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1. INTRODUCTION

Satellite laser ranging systems are currently being used to accurately

measure the baseline distances between widely spearated points on the

earth's surface [1j. The technique involves measuring the distances be -

tween the ground stations and retroreflector equipped satellites [2].

Typically, hundreds of range measurements are obtained during a single

satellite pass over a ground station. Measurements from several passes are

used to determine the satellite orbit and the coordinates of the ground

sites. :Major error sources include instrumentation noise, orbit modeling

errors and atmospheric refraction. The effects of these errors on baseline

accuracy is a complicated function of the geometry of the satellite orbits

and ground station locations. In this paper we are primarily concerned

with the effects of atmospheric refraction. Unfortunately, because of the

mathematical complexities involved in exact analyses of baseline errors, it

is not easy to isolate the atmospheric refraction effects. However, by

making certain simplifying assumptions about the rangirig system geometry,

relatively simple expressions can be derived which relate the baseline

errors directly to the refraction errors. The results indicate that even

in the absence of other errors, the baseline error for intercontinental

baselines can be more than an order of magnitude larger than the refraction

error.
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2. BASELINE ERROR ANALYSIS

The general nonlinear regression model of n measurements [3] is given

by

.L - f(x,$) + E	 (1)

where x contains epoch values of the desired parameters to be estimated, s

contains epoch values of the unadjusted parameters which are assumed to be

known constants in solving the regression equations, and a is the zero mean

measurement noise vector. It is assumed that the elements of a are sta-

tistically independent, and the partitioning of parameters into x and s is

arbitrary.

When this regression equation is used to model the distance measure-

ments between a ground station and the satellite, I is a vector repre-

senting the range measurements between a ground station and the satellite,

x is a vector representing the epoch ialues of the ground station coor-

dinates, and s is a vector representing the epoch values of the error

sources' parameters such as the orbit modeling errors and the atmospheric

refraction errors. The vector function f(x,$) in Equation (1) can be

defined as

f(x,$) - D + AR
	

(2)

where D is a vector representing the ^.ctual geometric distances between the

ground stations and the satellite, and AR is a vector representing the

i
	 atmospheric refraction.

The total error covariance matrix associated with the station coor-

t I	 dinates for this model is given by [31
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E[ (Ax)(Ax) ] _ (A WA + P

—a ) 
+ (A WA + ^ )	 (A WB) V

a
 (B WA)

• (ATWA + P_
	

(3)

where

A	 af(x,$)	 (4)

ax
—	 x=xN

s ' Sx

af(x,$)

B	 (5)
as	 x	 EN 

s i Q

P  is the covariance matrix for the a priori estimate of the station coor-

dinates x, W is the inverse of the measurement noise covariance matrix,

V
s 

is the covariance matrix associated with the unadjusted parameter s, and
—	 —

4 and .4 are the nominal values for x and s, respectively.

The elements of the matrix W are directly proportional to the total

number of range measurements. So in satellite laser ranging where a large

number of range measurements is obtained, the 
P_1 

matarix in Equation (3)

can be neglected when it is compared to the A TWA matrix. That is, the a

priori estimate of x is not as critical in determining the error covariance

matrix when a large number of range measurements is gathered. Because

3

of this and the fact that the ( ATWA ) -1 matrix is small, Equation ( 3) can be

simplified to



	aBL	aBL

	

+ ay2	°y +2	 az1

x - EN	 x - X
-N

aBL
°z 1 + az2	°z2

X--X-N

(8)
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Et(°x)(°x)TI - (ATWA) -1 (ATWB) V$ (BTWA)(ATWA) -1	(6)

In Cartesian coordinates, the baseline distance between two points can

be expressed as

BL - [(x 1
 - x2 ) 2 + (y l - Y2 ) 2 + (z l - z2 ) 2 1

112	 (7)

where (xl ,y l ,z : ) and (x2 ,y2 ,z2 ) are the coordinates of the two points of

interest. By letting Ax., °y m
	 m
, °z denote the coordinate measurement

errors associated with the mth station (m - 1,2), the baseline error can be

expressed mathematically by expanding Equation (7) in a Taylor series about

the current nominal parameter 41

a

BL	 ax 	
°xl + ax2	 °"2 + ay 1	°yl

x-xN	 1-4	 x - XN

It can be seen from Equation (8) that the mean square baseline Error

consists of the variances and the covariances of the various coordinate

errors. By explicitly evaluating Equation (6) and using the results with

Equation (8), the baseline error can be determined.



S

3. RANGING GEOMETRY

As mentioned in Section 1, the major error sources for the baseline

determination include the orbit modeling errors and the atmospheric refrac-

tion errors. In this analysis, we want to reduce all other error sources

to negligible levels in order to estimate the ultimate effect of refraction

on the baseline errors. By doing so, we are assuming that the orbit modeling

errors are negligible. This is a reasonable assumption because, in practice,

several days' worth of data from many stations are used to determine the best

fit satellite orbit [4]. 	 The station coordinates are then determined using

this best fit orbit. In this section, a particular ranging geometry for the

best fit satellite orbit is defined and used to calculate the baseline error.

The geometry of the two ground stations and the two satellite paths is

illustrated in Figure 1. Notice that two satellite passes are required to

solve for the ground station coordinates. The satellite ground tracks are

parallel to each other, and the satellite altitudes (h) are constant and

equal for the two passes. This corresponds roughly to the geometry for a

polar, circular orbit satellite. Furthermore, high altitude orbits are

assumed so that a flat-earth model can be employed in the analysis

to simplify the mathematics. It should be noted that the results otained

by using the flat-earth model will not differ substantially from those

obtained by using the spherical-earth model.
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For simplicity, the satellite orbits, S 1 and S 2 , are assumed to be in

the x-direction. The nominal coordinates of the ground station 1 (G 1 ) are

((L 1 + L2 ) tan Y, L i , 0) and the nominal coordinates of the ground station

2 (G2) are (0,-L2 ,0). The baseline between the two stations and the y-axis

intersect at an angle Y• The maximum elevation angle associated with the

mth ground station and the nth satellite pass is denoted by

EM	 m - 1,2,	 n • 1,2

For this particular geometry ,

aBL

Axm 	 (-0	 Ax  sin Y	 m - 1,2 ,	 (9)
)x
m

x - :N

3B 
	

Aym (-1)M+1 
4y  cos Y	 m - 1,2	 ('_0)

ay
m 

X • ^V

and

aBL 1

aZ	
^zm • 0	 m • 1,2	 (11)

IX-,
By substituting Equations ( 9) through ( 11) into Equation ( 8), we have

AB  2 sin Y ( Ax I - Ox2 ) + cos Y (Ay 1 - Ay2 )	 ( 12)	 r

The mean square baseline error is, therefore, given by
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<AB 2> • sin  Y (°x
1

+ cos` Y (°Y
1

- 2 cov(x l 9 x2 ) + ax21
2

- 2 cov(Y 1 #?2) + 
aY2

+ 2 sin Y cos Y (cov (x l ,Y l ) - cov(x1 ,Y2 ) - cov(Yl,x2)

+ cov(x2,Y2M
	

(13)
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4. BASELINE ERROR FOR THE SPHERICALLY SYMMETRIC ATMOSPHERE

The various matrices aritioned in Section 2 will be formulated here

for the ranging geometry of Section 3. For this ranging model, the orbit

modeling errors have been assumed to be negligible and the dominant errors

associated with the range measurements are the atmospheric refractioa errors

and the instrumentation errors.

Normally, the range measurements are taken when the elevation angles

are above certain threshold angles E®n and they are taken uniformly in time

during the satellite pass (refer to Figure 2). Thus, we can denote the

position of the satellite during the jth measurement by its Cartesian coor -

dinates as

position of satellite on orbit S1

during the jth measurement for
station G 1	if 1 < j t k

position of satellite on orbit S2
during the jth measurement for
station G 1	if k+1 t j < 2k

(XSj.ySj,zsj)
position of satellite on orbit S1

during the jth measurement for
station G2	if 2k+1 c j c 3k

position of satellite on orbit S2

during the jth measurement for
station G 2	if 3k+1 < j < 4k.

It should be noted that the threshold elevation angles associated with each

ground station and each satellite pass are different, but they are usually

related to one another for a particular geometry. Further discussion on

their relationship is given later in this section.
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If G 1 and G2 are located at (x l ,y l ,z l ) and (x2 ,y2 ,z2 ), respectively,

then the geometric distances between the ground stations and the satellite

at various points along the satellite orbits can be written as

[(xaj—x1)2+(ysj y l ) 2+(h-2
1 ) 2 ] 1/2 

geometric distances between G 1 and
satellite along S 1 if 1 t j r. k

[(xSj-x1)2+(ysj-yl)2+(h-z1)2]1/2 geometric distance betweeu G 1 and
satellite along S 2 if k+l -c j I. 2k

[(xSj-x2)2+(ySj-y2)2+(h-z2)2]1/2 geometric distance between G and
satellite along S 1 if 2k+1 < 1 c A

[(xSj -x2 ) 2+(y sj-y2 ) 2+(h-z 2 ) 2 1 1/2 geometric distance between G and
satellite along S 2 if 3k+1 t	 < 4k,

(14)

and the column vector D of Equation (2) can be expressed as

D = [d1 ,...,d4k I T .	 (15)

For a spherically symmetric atmosphere, the effects of horizontal

refractivity gradients [5] are negligible, and the atmospheric refraction

associated with the jth range measurement is given by [6]

s
ARj	 j	 j = 1,...,4k

sin E j

where E  is the elevation angle associated with the ground station and the

satellite at the jth measurement, and B  is the spherical correction coef-

ficient associated with the jth measurement. B  is a function of surface

pressure, temperature and the water vapor pressure at the ranging sites

during the satellite passes [6]. By referring to the ranging geometry of

Figure 2, Equation (16) can also be expressed as

dj=,

(16)
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ARj 	 S	 j	 1,...,4k	 (11)

By using the results of Equation (11), the column vector AR of

Equation (2) can now be expressed explicitly as

T

AR ' 11dl
	

... ,
 04kd4k	

(18)
[h T

By substituting Equations (15) and (18) into Equation (2), the range

distance vector f(x,$) in the spherically symmetric atmosphere can be writ-

ten as

f(x,$)	 Ir(1 + h l d l ,..., 1 + ahk d4k T	 (19)

The spherical correction coefficients vary from measurement to

measurement, depending on the instantaneous weather conditions at the

ranging sites and along t%e optical path. So the unadjusted parameter vec-

tor s should be expressed as

s	 (81 ,..., 840 	 (20)

Since the time period for each satellite pass is usually short, substantial

changes in the weather :onditions at the ground stations are not expected.

Typically, meteorological data is acquired once during each satellite pass

and used to calculate 8 to correct the ranging data collected during that

pass. Therefore, we assume that the value of 8 that is used to correct

the measurements for a ground station remains constant on the same

satellite pass.
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The ground stations are usually widely separated so that the surface

pressure, temperature and the water vapor pressure at these stations may be

completely different from and independent of each other. As a result, the

meteorological data, and hence the a's, associated with different ground

stations, are assumed to be independent. Consequently, the errors in calcu-

lating these a's (Ws)  at the two ground stations are assumed to be

uncorrelated. Notice that these errors arise from inaccuracies in the for-

mulas used to predict a from meteorological parameters and from errors in

the meteorological measurements.

Due to the assumptions of constant a for the same satellite pass and

different B's between ground stations, Equation (20) can be simplified as

s - [ all $12 a21 a22 T

	
(21)

where 
ban 

is the estimated spherical correction coefficient associated with

the mth ground station during the nth pass.

Because the range measurements in the two passes are taken at dif-

ferent times, the correlation of 40 between passes can either be high or

low, depending on the extent of the weather changes duri.ig the two passes.

When the temporal separation between passes is short or when the weather

conditions at the ground stations are fairly constant during the two

passes, we would expect to see a very high .:orrelation betwen the values of

a for the two passes. Therefore, the errors in a, i.e., 4a, would be

expected to be correlated for the two passes. Conversely, if the time

separating the two passes is long or if weather conditions changed substan-

tially, a partial or a relatively low correlation between 9a during the two
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passes would be expected. In Section 4.1, a general expression for the

baseline error in the spherically symmetric atmosphere is derived.

4.1 General Expression for the Baseline Error

Before we can derive a general expression for the baseline error, the

various matrices of Equation (3) must be expressed explicitly in terms of

the relative positions of the satellite and the ground stations according

to the prescribed geometry.

By replacing the general $'s of Equation (20) with the station -varying

and path-varying a
mn ' s , we obtain a simplified expression for the range

distance vector f(x,$) as

f(x,$)	 1 + h l ^d 1 ,..., 1 + 
Sh l l dk 	 (1 + Sh21dk+1+..., ^1 + sh2Id2k

1
1+ S21 1d 	..., 1+ S21 1d 	 1+ Bh2d +,.., 1	 $h2d4 Th	 2k+ 1 ' h	 3k	 13k 1

.	 +(	 k

	

l	 J
(22)

where dj is a function of both the station coordinates and the current

satellite positions, and

x = (x l y1 z  
x2 y2 Z21T	

(23)

is the ground station coordinate vector.

The partial derivative of f(x,$) with respect to x can be calculated

by differentiating each vector component of Equation (22) with respect to

each vector component of Equation ( 23). For instance, differentiating the

first component of Equation ( 22) with respect to the x-coordinate of the

ground station 1 yields



A	 -I

W.
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a[(1 + 
a
ll d	

a	 x
h	 1	

-(1 + 
11 l	

(24)

ax 	
d 1

of
Notice that the resulting partial derivative - is a 4k by 6 matrix.

After evaluating this matrix at the nominal station coordinates of

((L 1 + L2 ) tan y, L i , 0) and (0,-L21 0)(refer to Figure 1), the A matrix

of Equation (4) can be expressed explicitly as

	

r ( 8 ^1 ( 8	 (11-L1) (8 11 hI I ^+ 11^^ I l^n !	 11 h a

	

d	
I

^+ J	 I

.	 0
(1+	 f 1 8b (,̂ `i'	 h^1^--h I d

^1 A	

1	 (1 eh	 ( 7	

L

	

a

2k+l 2'	 1 8^h d h2d

	

d2	

t	 II

	

J+V x4l,	 I +!ĥ2' (y 
4k 

+L 
2	

+!h;2 h

I 

4k

(25)

The partial derivative of f(x,$) with respect :o s can be calculated by

di.ferentiating each vector component of Equation (22) with respect to each

e	 vector component of Equation (21). The resulting matrix is a 4k by 4

matrix. After evaluating this matrix at the nominal station coordinates,

' .	 the 3 matrix of Equation (5) can be expressed explicitly as
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T k
... h
	

0	 ....................................	 0

B a

i

d k
0	

"' 0
	 h	 ... h 0	 ...................... 0

d0	 ................. 0
d2h

....	
hk

0	 ...... 01

d3k+1 d4 
................... 0

h h
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T

(26)

In order to derive an explicit expression for the W matrix, we have to

investigate the statistics of the measurement noise in the satellite laser

ranging system. It has been shown that the phctoelectron distribution from

a single—mode laser follows Poisson [7]. Recently, the MMSE and ML estimator

noise variances for the laser ranging receiver have also been derived [8].

In particular, if the received optical pulse shape closely approximates a

Gaussian pulse shape, and if no background noise is present in the system,

the 14L estimator noise variance for each range measurement is given by [81

a2 . 
b 2

(27)
4w

2
 Q

where b is the full width of the optical pulse measured at half maximum

(FWHM), and Q is the average number of photoelectrons per pulse.

The average number of photoelectrons in a received pulse is directly

proportional to the received pulse strength, which in turn is inversely

proportional to the geometric distance between the ground station and the

satellite. In a vacuum, this signal pulse strength decreases inversely
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with the square of the distance. In the earth's atmosphere where abworp-
F.

tion and scattering ncrease with athle th, the signalg	 p	 ng	 gn pulse strength may

1
decrease even more quickly.

5

In the satellite laser ranging system, both the laser transmitter and

the receiver are located at the ground stations, and retroreflectors are

installed on the satellite. The transmitter sends out pulses at a constant

repetition rate during the ranging period. These pulses are then reflected

back from the retroreflector-equipped satellite and are detected by the

receiver. The time of flight of the laser pulse is measured through the

range counter, which is then multiplied by the velocity of light in the

atmosphere to give the range to the satellite (2], (9].

In this configuration, the optical pulses travel twice the station-to-

satellite distance. So the received pulse strength, and therefore the

number of photoelectrons per pulse, is inversely proportional to the fourth

•	 power of the distance, and the measurement noise variance can be expressed

as

Qj	 o2 d 	 j - 1,...,4k	 (28)

where of is called the measurement noise variance factor. By using the

result of Equation (28), we can obtain the inverse of the measurement noise

covariance matrix as

W - 12 ding 14 ... 4(29)
of	d1	 d4k

By the previous assumptions that the errors in B's (68) between sta-

tions are uncorrelated and that the degree of B-error correlation between
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c

	

	 passes depends upon differences in the stations' weather conditions during

the two passes, the covariance matrix associated with the vector s can be

expressed as

1 pl O2 P  
1

Vs - a^	 (30)

1	 p20 p2 1

where a2 is the variance of g, and pm, m - 1,2 is the $-error correlation

coefficient associated with the measurements acquired for the mth station

during the two passes.

By substituting Equations ( 25), (26), (29) and ( 30) into Equation (6)

and carrying out the appropriate matrix operations, the error covariance

matrix associated with the station coordinates can be obtained as

0	 0	 0	 0	 0	 0

0	
a	

cov(yl,zl)	 0	 0	 0
1

0	 cov ( y ,z )	 a2	 0	 0	 0
EI(Ax)(Ax)T1	 1 1	 z 

0	 0	 0	 0	 0	 0

0	 0	 0	 0	 a2

Y2	 cov(y2,z2)

0	 0	 00	 cov(y 2 ,z 2 )	 az
2

(31)
t
i

where

a2 sing EM EMsing C2
2

2 3	 11 12 11 `p1C11^12	 X12

a

_

2	 M	 2	 M +	 4	 y
+(32)

y l
2	 M

sin 
(E 11

:!

- E12)
4	 Y

sin	
Ell

sin	
E11 

sin	
Ell	

sin	
E12

1



- 2p 1 11CC 12	 +
2 M	 Z M	 M	 M

sin 
E11 

sin 
E12 

tan 
E11 

Can 
E12

2
C12

sin  E12 tan2 EM,,
(34)

ORIGINAL PAGE 15

OF POOR QUALITY

2	 2 M	 z M r	 2

^ov(Yl.zl

a^ sin E 11 sin E12
	

C11	 _	 Pic 11C12
)	

sin2 (EM - EM ) sin4 EM sing EM	sing EM sing EM
11	 12	 11	 12	 11	 12

C2

*(cot EM1 + cot EM2 ) +	 4	
12	

M
sin 

E12 
tan 

E11

2	
a2 sin  

EM1sin2 EM2	 C11
az 1 	 sin2(EM1 - E12 )	 sin4 

E11
 

tang E'^2

L

19

f

	
(33)

	

a2 sin  EM sin  EM	C2	 2p C C	 C2
2	 9	 21	 22	 21	 _	 2 21 22	 22

° ^	 2 M	 M	 4 M	 2 N	 2 M+	 4 M	
,(35)

Y2 	 sin (E
21 - E22)	

sin E21	 sin 
E21 

sin E22	 sin E22
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2	 2 M	 2 M	 2

cov(y2,z2) ° sin E8	
g 

21 
sin 

E22	 X	 p C21	
M _
	 221C22	

Msin (E21- E22 )	 sin E21 tan E22	 sin E21 sin E22

C2

	

*(cot EM + cot EM ) +	 22	 (36)
21	 22	

sin E2 2 tan 
F, 21

2	 a2 sin  
E21 

sing 
EY2
C2,

^Z2	 sin (EM - FZ2 )	 sin4 E21tan2 E22

2

--2
C 
21

C
	 +	 C22

sin  E21 sin  E22 tan 
E21
t an E22 	sin 4 922 tan g EZ

1+	
(37)

J

sin 2mmn + 2 fain
C 
an

72 	 4^
an 

+ 4 oin 2 #mn + 8 42n

and

_ltsin E0
cos	 m - 1,2,	 n n 1,2	 (39)mn	

sin E n

Equation ( 38) is plotted versus t 
an 

in Figure 3. This figure shows

that the effective hounds for C. 	 are
an

1 < Cyn < 4/3	 for	 0 < t	
c 2 radiansmn
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This small range of Can indicates that CW is verb insensitive to c!aanges

of various parameters.

Equation (31) indicates that the position errors between the two
1

ground stations are uncorrelated. This is to be expected since the

meteorological data errors and messuremmsnt errors are uncorrelated between

the widely separated stations. Furthermore, because of symmetry, the

x-coordinate errors made on the two passes offeeting each other, and the net

x-coordinate range error (the x-axis is parallel to the satellite paths)

for each station is zero. Therefore, x19 cov(x l , y 1), cov(x 1 ,z I ), a%

cov(x 2 ,y 2) and cov(x2 ,z2 ) all have zero entries.

By substituting Equations (31), (32), and (35) into Equation (13), an

2
explicit expression for <ABL> for the satellite laser ranging system in the

spherically symmetric atmosphere can be obtained

<AB2> a o Coil 
Y f sill E1 	 g1 sin E12 	 C11	 _	 2OIC11C12

L	 B	 2 M	 M	 M	 2 M	 2 M
min (E11 - E12)	

ein E 11	 sin E 11 sin E12

+	 C12	
+ sin  E2 1 sing E

22	 C21 _	 2p2C21C22

sin_	 sin (EM - EM ) sin EM sin EM sin EM
12 J	 21	 22	 L	 21	 21	 22

2
+	 C22	

(40)
sin  E12

In general, the maximum elevation angle is not the specified parameter

in the setellite laser ranging process. Therefore, Equation (40) must be



elevation angle and the orbit separation before we can examine its proper-

ties. To illustrate this, Equation (40) is evaluated for the special case

where the two ground stations are equidistant from the x-axis.

In this special case, let the satellite orbits be 1/2 away from the

y - 0 plane, and the two ground stations be equidistant from the x-axis.

The baseline distance is B L. This geometry is illustrated in Figure 4.

In order to acquire the same number of range measurements on the two

passes, the threshold elevation angles between these passes must be dif-

ferent, i.e., EQl * Ems. By referring to Figure 2, the specified minimum

elevation angle (E min ) of the ranging geometry must be equal to the

threshold elevation angle formed by a station and a satellite path farther

away from that station. That is,

E011 E22 ' Emin	
(4 0

The remaining threshold elevation angles can be found as

0	 0	 -1	
h tan E min
	 (42)

E 12	 E21	 tan I(h
2 _ RBL cos Y tan' Emin) 2

L

The sine of the various maximum elevation angles can be expressed as

sin E'M	 sin EM	h 	 (43)
11	 22	 [h2 + 1/4(BL cos Y - R)21

and

sin E 	 sin Eh	h	 (44)
12	 21	 j h + 1/4(B L cos Y - A)2j 2

_	
..	 ._.__ -

	 -_-° .	 M
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Figure 4. Ranging geometry for the case where the two ground stations are
equidistant from the x-axis.
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By using the results of Equations (41) through (44), the equalities

sin  EM sin 
EM2 

sin E2 1 sing 
F22 h21 

	

. —	 (45)

sin 2 (EM1 - EM2 )	 sin 2(E21 - E22)	
12

and

C 11	 C22	 C12 a C21
(46)

can be derived.

By substituting Equations (43) through (46) into Equation (40) and

taking the square roots on both sides, an expression for the rms baseline

error can be obtained as

2 u2	
d2 a 0 cos Y 2 2  

aB	 <ABL>	
-- h	 {C11[h + U4(BL cos Y + 1)2j2 

L

- (P 1 + P2) C11C12[h2 + 
1/4(BL cos Y + 1) 2 1[h

2
 + 1/4(BL cos Y - .¢) 21

•	 + C12 [ h2 + 1/4(B
L
 cos Y - R) 2 1 2 } u2	 (47)

In order to relate the baseline error directly to the atmospheric

refraction error, Equation (47) is normalized by the maximum atmospheric

a

refraction error (aAR ' sin Emin , the refraction error for the minimum

elevation angle). This hires

Y sin E
aBL
= F2 cos h	

min 1C11[h2 + 
1/4(BL 

cos Y + R)212
AR

- (a l + P2 ) C 11 C 12 [h2 + 1/4(BL cos Y + 0)21[h2 + 1/4(BL cos Y - 1)`1

+ C12 [h2 + 1/4(BL cos Y - R)212 }1/2	 (48)

"BL

where 

	

is a dimensionless parameter called the baseline error

"AR

We
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multiplier. When the maximum refraction error (aAR) is multiplied by this

multiplier, the magnitude of the rms baseline error can be obtained.

8quation (48) indicates that the baseline error is smaller for the

higher correlation of refraction errors on the two passes, and vice versa.

In all cases, the baseline error is an increasing function of the baseline

distance, and is proportional to cos Y.

The increasing characteristic of the baseline error with respect to the

baseline distance can be explained by observing that the increase in base-

line distance causes an increase in the station-to-satellite distances.

Increasing the station-to-satellite distances will result in larger range

measurement errors. Consequently, the baseline error, which depends solely

on the range measurement errors, will also be increased.

The dependence of baseline error on angle y can be explained by

observing that the baseline error includes only the y-coordinate errors.

The z-coordinate errors contribute second-order effects which are not

included in this analysis. By keeping the other parameters constant, the

closer y approaches 0% the longer the y-coordinate baseline will be,

which will result in a larger baseline error. When y equals 90% the y-

coordinate baseline will be zero. As a result, the corresponding base-

line error will be zero.

An approximate lower bound for the baseline error can be found by

assuming a zero baseline and letting Can be unity. This yields

oBLr h i
a > T2 cos Y sin Emin12 - ( P l + p2)) 1/2 1 h + 4h	 (49)

AR	 L

Inequality (49) shows the dependence of baseline error on the orbit

geometry explicitly. It also indicates that a baseline error of zero for
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an arbitrary geometry can only be achieved when the refraction errors on the

two passes are perfectly correlated.

4.2 Baseline Error for the Uncorrelated-Path Laser Banging

When the ground stations have undergone large fluctuations in surface

pressure, temperature and water vapor pressure on the two satellite passes,

a zero correlation of meteorological data errors on the two passes will be

expected. Consequently, the atmospheric refraction error on the two passes

will also be uncorrelated. This implies that

Pm
- 0	 m	 1,2	 (50)

m

We refer to this configuration as the urcorrelated-path ranging. The nor-

malized rms baseline error for this configuration can be obtained by

substituting Equation (50) into Equation (48). This yields

oB	 17 cos Y sin E
L (uncorr) -	

min 
{C [h2 

+1/4(B cos Y+0  , 12
a
AR	

th

+ C12 1h2 + V4(BL cos Y - 1) 2 1 2 1
1/2	 (51)

By substituting Equation (50) into Inequality (49), we can express the

lower bound for the baseline error in the uncorrelated-path ranging system

as

0
aBL 

(uncorr) > 2 cos Y sin E
min h + 7k, •	 ( 52)

AR

Inequality (52) indicates that a nonzero baseline error is always pre-

sent (except when Y equals 90°) no matter how small the baseline is.

The baseline distance is limited by the fact that both satellite passes

must be visible at both ground stations. Consequently, the baseline

distance cannot be exceeded by the value
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2h_	 I_

BLmax	 tan Ern >Z cos Y	
(53)

With the result of Equation (53), we can find the upper bound for the base-

line error as

a

BL (uncorr) < 8h cos Y	
(54)

QAR
	 31 sin Emin

The normalized rms baseline errors for the uncorrelated-path laser

ranging system versus the baseline distance are plotted in Figures 5

through 13 for different sets of parameters. As expected, these plots

indicate that the baseline error is an increasing function of the baseline

distance; and it is a cosine function of the angle Y•

The exact dependence of baseline error on the orbit separation and the

orbit altitude is very difficult to see in general. But for the short

baseline ranging, the baseline error is shown by Inequality (52) to be

related to the two parameters according to i R+ h (, and the minimum base-

line error can be achieved when the orbit separation is twice as much as

the orbit altitude, i.e., X - 2h. This property is well illustrated in

Figures 5 and 8 where the orbit separation of 1000 km gives the smallest

baseline error. For the long baseline ranging, the baseline error is shown

by Inequality (54) to increase directly with the orbit altitude and inver-

sely with the orbit separation. These properties are illustrated in

Figures 5 through 13. In all cases, the range measurements must be taken

at two widely separated satellite orbits in order to strengthen the

geometry sufficiently to recover the stations and the baseline at the cen-

timeter level (10].

The dependence of baseline error on the minimum elevation angle cannot

be extracted directly from Figures 5 through 13 because the normalization
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Figure 5. Normalized baseline error versus baseline for different satellite
orbit separations in the uncorrelated -path laser ranging system.
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Figure 8. Normalized baseline error versus baseline for different satellite
orbit separations in the uncorrelated-path laser ranging system.
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Figure 10. Normalized baseline error versus baseline for different satellite
orbit separations in the uncorrelated—path laser ranging system.
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factor used in Equation (51) involves the minimum elevation angle which

varies for different sets of parameters. In order to investigate this
i

relationship, the absolute rms baseline error ( QBL) is plotted versus the

baseline distance for various minimum elevation angles (Ervin) in

Figure 14; and 
aBL 

versus Emin is plotted in Figure 15 for various

baseline distances. These plots indicate that the baseline error is a

decreasing function of the minimum elevation angle. This relationship be-

tween the baseline error and the minimum elevation angle can be explained by

the fact that while keeping the other parameters constant, the increase in

minimum elevation angle will result in the shorter satellite-to-ground-

station distance. Consequently, the range measurement errors, and hence

the baseline error, will be smaller.

In most cases the orbit altitude and the minimum elevation angle are

usually defined prior to the actual ranging, so the baseline error depends

very much on the orbit separation for a given baseline ranging. For

example, the altitudes for many of the satellite oru:-n are 1000 km. For a

minimum elevation angle of 20° and an angle y of 60% the IODU-km baseline

has a rms error of around 0.5 aAR for a 1000-km orbit separation and a rms

error of around 5 aAR for a 100-km orbit separation (refer to Figure 2).

This effect of orbit separation on the baseline error will even be more

pronounced for a longer baseline.

4.3 Baseline Error for the Correlated-Path Laser Ranging

If the weather conditions in both ground stations during the second

satellite pass are almost the same as those during the first satellite

pass, we would expect the atmospheric refraction to be highly correlated.

This implies that
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pm = 1	 m = 1,2	 (55)

We refer to this configuration as the correlated-path ranging. The abso-

lute and normalized rms baseline errors for this configuration can be

obtained by substituting Equation (55) into Equations (47) and (48). This

yields, respectively,

T c cos Y
vB L (corr)	 R8	 {C11[h2+114(BL cos Y + 1) 2 1 —C 12 [ h2+ 1/4(B L cos Y — R) 2 1 }

(56)
and

aBL
i2 cos Y sin E

min	 2	 2Q	 (corr) • -	
Ah	

{C11[h + 1/4(BL cos Y + R)J
AR

— C 12 [h2 + 114(BL
 cos Y — .i) 2 [ }

By substituting Equation (55) into Equation (49), we find that the minimum

baseline error of zero can be achieved when BL = 0.

By referring to Equation (53), the upper bound for the baseline error

in this system can be found as

oBL F2 h cos Y	
T 

BLmax 
cost Y sin Emin

a	 (corr) < 3 1 sin E 	 +	 h	 (58)
AR	 min

Since BLmax increases with the orbit altitude (h) and decreases with the

orbit separation (t), Inequality (58) indicates :hat the baseline error in

this case also increases directly with the orbit altitude and inversely

with the orbit separation for long baselines.

Equation (56) is plotted versus the baseline distance for four dif -

ferent minimum elevation angles in Figure 16; and it is plotted versus
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the minimum elevation angle in Figure 17 to illustrate the dependence of 43

baseline error on minimum elevation angle. Equation (57) is plotted versus

the baseline distance in Figures 18 through 21 for different sets of

orbit separations, orbit altitudes, minimum elevation angles and the y

angles. These plots indicate that the general properties of the baseline

error mentioned in Section 4.2 have also held true here for the correlated-

path ranging. This is to be expected because the geometric model used in

this section, on which these properties are based, is the same as that used

in Section 4.2.

It is interesting to note the importance of atmospheric refraction

error correlation in the satellite laser ranging process. By referring to

Equation (47), we see that the higher the correlation between the refrac-

tion errors on the two passes, the Lower the baseline error. In par-

ticular, the baseline error for the uncorrelated-path ranging can be more

than an order of magnitude higher than that for the correlated-path

ranging. Since the correlation between refraction errors on the two passes

depends very such on ,n- tooporal separation between these passes, it is

important to keep the	 tietweeen passes short enough in order to enhance

the refraction error c _elation.
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Figure 19. Normalized baseline error versus baseline for different satellite
orbit separations in the correlated-path laser ranging system.
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Figure 20. Normalized baseline error versus baseline for different satellite
orbit separations in the correlated-path laser ranging system.
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S. COORDINATE ERRORS FOR A SINGLE GROUND STATION

In this section, we exaains the coordinate errors for a single station due

to the effects of atmospheric refraction and see how they vary with respect to

the orbital parameters. By referring to the coordinate covariance -tatrix of

Equation ( 31), we see that the x-coordinate variance is zero, and the y- and

z-coordinate variances of a single ground station are given by Equations (32)

and (34), respectively. The geometry used to evaluate these two variances is

almost the save as that described in Section 4 (Figure 4), with the exceptions

that the baseline distance ( BL) between two stations is now replaced by the

perpendicular distance betisen the x-axis and a ground station ( yD). This

geometry is illustrated in Figure 22.

The formulas for the various elevation angles given by Equations (41) to

(45) are still valid here with the tern ( BL cos y) replaced by 2y D. By

substituting these new equations into Equations ( 32), (34), ( 38) and ( 39), we

can express the coordinate variances as

2
13	

as C

2 h2 + y +	 2 - 2PC1C2 
[h2 

+ (
YD - 

X12 h

2 + ^YD + ? 2 1y	 22	 1[	 D
	 !'I
	 f	 2)I ^^,

h 1	 ^.

22

	

+ C2 [h2 + IyD - 
2'

J 	( 59 )

and

2
2	 a s 	 2 r 2	 i	 112- 2	 11 2	 11h 	 (	 Ri 21

oz • T iC 1 Ih + jYD + 21	 YD - 
2) - 2pC I C 2 ^h + IyD - ^I

h V!	 _	 ..	 J

^ 2	 r	 X2-1	 2_11 2	2 2	 11 22 (	 t121
. h 

+ YD + 'fl I jYD T̂ ! + C2 Lh	 YD 	 1	 YD + -r! (60)
J

where



Y

ORIGINAL PAGE 19
OF POOR QUALITY	 50

Figure 22. hanging pjaetry for a single ground station.
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sin 2 ® + 'f in 	 41 e. Cn =	 < 3
	

n - 1,2,	 (61)

32 sin +mn + 1 sin 	 20n + T ^n

sin E0
= cos-1 	 n	 n - 1,2,	 (62)

On	
sin En

n denotes the nth satellite pass, and p is the " rror correlation coef-

ficient associated with the measurements acquired by the ground station

during the two passes.

By taking the square roots on both sides of Equations (59) and (60) and

normalizing the results by the maximum atmospheric refraction error (aAR),

we have the normalized rms coordinate errors

_y	
sin 

Emin 1C
1 

h2 + YID+ 
i 

2 2 - 2pC1C2 ih2 
+ yD _ I h2 + YD + z 2

ht	 2	 I	 2	 2,
AR	 ^.

C

+ C 

2 
[th2 +

( z )22 1/2
2 yD-211
	

(63)

and

C 	
sin E min[

C2 h2 + 1 y + Ll 2 2 ry - 1 2 - ? pC C ';'h'  + ^y _ ;^ 2
"AR	 h` A	 11	 ^, D	 2	 ^. D	 2)	 1 2 	 f D	 2

r 2	 1	 Zl 2'1 ( 2	 R2)	 2 r 2	 (	 it 2 2	 1 2	
(64)• h + I yD + 3) j yD - y j + C 2 I h + yp - -,^' 

1 IYD

	

+^^	 .

1 	 i

The approximate lower bounds for these coordinate errors can be found

by assuming a zero y D and letting Cn be unity. This vields
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1/2 hA-!Y— > sin 
E
min ( 2 - 2 p) T +	

( 65)
4R

and

Q

Z_ > sin Em min (2 + 2p) 1p, 1 
+ i22	

(66)
AR	 4h

By comparing Equation (63) with Equation (48), we can see that the charac-

teristics of the y-coordinate error follow exactly the characteristics of the

baseline error. This is to be expected because the y-coordinate error is the

only error source contributing to the baseline error in the previous analysis.

Equations (64) and (66) show that the z-cooriiaate error is directly related

to the satellite orbit separation (R) and is inversely related to the orbit

altitude (h) for the small yo . Furthermore, Equation (65) indicates that a

zero y-coordinate error can only be obtained when the refraction errors during

the two passes are positively correlated (p - +1); whereas, Equation (66)

indicates that the negatively correlated refraction errors (p - -1) are

nekessary for the zero z-coordinate error. These results can be explained by

the geometry of the ranging system. When y o is zero, the satellite ground

tracks are equidistant from each side of the ground station. If the refrac-

tion errors are positively correlated, this will give rise to the y-coordinate

range errors of equal magnitudes and opposite directions on the two passes,

and therefore, the resultant y-coordinate error for the station will be zero.

Since both satellite orbits are above the station at equal altitudes, in order

to have a zero z-coordinate error for the station (which means the z-

coordinate range errors on the two passes are equal in magnitude but opposite

in direction), the refraction errors during the two passes must be negatively

correlated.
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When y  is large compared to t, the coordinate errors can be approximated

2

!Z— a sin 
Emin h + 'RI (C2 -

2 pC 1 C2 + C2)` 2	 (67)
AR

3

cz =sin E
min ^ + ht (CI - 2pC i C2 + C2)

112
	 (68)

oA

Equation ( 67) indicates that the y-coordinate error is proportional to the

square of yD . Whereas, Equation ( 68) indicates that the z-coordinate error is

a linear and cubic functions of y p . By comparing these two equations, we find

that the z-coordinate error for a ground station can be a lot larger than the

y-coordinate error if the satellite altitude (h) is small compared to yD.

When h and y  are comparable, the coordinate errors of equal magnitudes are

resulted. In this case, both coordinate errors are related directly to the

satellite altitude ( h) and inversely to the orbit separation ( t). It should

also be noted that when y  is large, C 1 and C2 are approximately equal, and

the minimum coordinate errors can be obtained when p equals unity. This

means that the smallest possible station coordinate errors for large y  can be

achieved when the atmospheric refraction errors are positively correlated

(this is analogous to the result obtained in Section 4 where the correlated-

path ranging always gives the smallest baseline error).

53

as

and
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6. CONCLUSION

Based upon the standard regression model and the geometry of the

f
ranging sites, the general expression for the baseline error in the apheri-

rally symmetric atmosphere is derived.

It has been shown that the y angle and, hence, the angle of intersection

between the baseline and the satellite ground tracks play an important

role in the baseline error determination. In particular, the minimum

baseline error can be achieved when y approaches 90% that is, when the

baseline of the two ground stations is parallel to the satellite ground

tracks. Besides the fact that the baseline error has a strong dependence

on the angle y, the choices of minimum elevation angle, orbit altitude and

orbit separation are also important in determining the magnitude of this

error.

Figures (5) through (26) indicate that the baseline error grows rapidly

as the baseline increases, and it can be more than an order of magnitude

larger than the refraction error for the intercontinental baselines. In

cases where the baselines are short, the baseline errors can be a fraction

of the atmospheric refraction errors.

The analysis in this report does not consider the baseline error for

the nonhomogeneous atmosphere. In the nonhomogeneous atmospheres, addi-

tional refraction error terms due to the gradient correction must be

included. These terms may have a significant contribution to the total

baseline error.
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