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ABSTRACT

+ The Resonant Doppler Velocimeter(RDV) is a new nonin--

trusve laser technic.;uP for flow diagnosis. This work ap-

plies the RDV technique to supersonic nitrogen flow with so-

dium atoms as tracer particles.

The measurements are achieved by shining a tunable sin-

gle frequency laser beam into the flow. The resonant ab-

sorption spectrum of the seeded species is determined by ob-

serving the fluorescence signal intensity ais a function of

excitation wavelength. By comparing the peak absorption

wavelength with a reference frequency marker, the flow ve-

locity along the excitation beam can be obtained through the

Doppler shift relation. By fitting the spectrum with a the-

t

	

	 oretical line profile, the static temperature and pressure

of the flow can be determined.

Both mean flow and turbulence measurements have been

a	 investigated. Data are presented showing velocity, tempera-

	

ture, and pressure measured point by point across the flow
	 V ie,

field. These data generally agree well with the result ob-

tained by the conventional pitot and total temperature sur-

veys. Turbulence was induced by a small metal tab or a thin

wire in the flow and observed by both hot wire and the RDV

techniques. The velocity, temperature, and pressure sensi-

y
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tivity curves of the RDV technique and the application of

these sensitivity curves for identifying the velocity, temp

erature, or pressure fluctuation are discussed. The fre-

quency response of the system was investigated by measuring

some high frequency disturbances generated in the flow.

Photographs of the flow field demonstrate the utility of the

RDV for quantitative flow field visualization.

some preliminary work on future devc1opment of the

technique, including multi-dimensional measurements and ap-

plications to air flow and turbulence flow, is also present-

ed.
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Chapter T

INTRODUCTION

Dane to the complexity of fluid motion phenomena and the

difficulties involved in applying the equations of motion to

even the simp? est of the realistic situa,J.ons fluid dynami-

gists rely heavily on expe,iments. In tact, the lexperiments

play a crucial role in the guidance of theoretical develop-

ment. For the experimental results to be meaningful, a re-

searcher must know precisely how the instrumental _records

are related to the various fluid dynamic parameters that he

is trying to measure. Unfortunately, there is no perfect

measurement technique; all the existing techniques have

their limitations. Therefore, the development of new meas-

urement techniques which can be applied beyond the limita-

tions of existing techniques, or can improve the reliabili-

ty, rUmplicity, and versatility of the current techniques,

is extremely important. The work presented in this disser-

tation represents an effort to develop a new laser technique

Which can be used for flow visualization, as well as quanti-

tative measurements in supersonic flow.
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1.1	 LIMITATION OP CONVENTIONAL ANFMOMETERS'
}

The	 conventional	 anemometers	 are	 normally	 intrusive,

that is, some solid probe must be introduced into the flaw.
Pitot	 probes,	 static	 pressure	 probes,	 total	 temperature

probes, and hot wire anemometers all fall into this catego-

ry.	 Therefore, probe interference is the common dioadvan-
i

tage of these techniques. a

Pitot probes, static pressure probes, and total temper-
I

ature probes are Limited in frequency response as well as
3

spatial resolution.	 Consequently, they are not suitable for

turbulence or non-steady flow measurements.	 Even for the

mean property measurements; one has to apply somesome assump-
h

tions to derive the fundamental flow properties such as ve-

locity,	 static	 temperature,	 and	 static	 pressure	 from	 the

measured quantities.
H

The hot wire technique was developed to achieve a high

G	 frequency response and a good spatial resolution for turbu-

lence measurements	 (see Appendix B).	 To achieve this,	 one

f	 must use wires with diameters in the order of micrometers.
`

The nonlinear and nonuniversal 	 response of the wires with

respect to the flow parameters forces the user to calibrate

the hot wire probes against some standard instrument such as

the pitot, probe.	 Thus, the hot wire anemometer gives a cam-
parison rather than an absolute measurement,. 	 This disadvan-

tage, along with the fact that the hot wire response depends

on a large number of flow parameters as well as its geome- $	 ';

- 2 -



trio or3entati^in, imposes some difficulties in the analysis

of the measured results. So far, hot wire technique is

still the only well-developed turbulence measurement techni-

que for the supersonic flow.

1.2 OPTICAL TECHNIQUES

Nonintrusive optical techniques can be further classi-

fied into conventional flow visualization techniques and

laser techniques.

Schlieren, slaadowgraph, and .nterferometer are the most

widely used conventional flow visualization techniques. zhe

greatest shortcoming of these techniques lies in the quali-

tative nature of these techniques, In other words, they are

normally not suitable for any quantitative measurements.

Even for the qualitative analysis, one can not avoid the

problem of having to analyze a three-dimensional flow field

from a two-dimensional photograph or interferogram.

The introduction of the laser has made possible the de-

velopment of modern optical point flow measuring systems.

Among the many laser flow diagnostic techniques developed in

the last twenty years,' Laser Doppler Velocimetry(LDV) is

certainly the most popular one (see Appendix .A,). However,

despite the success in applying the LDV to ,mean velocity

measurements in subsonic and transonic flows, the LDV has

very limited applications for supersonic flows and turbulent

flows. This is mainly caused by the "particle lag" problem,

- 3
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the bias to higher speed particles, and difficultie's in get-
ting particles into low speed regionso These serious short-

comings of the LDV technique led researchers to seek new and

more powerful laser techniques. The Resonant Doppler Velo-

ci.metry(RDV) is a direct result of this search.

(I I

1.3 RESONANT DOPPLER VBLOCXMETRX(RDV)

The RDV, which is basically a laser induced fluores-

cence spectroscopy (LIPS) technique, was proposed by F. A.

Miles in 1975(1, 2) and demonstrated in hypersonic helium

flow by M. Zimmermann and R. B Miles(3-6). This technique

uses atoma;c species as the marker particles, thus eliminates

the particle lag problem. The signal came from the

fluorescence emission of the seeded tracer atoms which were

excited with a tunable dye laser. The spectral lines of the

tracer atoinz can be obtained by tuning the dye laser fre-

quency. Then, from the Doppler shift of the spectral lines,

one can calculate the flow velocity. From the shape of the

spectral line, the static temperature and stat$,c pressure

can be derived. These features make the RDV a very powerful

and attractive point measurement technique. Furthermore,

the fluorescence signal is strong enough to be observed vis-

ually, and it is not integrated along the path of the laser

light if it is viewed perpendicular to the direction of the

laser light. Thus, the RDV is also an excellent flow visu-

alization technique.



This work extends the application of the RDy from hy-

personic helium flow to supersonic nitrogen flow, again us-

ing sodium atoms as the tracer particles. Preliminary tur-

bul.ance measurements have also been made.

The differences between the present work and the work

on hypersonic helium flow can be understood from several.

aspects. First of all, there is virtually no pressure in-

duced absorption wavelength shift in the sodium-helium sys-

tem, while the pressure shift is not negligible in the sodi-

um-nitrogen system. Second, since the helium molecules are

atomic, there is no internal energy mode in 'their struc-

tures, on the contrary, the nitrogen molecules are diatom-

ic. The closely-lying vibrational and rotational energy

levols can quench the excited sodium atoms; that isA inelas-

tic collision processes exist in the nitrogen-sodium system.

Third, helium can be expanded to a very high Mach number be-
cause of its very low condensation temperature. In hyper-

sonic flow, helium has a very low static temperature and

static pressure. Consequently, the sodium sped" 'Al lines

detected are very narrow. Nitrogen has a condensation temp-

erature of 77.364 08, so it can only be expanded to a Mach

number around 3.6 from room temperature. Thus, the spectral

lines are much broader than those obtained from the hyper-

sonic helium Mow. All of these make the work'on superriOonic
nitrogen flow much more challenging than that on hypersonic'

helium flow. But supersonic nitrogen flow is much more re-

5 -
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alistic than hypersonic helium flow. This point makes the

effort worthwhile.

The basic theory of this technique is reviewed in Chap-

ter, II. The experimental setup is descXibed in Chapter IIZ.

Chapter IV discusses the experimentPal procedure and the

method by which the data io processed. Chaper V presents

the experimental results from the measurements using the RDV

technique, as well as the conventional techniques, Some

preliminary work on the future development of the RDV tech-

nique is discussed in Chapter VI. Chapter VII gives a num-

bar of ;Conclusions on the RDV technique. The LDV technique

.and t'lhe hot wi-re PC'1 T i a'uP_ ArP hr^i nfl v raxyj awmA in ^MLnT%,mv%A-1 V-	 --	 -	 -	 -.r	 .r........ _ _

A and Appendix B. The supersonic application of these tech-

niques are emphasized. Appendix C discusses the Velocity

Dependent Voigt Profile. appendix D contains a brief dis-

cussion of the -temperature dependence of the collision cross

section.

tr,
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Chapter 11

THEORY

In this chapter, a brief discussion of the fundamental

physical phenomena is presented. These phenomena are the

building blocks for the RDV technique. However, besides be-

ing brief and fundamental, the discussion will be specific.

only those theories related to sodium atom and nitrogen flow

are presented.

2.1 SODIUM ATOMIC STRUCTURE

Sinco it is one of the most common metals used , the

properties of the sodium are well known. Table 1 summarizes

some sodium properties which are important for this work.

Further information about the sodium can be found in Ref. 6

as well has 9, as well as a tremendous number of other sourc-

es s

The reasons why sodium was chosen are as follows:

1. Sodium has been investigated extensively with optical

spectroscopy.

2. Sodium has a simple atomic structure and no stable

isotopes.

3. Sodium has a large optical absorption cross section.

7
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TABLE I

Pbysical & Spectral Properties of Sodium Atoms

aw	 ------------ --------lH w---imn----wwww.r---- ----- ^}

SODIUM .PROPERTIES---------------------
ATOMIC WEIGHT (S/ mole)	 22.9898
MELTING	 97.61+0.03POINT (-C)
BOILING POINT (oC)	 882.9

ELECTRONIC CONFIGURATION	 1S22S22P236

POLARI2ABILITY (10`24cm3 )	 23.6+0.47
NO NATURAL ISOTOPES	

r

waY^Yinrint----wwrwMw----rwrrwr- ----Yw----rwwrl---	 wr4w ^t e	 !

PROPERTIES OF SODIUM D LINES
^..-------------------- -------------------------------

NATURAL LINEWIDTH (MHz)	 9.76+0.3'
LIFE TIME (nsec)	 0	 16.3+60.5 i	 J

RESONANCE WAVELENGTH (A)
D1 LINE	 5896` I
D2 LINE	 5890

OSCILLATOR STRENGTH
DI LINE	 0.33
D2 LINE	 0.65

------------------------------ ----rrrwM--i+';l.wrnrwrwr .•	 , 	 '

SODIUM VAPOR PRESSURE
rwrrr.^r... `..'.......o.. ..r...—.r+.+a.....+........r..r--....----

T(°C)	 P (torr) 6
127	 2«2x10 -

227	 1.15X10 3
327	 5.02x10-2 1f
427	 0.888
527	 7.53
627	 39.98
72 1 	 148.5 ,1

627	 453.7 
r.--------------irlfw----wwtiirw.-ww.r —wwr--------.rwwr----

 ^
â

y{

f

r
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4. The absorption frequency of the sodium D lines is

within the wavelength range of single frequency dye

lasers.

The sodium atomic structure is shown in Figure 1. The

detailed structures of the sodium Al and D2 limes are ahown

in Vigure 2.

The symbols are conventional, i.e.,

nmLi

where	 n is the principal quantum number

m is the singular multiplicity

L is the total orbital angular momentum quantum

number

a is the tonal angular momentum quantum number

Since sodium has only one free electron, the multiplicity is

two.

The F quantum number is associated with the total angu-

lar momentum F.

F ae .r + l

where ;5' is the electron angular momentum(orbital + spin)

and T is the nuclear spin angular momentum

Ii - z( <F<+r

The F number corresponds to the hyperfine structure of the

atom. The selection rules for F are

QF=O, ±l
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Figure 1: Sodium Atomic Structure (10)
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The arrows connecting the hyperfine levels in Figure 2 indi-

cate the allowed transitions. The number associated with

each arrow indicates the relative weight of transition prob-

ability.

To take advantage of the larger absorption cross sec-

tion, we used the sodium D2 (2 2S1/2 - 3 2P3/2 ) lines as the

signal source line throughout this work.

2.2 LINE BROADENING AND LINE SHIFT

The spectral line broadening can be classf ed into two

catagori.es the hamoSeneous broadening and the a nnomogeneous

broadening. As the names infer:-, M,ne homogeneous broadening

affects all the sodium atoms equally, while the inhomogene-

ous broadening affects different group of sodium atoms dif-

ferently. The broadening phenomena are very important for

the RDV because they allow us to extract the temperature and

pressure information. A brief treatment of Line broadening

theory is given here. Detailed analyses can be found in

Ref. 12 - 18.

2.2.1 Natural, Broadening

The excited atomic state will remain excited only for a

finite period of time, and then give up the extra energy it

gained and return to the ground state. How long it remt%ins

excited depends on the nature of the atom and the environ--

- 12 -
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mental conditions. In the absence of collisional. do-excita-t

ion, the lifeetima of an excited stated must be related to

the transition probability for spontaneous emission A21.

Since this ground state is stable, we may assumed its lifetime

is infinite f the relation for the lifetime is them

T2 " 1 /A21

where 2 stands for the excited mate,

I ,stands for the ground state, and

All is Einstein A coefficient

From the Heisenberg's uncertainty principle, the linewidth

is

dVN = 1/ (2nT2)

This is called natural broadening and is a property of

the atom. For sodium D lines, as shown in Table 1 1 the nat-

ural linewidth is 9.76 MHz.

2. 2.2 Prey Broom nib and Pressure Shift
In a gas flow, the collisions between ,sodium atoms and

other gas molecules play an important role in determining

the life time of the excited sodi lam, atoms. In a sodium and

nitrogen mixture, the following keact j;ons moy 'happen as the

result of binary collisions between the excited sodium atoms

and the ground state nitrogen molecules.

(I)	 Na* + N2 (0) --> Na+N_ + K.E.

- 13
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(II) NA* + Nx ( 0) -_ Na* + N2(0)

(III) Na* + N 2 (0) --> Na + N2 (0) + by

(IV) Na* + N 2 (0) -> Na + N 2 ( vf ) + K-E.

case (I) is the chemical reaction between sodium and

nitrogen. But Na+N2 is riot stable(23) . It may form only

when Na and N2 are very close to each other and then fall

apart again. In other word`A, it can only be an intermediate

form for other collision processes.

Case (II) is the elastic collision. As far as energies

are concerned, nothing changes. But the periodic oscilla-

tion of the excited sodium atom wil l be interrupted by the

collision and lose its phase memory. This kind of dephasing

interaction causes a frequency broadening in the frequency

domain.

Case (I1I) is the radiative de-excitation collision.

The energy gained by the sodium atom ^.s lost by emitting a

photon. The 'wave train associated with the excited sodium

is truncated by this type of collision. Again, if a Fourier

transform is carried out, the frequency spectrum will be

broadened. The emit:ted photons, along with the photon emit-

ted by spotitaneous emission, are the fluorescence signal we

see. Depending on the pressure the collision' de-excitation

can occur at rates much faster than the rate at which spon-

taneous emission occurs.

14 -
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Case (1V) is the nonradiative inelastic collision.
Juste like case (III), the sodium atom is de-excited but the

energy goes into the vibrational, rotational, and transla-
tional states of the nitrogen molecules. This phenomenon is

called quenching. This phenomenon will be discussed in the 
11

next section. Again this action ends the wave train of the

excited sodium atom and causes line broadening.
All these collisions will broaden the spectral lines.

From the analysis given by Ref. 19, the collision broadening

is given by

AV  = 2/Te = 2Zb )Va-NL = 2N"jr,.,

= 2Nab 8RT /nm*	 (XI-1)

where

	

	 Tc = collision time, i.e., averaged time between two

successive collisions

Z = collision frequency
N = number density of nitrogen

ab = broadening collision cross section

vrel = mean relative velocity between Na and'tN2

R universal gas constant

T = absolute temperature

m* = reduced mass

Resides broadening the lines, the existence of a for-

eign gas will also cause a shift of the sodium spectral

line(19). The so-called pressure shift, is due to the fact

that, , when n$:trogen molecule approaches the sodium atom, it

- 15 -
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will perturb the sodium energy levels (am shown in Figure

3).

How :far the frequency will shift, and in wh ich way it
will shift, depend on the charge distribution of the inter-
acting particles. For sodium and nitrogen collisions # it

always shuts to the red (19) . The amount of the :shift is

Av s ) '^ Zs 
Na-N2

)	 ^` NasVr^rlp 

where as	 shift collision cross section

The broadening and shift cross sections are determined

by the intermolecular potential. One should note that nor-

mally these cross sections are much larger than gas kinetics

collision cross sections. Thus these optical collisions do

riot have to involve momentum transfer. These cross sections

are normally temperature dependent because the collision

process depends on the relatives particle velocity, but, ex-

cept for very high pressures, they are independent of the

pressure. The temperature dependence can be seen from the

impaot theories proposed by Lindholm(44) and by Ander-

son(16).

oa

	

a s 	21T f rsini (r)dr

	

orb 	27rswr(l-^cosn(r))dr
0

Co

	

where n(r)	 2Trf CoQV(r)dt+^ 2yr4V(r)r

-O6 /r6	 for van der Waals potential

12	 6C12/r - C6/r for Lennard-Jones potential

r intermolecular distance

--16-

p

a

r°
z



n MMM w^r OYwweyw MYYllw w

h^

wrrrri wa^Arww

i

{

73
7

_J

^^77

1

i

7

c

N

a
Ll

Q

a
C9

LL

a

r4+wawwrww^lrwr•

(r)

Figure 3: Pressure shift

ORIGINAL	 14
OF POOR QUALITY

r

Na-N2 DISTANCE

17



C6 , C
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- Constants

For the van der Waals potential(44),

a  - 4.08(C6/.h) 2/5 (v) `2/5 c

o $	 2.96(C6/b)2/5(`v)-2/5

eb/crs - -1.4

For the Uennard-Jones potential(44),

a  = 13.42x(C6/r1) 2/5V`2/5B(a)

o s = 3.35x (C6/n) 2/BV-2/5S(a)

,_	 ._

where	 a : 1.11x^b^^C12d/5/C611%5

B (a) Io xs n2{2 
(ax-1l - x-5 ) } dx

CO
S(a)	

fo 
xsin(ax`11 - x`"5)dx

Further discussions on this subject are given in Appendix D.

2.3 QUENCHING PHENOMENA

As was mentioned in the last section, quenching is a.,

nonradiative, inelastic collision. Two different types of

quenching may occur. Resonant quenching occurs when the

colliding particles have close-lying energy levels; energy

can be easily transferred, i.e., the quenching cross sec-

tion is very large. Sodium and nitrogen collisions are very

likely to be resonant quenching collisions, because of the

close match between the v=8 vibrational state of nitrogen

..18-



and the sodium 3 2P3/2 star* ( only 0.1 ev apart). But all the

experiments (20 - 22) and theoretical analyses (23 - 29) in-

dicate that such a resonant transfer does not happen. The

most probable vibrational state for energy to be channeled

into is v=3 or 4, not v-8. Although it has been confirmed

that the quenching process is nonresonant, the experimental

quenching cross sections are much larger than predicted by

nonresonant quenching mechanism(30 - 2(5)• The large cross

sections can best be explained on the basis of a "harpoon-

ing" mechanism # in which a strongly attractive ionic inter-

mediate state provides the coupling between upper and lower

covalentent states .

The major features of this potential curve crossing

quenching model for diatomic molecules are depicted schemat-

ically in Figure 4. The process is a combination of case

(x) and ( IV) in Section 2 of this chapter;

Na* + N 2 (0) --> Na+NZ --> Na + N N) + K.E.

As one can see from Figure 4, whether the inelastic tran-

sition will happen, and what the final state will be, both

depend on the probabilities of the transition at each curve

crossing point. Andreev(36) concluded that the probabili-

ties of the process diad not depend upon the initial kinetic

energy of the collisional partners. Thus the dependence of

the quenching cross section on temperature is determined

mainly by the cross section of the system passing through

19 -
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the nonad abatis region. By using a Lennard-Jones poten-

tial, he calculated the total quenching probability to be

44.3$, and found that this probability depended on tempera-

ture to a very small degree. Li jnse(38) reached a similar

conclusion about the temperature dependence by modifying

Fisher's model(24,25). By including van der Waals attrac-

tion potential, he found

Q q (T) = Pg7r•R2(1-V(Rc)/KT)

where P  = quenching probability

When he fitted the experimental results wiih thzs equation,

he found that P  = 45%, Rc - 3.5 A, and V(Rc ) = -0.05 ev.

According to the study of Hollander and Alkemade(37),

frequency-dependent quenching does not occur in the core and

near wings of the sodium D doublet. Thus a constant quench-

ing factor can be applied through the sodium U2 spectra.

2.4 DOPPLER BROADENING AND DOPPLER SHIFT

Doppler broadening and shift are the results of the

well known "Doppler effect", which is the apparent change in

frequency of a signal due to the relative motion of the sig-

nal source and receiver.

From Figure 5, one can easily derive the ,Doppler shift

to be	 Uz

AV- _ V'` ^-v -	 C	 U + ( UC ) 2 +

C 

l- C

- 21 -
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where	 C w spend of light

8 w angle between the wavevector K and,-the

velocity

For the case we are dealing with (Uz << C), we can neglect

terms of .second and higher order( also relativistic Doppler

effect).

Doppler broadening is caused by thermal motion. Be-

cause thermal motion is random, it follows the Maxwell dis-

tribution:

dNu	 e-u2lti2 duN 

fraction of atoms having velocity between u and

u+du along laser direction

wherea	 2KT M

most probable velocity

M = mass of the molecule

K - Boltzmann constant

Since we are using laser as our light source, we have a

well defined direction for the light wave. So we only need

to consider the velocity distribution in one dimension,

i.e., in the laser beam direction.

C2 (A\)) 2
My
d - 1 . e VOU. C dVN	

3Tr u	
V

fraction of atoms with Doppler frequency shift

AV
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where V  - resonant frequency
AV - vo — v

2	 2

c^Nv , dNv * expo - --^-^ 

_

-^----^}
o	 uo au

This type of weighted shift broadens the spectral line,.

The Doppler broadening width is defined as the linewi,dth

corresponding to dNv = 1/2 dNv , that is,
0

A G = 2(v 0 U)  v/1—n-2/C

PC T

Note that the Doppler broadening originates from the Doppler

shift and it has nothing to do with the collision process.

With the fixed atomic species we have chosen, i.e., sodium,

it depends only on the kinetic tempierature.

For gas flow, besides a landQm motion, there is also a

mean motion:

V v + 11 = total velocity

where v = mean motion velocity

u - random motion velocity

The mean velocity will shift the whole spectral line by

(Qvs ) D = vo • (v/C) • cos8	 (]C2-3 )

where 6 = the angle between v and laser beam direction

- 24 -
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1
Hence Zorth, the term "Doppler shift" will be used to

specify the frequency shift caused by the y bul% mean velocity
of the gas, and "Thermal broadening" will specify the y broa-
dening.

2.5 OTHER BROADEMINGS

2.5.1 Transition Time Broadening

The sodium atom with mean velocity v will be exposed to

the laser field for only a finite time. By applying the un-

certainty principle, the line broadening width is(40)

p T - v/ (21r d)

where d - beam diameter

This is called transition time broadening.

2.5.2 Power Broadening

At high laser intensity, a substantial change in the

population distribution of an atomic system can occur. For

a two-level system, one can derive that the population dif-

ference becomes(41)

(gl - g2 ) s	 (q	 g1 - 2 )e/ (1 + 2W21T211	 2	 l	 2

where Ni - No. density of state i

gi = degeneracy of state i

W21 = probability of stimulated transition

T21 = natural life time

s : steady state

- 25
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e s equilibrium state

In other words, the atomic systems are not thermally in

equilibrium. Note that the denominator is a function of the 	 !

baser frequency, a

a
2W 21T21" I/Isat

where Isat W hv21./2021 T21  saturation intensity

V21 - resonant frequency

a21 = absorption cross section at frequency v21	 1

This mechanism will broaden the spectral line by an amount(41):

Qvp = AvL.(l+1 Isat - 1)

where pvL - total homogeneous broadening width

2.5.3 Instrument Broadening

The laser is not single-frequency light. 'Thus, though

it is very narrow, the frequency bandwidth of the laser
a

light is not zero. Furthermore, since the laser frequency 	
1

is not absolutly stable, small frequency fluctuations about

the mean laser frequency will make the apparent laser linew-
1

idth even broader.

Thus the instrumental broadening is the convolution of 	 {

the laser line profile and the laser frequency jitter. 	 I

r)
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2.5.4 Turbulence Broadening

Turbulence motion leads to fluctuations in the mean ve-

locity. Due to the randomness in the Doppler frequency

shift, they spectral :Line profile is broadened • One should

note that turbulence motion is a motion of an ensemble of

fluid molecules and is therefore different from thermal mo-

tion.

2.5.5 Other Broadeni ngs

Other broadening mechanisms, such as second order Dop-

pler effect, wall collision broadening, self resonance broa-

dening,, direction broadening, recoil broadening, etc., are

not important in our experiments and will not be discussed

here. These bro.adenings and those discussed above are sum-

marized in table 2.

2.6 LINE SHAPE

The study of spectral line shape is a well known tool

to obtain knowledge of the physical properties of the medium

containing the line-absorbing or line-emitting atoms. Be-

cause it is an indirect method, it is necessary to rely on

the validity of line-broadening theories. These theories

relate the characteristics of the line shape to the specific

force laws governing the interaction between emitter and

perturber. For our operating conditions, the impact theo-

ry(l6), developed by Lorentz(42), Weisskop£(43), Lin-

-27--
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TABLE 2

Source of Spectral Line Broadening in Gauls
j

- — — - - - - — — — — — - — — — — — — — — — — — — — — — — 	 -----------
TYPE	 SOURCES	 FWHM

------------	 ------ -------------------------- awa M*

HOMOGENEOUS BROADENING
NATURAL
	

SPONTANEOUS
BROADENING	 EMISSION	 '"N

PRESSURE COLLISIONS WITH FOREIGN GASES *V^*^v
BROADENING DEPHASXNG f.

dV^

QV^QvR

RADIATIVE
AVRQUENCHING

CHEMICAL REACTION
AVCH

SELF COLLISION 
WITH 

SAME SPECIES 2
'Wh MrTr(NaMURE^)

BROADENING

TRANZISIT TILME "..,XPOSURE TIME
TBROADENING TO LASER FIELD

POWER
BROADENING

POPULATION REDISTRIBUTION
DUE TO LASER PUMPING

^,/""""
40P =A\) SAT

INSTRUMENT LASER BANDWIDTH AND
BROADENING LASER FREQUENCY JITTER

GEOMETRICAL CURVATURE OF LASER
Gi' -,AVT2-7;K ̂TBROADENING WAVE FRONT

WALL COLLISION COLLISIONS WITH CONTAINER A\)W .	 2
BROADENING 27rTw

RECOIL PHOTON RECOIL
A\)PRBROADENING

------------------------------------------------------------
INHOMOGENEOUS BROADENING ^-2

DOPPLER DOPPLER EFFECT I K ,V	 J^j
Cc 

+(	 )
BROADENING THERMAL MOTION

C

TURBULENCE DOPPLER SHIFT
16\)TUBROADENING

--------------------- -------------------------
TURBULENCE FLUCTUATION I

~ - - - - - - - - - - - - -
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dholm(44), and Anderson (45), holds quite we1j . The,homoge-

neously broadened spectral line shape, known as the Lorent-

xian line shape, can be expressed as

(AvL/2)

	

IV
	 10 . ---

	

v 	 (v - V  - ,6vs) 2 + (AvL/2) 2

where AV  =frequency shift -- (pv s ) p+ (Avs)D

AVL = total homogeneous line broadening

QvN + AV  + A VL + AVT + ....

1  = lane intensity at line center
For in--homogeneous broadening, as we derived prevaoosly for 	 a.
Doppler broadening, the line shape is a Gaussian profile:	 F

Tv = Io9exp{-C2(v-vo)2/v2u2}

The actual line shape is obtained by convoluting these two

profiles together (See Figure 6); this is equivalent to the

weighted summation over the velocities of the Doppler shift-

ed (due to thermal motion) Lorentzisn line shape, which is

associated with active (emitting or absorbing) atoms moving

with velocity v. The weighting factor is the velocity dis-

tribution of the atoms. The convoluted profile, known as

the Voigt profile, is given by(18)

	

V (x) _ 2 yr=2 	
2a2 l^ e-ln2 •y 

where x = 2[V V  - (Av Ed p]/QvG

-29-
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kpp:

k

Y

f

Y - 2No•u/0)/AvG

a M AV 6vG

These different profiles, with the same linewidth and

line center intensity, are shown in Figure 7. it can be

easily observed in this figure that the Gaussian profile

drops off much faster than y*,he. Lorentzian profile. The

slowly decaying wings, which are characteristic of the Lo-

rentzian curve, are very important for accurate deconwol.0

tion of the data required in our experiments.

2.7 SATURATION AND TRAPPING

2.7.1	 Saturation

For the RDV all the information is extracted from the

line shape and shift. The absolute line intensity does not

seem to be too important. However, if we want a good sig-

nal-to-noise ratio, we should make the Laser intensity as

high as possible. Unfortunately, as we increase the laser

intensity, saturation effect will change the line shape, and

we will lose the information we want.

The origin of saturation is the same as that of power

broadening. The laser field redistributes the population

which, in turn, reduces the absorption cross section, reduc-

es the signal intensity, and broadens the homogeneous linew-

S ^, Y
	

idth. The saturation effect is not uniform along the spec_
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tral line. It is much easier to saturate the line center

than to saturate the line wings, and different hyperfine

lines have different saturation intensities. For ease in

data reduction, saturation is an unwanted effect, conse-

quently the laser intensity is kept well below saturation

intensity Isat(Vo)'

2.7.2 Trapping

When the line-absorbing or line-emitting medium is not

optically thin, the photon emitted by one sodium atom may be

absorbed by other atoms, in the same medium, The aeneral

differential equation describing the radiation intensity in

such a medium is(46)

dIV

dx	 e V 
K 

V^ V

where e V = volume emission coefficient

KV = absorption coefficient

Multiplying with the integrating factor exp(K Vx), and inte-

grating from x=0 to x=L, this equation can be solved to give

the result:

L	 eV	 L
Iv (L) = TV (0)exp(- J KV dx) + K (l-exp( 1 KVdx) )

0	 V	 0

When the laser beam is shone into the gas medium con-

taining the line-absorbing atoms, the laser intensity will

be attenuated by the absorption along the passage towards

the probe volume(Figure 8). Since the emission intensity is

33 -
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much smaller than the laser intensity, the emission term can

be neglected, and the laser intensity seen by the atoms in

the probe volume is

L

I^^ (L1 )	 Iy (0) exp (- J K dx )

0

Similarly, when the emitted radiation leaves the probe vol-

ume, it iu possible that it will be reabsorbed or trapped by

sodium atoms along the path to the collection optics.

L2

Iv ( L2 ) = I^ ( L1 )	

0
exp(- f Kvdx)

E	 L2	 (II-4)
+ KV (l-exp ( -ja Kvdx) )

where 11 (L 	 intensity of Fluorescent light emitted in the

direction of the collection optics

const • Iv ( L 1 )

For an optically thin medium,

L
exp(-J 0 K^dx) = exp(-K,) L) ti 1 - I^VL

Since the reabsorption can be neglected, the second term in

equation (11-3) can be omitted. Thus,

Iv ( L 2 ) a Iv (0){1-KV (L1+L2)}

Therefore, the fluorescence intensity collected by the col-

lection optics is proportional to the absorption coeffi-

cient.

In the other extreme, for the optically thick medium,

the exponential relation and the emission terms in Equation

- 34 -
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11 -4 will complicate the intensity relation. Consequently

the fluorescence line profile will no longer represent the

absorption line profile faithfully.

2.8 OPTICAL PUMPING	 r

The optical pumping process has been extensively dis-

cussed elsewhere(6, 47, and 48). Due to the selection, rule

for hyperfine transitions(A F=O, +1), the selected excitation
4 0 ^

of one ground hyperfine state may mean that most of the pop-

ulation is in another ground hyperfine state. For example,

exciting the transition 3 2S,	 F=1 --> 3 2P3/2 , F=l, allows	 -,I
h

a decay channel into the 3`S,^2 , F=2 state. After a few ex-

citation cycles, most of the atoms in 3 2S 1/2 , F=1 state will

be pumped into 3 251/2 , state and not be available for exci-

tation. But if the excited transition is 3 25 1/2 , F=2 -->

3 2P3/2 , F=3, such optical pumping phenomena will not appear,

because only one decay channel exists back to the original

state AF=-l.

q 1

Since the laser intensity required for optical pumping

is much lower than that required to produce saturation, op-

tical pumping has a significant effect on the line shape, as

discussed in detail by Walkup, et al.(49). As they found,

the only way to avoid this type of line shape distortion is

to keep the laser power lo^O.

- 36 -	 3
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Chapter III

EXPERIMENTAL SETUP

The experimental setup is quite complicated. In order

to make the discussion easier and clearer, the system will

be discussed under three subdivisions entitled: the gas flow

system, the laser and optics system, and the data acquisi-

tion system.

3.1 GAS FLOW SYSTEM

A schematic diagram of the basic facility is shown in

Figure 9. The nitrogen ryas used is commercially available

bottled nitrogen. The stagnation chamber pressure was regu-

lated by two pressure regulators in the main flow supply

line. After the flow entered the stagnation chamber, it

passed through a fine mesh. It was then mixed with the

purge nitrogen flow which had passed through the sodium

seeding device. The flow, containing the entrained sodium

vapor, was then accelerated through an axisymmetric super-

sonic nozzle to about 700 m/sec. On the downstream side of

the plenum chamber, an adjustable throttling needle was used

to regulate the plenum chamber pressure. Most of the meas-

urements were done at 5 nozzle diameters ( exit diameter of

the nozzle) downstream of the nozzle exit. Beyond the nee-
	 i

^j
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dle throat, the flow was evacuated by a 144 CFM Stoke vacuum

pump •

The nozzle was conical with an area ratio of 0,.14. The

nozzle parameters are shown in Table 3. In most of our flow

cases,, the system was run with 12.96 psi stagnation pres-

sure, and the pressure of the downstream side of the nozzle

was controlled to match the exit jet pressure(12.7 torr).

The Mach number calculated from these pressures was 3.2. 	 1

The diameter of the plenum chamber was 5 inch. Thus the in-

terference of the chamber wall on the flow was negliigible.

The stagnation temperature of the mixture was measured by a 	
^s

total temperature probe to be a , out 3500K. However, fromx

the total temperature survey, it was found that the tempera-

ture distribution was not symmetrical. This is because the

seeding needle was not exactly centered.

The flow pressure in the seeding device was controlled

by a differential pressure regulator to keep it higher than

the pressure in the stagnation chamber by a fixed amount.

Normally it is 10 psi higher. Since the flow rate through

the seeding device was only a small fraction of the main 	
Y^

flow, the higher total pressure in the seeding device did
It

	

	

not noticeably affect the total pressure of the flow. This

was checked with a pitot probe at downstream side of the

nozzle . The total pressure with the purge gas pressure 10

psi higher than that of the main flow is only two percent

higher than that of the equal pressure case. In the seeding

-38-	 4
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TABLE 3

Nozzle Properties

Throat diameter(in.)	 0.086
Exit diameter(in.)	 0.23
Constant nozzle divergent angle(deg.)	 4
Expansion l*angth(in.)	 2.0

device, the sodium was contained in an oven heated by an

electrical power supply to a temperature between 200 00 and

3000C. The purge nitrogen flow was fed into the stagnation

chamber through a needle which was heated by a separate pow-

er supply to about 7000C. This high needle temperature is

required to reduce sodium condensation on the needle wall.

The tip of the needle- was positioned 0.5 inch upstream of

the throat of -the nozzle.

tF

f

k 
I 

C

1

a

3.2 LASER AND OPTICS SYSTEM

Figure 10 depicts the schematic diagram of the optical
system. The dye laser we used was a Spectra-Physics 580 tu-

nable single frequency laser modified to include a jet

stream dye cell. It was pumped by a Coherent Radiation mod-

el 53A argon ion laser. Some of the operating conditions of

the dye laser are listed in Table 4. The frequency scanning

was accomplished by applying proportional voltages to piezo-

electric crystals attached to the etalon, the prism, and one

40 -
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of the end mirrors in the cavity. The linear tunable grange

is about 5 GHz.

TABLE 4

Dye Laser Properties

Dye
	

Rodemine 6G a
input
	

1 Watt at 5745A
Output
	

30-80 mWatt
Tuning range
	

4-5 GHz
Scan linearity
	

2% over 4 GHz scan
Li,newidth
	

+7 MHz
Noise
	

3% RCS

The dye laser output beam was split in several direc-

tions. Part of the laser light was used by a feedback loop

to stabilize the dye laser intensity, The laser light was

also monitored by a Spex 1700 Gzerny-Turner monochromator, a

sealed pyrex sodium cell, and a Jodon model SA-1500 confocal

spectrum analyzer. The purpose of using the monochromator

and the sodium cell was to position the dye laser frequency

at the sodium D2 line. This was the spectral line used for

all analyses. The spectrometer had a resolution of 10 GHz

and was used for coarse adjustment. The cell had a resolu-
114'	 tion of about 35 GHz and was used for fine adjustment. The

spectrum analyzer, with a free spectral range of 150 MHz and

a linewidth of 7 MHz, was used to check the mode structure

and frequency stability. Frequency calibration was also ac-

- 41
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complished with this device. In addition, a photodiode was

used to detect the dye laser intensity.

A frequency reference was provided by an atomic beam

device(Figure 11). At the bottom of the device, there was a

small piece of pure sodium electrically heated to about

1400C. The vaporized sodium atoms were collimated by two

pinholes. The downstream side of the pinholes was evacuated

by a Vactronic Econovac model 20 diffusion pump until the

pressure measured with a Norton Vacuum Equipment model

NRCS31 ion gauge(using a NRC507 tube) was about 2x10 -6 torr.

Since the atomic beam was highly collimated, the sta4tic

temperature there was extremely low. With-such a ,low temp-

erature and low pressure, the spectral line is very narrow.

The dye laser light was then shone perpendicular to the at-

omic beam to elimate the Doppler shift. The narrow spectral

lines serve as a good frequency reference. The fluorescence

signal from the atomic beam was imaged by two lenses onto a

thermo-electrically cooled RCA model C31034 photomultiplier

tube which was positioned perpendicular to both the laser

light and the atomic beam. The signal was further processed

with a SSR 1120 amplifier-discriminator and a SSR 1110 pho-

ton counter.

The remaining laser light was directed at an angle into

the nitrogen jet. The fluorescence signal was detected by

signal collection optics which were positioned perpendicular

to the plane formed by the jet and the laser light. Before

fi

4

d

.
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the laser beam was directed into the tunnel, it went through

a translational-tracking optical system so that the laser

beam movement tracked the movement of the signal collecting

optics(6).

The signal collection opti^jpv are shown in Figure 12

The signal collected by lens Ll was spatially filtered by a

circular aperture of 0.343 mm diameter. Then the signal was

collimated and passed through a C:orion SS5300 optical fre-

quency filter, The spatially and frequency filtered signal

was focused by lens L3 onto a RCA C31034-02 GaAs photomulti-

plier, which was thermo-electrically cooled and had a re-

spouse time of 2 nsec. The spatial resolution of the system

was determined by the aperture size and the laser beam diam-

eter. Some parameters of the signal-collecting optics are

tabulated in Table 5, using the assumption that the laser

beam diameter is 2 mm.

The photomultiplier signal was preamplified and dis-

criminated by an EG&G/PAR model 1120 amplifier-discriminator

and then processed by an EG&G/PAR model 1109 photon counter.

The photon counting improves the signal-to--noise ratio.

3.3 THE DATA ACQUISITION SYSTEM

Nine channels of data were sent to a Hewlett Packard

1000 mini-computer system. Five of these channels were con-

nected to a 14 bit Preston model GMAD4 A/D converter which

has a fixed total sampling rate of 1750 Hz and samples se-

quentially. These five channels were

- 45 -
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TABLE 5

Parameters of the Signal Collecting Optics

Aperture size(mm)	 0.34
Laser beam diameter(mm) 	 2.0
f number of the collecting lens	 0.98
lens collection efficiency(%) 	 1.54
PM tube quantum efficiency(%)	 23.23

1. position of the probe point translator

2. stagnation pressure

3. plenum chamber pressure

4. stagnation chamber temperature

5. jet temperature at nozzle exit

These supplementary information was sampled only at the

beginning and at the end of each data set.

The other four channels were

1. the voltage ramp applied to the piezo-electric crys-

tal which was attached to one of the end mirrors in

the cavity

2. the dye laser intensity monitored by the photo0iode

3. the output of the photon counter(a) which counts the

photons of the fluorescence signal from the atomic

beam device

4. the output of the photon counter(b) which counts the

photons of the fluorescence signal from the jet

- 47 -



These four channels wdre sampled simultaneously through the

Preston model GMAD/1 A/PD converter which has a maximum sam-

pling rate ot 540 KHz. The data acquisition scheme is shown

in Figure 13. First, the computer sends out a pulse and

commands the photon counters to count. The photon counters

count the photons collected by the photomultipliers for a

time period set by the photon counter. At the end of the

counting period, the photon counter sends a pulse back to

the computer to inform the computer that the data are ready.

Then the computer samples the four channels of data and

stores them on a magnetic tape. At the same time, a pulse

^t

r^

is sent to a pulse counter. , The pulse, counter counts one,

and moves the dye laser one frequency step. Then, the com-

puter sends another pulse, and the whole process starts

again. Two hundred and fifty six frequency steps were used

for each frequency scan.

The raw data sampled by this scheme are shown in Figure

14. As one can easily see, the sodium frequency spectrum

from the jet is much broader than that from the atomic beam

device. The shift in the frequency, which is caused by Dop-

pler shift and pressure shift, is very obvious. The voltage

ramp can be converted into laser frequency through the cali-

bration process described in the next chapter. The laser

intensity is used to normalize the sodium spectrum when the

raw data are processed.
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Chapter IV

EXPERIMENTAL PROCEDURE AND DATA PROCESSING

In this chapter, the frequency calibration procedure

and the methods of the data analysis are presented. They

are presented in largely the same sequence that the experi-

ments were conducted.

4.1 LASER FREQUENCY CALIBRATION

For the RDV technique, all the information is extracted

from the parameters in the form of frequency, e.g., Doppler

shift and linewidth. Hence an accurate frequency scale is

vital. The laser frequency is not measured directly. It is

deduced from the voltage which is applied to a piezoelec-

tric crystal attached to one of the end mirrors in the laser

cavity. Since the frequency-voltage relation is nonlinear,

it has to be calibrated. The calibration was accomplished

by using the Jodon spectral analyzer. Since this spectral

analyzer had a free spectral range of 1500 MHz, we got 3

peaks across the 5 GHz dye laser frequency scanning range.

To make the calibration more reliable, the dye laser was run

simultaneously at two frequency modes. Figure 15 shows the

voltage ramp and the output of the spectral analyzer. Simi-

lar scans were made more than 20 times, and the accumulated

- 51 -
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calibration values were fitted with a second-order polyno-

mial. The fitted result is shown in Figure 16.

4.2 COLLISION CROSS SECTIONS

As described in the ,introduction, one of the major dif-
ferences 'between the nitrogen-sodium system and the helium-
sodium system is that the pressure shift is not negligible.

Therefore, to make the velocity measurements meaningful, we

need the pressure shift cross section for collisions between

sodium atoms and nitrogen molraoles. Similarly, we need in-

fnrmation on thc, broadening cross sections to calculate the
pressure. Unfortunately, the necessary cross sections are

not available in the literature. Table 6 lists the broaden-

ing ' and shift cross sections that are available from the

literature. Many of the measurements were done without the

use of a tunable laser, which means these cross sections are

not very reliable. Other more recent measurements were

measured under the flame condition. F-' was mentioned in

Chapter 11, these cross sections are temperature dependent.

Therefore, we needed to find the broadening and shift cross

sections which were appropriate for our low-temperature con-

ditions. These cross sections were measured by shining the

laser beam perpendicular to the nitrogen jet. In this way,

there is a negligible Doppler shift caused by the mean flow

motion. Any shift in the spectral line frequency is mainly

from the pressure shift effect. The plenum chamber pressure

- 52 -
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Figure 161 Fitted Laser Frequency Calibration curve
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was adjusted by adjusting the needle valves 	 at the downstream
	

it f

side of the plenum chamber until uniform pitot pressure dis-

tributions  at several different downstream distances from

the nozzle in the core region of the jet were obtained. It

was then believed that the let was nearly ideally expanded,

and a uniform static pressure distribution was assumed.

Then the static pressure was determined by measuring the pi

tot pressure outside the jet. With this pressure and the

temperature determined by the beast, squares curve fitting

technique discussed in the next section# the pressure bhift

cross sections and pressore broadening cross eect lbns. were	
q

calculated from the following relationships which were de-

rived from Equation 11-1:

P
ab (A2)	 6.6346 x 10"4 (i,°) )(T— dv c

A)	 -6.6346 x 10 4 (P°)	 Qvas (	 s

where Po = 760 torr

Avc - collisional linewidth(MHZ)

AV  = pressure shift(MHz)

T = static temperature ( o o

The temperature dependence of these cross sections was ob-

tained independently by moving the probe point across the

jet since the static temperature distribution was not uni-

form across the jet. Results are presented in Chapter °J.

i^
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TABLE 6

Broadening & Shift Cross Sections

----------- .rw+pw.-----lAwr#rw----- - tw lie wr w.s r+}. ---------- ------fww

milieu	 Temperature cb	 as	 Reference
(OR) (12)	 W )

-----------------M 	-----III ------1-

Vapour Bulb	 <1000 59 (a)
Vapour Bulb	 580 69- (b)
City Gas Flame	 2080 33	 -- (c)
Vapour Bulb	 473 42	 18.34 (d)
Air-C H	 Flame	 2500 85	 -- (e)
Air-C2H2 Flame	 2180 34	 -- (f)
Air-C2H2 Flame	 2500 59.3	 - - (g)
Air-C`H	 Flame	 2500

LameAir-C8	 1964
53.5	 26.89 (h)
2.7	 -- M

Air-CO Flame	 2450 25	 -- (3)
Air-00 Flame	 2389 30	 - (3
Vapour Bulb	 500 83.2	 -- (j)
H	 0	 N	 Flame	 2000

iulbVapour	 500
27.X°7	 9.92 (k)
38.57	 12.26 (k)

-.—-----------------  — -----------------------------------

(a) R. Minkowskyo Z Phys 36, 839	 (1926).
(b) W.	 Schut,	 Z Phys 45,	 30	 (1927).
(c) E	 F. M. van der Held, Z Phys 70,	 508(1931).
(d) H. Margenau & W. W. Watson, Phys. Rev. 44,	 92(1933).
(e) N. N. Sobolev, E. M. Metzheritscher & G. M. Rodin,

Zh. Eksp.,	 Teor. Fiz.	 21, 350	 (1951).
(f) C. Th. J. Alkemade, Thesis, Utrecht,	 (1954).
(g) P. W. Hofmann & H. Rohn, J. Opt. Soc. Amer,, 51 # 	512

(1961) .
(h) W. Dehmenburg, H. Korn & M. Mailander, JQSRT 4,	 149,

163 & 177	 (1964).
(i) C. van Trig, Tj. Hollander & C. T. J. Alkemade, JQSRT

5,	 813	 (1965) .
(j) K.	 G. Popov & V.	 P.	 Ruzov, Opt. Sptactrosc.(USSR), 48,

4 1	372	 (1980) .
()c) 14.	 J.	 Jongeriue, A. R.	 D. Van Bergen, Tj . Hollander &

C. Th. J. Alkemade, JQSRT 25,	 1	 (1981).
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4.3 DATA PROCESSING

After the cross sections, and their temperature depen-

dences were determined, we proceeded to measure the flaw

properties in an ideally expanded jet, and in an underex-

paneled jet. Pitot probe measurements and total temperature

surveys were also made for comparison.

The spectral lines obtained from the experiments were

analyzed by a curve fitting technique. An

IMSL(International Mathematical & Statistical Library)

least-squares curve-fitting subroutine was used to do the

curve fitting. The theoretical Voigt profile was provided

by the Kielkopf approximation(.S0). Although there are many

approximations to the Voigt function (51 - 60), the Kielkopf

approximation is considered the best if accmracy, simplici-

ty, and computing time are all taken into account(61).

Five parameters were used in the fitting process.

These five parameters were

1. intensity normalization factor, Il , which determines

the intensity scale of the theoretical spectral line

2. the background intensity, I o , which determines the

base line

3. the Half Width at Half Maximum(HWHM) of the Voigt

profile

4, the ratio of Lorentzian FIWHM over Gaussian HWHM, a,

which affects the spectral lineshape

57
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S. the frequency of the 32S1/20 r-2 ­> 32P3 i2 , Fwl

transition,, \) 
f,

From an initial guess at the values of these parame-

ters, the Voigt profile for e4ch of the six hyperfine lines

can be calculated. %'ben, using the frequency spacings and 	 q

intensity weighting factors shown in Figure 2e the sodium D2

spectra can be -,onstructed by superposing these six hyper-

fine lines. Then fine IMSL subroutine will iterate until an

acceptable fit is obtained. A typical fitted result is

shown in Figure 17. The abscissa is the relative laser fre-

quency in MHz and the ordinate is the fluorescence intensity

in arbi ,':_-ary units. The crosses in the figure represent the

experimental data points. The solid line through the cross-

es is the least-squares fitted sodium D 2 line. The hyper-

fine structure is indicated by the vertical bars.

The IMSL least-squares curve-fitting subroutine also

provides the uncertainties for the fitting parameters, which

can be used to calculate the uncertainties of the measured

quantities. These uncertainties are mainly due to laser

frequency jitter, photon statistics, and electronic noise.

Dark current of the photomultiplier is negligible in this

investigation because a cooled PM tube housing, and a photon

counter with a discriminator were used for the eignal detec-

tion.

The goodness of the fit was tested by calculating the

sum of squares of the residues and by drawing the histogram

- 58 -



0

Iil

ij

.00

ORIGINAL PAGE is
OF POOR QUALITY

Figure 17.- Fitted Sodium 'Spectrum
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of the residues. Details of the error analysis can be found

in Ref. 6, and the theory can be found elsewhere (63).

Once the spectrum has been fitted and the optimal fit-

ting parameters have been established, we can calculate the

flow proPerties. Since broadening and pressure shift cross

sections are temperature dependent, the first flow property

to be determined is the static temperature.

From Kielkopf's approximation, the Gaussian linewidth

and Lorentzian linewidth can be calculated from the parame-

ters a and HWHM by using the following relations:

6

I,

t
C = 0. 099

R	 2^--	 2 91n 21+eln2+3 (1-eln2) +'--` 2
a

g2 = 1-(1+eln2)Q+eln2•Q2
ln2

AV L = 2 • P, • HWHM

2•g- HWHM -VTn4*a
r

r

y

b
s

n
d	 !

k

^	 S; T

From Equation 11-2, the temperature is given by

A V 
G
	 7.16 x 10 -7xv

0
 T/M

= 75.7 V (MHz)

After the temperature is determined, the collision cross

sections of the broadening and the shift can be determined.

60



. ,' (ter

3 Y

k^

Before determining the pressure d the collisional line-

width must be determined. As mentioned in Chapter 11, there

are many 'homogeneous line broadening mechanisms which will

contribute to the Lorentzian linewidth. For the sodium-ni-

trogen system, only collisional broadening, natural broaden-

ing, and instrumental broadening need to be taken into ac-

count. Since the natural broadening and the instrumentaion

broadening are much smaller than the Lorentzian linewidth, a

simple subtraction is used here.

Avc =AvL - AvN - AvI

",he instrumental broadening AVI is mainly caused Jay laser

jitter. It was estimated to be 10 MHz. The natural line-

width AvN is shown in Table 1. We can note calculate the

pressure.

The static pressure, P, is related to the collisional

linewidth by

Avc " 2NC'bvrel

= 2. T ,cb. 8R.

6.029x103 (p (7(MHz)
Po b. T

where Po = 760 torr

R = universal gas constant

Thus,

P = (6.6346 x10-4 )AvcP0 V^T—/db	(torr)

61
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To calculate the velocity, we need the frequency shift
of the sodium D2 line, This can be calculated from

AV  
= Vfl. ` 

Vref

where ref is the reference frequency of 3 28, /2 , F=2 to

3 2P3/21 F-1 transition. This reference frequency can be

obtained from the position of the large spike in the atomic

beam spectrum. The velocity component, U  in the baser

beam direction can be found from

UZ = V ( AVf — AVs)
U

where AV s (MHz) = pressure shaft

= -6-029 X 10 3 ( APP )US • L 	 (IV-4)
0

If the angle between the probing laser beam and the axis of

the jet is known, the flow velocity in the direction of the

jet is given by

U = Uz/rose

r

^^	
1

i

's
r

7

a

The Mach number can be determined from the relation:

k--v- _ - 	T

M = U/

where R = specific gas constant

Also, the total temperature can be found from:

Tt = T + U2/2Cp

62 -



where C  = specific heat at constant pressure

Uncertainties for these derived variables were deter-

mined by applying Kline and McClintock's expression(64):

if Y = Y(xl , x2, X3* ***# xN),

then 6Y = { E ( 81nY	 xi ) 2 } 1/2
Y	 i=1 alnxi xi

4.4 PITOT SURVEY AND TOTAL TEMPERATURE PROBE

To compare the result obtained from the RDV with some

conventional measurement techniques, a pitot survey and a
Q ,

total temperature probe were used in the same jet. Since

the flow is supersonic, a bow shock forms in front of the

probe. Thus the pitot pressure is smaller than the stagna-

tion pressure. If the jet is perfectly expanded, there

should not be any loss in total pressure except for the

losses associated with the pitot shock mentioned above. The

flow Mach number can then be determined from the normal

shock relations(65):

_ 1	 Y—
Ppitot 

= {1+2- 
(M2 1) } Y-1 { (Y+1)M	 Y - 1

stag	 (^y-1)M

2
 +2

However, since the nozzle is a conical nozzle, the flow in

the jet at the exit of the nozzle is not parallel to the

center line of the nozzle, some waves and shocks always ex-

ist(67). Thus the total pressure at the nozzle exit does

- 63 -
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not equal to the stagnation pressure, and the flow proper-

ties must be derived from the local static pressure, The

Rayleigh supersonic pitot formula can then be used to calcu-

late the Mach number:

1

P	 (— y M2 -1 ) y-1static _ Y+l : Y r	
(IV-6)

Ppitot _
	

y+1 2 y 
Y 
1

( 2 M )

This is the equation which was used in this work for an

ideally (in fact nearly ideally) expanded jet. In the per-

fectly P.Xnanded jet the static pressure Jin u„ E.., I-P A,--

tributed throughout the jet. Outside the jet, the flow ve-

locity is,virtually zero. Therefore, it is assumed that the

static pressure is the same as the pitot pressure measured

there. The error introduced by this assumption wil,! be dis-

cussed in Chapter V. from this pressure and those pitot

pressures measured in the jet, the Mach number across the

jet can be determined by a numerical bisection scheme.

Since total temperature is not affected by the exis-

tence of the shocks or waves, it can be measured with an in-

dependent total temperature survey. Then the static -temper-

ature can be determined from the Mach number deduced above

and the total temperature measured by the total temperature

probe:

Tstatic _ (1+ Y 2

-

'L M2 ) -1	 (IV-7)
total
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However ► the total temperature is not a constant across the

jet. Some errors are introduced by using a constant total

temperature across the jet. These errors will be disc^atised

in the next chapter.

The velocity can be derived from the definition of the

Mach number:

U = Mao = M 3+YRTstatic
4

Uu1ti^ l+ 
(Y

where	 a  = speed of sound

K	
U	 = ultimate velocity = ^	 (

I	 ult	 total

(IV-8)

A similar scheme will not work when the jet is underexpanded

because the static pressure is not uniformly distributed

across the jet. In that case the static pressure must be

measured by a static pressure probe. However, for the small

Jet that we have, reliable measurements of static pressure

are very difficult to conduct. Therefore, only a qualita-

tive analysis is given in this work for the underexpanded

case.

One point should be mentioned about the total tempera- 	 o .

ture probe. Since the nitrog

less than one, the temperature

ature probe is always smaller

ture. Therefore, a recovery

compensate this effect. Here

0.95 is used(68).

en gas has a Prandtle number

measured by the total temper-

than the stagnation tempera

coefficient must be used to

a constant recovery ratio of

- 6 5



495 TURBULENCE MEASUREMENT

To demonstrate that the RDV can be applied to turbu-
i,

lence measurements, the photomultiplier in the signal col-

lecting system was operated in the voltage mode. After be- 	 r

ing amplified and frequency-Filtered, the signal was
	 G

digitized by the GMAD/l. The laser intensity was sampled 	 {

simultaneously along with the fluorescence signal.. In each

data set, more than 32000 data points were sampled for each

channel. The frequency spectrum of these data was obtained

through Fast Fourier Transformation(FFT). The frequency

spectrum of the fluorescence signal, was compared with that	
;^ 4

of the laser intensity to check the effect of 'Laser intense--

ty fluctuation. Afterwards, they were compared with the

power spectrum obtained with hot wire probe in the same

flow.

The hot wire system that we used was a DISA SSM01 sys-

tem. The sensor was a 5jum tungsten wire. The wire length 	
Y`

was 2 mm. Various overheat ratios ( defined in Appendix B)

were used, but most of the measurements were done with T=

0.75. This is the highest overheat ratio that can be oper-

ated in our flow before the tungsten wire starts to be oxi-

dized.

Turbulence measurements with a aot-wire anemometer are

difficult because the voltage fluctuations need to be re-

solved into individual flow property fluctuations. To solve

this problem, the sensitivity coefficients must be found by
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calibration procedure. Then, by applying different overheat

ratios to the hot wire, one may separate the total fluctua-

tions into fluctuations of mass flux and temperature(9E)

In the RDV, the same problem can be solved by calculat-

ing the sensitivity curves from the spectral profile. Since
the velocity will determine the frequency shift of the spec-

tral line, and the pressure and the temperature will each

affect the Lorentzian and Gaussian lineshapes, their sensi-

tivities are different at different laser frequencies.

Iv SVV' + STT' + Spp ' + higher order terms	 (IV-9)

where S  = (aI V/aV) T

ST = (aI %) / aT ) V, p

S p = 0,V/")V,T

For low turbulence fluctuations, the higher order terms can

be neglected. Since SV, ST, and Sp are functions of the

laser frequency, they are presented as velocity, tempera-

ture, and pressure sensitivity curves in Figures 18 - 20.

In each of these figures, curves for different Lorentzian-

to-Gaussian linewidth ratios are presented. The a=0.227

curves apply for our conditions. The frequency scales were

normalized by the half width at half maximum of the spectral

line, and the reference zero correspond to the strongest hy-

perfine line of the sodium D 2 line. As the figures indi-

Cate, the velocity fluctuations are most sensitive at the

half maximum point, while the temperature and pressure flue-
z

{
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tuations are most sensitive at the peaks.	 Thus# by changing
the laser frequency, different turbulence properties may be
highlighted.	 One important feature of the velocity sensi-

tivity curve is that there are three zero crossing points

across the sodium spectra. They correspond	 to the three ex-

tremes in the sodium D2 line.	 This unique character can be

used to identify the existence of velocity fluctuations in

the flow.	 Alternatively, the fluctuations may be separated

by saturating the spectral line. 	 In that case the only flow

parameter that will affect the fluorescence intensity is the

density(79,80).	 However,	 when	 a high	 laser	 intensity	 is

used, optical pumping plays a role in determining the spec-

tral line shape.	 Further investigation is needed if this

option is to be employed.

4.6 FLOW VISUALIZATION'

For the flow visualization, a cylindrical beam expander
,t

was used to expand the laser beam into a thin sheet of

light. This thin light sheet was directed at a small angle

to the jet(see Figure 21). The orientation of the light

sheet was adjusted so that it went through the center of the

nozzle. When the jet was nearly ideally expanded, the

fluorescence intensity was more or less uniformly distribut-

ed. When the jet was underexpanded, the fluorescence inters-

city was not distributed uniformly, and a diamond-shaped

structure could be easily recognized from the light pattern.

- 68 -



n
c

c
U
u

g

C

ti
a

C

00

ORIGINAL PAGE IS
OF POM? QUALITY

Figure 18; Velocity sensitivity CoefficiG4 as a
of Laser Frequency

2

,w,o, -#l{.1LCU r-nmWUMNLI LHWHM7

69



- 70

ORIGINAL; PACE 10
OF POOR QUALITY

Figure 19s Temperature Sensitivity Coefficient as a
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Figure 20: Pressure sensitivity coefficient as a Function
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This pg4ttern was photographer) by a camera at the photomulti-

plier position. Then the laser light was directed into the

Jet from the side window at a large angle to the flow. In

this way, an asymmetrical-structured pattern emerged due to

the asymmetry of the illumination direction. Some ihoto-
graphs of these patterns are presented in the next chapter.
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Chapter V

RESULTS AND DISCUSSION

The experimental resu;'ts are grouped into four parts:

cross section measurements, mean flow property measurements,

turbulence measurements, and flow visualization. Comparison

of the results of the RDV measurements with those of the

conventional techniques are also made.

5.1 CROSS SECTION MEASUREMENTS

5.1.1 Broadening Cross Sections

As discussed in Chapter. VI, the collision cross sec-

tions are determined by shining a laser beam perpendicular

to the jet. Figure 22 shrws the broadening cross sections

obtained in this way. Those cross sections shown in Table G

are also presented in the same figure. The solid curve is

found by least squares fitting our data to the expression

c1b	KbTa

Our data correlate well with those cross sections measured

after 1965. The temperature scaling of a= -0.30+0.05

indicates that the interaction between the sodium atoms and

nitrogen molecules is stronger than van der Waals interac-

tion, and weaker than quadratic Stark interaction(see Appen-
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dix D). If the intermolecular potential is approximated by

an inverse power law, the inverse power can be calculated

{E	 from ( Equation D-1) :

N - 1 - 1/a = 4.31±0.65

The broadening cross sections vary substantially with

temperature at ,low temperatures. At 150 0K, the velocity av-

eraged broadening cross section is 70.65+4.15 A2. At 2500K,

it is 53.82+8.31 A2. The much larger uncertainty at 2500K

occurs because, as the temperature goes up, the spectral li-

newdtn becomes large. Since the scanning range of the las-

er frequency is fixed, the uncertainty of the measurement

will increase as the spectral linewidth increases.

5.1.2 Pressure Shift Cross Sections

The measurements of pressure shift cross sections are

shown in Figure 23. Similar to the case: of the broadening

gross sections, these data were fitted with power law for

the temperature dependence:

as = KsTO

The curve fitting of our data given 0 =-1.10+0.27. If one

derives this temperature dependence from the N obtained

above according to the theory in Appendix D, one obtains

$ = -0.95. This value is within the uncertainty of the ex-

perimental value. Comparing these cross sections with the
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high temperature ones from the literature indicates that the

temperature dependence of these cross sections is too

strong. If our data points with temperature lower than

1700K, which have relatively low uncertainty, are fitted

with the most recent high temperature data, the temperature

scaling is 0 = -0.25+0.24. This is appreciably different

from the previous a value. This might indicate that the

temperature dependence of the pressure shift cross section

for the sodium-nitrogen system is more complicated than the

simple power law; that is, 5 is a function of temperature

rather than a constant.

The large uncertainty of this temperature scaling may

be caused by the relatively large linewidth at the sides of

the jet. It may also come from the uncertainty of the angle

between the probe beam and the flow direction. Because our

nozzle is a conical nozzle, the flow direction is not exact-

ly parallel to the central line og the jet. This is partic-

ularly true at the boundary of the jet.

The pressure shift cross sections vary from 23+3.2 A2

at 1300K to 7+4.1 12 at 2600K. The uncertainty at the

boundary of the jet is larger than 50%.

With the large uncertainty in the pressure shift cross

section measured, a serious question is raised about its ef-

fect on the velocity measurements. From Equation 11-3, the

,r

Doppler shift per unit velocity is given by

(AVS ) D/v = (V6/C) cose = 1.696Xcose
	

MHz/(m/sec)

78 -

It ^-



i

s	 E

From this expression and Equation IV-4, the velocity

uncertainty caused by the uncertainty in the pressure shift

cross section can be found as

Av = -3.56x103cose (Po
	 T
)Aas•,i'	 (m/sec)

where Aa s = uncertainty of pressure shift cross section

Av = uncertainty of velocity induced by Aa8

Note that Av is inversely proportional to ^T. Thus, though

the Act s is larger at the boundary of the jet than that at

the center of the jet, the uncertainty in velocity measure-

ments introduced by Aa_ is not larger than that at the the0

center of the jet. Substituting the following flow condi-

tions of our jet into the last expression;

e = 127.50

P = 12.7 torr

Aces = 3.2	 at T = 130 OK ( center of the Jet)

Acts = 4.1	 at T = 260 0K (boundary of the jet)

then,

v = 27.5 m/sec (at center of the jet)

v = 24.9 m/sec (at boundary of the jet)

That is about 4% at the center of the jet, and 6% at the

boundary of the jet. Thus, the uncertainty in the pressure

shift cross section does not affect the velocity measurement

very much. However, the pressure shift itself is riot negli-
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gible in our system• The pressure shift is about 21% of the

Doppler shut at the center of the jet and 10% at the bound-

ary of the jet. The effect of the pressure shift i s shown

in Figure 24.

5.2 MEAN PLOW PROPERTY MEASUREMENTS

5.2.1 Measurements in a NearIX Tdeall Expanded Jet_

With an intersection angle of 127.5 0+0.5 between the

jet and the laser beam, measurements across a nearly ideally

expanded jet were made. The measured velocity, temperature,

pressure, and Mach number profiles are shown In Vigure 24 to

27. The velocity and Mach number profiles can be compared

with the profiles obtained from a pitot survey across the

same jet, Figures 28 and 29. The velocity measured with the

RDV at the center of the jet is about 700±43 m/sec which is

about 20 m/sec higher than that calculated from the pitot

pressure. The systematically higher velocity measured by

the RDV may be caused by an error in angle measurement;

since the RDV is sensitive to the velocity , component along

the laser beam, the flow velocity is calculated from the co-

sine law. Suppose the true ang le between the laser beam and

the jet is 1.50 smaller than the measured angle, the calcu-

lated velocity will be biased by

vm - 
Vt . _	 1	 l	 1

Vt	 cosam _ cose c ')/C cosec

	

ccoset/cosem )	 i

= 3.377%
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Figure 24; Velocity Profile across an Ideally E
Nitrogen Jet Measured with the RDV
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Figure 25: Static Temperature Profile across an Ideally
Expanded Nitrogen Jet Measured with the RDV
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Figure 26; Static Pressure Profil e
 across an Ideally

Nxp&nded Nitrogen Jet Measured With the RDV
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G:gt	 1,? Valocity Profile across an Zdeally Expanded 	 f,,
Nitrogen Jet Calculated from Pitot Pressure
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rigure 29: Mach Number Profile across an Ideally Expan
Nitrogen Jet Calculated from Picot. Pressure
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assuming than Vt̂, ^ 6$0 lm/sec

AV Wt Vt » Vm a 22.96 rte/sac

Thus a small error a t they measured angles may cause the sys-

tematically higher 	 measured by the ADV. $ince the

jet direction is not known ^t°xsctay, it is assumed to be par-

allel to they sides Window. They small error in the angle may

come from this assumption.

The d1kference between the measured velocities from the

1kDV and from
 the picot tube ba0mes larger at the edges of

the jet. To explain this discrepancy, one may ;First g uos -
tion tht reliability of the results of the picot survesy.

The velocity calculated from they pitot pressures is based on

several assumptions. It is assumed tb4t the y static pressure.

is uniformly distributed, and they static pressure is the

same as they ,picot pressure: measured outsides of the fat. To

estimate the error resulting from theses assumptions, a 10%

uncertainty is static pressure is assumod. From Equation

IV-G, we can deduce that

static	 2 (y-1) yid M ^Y~l

take	 M ft 3.4 (obtained by the irm

y a 1. 405

Qpstat3c
Static

^t

f

3^!

l'

,; ,
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than AM  < j* -5.16%
M

From Equations IV-k7 and IV-8, the velocity uncertOnty is

AU	 _	 t ^1)M2 	 AM
U	 X12) M

- -1.54%

Thus, the velocity uncertainty induced by the assumptions on

the static pressure is very small

The assumption that the total temperature is Constant

across the Jet is obviously not true. Figure 30 indicates

that the total temperature varies from 3300K to 3700K. Yet,

Ttotal , 3500K was used to calculate the flow velocity.

From Equations TV-S & xV-9 1 the error introduced by this as-

sumption is

AU1. I ATtotal
U 2	 Ttotal.

take Ttotal W 3500K

AT 
total" 

,200K

then 
U0 

its 3%

Thus, the error camsed by using constant total temperature

across the het is relatively small.

On the other hand, the large discrepancy may be mainly

attributed to the fundamental limitation of the RDV since

the RDV measures the glow properties through the existence

r

I

u
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of the sodium atoms. In the mixing layer, essentially all
the sodium atoms, that the RDV sees, come from the canter
portion of the jet. So, the sampling is biased toward high
velocity part of the flow. This is the same .problem that
the LDV has. This discrepancy may also be attributed to the

small pressure shift cross sections used at the edges. How-

ever, the pressure shift may count for less than 50 m/sec of
the velocity difference. In addition it is posssible that,
due to the much larger linewidth from the high temperature
at the edges of the jet and the higher laser power used
there, the systematic error caused by the limited frequency
scan and optical pumping is very large. ,According tb Ref..
7, this error can be as large as 25% under the flow condi
tion at the edges of the jet. The much larger turbulent
level and much lower sodium concentration in the shear layer
also yield a much larger uncertainty in the velocity meas-
urement.

A similar trend can be seen in the Mach number distri-
bution when compared with the results from the pitot survey

The large uncertainties seen in the derived Mach numbers are
mainly due to the uncertainties in the measured temperature,
which is about +20 O

K in the center region of the jet, rising
to about +300K at the edges of the jet. The fesulted Mach
number uncertainty is about +0.28 at the center of the jet,

and +0.12 at the boundary of the jet. The relatively small

uncertainty of the Mach number at the boundary of the jet is
s



due to the high static temperature there. Similarly, the

uncertainty in the static pressure measurement is quite

large, being about ±1.5 torr (which is nbout 13% of the ab-

solute flow pressure). These uncertainties arc mainly due

to the limited scanning of the dye laser frequency: As dis-

cussed in Chapter 11, in order to separate the Lorentzian

and Gaussian profiles, we need the spectral profile of the

line wing. However, with the limited laser frequency scan

of 5 GHz compared to a sodium line HWY;+x of 600-750 MHz ,

only limited portion of the line wing profile can be sam-

pled. Thus the curve fitting gave a large uncertainty in

the temperature and pressure m asurements.

Nevertheless, these measurements agree reasonably well

with the pitot probe and total temperature measurements.

The pitot pressure measured outside of the jet was 12.7 torr

and the pressure obtained from the RDV was centered around

12 torr. The total temperature calculated from the relation

r	IV-5 is presented in Figure 30. This can be compared with

the total temperature profile measured by a thermocouple,

and corrected with a recovery coefficient of 0.95. This is
r

presented by the crosses in the same figure. The agreement

between these two measurements is very good. However, the

good agreement at the edge of the jet is somewhat surpris-

ing. Because the velocity measured there is biased to a

higher value. This indicates that the temperature measured

there is lower than it should be(about 35o 1K lower). This

-90-
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might be explained by the same argument given to the veloci-

ty discrepancy. In the mixing layer, essentially all the

sodium atoms seen by Lbe RDV comes from the center region of

the jet, and carry with them the low static temperature that

they experienced there. Therefore, the static temperature f

measured by the RDV is biased to a lower .; value at the edge

of the jet.

5.2.2	 Measurements in an Underexpanded Jet

Measurements in an underexpaanded 	 jet were also made.

The flow with a diamond-shaped structure was generated by

nU ssmatch ing the ple'nium cham-e ,r , pressure and	 the jet pres-

sure.	 The measurements across an oblique shock are shown in
^i

Figure 31.	 Similar measurements across an expansion fan are

shown in Figure 32.	 although these results clearly indicate	 t

the	 flow behavior,	 they can not be used	 for quantitativea

t	 analysis because the	 structured flow is three-dimensional,]

and the present RDV measurements are one-dimensional.

5.3	 TURDULENCE MEASUREMENTS 	
r

The RDV signal was spectrally analyzed to find the fre-

quency component of the ;fluctuations in the flow properties.

Most of the turbulence measurements were done at G.5 nozzle

diameters downstream of the nozzle exit with a sampling rate
1

r̀	 of 50 KHz and a filter cutoff frequency of 10 KHz. 	 This low

sampling rate was used because of the limitation of photon

0 1

s

^. 91,
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Figure 31; The RDV Me asurementa Its an Underexpended Jet
(Oblique Shock)
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Figure 32: The MV Measurements in an UL.^
(Expansion Fan)
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1

statistics which will be discussed later in this section,
^F

Before we examine the turbulence data, we should fkrst exam--	 - €

ine the fluctuations of the laser intensity(Figure 33). It

can be seen that the laser intensity has strung fluctuations

only at low frequency part of the spectrum (lower than 200
3

Hz)

Figure 34 shows the power spectral densities of the 	 41

fluorescence signal measured across tho jet with the laser

frequency tuned to the half maximum of the spectral line.

Similar spectra were obtained when the laser frequency was

tuned to the pear of the spectral. line. Notice that there 	 x.
a

i
is no special frequency stiLAjture in these spectra. The L

^I

frequency spectra obtained from the hot wire data are shown	 ^f
i

in Figure 35. The hot wire was operated with an overheat 	 _.
1

ratio of 0.71. At this overheat ratio the hot wire is sen-

sitive to both mass flux and flow temperature fluctua-

tions(69).

To create a well defined spectral feature in the turbu-

lent flow, a third metal tab(0.011. . thick, 0.03 in. wide,

0.5 in. long) was introduced into the jet to generate large

scale eddies. As shown in Figure 36, strong, 400 fez. and 1050

Hz fluctuations were generated in the flow and could be ob-

served by the 12DV. The corresponding frequency spectra of

the hot wire signal are shown in Figure 37. 	 x

To investigate the cause of the fluctuation, a thicker
s

metal tab with the same width and length was used. No	 j

95

^": be
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Vigures 33: Power SpectrUM Dolisity of the Maser Intons ty
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Figure 34; Power Spectra of the RDV Signal from the Pro*
Jet
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Figure 35: Power Spectra of the Hot Wire Signal from the
Free Jet
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Vigure 361 Power Spectra of the RDV Signal from the Jet
with a Metal Tab
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Figure 37s Power Spectra of the Hot Wise Signal from the
Jet with a Metal Tab
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strong peak could be found in the frequency spectrum. 	 Thus,

the fluctuations probably arise from the vibration of the

metal piece instead of the vortices shed from the metal ob-

stacle,	 To confirm this, another metal tab shorter than the

original one (0.375 in. long, 0.01 in, thick,	 0.03 in• wide) a

was introduced into the jet.	 It was found that the frequen-

cy of the disturbance shifted to 550 Hz- 	 This upshift in

frequency is because of reduction in the mass'of the oscil-

lating piece.	 This appears to confirm that the fluctuations

are caused by the vibration of the metal, tab which was in

turn driven by tho flow. ;

By stepwise scannin^q the laser fre quency for .32 steps;

and spectrally analyzing the data at each Laser frequency

step, we can investigate the nature of the 400 Hz fluctua-

tion mentioned above.	 The 32 laser frequency steps along

the spectral lines, and the measured peak power of the 400
P

Hz components are shown in Figure 38. 	 Three node points can

be found, which agrees with the velocity sensitivity curve

shown in Fig u_,,, 18 with an .316.	 Thus, the velocity fluctua-

tion must be important in the 400 Hz fluctuation.	 However.,

the frequency positions of these nodes are shifted to the

right of those predicted by the velocity sensitivity curve.

This indicates that the 400 Hz fluctuation is not a pure vex-

loc ty fluctuation, but is a combj!4iation of velocity fluctu-

ations and temperature or pressure E luctuations . 	 This is to

be expected in a compressible flow since a velocity fluctua-- 0
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tion is always associated with a temperature or density

fluctuation. Notice that the second and the fourth peaks in

Figure 38 are smaller than those predicted by the velocity

sensitivity curve alone(Figure 18). A comparison with Fig-

ure 19 indicates that temperature is also fluctuating. As-

suming that only the velocity and. temperature fluctuations

are important, the fluctuation of fluorescence intensity is

I^ = SVV' + STT'
k'

and	 IV = SVV' + STT' + 2S VSTV' T'

where 112 is obtained from the experiment. S,2̂ , ST, and SVST
are known from the velocity and temperature sensitivity

rurvea. The three unknowns V'-, T' - , and V'T' can be ob-

tained by solving this equation at three different frequen-

cies or by fitting the experimental curve with a least

squares curve fitting scheme. In this work, the data are

preliminary and there is a rather large uncertainty, so no

attempt was made to least squares fit. However, by simply

taking the correlation coefficient of V' and T' to be -1,

and letting T'2/ V72 = 0.15, the solid curve in Figure 38

can be constructed. Though the fitting is not exact, the

special characteristics such as the zeros and the relative

peak heights are very similar to the experimental results.

The pressure fluctuation may also exist, but in an ideally

expanded jet, these are expected to be small.
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Figure 38 Vaariat3pn of the Power of the 400Hz Fluctuation

with the Laser Frequency
1! ^

NORM
	

HEDUENCY (HWHM) ,

h
h

L
f

4

L
L
L

L
L
a
E

U



r
na

f
5.3.1	 Frequency Response

^^

as

To check the frequency response of the RDV technique, a

EMI 9524S photomultiplier tube, whcch can take 10 times more

photons than the RCA 031034 photomultiplier tube, was used.

The sampling rate was 250 KHz,	 and the filter cutoff fre-

quency was 50 KHz. 	 A high frequency distur bance	 was gen-

erated by stretching a thin wire across the flow 2 nozzle {

' k*, diameters downstream of the nozzle.	 The vibration frequency

of the wire was about 410 Hz.	 High frequency fluctuations

E were	 detected	 7	 nozzle	 diameters	 downstream	 from	 the

^ wire(Figure 39).	 These high frequency fluctuations are be°

lieved to be jet noise, generated by large scale disturban-

ces	 which are	 induced by the	 thin metal wire	 vibration.

From the theory developed by Tam,et al.(70,71), the frequen-

cy of the acoustic radiation can be calculated from the for- y

mula

7TfD	 = 1.202(M-1 1/2 (1.406-0.198(M-1.40627) 1/2)-1
ii

0

-(0.033M2-0.219M+0.207)

where	 D = diameter of the jet

a 	 = ambient speed of sound

M = Mach number

j f = frequency of the noise

By substituting the following values into this formula,

M = 3.1

a 
	 = 381 mjsec at T = 600C,

D = 0.58 cm = exit diameter of the nozzle
r=

104 - F
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zw^

C

f-
U
LLJ
CL
(r)

m
W

C,- ^

1

Xwl^;fII
^Mtl,	 rv^D ._ ^	 •,



1)

we obtained fml9.05 KHz.

This result is in agreement with trle" ,'experimentally ob-

served frequencies. As can be seen iii Figure 39, there are

more frequency peaks scattered around 16 KHz and 22 KHz.

These frequencies agree with the experimental result ob-

tained by Trott, et al.(72,73) 0 who found from hot wire and

microphone measurements that jet noise contains numerous

discrete frequency modes centred around a Strouhal number of

0.16.

`	 Since S	 ft? VD

V M 700 m/sec

D - 0.58 cm

f _W

	 St - 0.18

lead to f = 21.72 KHz

The multi.-frequency structure of the jet noise detected

might indicate that there is more than one mode of large

scale disturbance in the jet.

The RDV measurements of the high frequency fluctuations

can be compared with the hot wire measurements (Figure 40).

The comparison shows that the frequency response of the RDV

compares favorably with that of the hot wire system. In a

constant-temperature hot wire system, the frequency response

is determined by the gain and the bandwidth of the amplifi-

er, the overheat ratio, the resistance of the bridge, the

fluid velocity, and the thermal properties of the sensor and

the fluid. Though the gain-bandwidth pr_)duct of the modern

^C
F

^b	 - 106 -



amplifier is large, the frequency response is normally lim-

ited to about 200 KHz because of the dependence on the flow

and sensor properties (96).

The frequency response of the RDV system depends on the

frequency response of the photo-detectors and photon static-

tics. The rise time of the ,photo-detectors is less than a

microsecond (the photomultiplier had a rise time of 2 nsec).

Thus the frequency response of the photo-detectors poses no

limitation on the frequency response of the RDV measure-

ments. However, the problem of the photon statistics is not

that simple. Since the photons are discrete particles, they

follow Poisson statistics, and the s ignyl to noise ratio is

11INT where N is the number density of photons detected dur-

ing the observation time window. One needs at least 100

photons to ensure less than 10% noise. Thus, if we want the

frequency bandwidth to be 100 KHz, we have to detect at

least 10 7 photon/s--c. This is too intense for some photo-

multipliers. One needs a photo-diode or a photo-transistor

to detect the high frequency signal.. In that case, the fre-

quency response can be in the order of MHz.

5.3.2 Spatial Resolution

The spatial resolution of the RDV is very good. The

laser be&m was focused into a small spot(d d lmm). Since

the circular aperture in the signal detection optics has a

diameter of 0.343 mm, the probe volume is given by

ty ra ;

^;1r

^'T 1

wa

probe = 0.17 (0.343/2) 2	(nun 3)

-1o7-
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Figure 40s High Frequency Jet Noise Measured by the Hot
Wire
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The hot wire also has very good spatial resolution because

the wire diameter is 5 Pm, but the length of the wire is

relatively large for our jet. The ratio of the wire length

to the jet diameter is 2mm/5.Smm w 0.35. Thus, the hot

wire measurements are not well resolved in that dimension.

This might explain the behavior shown in Figure 40. Notice

that at the center of the jet, strong fluctuation around 20

KHz can be detected by the hot wire. But as the probe point

moves outward, these fluctuations reduce sharply. This is

probably because of the spatial integration effect which re-

duces the high frequency fluctuations in the ;rater region of

the flow where the correlation of the fluctuations is not as

strong as that of the center region of the jet. Yet, the

,,RDV can resolve those fluctuations at a larger radial dis-

tance. The good spatial resolution and the nonintrusive'na-

ture of the technique make multi-dimensional turbulence

measurements is a compressible flow very promising for the

RDV.

5.4 FLOW VISUALIZATION

5.4.1 Flow Visualization in a Uniform Flow

By expanding the laser light into a sheet and shining

it into a nearly ideally expanded jet, a luminous pattern

can be recognized (Figure 41). In this figure the laser

frequency was tuned to resonate with the low velocity region

-- 109 -
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of the jet. When the laser frequency wax tuned to highlight
the high velocity portion of the jet, a different pattern

can be seen# as shown in Figure 42. Some background

fluorescence can also be seen in Figure 41 and 42. This is

due to the diffusion of the sodium atoms from the jet to the

ambient gas which is not moving

5,4.2 Flow Visualization in a Structured Flow

When the laser sight sheet illuminated an underexpanded

jet, a diamond-shaped structure appeared, as shown in Figure

43. since in a diamond-shaped structure the flow velocity,

pressure, and temperature are not uniformly distributed,

only those sodium atoms with proper velocity will fluoresce.

The luminous regions in Figure 43 are the low velocity re-

gions of the jet. However, velocity is not the only parame-

ter which will affect the fluorescence intensity. The num-

ber density of sodium and the brordening of the sodium

spectral line are also factors. 'The bright -1riangle regions

in the photograph are believed to be the regions behind the

shocks. It is very bright, not only because the velocity

there is low but also , because the density there is higher

than that in other regions.

By tuning the laser frequency high velocity regions of

the flow were high-lightedo as shown in Figure 44 Compar-

ing this photograph with the ,previous photograph, one can

easily see that now the brightest regions largely correspond

-.110-
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Figure 411 Flow Visualization with the Laser Light Sheet
Shined into a Nearly Ideally Expanded Jet - Low
Velocity
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Figure 43: Flow Visualization with the Laser Light Sheet
Shined into an Underexpanded Jet - Low Velocity
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to the darkest regions in the previous photograph. However,

the bright triangle regions in the previous photograph re-

main bright because of the relatively high sodium number

density.

When the light sheet was focused onto the jet from the

side window, the pattern becomes asymmetric(Figure 45). The

asymmetry is present because this flow is an undercexpanded

jest from a conical nozzle. The flow velocity is nod: paral-

lel to the center line of the jet. This asymmetric pattern

also indicates that the higher contrast is mainly due to the

Doppler velocity shift. The broadening effect which will

smear out the visualized pattern does not affect they con-

trast very much. The narrow luminous region downstream

shows only faint structure because the laser light massed

the cylindrical lens, so it was not focused to a sheet. (the

black bar across the picture is the shadow of the frame of

the cylindrical lens). The integrated effect obscures the

flow structure there. Figure 46 is a picture of the same

jet with the laser tuned to highlight the high velocity com-

ponents. Note that the low velocity regions which are the

bright regions in the previous photograph are now dark and

the bright regions are now the high velocity regions.
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Figure 44: Flow Visualization with the Laser Light Sheet
Shined into an Underexpanded Jet - High Velocity
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Figure 45: Flow Visualization with the Laser Light SheetShined into an Underexpanded Jet from the SideWindow - Lou., Velocity
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Figure 46; Flow Visualization with the Laser Light Sheet 	 0
Shined into an Underexpanded Jet from the Side
Window - Hiah Velocity
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Chapter VI

FUTURE WORK,,.

Besides applying the RDV in a supersonic nitrogen jet,

as described in this thesis, and applying it in a hypersonic

helium wind tunnel (Zimmermann et al., (1-6)) the RDV can

perhaps be developed further for the following applications.

6.1 AIR FLOW 

_.. y	 LL	 flTYT l..s	 .t — 161 ^	 4 n ov 4-ire,.mm^7 V
J.=	

.o be ab le to apply t1.Ae cw v 0 v ML	 .L V. .LA.	 A. 	 :ac v.1 v...,......j

important because most of the flow facilities in industry

and research laboratories use air. For air fldw, sodium

seeding is not appropriate because sodium will react with

the water vapor in the air flow. Even though we can use dry

air, the number of free sodium atoms which are available

will still be very limited because of the large quenching

cross section of the oxygen molecules (twice as large as

that of the nitrogen molecules) and the chemical reactions

(22) such as

Na* + 0 2 --> Na0 + 0

or

Na + 02 + M ..-> Nao2 + M

Some preliminary wank on applying the RDV to air flow

has been done. Iodine molecules were used as tracer parti-

- 118 -
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cles(74). Iodine was chosen because of its very high vapor

pressure ax,d its chemical inactivity in the air flow. Iod-

ine has the disadvantage of having a much more complicated

molecular structure than sodium. It is also quenched by

air, however, the fluorescence signal from the iodine mol-

ecules in a low pressure flow is strong enough to be seen

with the naked eye.

The diamond-shaped structure of an underexpanded super-

sonic jet can be easily identified in the photograph shown

in Figure 47. This structure is different from Figures 45

and 46 because the laser light was multi-frequency. Thus,

more t han one velocity group was exVJ%.WU *

6.2 TURBULENCE MEASUREMENTS

The turbulence measurements done in this work is only

preliminary. In the future, more quantitative analyses

should be made especially in separating out the total

fluorescence intensity fluctuations into fluctuations of ve-

locity, temperature, and pressure. From equation IV-9, one

may derive that

i
1

4

I

a
E

a

1v2S2 V 12 + S2 T t2 + Sp2 ps2

+ :2sVSTV'T' + 2SVSpV'P' + 2STSPT'P'

By operating the RDV at a minimum of six different frequen-

cies, one may determine all six unknowns. This is a similar

method as that employed by the hot wire technique in resolv-

ing mass flux and total temperature fluctuations.
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Figure 47: Flow Visualization in Iodine Seeded Air Flow
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Since the laser frequency is easy to scan, more than a

hundred frequency steps can easily be taken across the spec-

tral lines. By averaging the data at each frequency step

and fitting the theoretical spectrum across it, one ma y ob-

tain mean flow properties. The sensitivity curves for this

particular spectrum can be derived numerically. "Then, the

six turbulence parameters (V'2, V 2 1 P' , V"'1'' 0 V ' P', T"P')

can be obtairad by least squares :Fitting the mean square

fluctuations across the spectral lines using the sensitivity

curves obtained above. Note that to carry out this scheme,

a laser with high stability in its frequency must be used

because the scan across the spectral lines ma y take a long

time.

The potential of using the saturation spectroscopy for

turbulence measurements is worth further investigation.

Since when a spectral line is saturated, the fluorescence

intensity is a function of density only, th ►as saturation

spectroscopy is useful in isolating the density fluctuation.

However, as the laser intensity goes up, the opti cal pumping

might creep in and distort the spectral line shape. A studs

of the effect of optical pumping or locate +ig other spectral

lines which are free of the optical pumping effect would be

necessary before the saturation spectroscopy can be em-

ployed.

The frequency response of the RDV system in this inves-

tigation is limited to about 50 KHz. This limitation comes

r^

I^

I

^i

^s

^l
s

3

1

s
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f from the fact that a, photomultiplier is n ►it designed for the

detection of high intensity light. 	 A low-noise photo-diode

or a low-noise photo-transistor should be employed to extend

f
the frequency response of the RDV syster.,.

3x
6.3	 MULTI-DIt1ENSIDNAL MEASUREMENTS

The	 RDV haki	 so	 far been	 applied	 to	 one-dimensional
measurements only.	 It is relatively easy to extend its gees

to two- or three-dimensional measurements, and some prelimi-
nary work has been done to achieve this.	 The dye laser beam

was split into three beams and directed into the nitrogen

jet at	 three different	 directions.	 Each	 of these	 Laser

beams was sensitive to the velocity component along its di-

rection.	 By measuring the three non-coplanar velocity com-

ponents,	 the true 3-D velocity vector can be constructed.

To distinguish the fluorescence signals from the three laser

beams,	 a	 precision chopper was	 used to label	 the signal.

The chopper allowed only one beam to pass through at one

time, while a slot detector generated a square wave at three

f times	 the	 "chopping	 frequency"	 of	 each	 beam(Figure	 48).

This square wave was used to trigger the photon counter and
also served as a timing signal for the computer data acqui-
sition.

The preliminary raw data are shown in Figure 49.	 This
figure is similar to the raw data shown in Chapter 111, ex-
cept that three sodium D 2 lines were detected in this case.

h
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Each of these sodium spectra corresponds to one velocity

component of the flow.

Two-dimensional or three-dimensional measurements are

important for flow measurement because one-dimensional meas-

urements are not realistic. The preliminary work accom-

plished here demonstrates that the RDV can easily be applied

to multi-dimensional measurements.

6.4 MEASUREMENTS OF SPECIES DENSITY

As discussed in Chapter IV, velocity, temperature, and

pressure information is extracted from frequency parameters

such as frequency shift and linewidths. The intensity of

the fluorescence spectrum also contains some information.

Normally, the intensity of the spectral line is directly

proportional to the number density of the tracer spec-

ies (Equation VI-1) , which in our case is ^-ehe number density

of the sodium atoms. This relation between the fluorescence

intensity and the sodium density is complicated by the

quenching effect. Thus one has to determine the quenching

cross sections accurately before any reliable measurement of

the tracer species concentration can be obtained. If accu-

rate quenching cross sections are not available, saturation

spectroscopy, where the spectral intensity is independent of

the quenching, can be employed. This saturation LIES tech-

nique has been developed extensively by John iDaily(80 - 82).
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Furthermore, we can develop the RDV for major species

number density measurement. As mentioned in the last sec-

tion, the sodium D 1 Line is coupled with sodium D2 line

through the collisional process between the sodium atoms and

the nitrogen molecules. Thus the fluorescenae intensity ra-

tio of the Dl and D2 lines is determined by the number d en-

sity of the quenching species, i.e., nitrogen. By measur-

ing the fluorescence intensity of D1 and D2 lines

simultaneously, one may calculat=e the number density of the

major species. The feasibility of applying this technique

to sodium-nitrogen system has been investigated by Campbell

and Lewi,s(83). A similar technique has been applied to the

hypersonic helium flow by Driscoll(84) using electron beam

as the excitation source.

6.5 TWO-PHOTON SPECTROSCOPY

^E iti Instead of exciting the sodium atoms from ground 3S

t	 states to 3P states, we can excite sodium atoms into 4S or

3D states by using two-photon spectroscopy. The most inter-

esting feature of the two-photon spectroscopy is its Dop-

pler-free characteristic. When the two simultaneously-ab-

sor'bed photons are propagating in opposite directions, the

positive Doppler shift in one photon will be compensated by

the negative Doppler shift in the other photon. This will

eliminate not only the Doppler shift caused by mean flow mo -

tion, but also the Doppler broadening. There=fore, when the

:l
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RDV is used for flow visualization, the visualized patterns

can be explained unambiguously. A detailed discussion on	 ^^1

this subject can be found in Ref. 6. a
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Chapter VII

CONCLUSIONS

We have demonstrated the usefulness of the RnV in aver-

age and turbulent point measurements in a supersonic nitro-

gen jet. In addition we have shown that it is also useful

in flow visualization. Furthermore, broadening and pressure

shift cross sections at low temperature can be determined by

directing the laser beam perpendicular to the jet. Some

preliminary work for future development of this technique

has also been presented.

Our conclusions may be summarized as follows:

From the measurements of the broadening and pressure

shift cross sections:

1. The measurements indicate that the interaction be-

tween the sodium atoms and nitrogen molecules is

stronger than the van der Waals interaction, and

weaker than the quadratic Stark interaction. If an

inverse; power law is used to approximate the intermo-

lecular potential, the inverse power N will be about

4.3.
2. The measured broadening cross sections correlate well

with those measured recently under high temperature

conditions. However, the pressure shift cross sec-
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tions measured at high temperature(in the boundary of

the jet) are lower than those from the literature.

The uncertainty of the pressure shift cross section

is very large; about 50% at high temperature. This

may be caused by the uncertainty of the jet direction

and the finite scanning range of the laser frequency.

3. The pressure shift is not negligible in our flow. a

sodium-nitrogen system. It is about 21% of the Dop-

pler shift at the center of the jet, and about 10% at

the boundary of the jet. The uncertainty in pressure

shift cross section measurements increases the uncer-

tainty in v ;eivci'Ly easuieiTiEiiCa. a,vwcv2i, .....: ...,.,f......

is relatively small; about 5% of the flow velocity.

4. The quenching cross section may be as large as half

the broadening cross section, but the quenching ef-

fect does not severely affect the RDV measurement

since we can easily obtain a visible fluorescence.

Conclusions reached from the measurements of the mean

flow properties include:

1. The velocity, Mach number, static pressure, and total

temperature measured by the RDV agree well with those

measured by the pitot probe and the total temperature

probe. The uncertainties of the RDV measurements at

the center of the jet are:

uncertainty

	

	 relative

uncertainty

velocity	 +43 m/ sec
	

5.7%
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temperature	 +200K	 18%

pressure	 +1.5 torr	 12%

Mach number	 +0.28	 8.5$

2. The RDV velocity measurement was systematically high-

er than pitot tube values. This may be attributed to

a small error in the estimated angle"between the jet

and the laser beam. The much larger discrepancy in

the velocity measurements found at the edges of the

jet may be explained by the fact that the RDV can

only detect flow properties through the presence of

sodium atoms. Yet, in the mixing layer essentially

all the sodium atoms, seen by the RDV, come from the

center part of the jet. Thus the measured velocity

is biased towards the higher value.

3. The relatively large uncertainties in the measured

flow properties partly arise from the finite frequen-

cy scanning of the dye laser. These uncertainties

can be greatly reduced by using a better laser with a

larger scanning range, and by conducting a two-beam

experiment.

4. Measurements in an underexpanded jet were attempted.

The results clearly indicate the presence of an obli-

que shock and an expansion fan. However; because the

present RDV measurements are one-dimensional, the

three-dimensional nature of these flows makes the

quantitative analysis difficult.
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S. Since only one beam is required for each dimensior

the RDV can be easily extended for 3-D measurements.

The application of the RDV to the turbulence measure-

ments is established in the following aspects:

1. Since the RDV signal is continuous in nature, spec-

tral analysis can be used to analyze the frequency

components of the turbulent flow.

2. The frequency response of the RDV technique is limit-

ed by the photon statistics. For this work, the fre-

quency response is limited to 50 KHz. By using pho-

to-detectors which can accept higher signal;

iri+ nr +a- the free-uennv response in theory can be

extended to mega hertz.

3. The spatial resolution of the RDV is very good. By

focusing the laser beam, the probe volume can be

smaller than 10-5 cc.

4. Since the sensitivity to velocity, temperature, and

pressure(or density) is different at different laser

frequencies, the fluctuations of these flow proper-

ties may be separated by making measurements at six

or more laser frequencies. Furthermore, since the

velocity sensitivity curve bears three nodes at the

extremes of the spectral line, one can easily tell if

pressure and temperature fluctuations exist.

Flow visualization using the RDV technique was demon-

strated in a nearly ideally expanded jet and an underexpand-

st
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ed jet. From the photographs shown in Chapter V, we learned

that

1. Due to spectral line broadening, the observed pattern

was determined not only by the velocity distribution

but also by the temperature and density distribu-

tions. However, in the underexpanded jet, it was the

velocity magnitude and direction Which played the- ma-

jor role.

2. Since the laser beam was focused into a thin light

sheet, and since the light sheet was directed perpen-

dicular to the viewing direction, there was no spa-

tial integration. in other words, the RDV has a much

better spatial resolution than most conventional flow

visualization techniques.
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Appendix A

LASER DOPPLER VELOCIMETRY

The I,DV is the .*nest 11 puler laser flow diagnostic te^....^

for velocity measurements. Details of this technique can be

found in many places (85 - 88). Only the basic principles

will be briefly reviewed here.

Several different types of configurations can be used.

Among these the dual beam forward scattering (Figure 50) is

the most popular one. From Figure 50, one can easily see

how the fringes are formed. The fringe spacing d is deter-

mined by the angle between the two beams and the wave length

of the laser light, i.e.

d =	 X
2sin  (-6-/-2

To get the Mie scattering signal from the flow one normal-

ly has to seed the flow with solid or liquid particles. As

the seeding particles pass through this fringe pattern, the

scattered light is modulated in frequent^y. The modulation

frequency is:

f = U/d

where U = particle velocity

I
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This frequency can be found by processing the signal col-

lected by the photomultiplier with a frequency counter.

Knowing the fringe spacing, one can calculate the parti-

cle velocity. However, the velocity that the LDV measures

f^ is the particle velocity, not the velocity of the gas flaw.

Unless the particle follows the flow closely, the LDV will

not be a reliable technique for flow velocity measurement.

For particles to follow the flow, they must satisfy the fol-

lowing conditions(89):

WT  <
1.0

(pgwr2/2u)1/2 << l.0

Rg/pp < yx 1.0

Re << 1.0

Kn < 0.5

cg < 1.5

mpn/ pg < 0.01

where T  = dynamic relaxation time of the particle

= ppd2Cc/18u

Cc = Cunningham correction factor

n = average viscosity

w = flow fluctuation frequency

p = density
f

r = radius

Kn = Knudson number = ag/dp

a9 = standard deviation of the particle size

distribution

a
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Re = Reynolds number i p 
g 

(ug- tarp ) dp/N

n number density of that aerosol

mp w average mass of the aerosol

subscripts p and g denote particles and gas

flow respectively

In fact, a finijteiamount of time lag, however small,

will always be present. This lag time decreases with the

decrease in particle size and particle density. However,

other considerations, such as the signal to noise ratio and

the molecular slip, will place a lower limit on the particle

size . Evidently the LDWV is not a very good tool for turbu-

lence with high frequency fluctuations because as the turbu-

lence frequency increases, the particle lag problem will be-

come worse• Furthermore, the measured turbulent frequency

spectrum will be biased toward high frequency(90). This is

because the high frequency fluctuations will pass through

the probe volume many times more than those low frequency

fluctuations can in the sampling time interval. It is not

well developed for supersonic flow measurements either be-

cause , with all sorts of shocks or expansion fans that may

exist in the flow, the fidelity of the LDV measurement is

low (Figure 51). Besides the limitation of the particle

lag, the frequency limit of the photomultiplier becomes a

serious problem as the flow velocity is higher than several

hundred meters per second. This is simply because the Dop-
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i
	 pier shift frequency is too large to be handled by the elec-

tronic equipments. figure 52 depicts this problem.

t
	 As we can see from this figure, when the flow is super--

sonic, the scattering angle is limited to a few degree

that is, the fringe spacing is very large. In that case,
although the Doppler frequency is reduced, the probe volume

becomes so large and the number of fringes in the probe vol-

ume becomes so small that the measurement is not reliable
an; , p. Table 7 lists a sample calculation of the LDV pa-

rameters in a supersonic case. If an argon-ion laser and a
photomultiplier with maximum frequency response of 100 MHz

are used, the scattering angle will be limited to about 5

decree. With the conditions given in the table, there are
only 16 fringes in the probe volume. With this brief dis-

cussion, one can easily see why the LDV, with its great suc-

cess in subsonic flow, is not very practical in supersonic
flow.
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Figure 51: Particle Lag behind Normal Shock(92)
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Figure 52: Doppler Frequency Shift as a Function of
scattering Angle
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TABLE 7

The LDV in Supersonic Flow

WAVE LENGTH (A) 5145.00
BEAM DIAMETER (mm) = 1.50
FOCAL LENGTH	 (cm) - 20.00
FLOW VELOCITY ( m/s) = 650.00

BEAM	 ANGLE FRINGE DOPPLER dX,dY	 dZ NO. OF
SEPARATION SPACING FREQUENCY FRINGES

(cm)	 (deg) (;am) (MHz) (mm) (mm)

.2	 .57 51.45 12.63 .109 21.836 2

.4	 1.15 25.73 25.27 .109 10.919 4

.6	 1.72 17.15 37.90 .109 7.279 6

.8	 2.29 12.87 50.52 .109 5.460 8
1.0	 2.86 10.29 63.15 .109 4.369 10
1.2	 3.44 8.58 75.77 .109 3.641 12
1.4	 4.01 7.35 88.38 .109 3.121 14
1.6	 4.58 6.44 100.99 .109 2.732 16
1.8	 5.15 5.72 .113.59 .109 2.429 19
2.0	 5.72 5.15 126.18 .109 2.186 21
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Appendix B

HOT WIRE TECHNIQUE

The hot wire anemometer is among the most versatile and

widely-used, instruments for measuring fluctuating veloci-

ties. Their popularity stems from the 'small sampling vol-

ume, fast response, high sensitivity, and relatively low

cost. They can be applied to supersonic floy,-zneasurements

as well as subsonic flow measurements. In the past thirty

years, there have been a tremendous number of studies on

this subject (93 - 96). Only the basic principles of the

technique will be discussed here,. Attention will die focused

on its application to supersonic flows.

Hot-wires are electrically-heated thin resistive ele-

ments, normally circular wires of tungsten, platinum, or

platinum alloy. When the fluid flow passes over these sens-

ing elements, the flow properties can be derived from the

forced convective heat loss from the wires. The hot wire

sensor can be operated in either a constant current or a

constant temperature mode. In the constant current opera-

tion, a current through the wire is maintained constant and

the wire voltage is 'measured. In the constant temperature

system, the wire temperature is maintained constant by em-

ploying a feedback amplifier. Since the wire properties -	 r`a



such as thermal inertia, overheat ratio, etc. are constant

in constant temperature mode, a constant temperature system

is easier to operate than a constant curr l ^p.t system. Since

the system we used was a constant temperature system, the

discussion in this Appendix will be limited to the constant

temperature system.

The circuit for the constant..,, temperature system is

shown, in Figure 53. The output of the system is the voltage

output of the amplifier, which is the voltage required to

drive the necessary current through the sensor. The vari-

able resistor R3 is used to set the overheat ratio. When

the sensor operates, R will fluctuate with the fluctuations

in the flow velocity or flow properties. This will imba-

lapce the bridge. With the amplifier striving to maintain

e2=e l , the current i will vary to restore the original R

value. Since we can not operate the system with zero mean

voltage, an offset voltage eoffset is used to establish a

mean current through the system. To test the frequency re-

sponse of the system, , a square-wave test signal et is intro-

duced into the sensing element.

As was mentioned earlier,`the principle of the hot wire

is the energy balance between the heat loss and the electri-

cal energy input. The input power to the sensor is

el _	 R 2 eo _	 R	 e2
X	

___a_ )2
1 -1 - R	 (R+RI) R	 (R+R1)2

R = Ro{l+ a(T-Tref)}

where R 	 resistance of the sensor at reference

i

4 1

f	 ;^x
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Figmra 53: 6-,vhamatic of Constant Temperature Hot Wire
Anemometer
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a = thermal coegficient of the resistance

Tref = reference temperature

T - wire operating temperature

With free convection, conduction, and radiation losses being

neglected, the heat loss from the cylindrical wire is.

9 - gconv = hs(T-To)

= NuKf7rl(T-To)

where	 Nu = Nu(Re,Pr,Ma , Gr,Kn, (l/d),T,y,6)

{A(Pr, T) +B(Pr, T)Ren}(1+T/2)n'

and	 h convective heat transfer coeffi;c:%-Ant

K  = thermal conductivity of the fluid

d diameter of the wire

1 = Length of the wire

T = wire operating temperature

To = stagnation temperature of the fluid

Nu = N_usselt number

Re = Reynolds number

Pr Prandtl number

Ma = Mach number

Gr Grashof number

Kn = Knudson number

T = overheat ratio = (T-To)/To

Y ratio of specific heats of the fluid

e = angle between the sensor and the flow

velocity

- 144 -
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The last relation is the generalized King's law with the

coefficients shown in Table S.

TABLE 8

Coefficients in Generalized King's I,aw.(96)

Re	 A	 B	 n	 m	 Ref.
--------------------------------------------------------

Re<40	 0.24	 0.56	 0.45	 0.17	 (a)
Re>40	 0.	 0.48	 0.51	 0.17	 (a)

1<Re<4	 0.	 0.89	 0.33	 0.08	 (b)
4<Re<40	 01	 0.82	 0.38	 0.09	 (b)
40<Re<400	 0.	 0.62	 0.47	 0.12	 (b)

	

0.1<Re<1000 0.32	 0.43	 0.52	 0.	 (c)

(a) D.C. Collis & M,;a. Williams, J. Fluid Mech. 6, 357 (1959).
(b) R. Hilpert, WaerMeabgabe von geheizten Draehten and Rohren,

Luft, Forsch, :Arlo, Ing. Wes. 4, 215 (1933).
(c) W.H. McAdams, "HOat Transmission", Chap. 10, McGraw-Hill,

1954.

.:.•

}
J

9

The output voltage e  is

e = (R+R ) Nu7rK fl (T-To ) 1/2
0	 1 {	 ,R	 }

Note that not only the flow velocity, but also the flow

temperature, flow density, and the flow direction will af-

fect the output voltage. Moreover, the nonlinear nature of

the relation makes the calibration extremely important for

hot wire measurements.

When applying the hot wire technique to the supersonic

flow, three problems were identified by L. S. G. Kovasznay
r	 (97, 98).



ll

I I 1. A higher frequency response is required.

2. A new heat loss law is needed.
a

3. Three independent flow parameters are required.

The first problem is solved automatically with the develop-

ment of the constant temperature technique because a con-

stant temperature has a very high frequency response (>100

KHz). For the second problem, Kovasznay(97) has derived an

empirical form of the heat loss at supersonic velocities

q	 (A+BRe l/2 ) (l--C T-T ree)Tr1Kf (T-Trec )0

where TreC recovery temperature

	

C	 0.18

	A 	 0.580

	

B	 -0.795

Therefore, in supersonic flow, the heat loss law is basical-

ly the same as that in the subsonic flow. It depends on the

mass flux pU and the stagnation temperature, and is indepen-

dent of Mach number. The only difference from the subsonic

case is an additional temperature dependent term.

The third problem is an intrinsic property of superson-

ic flow. Because the flow is compressible, there is an ad-

ditional independent variable. Therefore, an additional as-

sumption is required. Further information can be found in

other studies (94 - 101). 	 `
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Appendix C

MODIFIED VOIGT PROFILE

As described in Chapter Ix, the Voigt profile is the

convolution of a Lorentxian profile and a Gaussian profile,

and the expressions for these two profiles are:

(QVL/2) 2
(I	 Iv) b	 o (V-V o- '&V -AVsD ) 2+(AVL/2) 2

C^(v-vo)z

(ZV }G Ioexp 	 v 2 ,
u 	

}
0

where &v L = NabV

DV sp = Nas'v

In the same chapter, it was also mentioned that the broaden-

ing collision cross section and pressure shift cross section

were temperature dependent. Strictly speaking, they are

functions of the relative velocity of the perturber and the

absorber.

AVL = N<abvr>

4Vsp = N<asvr>

Since v  depends on the velocity of the absorber v, the con-

volution procedure described in Chapter II for Voigt profile

is mathematically inconsistent(109). This inconsistency can

47
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lead to a serious error in the resulted line profile. But

under certain conditions, the Voigt profile can still be

treated as a good approximation. If we take these velocity-

dependent broadening and shift effects ' into account, the re-

sulted profile is called Modified Voigt Profile(MVP) or

Speed Dependent Voigt Profile(SDVP)(102 - 108).

The most general expression for MVP was given by Paul

Berman ( 102) . The profile be derived is:

W	
-Z

	

1(6) = Tr-3/2 j	 e z - n (z)
•00 n (z) +{^ (z)- z }2

	

-3/2	 -z2 {z `+
n (z) 2-^ (z) 2J dz +

-^ 	 I dz.e	 z•
.00	 {T1(z) +{^ (z)•-z} ) (r) (z) +

2n(z )^(z)dz

(z)+z}2}

where	 z = v/u

y = kuZT

n( z ) ={AVL(uz)?/ku

d = (v-v0) /ku

E (z) = {V-,v 0- AV sp  (uz) f /ku

a(z) = n(z)+Mz)

The first term is the simple Voigt profile and the second

term is a complicated modified term for the Voigt profile.

However, the velocity -dependent effect is easier to un-

derstand if we follow the derivation of Herbert Pick-

ett(103).

1

h i i

A x I
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If we assume the velocity-dependency of the broadening

collision rate to be of the form

Rb - (QvL/N) = <air> w Kbvr

then
b

	

Rb(v)	 ^p f(vr/v)Rb(vr)dvr - %oM(-n/2,3/2.x2)

where f(vr/v) distribution function for relative velocity

v  of the perturbing molecule with respect
r,

to an absorbing molecule with velocity v

4v  sinh ( 8vv 
r 
/^v2p )expf-"- ^v2+v2r ) /Iryp

 ).^tvvp 

vp rms speed of the perturber

	

_	 All a 11/G

Rbo = Rb (m +m )	 Rb(1-m*)n/Za p
m* = p/(ma+mp)

M = confluent hypergeometric function

x = v /-m-7

and subscripts a and p denote the absorber and

the perturber, respectively.

The same relation can be applied to pressure shift.

R = Kvs

	

s	 s r

Rs (v) = RSOM(-s/2,3/2,x2)

The resulted MVP is:

	

(^	 NR (v)

	

I (s) = 
J	

2	 b	 2 f (v) dv
o N Rb (v) +{S-^NRs (v))

where 6 = frequency offset from the resonance

^-149-



As one can easily see from these: equations, the important

parameters which will determine how good an approximation

Voigt profile is are n, s, and m*.

The velocity-dependent effect on the shape of the spec-

tral lines has been discussed extensively by R. J. Lovett

and M. L. Parsons (105). Generally speaking, it doers not

affect the lane wings but will make the spectral line sharp-

er at the line center, that is, the peak will be higher and

the full width at half maximum will be smaller. The effect

is shown in Figure 54.

If the mass of the absorber is much larger than that of

the perturber, that is, m*-->0, the Voigt profile will al-

ways be a good approximation for any value of n or s. But

as m* approaches 1, that is, the perturber becomes heavier

than the absorber, the error produced by using Voigt func-

tion as the line profile can be as large as 30%.

Another important feature of the MVP is the prediction

of the asymmetry of the line profile. The asymmetry is

caused by the velocity-dependence of the pressure shift.

But because the analysis of MVP with velocity-dependent

shift is very complicated and because the effect of asymme-

try is normally not very pronounced at low pressure under

which the spectroscopic analysis is employed, this problem

is normally neglected.

Unfortunately, to the knowledge of the author, the MVP

can not be evaluated at this time by other than direct nu-
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Figure 54: Velocity Dependent Effect on the Line 6hap
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merical integration methods. This fact,' along with the un-

certainty in the velocity-dependencies of broadening and

shift and normally-small deviation of the line shape from

the 'Voigt profile, makes the effort to incorporate MVP for
spectral line shape analysis a not very attractive job.

However, it is certain enough that if a precise spectral

analysis is required or if the deviation is too large to be

neglected, MVP should be imposed.
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Appendix D

TEMPERATURE AND VELOCITY DEPENDENCIES OF
COLLISION CROSS SECTIONS

The theories mentioned in Chapter II imply that the

broadening collision cross section and pressure shift colli-

sion cross section have the same temperature-dependence if

the intermolecular potential is given in the form of inverse

power law. That is,

P.E. - a/rN

However, the semi-classical treatment of the impact approxi-

mation given by Frost et al. (111 - 113) has shown that the

shift is obtainable only in second-order Born approximation.

But the broadening is obtainable in first-order Born approx-

imation. Consequently, the temperature-dependencies are

different for these two types of cross sections.

When employing this new treatment, the resulted temper-

ature-dependence of broadending cross sections is the same

as that Derived from Lindholm's theory

1

sb « T- N-1	 (D-1)

while the temperature-dependence of the shift cross sections

is(103):

N+2

a	 T 2(N-1)s
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The temperature-dependencies of these cross sections

are not very meaningful physically l because the relative ve-

locity is the true factor that determines the collision ef"

fect. The velocity-dependencies of these cross sections can

be obtained through the following transformation:

Let a = a(T)	 aT a

since O(T)	 a (v) f (v) - dv

00	 m ^3/2 exp(- 1 Av- 2 47ry 
2 dvCr (V) 1 2 7r KT	 2 Kit-

vO(v) 2 v	 1	 v	 21	 2
^ I 7-r F2K 3/2exp(-(	 y d ^M7M

	

ro	 2K T
n

nj
I	

v )2
;2—KFM'

then cr(T)	 as-	 2 
CO 
a(x)xl/2s 3/2exp(-sx)dx

ir

CO

	as-(a+3/2)	 axl/2exp(-sx)dx
VV 10

By employing the inverse Laplace transformation, we may ob-

tain

ax (a+3/2)-1	 2 ax 1/2
^7r

Therefore,

a = a .Z7T .( m ) 
a.v2a

	

2	 2K

= cons Ov2a

The temperature- and velocity-dependencies of t^e broadening

and shift cross sections are tabulated in Table 9 for some

special types of interaction.
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TABLE 9

Temperature & Velocity Dependences of Collision Cross
Sections

.__-_------..-------------------------------------
N	 ab(T)	 ab(v)	 as (T) as(v)--------------------

N=00
Hard Sphere	 TO	 v0	 T-0.5	 v-1

N=6
van der Waals T-0.2	 v 0.4 T-0.8 v-1.6

N-4
Quadratic Stark 0.333	 -0,667	 -1T-	 v	 T -2v

N=3	 7^-0.5	 v-1Dipole
--------------------------------------

T-1.25 v-2.5

t
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