next finer grid level is
implemented. Equation 4.1-7b 1is iterated on this grid (Level 2) until a
minimum number of iterations (1, 2, 4, 8, 16, 32 were used) are completed.
Further iterations are required if the ratio of the new and old residuals, the
eigenvalue, is less than some amount - .82 was used based upon trial-and-error
experience. The rate of residual error reduction is slowing if .82 is
exceeded. When this occurs, it is time to switch to the next coarser grid
(Level 1). This means that the bﬁ are interpolated from the Level 2 grid
to the Level 1 grid and Equation 4.2-1b is introduced. RSy is estimated
from Equation 4.2-1c with Ig replaced by 2. A converged solution to a Tow
residual tolerance is produced on Level 1. Velocity potential data for Level
2 again must be interpolated from existing data at Levels 1 and 2. For this
purpose, Brandt's prolongation* operator is used. The details of this
equation are provided later in this discussion. It may take several Level 1
and Level 2 cycles before a low residual tolerance is achieved on Level 2.
Once convergence on Level 2 is achieved, prolongation to Level § is used with
standard linear interpolation of the velocity potential on Level 2. Equation
4.1-7b is iterated on Level 3 until the minimum number of iterations are
performed or until the critical eigenvalue is exceeded. Restriction to Level
2 provides an estimate of Rsﬁ from Level 3 using the Equation 4.2-1lc with
1g replaced by 3. Level 2 is iterated with this value until the solution is
stalled. Restriction to Level 1 provides a corrected estimate of RS%I
Cycling between Levels 1, 2, and 3 continues until Level 3 residual tolerances
are satisfied. Level 4 is then used. This process can go on indefinitely,
but it is usually terminated at Level 5. See Diagram 1 for a flow chart
description of the FAS-MG scheme that is used.

The Rq} term is composed of two components -- the residual and the local
relative truncation estimate. At the finest grid yet arrived at during the
multi-level solution process, these elements are of equal and of opposite sign
so that the target of Rsé is exactly zero. In regions of the coarse grid
sclutions where the truncation error estimate should be zero, it is not zero
but it has a magnitude proportional to the residual error on the finest grid
yet arrived at. Its actual magnitude depends on how many grid levels it is

*Prolongation is defined as interpolation to a finer grid.
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Brandt’s FAS— MG Scheme (Modified with Error Control on Residual)
Coarest-to-Finest Grid Approach to L $=0

IS ~ Finest Grid to be
Cycled Through to
Generate Trial Error Dats

IS — May not Equal Ig (“goal grid™)
a — Scale Factor for Reducing

Inutialize Residual Tolerance as
rRsl =0 Desired
¢1 =0 Exoi” Tolerance of Error Norm
1
RT = 1074 %! Desired
Set Coefficients EC — Choice of Error Norm Desired
1=1.K=1 12=1S, 11 = IS —1,= IS =2, etc.
l n — Relaxation Stalling Factor
Relaxation Loop :
R‘l)=eo > LI¢I-RSI RO'RI
= =K +
K =1 R;_¢x+1_¢x K=K+1
RT =Q(RT) K Iteration Counter
g 1112 No Yes
11.J2 Error
Ey . "N Tolerance Yes
E 11,12 Satisfied
- E < E'l‘ol
ER
T 12
max Error Norm Plus
Error Bound Choice
Yes
Constraint
Prolongation Full Restriction Operators
Il o ()19l
¢pi=1ple
- I=[l
1+1 1+1 1+1¢h1 4l +1) e
- pri(e! -1
¢ ¢ + " ¢ |+1¢ RSI = Ll ¢l _ l{ + (Rsh-l ~ LI+t ¢ [4,1)
I=1+1 I
Tl = ~RS
v .
DIAGRAM 1
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removed from the finest grid yet arrived at. A rule-of-thumb is that the
residual error of the finest grid yet arrived at is about doubled each time
the grid intervals are doubled.

For the present studies, two approaches to the selection of residual
tolerances are examined. The residual tolerance can be chosen either for the
coarsest grid or the finest grid. In the former method, the coarsest grid
residual tolerance is reduced by a factor between two to four each time the
grid size is doubled. Alternatively, if the finest grid residual tolerance is
chosen, it can be applied to all grid levels. Both methods have been used.
The 1latter method is recommended for simplicity in the use of the modified
error assessment formulas of paragraph 3.2.3 which are discussed in Section
4.4,

4.3 THE TEST PROBLEM

The 1-D test problem involves an analytical geometry of a straight channel
with a cubic function for a constriction that reverts either abruptly
step-wise or smoothly to a straight channel. Fiqure 1 shows the channel
section shape distribution with respect to the flow direction. Figure 2 snows
the analytical solution restricted to 65 grid coordinates (64 cells) with the
grid intervals constant. Eleven trial fine-grid sets were used to examine the
1-D potential solution properties for a) grid with uniform mesh intervals,
b)grid with uniform mesh intervals in the region of cross sectional area
variation but with a stretch factor of two in the straight sections, and c¢)
grids with uniform mesh intervals in the straight sections but with a stretch
factor of .80, .85, .90, .95, 1.0, 1.05, 1.1, 1.15, and 1.2 in the constricted
region where the finest grid is near the abrupt enlargement of the channel
cross sectional area for stretch factors less than unity. The total number of
grid intervals for each set of trial grids are 4, 8, 16, 32, and 64, where the
number of grid intervals in the constriction region are respectively 2, 4, 8,
16, and 32. FG and MG methods have been applied to generate solutions, shown
in Figure 2, by the solid line for the finest grid. Also shown in Figure 2 is
the FG and MG solutions with very high residual error tolerances. Using point



relaxation* and sweeping the grid in the flow direction, MG yields a maximum
global error** of less than 4% in the equivalent*** of twenty-five sweeps of
the 64 node grid, whereas FG requires over one thousand sweeps of the 64 node
grid to achieve the same accuracy. The maximum error occurs at the geometric
discontinuity. Increasing the accuracy by an order of magnitude requires less
than a factor of three increase in the work for the MG and the FG. The
process of solving the problem to greater accuracy can be continued until the
maximum global error satisfies desired constraints up to round-off error
effects. The boundary conditions are imposed both on the FG and MG as set
mass rates of equal magnitude at the entrance and exit cross sections.

Figure 4 shows the truncation error spectrum for the peak values of the local
truncation error asymptotically approach nearly the same values including
T-extrapolation, on the next-to-the-finest grid solution. The magnitude of
these terms are substantial near the discontinuity and, because they form the
right-hand side of the cell-wise flux balance equations, induce large errors
in the total velocity profiles that are shown in Figure 3. The coarse-to-fine
grid correction equation of Brandt very effectively interpolates the Poisson
type solutions on coarser grids so that the coarser grid solutions mimic the
finer grid solutions. Standard interpolation (prolongation)},

¢I+1 I+1 ¢I )

new new

cannot account on the next finer grid, I+l, for the fact that the right-hand
side term is significant in the coarser grid solutions. For this reason,
standard interpoliation is not useful and must be replaced by a more elaborate
interpolation. Brandt recommends (for prolongation)

I+1

I+1 _ I+1 I+l
(¢ old

new new II+1 old) +

*  Both Richardson and Liebmann point relaxation were used. As expected, the
efficiency of FG and MG are improved with Liebmann relaxation.
Conclusions about the asymptotic efficiency with mesh refinement holds
irrespective of the form of the relaxation used here. All of the
displayed results are with Liebmann relaxation.

** The global error is defined by equation 3.2.3.1-3.

*** See the discussion in Section 5.2 for a definition of equivalent sweeps.
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where I£+1 is the fine-to-coarse grid interpolation operator and
I%+1 is the coarse-to-fine grid interpolation operator. This expression
functions well as illustrated in Figure 5. Linear interpolation is used for
these operators with weightings of 1/4 and 3/4 for I&+1 and weightings of
1/2 and 1/2 for I%+1. These weightings are derived directly from the
geometric relationship between the coordinates of the cell centers of the two
adjacent grid levels whose cell faces coincide at every other cell face. No
modification of this weighting is used for stretched grid cases whose
principle effect is to retard the convergence rate by up to one-third for

cases with stretch factors of .80 and 1.2.

4.4 ERROR NORM EVALUATION

The utility of the error norms of paragraphs 3.2.3.1 and 3.2.3.4 is examined
in this section. Errors in the computed velocity are studied with the use of
the maximum global error estimator and average and maximum truncation error
estimators. It is expected that similar conclusions would be reached if other
error estimators of paragraph 3.2.3.1 were used.

The unmodified (analytical reference) and the modified (finer grid reference)
maximum global error norms (Emax’ E;;;Iz) of Section 3.2.3.1 and the
error norms of Section 3.2.3.4 have been applied to a number of cases of 1-D
incompressible channel flow that have smooth and abrupt cross sectional area
changes. A new error norm is defined and is used as well. The results for
these error norms are summarized as follows.

To illustrate the properties of E, .. and E;t;iz, an output station
is chosen for which the grid levels -- 2, 4, 8, 16, and 32 cells in the
transition region of the channel geometry. In all cases, the location is
selected nearest the minimum channel cross section where the largest errors in
velocity reside. Emax increases in size as the grid size and/or the
residual tolerances grow. However, this nice behavior does not occur with
gll,12 11,12 is not unique since the output from the various

max ° ax
grid levels, I2, is used for the reference solution.
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Let 12 equal grid levels 2, 3, 4, and 5 to examine the maximum estimated
global error for the coarsest grid, Il=1. Eéi;lz values 1ncrease in

size as the reference grid level and/or the finest grid residual tolerances

I;;IZ values are a measure of relative error between solutions

at different grid Tevels and as such may have a different sign and level than
Emax' Furthermore, I;;IZ values define the error in the reference
grid solution, 12, rather than in the approximate solution, I1, under

examination. This conclusion is predicated upon having the residual tolerance

grow.

for the approximate solution within an error bound that is about the same
magnitude as the reference grid which causes a more accurate coarse grid
solution than that of the finer reference grid solutions. This result holds
strictly only for a perfect difference scheme. For nonperfect difference

schemes, 1local truncation error will 1likely dominate the coarse grid
solutions. However, it is possible that peculiar Tocal truncation error may
produce smaller real error in coarse grid solutions. Therefore, it is
necessary to use additional information to determine if the error indicator
%;;;IZ is a measure of coarser grid error. One method of determining
this is to examine the behavior of Eéi;lz as the residual tolerance is
reduced. For a nonperfect difference scheme, E;;;Iz should reach a
fixed value for some range of residual tolerance. If so, the E;§;12
indicator is measuring the coarser grid error. Otherwise, residual error
effects are dominant.

The behavior of Epial? s illustrated  for  EJ:Y, £ and
Eé;i. E;éi predicts the error in the le%SE 4 solution to about
thirty percent accuracy of the true error. Emax predicts the error in
the level 5 solution to about a five percent accuracy of the true error on
level 5. Eé;i predicts the error in the 1level 5 solution to about a
one-half of one percent accuracy of the true error. These statistics are for
a residual error of 10'6 at all grid levels. This residual tolerance
reflects about a one tenth of one percent true error range for the level 5
solution. For the ten percent true error range of level 5 solutions, the
precision is reliable to better than an order of magnitude. This provides a

useful guide for grid density adjustments.
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The behavior of Eéé;lz is spurious when the residual is controlled on

each grid level to yield the true error of the same magnitude on each grid

level. Brandt recommends residual error control in this fashion which renders
11,12

Emax

because nonideal difference schemes may locally, in certain cases, behave 1like

an ideal difference scheme, it is suggested that it is better to control the
residual to the same level on each grid level even though this guideline may
not yield peak computatonal efficiency excliusive of the error assessment costs.

useless for ideal difference , schemes. For this reason and

Application of Equation 3.2.3.4-1 with G(z) set equal to unity yields the
average value of the local truncation error. The average and maximum values
of the local truncation error are examined for utility in error assessment.
When scaled by the channel cross section, these quantities are converted into
average and maximum velocity perturbations, respectively. The scale factors
are the average and the minimum channel cross sectional areas, respectively.
These velocity perturbations have been correlated to the maximum global error
in the fluid velocity for various grid levels that contain the nonzero R.H.S.
on all but the finest grid. The average velocity perturbation predicts
conservatively the right order of magnitude that the MG generated maximum
velocity must be corrected by in order to estimate the error in the MG
output. This result applies to smooth and discontinuous channel shapes with
uniform grid intervals. The use of the maximum value of the local truncation
error appears to be best reserved for locating discontinuities in the solution
since it tends to overestimate the solution error levels in all grid levels.
This error estimator will be especially useful to identify regions in the
analysis where the mesh interval is too large irrespective of how coarse the
grid is in the neighborhood of discontinuity in dependent variables such as
temperature, pressure, tangential velocity, etc. For the immediate future
this error estimtor has application to all existing flow codes. The
installation of the FAS-MG scheme in these codes would be useful just for that
purpose alone. Considerable cost saving could be realized by using this
method of guiding the grid adjustments.

Only one exact method of evaluating the maximum and local global error has
been found for the perfect difference scheme. The sums of the same-sign local
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truncation error are converted into velocity perturbations by the use of
Equation 4.1-4. The sign content of these terms oscillate to produce

non-smooth corrections. Starting at the edge of the analysis domain, these
sums are added one-by-one. This velocity is called the modified exact
velocity. At each point where the sign change occurs in the velocity
perturbation, the error between the grid solution and the modified exact
velocity is computed and saved. All of these errors are sorted until the
largest is found. The largest value is the maximum global error on the finest
grid level to within round-off error effects which means that it has extreme
accuracy. Roughly the error is bounded by one part in ten to the ten on the
CDC CYBER 175 computer.

4.5 ADAPTIVE GRID EXAMPLE

In this section, uses of the 7local truncation error estimates for grid
adjustment are discussed. A simple example of semi-adaptive grid refinement
is shown in Figure 6 in which grid compression toward the region of high local
truncation error is used. Iterative grid compression is continued until a
condition of the maximum normalized local truncation error is less than .08.
Semi-adaptive grid compression is implemented in the interval 0 < Z/L < 1
by iteratively decreasing the grid stretch factor from an initial value of 1.2
in steps of .05. As expected, the tolerance on the maximum local truncation
error is not satisifed as long as an exact step-wise discontinuity is enforced
at a Z/L equal to unity. With a cubic transition function in the interval
31/32 < I/ < 32/32 which has a slope continuity with the remaining
channel geomtry, 1local truncation error reduction results with grid
refinement. Figqure 6 shows the results of the analytical solution and
solution with a grid contracted toward Z/L equal to unity. Over an order of
magnitude reduction in the 1local truncation is readily achieved with a
contraction ratio of .85. The lower the magnitude selected for the stopping
criteria, the more grid is compressed into the region of the abrupt geomtry
change. Eventually this approach starves the remaining domain of the analysis
of sufficient mesh to satisfy the selected maximum local truncation error
tolerance. Therefore a preferred strategy involves sub-dividing the region of
small Tlength scale, 31/32 < Z/L < 32/32, with a uniform grid of varying
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nurber of grid points. It is easy to implement. It is regarded also as
semi-adaptive. A 'fully' adaptive strategy requires labeling each cell of a
trial grid with a special flag that designates cells with a local truncation
error that exceeds a selected threshold value. Cells so flagged may be
sub-divided by nesting compressed grids or by uniform interval grid
embedding. It is expected that the rapid grid-interval changes may produce a
growth in local truncation error in that region. If this occurs, criteria
must be developed for the control of the rate of the grid interval varations
or the meaning of the truncation error reassessed. 'Fully' adaptive MG
strategy only requires that iterative work to reduce the truncation error be
applied to the flagged cells. This approach may be more efficient, 'fully'
adaptive and more computer programming intensive than the semi-adaptive
strategies. This approach appears to be practical to program for machine
computations for multi-dimensional numerical analysis.
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5.0 DISCUSSION

5.1 ERROR ASSESSMENT

For the test problem, local normalized truncation error estimates of the order
of unity seem to indicate the region in which grid adjustment (mesh density or
distribution) should occur or the region in which the geometric representation
of the boundary of the analysis domain may need modification. The local
truncation error estimates in themselves cannot distinguish the cause of large
local error or whether the results of the analysis are adversely affected.
Therefore additional information must be associated with the local truncation
error estimates to make them useful. The behavior of the solution in high
gradient regions in terms of second derivatives of certain dependent variables
may be useful in developing criteria which distinguish the source of
truncation error from Gibbs' error. Together with the residual data, each
region having large truncation error can be sorted as to the cause of the
large truncation error. Criteria for choosing the G weighting in the error
norms of 3.2.3.1 and 3.2.3.4 perhaps can be developed from this basis. See
Section 5.3 for further discussion of this point.

At a geometric discontinuity, the sign of the 1local truncation error
oscillates at the highest possible frequency of two mesh intervals for an
ideal difference scheme. This produces a cancellation of the local truncation
error in the velocity solution.

It is hypothesized that nonideal difference schemes will exhibit
two-mesh-interval sign oscillations in the local truncation error estimates
only at singularities or at _locations which have grid-related problems.
Otherwise the 1local truncation error estimates will persist at Tlonger
wavelengths. It is hypothesized that sums of the same-sign local truncation
errors are significant to estimating the maximum global error for nonideal
difference schemes. Useful sums may or may not include the regions of large
local truncation error depending on the purpose for the error norm. It is
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hypothesized that the magnitude and the rate change of the local truncation
error may have use for an error norm where grid juncture in composite grids
occur or where rapid variations in the dependent variables occur.

Residual errors and maximum global errors were observed to be directly
linked. This was examined by computing the discrete continuity balance (local
mass balance) on each cell. By dividing the local mass balance by the local
channel cross sectional area, a delta velocity results which, added to the
local velocity, is the correction necessary to remove the local residual
error. The maximum global error was reduced to round-off error (below ten to
the minus ten) when the residual velocity correction was applied successively
from the entrance region point-by-point through the grid to the exit region.
Alternatively the maximum giobal error can be computed directly from the sum
of the residuals of the same sign divided by the channel cross section at
which the sign in the residual changes. Control of residual errors is all
important for satisfying desired global error bounds. It is hypothesized that

" the Tocal residual error should be constrained to some value smaller than the
local truncation error on the grid which is next to the ‘'goal grid.'

5.2 MULTI-GRID

The form of MG that was used for the computations involves a nonzero
right-hand side term. With this formulation the discretized continuity
equation has a mass source right-hand side term which is constructed from the
estimate of the local truncation error. Fine grid velocity potential data are
interpolated (restricted) to coarse-grid continuity balances to obtain
estimates of the local truncation error where global integral is zero for mass
conservation. Total velocity output that is decoded from solutions of these
coarse-grid Poisson-type equations are not directly useful (with an academic
exception). This is a key point about MG output: the total velocity output
on the coarsest grids may be contaminated with large truncation errors. This
point is illustrated in Figure 3 for three grid levels. Note that the results
near the geometric discontinuity are always badly in error. In the coarsest
grid the local truncation error from the geomtric discontinuity contaminates
the total velocities at three cell faces where the solution is developed. The
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extent of the contamination is reduced dramatically as the grid is refined but
it is only eliminated on the finest grid level where it is exactly zero by
choice. Any other choice for the finest grid solution would generate worse
results than that shown; the maximum giobal error would be larger near the
discontinuity than occurs in the present example. Therefore the truncation
error extrapo]ation(g) cannot be inserted at the finest grid level, only at
next to the finest grid levels. As shown in Reference 9, it can be used as a
method for accelerating solution convergence or for generating still finer
grid solutions (finer than 64 cell cases in the present example) at Tlower
cost. Alternatively, a finest grid selection of 32 cells could be used with
T-extrapolation to get the solution that is shown in Figure 2.

Standard interpolation fails to be useful for prolongating coarser grid MG
solutions to finer grid levels. Brandt's FAS-MG formulation is effective for
this purpose. Estimates of the 1local truncation error are a direct
consequence of the FAS-MG process. The maximum value has utility for
identifying discontinuities. The mean value is a useful guideline of the
maximum global error.

It appears desirable to modify conventional applied analysis codes with the
Brandt FAS scheme so that local truncation error estimates are a routine
output. This will aid in quickly identifying regions of the analysis domain
where truncation error problems exist. An optimum MG scheme is not the issue
for the short term. It is desirable to reduce the 1labor involved in
determining where in an analysis domain serious numerical error problems are
occurring. It may also be feasible to develop error norms that exploit the
local trunation error estimates of MG so that conventional, semi-adaptive and
adaptive composite grid technology can achieve high efficiency.

The grid generation and the PDE solution processes must be drawn together to
be effective. Composite grid technology should be encouraged. Composite
grids refer to coupled conformal grids in which nested grids, grid overlays,
and discontinuous grids are permitted by the analysis approach.
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Multi-Grid Computer Cost Overhead

The efficiency of residual error control in terms of computer overhead cost
for the MG approach was briefly examined. Under the test problem Section 4.3,
the word "equivalent" sweep was utilized to compare the number of sweeps 1n an
MG scheme with FG sweeps. “Equivalent" sweep is defined as follows.
Neglecting the overhead for the use of the restriction and prolongation

operations for generating RS& and Oﬁ estimates, the number of

iterations on each grid level can be equated to one sweep on the finest grid.
Thus 16, 8, 4, and 2 are “equivalent" sweeps on grid levels 1, 2, 3, and 4
respectively relative to level 5 grid. The ratio of the "equivalent" sweeps
and FG sweeps is not identical with the ratio of (CPU),. to (CPU)FG To
achieve parity between these measures of work, a correction factor must be
empirically generated which corrects the "equivalent" sweeps for the overhead
of the MG process. This factor is computer and computer code dependent and it
is not identical with operation counts. No effort has been made to study the
optimum magnitude of this cost correction factor. For the present
application, this correction factor is about the same magnitude as the cost to
sweep the relaxation equation on the finest grid. No optimization of the
coding was attempted to reduce the size of this factor. Therefore the
(CPU)yg/(CPU), ratio is approximated by (sweeps)MG((sweeps)FG times
two. A preferred definition of "equivalent" is one that includes this factor.

Control of the contamination of the total velocity output is correlated with
the computer work expended in solving the grid equations. The data shows that
the residual error control efficiency increasingly favors MG over FG as the
number of grid points is increased. To illustrate this, computations were
performed as follows. Level 5 grid equations were jterated until a selected
maximum global error was achieved. The same problem was repeated four more
times for the maximum gliobal error level using MG. Each problem was
constrained between two limits of grid level in the MG processes. The grid
levels are: 1level 4 - level 5, level 3 - level 5, level 2 - level 5, and
level 1 - level 5. The (CPU)MG/(CPU)FG ratio was estimated by the above
formula for each problem. It decreased with the extension of the grid level
separation. The same result was found if the study was performed in the
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opposite order; namely, (level 1), and (level 1)y, (level Z)FG and
{(level 1 - Tlevel Z)MG’ {1evel 3)FG and (level 1 - Tlevel 3)MG’
(level 4)FG and (level 1 - 1level 4)MG’ and (level 5)FG and (level 1 -
level 5)ys. This result is in keeping with Brandt's results. For a simple
elliptic probiem, this establishes one type advantage of MG over FG
procedures: MG is asymptotically more efficient than the FG strategy in
controiling residual error. Hence the number of grid points that can be
considered in an analysis with MG is greater than FG for a given computer
budget. The potential for control of truncation error is thus greater with MG
than FG strategy for nonideal difference schemes.

5.3 CONTROL OF THE LENGTH SCALES OF STEEP GRADIENT REGIONS

The practical utility of the error norms listed in paragraphs 3.2.3.1 and
3.2.3.4 requires quantitative relationships between error norms and such
parameters as wall skin friction, separation and reattachment points,
stagnation point 1location and properties, growth rates of shear Tlayer
thickness, and the length scale of the resolution of shock waves relative to
shear Tayers with which they interact.

Special attention should be devoted to developing the criteria for the control
of the length scale of shock waves and stagnation points. One interesting
recent hypothesis(12’13’14) is that shock waves and stagnation points often
need not be resolved to their true physical length scale. They only need to
be resolved to length scales of the order-of-magnitude of the key or diffusive
and boundary regions of the flow field with which they interact. The
development of quantitative information on the length scale of the large local
truncation error regions (shock, flame fronts, chemical species fronts, and
stagnation regions) relative to the diffusive and and boundary regions with
which they interact is needed. The laminar shock/boundary layer interaction
prob]em(12’13’14) would be especially suitable for such studies. For

inviscid computations, singularity length scales must be an input parameter.

The error norms of equations 3.2.3.1-4, 3.2.3.1-6, 3.2.3.4-1, and 3.2.3.4-3
have a parameter which must be set to zero in the neighborhood of the
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singularity regions. The purpose of this parameter is to allow the local
truncation error to be large relative to the smooth parts of the flow field.
The detection of these regions is essential. How this can be accomplished is
a key problem for future work.

Ideas for detecting these regions can be drawn from mathematical and physical
features of singularities. For example, shock waves have associated jump
conditions which characterize the upstream and downstream states in the
inviscid flow. As the grid refinement process develops, periodic checks can
be made for the cells that have large second derivatives of these dependent
variables. Empirical tuning will probably be necessary to define the amount
of guard mesh around the steep gradient regions that is necessary for 1imiting
the grid refinement process.
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6.0 CONCLUSIONS

An initial exploratory investigation has been completed toward the development
of error norms for use as resolution monitors, multi-level adaptive grid
techniques, and residual error control efficiency for the numerical solution
of the PDE's of fluid mechanics. Key results are that multi-grid schemes are
promising as a basis for developing solution resolution monitors, adaptive
grid techniques, and wmproved residual error control efficiency. This work
suggests that multi-grid technology is conceptually straightforward to apply
to conventional elliptic equation computer codes. Further work is required to
develop convenient error norms for the 1local error quantities to guide
adaptive mesh adjustment with efficient residual error control.
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7.0 RECOMMENDATIONS

Various research codes can now be written, based on this initial study, to use
as vehicles to develop the technology further towards the ultimate goal of
(semi-)automatic numerical error control in solving the compressible,
rotational viscous 3-D equations of fluid flow. Reliable numerical error
monitors for residual and truncation error assessment with efficient control
methods in conjunction with nested, composite grids should be addressed. The
following research codes are recommended, with the specific study items listed
for each of the codes that examine the utility of El, Ez, EMax’ Ers

and R

ER’ ERT’ TMax Max*

3-D Multigrid Potential Code

A three-dimensional multi-grid code, modeling the full potential equation for
shockless and shock containing flows, is needed as a test bed for studying
error norms that relate the maximum giobal error to the integrals of the local
multigrid truncation error estimates. With this code, items can be studied

such as:
a. Correlation of the maximum global error .with different residual

tolerances

b. Convergence criteria for residual tolerance based on maximum Jlocal
truncation error estimates at each grid level or the finest grid
level

C. Examine ways to best include steep gradient regions in error norm
computations.

1-D Multi-Grid Euler Code
A  one-dimensional multi-grid code, modeling the Euler -equations for
analytically generated channel shapes is needed to study shockless and shock
containing flows to develop technology features, such as:
a. The residual control efficiency as affected by the choice of
relaxation schemes
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b. The inherent behavior of schemes to remove the acoustic stiffness as
a stability constraint or modifications needed to achieve the
infinite speed of sound in low Mach number flow regions

c. Error norm candidates based on 1ntegrals of the local truncation
error estimate and their relationship to the maximum global error

d. The inherent capability of multi-grid schemes to remove diffusive
stiffness from the stability constraints on fine grid levels

e. Examine approaches to the treatment of steep gradient regions in the
error norm computations.

2-D Multi-Grid Euler/Navier-Stokes Code

A two-dimensional multi-grid code, modeling the Euler and Navier-Stokes
equations for shockless and shock containing flows is needed to begin applying
the technology features of error control multi-grid schemes to selected
problems such as laminar boundary layer and shock/boundary-layer interactions
on a flat plate.

Adaptive Embedded Multi-Grid Technology

The above studies with the various research codes will examine criteria for
the local multi-grid truncation error estimates that can be utilized for
labeling cells in which grid nesting is necessary. Recommendations can then
be made for work tasks to further develop adaptive grid embedding in the 1-D
Potential, Euler and Navier-Stokes codes and similarly for the 2-D and 3-D
codes. The design of each of the recommended computer codes should be carried
out with the goal of flexible grid nesting capability given top priority.
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