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The main objective of this investigation wws to map the

thermal gradients in french coastal zones for the pet-Lod of one,

year in order to enable a coherent study of certl,ain oceanic Fen-

tures detectable by the variations in the sea surfa-ce temperature

field and their evolution in time. The phenomena examined were
meso-scale thermal features in the English Channel, the Bay of

Biscay, and the northwestern Mediterranean; thermal. wradients gene-

rated by french estuary systems; and diurnal heating in the sea

surface layer.

The investigation was conducted by the fol l.,J)%, ing vesear-

chers : Dr. P.Y.DESCHAMPS (Principal Investigator); and Dr.M.CREPONI!

Mr.J.M.MONGET, and Professor F.VERGER (Co-lnves(-Igai ors),

Appendix A gives related organizations and addresses.CD

2 - TECHNIQUES

2.1 - TECHNICAL ORGANIZATION OF THE INVESTIGATION!

2.1.1. Documents

Every document received by the Princip,-,, ,,1 Invo-st-Laator

froM NASA and concerned with the HCMM investigat.ion was (iupli-

cated in order to provide the Co-Investigators with inclivi.dual

copies. When necessary,feedback was requested from the Co.,Inves-;

tigators.

iI
Si
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2.1 .2. Ph- utoar .,W c products

Two tac^gativo transparencies were on standing order by the
Principal I ivNSt i gad„.)r. Arx, they were received ) one transparency
was arc In i of (l at, t.. r; ,,A	 (Laboratoire d' Optique Atasosph6rique,
Universa te' de LILLE) arid the other at ENS (Ecole Nationale SupA -
rieure) from which add t+ oral positive prints were made for
each of t qe CRo-Itivest i gators .

2.1 .3. D i Vit-a . rudcic.G..
•.

Request orders for CCTs were collected from the Co-Inves-

tigators and subirit ft t;d by the Principal Investigator. When re-
ceived, he, hot h L.s ► t a.l oguod the CCTs and forwarded copies to
the appro pri ate- individuals.

	

2.2	 PHO'1OGRAPHIC PR OD):;{'T TECHNIL)UES

The photographic f>rndActs used within the investigation did

not recpii re any sp(:ci gal developing techniques.

	

2.3	 DIGITAL. PRODUC T 'JECHNIfQUES

2.3-1, Digj ^r od.Ltct_-^ acilit los

Mort oV the t .)r :t ivies used in the investigation are
located a t C . T . ” . M , N . 1, Centre de Teledetection et d' Analyse des
Milieux	 tsc,o! a des MLnes, where the processing of
remotely !i;ensed dattu, h a,,j been =extensively developped for a
variety of applica"tionr . The other investigators had the choice
of using; this main fa ,; a .ty or their own smaller, in-house 	 P

facilities.

2.3.1.1. D t -gital product facility at L-OA (Laboratoire d'Optique

»A l..tr ►usE^h6ra..^ue, [Iniversite de LILLE) - -----------------

This facility is divided into the CII model IRIS 80

computer o¢` the University with specific terminals located at

LOA, and a communication link Between the two locations. Main

processing i.s done on the IRIS 80 computer.

2.-

F
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Oigital data may then be transferred and stored on

floppy disks at LOA, each containing 6 small scenes of 2$6x2$6

pixels. A iama11 scene may be displayed on a PERICOLOR-system

color graphic device (256x2$6 pixels) . An HP 9$25 A calculator

permits m1nor processing of the stored data. Additional outputs

of the processed data may be obtained on a graphic plotter and/or.

in the form of printer listings.

0 .3.1.2. Digitalproducts facilities at CTAMN (Centre de T616-_ --------
 Digital ---------------------------------
d6tection et d'Analyse des Milieux Naturels)
- ---------------- --	 -_-	 --	 ---

The CTAMN was equiped with a self contained computer
,.,ysLem for image processing based on two HP 21 MX minicomputers.

A pt imretnved comr)uting facility, consisting of an array processor

FPS (rloal.ln Point System) has been implemented at CTAMN during

the i.nvesst igation.

This system is linked to specific output devices such

as :

a VERSATEC printer/'plotter with special gray scale

cTisp.tay software developped by CTAMN which allows

c.ar4ography of satellite data using any given scale

and cartographic projection,

- a BENSON Ink-plotter with adequate software for

r„ailping with various symbols and colors, as well as

cartographic projection,

- a TEKTRONIX digitizer with associated graphics display

for landmark acquisition and input capability 'fbr

rectification or registration.

The main body of the CTAMN system is an interactive

image processing system TRIM-CIT ALCATEL. This versatile equip-

ment allows display and manipulation of images in a man-interac-

tive loop. Image memory is 512 x 512 x 8 bits with an overlay 	 k

graphical memory of 512 x 512 bits. A realtime processor allows
r:

color selection, pixel selection with cursor tracking, zooming,

and lateral displacement of the image.

!1
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2. 3 . 1-3. Digital_eroduct facility -at ENS- (Ecole Nationale-- 	., -	 - ---------------
Suefrieure)

This facility is divided into :

- an IBM 370 main computer at CIRCE, the computer

centre of CNRS (Centre National de la Recherche Scientifi.que),

with special output devices :
a VERSATEC printer plotter and a BENSON

	

color printer plotter,	 ,.
a MOD'I"OMP CLASSIC minicomputer located

at ENS which is linked to CIRCE, in

association with a TEK'iRONIC 4013 graphic

display.

2.3.2. Digital product interpretation

The three Laboratories working on the present invests

gation had already developped appropriate interpretation techni-

ques for the NOAA and LANDSAT satellites. As they are used for

collaborative programs, there are many common points between

the techniques they have implementedon each of their own digitall,,

systems.

2.3.2.1. Digital product - interpretation at-LOA

Digital data may be processed more or less rouf;;i only

with the following options

radiometric calibration if necessary,

resampling for uniform scaling if necessary,

- smoothing,

- stripes filtering.
	 k

Localization and display of a- typical scene (cont,a.inng

1024X 1024 pixels) is usually done in the following procedutre

- Display is attained by reducing the whole scene to 256x256
pixels after sampling every n pixels and every n lines, or

after averaging over an n x n pixel square,

--selection of a small scene (256x 256 pixels) and visualiza-
tion at full ground resolution,
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localization with reference to map locations and a ddition of

coordinates on the color graphic display,

- mapping of surface isotherms or isocontour,s on the pH el,

plotter after the necessary filtering.

Computation and di^Aplay of a selected scene is po ssible

using the following methods :	 -

histograms,

spatial spectrum of temperature variance density,

structure functions of temperature variations,

- spatial cross-correlation function between two
different acquisition of the same avea.

2.3.2.2. Digital product interpretation at CTA^NIN

Upon receiving the HCMM data on magneti c tapes, the

processing was organized as follows

- "Quick look" of available data, at a scale of 1	 2 000 040,

using a black and white printer plotter

- transformation of data into surf are tempertitttc e by 	 yho

calibration curve,

- destriping of imagery

- isotropic filtering, to reduce the noise level, 'than .,algorithm
was constrained to local variance in order to leave untouched
the strong gradients along the coastlines,

- geometric coprections in order to rectify the imagery at a

specified projection (ex.: LAMBERT),

- display of sea-surface temperature as colored maps.

.3

2.3.2.3. Digital product-interpretation-at-ENS

The following programs were used to p -oduce- a conve-
nient automatic cartography.

The FRALISET pr-ogram performs a fast and low cost

print-out visualization of a part of a given scene. The HCMR

digital counts were converted to alphanumeric characters. >

t

}q

^3

t

i
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After solectil on ',.: thn operator, each printed character wax
associated to one c.r goveral pixels, ` uo 1 /500 000 scale appea-
red to be o a ta l ► ti Coo, the HCMM applications in the Bay of
Biscay. lsot, +ropic Ulterij ig of the data could be applied once
or several tintos s, 'Mn Akdditional legend was selected by the
operator-s. O t r. -put was di;:ioa on the BENSON p lotter both in, black
and white and white 6 color prints.

2 . 4 . GRQUND '1RVT11 TEC HNIQUES

Ground 13;vu,0 techniques were not a3signed to
this spec if iv invo.Âtigatioo . The necessary oceanographic and
meteorolog ca) data was obtained either from routine observations
or from sic;dfo.ated oceanogr aphic cruises conducted by the folio-
wing organa zAtli ons .

2. 4. 1. Routine observat>.Coit_

Periodica l sea surface temperature measurements are per -
formed by nce "Rest z.0 Na t ional d' Observation de la QualitA du

Milieu Maria", in the french coastal and estuarine zones. As an

exemple, --Jx stations app .:;amplest every week in the Loire estuary.
Some of these measurements were simultaneous with the HCMM data

(09/15/78 ; 05/ 8 tr ; 06/18/79).

The	 d • Etudes et de Recherches Meteorologi
ques" at r.'ie "Centre 0cc(&.:arr)1ogique de Bretagne", Brest, performs
a statistical treat.rtessr, of the sea surface temperature field
from the roirt. in(it obsir.°vations of the merchant ships in the Bay
of Biscay, the Celtic Sea and the Western English Channel. As

result of this analysis, a thermal map (SST-GASC) is produced

three times a month with a temperature accuracy of about n,$°C.

Lighthouseboats also routinely measure sea surface tempe-

rature at several loco ti , on:; in the eastern British Channel and
the souther .i North Sea. 'They report these measurements through

the meteori•)'Logical network,

r
i

2.4.2. Oceanographic cruises

In addition to these routine procedures, this investga-

tion had access to da ta from several _oceanographic experiments
A

4
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conducted by various french organizations and complementary

to thm objectives of the HCMM experiment t

LION 78 (June to September 1978), a summer experiment
in the Gulf of Lions, Mediterranean Sea for the coastal

upwe l li ngs .

- PHYGAS 78 (8 November 1978 to 2 December 1978) in the

13hy of Biscay,

A drifting buoys experiment in the Bay of Biscay,
starting February 1979, for the study of ocean dynamics,

PROLXPIC (S to 24 March 1979), an experiment in the

Ligiirian Sea, to support remotely sensed data of sea

surface temperature and ocean color.
- Several cruises in the British Channel to support
remotely sensed data of sea surface temperature and

ocean color t

19 to 29 June 1979) in the "Golfe de Saint Malo"

20 to 28 July 1979, in the "Golfe de Saint Malo"

4 to 1 4 September 1979, in the "Golfe de Saint Malo 11

SATIR 1, 17 to 27 July 1979, in the Celtic Sea

SATYR 2, 3 to 22 September 1979, in the Celtic Sea.

No airbone temperature measurements were performed for

the IICMM experiment since specific request for this type of data
appeared wit.hin the investigation.

The major ommi_ssion in the ground truth data collection

was due to the unavailability of'BOHRA 11, a french buoy pre-

viously anchored at a fixed station in the Mediterranean Sea,

about 100 km south of Marseille. BO'HRA Il was removed prior to

the AEM-A spacecraft Launch for technical reasons. BOARA II was

intended to support the investigation by continuously recording

the vertical thermal structure of the upper water layers. The

absence of this instrument seriously restricted the scope of the

studies relating to diurnal heating of the surface layer.
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3.1.	 HCMR CALIBRATION - SCE APPENDIX B

Several comparisons were made between HCMR

digital data and in situ measurements obtained in tho Bay

of Biscay see Appendix D. HCMR radiometric temperatures

we-e found to be 7 0 C less than in-situ measurements of the

sea surface temperature. This difference is rather large

and cannot be accounted For solaly by the atmospheric cor-

rection of water vapor absorption for which the moan comput6d

value was only a few °C (2 to 3 0C), A HCMR calibration bias

of several °C should probably have been added to the data

. in order to derive more accurate absolute temperature..

Still this calibration bias was not a severe problem For

the objectives of the investigation, because it appeared

rather constant, and because HCMR data were only used as

relative temperatures.

3.2. CO_ ARAISON OF HCMZ TO VHRR AND AVHRR DA TA - SEE A PPENDtX C

Comparisons were made of radiometric data =-J;t;ai-- j

ned over the same marine area at the saute time by both HCMR.
and VHRR/NOAH-$, or by FiGhtR and AVHRR/ TIROS-N. They clrst!o»:-

trate a definite improvement in the radiometric quality

of the HCMR data over that of the VHRR, primarily in the	 k.

area of radiometric resolution.The comparison between
x

HCMR and AVHRR shows that these two instruilients have
similar improved radiometric performances. The higher r;^pe_

titivity of data acquisition and the possibility of a iau:lti- ;k

channel (3.7 and 11 pm) atmospheric correction are in favour

of the AVHRR experiment, while the HCMR experiment offered
a

the unique advantage of delivering geometrically corrected

photographic and digital products. The ground resolution of

the HCMR instrument (=' 500m) was better than the AVHRR. expe-
riment (^' 1 km) but the value of this feature is limi od, to
the studies of areas having a large surface temperature va-

riability at small scales, typically the coastal marizie

areas and the sharp thermal fronts. While over some very

homogeneous oceanic areas, the spatial variability of the

SST field at scales below 5 km is too low to b e detected by

the two instruments.
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Data from AVHRR onboard TIROS-N and NOAA- 6
can now be directly transmitted to CMS, LANNI:ON, FRANCE

and it was this facill,ty that did the processing for the
HCMM experiment. An atmospheric algorithm has been Imple-

mented at CTAMN, which uses the equivalent radiometric

temperatures T 3 and T4 in AVHRR channels 3 and 4 (3.7 and
11 µm), to determine the actual sea surface temperature,

f	 TO

To= 1.054 (1 . 42 T3 - 0.42 T4) + 1.13

(TO ,T 3 and T 4 in (°C),

This relation has been obtained by Me CLAI.N(1)

from a comparison between AVHRR data and actual surface

measurements over the Gulf Stream and is very close to the

one predicted by DESCHAMPS and PHULPIN (2) from theoretical

simulation :

T0= 1.48 T 3 	0.48 T4 + 2.02.

3.3• - HCMR PRODUCTS

HCMM photographic products with a suitable

enhancement of the grey scale in the range o^ sea surface
temperatures and a geometric correction were highly appli-

cable to the objectives of the investigation because they
enabled direct utilization of the data. In contrast, VhiRR

and AVHRR photographic products from meteorological .gat;el-
l.ites received at CMS, LANNION, FRANCE, have a standard

enhancement for the meteorological needs in a large tempe-

rature range, which only permits the selection of cloudfree

areas : consequently, the main body of the work is held up

until after a heavy procedure of digital data processing

has been completed.

(1) Me CLAIN, E.P., 1980 - Multiple atmospheric-:window techniques
for satellite derived sea surface temperatures. COSPAR/SCOR/
IUCRM Symp. "Oceanography from Space", Venice, ITALY, May 26-30
1980.

(2) DESCHAMPS P.Y., PHULPIN T., 1980 - Atmospheric correction of
sea-surface temperature using channels at 3.7 11 and 12 um
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In addition to providing a more extensive and accurate

overview of tho :hernial featured in the french coastal
zones, fanilitating initial detection and mapping of thermal

eddies and -Evorit.a, etc , the expediency provided by the
HCMM phu.-lographic; products allowed the investigators to
conduct a preliminary assessment of the data in order to

select Vie digital sets to receive processing and to recom-

mend gui.t!el.int:s P ox , further elaboration and analysis. This
consequently allowed a 'spore productive and efficient eva-
luation of the data by the oceanographic community prior

to any computerized processing.
t

A more derailed description of the results

achieved. h r, the expetriment is given in section 4 and cor

respo"cls to the followinc, outline.

(1) During, the period of investigation, May 1978, May 1979,
HCMM phut- ograph:..c products used to make a qualitative

analysis of c;ertr, i.n persistent thermal features s

- thermal. fronts in the western British Channel., and 	 t

north of Balearic Islands, western Mediterranean Sea; T

- large eddies north of the algerian and african coast}

- upwel.l. ing^ or 	 of Portugal in the Gulf of Lions

and in ttiv we, !., ;ern Mediterranean Sea

(2) 110N photegrapitAI c products were used to obtain an

assessment of ;rho frequency of occurence of diurnal

heating of the sea ,surface in the Mediterranean Sea.

Prior 'Lo the 11012M experiment, the importance of frequent

and extensive diurnal heating of the sea surface was

unexpected, but its subsequent establishment leads to

d t'the conclusion that for oceanographic purposes,ay ime

satellite imagery should be used cautiously because the

SST field may ire inderpraced erroneously.

(3) HCMiNt digital; products were used to perform a statistical

spectral analysis of the mesoscale variability of the

SST field in the range of scales 3-30 km, thanks to

the low noise, level of the HCMR. 	 a
s

_ ___^
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1,t. - MESOSCALI VARIABILITY OF THE SST FIELD - SEE APPENDIX D

Using VHRR and HCMR infrared digital data, a
statistical analysis of the mesoscale variability of the

SST field was performed in order to characterize 	 the

random propertiE-ti of this field. The power law exponent,

n, of the spatial spectrum of variance density, E (k)f k-n

(k is wavenumber), was deduced from the computation of the
structure function of the SST. When the study was first

started on VHRR/NOAA-5, the range of scales was on the order

of 40-100 krn but HCMR data allowed an extension of the
study dawn to a scale of 3 km. From an examination of 11

VHRR and 9 HCMR scenes, in the range of 3-100 km, n was
found to vary from 1.5 to 2.3, with a mean value of 1.8.

These values of n are on the order of those predicted by

turbulence theories.

However .a discrepancy exists and further advanced

theories are needed to explain this experimental determina-

tion of khe mososcale SST variability.

The feasability of the spectral analysis in the

range of scales 3-30 km was only made possible by the low

noise level of the HCMR data.

4.2 .. DIURNAL HEATING 	 SEE -APPENDIX E

Daytime HCMR data occasionally exhibited warmer

sea surface areas which extended over 10 to 100 km. The
i

warming was of several °C and easily detected on photogra-

phic products because these warmer areas usually have graded
margins that cannot be confused with the sharper boundaries

of other oceanic thermal phenomena. 	 •

These warmer areas were interpreted as a large

diurnal heating of the upper surface layer under low wind
speed conditions. Bvidence of this is supported by several

arguments.
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(1) Meteorological observations and analysis show that

warmer areas are associated with low wind speed condi-

tions	 i.e. anticyclonic conditions or coastal breeze

effects.

ORIGINAL PAGE IS (2) Glitter	 i.e.  the portion of solar radiation reflected
OF POOR QUALITY	 by the uneven sea surface directly toward the sa•celli.te

sensor - has been used to derive an equivalent wind

speed from the HCMR visible channel (feasible when 	 j

observation is close to the specular veflexion of ^4

flat sea). Warmer areasare always associated with changes

in the glitter patterns and decreasing wind speeds.

(3) Warmer areas disappear on consecutive nightime 1101IR data.

Under low wind speed conditions, turbulence

induced in the sea surface by the wind stress is strongly
reduced, and most of the solar radiation absorbed is stored

in the surface layer without downward propagation. Theore-

tical simulations using a radiative and heat transfer model

have been performed. They predict large heating rates in

the upper meters and a maximum heating of several °C in the

upper layer, and have been confirmed by in-situ measureatents.

Significant heating only occurs in the upper few ten cent.i.-
meters of the surface and is very rapiidly destroyed by the
nightime cooling.

I

HCMR data allowed us to discover that diurnal,

heating of more than 1°C was affecting large areas. The

frequency of occurence was relatively high in the wesrevrj

Mediterraneaa Sea where more than 10 % of marine surface

was affected one day or an other, while large diurnal heai;ing

was very rarely observed in the North Sea (only one :scene).

In strongly affected areas, daytime satellite data could

consequently yield misleading SST fields, leading to the

conclusion that a less deceptive picture of the SST field

is more likely to be obtained from observations restricted

to nightime or early morning when the surface layer is more

homogeneous.



ff

13.E

	

4.3.	 RESIDUAL ►S LOW THROUGH THE DOVER STRAIT SEND APPENDIX C

The time sequence of HCMM scenes allowed us to
outline the influence of meteorological conditions on the

n
A

residual current which flows 'to the N.E., from the British

Channel through the Dover Strait, and into the, North Sea.

	

ORIGINAL PAGE IS	 Southwestern winds enhance this residual flow, and, as a
OF POOR QUALITY result, the thermal effluent of the Rhine River is forced

northward along the Dutch coast in a very narrow coastal
k

	

	 band. Northeast winds oppose the residual flow, reduce its
speed and deflected it toward the English coal, allowing

the Rhine thermal effluent ro expand seaward at a distance

of up to 25 nautical miles. A close correlation exists bet-

ween wind speed direction and the offshore spread of the

effluent.

4.4• - TIDAL FRONTS IN THE WESTERN APPROACHES OF THE BRITISH

CHANNEL SEE APPENDIX C

Tidal fronts occur in shelf areas where the tidal.

currents are large enough to destroy the seasonal thermocline.

In shallow depths, the tidal currents induce turbulence that

mixes the water column. The warmer stratified and colder

homogeneous waters are separated by a `.idal front that appears

as a surface thermal front on satellite imagery.

Tidal fronts in the western approaches of the

British Channel were first detected with uhe VHRR, f[CIN01

photographic products have since been used to further ana-

lyse the time and space variability of these thermal fronts

during summer 7$.

	

4.5•	 UPWELLING AT THE CONTINENTAL SHELF BREAK IN THE BAY

OF BISCAY - SEE APPENDIX C

HCMM data confirm the existence of a permanent
upwelling phenomenon at the continental shelf break in the

Bay of Biscay. The upwelling is outlined by the appearance

of cold waterin .summertime. This has already been observed

in previous VHRR data. From HCMM scenes, a more 'complete

t'
	 description and interpretation of the upwelling has been

4
	

obtained.

..aiw
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(1) Tho upwcilir,r it,, Probably r)ermanent, but is enhanced by
colder upwt)lled water in summertime when a seasonal ther-

mocline ,1.s for-med. Oft. one occasion, January 17, 1979, warmer

water appeared ir:t wintertime at the shelf break (HCMM scene
A-A 0" 6 ,' - Cf i,)yt^ , k-hi-s is probably an intermediate warmer
water, posslaly oV Madiuerranean, flowing out through the
Gibraltar Strait, into the Atlantic, at a depth :of several

hundred me t:er+s

(2) The 4pwelling is m.5re pronounced after spring tides,

which suggests that the basic mechanism for the upwelling

is a tidal cane. On two occasions after spring tides, August
25 and September 21, 1.978, HCMM scenes (A-A 01?1-1526O

and A-A 014 8-1,3J?C . how very similar patterns of cold water
at the she-li: break ) with a maximum intensity between 48N-8E
and 46.30N-5E where the tidal currents are at a maximum.

4.6. - COASTAL STUDIES IN THE, BAY OF BISCAY .. SEE APPENDIX F

The action of tidal currents in shallow

regions p roduces a tuvNi.lence that mixes the water column
and destroys the seasonal therniocl;ine. The resulting colder,

homogeneou=s shelf water is separated from the warmer stra-
tified os c'.ihore water , IrY a zone, where the thermal gradient
is hi;-h. This• phenomenon, unexpected prior to HCMM obser-
vations, is sim •+. to r t;r, t;'l-.e tidal fronts in the western
approaches of the Pvitiah Channel (section 4-4)

4.7. - WESTERN MEDITERRANEAN SEA TEST SITE

Results retorted here are based on VHRR/NOAA -5

and HCMM data.

4.7.1-. Results obtained with VHRR/NOAA-5

The region of Li.gur i,an Sea between Corsica and the
southern coast; of France was studied in 100 VHRR/NOAA-5

images ;:aktio from the period 1975-79• The study revealed a

cyclonic surface circulation quasi;-permanent and emphasized
by its thermal pattern.

44
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ORIGINAL PAGE 18

OF POOR QUALITY	 Annual variations of the horizontal thermal

gradient structure have been described and agree very well

with previous in-situ measurements. Low frequency waves in

the Ligurian Sea have been observed on time-series of

VHRR/'NOAA-5 in December 1977, with associated wavelength
and phase velocity of 40 km and 0.18 m.s -1 . These waves are
analysed in terms of large amplitude baroclinic waves as

those discussed in the theory of baroclinic instability.

A similar study using VHRR/NOAA-5 was done for

the Gulf of Lions, an area where coastal upwelling is common

in summertime. The data shows strong evidence for a relation

between the location of the upwelling and the contour of the

adjacent coastline. The phenomenon is much more intense along{i
straight coastal segments of 10 to 20 km in length than in

the vicinity of capes and small bays. The whole imagery sug-

gests that the associated circulation in the surface layer

is strongly variable in space and time a fact verified by
in-situ measur, ements and consistent with the very real pre-

sence of wind induced eddies in the surface layer.

The effect of the Mistral wind on the Ligurian

current has been studied by using a time sequence of VHRR/
NOAA-5 data. The Ligurian current flows along the french

coast from the Ligurian Sea into the Gulf of Lions where a

frontal zone separates the Ligurian current and colder water

upwelled in the Gulf of Lions. It has been found that the

surface flow associated with the current is stemmed by strong
westerly winds and when the wind drops, the frontal zone moves"

westward at speeds up to 0.3 m-s -

4 . 7 .2. Results obtained with HCMM - see Appendix C and G

HCMM photographic products allowed us to capture

several features of the large scale surface circulation in

the northern part of the western Mediterranean sea (see

Appendix C)

to study the seasonal variation oF the mean location

of the front formed north of Balearic Islands, at the

juncture between the Atlantic current flowing from the

Gibraltar Strait to the north-east and the Ligurian cur- R
tj

rent flowing to the south-west along the southern coast
.&­ 	 La^

i
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to confirm previous observations of cyclonic circulation
in the Ligurian sea and upwelingss in the Gulf of Lonsp

ORIGINAL PAGE IS 
to detect for the first time large anticyclonic eddies

OF POOR QUALITY OL 100 km diameter) in the southern part of the Mediter -•

ranean Sea.

HCMM digital products were also used to make a
statistical analysis of small cyclonic and anticyclonic oddies`

in the Ligurian sea (see Appendix G).

5 PUBLICATIONS

Included in this section are all the material.­
published by the investigators on infrared remote sensing of

the sea surface temperature. Publications which pertain ► more
specifically to the HCMM experiment are marked with an

asterisk.

5.1. - REVIEWS

- M.CREPON, P.Y.DESCHAMPS (1978) - La teledetection en oc6a-

nographie - Oceanis, 4 663-672.

C.MILLOT (1979) - Wind induced upwellings in the Gulf of

Lions - Oceanologica Actra, 2, 261-274.

- P.Y.DESCHAMPS, T.PHULPIN (1980) - Atmospheric correction of i
x

infrared measurements of sea surface temperature using

channels at 3.7, 11 and 12 Pm - Boundary-Layer Meteorol.o,y,

18, 131-143.	 0

- P.Y.DESCHAMPS, R.FROUIN, L.WALD (1980) - Comments on the,
i

"Spatial variability of coastal surface water temperature

during upwelling"	 Journal of Physical Oceanography, 100	
y, s

1303.

C.MILLOT, L.WALD (1980) - Some aspects of the Ligurian. 1
current ;along the Provence coasts Oceanologica Acta, 31

399-402.

f	 - L.WALD, G.HIHOUS (1980) 	 Ligurian Sea	 annual variation

of the sea-surface thermal structure as seen by satellite

NOAA-5	 Oceanologica Acta, 3, 465-469•
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- P.Y.DESCHAMPS, R.FROUIN, L.WALD (1981) — Satellite deter-

mination of the 1110soscale variability of the ,sea surface

ORIGINAL PAG1E 13	 temporature - Journa l. oP Physical Oceanography, 11,864- 870.

OF POOR QUALITY - M.CREPON, L.WALD, J,X.MONGET 	 ,ow frequency waves in the

Ligurian Sea during December 1977 from satellite NOAA-5

(to appear ire) Journal, of Geophysical Research.

3} P.Y.DESCHAMPS, R.FROUIN, M.CREPON - Sea surface temperature

.	 of the coastal, zones of FRANCE observed by the HCMM satel-'

lite - (submitted to) Oceanologica Acta.

1

^^- P.Y.DESCHAMPS, R.FROUIN - Large diurnal heating of the sea

surface observed by the HCMM experiment - (submitted to)

,journal o;' Physical Oceanography.

5.2. -PROCEEDINGS OF CONFERENCES

- M.ALBUISSON, J.M.MONGET, M.CREPON, C.MILLOT (1977) -

Observation of transient upwellings in the Mediterranean

sea with the NOAA VHRR imagery - in "Journees de Telede-

tection du GDTA", Saint Mande, FRANCE, Septembre 1977,

85-95.

- P.Y.DESCHAMPS, M.VIOLLIER, P.LECOMTE (1977) 	 Observation

a partir de W"espace de 1 1 environnement marin cotier

in "Journees de Teledetecti,on du GDTA", Saint Mande, FRANCE,

Septembre 1977, 119-125.

P.Y.DESCHAMPS, T.PHULPIN (1978) - Correction atmospherique

des donnees obtenues par teledetection dans 11infrarouge

in "Utilisation pour l"oceanologie des satellites d"obser-

vation de la terre", CNEXO, Actes de Colloques n05,

123-131.

- M.ALBUISSON, J.M.MONGET (1978) - Methodes et moyens utilises 	 v

pour la mise en forme de donnees de satellites de telede

tection : application A la cartographie thermique - in

""Utilisation pour 1"oceanologie des satellites d"observa

tion de 1a ter-re", CNEXO, Actes de Colloques n 0 5, 181-202.

P.Y.DESCHAMPS (1978) - Presentation de l"expe'rience HCMM

in "Utilisation pour 1"oc:eanologie des satellites d"obser-

vation de la terre", CNEXO, Actes de Colloques n °5, 339- 341.

r.
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- M.ALBUISSON, J.M.MONGET, G.NTHOUS, L.WALD (1979)
Sea surface tempe, y ature anomaly mapping using the NOAA
satellite - in "Applications of remote sensing to fisheries
research", ICES Remote Sensing Working Group Meeting,
Valbonne, FRANCE, June 1979, 13--14.

M.ALBUISSON, J.M.MONGET, G.NIHOUS, 4,POISSON, L.WALD (1980)
r

Seasonal variations of sea surface temperature in the

U,gurlan Sea - in "Coastal. and marine applications of remote,
sensing", A.P.CRAKNELL Ed. The Remote Sensing Society,

17-19.

T.PHULPIN, P.Y.DESCHAMPS (1980) - Estimation of sea surface
temperature from AVHRR infrared channels measurements -

in "Coastal and marine applications of remote sensing",

A.P.CRAKNELL Ed., The Remote Sensing Society, 47-58•

- C.MILLOT, L.WALD (1981)	 Infrared remote sensing in the

Gulf of Lions	 in 'Oceanography from apace", J.F.R.GOWER

Ed., Marine Science n 0 13, Plenum Pvess, 183-188.

- L.PRIEUR, M.ALBUISSON, L.WALD, J.P.HETHOUX, J.M.MONGET

(1981) - A comparison between infrared satellite images

and sea truth measurements - in "Oceanography from Space",

J.F.R. GOWER Ed., Marine Science n 0 13, Plenum Press,

159-167.

- C.MTLLOT, L..WALD (1981) - Upw.ell.ings in the Gulf of Lions -

in "Coastal Upwelling", F. A.RICHMUDS Ed., A.G.U. (to appear)

r
5.3.	 THESIS

L.WALD (1980) - Utilisation du 'satellite NOAA-5 a la con- s

naissance de la dynamique oceanique These de 3eme cycle,

Universite de PARIS VI, fevrier 1980.

- R.FROUIN (1981) - Contribution a l'etude de la temperature

de surface de la mer par t6ledetect.on au moyen de 1'expe-

rience spatiale HCMM - These ale 3eme cycle, Universite de

LILLE 1, Janvier 1981, n °877'.
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6 - PROBLEMS

ORIGINAL PAGE 19

6.1 - HCMM DATA GEOMETRY	
OF POOR QUALITY

The geometric correction performed on 1101M data
was partly disappointing. The accuracy with which it was per-,
formed on the day or night products was generally of several

pixels. Occasionally, the vertical, scale was different from

the horizontal scale ; when transferred on to map locations,

there was a discrepancy between lines distances (500 m) and
pixel,di.stances (450 m), lacking correspondance to the nominal
value (470-480 m).

Additional geometric correction of d1gital data
for registering one HCMM scene to an other, was sometimes neces-

sary in order to arrive at a better accuracy. In some cases,
it would have been simpler to start from non geometrically cor-

rected data.

Photographic were products without problems in geometry

and were used to detect and map with sufficient accuracy most

of the oceanic features.

6.2 - PERIODIC NOISE

A periodic signal of

sent is the data when analysed by

ture function, particularly along

period of 6 pixels. This wa> only

analysis of the sea surface tempej

(less than 5 km).

variable amplitude was pry-

FOURIER transform or struc-

• line ; with a tropical

• problem for the statistical

nature at the smallest scales

6.3 - CONTRAST OF THERMAL IMAGERY

Some of the standard photographic products were

not enough enhanced in the infrared channel, snaking it impos-

sible to derive from these images any formation over the ocea-

nic areas where temperature variations were small.
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This mainly occured on the day-infrared photo-
graphic products when tine grey scale was then extended over

a large temperdtur range to adjust for the warm temperature
of landsurfaces. Specific enhanooment for the purposes of
oceanographic; r,.-Aearch would be very useful and is proposed
as a recurnmendati.ou (section 8).

7 - SWAGE QUALITY AND DELIVERY

7.1 - IMAGE QUALITY

Image quality wa:c generally good except for those
periods cot respondi ng to high noise levels in the thermal

channel. Another problem wary the geometry of the images (see
section 6-1). Defects occasionally occured t stripes. or ano-

malous lines, grids of periodic black or bright pixels, but
die'l not seri.ous],v iffeet the objectives of the investigation.

7.2 - TEST SITES COVERAGE

A list, 6f the received data, photographic and digital'
producta, a G{y given in Appendix H.

Coverage: was generally good over all the test sites,

and excellent in the pied itc:rranean Sea, as excepted from the
cloud cover :,.nalysis.

The major lack, of cloudfree data was for studies of

estuarine thermal gradientit during winter.

7-3 - DELIVERY'

Fhotographi.c products started to arrive one year

after launch on a erratic schedule. It would have been prefe-
rable to receive them in chronological order, e.g. as complete
monthly data sets. This would have enabled a more efficient

and definite selection of the re=quest orders within a given

period.
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Some of the digital data on requested were received

twice some completely omitted Most of the tapes received con-

tained only one or two scenes, against a potential of 5 scenes

at the very minimum. The amount of tapes was increased conse-

quently : 40.00 tapers that were finally received were eventually
copied onto onl y 35 tapes

8 - RECOMMENDATIONS	 I:

The following recommendation is specific to oceano-

graphic investigation of the SST field. It is our opinion that

in would he better to :study photographic products (infrared ima-
geries) having a constant contrast temperature, i.e. a grey scale

expanded over a constant range of temperature (=1Q 0C) around the
mean climatological value of the SST.

9 - CONCLUSIONS

1 0 -IiC1+1K and AVHRR data were comparable quality for
oceanographic studies of SST. Both instruments show a large impro-

vement over the VHRR, primarily due to a roduction in noise level.

Repet.i.tivity and multichannel atmospheric correction favour the
AVHRR, while geometric correction performed on suitably enhanced
HCMM photographic products is a great help to detection mapping
oceanic features,

G°	 Day and night infrared HC,4M data were used in a
number of studies of oceanic and coastal phenomena

the interaction of the residual flow through the Dover Strait
with the Rhine River effluent,

th y, tidal fronts in the western approaches of the British
Channel,

the upwellings at the shelf break in the Bay of Biscay,	 a
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- the formation of coastal cold water regions in the Bay of Oixca.^r,

- the surface circulation and eddies in the Ligurian sea,

- the coastal upwellings in the Gulf of Lions,

the thermal front north of the Balearic islands,

- large: eddies associated with the Atlantic current north of
Algeria,

statistical analysis of %he mesoscale variability of the SST.

34 - Day night differences were used only for a

,study of diurnal heating of the surface layer of the yea during

periods of low wind speed.
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Appe

GROUND TRUTH DATA and HCMR MEASUREMENTS

6.

Periodical sea surface temperature measurements are performed

by the " Reseau National de la Qualite du Milieu Marin " along

the Atlantic shore. For example, in the Loire estuary, measure-

-ments are performed by the " Institut Scientifique et Technique

des Peches }ra.ritimes ", Nantes, every week, a+ 6 stations. on

09/15/78 1 SST measurements were made simultaneously by the HCMM

satellite and the I.S.T..P.M..

Results : for 2 stations A and B. Sea surface temperatures measured

I.S.T.P.M. were 290°(;!. Calculated temperatures from calibrated

count of HCMR were 283 °C.. Thus, in this particuler case, the temperatures

observed by the satellite were cooler than the ground truth by 20C,

2) The "Etablissement d'Etudes et de Recherches Metdorologiques" situ-

ated at the "Centre Ocdanologique de Bretagne", in Brest, performs

a statistic treatment of sea surface temperature measurements in the

Ray of Biscay, the west of Channel, and the southern region of the

Irish sea (SST-GASC is the name of the processing). (Visualization of

the results) are printed twice a day and a thermography in this area

Is produced three times a month...The range of precision of these measure-

ments (obtained from merchant,•'ships) is about i 0.5°C.

From three HCMM scenes of good quality, comparisons were made between

Satellite and SST-GASC measurements.

The following table presents results of this analysis.

For each station are given :temperature in °C from SST-GASC measure-

ments, temperature in °C calculated from calibrated count of the HCMR,

and difference between ground truth data and satellite measurement.

In each case, the satellite observed temperatures were cooler than

the ground truth (about 7°^,). These results are similar to R.N.O.

observations.

3
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ABSTRACT

The HCMM (Heat Capacity Mapping Mission) experimental. satellite

was launched in April 1978 and provided data until 1980. Although the

basic objective of the experiment was the measurement of diurnal tempe-

i
rature variations of the earth's surface for applications to geology

and hydrology, the good performance of the HCMR (Heat Capacity Mapping

Radiometer) on board the satellite recommended it for use in oceanogra-

phic studies. The data were acquired in the form of photographic products

and magnetic tapes, and systematically utilized for evaluation of surface

temperature in french oceanic regions according to an investigation accep-

ted by NASA (National Aeronautics and Space Administration).

A comparison of the radiometric performances of the HCMR to those

of the VHRR (Very High Resolution Radiometer) and AVHRR (Advanced Very

High Resolution Radiometer) on board meteorological satellites is pre-

sented, demonstrating the decisive gain in quality of the HCMR over the

VHRR for the observation of mesoscale structures in the ocean. The simi-

larities between the radiometric properties of the HCMR and AVHRR are

also discussed.

The utilization of photographic products proved very suitable

since they had already been geometrically corrected and enhanced in the

temperature range of the sea surface, consequently avoiding many of those

cases requiring involved computer treatment. Examples of results obtained

by photo interpretation of marine structures observed in the regions 	
r

relevant to the investigation (North Sea, British Channel, Celtic Sea,

a
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Bay of Biscay and western Mediterranean) are presented in this study.

From these, conclusions have been drawn regarding several oceanic phe-

nomena.

- The thermal effluent of the Rhine is affected by the tidal

residual current of the North Sea. The extent of the offshore diffusion

of the estuary system is influenced by winds from the NE and W which

respectively retard or accelerate the residual current.

- Images showing cold water along the edge of the continental

shelf strongly support the hypothesis of a mixing process due to inter-

nal waves generated by the action of tidal currents at the edge of the

shelf.

- Large scale eddy structures detected during the summer in the

western Mediterranean region around 6 0 E and 38°N may be linked to a phe-

nomenon of barotropic - baroclinic instability.

- The presence of significant diurnal heating of the surface layer

(several °C) is related to weak winds in the Mediterranean, leading to

interpret with caution daytime SST (Sea Surface Temperature) satellite

observations made during the summer period.

l	 I
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RESUME

L'expdrience satellitaire H.C.M.M. a dtd lancde an avril 1978 avec

pour objectif de mesurer les variations diurnes de la tempdrature de surface

de la Terre, en vue d'applications en Gdologie et en Hydrologie. Les bonnes

performances du radiomdtre H.C.M.R. a bord du satellite (NEDT de 0,3 °C,

rdsolution au sol de 500 m) font aussi ddsignde pour des dtudes en Ocdano

graphie. Les donndes fournies par le satellite ont couvert la pdriode allant

de avril 1978 a juillet 1980. Ces donndes, sous forme de produits photogra-

phiques et de bandes magndtiques, ont dtd systdmatiquement utilisdes pour

1 1 observation de la tempdrature de surface des rdgions ocdaniques fran-

gaises, dans le cadre dune investigation acceptde par la NASA.

Une comparaison des performances radiomdtriques du H.C.M.R. a

celles du V.H.R.R. et du A.V.H.R.R. des satellites metdorologiques de la

NOAA est d'abord effectude, mettant en dvidence le gain de qualitd ddcisif

du H.C.M.R. sur le V.H.R.R. pour l'observation des structures a moyennes

dchelles en zone ocdanique, ainsi que la qualitd radiomdtrique similaire

du H.C.M.R. et du A.V.H.R.R..

L'utilisation du produit photographique, particulidrement bien

adaptd puisque corrigd gdomdtriquement et augmentd en contraste dans la

gamme des tempdratures de surface de la mer, s'est avdrde fructueuse, dvi-

tant dans la plupart des cas de procdder a un traitement informatique sou-

vent lourd. Des exemples de rdsultats obtenus par photo-interprdtation pour

l'observation des structures marines dans les regions concerndes par 1'in

vestigation (Mer du Nord, Manche, Mer Celtique, Golfe de Gascogne, Mdditer-

rande occidentale) sont prdsentds. En particulier, des conclusions ont dtd
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obtenues sur plusieurs aspects ocdanographiques

- influence du courant rdsiduel & travers le Ddtroit du Pas de Calais sur

l'effluent thermique du Rhin ; la plus ou moins grande diffusion de cot

effluent d partir de la c6te est associde & des vents de secteurs Nord-Est 	 N

et 0uest qui respectivement freinent ou accdl6rent le courant rdsiduel ;

- les images obtenues sur 1 1 apparition d'eaux froides en dtd A la limite du

plateau continental au large de la Bretagne soutiennent fe=ement 1 1 hypo-

th6se d'un mdcanisme ddclenchd par les ondes internes gdndrdes;yar les cou

rants de marde d la rupture de la pente ;

la detection de structures tourbillonnaires de grande amplitude (100 km)

en Mdditerrande Occidentale dans la zone voisine de 6°E et 38°N en pdriode

estivale

- 1'apparition d'dchauffements superficiels diurnes importants (plusieurs

°C) lids d des vents trds faibles, en Mdditerrande : cola doit conduire d
(

utiliser avec suspicion les obsservations satellitaires de jour en p4riode

estivale.

N 4-

k , w

^'E

t
9
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`INTRODUCTION

Examination of the eat !:h' .. .... 	 .. ------- ----» --

becoming a common practice. The first space experiments in this area

were launched in the 60 1 s, but it wasn't until the early 70's that the

VHRR experiment on meteorological NOAA (National Oceanographic and At-

mospheric Administration) satellites permitted a systematic and fairly

precise observation of the temperature field of the earth's surface.

Although a large number of ocean phonomena have been studied in this

manner from space (see among other reviews, those by LEGECKIS, 1978,

and Mc CLAIN, 1980), examination of even pronounced ocean structures has

still been somewhat limited by the instrumental performances of the VHRR

(Noise Equivalent Differential. Temperature, NEDT of 0.5 to 100.

During 1978, radiometers of a new generation were installed on

different satellites : the HCMR on HCMM ; the AVHRR on TIROS-N ; and

secondarily, the CZCS (Coastal Zone Color Scanner) on NIMBUS-7. All

included channels in the infrared, and permitted a hope of improved

performance for observing the sea surface temperature field primarily by

a notable reduction in instrumental noise.

The present study essentially concerns the HCMR experiment

launched in April 1978, for which an investigation had been accepted

by NASA. The materials provided by NASA consisted of both photographic

products and magnetic tapes. The utilization of photographic products

was particularly well adapted to the purposes of this oceanographic study

since they were already geometrically corrected and enhanced in the

sea surface temperature range. A description of the satellite experiment

is first presented, then a comparison of the radiometric performances of

the HCMR to the VHRR and AV=, followed by the results obtained through
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photo interpretation of the Mari

want to the investigation.

II - THE HCMM SATELLITE EXPERIMENT

The fundamental objective of the HCMM space experiment was the

measurement of the diurnal temperature variation on the surface of the

earth (solar heating during the day, radiative cooling at night) for appli-

cations to earth resources (geology, hydrology, etc...) For this, she HCMM

satellite was placed at an altitude of 620 km in a sun-synchronous orbit,

circular,quasi:polar, characterized by an inclination of 97.79 0 and a

period.of 97.2 minutes. The passage over the equator took place at appro-

ximativey 02 and 14 hours local time in order that data could be obtained

near the minimum and the maximum of diurnal temperature variation. The

radiometer onboard the satellite was a scanning radiometer that acquired

data in 2 channels : the visible and near infrared. (0.5 - 1.1 um), and

the thermal infrared (10.5 - 12.5 Jim). Similar channels had already been

used on previous meteorological satellites, but the purpose of the modified

instrumentation of the HCMM experiment was z

(i)to significantly improve measurement in the thermal infrared by an

NEDT of 0.3°C and a groutid resolution of 0.5 km (as opposed to an NEDT

between 0.5 and 1°C and a ground resolution of 1 km for the VHRR radiometer

of NOAH satellites), and

(ii)to increase the possibility of obtaining maps of the day/night

surface temperature differences at 12 and 36 hour_ intervals. The main

objective of the HCMM experiment was to determine the thermal inertia

of the earth's surface with the intentions of : measuring variations of

k	
a
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ground humidity and evapotranspiration of the vsgetatir.Nn ; discrimina

d%fferent rock types and locating r'%J'neral beds ; and measuring the ea

of snow covered areas for the purpose of forecasting runoff due to tr

melting of ice. Moreover, the good performance of the HCMR recommends

it for studies in oceanography.

The data were available in the form of photographic products

digitalized magnetic tapes. Each scene covered an area 700 x 70v km2

contained the following information :

(i) diffuse albedo (or reflectance) from the channel in the visible ;

(ii)surface temperature from the channel in the infrared ; eventually

(iii)day/night temperature difference, and

(iv) thermal inertia.

III - COMPARISON BETWEEN DIF'F'ERENT RADIOMETERS (HCMR, VHRR and AVHRR)

Radiometers of the same type as the HCMR have been operational

for the past few years for measurement, on an observational basis, of 	 j
'	 I

the earth's surface temperature : the VHRR on NOAA satellites (NOAH 3 t05)

from 1972 to 1978 ; the AVHRR on TIROS-N and NOAA 6 in 1978 and 1979, and

recently (April 1981) on NOAA 7 which replaced TIROS-N. The performances

of these radiometers are compared to those of the HCMR and summarized in

Table 1. Note that the HCMR and AVHRR exhibit respectively a gain in

radiometric quality (product of NEDT by the ground resolution) by a fac-

tor of 3 and 5 times over the VHRR. 	 k

In order to demonstrate the gain in radiometric performances of

the HCMR over the VHRR and to evaluate its impact on the measured tempe-

am
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rature field, the HCMR data acquired 10 May 1978 at 2 h TU on the Hay

of ,Biscay have been compared to those of the VHRR acquired 11 May 1978

at 8 h TU on approximatively the same area centered at 45 030' H - 4030'W.

An eddy N 50 km wide is clearly visible in the HCMR data (Fig. 1 -ar while

it appears only weakly in tha VHRR data (too noisy) (Fig. 1-b) The refi-
9

ned quality of the HCMR data has allowed the detection and study of even

those structures having weak amplitudes (less than 1°C).	 4

Fig. 2 gives the spatial spectrum of variance density of the sea

surface temperature E(k) (where k is the wavenumber) for the same region

(64 x 64 km2) corresponding to the preceeding eddy, drawn from the data

of the VHRR and HCMR and calculated in the direction of the satellite

track. The E(k) spectra, which characterize the surface temperature varia-

bility in the study region, tend to a limit at high wavenumbers, equal

to the variance of the noise divided by T (when T is the sampling

rate of the data ; 1 km in the case of the VHRR ; 0.5 km in the case of

the HCMR)_. Consequently the observed noise level is 0.03 (°C) 2 in the

cage of the HCMR ana 0.6 (°C) 2 in the case of the VHRR - i.e. 20 times

more Elevated for the VHRR. Note also in Fig. 2 that the physical infor-

mation begins to be significant at wavenumbers greater than 1/40 (km 1)

in the case of the VHRR, and 1/5 %km 1) in the case of the HCMR. This

indicates that in such an area of weak variance, the analysis of the

surface temperature field is liwited, due to noise, to a scale greater

than 40 km in the case of the VHRR and to 5 km in the case of the HCMR.
	

t t

A similar comparison was made on data acquired almost simultane-

ously by the HCMR and the AVHRR, 17 July 1979 in the Bay of Biscay (12 h 45

TU for HCMR, 15 h 15 TU for the AVHRR). The AVHRR data were acquired by

the receiving station LANNION, France, and were not geometrically correc--
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ted. The figures 3-a and 3-b present an enhanced visualization of an eddy
4

structure of amplitude greater than 100 km in the south eastern region

of the Say of Biscay. The comparison of Fig, 3- 4 and 3-b shows a similar

quality in the restituted temperature field by the HCMR and AVHRR that

is confirmed by spectral analysis (Fig. 4). The spatial spectrum of tem-

perature variance density, E(k), corresponding to the western portion

of the eddy structure, was calculated in the direction of the satellite

track.

in this oceanic zone, it seems that the surface temperature

field could be characterized by E(k) ti k-2, The determination is limited

at high wavenumbers by the noise level- of the radiometers : 0.02 (°C)2

for the HCMR, and 0.01 (°C) 2 for the AVHRR. This dependence of the spec-

F

	

	 trum on wavenumber has not been explained by any turbulence theory

(DESCHAMPS et al., 1981). Note also in Fig. 4 that for the two experi-

ments, the physical information begins to be significant at a scale

greater than S km. This indicates that the relation between,noise level.

and ground resolution by the radiometers is not optimal for study of

surface temperature in those oceanic zones where variance is weak, par-

ticularly in the HCMR case. A better compromise would be to have a variance

of noise less than 0.01 ( °C) 2 and a ground resolution on the order of 2 %m.

This comparative study emphasizes the following conclusions.

(1) The quality of the radiometric performances of the HCMR (ground

resolution and NEDT) as compared to those of the VHRR,_shows a net

improvement in the observation of sea surface temperature field and its

application to oceanography.
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2) The analysis of the spatial spectrum of toperature variance density

shows that the interpretation of the data is generally limited by radio-

metric performances (noise level) at scales below 5 km in oceanic regions.

One can also %)nclude from this analysis that a N E D T 	 lens than 0.1°C

and a ground resolution of Z km give more optimal radiometric performances

for the study of surface temperature in oceanic regions.

3) The HCMR data has the potential of being very useful for the detailed

analysis of the sea surface temperature field, particularly in coastal

regions, due to aground resolution of 500 m.

4) The HCMR/HCMM and A,VHRR/TIROS-N, NOAA 6 have comparable radiometric

performances. The repetitivity and the existence of a channel at 3.7 pm.

for atmospheric correction (DESCHJ MPS and PHULP_IN; 1980) are in favor of

the AVHRR however, the HCMR has the unique advantage of delivering the

photographic products and digital data radiometrically and geometrically

corrected, which enables direct utilization.

IV , OCEANOGRAPHIC PHENOMENA OBSERVED OFF THE FRENCH COAST

Due to the operational features of the VHRR experiment on board

the NOAA satellites, it has been possible since the 70's to systematically

observe from space the surface temperature of french oceanic regions. Direct

reception of the data at CMS (Centre de Mdtdorologie Spatiale) in LANNION,

France, has been routinely employed, being limited only by the radiometric

performances of the VHRR and by the presence of clouds in the instrument

field of view. In regions of the British Channel and North Sea, submitted

to a continual regime of atmospheric perturbances, the cloud cover has the

effect of considerably reducing the quality of observation from space, ho-

wever, the meteorological situation in the Mediterranean is much more fa-

vorable_



ZONE 1

The Thermal effluent of the Rhine
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The utilization of channels in the visible for discriminating re-

gions of clouds and the time scales of atmospheric perturbations (generally

much shorter than comparable oceanic perturbances) has permitted effective

observation even though the presence of clouds has often rendered difficult t'

i

those dynamic studies requiring continual survey of the phenomena of in-

terest, r
f

An HCMR with improved radiometric performance was launched in
ii

April 1978 with the hope of providing more detailed observation of fine

structure phenomena. The photographic products provided by NASA were

particularly appropriate since prior geometric correction and enhance-

ment in the temperature range of the sea enabled direct ; interpretation of

the data.

From May 1978 to May 1979, the HCMR provided approximatively 1000 such

images of french oceanic regions that have since been examined and ana-

lysed.

That which follows is a presentation of the work accomplished on 3 regions

of study (figure 5) : the southern portion of the North Sea (zone 1)

the western British Channel,the Celtic Sea, and the Bay of Biscay (zone 2)

and the northwestern Mediterranean (zone 3). On the photo images, the

darkest shades correspond to either the lowest temperature (thermal infra

red channel) oz to the lowest reflectance (visible channel).
3

Systematic observations of the effluent from the Rhine-Meuse-

f
Escaut system have been obtained by the F;;MM experimental satellite and
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are presented in figures 6 and 7.

on entering the sea, the effluent is entrained by the circulation cha-

racteristic of the southern portion of the Nor.,th Sea. The mean residual

circulation (NIHOUL and RONDAY, 1975) is directed from the south west

to the north east (fig. 8) and the current tends to flow in a straight

line from the Dover Strait following the Isobaths deeper than 30 m which

are located at the center of the southern Bight. It moves off the dutch

coastline at the level of the Rhine-Meuse-Escaut estuary system permitting

the effluent to diffuse offshore-i.e. westward. At the Frisonnis archipe-

lago the current more or less follows again the dutch coast.

The interaction of the effluent (warmer in summer, colder in winter)

with the residual circulation is complex, but an examination of the pho-

tos shows that it can be separated into 2 parts

- The southern portion of the effluent (Escaut and Meuse) has a tendency

to flow towards the southwest before being entrained by the residual cur-

rent, forming a diffuse wedgershaped plume along the belgian coast. This

is particularly visible during the winter period shown in figure 7. A

LANDSAT image (figure 9) reveals that sediments are transported southward

in a similar manner.. The southern region receives fresh water of lower den

* sity ejected by estuary system but the energetic action of tidal currents

rapidly destroys and prevents stratification in the marine environment. 	 A

- The northern position of the effluent (Rhine principally) is generally

entrained directly toward the northeast and forced along the dutch coast

by the residual current (figure 6 during the summer). The effluent forms

a pronounced offshore boundary separating the non. stratified atlantic

water in the center from the coastally stratified water. In northern sec-

tion, stratification is made possible by the combined actions of trans-

port of less dense fresh water and the higher values of the SIMPSON-HUNTER
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parameter (NIHOUL, 1980) which governs the stability of stratification. Un-

like NIHOUL's model, the one's developed by PINGREE (1978) doeo not indicate

this tendency toward increased atratification along the dutch coast from the

city of the Haye to Texel Island (Fig. 10).

An examination of the meteorological situation (mean wind speed direc-

tion and speed) for the period May-June 1978, reveals the interaction between
,Gr
T

the residual current and the thermal effluent. In the situation of winds do-

minating from the west (4-10 June), the northern portion of the plume is ob-

served to extend along the dutch coast in the direction of the Frisonnis Is- 	 q
)

lands (see the observations of 4 and 9 June). On the other hand, when winds

were from the northeast (16-19 and 25-31 May, 14-20 June) a broad seaward

dispersion of the plume (typically 40 km) is noted (observations of 18, 30

May ; 19-20 June). During 19-20 June, following relatively strong winds from

the northeast, cold unstratified water, encountered offshore the Frisonnis

Islands, penetrated southward along the dutch coast. The offshore transport

of freshwater rapidly diffused and was then insufficient to maintain stra-

tifacation near the coast, which is in agreement with the diminution of the

SIMPSON-HUNTER parameter.

r^

f`

The diffusion system of the northern portion of the thermal effluent

is interpreted as being connected to changes in the residual current that

arise as a consequence of wind action. Western winds tend to create a wind

driven current which contributes to intensify 	 the residual current,

particularly along the dutch coast (PINGREE and GRIFFITHS, 1980), where it 	
r`..

forces the effluent shoreward while entraining it farther to the north.
k

When the winds are from the northeast they counteract the flow of the 'resi-

dual current, reducing its speed and deflecting it toward the english coast,
=1

thus permitting abroad seaward diffusion of the thermal effluent and only
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limited northward entrainment.

Observation of the thermal effluent of the Rhine-Meuse-Escaut system by

photographic products of the HCMM enables the following conclusions to be

drawn, which are also supported by results based on numerical simulation

(NIHOUL and RONDAY, 1975) of the circulation in the southern Bight of the 	 A

North Sea
4

The average circulation is directed from the southwest to the northeast

away from the Dover Strait (NIHOUL and RONDAY, 1975).

- The western winds reinforces the residual current toward the dutch coast,

whereas winds from the northeast oppose this current and deflect it toward

the english coast (PINGREE and GRIFFITHS, 1980).

- Stratification is absent to the south of the Rhine-Meuse-Escaut estuary

system, but present to the north along the dutch coast (NIHOUL, 1980) where

it is maintained by the transport of freshwater from river outflow.

ZONE 2

A TIDAL FRONTS WEST OF BRITTANY AND IN THE WESTERN BRITISH CHANNEL

Figures 12-a and 12-c show HCMR observations of tidal fronts in the

western approaches of the British Channel, west of :Brittany (Ushant front),

near the cape of Cornwalls (front of Scilly Islands), and between Ireland

and England (front of the Irish Sea). These fronts have been known for a

Tong time (already observed by DIETRICH, 1950) and the mechanisms forming

them have been studied by various authors (SIMPSON and HUNTER, 1974 ; FEARN-

HEAD, 1975, PINGREE and GRIFFITHS, 1978 ; GARZOLI, 1979).

1
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These fronts are produced by the action of tidal currents which mix the

water column in the shelf region when the depth is shallow and the tidal cur- 	 a

rent speed, U, is high, and eventually destroy the summer stratification. As

a result, surface water is colder and a well-marked surface thermal front se-

parates the regions of stratified and homogenous waters.
I

The stratification is governed either by the SIMPSON-HUNTER parameter,

S = log 10 (H/CDU3 ) (SIMPSON and HUNTER , 1974) or by the parameter S' - H/U2

(GARZOLI, 1979) where CD is the drag coefficient (C D ^! 0.0025). According

to PINGREE and GRIFFITHS, when S < 1 (H/U 3 is expressed in cm- 2 s3 ) the

medium in stable and stratified, and when S > 2 mixing occurs and the fluid

becomes homogeneous. In the model of GARZOLI, H/U 2 = 1 cm- 1 s2 is the criti-

cal value beyond which stratification no longer takes place. The thermal front

appears at the boundary between the stratified and homogeneous waters.

Fig. 13 shows locations of the fronts predicted by FEARNHEAD (1975), and

PINGREE and GRIFFITHS (1978). These positions, already captured by NOAA satel-

lites (SIMPSON et al.., 1978 ; PINGREE and GRIFFITHS, 1978), are confirmed

by HCMM observations. Note also in fig. 12-a and 12-c that the Ushant front,

though pronounced at the level of Ushant Island ('v 3 0C), progressively disap-

pears farther north. This is explained, by the fact that the gradient of S or

S' is weaker in the northern portion, than around Ushant Island (weaker tidal

currents and the slope less steep) rendering the separation between the stra-

tified and homogeneous regions less distinct. 	 {

On the image of 25 August, and less clearly on that of 21 September, one 	
fl

can observe a phenomenon mentionned by PINGREE (1979) colder and more homo-

geneous water east of the front of Brittany diffusing westward in fingers per-

pendicular to the margin of the front. According to PINGREE, these intrusions
E
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of cold water play an important role in the mechanism of expanding thermocline

erosion which occured during this period (the end of the summer). As surface

heat was reduced f the front progressed westward.

The positions of these fronts are subjected to changes due to a variety

of factors.

- Variations of the tidal coefficient can double the amplitude of the tidal

current.

,

- The evolution of energy and heat exchanges at the surface throughout the

season can create conditions of different stratification.

- The wind can be a dominant factor in regions of weak tidal current (SIMPSON

et al., 1978).

- The phenomenon of advection may play a role, advancing the front margin

(GARZOLI, 1979)

HCMR observations show the evolution in the position of the Ushant front

during May-September 1978 (Fig. 14). The position is very fluctil.ating. Note

an eastward displacement, due to increased stability of the stratified water,

is absent during'May-September in contradiction to studies by PINGREE (1975)

and GARZOLI (1979).

Moreover, in Fig. 14, the situation of May 21 is different from that of

26 May in that the front is displaced more than 100 km westward at 49 030' N.

These observations occured before and after a period of strong tidal coeffi-

cients, the meteorological situation being the same during 15-26 May with rela-

tively weak winds in the northern sector. These observations suggest the follo

wing hypothesis : the currents became more important between 21 and 26 May,

and as S and S' parameters diminished, the stratification was progressively

destroyed in the region where the front was localized on 21 May. In response

to the diminution in the S and S' parameters, the thrust of the front advanced

to greater depths (westward) until H was large enough to render ineffective
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the tidal currents on the destruction of the stratification.

B - OBSERVATIONS ON THE EDGE OF THE CONTINENTAL SHELF

Summer satellite observations (PINGREE, 1979, DICKSON et al., 1980) show

a band of cold water situated at the edge of the continental shelf, where the

ocean bottom drops from 200 m to several 1000 M. This band of cold water (repor-

ted by PINGREE from VHRR data in 1976-1978) persisted from July to September

between 5 0 and 10 1W. DICKSON et al. Presented observations in May and June 1979

obtained from AVHRR data, in which the band of cold water followed the edge of

the continental shelf from the south of Ireland (11°W) to the south of Britta-

ny (4 1W). The explanation for this phenomenon that appears as an upwelling re-

mains uncertain. Based on the works of KILLWORTH (1978), DICKSON advances the

hypothesis of an interaction between Kelvin waves and the shelf break, an inte-

raction which is intensified by the presence of canyons. The theory proposed

by KILLWORTH supposes winds dominate from the northwest, blowing parallel to

the slope. HEAPS (1980) suggests an upwelling generated at the shelf break when

winds dominate from the southwest. Note, however, that satellite observations

generally correspond to a cloudfree situation associated with an anticyclone
t

high over the Bay of Biscay and the British Isles, and that the resulting winds

r
were frequently from the east. This is contrary to thepreceeding theory unless

one admits to a shift of a few days between meteorological .crcing and the

response of the sea.
a

During the period May 1978-1979, 10 HCMR images focussed on the edge of 	 4a

the continental shelf. These permitted a pinpointing of phenomena and enabled !i

the following observations to be made.
c

1) The well established band of cold water corresponds to the local destruct-'

tion of the thermocline under 'the action of a mixing process linked to the

presence of the shelf limit. This band appears in May-June at the onset of
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summer when the thermocline is formed, and disappears in the autumn (october)

when the stratification is destroyed.

2) The phenomenon is more intense after spring tides, (Fig. 12 -a from 25 August

1978, and Fig. 12-c from 21 September 1978), whereas during the period of neap

tides, the band of cold water appears as a more diffuse feature (Fig. 12-b	 x

from 18 September 1978). The physical process provoking this upwelling of cold
}

water has a possible a relation to the interaction of tidal waves with the edge

of the shelf.

3) One can follow an evolution of phenomena during the course of the summer.-

Early in the season (a period of weak stratification) a narrow band of cold

water (several 10ths of km) was observed on the edge of the armorican and cel-

tic shelves from south of Ireland to 46 0N - 4 0W in the Bay of 'Biscay. At the

end of the summer (a period of strong stratification),, the band of water had

expanded and was particularly intense between 5 and 9 0W though not discernable

on the segment oriented NW-SW at the edge of the shelf from 49°N - 11 OW to

46 0N - 4 0W. The observations of 25 August and 21 September 1978 are typical

of this. Both were obtained near the close of the sping tide period. The

zones of more intense phenomena which correspond to the colder water are lo-

cated in precisely the same regions for both documents. It is worth emphasi-

zing that the part of the shelf edge between 5 and 9 0 W coincides whith the

segment where the slope of the shelf break is larger (it varies between 0.05

and 0.1, whereas in the region farther north, the slope is less than 0.03)

and where the tidal currents are stronger (1.5 knot during spring tide).

This group of observations indicates a direct correlation between the pre-

sence of cold water along the edge of the continental shelf and the amplitude

of the tidal current. MAZE (1980) has shown that the passage of a barotropic

tide over the slope can generate an internal_baroclinic wave (elevation of

the thermocline) of an amplitude of the same order as the depth of the ther-

mocline, thereby suggesting an explanation for the appearance of cold water
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at the surface. The amplitude of the internal wave is increased by the speed

of the current and the inclination of the shelf break. The appearance of cold

water is restricted to the summer, i.e. when the thermocline is pronounced,

and to areas where the strongest currents and steepest slopes are encountered,

as in the situation along the coast of Brittany. The observation of 25 August

1976 shows clearly a complex system of internal waves of wavelengths approxi- {

mating 50 km which correspond to those of internal waves (c1 m s-1 ) having a
u

tidal period. The stationary regime of the internal waves is occasionally vi-

sible between the south of Brittany and the shelf break where it seems to be

in resonnance within the limited conditions constituted by the shape of the
t.

basin.

On one occasion observed in the winter (Fig. 12-e from 16 January 1979)

a band of warm water along the slope was shown extending very shoreward into

the Bay of Biscay. In the location of the cold upwelling usually present off

northwest coast of the iberian peninsula, warm water is also observed, having

the appearance of a warm upwelling. It is difficult to attribute the phenomenon

to the resurfacing of Mediterranean water because its depth is on.the order

of 1000 m. The hypothesis of a mechanism of advection linked to wind induced

circulation in the Bay of Biscay can be equally advanced. This would imply

current values (on the order of 1 M. s-1 ) established over an extended time

(on the order of a week) .

C'- COOLING ON THE CONTINENTAL SHELF DURING THE AUTUMN PERIOD	 t` i

Starting in September, the surface layer begins to cool and become homo-

geneous to',progressively greater depths. The mechanism is more rapid and abrupt

in shallow areas, such as coastal zones (h < 20 m). At the end of September,

k
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cold water that began to appear at sever

thorn coast of Brittany to Gironde (Fig. ,iz-c), naa, oy rune ena ox vczggar,

formed a continuous coastal band extending to the 50 m isobath (Fig. 12-d).

Note that when the thermocline is in complete erosion, cold water spans the

entire shelf and extends seaward as successive intrusions with the charac-

teristic scale of 20-50 km. Observations in the winter period of 16 January

and 27 .February 1979 (Fig. 12-e and 12-f) show a persistant band of cold ho-

mogeneous coastal water that extended to the 100 m isobath forming a distinct

front of several °C, south of Brittany.

ZONE 3

A - NORTH BALEARIC FRONT

rE

Figs 15-a, 15-b and 15-c provide observation, of the .north Balearic

front on 11, 16 July and 12 August 1978. This front results fro ,a circulating

waters in the western Mediterranean which are characterized by a substantial ,.

surface current (LACOMBE and TCHERNIA, 1972)	 (extending to a depth of approxi- ;

matively 1501 m) of atlantic water and which flows eastward along the algerian

coast in leaving t	 alv ng	 he	 boran Sea (Fig. 16). West of Algeria, the current stems r

and divides into 2 branches

- One continues in the eastward direction along the african coast to the strait

of Sicily where it penetrates into the eastern Mediterranean.

The other curves northeast, merges with the Ligurian current, and follows

along the southern coast of France and Spain. This circulation forms two cy-

clonic rings, one in the Ligurian Sea and another trapped around Balearic

Islands which generates the north balearic front.
1

x	 .

x
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In Fig. 15-a, 15-b and 15-c, one can detect two major oscillations in the

front t the first along the coast of Spain around 4 030' E and the second around

8 0E and 42 0N. The average position of the front during the summer of 1978 can

be seen in Fig. 17. Note the southward displacement at 7 0E, from May to August

which can be related to wind action dominating from the NW that produces upwel- 	C

lings along the coast of Gulf of Lions and entrains the circulation to the

south (MILLOT and WATD, 1981) .

Aside from this general form, the north balearic front induces small

scale meanders (typically 10-20 km) in response to baroclinic instability in

the frontal zone (radius of deformations s several km). Equally notable is an

anticyclonic ring near the coast of the french-spanish border, which corres-

ponds to the deviation of the Ligurian current by the Cape of Creux.

B - LARGE SCALE EDDIES OFFSHORE THE ALGERIAN COAST

On the observations of 11, 16 and 21 July (Fig. 15-a, 15-b and 1.5-c),

two large anticyclonic eddies, having dimensions approximating 100 km, are

clearly visible. They are practically stationary and centered at 38°N - 7°E.

A weak propagation E - NE is noted. These eddies are revealed by the entrain

merit of colder water derived either from upwelling on the algerian coast (cape

Bougaroun) or by cold water flowing along the Sardinian coast. Although they

have been systematically observed by satellite photos during the summer period,

their origin still remains unclear. They could be linked to experiments made

in a rotating tank (GRIFFITHS and LINDEN, 1981) in which,similar undulations
4

were attributed to a combination of barotropic and baroclinic instabilities.
3i

The horizontal scale LE (100 km), of the ocean eddy is in partial agreement

with the theory of baroclinic instability
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with RH , the radius of deformation :

RK _ L (gh P)1/2 -- 20 km

where H 150 m is the depth of the surface layer of the atlantic water i

AP = 3.10 - 3 is the relative difference in density between the surface water
P

and deep water ; f a 0.9(10-4 ) s-1 is the Coriolis parameter at the latitude

in consideration and g is acceleration due to gravity. Fig. 15-c of 21 July

seems to support the following. From eddies forming along the algerian coast

at 3 0E, there seems to be an amplification developing into rings from 5°E.

Elsewhere, between 5°E and 9 0E, anticyclonic eddies seem to induce smaller

cyclonic rings along the algerian coast.

The observation of 16 July reveals a remarkable phenomenon between

Balearic and Sardinia Islands around 40°N. The surface temperature field
I,

is very inhomogeneous. Structures more or less organized in bands 5 to 10 km

^	 wide give the. surface temperature field a filamentioCis appearance for whichg	 p

the following explanation is proposed. From 5-0 July, a violent wand from
s

the northwest, the Mistral, blew on the Gulf of Lions, entraining the thrust

of the north Balearic front toward the south (particularly pronounced on the
... M

'	 image of 11 July). Then just prior to 16 July, the winds were extremely weak

resulting in minimum surface agitation and the cold water entrained southward f

to 401 N mixed. with.. atlantic surface water in a series of warm and cold pockets, 9'
Ij,r

elongating in the direction of the current. During such a period, the direc-

tion of warm and cold fingers of water can be considered as an indication of

the direction of the surface currents 	 this being equally evident in the

region of the large scale eddies on 16 July (S8°N).
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C THE LIGURIAN CURRENT AND UPWELLINGS IN THE GULF OF LIONS

The situation in the liguro-provencal basin is well illustrated in

Fig. 15-e, 12 August 1978. A cold water mass is located in the center of

A

	

	
the basin bounding by a contrastingly warm water circulation that follows

along the coast of Corsica, Italy and France (WALD and NIHOUS, 1980). The

P

	

	 interface between the central water and the coastal current exhibits a series

of deformations having an anticyclonic tendency and wavelengths of 'v 50 km,

particularly in the northern portion. This process has been outlined by CREPON

et al. (1980), and is analogous to deformations in the polar front of the at-

mosphere and due to a phenomenon of baroclinJr, instability.

After flowing along the french coast, the Ligurian current penetrates

into the Gulf of Lions, where it encounters coastal summer upwellings pro-

duced by strong gusts of winds from north (Mistral) and west (Tramontane)

(Fig. 15-d, of 22 July and 15-e, of 12 August 1978). The image of July 22

dives a clear view of the extent of these upwellings created by the strong

winds of the preceding days (17-21 July). Colder water appeared on the coast
in diverse locations	 MILLOT, 1979)	 cape of Adge, mouth of the Rhone,

cape Sicid and,in spreading seaward , was deflected to the right of the wind

aid a consequence of Coriolis acceleration.

The southward expansion of the cold upwelling extends to 100 km south
of Marseille and is an important feature. The LANDSAT image of September 1976

(Fig. 18) confirms the mechanism that at the time of the upwelling, coastal

sediments were entrained offshore at the cape of Adge and tended to describe

an anticyclonic circuit. Only the western border of the upwelling generated

at the mouth of the Rffione, is visible, but significant entrainment of suspen-

ded material farther south is apparent.

These phenomena have been numerically modelled by FUA and THOMASSET (1982),
ad

and good agreement has been obtained between the satellite observations and

the results of the model.

1
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Following release from the gpwelling, the Ligurian current flows along

the slope of the continental shelf of the Gulf of Scions and entrains towards

the southwest those-masses of cold water upwelled east of Marseilles (Fig. 19,

for 12 August 1978).

5 - IMPORTANT DIURNAL HEATING DETECTED BY THE HCMR IN CONDITIONS OF WEAK WINDS

During the period extending from May 1978 to August 1978, a large amount

of data acquired daily on the Mediterranean by the HCMR revealed marine zones

of similar spatial structures in both visible and thermal ;infrared channels.

Fig. 20 shows an example of these features ; one .located in the area between

Corsica and the southern coast of France, and the other in the area near the

eastern coasts of Corsica and Sardinia. One observes higher temperatures in

the infrared channel (Fig. 20-b) and at the same time, important changes in

the reflectance in the visible channel (Fig. 20-a). These structures have

been identified as significant heating of several degrees, of the first few

centimeters of the surface layer during periods of weak wind (DESCHAMPS and

FROUIN, 1982).

The changes in reflectance observed in the visible channel are interpreted

as variations in "glitter", -i.e. in the specular reflection of direct solar

radiation of the agitated sea surface. During the period around the summer

solstice., the geometric conditions of observation were favorable for the de-

tection of glitter phenomenon in the western portion of the scenes. Glitter

is usually pronounced when the sea is relatively calm, and a maximum in re-

flectance occurs when the direction of satellite observation is , near that of

the specular reflection of the sunlight. One such patch of uniform brightness

is noticeable in southwestern portion of Fig. 20-a. In the case of a very calm

sea, the reflection of the surface becomes almost specular and a reduction of

reflectance can usually be noted, because it is very improbable that the angle

of the satellite observation would be aligned exactly in the direction of the

specular reflection.

Fig. 20-a illustrates this reduction in reflection ; two phenomena are

presented with the more or less brilliant areas corresponding respectively to

weak and zero winds. The fact that the change in sea surface agitation can

produce an increase or reduction of the observed reflectance has already been

mentionned by Mc CLAIN and STRONG (1969), and LA, VIOLETTE et al, (1980).

r

0

e	 ^;
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When the surface agitation due to wind stress decreases, the heating

of the surface layer increases (HASSE, 1971). In the absence of wind, the

gain in temperature is almost entirely determined by the local absorption
It

of solar radiation. The effect is that the diffusivity in the upper layer
r.,

tends towards the limit value given by the thermal molecular diffusivity

which, on a scale of several hours, is insufficient for distributing the
A-

heat to deeper layers. Thus one can observe substantial diurnal heating

of several degrees in the surface layer.
r

fi

The meteorological observations (Fig. 20 -d) are in good agreement

with the fact that the zones of weak winds correspond to zones of weak re
)

flectance and strong diurnal heating.
ti.

Radiative cooling during the night rapidly destroys most of the diurnal

heating at least in the upper surface layer. The evidence of diurnal heating

can then be established byemaking a comparative analysis of successive day/

night observations Fig. 20 -c gives the difference between day and night

temperatures at 12 -hour interval, corresponding to the day time image shown

in Fig. 20-b and furnished by NASA : the warm anomalies are always present

yet very well cotrclated to variations in reflectance in the visible channel.

From May 1978 to August 1978, approximatively 60 images were obtained

on the western Mediterranean, among 34 of which it has been possible to iden-

tify several marine regions showing significant diurnal heating of more than

r,r
1°C and involving surface areas of dimensions ranging from 10 to 1 QO km. The

frequency of these events is therefore of consequence in the Mediterranean.

Diurnal heating seems much weaker in the near Atlantic and the North Sea

where the authors have been able to observe only one scene possessing this-

phenomenon. Because regions such as the Mediterranean can be strongly affec-

ted by diurnal heating, the measurement of the sea surface temperature field

î obtained by daytime satellite observation may be without any oceanographic

significance and should be restricted to night or early-morning when the sur-

face layer is more homogeneous. k"

6 - CONCLUSIONS

In this study, photographic products and numerical data provided by the

HCMM experiment have been systematically utilized. Two types of conclusions
v	 ,
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can be drawn from this. The first bears on the adequacy of the experiment

itself and the pictorial documents provided for the airs of the research
observation of the sea surface temperature field. The other conclusions put
in evidence some results of oceanographic interest.

The comparison of the radiometric performances (product of ground re-

solution by resolution in temperature, NEAT) between the HCMR and the VHRR

i	 indicates a gain by a factor of 7 in favor of the HCMR, a gain similar to
i

that of the AVHRR which makes them comparable for selected operations. This

gain is decisive and essential for observation of mesoscale structures (10-

100 km) in the ocean. Evidence has been provided as much by the study of the

spatial spectrum of temperature variance density as by certain original obser-

vations which can be found in section 4 (large scale eddies in the western

Mediterranean). j

The photographic products provided by NASA, already geometrically correc-

ted and enhanced in the sea surface temperature range, greatly facilitated the

interpretation of the data obtained. It avoided heavy computer treatment
t,

that is necessary with certain meteorological satellites (data of the VHRR and
k

AVHRR)_. It also greatly improved the Amount and quality of possible interpre-
`!

tations through an economy of means and b 	 facilitating a more rapid and widerg	 Y	 Y	 n_ g	P

j	 dissemination to the community of involved and interested oceanographers. A

similar treatment of AVHRR data, furnishing operational items of similar pho-

tographic products corresponding to the needs of oceanographers, would cer-

tainly enable the use of satellite data complementary to in-situ measurements,

to progress more rapidly.

Even though the HCMR and AVHRR have potentially comparable radiometric

performances, the AVHRR of TIROS-N and NOAH-6 has certain advantages : increa-

sed repetitivity that is essential for eliminating the effect of cloud covera-

ge, correction of atmospheric emission by means of a channel centered at 3.7um,

and operational character of the experiment until the mid 80's.

The analysis of the HCMR photographic products has permitted conclusions

to be drawn on several aspects of oceanography

- the influence of the residual current, as it passes through the Dover Strait,
on the thermal effluent of the Rhine, and the rather broad offshore diffusion

of the effluent associated with winds from the northeast or west which respec-

tively retard or accelerate the residual current,
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- the analysis of images obtained revealing the presence of cold water in the

summer along the edge of the continental, shelf to the west of Britanny firmly

supporting the hypothesis of an upwelling mechanism produced by the action of

tidal currents over the slope of the shelf break,

- the detection of large scale eddy structures '(100 km) in the western Medi-

terranean around 6 E - 38°N during the summeL, probably due to a phenomenon

of instability of the baroclinic - barotropic type,

- the frequent appearance of significant diurnal surface heating (several °C)

linked to weak winds in the Mediterranean, that should lead one to use with

caution the daytime observations of the summer season.

The results presented here reflect upon a fairly restricted period

May 1978 to May 1979. It is evident that in the coming years, the infrared
images of the AVHRR satellite will continue to be of broad interest to the

oceanographic community by offering systematic and repetitive observations

and by, for example, filtering cloud cover for the study of temporal changes

in ocean-atmosphere phenomena.

e.

i

x

E

4f

F

l



c-28

ACKNOWLEDGMENTS

The authors are greatly indebted to NASA for providing them HCMM data

as a support to HCMM Investigation No 15. Thanks to V.L. Vasek for her aid

in the translation. Support for this work has been obtained from the follo-

wing French agencies : CNRS (Centre National de la Recherche Scientifique)

and CNES (Centre National d'Etudes Spatiales).

i



- REFERENCES -	 ORIGINAL PAGE IS
o o m o m e n n m	OF POOR QUALITY

DICKSON R.R., GURBUTT P.A., PILLAI V.N., 1980 :
Satellite evidence of enhanced upwelling along the european

continental slope. J. Phys. Oceanogr., 10, 813-819.

DIETRICH G., 1950	 Die anomale jarheschankung der warmeihalts in

Englishen kanal, the ursachen and auswirkungen.Dtsch.Hydrogr.Z.

FEARNHEAD P.G., 1975 : On the formation of fronts by tidal mixing
around the British Isles. Deep-Sea Res., 22, 311-321.

GARZOLI S., 1979 Contribution A 1 1 6tude de 1a formation et de

1 1 6volution du front thermique sur le plateau continental

breton. Ann. Hydrogr., 5eme s6rie, vol. 7, 2, 5-25.

HEAPS, N.S., 1980	 A mechanism for local upwelling along the

European continental slope. Oceanol. Acta, 3, 449-454.

KILLWORTH P.D.,.1478	 Coastal upwelling and kelvin waves with small

longshore topography. J. Phys. Oceanogr., 8, 188 -205.

LACOMBE H., TCHERNIA P., 1972	 Caracteres hydrologiques et circulation"

des eaur. en M6diterran6e. Dans "The Mediterranean Sea,

Stanley D.J., Ed., Dowden, Hutchinson et Ross,Stroudsber,
26-36.

LA VIOLETTE, P.E., PETEHERYCH S., GOWER J.F.R., 1980 :
Oceanographic implications of features in NOAA satellite

visible imagery. Boundary-Layer Meteorol., 18, 159-175•

LEGECKIS R., 1978	 A survey of worldwide sea surface temperature

fronts detected by environmental satellite. J. Geophys.

Res., 83, 4501--4522.

MADELAIN F., 1967 : Etude hydrologique au large de la p6ninsule

ib6rique. Cahiers Oc6anogr., 19 (2), 125-136.

MAZE M.R., 1980 : Formation d'ondes internes stationnaires sur le

talus continental. Application au Golfe de Gascogne. Ann.

Hydrogr., n o 7541 45-58•

Mc CLAIN E.P., 1980
	

Passive radiometry of the ocean from space -an
	•.

o verwiew . Boundary-Layer Meteorol,, 18, 7-24.
jj

Me CLAN E.P., STRONG A.E., 1969
	

Dark patches in satellite viewed

sunglint areas. Montl. Weather Rev., 97, 875-883•	 y

s



f

ORIGINAL PAGE PS
OF POOR QUALITY

MILLOT C., 1979	 Wind induced upwelling in the Gulf of Lion.
Oceanol. Acta, 2, 261-274,

NIHOUL J.C.J., 1980	 Residual circulation, long waves and mesoscale

eddies in the North Sea. Oceanol. Acta, 3, 309-316..

NIHOUL J.C.J., RONDAY F.C., 1975	 The influence of the tidal stress

on the residual circulation. Tellus, 29, 484-490.	 j

PINGREE R.D., 1975	 The advance and retreat of the thermocline
on the continental shelf. J. Mar. Ass. U.K., 55, 965 -974•

PINGREE R.D., 1979	 Baroclinic eddies bordering the Celtic Sea in

late Summer. J. Mar. Biol. Ass. U.K., 59, 689-698.

PINGREE R.D., GRIFFITHS D.K., 1978 : Tidal fronts on the shelf seas
around the British Isles. J. Geophys. Res., 83, 4615-4622.

PINGREE R.D., GRIFFITHS D.K., 1980 : Currents driven by a steady
uniform wind stress on the shelf seas around the British

Isles. Oceanol. Acta, 3, 227-236.

SIMPSON J.H., ALLEN C.M., MORRIS H.C.G., 1978 :
Fronts on the continental shelf. J.Geophys. Res. 83 , 4607-4614.

SIMPSON J.H., HUNTER J.R., 1974
Fronts in the Irish Sea. Nature, London, 1250, 404-406.

WALD L., NIHOUS G., 1980 : Ligurian Sea	 Annual variation of the
sea surface thermal structure as detected by satellite
NOAA 5. Oceanol. Acta, 3, 465-469.

CREPO.N M., WALD L., MONGET J.M., 1982 : Low frequency waves in the
ligurian Sea during December 77. J. Geophys. Res., 87,

595-boo.
MMMMMMs

:



IL

LEGEND OF ILLUSTRATIONS	
ORIGINAL PAGE M

•r^rrrrrrrrrrrrrrrrrrrr OF POOR QUALITY

Satellite observations in the thermal infrared of the Say	 „.

of Biscay region around 45°N and 4 0 30 1 W (a) by the VHRR, 10 May

1978 at $h TU and (b) by the 1101R, It May 197 $ at 2h TU. Each grey

shade corresponds to (a) 0,1°C and (b) 0,3°C. In the center of

these images one notes the presence of an eddy approximating 50 km

in diameter .4 basely visible on the VHRR image due tho instrumental

noise get clearly distinguishable on the HCMR image..

2. Density spectrum of variance of the surface temperature field

for the same region (64 x 64 km 2 ) in the Bay of Biscay obtained

from HCMR and VHRR data. The direction of analysis corresponds to

that of the satellite track.

3. - Satellite observations in the thermal infrared of the Bay of

Biscay 17 July 1979 (a) by the HCMR at 12h 45 TU and (b) by the
AVHRR at 15h15 TU. Each grey stade corresponds to (a) 0,2°C and

(b) 0,1°C. One notice the presence of a large eddy structure appro -

ximately 300 km wide.

4. - Density spectrum of variance of the surface temperature field

for the same region (64 x 64 km2 ) in the Bay of Biscay obtained

respectively from HCMR and AVHRR data. The direction bf analysis

corresponds to that of the satellite track.

5. - French oceanic regions : southern portion of the north sea

(zone 1), the British Channel, the Celtic sea, and Bay of Biscay

(zone 2), the north-western mediterranean (zone 3).

6. - HCMM observations of the thermal effluent of the Rhine-Meuse

Escaut system during the summer season. Significant offshose d i f-

fusion on images (a), (b), (e) and (f) (A-A 0022-12470,

A-A 0034-13110, A-A 0054-12470 and A-A 0055-02030), effluent

abutting the coast on images (c) and (d) (A-A 0039- 13050 and

A-A 0044-12570)•
r

7. - HCMR observation A-A 0263-01320 of thermal effluent of the

Rhine-Meuse-Escaut system during the winter reason (14 January 1979

at 2h TU). The southern position of the effluent flows toward the

southecast forming a diffuse, wedge-shaped plume along the_belgium

n.na_cf	 Lv
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Residual circulation in the southern position of the north
sea, according to NIHOUL and RONAAY (1975). Stream lanes in

10 4 m'3/ s 1

9. - Landsat image of 12 June 1975 showing the transport of
sediment (clear shades) from the Meuse-Escaut system toward the
southwest along the belgian coast.

10.- Value of the SIMPSON-HUNTER parameter, S, in the southern

portion of the North Sea ; (a) according to the model. of PINGREE
and GRIFFITHS, (1978), and (b) according to the model of NIHOUL

(1980). The S values greater than 2 correspond to a stratifield
medium; value less than 1, to a homogeneous medium; and values

of 1.5 to a system in transition where thermal fronts can be

encountered.

11.	 dean wind speed and direction on the surface in the southern

position of the North Sea for the periods of (a) 8-31 May 1978,

and (b) 1-20 June 1978.

12.a - HCMM observation A-A 0121-13260 in the thermal infrared

channel for 25 August 1978 at 13h26 TU. Tidal fronts at the

entrance of the Manche. Relatively cold water at -the shelf break

and offshore of Brittany.

12.b - HCMM observation A-A 0142-13190 in the thermal infrared

channel for 15 September 1978 at 13h19 TU. Following a period of
weak tidal coefficients, the band of cold water at shelf break and

offshore Brittany is less distinct. 	 -,

12.-c - HCMM observation A-A 0148-13320 in the thermal infrared

channel for 21 September 1973 at 131131 TU. Tidal fronts at the

entrance of the Manche, near Cape of Cornwalls, and between Ireland

and England. Relatively cold water at the shelf break offshore of

Brittany, Upwelling along the coast of Spain.

12.d	 HCMM observation A-A 0185-13180 in the thermal infrared
channel for 28 October 1978 at 13h18 TU. Cooling on the continental
shelf in the autumn season. Note the characteristic structure cor-

responding to turbulent offshore diffusion of cold coastal water.
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12.e - HCMM observation A-A 0265-02090 in the thermal infrared

channel for 14 January 1979 at 2h 09 TU. Relatively warm water at

the limit of the continental shelf southeast of Brittany, in the

Bay of Biscay along the coast of Spain.

12.f	 HCMM observation A-A 0307-01530 in the thermal infrared

channel for 21 February 1979 at 1h53  TU. Note the band of cold

water along the french coast.

13.- Tidal fronts in the summer season at the entrance of the
a	 Manche and in the Celtic Sea as predicted by the models of (a)

FEARNHEAD (1975) and (b) PINGREE and GRIFFITHS (1918).

14.- Evolution of the tidal front position at the entrance of

the British Channel during the period of May through September

1978, deduced by HCMR observations.

15.a - HCMM observation A-A 0076-01590 in the thermal infrared

channel for 11 ,July 1978 at 1h59TU. North Balearic front. Large

scale eddies offshore of the african coast.

15,b - EICMM observation A-A 0081-01510 in the thermal infrared

channel for 16 July 1979 at 1h51 TU. Apart from the large scale

eddies offshore of the Algerian coast, note the irregularity of

the surface temperature field between Baleares and Sardinia.

15.c - HCMM observation A-A 0086-01450 in the thermal infrared

channel for 21 July 1978 at 1 h 4 5 TU. Eddies forming along the

Algerian coast and expanding toward the coast.

15.d	 HCNIM observation A-A 0087-02020 in the thermal infrared

channel for 22 July 1978 at 2h 02TU. Coastal upwelling in the

Gulf of Lion.

15.e - HCMM observation A-A 0108-01510 in the thermal infrared

channel for 12 August 1978 at 2h 02 TU. Coastal upwelling in the 	 =f

Gulf of Lion. Liguro-Provengal Current. 	 ,E
y
4

16.	 Summer surface circulation in the Mediterranean, according

to LACOMBE and TCHERNTA (1972).
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17 .	Seasonal positions of the North Balearic front during

the summer of 1078,

18.- LANDSAT image of September 1976. Upwellings in the Gulf
of Lion, Coastal sediments entrained offshore and very much to

the south in the case of the upwelling produced at the mouth of

the Rhone.

19.	 Diagram illustrating the situation on 12 August 1978
(Fig.15.0. After driving various masses of cold upwelling ligurian

water the progression of the current is interrupted by a later 	 n
upwelling released near the Cape of Sicily.

20.- Diurnal heating in the western Mediterranean (a) HCMM obser-
vation A-A 0038-12440 in the visible channel on 3 June 1978 at
12h44 TU. Note bright patches (high reflectance) to the coast and
west of Corsica and Sardinia. (b) idem (a), but in the thermal

infrared channel.. Note the warmer water to the east and west of

Corsica and Sardinia. (c) Day/night temperature difference from

HCMM observations obtained on 3 June 1978 at 1h50 TU (night)

(A-A 0038-0 1 500 ) and 12h44 TU (day), The darker shades correspond

to cooler diurnal temperatures. (d) Meteorological situation on

3 Jane 1078 at 12h TU.

,

21.-- Diurnal heating in the North Sea. (a) HCMM observation.

A-A 0034-13190 in the thermal infrared channel, on 30 May 1978 at
13h 10 TU. Note the warm patch east of Scotland in the center of

the dark (cold) field. (b) 11CMM observation A-A 0035-02280 in

the thermal infrared channel on 31 May 1978 at 2h30 TU. The warm.

patch has disappeared during the night. (c) Meteorological situa-

tion on 30 May 1978 at 12 h T.U.

-••
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Table 1 - Performances of the different radiometers on board the

satellites
NCDT (300 K Ground Resolution Repetitivity,

VHRR/NOAH	 ..... 0.5 to 1K 1 Km 2/day

/NOAA-6
TIROS-Nt1V1iRR	 , .. , . 0.1 1 4/day

1101R/I1001	 ....... 0.3 0.$ 1/day
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1. - Satellite observations in the thermal infrared of the flay

of Biscay region around 45°V and 4°30'W (a) by the VIIItR, 10 May

1978 at 811 TU and ( b ) by the HOW, 11 %lay 1979 at 211 TU . Each grey

shade correspond~ to (a) 0,1°C and (b) 0,3°C. In the center of

these ima--es one notes the Presence of an eddy approximating 50 k-+

in diameter, basely visible on the NAIRR imr+-c due tho instrumental
noise get clearly distinguishable on the IICMR image.
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2.	 Density spectrum of variance of the surface temperature field

for the same region (64 x 64 km 2 ) in the Bay of Biscay obtained

from HCMR and VIIRR data. The direction of analysis corresponds to
that of the satellite track.
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1	 3. - Satellite observations in tho thermal infrared of the Bay of

Biscay 17 July 1 079 (a) by the HCMR at 12h45  TU and (b) by the

AVHRR at 1$h 15 TU. Each grey stade corresponds to (a) 0, °C and

(b) O MC. One nutice the presence of a large eddy structure appro-

ximately 300 km wide.
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4.	 -	 Density spectrum of variance of the surface temperature field

for the same region ( 64 x 64 km2) in the Bay of Biscay obtained

respectively from 11CNIR and AVIIRR data. The direction of analysis
corresponds to that of the sa;,el.l.iie track.
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5. - (zone 3)	 The north-western mediterranean.



(b) : 30 may 78, 13h11 TU(a) : 18 may 78, 2h30 TU
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6. (a) , (b) - HC ,1M observations A-A 0022-12470 (a) and A-A 0034-13110 (b) of

the thermal effluent of the Rhine-Meuse-Escaut system during the suimier sea-

son. sicjzdfj=r.t offshore diffusion.
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lc) : 4 june 78, 13h05 TU (d) : 9 June 78, 1x67 l.,
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6. (c) , (d) - HL'%TA cbservations A-A 0039-13050 (c) and A-A 0044-12570 (d) of

the thermal effluent of the Rhine-Meuse-Escaut system during the summer sea-

son. Effluent abutting the coast.
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(e) : 19 june 78, 12h47 TU
	

(f) 20 June 78, 2403 TU

6. (e) , (f) - HC MM observations A-A 0054-12470 (e) and A-A 0055-02030 (f) of

the thermal effluent of the Rhine-Meuse-Escaut system during the summer sea-

son. Significant offshore diffusion.
I



ORIGINAL PAGE
Rl ACK AND WHITE PHOTOGRAPH

7 • - IICMR observation A-A 0263-01320 of thermal effluent of the

Rhine-Meuse-Esc.aut system during the winter reason (14 Januar y 1979

at ^-h TU). The souL-hcrn position of the effluent flows toward the

soctthe%%ast forming a diffuse, wedge-shaped plume alone the heig-ium

coast; .
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9. - Landsat image of 12 June 1975 showing the transport of

sediment (clear shades) from the Meuse-Escau t system toward the

southwest alon g; the helgian coast..
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10.-	 Value of the SIMPSON- 11UNTCR parameter, 	 S, in the southern

portion of the North Sea	 .	 (a)	 accof ding to the mot el. of PING1tCG

and CRIF 17 IT11S (1978), and (b) according to the model o f NIIIOUL

(1980).	 The S values greater than 2 correspond to a stratif.icld

medium; value less than 1', to a homogeneous medium; and values

of 1 . $ to a sys tem in transition where thermal fronts can be

encountered .
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11.- Mean wind speed and direction on the surface in the southern

position of the North Sea for the periods of (a) 8-31 May 1978,
and (b) 1-20 June 1978.

{



12.a - IICMM observation A-A 0121-13260 in the thermal infrared

channel for 25 August 1078 at 13h26 TU. Tidal fronts at the

.3ntrance of the Manche. Relatively cold water at the shelf break

and offshore of Drittanv.

ORIGINAL PACE
BLACK AND WHITE PHOTOGRAPH



12.b - 11CMM observation A-A 0112-13100 in the thermal infrared

channel for 15 September 1978 at 13h 10 TU. Following a peric.d (if

weak tidal coefficients, the band of cold water at shelf break and

offshore Brittany is less distinct.
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w
C7 Q 12.c	 -	 HCMM observation A-A 0113-13J20	 in the thermal	 infrared
Q a
C' channel.	 for 21	 September 1978 at	 13h31	 TU.	 Tidal	 fronts at	 the

L o
cz

entrance of the Manche, near Cape of Cornwalls,	 and between Ireland

a. and En.-land. Relatively cold water at the shelf break offshore: of

OO Bnittanv. .	 Uuwelline alona the coast of Soap
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12 A - I1C^1^1 observation A-A 0185-13180 in the thermal infrared

channel for 28 October 1978 at 131h18 TU. Cooling on the continental

shelf in the autumn season. Vote the characteristic structure cor-

respondin- to turbulent offshore diffusion of cold coastal water.



12.e - IICMM observation A-A 0265-02090 in the thermal infrared

channel for 14 January 1979 at 2h09 TU. Relatively warm water at

the limit of the continental shelf southeast of Brittany, in the

Bay of Biscay alon-- the coast of Spain.
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12.f - II01M observation A-A 0307-01530 in the thermal infrared

channel for 21 February 1479 at 1 h S3 T11. Note the band of cold

water along the french coast.
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a
13.- Tidal fronts in the summer season at the entrance of the

Manche and in the Celtic Sea as predicted by the models of (a)

FEARNHEAD (1975) and (b) PINGREE and GRIFFITHS (197$).	
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14.- Evolution of the tidal f ront position at the entvance of-
the British Channel during the period of May through September

Y?

1978, deduced by 11CIN1R observations





15.b - 1101~1 observation A-A 0081-01510 in the thermal infrared

channel for 16 July 1978 at. I h51 TIJ. Apart from the lame scale

eddies offshore of the Algerian coat , note the irregularity of

the surface temperature fiend between Baleares and Sardinia.

4
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15.c - 1101M observation A-A 0096-01450 in the thermal infrared

channel for 21 July 1978 at 1 h 4 5 TU. Eddies forming along the

Algerian coast and expanding toward the coast.
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15.d - IIC'MM observation A-A 0087 -020:0 in the thermal infr.ir:d

channel for 22 July 1978 at 2 h02 TU. Coastal upwelling in

Gulf of Lion.
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15-c  - IICMM observation A-A 0108-01 510 ic y the thermal infrared
channel for 12 August 1978 at 2h 02 TU. Coastal upwelling in the

Gulf of Lion. Liguro-Provencal Current.
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16.	 Summer surface circulation in the Mediterranean, according

to LACOMBE and TCHERNTA (1972) .
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17._ Seasonal positions of the North Balearic front during

+.tia dimmer of 1978.
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18.- LANDSA f' image of Septeinher 1976.  Upwellings in the Gulf

of Lion. Coastal sediments entrained offshore and very much to

the south in the case of the tipwelling, produced at the mouth of

the Rhone.
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19.- Diagram illustrating the situation on 12 August 1978

(Fig.1$.c). Afters driving various masses of cold upwelling liguria'
water the prngression of the current is interrupted by a later

upwelling released near the Cape of Sicily.
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war finer wat er to t ht , east. and w.-.t of Corsica and Sar-
dinia.



20. - (c)	 Day/Night temperature diff: • rence from HCMM observations

obtained on 3 June 1078 at 1 I1. 50 Tit (night) (A-A 0038-

01 500) and 12 li . 4.1 TU (day). The darker shades corres-

pond to cooler diurnal temperatures.
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20. - (d) : Meteorological situation on 3 Jane 1978 at 12 H TU.
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ABSTRACT

Satellite infrared data have been used to investigate the mesoscale varin'-aility of the SST (sea surface
temperature) field. A statistical analysis of the SST field has been performed by means of the structure
function, Results give the equivalent power-law exponent n of the srultial variance density spectrum
E(k) — k—'. The exponent to was found to vary from 1.5 to 2 .3 with a mean value of 1,8 in the range of
scales 3-100 km which Is in agreement with previous one-dimensional analysis from shipborne and air.
borne measurements, These observed values of n are discussed and compared with the values predicted
by ?urbulence theories.

1. Introduction

Present-day satellite infrared radiometers permit
the determination of the mesoscale SST (sea surface
temperature) field on an operational basis thanks to
their improved radiometric performances, which
typically are of a few tenths of °C for a nadir resolu-
tion of l km-. This gives a potential tool for a sys-
tematic investigation of mesoscale thermal features
such as thermal fronts, eddies and plurnes which
have been already observed and studied by means of
Ili; pictures or derived SST maps. In addition to these
observable features, a part of the SST field must
be considered as random and containing some other
information which can only be retrieved by a statis -

tical analysis—e.g., the spectral density of variance.
Attempts to compute the spatial spectrum of the

SST have previously been made by McLeish (1970),
Saunders (1972a) and Holladay and O'Brien (1975),
from airborne infrared measurements along an air-
craft track. Examples of mesoscale spectra have also
been determined from shipborne measurements
(Voorhis and Perkins, 1966; Fieux et al., 1978),
Satellite observations give a unique opportunity to
investigate the mesoscale variability of the SST field,
down to scales of l km, at any given time, with a
frequency which is limited only by the cloud cover.
In the present study, we intend to demonstrate the
feasability of using satellite data to obtain statistical
parameters of the mesoscale SST field.

2. Statistical anal ysis of the SST Held

Studies of the variability of the temperature (or
any scalar) field usually make extensive use of spec.

l	 0022.3670/811060864.07S05.75
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tral methods, i.e., the computation of the density
spectrum of the scalar varianct; by means of Fourier
transformation orautocorrelation function, to obtain
a typical power law which characterizes the vari-
ability of the temperature field and which can be
related to turbulence theories. In the present study,
the structure function has been employed in order to
more accurately determine: the power-law exponent
in the presence of the large noise level found in
satellite infrared data.

a. Structure fiunct on

If the SST field is considered as being a.n.isotropic
random process with homogeneous increments (at
least locally), the structure function can be com-
puted as

DTT(h) = ^A.[T(x + If) — T(x))'-,
where T(x) is the temperature at x, h the spatial
scp le, and an overbar denotes an average operator.
I'n tile following, k denotes the wavenumber of the
form k = h -1.

The main advantage of the structure function D(h )
when compared with the spectrum of the variance
density E(k) or with the autocorrelation function
B(h) is that its experimental determination is more
accurate and much less affected by random varia-
tions because only increments are taken into account
(Panchev, 1971). An example is given in Fig. I where
both ET(k) and D TT(h) have been computed and are
shown for the same sample of the SST field, meas-
ured by the AVHRR (Advanced Very High-Resolu-
tion Radiometer) experiment on board the TIROS-N
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Fla. 1. Comparison between the (a) density of temperature

variance Er(k) and (b) the structure function Drr(h), computed
from AYHRR data, 17 July 1979, over the ;Bay of Biscay
(45.30'N, 4°30'W). The dashed line indicat*5 the radiometer
noise level.

satellite. This example shows clearly that the struc-
ture function is more regular than the spectrum,
allowing an easier determination of the characteristic
parameters, e.g., the povier- law exponent given by
the slope when using logarithmic coordinates.

b. Interpretation of the structure function

of each other, D(h) may thus be related to E(k)
(Panchev, 1971):

D(h) - J W (1 cos21rth)X(k )dk,	 (3)
o

for a one-dimensional analysis.
In the inertial range, the spectrum is usually char-

acterized by
E(k) — k""•	 (4)

From (3), it can be shown that the structure function
may then be written as

D(h) — It 	 (S)
wheryi

if - P + 1	 (6)

when n > I in order to respect the convergence of
the integral (3) at small scales. The exponentn of the
spectral density thus can be alternately determined
from the structure function using (6), if the field under
study is homogeneous.

Two kinds of error may affect the satellite-based
determination of the SST field—instrumental data
noise and atmospheric effects.

Although the structure function has the advantage
of being much more regular than the spectrum, the
study of the structure function and of its shape is
generally limited by the noise level at the smallest
scales. This effect is illustrated in Fig, lb, where
the observed slope giving the power law exponent
of the structure function decreases from -•- l at large
scales to zero at the smallest scales,

In the particular case of random fluctuations due
to an instrumental Nvhite noise, both the spectral
density and the structure function reduce to con-
stants E„ and D,,, with E„ = o*„/k,,, Dn = an ► where
tr„ is the noise variance and kp the upper wavenum-
ber limit of the spectral analysis. This noise con-
stant adds to the actual structure function of the
SST, which restricts the exponent determination at
the largest scales where the noise constant may be
neglected [D„ <4 D(h)]. When necessary, a suitable
spatial smoothing may reduce the noise, with a cor-
responding degradation of the ground resolution.

Smoothing also introduces a bias in the determina-
tion of the structure function. If Dp(h) is the struc-
ture function of the smopthed .field, and Q is the
convolution square of the smoothing function F it
may be shown (Matheron, 1970), that

C

	

Dy(h) = D Q — A,	 (7)

where * is the convolution operator and A is a con-
stant, i.e.,

A
 = J

x

	

D(u)Q(u) du.	(8)	 ib
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The structure function D(h) represents the statis-
tical influence of a point upon other points at distance
h, For a homogeneous and isotropic random proc-
ess, D(h) and B(h) are linked by

D(h) _ {B(0) — B(h)]. 	 (2)

As B(h) and E(k) are the Fourier transformations

F`
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When F's the spatial average in a square of side n,
A - D(a)13 for p . 1. As with the noise constant,
the influence of the bias introduced by smoothing
rapidly decreases when It increases, and is less than
10%a at It > 3a. Above this scale, the influence of
smoothing can then be neglected [A 4 D(h)].

The atmospheric transmittance T, in the 10.5-12.S
µm channel generally used on satellites, mainly de-
pends on the atmospheric water vapor content and
typically varies between 0.9 and 0.3 (Kneizys et al, ,
1980). The radiomettic temperature To measured
from space must thus be expressed as

To - TTty + ( 1	 7) Tnt	 (9)
where To, is the water temperature and T„ an ap-
propriate mean air temperature. From (9) it is ob-
vious that the structure function computed from
satellite data depends not only on the variations of
Tie•, but also of T„ and z. Atmospheric variability
generally is assumed to be at larger scales than
oceanic variability, so that atmospheric fluctuations
could be neglected at scales < 100 km. Neverthe-
less, the satellite determination of the structure func-
tion may on some occasions be partially contami-
nated by air temperature and water vapor variations,
but it is very unlikely that this would occur over
the open sea where it can be assumed that atmos-
pheric parameters are stable within the scale range,
A further study involving satellite and surface meas-
urements along the same track would have been
necessary in order to resolve this problem. Assum-
ing a constant atmosphere,

Tv(.r	 It) - Tn(x)	 r[T I ,,(,r + h) - T,e^(41 (10)

DTprnao = T`-OD r 11 r„( h ),	 0 1)
where the influence of the atmosphere affects only
the determination of the structure function ampli-
tude, and not the determination of the poweMaw
exponentp. Because the atmospheric transmittance
cannot be 'accurately determined over the oceans,
only one parameter of the structure function can be
determined from a. satellite; this is the power-law
exponent p obtained from the slope of the curve in a
log-log plot.

The hypothesis of the homogeneity of the random
field must be verified, otherwise erroneous detei-
minations of the exponent could be obtained. For
example, a frontal zone would have a spectrum ET(k)

k •2 , but DTr(h) -- h = , Since these exponents are
close to the physically expected values, it is neces-
sary to carefully check the homogeneity of the SST
field and to remove the existing trend if necessary,
When the mean horizontal SST gradient 61T/8,v is
small, it is sufficient to take

(8T/8x)='h= 4 D(h)	 (12)

over the-study range of scales; otherwise, the stand-
ard procedures must be applied to detrend the data.

3
TArt.e 1. Radiometer performances of the satellite

experiments used in this .study,

Ground resolution	 Noise equivalent
Satellite	 at nadir	 temperature

experiment	 (km')	 difference ('C)

VHRR/NOAA•3	 1	 018
HCNIR/HCti1M	 0.23	 0,3
AVHRRiTIROS,N	 1	 011

3, kesults
The results of two independent but complementary

studies are hereby presented. The first study deals
with data obtained from the VHRR (Very High-Res-
olution Radiometer) on board NOAA-5, and was
limited to the range of scales 40-100 km because of
the large level of instrumental noise. The improved
radiometric performances of the HCMM (Heat
Capacity Mapping Mission) data,—i.e., a nadir res.
olution of 0.5 km and NEDT = 0.3 K (see Table 1)
--allowed us to extend the study down to scales of
3 km. The visible channel was used to select cloud-
free study areas in the northeastern Atlantic Ocean
and the Mediterranean Sea, Only areas in which no
large-scale specific features were viewed on fully
enhanced images were considered homogeneous and
used in this study.

Locations are shown in Fig. 2 and dates are given
in Table 2. At each location, the one-dimensional
structure functions were computed in four directions,
0 - 0 (across the satellite track, i.e., approximately
east to west), 1r/4, it/2 (along the satellite track)
and 3-,r/4.

Examples of the computed structure functions are
given in Fig. 3 for.VHRR/NOAA-5 and in Fig. 4 for
HCMM. The re p/ults generally show that the SST
field is not exactly isotropic. Nevertheless, the struc-
ture functions, if not equal, are roughly parallel on
a log-log plot, so that the anisotropy is confined
in the amplitude A (0), i.e.,

Drr(0, It) = AMP	 (13)

but the slope p remains very nearly isotropic,
Values of p from 0 . 5 to 1,3 have been observed in

this study with an estimated accuracy of -r0,1. Using
VHRR/NOAA-5 data, 44 estimations ofp were made
in the range of scales 40-100 km, and HCMbt data
were used to make 37 estimations in the range of
scales 3-30 km. The corresponding histograms of
the observed p are given in Figs, 5a and 5b. The
most frequent values are 0,9-1.0 and the mean val-
ues are 0.8 (3-30 km) and 0 . 9 (40-100 km) with a
standard deviation of -0.2. About 90% of the ob-
served values are distributed between 0.5 and 1.1.
The results correspond to a mean value of the power-
law exponent of the spectrum n of 1.8 in the wave-
number range-0,01-0.3 km-1.
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Fla. 2, Geographical locations of the different study areas for HC`Ibt data (triangles) and VHRR data (circles),

The amplitude of the structure functions varied
from 10' 2 to 10'' (°C) at h - 40 km. Even after
spatial smoothing, it was noted that the noise level
tended to slightly reduce the estimated values of p
because the structure function of the noise is a con-
stant (fit a 0), This is particularly true when the
noise level (5 x 10-3 (°C)= for the HCMM data, 3
x 10 (°C) =' for the VHRR/NOAA-S after smooth-
ings) is of the same order as the structure function
(see Fig. 1). Whenever possible, the estimates ofp
were corrected for this effect, but the effect could
partly explain the lowest values of p,

On the other hand, a mean horizontal thermal
gradient would give D(h) - -It = , The areas studied
were carefully selected to avoid the existence of
thermal gradients which would increase the estimate
of p toward larger values; nevertheless some in-
fluence on the data could remain. Both of these ef-
fects, noise level and horizontal thermal gradients,
could partly but not totally explain the spread of the
results around the mean value, between 0.5 and 1,3,
which remains signiflcraa. There is no evidence of
correlation between the estimates of 'p and the cor-
responding geographical locations or seasons but,
nevertheless, we would guess that it is probably
necessary to involve physical processes in the ex-
planation of the observed p values.

4. Discussion

Using (6) and'the results from this structure func-
tion analysis, we obtain a spectral density power
exponent with a range of 1,5 < n < 2.3. This agrees
fairly well with the previous results reported by sev-
eral authors either from shipborne measurements

,,

(Fieux tit ti/., 1978), or from airborne measurements
(Saunders, 1972x), for the one-dimensional tempera-
ture Spectra (see Table 3), Hollad-xay' ano t3'Brica
(1975) attempted to reconstruct the two-dimensional
SST field from the tracks of the aircraft survey and
found n - 3 for the isotropic: part of the two-dimen-

TABLE 2, Summary of the different areas studied.

Experi.
Area ))ate Location ment

Eastern 19 Mar 1978 33'00'N, 28.00 1 E VHRR
Mediterranean 03 May 1978 34900'N, 15000'E VHRR
S 08 May 1978 33 900 1 N, 29°00'E VHRR

14 May 1978 33030'N, 28930'E VHRR
17 May 1978 33030% 26100 1 E VHRR

Western 29 Sep 1977 41000'N, 04000'E VHRR
Mediterranean 29 May 1978 39°05N, 071 15'E HCMM
Sea 29 May 1978 40'05'N, 06135 1 1 HCMM

11 Jul 1978 38055 1 N, 040301 E HCMM
1"I Jul 1978 41055 1N, 06055 1 E HCMM
26 Jul 1978 39"40'N, 060 13'1 HCMh#
28 Jul 1978 380 15 1N, 03943 1 E HCMM
28 Jul 1978 38.35 1 N, 05.OS'E HCMM
28 Jul 1978 37040N. 076251 E HCMM
14 Aug 1978 38030'N, 03°00'E VHRR
14 Sep 1978 40025 1 N, 06130 1 E HCMM
14 Sep 1978 40035'N, 11'VE . HCMM
14 Sep 1978 41 040'N, 06945 1 E HCMM

Northeastern 11 Sep 1977 46'00'N, 06.30'W VHRR
.Atlantic Ocean 14 Sep 1977 45000N, 07'00'W VHRR

06 Jan 1978 461301 N, 09100 1 W VHRR
10 May 1978 46'00'N, 08000'W VHRR
11 May 1978 45'15%04'40'W HCMM
II May 1978 3r35'N, ll'45'W HCMM
18 Jun 1978 46100'N, 08.35'W HCMM
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physical processes are of importance In the area
studied., the 3-100 km range_ is not an Inertial one.
In fact, we cannot specifically determiner whether
or not the 3--100 Van range is an inertial one from
our observations: by looking at Fig, 3 and d, one
can notice that the structure functions do not ex-
hibit any peak characterizing a very energetic scale
In the range we deal with, but this may only mean
that the energy inputs are from outside the studied
range.

In the range of scales 3-100 km, horizontal scales
are lager than vertical ones, and the observed vari-
ability may be considered a quasi two-dimensional
process. Therefore the observations can be related
to the n values predicted by the theories of two-
dimensionoi m-thulence (Kraichnan, 1971) and of

sCALit in km

Fla. 2, Example of structure functions computed from v_HRR data,

s!onal spectrum, which probably is an overestima-
tion of the value due to the smoothing of high wave=
numbers produced by the SST mapping procedure,

The experimental values, 1.5 < n < 2.3, must be
compared with those given by turbulence theories.
All of the theories assume the existence of an in=
ertial range, i.e., that the considered scales are far
from the energy sink and source scales. it is not
evident that the range of scales 3— 100 km in the
ocean is an inertial one. The scales of input and
sink of energy remain puzzling [see a review in
Rhines (1977) or Woods (1977)), The final energy dis-
sipation occurs at molecular scales but larger scales
play a role via internal and surface wave breaking.
These waves may also generate motion at larger
scales via non linear processes (Hasselman, 1971).
The interactions between internal waves and meso
scale eddies are uncertain. Muller (1974) predicts
that internal waves gain energy from eddies whileV
the critical-layer absorption theory of Ruddick (1980) ,+
suggests the opposite. The typical scales of internal
waves are to the lower limit of the studied range
and interactions may occur.

Input	 kinetic	 related to wind is found atof	 energy
W
a,,	

'05

scales of the Same order as the wind waves (100 m), ' p
and the meteorological systems (1000 km or more).
Energy inflow due to thermodynamic forcing is found
at even large scales. All of triese scales are one or
two orders of magnitude smaller or greater than those
studied. At some locations, interior processes such
as baroclinic instability may also play an important
role in converting energy through nonlinear mech.
anisms. The scales of these phenomena are on the .00s
order of one to six times the internal radius of defor-
mation, depending on the physics of the problem.
This radius is of approximately 50 km in the open 	 SCALE n ken
ocean and 7 km in the Mediterranean sea. If these Fla. 4. Example of stricture functions computed from WCMM data.
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geostrophic turbulence in the atmosphere (Charney,
1971), These theories take into account either the
conservation of energy and of enstrophy (half of the
mean square of the vorticity) in the case of Kraich.
nan's theory, or the conservation of energy and of
the pseudo-potential enstrophy (Charney),. Both of
these theories agree when predicting the power law
of the kinetic energy spectrum: E K (k) ^- k"9, But
the relations between current and temperature are
not obvious and the different mechanisms involved
leol to drastically different theoretical power laws
for the temperature variance spectrum. Kraichnan's
theory, considering that temperature is a passive
contaminant implies that ET(k) only depends on k
and on the dissipation rates of enstrophy and tem-
perature variance. Then, from a dimensional analy-
sis, E,jk) must follow a k' t power law. Charney
made use of the perfect gas law and of the hydro-
static relation to compute a relation between the
temperature and the streamfunction and he found the
same law'forE,(k) as forEK(k), i.e,, ET(k) ^- EN(k)

to
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k"'. Also, assuming_Eh(k) — k-', Saunders (1972b)
deduced a temperature variance spectrum Ej{k)

k's, by the use of the thermal wind equation,
These examples demonstrate how results may be
very different according to various authors, In this
study, the mean observed value of .8 for n is for
from the assessrrlent (n . 3) made by Saunders but
falls between the Kraichnan and Charney predic-
tions (n ;- I and 3). This discrepancy may be due to
the fact that the condi t ions of the theories have not
beet fully met and namely that the .study range is
not an inertial one.

Three-dimensional theories of turbulence (Kolmo-
gorov, 1941; Bolgiano. 1962) or space-time variabil-
ity theories of internal waves (Garrett and Munk,
1972, 1975) report values of n close to those found
in our study (1.7, 1.4 and 2, respectively), but the
physical basis of their hypothesis can hardly be ex-
tended to the mesoscale range.

We may also notice that several experimental
studies of air temperature variability mention values
of it in agreement with our study at similar range
of scales (100-1000 km). See reviews by Gage (1979)
and Panchev (1971). Some of these results are ob-
tained by using spectral analysis on time-series data
and equivalcla wavenumbers are computed by using
Taylor's relation. As the validity of this relation is
dubious for such scales, these time-series. results
must be viewed skeptically, But as for the oceano-
graphic observations, there is no atmospheric theory
to explain the observed results,

In summary, the power law exponent n of the
spectral temperature variance observed in the range
of scales 3-100 km is nearly 2. This is very dis
cordant with the values predicted by turbulence the-
ories which are widely spread around this value.
Results and conclusions from the present study are
very similar to the experimental results published
by Saunders (1972a) nearly a decade ago but it is
emphasized that further advanced theories are still
needed in order to explain the experimental deter-
mination of the mesoscale SST variability,

DOWER LAW EXPONENT'

04	 06	 A	 1	 1.2	 114

POWER LAW EXPONENT p
Fla. 5. Histograms of the observed values of the power-law

exponent P of the structure function In the range of scales (a)
40-100 km and (b) 3-30 km,

5. Conclusion
This study has proven that it is feasible to es-

timate the random properties of the SST field in the
mesoscale range 3-100 km from satellite infrared
data. As compared with previous analysis of ship-
borne and airborne observations, the use of satel-

TABLE 3. Summary of observed mesoscale SST vuiability,

.

Authors
Range of

scales (km) Power-law exponent n Comments

Saunders (1972) 3-100 2.2 = 0.1 one-dimensional, surface temperature,
airborne Infrared sensor

Holladay and O'Brien (1973) 3-20 3 two-dimensional, SST maps from
aircraft survey%

Fieux et al. (1978) 1-64 2 one-dimensional, surface temperature,
ship-towed sensors

This study 3-100 I,S 4 n { 2.3;	 n i 1,8 two-dimensional, surface temperature,
satellite data
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Day-night surface temperature differences measured in the infrored

(10.5-12,5 Pm channel) by the HCMM satellite experiment frequently show large

diurnal heating (several O C) of the upper layer of the ocean during summer months

in the Mediterranean Son, wlon the wind speed is low. When observed in-the 0.5-

1.1 pm channels glitter reflectance - J•o• direct solar radiation specularly

reflected towards the sensor - correlates with diurnal heating. Glitter reflec-

tance has been modeled to retieve an equivalent wind speed * and observed diur-

nal heatingo, AT, rapidly decrease from their maximum value of about 5 *C as the

wind speed, U, increases. A mean diurnal heating of nearly I O C is calculated

for the marine coastal areas of southern France in summer time. During this

period, satellite observations should be restricted to night and early morning

orbits, or toperiods of high wind speed (U > 5 m.3 	 at noon and during the

afternoon.
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A daily varictio r, to thc% toirporeituzre of the surface layer of the oceans

is known to be producorl by diurnal fhoaUnZ, due to absorbed solar radiation. The

amplitude of the dally trieperature vai1ation is usually small because of tur-

bulent mixing which usually privtA1l& ove r the molecular thermal diffusivity.

A solar irradiance of 1000 W,m- , whci absorbed in a mixed layer of 10 m, would"

give a heating rate o-P only 0.1 "C Naar hair, and a daily variation of less than

0.5 °C. If the turbul.1ni: mixing is raducea and the mixed layer is less than 1 m

thick a heating rate of '1 "C par nour may be expected and daily variations of

several °C should be obsorved. with th*j exception of very shallow waters, large

diurnal surface tompgraturs vari otionn Vi open oceans correspond to low wind

speeds because turbulanae in the upper surface ;layer is malnl.y induced by the

surface wind stress.

From a theors'ti4;nl aimulatlon of radiat,lve and heat transfer in the upper

ocean layer, HASSE ;`1 "J;i) predicted that the deviation of the sea surface

temperature CSST) T o roC ne 1::,11 fismperature 'r 	 at 10 meter depth should

Vary as

To
 

- Ti g Y C Q(i	 C )

where q is the solar irradia ice, U, the wind speed, and C2 * 3.5 10­ 3 when q

is expressed in W.ml , U in m.s -1 . Acscorcing to HASSE, Eq. (1) is only valid for

U >. 2 m.s-1 , but the evidence that 'the.SST diurnal variations increase when U

decreases is supported by several observations 	 ROMER (1959), 5TOMMEL et al

C1970) occasionaly found diurnal variations of pore than 1 °C at very low wind

speeds _ i.e. for rU < 2 m.s . These observati.ois were nevertheless restricted

to a single location and were isolaited ovents.

a



Z 3

ORIGINAL PAU IS
OF POOR QUALITY

4

Sntellite infrared radiometers offer the opportunity to more systems-

tically investigatb suet large diurnal variations of the SST. The first satel-

lite experiment o provide adequate capability for this purpose was the HCMR

(Heat Capacity Mapping RadiQmster) experiment launched in late A pril 78 with

an improved temperature resolution (0.3 °C) and a nearly noon overpass. Results

from this experiment are hereby reported in order (i) to investigate large di-

3	
urnal SST variations at low wind speeds Cii) to give an assessment of the rela-

tive frequency of such an event and its impact on the determination c^f the SST

field in such areas as the Moditerranean Sea where diurnal heating is frequent.

II - OBSERVATIONS OF DIURNAL HEATING FROM HCMR SATELLITE DATA

II-1 - The HCMR experiment

'The basic cbjectiva of the HCMR experiment is the measurement of vari-

ations of the earth surfams temperature for applications to earth resources

(geology, hydrology...). For this purpose, the satellite is sun-synchronous

and crosses the equator at about 2 a.m and 2 p.m local time so that surface

temperature data are obtained close to the minimum and the maximum of the diur-

nal variation. Satolli,te altitude is 620 km, and orbit inclination is 98.870.

The HCMR consists of a two-channel scanning/imaging radiometer, with a 0.5-1.1 um

spectral bandwith in the visible and 10.5-12.5 um in the thermal infrared. Si-

milar channels have been used on previous meteorological satellites, but the

interests of the HCMR experiment are (i) a large improvenent of the radiometric

performances in the thermal infrared channel for which the temperature resolu-

tion is 0.3'C and the nadir ground resolution is 500 m as compared with 0.5 to

1 °C and 1 km for the previous VHRR/NOAH satellites, (ii) the new ease with
;f

which the user can obtain differential surface temperature maps between day and	 s

F
f
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night at 12 or 36 hour intervals; The HCMR experiment was originally designec

to produce thermal inertia data for soil and geology applications but the veiny

good performances of HCMR are also suitable for oceanographic, studies. Data

were received from NASA (National Administration for Space Research) through nn

investigation concerned with sea surface temperatures of the coastal zones of

France.

Available HCMR data are photographic or digital products covering, a

700 x 700 km squaw scene. The following information is displayed

(1) diffuse surface albedo or reflectance in the visible channel (day only),

(2) ,eurfacs tamiperature from the infrared channel,

(3) surface temperate,;re difference between day and night,,

(4) thermal inertia, which was not used in the present study. About 1000 scones

covering the coastal zones of France were received during the May 1978 - May J979

period. Examples of the photographic products are given for two areas in the

Western Mediterranean Sea (Fig. 1) and in the North Sea (Fig. 2)) where large

diurnal variations of the SST were observed.

11-1	 Diurnal heating and glitter (sun glint) patterns

A :large number of the data received for the Mediterranean Sea during

May, June, and July of 1978 exhibited very interesting and concordant featurea

in both the visible and the infrared channels, as shown in Fig. 1 between the

Island of Corsica and the Southern coast of France, and also close to the east

coasts of Corsica and Sardinia. Warmer areas in the thermal channel are asso-

ciated with brightness changes in the visible.

a
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The observed brightness changes in the visible are identified as glitter

or sunglint patterns - i.e, . specular reflexion of direct solar radiation by the

wavy sea surface. During the concerned time period around the summer solstice,

the observation angle of the HCMR imagery was very close to the angle of the

specular reflexion of direct solar radiation in the western part of the scenes.

This favors the observation of glitter patterns. Glitter generally increases

when the wind decreases and the sea surface becomes calmer and more specular.

The surface exhibits a maximum brightness when the observation angle is close

to that of the specular reflexion of solar radiation : a homogeneous bright

area is thus noted in the south-west part of Fig. 1-a. For very calm seas, the

surface reflexion becomes nearly specular, and a brightness decrease . may be

observed, because it is very unlikely that the observation angle be strictly in

line with the specular reflexion. Both processes are present in the northwest

part of Fig. 1-a, where bright and dark areas respectively correspond to weak

and nul wind speeds. The fact that smoothing of the surface could produce either

an increase or a decrease of the glitter brightness was previously mentionned

by LA VIOLETTE et al (1980). A physical and detailed description is given in the

Appendix, to aid in a further quantitative analysis of the data. The dark pat-

terns in a mean bright glitter can thus be clearly interpreted as nul wind and

calm sea areas, which obviously favour greater diurnal heating of the upper

layer of the ocean because the heat transfer to deeper ocean layers is limited

by reduced turbulent mixing and thermal diffusivity.

II-3 - Meteorological observations	 s
r
a

Evidence of a large diurnal heating corresponding to low wind speed

conditions is also given by correlative meteorological observations. Surface

observations are presented in Fig. 1-b for the case of the Mediterranean Sea,

and in fig. 2-c for another case found in the North Sea where, due to higher

latitudes, glitter is almost always unobservable. On Fig. 2- a a_large warm
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spot was detected by HCMR in thn imiddle of the North Sea which was coincident

with the center of an anticyclonc high where nul wind speed was reported. Warmer

areas observed in the Mediterrannan Zaa on Fig. 1-b are also coincident with

low or nul wind speed;, tour, tho oo.surved wind field is much more complicated

because most of the reporting cuestal wsat:her stations are affected by some

breeze effects which eru uperimpased upon an anticyclone high. Cloudfree

satellite SST observations are frequently ar;quired during similar anticyclonic

situations with moderate wind speeds, at must be outlined that satellite esti -

mations of SST may thue bs systematioilly a-ffected by diurnal heating, and a

tentative statement of this is Oi ,̂  uHsed i.n section III-4.

11-4 - Darr-Night observations

At least in the upper layers, heat loss during the night very rapidly

destroys most of the diurnal heating, which was produced during day time. Evi-

dence of a diurnal heating may thus to nnrid from a comparative analysis of

two successive day avd night observat j cnQ at 12 hour intervals. For the two

cases gii/en in fig. 1-1, and • -a, th} r..orresaondin g night observations ( Figs. 1 - c

and 2-b) show a much moor, constant SiT fiels and the warmer features noted du -

ring day time disappear.

Figure 1-d gives the result n ;f Who computed day-night temperature dif-

ferences after the proper calibrat;tcn algorithms have been applied by NASA.

These differences present, the advantage of being independent of the mean mesos-

cale SST field and allow enhancement o •r" the diurnal heating, which again clo-

sely correlates with gli er patterns it) the visible channel. Day-night tempe-

rature differences are used in the following for a more quantitative analysis

of diurnal heating.

''a
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III ,., DEPENDENCE OF DIURNAL HEATING ON SEA STATE AND WIND SPEED

The observed diurnal hsatinj,^ were further quantified by analysis to

derive their relationship with the sea state and:tha wind speed. Day-night

temperature differences wore correlated to the reflectance of the 0.5-1.1 um

channel. This reflectance, montly due to sun glitter, is related to the surface

slope variance and to a mean wind speed using the statistical model of COX

and MUNK (1954)

III_ 1 -Diurnal heating and glitter reflectance

Oay-night temperature differences ( Fig. 1-d) - i.e. SST diurnal varia-

tions - show patterns similar to the glittar patterns (Fig. 1 -a), on June 3, 1978.{
3

Fig, 3 gives the result of the correlation obtained when the diurnal heating,

AT, is plotted as a function of the glitter reflectance, p g , in a small study

area east of Sardinia. It is evident that a close correlation exists and AT

rapidly decreases when p g increases. To further interpret that fact, p g has to

be related to the wind speed, or more exactly to the statistics of surface slopes.,'

Using the otatistical distribution of surface slopes from COX and MUNK

(1955), a model was developped to relate the glitter reflectance to the wind

speed. This model is detailed in the Appendix. Results indicate that P g coUld

either increase or decrease with wind speed 
P  

presents a maximum value for

a given wind speed value, both of which depend an solar and observation angles

through On ( tg On is the surface slope allowing specular reflection toward the

sensor). Fig. a gives the relationship between- P9and the wind speed, U, for

On - 8°, 10°, and 12°, corresponding to the area previously studied for

AT - f(P 9 ). In this case P  increases rapidly at the lower wind speeds and then

is rather constant for U > 3 m.s -1 so that U can be estimated with a good accura-

-_	 cy from P g , only when U	 3 m.s -1 . The study has thus to be limited to this
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wind speed range, It should also be noted that p  is physically linked to the

surface slope variance, and only statistically to the wind speed. Local anomalies

may thus occurs, in particular when the fetch of the wind over the sea is va-

riable. Keeping precautions ih mind these, we may now transform AT(p g) into

ATCU) which is given in Fig. S.

1II-2 Diurnal heating and the wind speeu

The first point to be noted on Frig. 5, which gives the diurnal heating

as a function of the wind speed, is that AT rapidly decreases from several °C

to 1 °C when U increases up to 2 m.s -1 . The scatter of observations ATM on

Fig. 5 is remarkably less than AT(p g ) on Fig. 3, because the variations of p 

with changes of observation angles within the study area have been eliminated.

A fit of AT(U) on Fig. 5 would give

AT = 0.4 U_ 1 + 0.5
	

(2)

(j„n °C for U in m.s-1)

Some uncertainties related to the mode.], p 9 (U) have previously been outlined.

Additional errors may be due to armospheric effects on the measured radiances.

An aerosol atmospheric reflectance of about 0.02 was estimated from the mini-

mum reflectance within the scene Cpg = 0) and dubstracted in the 0.5-1.1 um

channel. Day-night temperature differences have not been corrected for atmos-

pheric emission in the infrared. This approximation would be valid only if

the atmosphere were to remain the same between the two satellite overpasses,

but a bias due to a change of atmospheric parameters - i.e temperature and

water vapor concentration - could have occured which would possibly change

the 0.5 °C constant found in (2). Lastly, the observed AT are certainly under

iL ,1 	.:
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estimated by a factor T, the atmospheric transmittance in the 10.5- f12.5 Pm

band, for which t typically equals 0.7 For a midlatitude summer atmosphere.

The results may be compared to the values predicted by HASSE (1971?.

Using a mean solar irradiance at sea level Q n 900 W.m-2 in (1), AT is :°ound

to vary as 1.5 U_ 1 (U in m.s ^1 ). This formula is shown in Fig. 5 and when com-

pared to HCMM observations, gives a systematic overestimation of the diurnal

heating fo U < 3 m.s -1 . Elsewhere, the HASSE formula does not respect a limit

value of AT when U n 0. As pointed out by HASSE, the results of the model given

in (1) can not be applied to the lower wind speed range because the model used

by HASSE refers to a steady state assumption not respected by scales of a few

hours.

111-3 - Limit value of the diurnal heating

Fig. 5 and other HCMM scenes with large diurnal heatings indicane that

diurnal heatings do not exceed about 5 °C, and that a limit value should exist

at low wind speed. This value may be obtained by solving the heat transfer

equation

d 
(k (z) dT(z,t)^ + dF(z,t) $ c aT(z,t)

dz	 d z	 dz	
A	

dt
(3)

for k(z) . km, the thermal molecular conductivity of seawater - i.a no turbulent

diffusivity is assumed at U - o. Eq. (3) was solved using the following condi -

tions

b^ (2, t) = F (o, t) ,q (z)

i

r.
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where F(o,t) is the solar i,kradianchi at sea level, F. the heat lo gs by the

surface, and

g(z 	 a{ vXj) (-y awl	 (5^

whore ai , Ki are given in Table 1 cnd wjarG uUt;Ainsd from a fit of g(z) accor

ding to the work of PRUVOST (1975). ZW is considered independent of time in

(4) which is a rather gooU approximation since the underwater penetration of

the direct solar rod ation im cloce to the nedkr even at low solar elevation

angles. A homogeneous layer, was aasuwed to exist j ust below the surface. The

depth zo of this layer is defined similarly tr, the model of KRAUS and TURNER

f	 (1967) ; the variation of potential enerSy produced by solar radiation and

l	 surface heat loss is equal to the ;:or!s or` t^ia twin	 tress on the sea surface,

i.e. nul for this study caso where we look for a limit value of AT at U n o.

Under thess conditions, AT variance correlated well with the net heat budget
F

of the surface s

c

10

wherz	 rC	 0.65.10 6 K.J 1 r
2
^ for the HCiHI observations or June 3, 1976,

Po (F(o,t) - FO ) dt was satimatad to be a mean value of about 600 W.m_Z,
to o	 _2
over a period of 4 hours(in fact a maximum value of 900 W.m at noon at satel-

lite overpass) and we found

G

R	
( 7)5.6 i

1

1

A
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This value is in agreement with the observations reported in Fig. 5

At the lower wind speed, the observed diurnal heating is widely scattered

wl.th,in the range of 2 < AT < h °C, and thus below the estimated limit value.

The large variations of the observed AT at U w 0 may be explained by the foot

that Eq. 6	 requires a nul wind speed during the entire heating period pro-

ceeding the observation, i.e. several hours, which is ~eery unlikely. The scatter

of the diurnal heating at U x 0 therefore is probably linked to the time vari-

ations, of the local wind speed,	
k

111-4 - Frequency of diurnal heating {

From May 13 to August 28, 1979, 00 HCMM scenes taken over the Western

Mediterranean Sea were examined of which about 34 scenes exhibited Large (ty-

pically more than 1 °C) diurnal heating of particular areas of 10 to 100 km

width. Relative frequency of the event is rather large, and is enhanced in

some areas which are affected by a breeze effect and where the wind systemati-

cally becomes nul at some distance from the coast. Table 2 gives relative fre-

quencies of low wind speeds ( U < 3 m.s -1 ) at some stations along the Coast of

France during the summer months (from DARCHEN ( 1 974)`) The frequency of nul wind

allowing a diurnal heating of more than I °C is between 10 and 30 	 The fre-

quency of low wind speed ( 1 < U < 3 ms -1 ) is from 20 to 50 , allowing a diur-

nal heating of about 1 °C. From these frequencies, N 1 and N2 , a mean heating	 {

ZT',was calculated as

p'T2.5
Nf

+ N2 	 (e)

and is also given in Table 2. The mean diurnal heating ranges from 0.5 to 1.5 °C

along the south coast of France with a maximum on the French Riviera (Cap Ferrat).`
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IV CONCLUSION

The present investigation, using SST satellite observations from the

HCMM experiment has shown a high frequency of large diurnal hosting$ (mare

than 1"C) of the sea surface during summer months in such areas as the

Mediterranean Sea where low wind speeds are very frequent. This shows that

satellite observations made at noon and during the afternoon should be rejec-

ted, or at least checked to eliminate those corresponding to low wind Speed

(U < 3 m.s -1 ). If not, a systematic bias co ,.4d be introduced in the SST ana-

lysis of some areas, particularly the marine coastal areas affected by a sea

land breeze effect.

Using simultaneous observations of the glitter reflectance, the diurnal

heating was correlated to the wind speed. Diurnal heatings of about 0.8 °C

were found for U = 2 m.s '_1 , which is two time less than the formulation given

by HASSE (1971). A maximum diurnal heating of 5 °C is found for nul wind con-

ditions, which is in agreement with the value calculated from the radiative and

heat transfer equations assuming the .hermal diffusivity is only molecular.

WL
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Glitter refers to direct solar radiation reflected

by the sea surface. This reflection is specular for a planar sur-

face. When there is wind, the surface is agitated and consists x

rif elements which are statistically distributed around the horizon-

tal plane. This produces a more or less bright spot of variable

dimensions which is commonly called glitter.

The radiance L  reflected by the agitated sea surface

ceuz he expressed (COX and M=, 1956)

E6 R( '̀') p	 (A-1).

Lg 4 VvWn

and the egLiivalent reflectance pg will be expressed as

P^.L9 n 
RM 

4
	

A- 2(rs	 D	 )

g ^sEs 4 usuvun

;where E. J.s the direct solar radiation at sea level,
s

RM is the reflection coefficient of water at a given indicence w,

p is the probability of encountering a properly oriented surface

alasent,

11v n cose 1es = cos ^ , un = case  ,	 respectively define the zeni-

thal angles of the observation direction, the direction of incidence,

P Is the probability of encountering a properly oriented surface element.

1'v 
= cosOV µ s a cases, 

un a 
case n , respectively define the zenithal

angles of the observation direction, the direction of incidence, and their

bisector,

3s the angle between the incidence and observation planes
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 i
C08 2w • usu^+	 s2)-4(,

2 `°uy,2, 2cos W	 A- 4)

From a study of aerial photographs of gittter patterns, COX and MUNK:. (1554)

developped p in a Gram Charlier series which in a first, app :"iwat:irn 1,s 	 h

reduced to a gaussian distribution, with revolution nynunetry

P	 1 exp - ( t9 On 2Z'
o	 a	 (A- F

with	 a2	 0,003 + 5,12.10 
3
Um.9-1 t 0,004	 (A-i)

for	 1 < U < 14 m.s-1

Figure 6 gives an example of the glitter spot p^ thus comput.Rd as

a function of solar zenithal angle for different values of W, and for a

nadir viewing GOV 	 0), zn accordance with the reci p rocity principL..A , by

permutation ( 0s , 0v	 Fig. 6 also gives p  as a function at the vt:t.^rir~^ ation	 j

. s ,	 a	
tgangle., for a sun at the zenith (0	 C7) . For a given ^^i`ig:le pp^°t^srt>", ^M a

maximum, pgm, at a certain value of am which is related io Win sp^tad. am

and pgm are given by a

x

H

2	 t 2_	
-2 1	 i`

a	 4 O n Un -	 cAW7}M

_	 R(w)

pgm	 4 
usuV0n ( 1 -un2 )	 (A-el

The dashed curve in Fig. 6 envelops the pr. ,eeding curves and represents

the mmximum glitter pgm as defined by (A-B).
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Figure	 Diurnal heating in the Western Mediterranean Sea

(a) Day NCMM scene A-A0038-1440 on June 3, 1978 at 12.44 TU.

Image center is at 40.54 0 N, 011 . 040E. Visible channel i

darker tones are lower reflectances. Note the bright pat-

terns East and West of Corsica and Sardinia.

(b) - Same as ( a) but infrared channel r darker tones are colder

surface temperatures. Note warmer Waters East and West of

Corsica and Sardinia.

Cc) - Night NCMM scene A -AG038 -01490 on June 3, 1970 at 1.49 TU.

Infrared channel s darker toner are colder temperatures.

(d)

	

	 Day - night temperature differences between NCMM scenes ob-

tained on June 3, 1978 at 1.49 TU (night) and 12.44 TU (day).

Darker tones are smaller diurnal heatings.

Co)	 Meteorological situation on June 3, 1978 at 12.00 TU.

Figure 2 - Diurnal heating in the North Sea s

j	
(a)	 Day NCMM scene A-ACO34 •-13120 on May 300 1978 at 13.12 TU.

Image center is at 54.27°N, 00.01°E. Infrared channel»	
^f

darker tones are colder waters. Note the warm (bright) spot

between Scotland and the top right of the image where a

thermal front is shown close to Norway.

(b) - Night NCMM scene A-AO035-02280 an May 31, 1978 at 2.28 TU.

t.Image center is at S6 13 °N 03 C0°p Infrared channel	 A

darker tones are colder waters. The warm spot disappeared

I	

^

during the night.
t	 t

Cc)	 Meteorological situation on May 30, 1978 at 12.00 TU.



Fieure 3	 Day-night temperature diffurenco va glitter reflectance on June 3,

1978 * for a study araa East of Sarclina,

Figure 4 - Retrieved wind speed ve 81tttor rwrlomtanoe for the study area.

Figure 5 - Day-night temperature d1iff-arehce ve rmtriavad w1rid speAd fnr the

study area. The solid-dashed line nhom, the diurnal heating obtai-"

ned from HASSE (1971). which is valid only at U < 2 m.s-

Figure 6	 Glitter reflectance vm zvinithal v^awing angle, for a sun at zenith.,

and several wind speeds from 0 to 15 im.s	 Maximum glitter reflec-

tance is given by a oanned line.
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Table 11 - Coaf-Ficients ajo k, in (5) for water penetration by }

solar irrediance,

s

n

1

1	 ,041

I

3365.9 }'

i 2	 .139	 . 201.18
y

1 3	 .211 13.05

1 4	 .24 1.22

i	 i A 5	 .37 .o7
i

;i	 1
!`	 s

k t

p
i

^a	 9

'jt4

t

k

:z

r

,c
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Table 2 Relative frequencies of low wind speeds

N 1 : nul j N2 : Beaufort forces 1 and 2 (1 < U 4 3 m.s-1)

during June, July and August in the French Mediterranean

coastal area, ( DARCHEN, 1974). An estimate of the mean

diurnal heating ZT is given in column (3).

Station N1 N2 ZT	 °C

Cap Bear 16.0 26.9 0.67

:1*6te 1 9.5 42.3	 ` 0.66

Pandgues 21.3 26.8 0.80

Cap Camarat 10.8 46.6 0.74

Cap Ferrat 35. 1 50.4 1.38	 I
1

Cap Corse 18 . 4 ^ 35.5	 ^ 0.82

Pertusato- 6.4 21.0 0-.37 4

i 42 ° N-GE^

i

7.6 a

rr.In^wiAl DA!'!f 14

i
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Figure	 -a; - Jay HC,"m scene A-A0038-12440 on June 3. 1979 at 12.44 TU.

Ima6;4 csnter i:s at 40.54°N, 011.04 0E. Visible channel :

barker pones a^e lower reflectances. Note the orignt pat-

terns coat and West of Corsica and Sardinia.
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"Figure	 1	 -	 (b) - Same as _t -^a:`?d :cannel :	 darker tcnes are colder

surf jc: warmE r waters East and 'West of

Corsi:.a .jr,:: Sarainia.
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Figure 1 - (c) - Night HCMM scene A-A00	 7n J_	 3, 19 1"1 3 at 1.49 TU.

Darkar tones are colder * ,.,raturea.



	

Figure_! - (d) - Cay-night temperature Jifferer 	 _tree	 as ON

	tainea on ,June 3, 1978 at 1.4w	 -,t	 A TU (cay.

Carker tones are smaller aiur-31 „^:ings.

ORIMNAL PACE
BLACK AND WHITE PHOTOGRAPH
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Figure 1 - (e) - Meteorological situation on June 3, 1973 at 12.00 U,

i
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Figure 2 - la) - Uay HCMM scene A-A0034-13120 on May 30, 1978 at 13.12 TU.

Image :,enter is at 54.27°N, 00.01 0 E. Infrared channe l. :

darker tones are colder wAters. 'vote tre warm (bright)

spot between ScotlanC and the top right of the image wrere

a thermal 'ront is shown close to Norway.
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night HCMM scene A -A0035-02280 on May 31, 1978 at 2.28 TU.

?nage center is at 56.13°N, 03.00°E. Infrared channel

carker tones are coloer waters. The warm spot disappeare.

uring the nignt.
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Figure 2	 Co;	 Meteorological situation on May 30, 1978 at 12.00 TU.
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GLITTER RcFLECTANGC, tr'
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r ^:

Figure 3 - Day-night temperature r,iafferencf vs glitter mflectance on June 3,

t	 1978, -For a study av:.^a cas h cF Sardinia.
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0
GLITTER REFLECTANCE , LOG (Pg

Figure 4 - Retrieved wind speed vs glltter reflect6nco f—or the study area.
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1	 2

WIND SPEED, U

0

t .*

Figure 5	 Day-night temperature differencri vs retrieved wind speed for the

study area. The solid-dashed lil-,v shown, the dJurnal huatLng obtai-

ned from HASSE 0157" 1) , which is only valid at U,<,-, M.s
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Figure 6 - Glitter reflectance vs zenithal vieuwing angle, for a sun at zonith,

and several wind speeds from 0 to '15 m.s -1 . Maximum glitter refle -
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Lance is given by a dashed line.
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SATELLITE EVIDENCE OF COLD WATER AREAS NEAR, ISLANDS

ALONG THE SOUTH BRITTANY SHORE
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La°boratoire de Grographie de 1'Ecole Normale Superieure,

1, rue Maurice Arnoux, 92120 MONTROUGE, FRANCE.
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From HCW1 digital products processed at ENS, five scenes of high quality
were selected for study because of their clear resolution of cold water
areas around :islands and shoals along the south iirittany shore. Tidal cur-
rents that induce turbulence in shallow depths and destroy the seasonal
thermocline are responsible for the well-mixed cold coastal water that is
separated from the warmer stratified offshore water by a transitional zone
of high thermal gradient. Satellite measurements are compatible with ground
truth data analysis.

t'
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I INTRODUCTION

infrared satellite imagery (spectral band 10 1 5 um - 12,5 }tm)has been

used to provide sea surface thermographies. For example, the HCMM and

NOAH 5 imagery enabled the detection of the Ushant front which subsequen-

tly became the basis of various studies because of its importance in the

distribution of phytoplancton.

The spatial and thermal resolution of the HCMM thermographies is more

refined than that of the NOAA 5 thus providing better images of the frontal

regions in the shallow shelf water along the coast of Brittany.

The thermal structure of these shallow coastal waters is not yet well-

known. Cold water areas and high thermal gradients .bear reefs, shoals and

Islands in the shelf region of the Bay of Biscay appeared several times

it! HCMM data. These areas are typified by their shapes and dimensions.

In this paper, they are described in relation to hydrological and mete-

orological conditions, and possible interpretations according with other

observations are suggested.

II DATA ANALYSIS

Several HCMM photographic products (from May 1978 to November 1978)

were studied because of their clear presentation of the existence and de-

velopment of thermal boundaries and cold water areas. Due to the broad

range in the dimensions of such phenomena (50 to 1000 square kilometers),

digital products processing was applied.

Five scenes, to the area between Belle Ile, Yeu Island, and the Loire

estuary, were selected for an in-depth study

06/10/78 : A-AO045-13160-2 c Day 7R

08/19/78 : A-AO115 02180-3	 Night IR,

08/31/78 : A-AO12,7-13380=2	 Day IR

09/15/78 : A-A01^2-13190-2	 Day IR

10/28/78	 A-AO185-13180-2	 Day IR

S.
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Geometric correction, resampling for uniform scaling (1/500 000), and
smoothing were applied to them before automatic sea surface tam, erature
cartography. Results are given for three scenes in figures 1,2, and 3.

III HYDROLOGICAL AND METEOROLOGICAL CONDITIONS

HCMM scenes were registered from June to October 1978. During this pe-
riod, the flow of the Loire river was not very strong. It fell from 800 m3.s

(06/10/1978) to 250 m3/s during summer and autumn months. This last value
is very weak considering that in the winter, the flow of the Loire can

exceed 5000 m3/s. Thus t,n all five cases, the influence of the river flow
was trivial in comparison to the tidal stream, and could be neglected.

In the Bay of Biscay shelf region, the presence of bottom stress modi-

Pies direction and valocity of tidal currents. Thus the role of bathymetry

in the dynamics of coastal currents is very important. For example, veloci-

ties near the shorn. are 3 to a knots in the south of the "Presqu'ilo de

Quiberon", in the "Passage de la Teignouse" ; 2 to 3 knots in the west of
M 4

Noirmoutier island ; and 1 or 2 knots bete*ien Yeu island and Noirmoutier

island. Spring to neap ratios vary from 1,6 to 2. The contribution by off-
shore tidal currents has not yet been established (about 0,5 to 1 knot

between Belle Ile island and Yeu island) bv.t should not be neglected.

in these five cases, meteorc+logical conditions were very similar s Anti-
cyclonic weather, high pressure, low pressure gradients, weak winds, low
night-temperature, high day- temperature.

IV COLD WATER AREAS ; DESCRIPTION

on the five different scenes, two typical cold water areas can be seen
An important circular area east and north of Belle Ile Island

in the "Passage de la Teignouse", and around Houat and Hoedic

islands.

The important area in the shape of. an "S", between Yeu Island

and Noirmoutier Island.

These two areas are surrounded by warm waters. We emphasize the similarity

between the contouring of the cold water areas and the - 20 m isobath (see
fig. 7) .
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Iv.i : 06/10/78 and 09/15/78

Thermal gradients near isItnd3 are important : 2 0 C/5 km.

It is worth noting that the shapes of the cold water areac

are very similar. However, the typical "S" which was very near

Noirmoutier island on 09 / 15/78, one hour before high water

(spring tide) is further off shore on 06/10/78, one hour after low water

(neap tide). This corresponds to the dynara cs of tidal currents

which flow into the bay of Bourgn puf, north of the 'ioirmoutier

island..

IV.2 : 08/19/78

The cold water area of Belle Ile island and the cold water

area of Noirmoutier Island nearly join above shoals in front of

the "Presqu l ile de Guerande". At the hour of the passage of the

satellite pass occured during the Nigh water of a spring tide (tidal

coef . 1.06)

=W I II? m! tt LXXr—' A :W Q LA tjD:l<

1	 I	 I
,.law	 Ic101

I= z^s

6',-4
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Fig. 2	 M24 automatic cartography : sea surface temperature (08/19/78)
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Fig. 5 • 09/19/78
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IV.3 : 08/31/78 and 09/15/78

In both figures 4 and 5, the satellite pass cccured A nmroxirv'el-; one
aour prior to high water, but a diffPro-ncon A—mors in the tides

08/31/78	 neap tidzs (coef. : 0,68)

09/15/78	 spring tides (coef. : 0,94)

Figures 4 and 5 show that cold water are particularly v-de-sprea-

-ding near islands during spring tides.
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IV.L :	 10/28/78

Thermal structures are less visible and their contouring is
loss distinct due to the overriding presence of shallow coastal cold

water during this season. However a thermal front is visible, parallelling

tl►a shore. This appears more clearly on HCMM pictures of Nov. 78 and

J.tn . 79.
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Fig. 6	 HCIMM scene (10/28/78) ; sea surface temperature

V INTERPRETATION

Each studied scene shows that the contouring of cold water areas

correspcnds fairly well to the isobaths. These areas are situated

in zones where tiaai streams are itportant. Tae water depth ana the

current velocity have a fundamental .-art in spreading the cold water

area.

Several authors have already emphasized the importance of tidal

currents in the formation of thermal fronts separating two water masses

with different temperatures, especially near shoals and islands

(FEA.WiEAD, 1974) .

^^:1:it`1 +L PAGE fJ
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V.1 Formation of thermal fronts
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During spring and summer, in regions of sufficient depth and weak

currents a seasonal thermocline is established offshore, separating
warm sea surface waters and cold bottom waters.
In shallow waters more in shore, tidal currents create a turbulence
which mixes the water column and presents the formation and development

of the thermocline. It is for this reason that the sea surface tempe-

rature is colder in these shelf regions than it would be if thermocline

existed.

The presence of this thermal front around British Isles, between

stratified water and well mixed water has been studied by PINGRU and
GRIFFITHS (1978). These authors have proposed a numerical model to

determinate the position of the thermal fronts by the equation

hS = log C 
d 
u3 , where : h is the water depth

C 
d 

is the bottom drag coefficient

u is the current velocity
They have predicted the position of the front in zones where 1 <S < 2

and have proposed following (31!.4ssification

S> 2 : stratified water

S = 1,5 : transitional Water

S < 1 : well mixed, water.

The importance of the term h/u 3 in the localisation of fronts on the con-
tinental shelf has been shown by SIMPSON, ALLEN and mORRIS (1978).

RAILLARD (1976) described the formation of Ushant front and GARZOLI
proposed for this front, a critical value of the Richardson number for
determining the boundary between stratified water and well mixed water.
She has proposed	 h/u 2 <1 in well mixed water

h /11 2 > 1 in stratified water

V42 Results :

We applied these numerical models to our study region, from
	 J,

Belle Ile island to Yeu island. Figure 7 shows stations where the water
ij

2
depth-and currents were calculated. For each station, h, u, h 'a

J

and_ S were calculated.
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f	 According to these numerical models, water should be stratified in sta- 	 4

tions A and 5 ( h/u > 1 ; S > 2) .

	

	 j
i

Water should be well mixed in stations F,GH, JR, M,P,Q, where h/u 2 and	 it

S are less than 1.i	

ah/u2 and S reach critical values in stations E, L, N, R, in function	 ;f

i	 of hydrological situations. ,E

t
The boundaries between stratified and well mixed waters are shown in fig. 	 Ii

2	 Id
8. The h/u = 1 limit presents the same shape as the - 20 m isobath. This

result is in accordance with HCMM scenes.

Effects of diurnal heating are clearly visible on HCMI scenes, espe-

cially in the bay of Bourgneuf where water depth is less than 10 or 15 m.
i

It

i!

Ground truth data and satellite measurements
+

Data collected from sea cruises (fig. 9) provide a picture of the ver-

tical thermal structure near Xeu island. For example, during summers 1964

and 1965, the thermocline in B is situated between 18 and 30 m. This depth

of thermocline seems to correspond with depth of transitional zone between

stratified water and well mixed water.

is
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This study suggests that three factors are important in the location

of thermal fronts :

- depth of the water column,

- strength of the tidal currents,

- distance .froth the thermocline to the sea door.
We proposed in Fig. 10 a shematic interpretation for cold water area

observed near Xeu island (09/15/78), according to previous results and

observations.
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a^

In this investigation, sea surface temperature measurements froth FiCMR

data were used for the examination local and coastal thermal structures

which had not been observed before from other satellites. Gold water areas

near shoals and islands were revealed. in these regions, tidal currents

in shallow water create a turbulence which destroys the thermocline so

that the sea surface of the Well-mixed water is clearly visible by its

cooler temperature, and is separated from stratified water by a transi-

tional zone where the thermal gradients are two degrees higher. Numerical

models proposed in the study of thermal fronts near Brittany and British

Isles can be applied to this specific case with a Fairly good fit.
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Introduction

Recent AVHRR and HCMR infrared images of the Ligurian Sea have revealed,

thanks to the improved radiometric performances of these .instruments, a

much more complex surface temperature field than one could infer from pre-

vious VHRR observations. The images exhibit mesoscale eddies and tongues of

colder or warmer waters, which give a characteristic inhomogeneous aspect

to the surface temperature field. This spatial variability captured on satel-

lite imagery has already been reported by DAHME et al (1971) and STOCCHINO

and TESTONI (1977) from in situ experiments.

NELEPO et al. (1978) argued that the temperature field in the homogeneous

layer is, to a large extent, subordinated to the pattern of the eddy field of

the mesoscale perturbations. Thus, the investigation and modelling of the

processes generating the horizontal singularities in the homogeneous layer

are an important and inseparable stage of the research into mesoscale varia-

bility of the ocean that has developed with the employment of remote sensing

techniques .

CJith this in mind, and also with the intention to better assess the mooring

positions during the DYOME in situ experiment (the DYOME experiment is a

part of the CARP Med-Alpex program), the C.T.A.M.N. entered upon a statis-

tical study of-mesoscales eddies detected in the Ligurian sea.

inventory of mesoscale eddies detected in the Ligurian Sea

AVHRR scenes were used, along with a few HCMR ones. All data were geometri

t

L
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cally corrected in order to obtain the same projection for the different

images. No filtering or smoothing was applied to the data. By displaying

the data on the interactive processing system TRIM of the C.T.A.M.N., the

central axis and diameter of the eddies were determined, and stored with

additional information concerning date and rotational, direction (cyclonic,

anticyclonic) of the eddies.

out of seventy-five cloud-free images examined over the course of a year, 	 V

thirty-nine exhibited mesoscale eddies (52 %) and the total number of eddies

detected was eighty-nine (table 1). Note, that the frequency of anticyclonic

eddies is three times more numerous than cyclonic ones. however except for

May, June and July, the montly samples did not contain ;enough observations'

to be representative of the situation. The diameter of the eddies ranged

between 20 and 50 km with a mean value of 30 km, and was independent of the

rotational direction.In figure 1, the central axes of the eddies are plotted.

one can notice that most of the eddies are located south of the midline of

the Ligurian Sea oriented NE-SW.

Discussion

In the Ligurian Basin (figure 2), the general circulation is cyclonic in

the surface and intermediate waters. however currents from the east and

west of Corsica merge north of Cape Corse creating instabilities in the

mean flow. Eddies are generated to either side, with the predominant number

being produced N.E. of a.line joining Nice and Calvi. This result is close

to SALUSTI's conclusions (1979) which were based on the work of Mc CREARY

and WHITE (1979). It is likely that the presence of a sand bank in the tra-

jectory of the mean flow contributes to the distribution and complexiy of

the eddy pattern. Unlike the Gulf Stream meanders which tend to produce

k	
f

sl

u

^E
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anticyclonic eddies north of the current and cyclonic ones south of the

current, the mechanism generating eddies in the Li urian basin appears more

anomalous. To achieve a more complete understanding of the phenomenon, wind

effect, .residence time, and displacement speed of the eddies must be examined,

t

J
F
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Month Images
analysed

Images with
mesoacale

Number	 of	 eddies
r anticyclonic cyclonic total

eddies

January 1 0 0 0 0

February 7 5 1 7 8

March S 3 5 0 5

April 6 1 1 0 1

May 13 5 7 4 11

June 5 3 4 0 4

July 9 7 13 3 16

August 9 6 15 2 17

September 7 5 11 9 20

October 3 2 4 0 4

November 2 0 0 0 0

December 3 1 3 0 3

Total 75

1

39

1

66

1

23

1

89

1	 1

iti

Table I - Summary of mesoscale eddies detected through the year in the

Ligurian Sea.
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Fig. I.a - Location of mesoscale cyclonic eddies
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Appendix H	 ORIGINAL PAdE 1
OF POOR QUALITY

The oO.ZOwi, g t--"4t.i.ng gave the date, .ide tti.a.ica ti,i.on and Zoca ion o^
centea o6 image o^ HUM scenu tece.ived 6 Lom NASA by she Pn.incipaZ nvu i.-
sa on. The Wti cotmn "E—wi ll give the 6ta,: oa tile connespond,., nq d4i,	 , •

•	 data

- R : %eceived
- IR : neceived bu,t noti neadabte

* C nequu-ted but not nece.ived.
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237 10JUN78 45 - 13170-1 36.16N 4.355

234 - 10 J UN-8-45-1312 -2a ^	 .	 _.36.. 76N M	 35+~	 ^.,4,	 . p,	 9,....:.,235 y' f 10JUN78.......• 45-13140-1 42.41N .,, ?,46E..,	 ,	 ,	 ....
23610JUN 1 8 45-13140-1 42.41N 2.46E
237 1 nJUN1 78 45-13 161 --1 48.46x; .4nF 307 R

-.....238 10JUN-7 8 -45-13160-?	 46t4 -_	 ;40E,---- 307,- R.
d	 239 10JUN78 45-13180-1 . 54.47x3 1 .526

24 M 1OjU1; 7 c, 45-13V-'!-? 54, 47t: 1 .52>;
241 111UW7 3 46-13310-1 35.45N .16E 313 R	 1
242 11JU1. 78 46-13310-2 35.45M .166 313 R	 t
243 11JUNF 46-133?0-1 41,SOtd 1.29E 'b3 R
244 111W,ry B 46-137,73-c" 41.50t. 'I.271; 363 R
245 11 JUN''8 46-13340-1 4 7	 55N 7.33tJ 31-3 R	 t
246 .: 11JUN78 46-13 3.4 0-2°_47.55tj-._ 3;33td 13 N_ R	 x
247 11 JUN*76 ._,._. - 46- 13360-1- 53.57t3 h.0411	 : C {
248 11JUN78 46-13760-2 53.57N 6.02ty r
249 12JUN78 47-13500-1 42.12N 6.13W 355 R t

t	 -- -	 ..2 5 (` °--1 ? J U M 7 8,.. -4 -: -13 5 n 0 - 2 -..,. 4 .2 . 2 K---A 13 W---  ___	 ti

f
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,,,„\ • + • R`	 5, ^ . ^ a 	. _i Sa 'A5*m.. 5,.. ¢5\^.,.:^^^:\l}•..s.51y, 1515 • .aaf!\f.>\sR\AS,R. <.!5- • >	 a>1.•a4,,:{a.^5\5a.ff, AkMq 1,>*,\\".55.5155.,,^4A4 . 4a5i54's. _.\. ♦

f*t)O * DA TE IDE14TI PIC 1TTON L OCATION Sf,EN» DDG C-TAT
5+:	 •w--r.w ^. rw-.^w •^ -ww-wrr.r--w-f^`+r	 "m-w.--r.rrw	 .--.------w-------

RRR 1x RV• 54K	 5	 1.2	 U.1±t,7.8\>».,^„^4,7..1 3S? 0-1,.,e>, r̂ Fear16^t5ei.;.,	 .1.7tJ-.^,^^^1`?'^;ta_:AV..'^.`.`_ 	 355=.•.	 _^	 ,.,,.

252 12JUN7 47-13520-? 45.161x: a,R^s,17t;	 .. •555 ,
5	 251 13JUN 78 48- 1370-3 41, 1 6N In. 41E 354 R

254 13JUN ;,8....,.,..-..-49-	 3110-3 .. ,, 52.49N .:s_	 a a, 2814
255 13JUN78 .. --,48-	 31 ' 0-3,• 46.4 60) 11.511	 .,,SR,,,,,.5„5,.,•.,5.5.5 •,a5l5„ ,,,.

25Cl 131ufl7S 43-121,0-1 55'P. 6M F.248
257 13JUM78 ... 45-12150-2 55 i 26N 8.24E

25? 14JUN'78 -49- 124 Q 0-1- 40.04N 38E-.
259 14JUN"4 49-12491WI-2 40.14.1 9.38E

2.6 0 14J Ut,7S 0- 1?511 - 1 46. n9m' 7,40'Ki	 >,
261 14JUN78 ,	 49 . 12510-2 46,09N 7.40E~

.,. 262 14JUN78....-4,9 -125? - 52.12 N- r.5, 20E
2611 . , 14 J U,, 7 8a.,,- ,,,4 q,.1 2 5 2 0.. 2 R.S.-5 2.12" ..,... - 5.2 0 l:
264 15JUN78 , - SG-	 2000-3 55. 4941 7.03E	 ^

265 1 5JUN78 5Q-	 211n-3 49.47N 4,25E
,.a 266 .,-1SJUN78--/----5n-.2120-3- 43,42N-, 2,1GE^..^...^.^..,....^.^^„

267 15JUN78 50-	 "140-3 : 7.15 N .26E:
267 15JUt.73 gn - ",3t ^0-1 40.051 ! .u3L 355 R
260 1 51Ur; 7 8 Sn-13n71-2 4	 5 1; 5.03E 755 r

15JUN78-. -5C-13100-1 - 52.13-S 1 ,46E	 ...
271 1.q Ju" ^3 5f'-131 tl,1-2 52, 131, .46E
27? 15JU`,78 50-131,10-2 53.101 2:1 CW'

•	 27' 14,JUN78 51-	 2?70-3 56.20M 1.44C
274 16JU	 78 51-	 21?0-; 3,5	 n 7 N T . 59 vw 3p7 2

2 75 16JU :7u 511-1 3214 1,1 S7. n0N 1 .,23[ C
27( 16Jt^':^u 51-^3?t." -r 3 	 ".. y ; 1.2 z C
27' 1610 "3 51- 13261-1 43. n6M , 26E:
27F 16JUN-3__-- --51-13260-2 43..16 t .26G
279 16JUt, 7 3 5",-132"0-1 49.1 ON r .34a
24^ 16JU aO-? 4 9 .1 ON 7.34t^

.	 281 1'JU`^'8 5 - 245n-3 55.38h ?.1ow
282 1 7 JUN 7 8 - __ 52- 2470 - 3 4 9 . 15N 4.47
283 17JUN73. ..	 52-	 2490-3 41 . -11 N 11.55;•)
224 1 7JU1`178 52-13410-1 37.35M 7.2ntt I
285
28 6

17JUM78
1'JUIN78-5:1-

52-13460-1	 49.45N
13460-?.,-49.451.-

7.20w
,^^^,20.J.-

287 1Piutl ; -- 3 5?-•	 3x,50-3 51.35;1 ^.33;! 354 R	 {

2f,8 1cJUt;.B 5	 3060-.. 45. 11 P1 1	 .5 0,. 354 R
280 1A JUN '8 53- 11070 -1 46.05► I A . 3 4 W .705 R
29n 18JUN78,..._---53-14030-R-- •46,n5^t -1o.34tJ.:.._-.k_-- ....,..---'05 .	 R	 [
29` 4 15JUt.73 53-44n50 -1 52.n 9h I 	 54: 305 R	 rr

292 1SJU": 7 8 53-14n5J--2 52. 09N 1?.54'.t 305 R
293 '19JUt , 73 54-	 147,- i 45.45x1 p.582 305 R

._.	 , 294 19JUN78 ---- 54--1490-', 3 q . 4011 7.02r 3n5 r%
„	 295 19JUIN78 ,,	 54-12430-11 42.46N 1h.16C 294 R

296 1 0 JUN78 54-121410-2 42.46N 10.16E, ?94 R
a

297 1 0 JUM78 54-12450-1 48. 51 N F. 1 0E
2944 1 0 JUN-7 8 ----^54-12450-2 _.48.51h
299 19JUN78 -,,,-...54-124711 .. 1 , 54.531.! ...,	 5.35E . 321 R
300 19JU1-1 7 8 54-12471-2 54,534E 5.35E 321 R

i

t^	 is
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1;0 DATC- -	 IDENI TIF;CATION LOCATAION S r. C- I'll E	 ODE	 4!TAT
----------

301 20JUN78 55- 2030-3 52.43N --7.05E
302 20JUN78----55-,-20,30-3-.-52.5$N---7-.11C- ----.-----296 R
31.) 3 20JUfv73---,- 55-, 2040-3-•52.00N- - - 6,46C .......... .	 .... . .
304 21JU N7 8 55- 2050-3 46.40NI 4.43C- ' c
305 20JUM78 55- 2050-3 45.56N 4.27r-
30A 2rJU y 78 55-	 2050-3 46.54N 4.47E ?,96	 R
30 20JUN73 -40
30,1 2 0 4 UN7 8 55-	 2070-3 4 0.. ?) 4 IN ? . 4 3C
i 09 2 A 111 P,73 5$'-	 2070-3 :59.49N 7.30E

-3 10- - 2 0, 1 U 14 t3--- 5-5-1 3000-1 ..,...39	 1y0 N---6- ,i 50E
39'. oofl . ...... h. 5 0 C.

312 2 P, 4 UN 55-13020-1 45 , 05x': 4 .55C 295	 R
313 20JUN •!8 55-13020-2 45.05N 4955E- 295	 -R

2 9 5 .-- . - . R-
315 2NUj'v73 55-13040-2 51 . 1 ON , P . 39r. 295 -	 , R
316 21JUN78 56-	 2210-3 56.11N 4.04E
317 21JUN78 56-	 2270-3 50.09N 1.26E
318 2 1 J U N	 8 56-	 221.0-3 44. 0 4 N .43E...
3 1 9 2 1 J U t )"? " 56-	 2260-3 37.58N ?. 3 4 'W 295	 R
320 21 110178 56-13180-1 36.42N ?.55E 55	 p
321 2,,, jw., ?8? 56-13180-F 36.421, 7 .55E -) 55	 R
322 21 J U,' ,,' 71 8- -56- 1310 0-1	 - . 42.4914 1 , 0 7 E -	 ; 55	 R
37" PIJU', ;73 56-13100-R 42.49t; !.07[ 755	 R
374 P 2 J U 1-. -8 57-137ro-1 35. ^ 2N • I.10111 121	 R

325 22JUN- 7 8 57-13750-? 35.02M' 1.1061 i21	 R
326 2 2 1 UN ; 8	 b. 5 71 -137 7 0- 1 . 4 1 	 11 8,' , l x.56,..,
327 22JUN78 57-13370-2 41.03N 2 ,56W 
32,11 22JuN78 57-13390-1 47	 1 It: 5 8 Ul
329 22jut'78 57-13', 91-? 47.13N 4,58,1
33 0 2 2 1 U ,'-; 7 8 57-13400-1 53. 1 7N 7.23W -
331 2 P i U N 7 8 57-134n0-2 53.17N 7,23W
332 23JW, '3 53-	 2590-3 47.494 8.34W
333 21 JU II'1 8 51-13550-1 41 .11N 7.30W
33 4 2 1 JUN78-58-13550-2- 4 1 :11I H ?.•-3 0 W--

335 23JUN78-,-,,,-58-13570-1 - 4 7.17N 9.31 W . .... .....	 ...... ---
33 0 ?3JUN78 58-13570-2 4 7:17N I? .31W,
317 24JUN78 59-	 1410-3 42.31N 0,22E 322	 R

.... . 338 . - 	 24 1 UN78	 9--1 4 7 0-1 --- 30 . 74P1 . -.. R -
339 24JUN78	 --59- 3160-3 5 2 . ?, 2 IN 11 .20W.-
340 24JU , N* *7 3 59-	 31P0-3 4 6. 1 81;   1 ", . 4 0, W'
34" Z4JU N 73 59-12370-1 42.34N 11.47E 322	 R
342 2 4 1 UIN 7 9	 - . ..50_12770_2 42 . 10; - 11 . 47C 322	 R
343 Z4JU1473	 ^59-124oO-1 54 . 4 01 f4l 7,07E 
344 24JUN78 59-124oO-2 54.41N 7.07E
345 25JU"178 60-	 1560-3 54.26m 1.19E
346 -25 JUN 78-60-••-1580-3_ 48 ;.23N-----6 -i-49E----------
347 25JUN78- , --- 60- 2000-3 42.17N- 4 . 45 r;
34S 25JUN-8 60-	 2010-3 .5 6.11M' p.59E
349 25JUN78 60-12540-1 41 6 16N 7.39E
350 2 5 JUIN78-	 -60-12540-2 41 .16N -_.-7,39E -,_._.,

I
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*NO* DATE IDCUTIFICATION	 LOCATLON	 SCENE DOE	 ETAT
------------- w --- --------------

5 J U M

352 ' 25JU1"78
.

-60-12560-2 - 47,21N 5 :`3 BE
353 26JUN 7 8 61-	 2 ,160-1 49.14N 2,34E
354 P.61 LJ ?478 ,...61-> 2 170-3... 43	 1 ON 27C
355 ?.6J U,% 78 .... . .,,,.61- - 21 90-3    37	 ol N R
356 ?6JUN 4 6 61-13110-1 66.$5N 4.21E 322	 R
357 ?6JUN73 61-13110"2 36.55N 4.21E 322	 R
356 P fl, J U N 7 8 61-13110-1 4 3.01N 2 ,3 2 C
359 26Jum78- 61-13130-2 43 .01 f, 7.328.. 
36 A 26JU S!"7 6 61-13150-1 49.06M 7.25E
361 26JUN 17 8 61-13150-2 40	 06N ? . 2 5 F'
3 6 2 ?, 6 1 U N7 8	 6.1- 1 3 1 6 0 m 1 	 5, 5 r0 8N ?,•1 0 w 358 
363 2 6 J U Ill 7 8• 6 1-13 1 6  0 - 21 5 5 . 0 8 N....., r	 0 W
364 27JUN78 62-13790"1 35.0 11~ 1 9r, 322	 R,
365 27JUM78 62-13?90-2 35.^1N .19E 322	 R
366 R - J U N 7 8---- 62-1-3300-1 - - 41 .08N 1.25 4 
367 2 7,1 U N 7 8	 62-13300-2 - 41 .08N 1.25 W
361 25JU N!78 63-	 25 A O-3 9.3641
369 PIJU"73 63m	 2530-3 45.12N 7,5214
370 RfO JU476 63-13490-1 43. 33N A . 61+ 6W 323	 R
37 4 26JU I:"S 61-13 4 (70-2 43	 7, 1N 6. 4 6W
372 P 9 1 U-!' 7 F 64-140SO-1 44.4 1N I	 qQVI
373 29jUN"S 64-14080-2 44.41N 11.40W
374 10JUN"8 65-	 15no-3 54.n7t. 1rl.39c
375 7, -" i U' %, " 8 65-	 1510-3 41.491r

.
 6.0 8U 305	 R

3 " 6 1 ,,
" 

1 u 11 . / 8 65-	 1550-3 55.533 4 . 23'-
377 3(' j Li W7 3 65-12470-1. 39 . ?2N 0. 43E 
378 30JUN78 - 65-12470-2 39.22N 9,43E
379 3 A JUt-i73 65-1200-1 45-29N

7L 47E
38 A 3-NU I ;"4S 65-12400-2 45.49% 7:47C-
36 4 '4 JU L -1 3 66-13ASA-1 38.101: 9 . 3 ^ F c
382 1JUL73 ---66-13050-2 38.10N 5.300 c
383 1 J U L 7 8 66-13080-1 5 0 . P I N 11	 25C
384 1JUL"8 66-13033-2 50.213 1.25E
385 2JUL78 67- 2270-3 50.36N .02E

---3 86--2 1 U L-73---,67--2 2 10-1--44 .-3 2 N----ri .-0 9W---
387 2JUL*7 8 67- 2300-3 SC.26N 4.01W c
38r, 4jug -8 69-14AIO-1 41.13N 0,051•
389 4JUL78 69-14nnO-2 41.18N 9.054
39 ^ 4JUL78	 69-14450-3 28, p7.s - 1 6 ,p . 0 5 E 363 -	 R
39 A 4 J U L 7 3 69-14473-3 29-275 10.05 r 3

392 5jul- 78 70-	 1400-1 43.161;
397. 5 J U L " 8 1460-3 42„9t; 7.49t
394 5JUL78 1470-1 . 57.10N 6.15f:

395 5JUL3 70-- 1480-1 .56 - 23N, 6. 0 2 1
396 5JUL78 70-12410-1 43.01N 11.08E 3152	 R
397 5JUL?8 70-12410•1 43.14N 0.58E
398 5 J UL 7&-711 -1 24 1 0-2..-.. 43. n 1 N-1 n^. 08• 33 2  -	 R
399 5JUL73 .... . . 70-12410 -2 43.3411 9,58E
400 5JUL78 71 0-12450"1 55.09N 53 ,25rl.-
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*NO*
x,w.a!" stv= ^+s.»sr^rs

DATE, .
reM'sxp "sr„--a.^.^:1 es	 Y..	 c- i.RAta>'

I0SNTlFICATl0V
r.::.Cx'^ttFrn.A: .We+^a^Mwnr^ls.y lw+vxo^w.c	 €':»;.a. . e .:r

, 0CA T i01r	 5r;k14E-
,.
.10E 8T.1T

----------w-.r...n..-----w. ------►.rr^wo. «^^r..w-----rwr^^^r-r-•
401 5JUL78 70-12450-1 55.4 ' 1N 5.08E
40 P _.>.	 5 J U L 7 & -7 0,127 0 , 12 4 5 0-2 - - 5 5.0' ON -5. 2 5 E

.	 403 .55,41N ...... .?,,0 8E ..._...,e..,,,, 	 „..,..><, ..,.	 ,,..,.,.....,..
404 6JUL78 71- 2020- 3 48.26N 5.17E
4n 5 6JUL78 71- 2040-3 42.22N ?.13E 305 R 1E
406 6JUL78"--- . 71-	 2n60-3 36.1614- ,-1.27C-
407 6JuL78 .e,,,,.., 71 -17, 570-1 =e-J 6, .10N-,•- •4 .7 it33E	 ........... ,.;,....;,w..
40F 6JUL7a 71-'12570-? Sl.'1OP1 7.388 r

E	 409 6JUL78 71-125QP--1 4?:16N 5.49E 323 R
E	 410 OJUL78 - ---71-1250)0-2.°- 42.16N 5„ 4 9E .. T>^	 _ 323_ --	 R,-- t[`

.....	 411 ..,	 7 JUL73--tt.,.1 2....2210 ..3... 4 6-0 1 14 ,....,..	 02tw	 ................295 ..	 R..
41? 7JUL73 72- 2230-3 40.25f1 1.54W	 .,
413 7JUL78 72-13170-1 40.05tP -	 1.540 it

...^., _, . 41 .4 --'JUL 7.8 --7.2-13170-1--40 . 0 5 N-. ,--1 . S 5, E •- -..,.... -.. 2 4 5 = - - R i

415-- 7JUL73,,.... 72-13170-2 -40.	 N,	 .e,	 b4 .54E	 ....... j
416 'JUL78 7?-13170-2 40.05N 1.55E 295 R
417 7JUL78 72-13180-1 46.14"1 .03E

r	 41£ 7JUL"J S 72-13 130 -1 46.11N .02E 295 R
419 7JUL78 7?-131RO"R 46.14N .03Ff	
42G 7JUL78 "'-1 3 1F0-22 46. 11N .02E 295 R

^4. `^4L 84 ^.T-	 2 7" "-7 ,	 3  mss=^.1 {
422 'JUL-,8 73-13:150-1 40.53N ;!.50'x1

.	 423 m JUL'3 7i-13 350-?, 40	 53M 5
42'4 JUL-i3 "11-13360-1 46. 5 9 "+ 4.« 51 ,1 1796 ^11
415 !JUL7A 71- 137AI-2 4 6. 59x: 4.511 P96 R
426 1 n JUL78 75-	 11 Q,0-3 42.!ON '?.21E 296 R
427 1 A JUL78 75-	 1410-3 .56.14h 7.35E 296 R
423 1f`JU08 75-127,50-1 45.12N 11.11E 323 R
42 0 1AJUL78 75-14f50-2 45.02N 11.01E 323 R
430 1nJUL'13 -	 75-12370-1 51	 7N .46E
431 1CJt1L73 75-12370-2 51.0711 A.46c:
432 11JUL"3 76-	 1540-3 52.19M P.27E
433 11JUL78 76-	 1540-4 46.30N 5.57E 353 R }
434 11 JuL78----- ,-76-°1540-5 46,;30N 5.57E	 >- _ ?51	 ..,, R

;s

A

435 21 JUL`1 8 76-	 1540-6 46.30N • 5.57'c	 ...352 R
436 11JUL-8 76-	 1540-7 46.3011 5.57E 352 F
437 11JUL78 76-	 1540-8 48,53(4 1.44C 353 R
438 • 11 JUL78...., -,- 76-- •- 1550- 3 49.03N . 7.04c
439 11 JUL 7 3 76-	 1560-3 46.26x. ^6.07c

_	 440 11 JUL78 76- 1570-3 42. 591: 4,58r- 296 R,
44 1 1 1 	v8JUL 2	 -7^i-	 1 s,,.. !}	 3 ^	 M4..22., 4.10E 63	 3 R .;

_.^ 44? ,-11JUL78-­76---1590-1 .	 16.53N ,.. 10 296 •	 P
44' 11J4 i_72 76-12510--1 40.33t' '. 5 P. F 3?3 F
44.4 1 1 JUL 7 8 76-1252 4 0, 52 32 3. R
445 11 JUL76 76-12530-1 46.40N 5.54E

---44 6   %w-11 J U L 7 8 ..,_.._._,^ 6- `f 25 30-2---46 	 0 N • --•-•-3 5 ^+ E.-.^.- ,.^. 	 ,
,.	 447 1IJUL?8 ,76 - 12550 - 1 52.4311 „ 3.32E-

44,8_ 11 JUL78 76-12550-2 5?,.43t 1.320I'	
449 12JUL73 77-	 2130-3 51.37N 7,,.33E
450 . 12JUL78-•-•^--^-7	 - .2140-', 45.3444 1.17E... 296 R }

g
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*too* DATE: IvCt TIFICATXON LOCATION SpENE DDE CT'AT
.
A

.-.^..n ra.^^,
r
w

[
r

^
w .errr,r^^ ..^

il
r

/
w rw

{
.w,^r^

t
r..w..nwr.^wpr

'r( r)
-•

NKSS-i•s\,,. 4 5.1.. 1 2JUL7
^.

{
r

}8...,- ,..x.	 ,7x.!e,.2.1.UV'^J•.K.K•

r..^wr,..^w-r..^
+*' '
.

(
r
^[^ fir!

+.7.7,Z^^a.,a,>..ipe l v7. :/ . G.. ..KCRy.,..lt-M4taa\wt«,axKKi«s4 T. G7'....K,,,,,J!•.,•a

(w^r^e.
D

.

452 13JUL7b 73-	 2314-3" 51r0t •56C
453 13JUL7^ 78-	 23.20-1 45.42N 3.13W 322 R
454 16JUL78= .Y. , 81- .,,1500 - 3 -45	 n 8 N	 e,.:==-7.15 E 3?3a R
455 16JUL78 ....	 31-	 1510-3 ..,. ,S9004' ..-	 5.2?E	 .K,,.	 K.,, = . •,••	 323 ..	 R
45c; 17JUL7$ u2-	 1540-3 InON .00; 4
457 17JUL78 82- 2M60-3 51,24N -5.02h.
45" 17JUL 7 8 a82-	 2n80-3 , 45.21N 2% .4"1C 	... 297 R
459 17JuG"8 ate,-	 2nap- t 59,17N .530
46n 17JUL73 82-13020-1 39.72N 5.1511 C
461 17JUL 7 8 82-13n20x-2 39.22N 5.15E C

., :.	 ,467 ,17̂ JUL 7
.

3
1

.--....82; 13
A

4
O

-1 --45 .. ? 9
N

, r.z^, 3,1
^

 9r	 ,.,„	 .K_,^a.=	 ......, .t	 g. r, .
'.SS\, SR,.•SfS i463	 x K 11 R j U L~ 3 --- ,,-- , 8 2 - 1 3 040 - Z     •	 a.4 5 ,7.	 N-4%1-1113'! 1 9 E .	 .... RK xf^\k\,451,4•.... \.. K\	 b,Kl^K! 1S'	 C%' x

464 17jkjL78 $r",-'13060-1 51, 153N 1.02C-
465 17JUL78 82- 13 060-2 51.13N 1.02t-
466 18JUL78.-., _ ,	3-• 2270--3 ., 39.41N 3.39w	 a	 .$ ,	 a >.	 ,.,
467 18JUL78 e,3-	 2440-3 51.2? N .29C
460 PINUL78 85- 46.39N 1 ^,22N'
469 7 g JUL73 86-	 1450-3 S6,1ii"x 6.12E

•	 47n 71JUL?g 86-12380- 1 42=55N 1n.178 197 R
471 ?1JUL78 86-12780-2 42.55N 1A,17C 297 R
4'' ??JL)L78 u'p-	 2 n!11- 3 47.^2N l..59C
47? 22JLIL"3 7-	 2^20 ., 3 4 n .5ut, ,0r?E G
474 23JUL-8 88-	 221w-3 40.08"` 1.47N
475 P5JUL 7 3 9n-	 2530-1 51,47 1: 6.47w 324 R
47E• 7 5JUL 7 9n-	 254^-7) , 45.4 ► "^ ^.f)4' ► z24 R
477 26JUL78 91-	 13?0-*3 41.t10R 814E 297 R
47S 27JUL 7 8 92-	 1510 - 3 b4.78N 0,41C-
479 2'7 JUL7A 92-	 1530-3 48.27N 1,11 r.
48 n 27JUL78 92-*	 1540-3 42.23x; 13.070 307 R
481 2 7 JUL 7 8 97- 1560-3 :6.4 g m 7.20E
43?. 24SEP78	 93- 2090-4 . 41 -41N Aa03E,--- 329 > R

,.	 483 24SEP78-.K 93-	 24F0-5 41.41N 6.03E .,.K 329 R
484 24SE?78 93-	 2080-6 41,41:N 6,03E ??,6 R
485 24SEP79 93- 20PO-7 41.41N 6.03E 326 R

_	 486 28JU L	20 8 0 - 3 . 41 . 05N -	 . 11 E ,,	 „w..,K	 ._.._ _.. 329 R
487 28 JUL 7 8 93-	 21 ^0-3 50.54 « 7.352
488 23JULIS 93-	 212D-3 44.52N 1, 22C-
489 ? SJUL7^ 93-	 2130 - 3 38.47N .30E
49r 2AJUL73 - 	 93-1306n^-1 57, n3ta 4, 29 297 fR
L41 2"JUL ., 8 , ...93^-13nf^v-2 .5	 A"j'A^ 4.29t:.. 297 R
497 ? ! JUL 7 8 93-1.3n;^-1 43, 1 1"' 0.40E 297 R
493 ?SJUL78 93-13070-2 43,10N a,40E 297 R

... 4`94 2r3JUL78 „. a	 93-, 13rn90-1 . ,.49.14N	 ...4 _	 ,:33E	 ., ...,,_._...:... ,,: 297 R
495 28JUL-3 93-13000-2 49.14t: . .33r 297, R
496 ?8JUL73 93-13110-1 55,17M 2.ov-;
497 ??JU I,7 8 93-13110-2 55.17N ?.014!
498 2 9 J U L 7b, 94..,- 22, 0-3 - 51 . 50N 324_ a R'
499 29JUL 7 8 ..	 ..94-	 2290.,3 .• 45.48N .,?,49;,1	 ..	 ,_	 , 3 24 R
SO(! 29JUL78 94-13230-1 Sb.o	 N ,16

i
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501 29JUL78 9 4 -13 2 30- 2 S 6 0 0 N
502 29JUL78 , 94-13250-1 .. 42.07N--..-1	 ^9w,---.

29JUL78
' 
il-eclq w .......	 ....... ...	 .. ..

5C4 *"29JUL3 94-13270-1 48. 1 1N 7,	 4 W
505 ?9JUL 7 8 94-13270-2 4 8 . I 'I N
506 - ;). 9 J U L *P 8-9 4 -13 ? S 0 -1,-- -5 4. 1 4 N-6,,. , O4 W---
50" 2 1N UL?a 9»-13Z80-2 - 54 . 1 0, 6 . 04 
5 3"' J UL"3 95- 2470-3 4 1 . 0 4;; 7.1 6W 
500 30JUL73 95-13430-1 42-46N 6.164)
51n
511 30JUL78 95-134,50-1
51? :50JUL ,78 95-13450--P 43.50N 8,7

513 3 1 J U L - 8 96- 3040-1 51.5 4 N 9.34W
514 31 JUL"1 8 96- IA50-3 , -' 4 5. 42 M	 -1 " . 15 2 W
51 .5 31 JUL78 96-12260-1, -50. 27N- -1 n . 45 E	 .. . ..... . .... . .
516 61 J U L I'S 96-12260-2 50.27N 1 11	 4 5c 

517 31 JUL 7 6 96-12p,,73-1 56,2SN' fi.n14
519 I1JUL 7 8 96-12290-?, 56.78N A.012
519 3 1 J U L 7 8 -96-14o10-1- -41 .1 3N I n	 1 7W -
5? t 1J U L 17	 4 4 1 .13 P Ir
52 4 3 1 J U L	 8 96-1 4/?0-1 4 7.1 8 N 17	 1 9*W
522 1 1 JUL 7 8 96-14t)7O—P 47 .181; 11	 19x;
52 "

*'
'tAUG73 q7-	 1470-3 43.46t, 7.11L R

5 24 1 A U G " 3 97"	 1 4^^-3 s7.421'; 5. 2 1E 

525 5AU37A 1^1-	 258"-3 46, A e'l Ir.13.4
526 7AUG78 101-	 15A6-3 . 42.59N, 4.01F
527 7AU078 101—	 1 5OC-1 36.54114 ? .,1 2 E
5 4' e 7AUG78 101-12521-1 39.5s.14 /1.54C.
579 7 A U ri 7 8 1 n-t :,1 2 5 7 AA 58h, 65 4 t
51A c'AUG7 ,3•- 104	 2140-3 49.55M 1.57E
53 11 4AUG78 104-	 2150m3 43.52N .12C
$32' SAUG78 104-	 2170-3 37. 4 7', 0 2 w
537 SAUG"8 104-13100-1 39.41) 7.25E
534 3AUG78 ---1 04-1 31 00-2 -39. 4 1 N ...... p	 2 5c

515 AUG 73 V1 4-13170-1 4 5 . 4 6tv . 29G
51(, EAUG I S 45.46N Pgc
537 9AUG78 105-13290-1 4 4 . 4 6N 3. 4 1 W
5 ! A 9AUG78-- 105-13290- P 44.46N ---3.411wl
53.9 9AUC,78- 105-13310-1 50.50,'1 5.55'x1 
540 A U G "1 3 105-137- 1 1-2 5 n	 5 o N 5.5` c;

5 0 1 1 AUG"1 8 107-	 1 7 70-1 42. 53N 1	 11 E
542 1 1 A U G 7 8 107-	 1340- 3 36. 488 — A 23E

543 11 AUG-3 107-	 3070-3 a 53.08.%- In . 1 7w
544 11 AW' g 107-	 3n90-1 4 7.07N 17. 41V.
545 12AUG v 3 108-	 1510-3 4 1. 31N 5.13E

----546 1 2AUG73--1 ()8--- 15 "? 0-1- --35 .26N.------i .2,8E
5 4 7 1 2AUG70' 108-12450-1 4 0 . 3 4 N F, .	 t7I 324	 R
54,0- 12AUG78 108-12"450-2 I ,t40.14 4 ,	 . 1C. 324 	 R
549 1 2 A U G " 8 108-12470-1 46 . '9; A . ? 1 324	 R

--550 ---1 2AUG78---1 08-1-2470-2---46 .-191v'---6 -21 E-- —324- R

'4
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t •a. ea e"'	 ♦, - i	 a	 : .eb, x,.x	 -.;x.ela ai.y` • ♦4 . 4X`»`rslf tai e, -°- - a •... eARl4 + cw•.n w.w ww) ..at4fw.,.l a.lf eiwfi aux	 e11 , 1a-.a••.Y•.eRL, a ssas,ti: , 	s,.,	 ^	 ..	 i a.,4ww	 wx^^ `tA a°r-see

*N4* DATE 1UENTXFIC&TION t,OCAT1014 SCENE DJE ETAT
Qw	 --r-^..-w . r.- .rur.^wsww -^^r-^^.a. ^r.

/♦

^

^/

..•.....„n.+^..«r..r..^^^^.....rr-^r.^-wwr...^w^.

-	 .r.. ^.,- ,55	 } ' e A.^A{}
.

^^RIM G7^rlty I/AlDe.^.A ^.r R.4^7^^^ei+s. 4f 1.^9^*' T
w.

AYAI'aM'• 2..^^,•a,A\lY.y^)Ye,c	 Fl 4^!. r. A1^AAu ,.. +w y),S m we^	 ^'9.. «,.._
55% 13A47$ 100- 2030 . 3 43.17N i 05E
553 13AUGM8 109-	 21n0-3 37.12N .33E
554 14AUG78 „=w..110-	 2270-3--4 2.36 N- .3, C
555 14AUG78 .. 110-13x10 ..1 40.n7tt ,..341:	 ..,	 . e .,	 ....w, ,, c
556 14A UG ^3 - 1 710 » 1 3 210-2 40.n7c .343,- C
557 14AUC 110-13220-1 46 .11tf 31w G
55A 14AUG78 11n-132?0-2- 46.1114 P N 31W.,.	 ...w C
$59 17 A U GA, B., h 4"x.-12"M0 -1 • 40.49t, A r, •5 4E .,.	 .....i,f.A,e,,,..... 325 R

560 17AUG'?£ 113-12 7.80-1 42.16H 9. 27E 324 R
56 71 17AUG78 113-712780-2 40.499 9.51.' 325 R

r^..,. 562 ..^ 1 'l A U G 7 8.,,-.:,,:-1 u13 ",.1 2"^ ', 0 ^- 2 --,62   ,	 c^ fi .w ,...r	 9 • ,^,	 L• ^.-^.M M,,.,.,..,...,.,.^ ,.,.,1	 '	 7	 ' k32	 . R_
,,., ,... 56';.. A 17 A U G 7 i 2 1 90-1 .4 6.5 3 N ..A... . 7' y 5 5 E.....eaAY.;A A4 Y 4N la w44„Y4lAlli4lM,lAAAxeas,k.A►Rl,ws

564 17AU078 11:1-12390-2 46.5314 ?,55E
565 17AUG78 113-12410-1 52,55N 5.31E 298 R
5618 17AUG78.°­j 1.1-124 1 0- 2 -> 52.55N.,..w,..5 o 31 C 298 • R
567 1PAUG78 114-1 255n -e1 37.48N 6.16E 325 R
50. 1 A AU076 114-12551-? 37.0N 6.16e 325 R
560 1oAUG78 114-125"0-1 43.531,4 1,.25h 793 R
57M ISAUG78 1 14-1257n-7 43.53N 4. 2.5E 298 R
571 IIAU078 115-	 ?170-3 lh1.58t: 1.35E C
572 1 g AUG73 115-	 ?"RC-' 45. 501 42 C
$71 19 AUG73 1 15-	 2 1 A O-'• 4 5.56 N .42 E 307 R
574 1 :AUG 7 8 11 5 -	 2?n0 -3 39,52N R , 39W
575 19AUG78 115-13130-1 37.321, 1,49C 325 R
574 19AU678 115-1313'„1 -z ) ,? 0 3241 1 ^49E 325 R
577 19AUG73 115-13140-1 43	 17h: .01E 313 R
57<^ 19AUG78 -	 115 -13140-2 43.1744 .00E 313 9
$79 1QAUfr73 115- 13160 -1 49.40h ?,09;1 313 R
$$0 19AUG79 115- 1,15160 -2 49.401; a.19 W 313 R

581 ? PAUGIS 116-	 2393-3 41.75P, 6.43t,'
582 2-IAUG78	 ....,116-133?0-eta.., 40.44x . -s	 't.38W--. ,.,..^..^...^ ^	 ....	 .:.
581 ?QAUG7$ . .. 116-133?0-2 ,. 40.441; a, 384;	 ...	 4w.,.	 .....
584 ?0AUG y 3 116 e-13330-1 46.49!; 5.37;:
585 20AUG78 116-13 t? 't 0-2 46.491,4 5.37W
586 ?OAUG73 , .. 116-13',50-1	 m_ 52.50I'll -R.00W
58' 20AUG 7 8 116-13350-2 52.5ON ,?.00"1,J
58; ?1AU078 117-13500-1 43.35; 1 9.044 325 R
589 2.1 AUG'8 117-1 3 500-2 43. q5N 9.04 ,j 325 R
y 9 21AUG78 117- 135PO-1 49.18N 11.131 W 325 R
591 21 AUG75 117-135	 0-? 49 38A 1 1 .13 14 325 R
592 2?AUG71 11?	 1340-3 45,16 N 77.47E ?9e. R
591 2PAUG78 118-X 12710-1 41.10k 11 .21 E 332 R

n:-z	 594 . 22AUG78..._...118-12310-2 ­41 .',OWN	 ----11 .21 2 3 ;2 - R
595 22AUG78 r	 x118,-12340-1. - 53. ,5N .53C
596 22AUG ? 3 118-12`140-2 53.35M 4.53E
597 23AU078 11 9-	 1510-3 54.52M 07.06E

..59,?,-e., 23AUG73 1.1 9--1540-. 3 .. -....42.4 -4 	_ x4.26;....	 o.^
"

,.. <»...
599 23AUG70m 119-	 1560 •-1 36,43N ?.388 . , 307 R
600 24AUG78 120-	 21.10 -3 47.109. 1 .22E

4
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*NO* DATC . IDENTIFICATION ...	 LOCAT1714',.,, CDC GTAT.
.° ...	 rrr-rrw-^w-ur-r r..r-, ,-..---r------`.---------------rte.- -----------

601 2 4 A U G 7 8 , ' 12 0 -	 212 0 •- 3	 ' 41 . n 6 N ; : . ,. 3 7 E
,> ...6p2 24AUG7 20-13060.1..,-,40.34N-4--2.>34E---Z07-R

607► 24rAUG7-1 ,,. ..1 2(1 M 13n60 - 2.. 40. 34N „ ,.7..34E.,..,„	 ,.,.,...,,.,.,,.,,,.307.... , R
604 74AU073 120-130aO-1 46.38N .36E '. 307 R v
6(5 2 4A UG"7 8 12n-13080- 2 46.38N .:16E	 ,,. 307 R
606 25AUG 7 3 .,. . 121 ^13x40 -1--40.43N -.2.01W G 
607 ,. .2 5 A U G 7 FS•„>,,,,.1: 21 -13 24 0 -.?.

A
„ 4 0.4 3 N .,,.., •7.01 W. d ..,,,^,.., 	 . ,.; .,....,,	 C.. ,..

60P 2.5AUG-8 .121"132,60 - 1 46	 47N 4.001.!
C

609 25AU G 7 8 1?1- 13 ?6 0-? 46.47 N 4.00W c
n..-610 -- 2 5 A U G 7 8 --12.1-13280-1-52..• 4 9 N._,.-.. 6,v2-2 W--
.,......	 b11.....2.5A^JC^7r3 „x,,:•,121-13?84-2

612 26AUG 78 . 12?`•• 134 4 0 -1 43.5ON 7,141) 357  P
61.1 26AUG 78 ..,,12?-13440-2 '4 3.SOP!°° >^.	 a.34G!	 ,>....,,.. 357 R 4

...,	 61 4 ..,.-26AUG78---122-13450-:1-.. 49-.•53R---	 4•31+	 .... _357.,..
61 5 26AUG7& .. 122-1 3450 -2 49.53N .... 9.431.J .. :157 R
616 27AUG"8 123-	 12A0-3 44 .15N 10 .58L-
617 27AUG S 123-	 1300-•3 38.10N 9.05E
618 22AUG78 -124-	 1460-3 49.26N 8.13E
619 26ALIG76 124-12419-1 39.00N 9.00EE
b2n ^	 7828AUG£ 124-12410-2 39.00N 9.00i
62 

A
?FAUG	 3 124-12410-1 45. ,)5N ?.&7E 256 R

6?e ?BAUG'?S _ _ .. 124-12430-2 45.n5N•- -7.07E	 _ .. ?98 R
6' z 2FAUG"0,, 12,4-1245'-1 51.07N 4.52E ?98 R

624 ZRAU6"8 1210-124$0-2 51 . ^7N •4.5;?r 295 R
625 3nAUG78 126-13180-1 4 P .44N .41C c
626 3 A AU078 126-1 31 ,10 -2, 4n, 44R .41V c
627 30AUG73- 126-132()0-1 46.47N 2.40W C
67P 3PAUG78 126- 1?1 ?n .1-2 46.47`s ?..40F! C ''
629 3fAUG73 126-13221-1 52.49N 5.024'
63n 3CAUG78 126-•13270-2 52.49N 5,02W
631 31AUG78 127- 24n1-3 50.15N 5.141•! C
4132 31 AUG73 127-	 2421-3 44.12N'	 • 7.26%4
633 3"AUG76 127-133,80-1 45.05N 6.391 30o R

:z.,s . 634 31 AUG P 8 .--1 , 27-13180-2 __45 ; 15N_	 .i 3 9^,1 .^	 ..	 308 R-
635 1SE P78 .. •126-12c :1 0-1 $6. ?3t3 8.22E
6s6 1SEP'1 8 1221-122 7 7-2 5 6 . ? 3 N x.22 j
637 1SEP 7 8 123-13550-1 41.23N 1n.0214
638 .....1 SEP78-•_._,128-13550-? .,_. 41	 23N-1 n	 a02C,I .. ^ _ _....,. _...._.__.. ;,,.._.._._	 ..,_
639 7 S E P 7 8 129-	 1410-3 45.?2N-• S 06C 299 R {.

64 P 2SEcP78 1'29-	 1470--3 59,17N 6.11E
641 PSE?P78 12?-123"0-1 45. a9N 8, 19C C A -
64? ?SEP - 5 129 - 12370-' 45 .?9N -	 Q.19E	 .. 0

64? 3SEP'78 • 130-	 1590-3 42.55N 2,,41E
644 3SEP73 13C-12540-1 :58.57IN -5.48E
645 3SEP?8 130-12540-2 8,57N -5.4cE
6 4 6. ,..^.5EP3	 *78	 ,_°._1;30-12550-1^ 45.01N _^ ? _^,54 E ' R	 ,.
647 3SEP-? 8 . ... 13	 12550-2 45.0114 'i.54E	 ,. 303 R
648 3S EP I S 130 -125?0-1 51 . n4N 1 .39E 7408 i R 1
6/0 3SEP78 130 -12570-2 51.n0l 1.39E 308 Z

650- . - .. 45_EP73 -131 - 21.50-3 51.40N -	 1 . 19E 7,08 R ;4	
4

t
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*NO* -DATC- IUEN1'iFYCATION LOCATIO14 SrENE	 005 ETAT
--r-.

S1 ,4sC1'78.,, .,1.31-	 2 17p." 3... 4 r̂ .3 7r1,, 8!".,>~	 A\\	 \^^,^` .\,♦ 	 ,.,,.\.	 .
•	 652 '^Ss 	 7S :. ;	 3	 ,-1	 "-	 ?-344-3 50.72N '.49W	 .

653 5SE1478 132- 2350-3 44.18,N A.02W
654 5;S E P78--.._132-133 0 0-1 39.14 M . rv .,.z.32 W« • ,.^	 ..,,.._..^..,,-	 >.:a.^,^ ^.,

..aa,...,	 655, ...,55UP78,...,.,132-13300-2,-. 39 .34 11 -, „ 3,.,
656 6SEP'18 133--13400-1 43.30N M .?Oad k	 '
657 6S0^ 133-134 90 - 2 µ3.30N 9.2OW	 ,, ....
658 7SCP.8 ---134-	 1370-3 35. 79N (,.31 E ...

€ 659 7S L IP 73 .134-	 309.0-',5 53,38N 11,36W
f 66m i' SC P 713 134-127,;10-1 43,44P1 1"..16F

661 -	 SEP78-- • 134-12300-1 43. a19M 1 ^. 21 Ei	 :;

'' 66;1 -7 S E P 7 3, -1,34  -' 2 1	 -1	 .fi0	 2 43,?9N 1n.21E-
663  . ,,..7 S E P ^ 3 3 4-121,  0 0. 2 .,,1, 4 3	 4 4 N,-, I o , 16  F,.! ,.	 ,..,w . w, ♦..,:, ♦ 	 ..,...,..,,..,. ,.^,.,,a.^ ^,
6 ,64 7SEP78'- '' 134-12?,40--1 55	 '1	 4 5,35L`•'
665 7SEN"8 >134-127,40-1 55.471 5.298	 ,.
666	 .-- --7SEP 7 8 .13f4-42340-2
667 7S1wP7&a.,.,,,.134 -1234fI-2	 55.32N ....	 . 5 ,35E. ...... ,.,.,l,...> .............. .
6^? 3 S k:F' ?8 1 35-	 1550-? 36.0^1 .15E C

'i 669 FSEP"8 13.5-12470-1 57.32"1 ^.35C C
67n 8 S E P 7 3 .., 135-12470-? 37.32N .7.350.., C
671 FSEP78 135-12490-1 47	 17"1 5,44F r
674 stSEf,;,8 135- 12490-2 43.37;+ 5.44E C
67 z ASCP73 135-12560-1 µ9.4O) "t.35E

671, FSE1"a 135-12 F On-2 49.471, 1.35E
675 9SEP78 1316-	 2100 -3 46.4114 .44r
67(+ '?sp	 8 1 36-	 21	 ' 4	 1 ,1 ; , 14W
677 9SEP78 136 -13050-1 S6.!V' .17E C ^	 1
67S 9SEP78 • • Y 136-13050-2 0.12N1 2. 17E C
67 0 9SkcP781. 136-130''0 -1 42. ,711 1.29E: C
68^ 9SE^7S 136-13n70-2 4? .'1.11; 1 .29E C
681 9SEP78 136-13n80-1 4S.40^1 .35E

1 68? 9SEP78 .. 136-13n a 0-7 49.4ON .35E ^	 1
683	 • 1 OSLr7a 137-	 2-290-3 44.17N 4,32'x'

F 684 IISEP73 137-13240-1 40.06ti 2.'18w I
( 685 1 ^SEP78 137-1 3240-2 40. n6"; 2.18W }i

-686-1nSEP78 -----1,37-13260-1- .._ 46.ION -4.14W. 1
68,7 10Sb")78 137-13260-2 46.1 ;,x1 4.14x, C
6V 11 SEP78 13F-	 2460-3 5C. n7r, 7.074:

R

[ 680 12SEP 7 8 139-	 I?QO--3 42.43. a.59E 1
69n._...,12SEP78,-..r,.,139---.130'0..3.- ,36.414.., R.11C	 ....._._-.	 ^..	 .,
691 13ShP7(-:%

.	 140-	 14	 n5	 - 3 51 . ^ 51N s1. 2 fi E
692 14sCf) a 3 141-	 2n>0-3 «1 .3811 .22E	 309 R
69 14SFP78 141-12580-1 36.I2N 4 49E
694 14SGP7ci .. ---l41-12580-1 36.10N 4	 4 7 E	 309 R
695 14SE	 78 -141-125,30-? 66.02N 4.490
696 14SEP78- 141-12580-2 36.1ON 4.47E	 309 R
697 14SEP78 141-1'3nnO-1 42. n1h1 .ORE
698 , - .. 14SeF7aa-----141-13nn0-1 --- 42	 15N . 00•E	 309 , R
699 .	 14SEP78 -141 . 130nO-2 42.n7N a.02C	 ,.

i 700 14SLP78 141 - 13On0-2 42.15N 3.001:	 309 R-
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s.	 ..w^r^^"^ ►.,+^..rr^.r.-.r..rr^^+,+.Nr}.,-tirrr^M..n.r..- M^yererw+rl i^r r . M.rr wwirr rl-rel^rr -^1^•

,... 70 14 S CP 	 8 •	 141--1: 020-1 4a.	 81`1 56Ei,A	 :,	 .;, 309 R

702 14SF'P78. ­.141- 13020-1	 .. 48.11 ; ,...,,.:..;591H	 a,^...	 ..	 x^.:.. ....a
V,^i,^\^.,;^--"#0a a- P,.	 .,48oP^.ni,i,,i>^..........t1A\ai`.,i\\ 	 1170:^.ai14GCP	 41	 1 59E	 A\AA\\^,Al1A\i^,1k li'..,i	 'iel"-4\AY-.at -i	 .

704 14SC;P78 14 1 -13020-Z 481181) .56C 309 R t;
7nfi 145C0» 8 141-13(130-1 54.12x; 1.30(,1

r706 ­ 14SEP 7 8- ---141-13n30-1 .... 54	 19 K, 	1	 331J
90- 1l:SC{ 1 "r3 141-1"3n31-{ 54.19M 1	 33
70 n,a

!	 "V"'
1 .S"b^	 3 1 4 1- 1 3n 30- 1! 1. ► 	 2Ita4. Al^ ^	 0a,..3i	 .^

Ir 0Q 15 5 C. 	,8 142-	 2, 10 -a 0 2+ei . 2 2 .

710 155fPrs^^^..^.,14
f
^
i
^.^..2 ;̂

Â
^-;t

{
q
i,

_,
)
y
^^

1
j

,55N . ,.	 , r,,,..... ^Y.^.:...^2Si' 302	
`

R
e aA	 ' i\e 7 1. ^ 	 ` 15 $EGl 7 ,3. ,,,	 142 -,• 22 2 Y - 1 , .,:.TN. r)2 N, i,,,, .43W

71? 15SEP73. 141 - 	2270- 3 45	 59N ?.411,	
>,	

•...,
713 15SEP78 14r	 131.0-1 40.21N .58E	 :.... 30L.^ R
714 15SLVl "t 8 .. .14-7--131,80-2 40.?1 'E .58E 302 F {
715 15sEP-,8i ,,.,., 142 , 131 c) 46.75ty R	 5 5 W 30? R y
7 16 15S1:r 7 8 142-'13190-:1. 46'6P51! P	 Sat•, 30 R

1 52.r.7 1;	 16w r

71F 15 SV?8 144-13?10--? 5?. 7 7t; K.16"e!
719 16 S 'E P'18 7	 ('^^1I. ^^,.^^7,r-s^.i^[

q5 ary. 1^	 ^`I .	 t.4.^^4!`.w 1

72 r L$C V	 6 1	 4 )0 --1 6 . 4 6,, +t, 5 r u

722 17 5 C. 14	 17	 0-2 55 .1 7 , ^. , g ar a
5	 727 1'r SC P 7o 144 -13	 6.1,-1 46	 ^5 ta I I . SSI,
t	 72.4. '7	 'y a t . -e 1:1,S^,r	 ^. ^)	 h - '1^^,t,-13S^,f_^. C V^tf'.n2, 1	 '11,5,•,
F	 72K' 1 75C(`:' 144-1357^r1 5'-ni^it, 14	 7" ^	 r

726 17SEP78 144-13570-2 52.08N 14.177	 i

727 1eSEP*8 145-12160-1 4a,16M c?.00E 302 R ^?
K	 722;- 1t S L P " 8 145-12760-Z 42 .161'.' OCc 302 fi

72^ 12SE, P 7e 145-1237^0-1 4C.1 Q t, el	 56Q-
730 1 8SE078 145-12370-2 4n,1 9 N 6.56E
731 1 2 S E P 7 145-12390-1 54.?ON 4.268 z!
732 418SCP'8 145-12790-2 54.2CM 4.26; 1

737 1QSE P'-8 146-	 1$70-3 5 n .44 M I . 0 7 F. C
734 19SEP.,8 ._ _x146-- 15,50-'3 44.41M 7.53E	 ..w,>..	 ,	 .,.. 354 R
735 19SEP78 146-	 2nn !-3 SR.15N .59C 354 Z
736 2 1 S I P78 148-	 2340-3 45.48N S.:i )w

^f

737 2 0 SUP78 144-11250-1 36.19'; 5 a 357 R
73r 215EP78 =	 148 - 132F0 - 2 3 14. 191%) 1.586 	 .,S7 R

z	 u	 739 21SGF78 .... 148- 133 1)0-1 4 2. 25x* 4.44,4 357 R
74P ? A S EP" 8 14100-,3700-2 4 2.^ 5f , x..44;; 757 Ri
741 ?1 Sv-8 14F.-13 nn-1 43 . 1SN 6. 49;,, 7 5'r R
742 21SEP78 14.'3-13.3P0-? 4ts,29M b. 49w 7,5.1' R

7:43 2 2 5 R P	 3 140-	 2520--3 46.25N 1n.1at; 308 f
7 ,41, 22SCi 7 140-134 30 - 1 40.49N 5.4 91

ce	 745 22SE P Pg 149-15430.2 140,490E q.4.9W .^
.... 746 ­ 22.SEP?8---l40-13490-1 .,_, 4 6 .5 3 M 1	 481J C

741 USE* 78 149-13490-2 46.53N 10.433 C
748 23SCP"c 150--12300-1 44.19F± 9. 07E
74 n "'I S E 1,4 8 150-127 n 0_ a 46.19K 4 .07 F:

.75 ('	 -?35F P?8•	 _x. 1 ,;0-12320-1 ^k >2.?2N -^.^6.47C.^,

u
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..	 ,....a	 •..	 e, •	 t\\ay .,.+,•. ,• tRR\".:.•x....,.	 a..,naf,a\, .\a\a\.\e t.\\,a .. .a.>.., *^a\. a,t,t, ♦ 	 tt. ♦ 	 a.. y... t\,a.t\.. t.\.. a	 . xA 44 ,	 ,	 a

,rNQ* DATL-`	 `^ IDCNTlFXC11Tj ()N LOCATION-	 SrENE ODE	 ETAT
.s.wa er _..AArr.A•"-.•rr^r,^_^1.•^r-r.^wr.l•r..^Murrr ^^1^..^^r...4rtP•r'S^-rrwl Ala lu^^^^.^^^^r^..^*.^r.^« 	 ,:

.....	 751 24 SCP78 \,,. 151-124601 ^$9.07N, t	 tR'	 .. .\^, taa. ♦. \t\^aa.	 aRa,	 \„a+a\- . . a.,\sa.,a,Ea.50C	 ....
y	 75:; 24SE: 718 151-12460-2 69.0711 : 6 50C A

753 24SEP78 151- 124R0 -1 45.11N 4.56C-
754 24SEP 7 8	 .T. 151-12010-7 45.11N .	 4.56E

•{♦ ,.. a,	 7 	 5-- 24  78-,,- -1 5 1 -1 2 5 F 1 0- 1 •	 x.51 	 1 4 N .,A t\4 .'i 4l G l *	 \	 \,,,,v, •i

756 P4SLr7$ 1 5 11 -12500- n. 51 .1 t, t: 2.41 C:
757 7 5SEP78 152-	 2n g o-3 50.33tl 1.540 C
7 5 8 x_. r 5 SE-P-78..,...152-.,=.21n4-5 ,a , 44.28m , .,	 i 1SE;r	 ^	 ..	 ..,>xi. ,,	 7% 63 .	 R

\ a..t ,,.. 7 5 9 .0-3?	 ; r~ P 7 8	 21 ^'. . 3 S . 2 2 N •^ . 11 W.., 1a ••	 aRa\,\\tilR\\ +teRa,	 t	 ♦,t .," 

760 26S P?8 153-132?0-1 57, 49:1 1 , 54!i
761 26SEP78 • 157-137 7-r 0	 2 :S,7 .49h, 1 . 51i 4^ ^

^= r	 762. x- .26SEP•78 153-13240-1--4,3.544 1 4.5 .310	 R.4.
...... 763- P6sEP78-,- ,t .a153 -13i 40-P, .. 43.54 P4 ,.	 'k .45t'..	 ,,,.., 310	 R	 ,.

764 26SLP"S 153-13260-1 49.57N 5.55!x" 310	 R
765 26SEP 7 8 151-13.1 60-2 4h, 570 55W 310	 R
7 66 27Sf P ai8 154-	 2 450 - 3 4 9	 n0^•1 W

7 6" ? 7SL P 78 154-	 2 1,6 0-1) 4.1. a5 9. 47 W
768 2'r ShP18 154 - 13420-1 43. p6t,, 0y1w, C
76 0 ?7SEP 7 8 154-1341	 -2 43. 6N opw C
77() 2rSEP-1766

15 5 - 1-,r,n r 9 z 5e i
77,E 2 1 SE,P73 15 5 -	 12oi - 3 36.11,; ''.4CC_
77^ ? ;SLP7i 155-126,.-1 42,5 11' 14.41,0
7 7 , P ^FSLar?8' 155-1 2 l iO -P 42	 N 11.441=
774 ?FSEP 8 54.55N ".05E
775 rRSCP78 155-12260-2 54.55Ei 7.05C
776 2 9S C"% "8 1 5$6-	 1461-1 41 . 5 ,2N 4.530	 a
777 29SEn78 156-	 1450--3 35.45 1 1 7,07E
778 79SEP78 15/5- 1241)(1 - 1 .57.5114 <,.40E 358	 R
779 ?9S 2P78 156-124()D-2 .57.51:, ^3.4r, E 358	 R
780 29SC"`78 1c6 - 12411 -1, 41	 566 6.49E 758	 P
781 ?9S^P"B 156-12411--" 43.56N 358	

R702 30SEP78<= 157	 2()30-3 44.17N 1	 ..	 ,.04E
783 30SEP78 157-	 2040-3 43.11,, .43E
78A 30SEr> 78 157-	 2050-3 37.n0i 1.1511
78'5 I nSfrR78 157 «	2() q 0 - 7^ s8.10M .47E
786 POCT78 . 159-	 2400-3 44.11N 8.03w r
787 20CT78 159-1310-1 44.12M 7.01w =t
788 ?OCT78 159-13360-? 44.3VI 7.01tr
78 0 70CT78 1t)n -1351n-1 43	 19M 11.1'3 ;J
790 aOCT73	 . _Je,,0- 135'•0-2 . 41 p9;d	 .•.11.134'.v
791 ,30CT'8 16^-1355'- 1 49.'2E' 1 j • c"

F 	 ^
791 0CT78 16 1 -13c5C-? 49,32t' 11.21!,
797 5aCT78 162-125?0-1 4n	 18M 4.49E

... 4 9 4, =-- = 50CT=78-:--102-12.520-2 _,. ,40. ;8N ... 4.49 r.
795 -50CT78 . __, 162-12530-1 ._, 46.431N 501!	 .
796 5OCT78 162 - 12510- 2 46- 41N 2.500
797 FOCT78 165-13460-1 42.?8N 9.23!J
799 €3OCT73. '165-1 3 1,60-2	 42.2SN - 0.'23w

..•799 .60CT7a,. -, 165-12480' - 1 48,3 2M. ,,,.1.1 .274'	 ..	 \,.\,., t.....,.....	 ...	 ,.,	 ,.
800 8OCT78 165-134PO-2 48.32:1 11.27!
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*NO* ,DATi:, , AVL;V,l TlrlCAT"0N LOCATION sr.L-,,Nc-,	 Dor.	 ZTAT•
- - - - - - - -

- - - - - - - - - - - -

- - - - - - - - - - - - - - --- 

861 90 C T78 166-12 .27C- 1 41 do 4NN, jns3SC-	 164'. ' 11
802 --90CI"78 . ----166-12270-2 E z:41.,44, --I n 0 5 E -	 -3 6 4 R

9 0 r, T 7 81 - 106-1 2	 90. 1 4 7 . 49N a . 34 C'50 
4 1 0 C T -7 1") 166-12'90-2 47,49,N) rt.34C

8n5 00CT-8 1 66-1 53. 52N 6.058
806 90CT78 166-12300-2 53.52N -6.05E
807 100CT 78 -- -1 67-1 56N-	 6,35C.-I
800 i n ocrn 1 67-1 24 q O-2 39.56N el . 35 c	 299 R
800 1 Do CT ., 8 161-12460-1 4 6,1 t,	 38a	 299 R
10 1 0OCT78--1 67-121, 60-?.- 4 6	 0 R

61 1 1 1 () C T 7 #1	 16,1-..,.2  0 5 0 5 5	 14 0 N 09

81 2 li rlI CT-e s 163-	 2060- 1, 49.37N11I^04
81 3 11 OCT'? $ 1613- " 2 0 a0-3 4 3 . ! ,I. N fi 38t!
81 4 , l 1 OC T78- 16,11 -2 1 n0-3 --S7-..,1 6N

815 1 1 OCT78 . 	 168,13030-1 4 0,123, E,
816 11OCT78 169-13030-2 40.12N 1.520
817 l'i OCT I A 168"13n4m-1 46.-81N .055
818 11OCT7d 166-13040-2) 46,;81'1 .05a
819 110	 1'78 166-13no0-1 52.41N 21 ,271y
82 M 11 OCT- 3 10-13n6l-n 5n, 	 ' l l. 

4
;) , 2 7 W

12 0C  TI-'8 160-13716-1 so . 4 (A n . 26W
82 7 12OCT-8 169-13P1 n-? 39.466 p.p6w,
82 1 IZOCT76 161-1 ^,k p 7, 1- 1 4 , 2. P V

824 1 n C C T 7 3	 p ^l - n 4 5 . 5 "1 %.' )	 . ? 11 t ^
L*	

^ 
t.

8 25 12 A CT70' 160-13	 4 i-1 , I 51 .55"; /, . 4 0, W
826 12OCT76 160-13240-2 pk .401N
827 1 1- OCT-7 8 17(1 -13-N OO-1 41 . JSN 7, 3 ? ,x-
82 F 17OCT 1 8 17n-1310 0 -' 41.18-1
82 0 11OCT I S 17n-13410-1 47.43;
830 1 ^OCT78 17n-13410-2 47.43N 0,34w
831 1 4 0 c T-ra 171-12210-1, 43.464 11.315 c
837 140CT78 17^-12210-2 43,46N 11.31c-
833 14OCT78 171-122PO-1 49.511 9.22E
834 14OCT78 -	 171-12220-P 4 9.51N -	 9.22E,
-835 15 0 C T '? 8-- , 172-12380-1 4 1 .0 4,N • 7.5  (' L
836 15OCT 1 3 172-12!q O -Z 41.0414 7.50E
837 15OCT 1 8 172-124A0-1 47.n9N S.50c
818 1 5OCT73 17 ?° -1 2 4+11- 2 4 7 . n 9 N, 5. $OE
83 q 16OCT 1 8 171-12550-1 37.101 4,24E
$41' I 6 n C T'$ 173-12550-2 37.1 41; 4 . 24
841 1 6oCT 7 8 177-12570-1 43.POM ?.35c,
84? 16OCT 7 8 173-12570-P 43.20M P.355
843 I ? OCT"8 174-13140-1 59.5411 Ss ►
844 I%CT78 171-1314A-1 39.43H .50F
8 45 1 70CT 1 8 174-13140-2 39.54N .53r.
846 --1 7( OCT78--- -174-13140-2-59.4314 ­ .50C

$47 170 CT -,,1 174-13170-1 52.04N 5. 0 1,:;; 

848 170CT78 174-13170-1 51.53t,- 5.04v1
84 0 17OCT78 174-11- 170-2 52.04N 5.0eW

----- 8 50 - 11 1F OCT73--174-13170-2- 51.536 5,, 04W.,-

.t

ka,"
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*h0* CATS IDENTIFICATION LOCATICN	 SCLNF. ODE	 FI AT
_ ..--ww---wu------ -------.---- -rw..rwwww--^-.-.i-... .. -..-w----w-----..-+r-a-^

8 51.41.,.1 E.0 C,T78 .,....;17• S -13,"),? 3 -1,,,,\..4 2.4
.	 852 180CT78 ^1 7 5i-1 3 320-2	 . 42.42N. 6.1414	 '.

851 '19OCT78 ., 176-12150-1 51 . n3N I n . 3 0 -r.

8 5 5 2 C 0 C T 7 8- ..,..17 7-12 3  2 0" 1 .,., 47. 2 8 N, .,	 7.21	 C	 ..,,... ,,,.,,....,.,.,.	 ...	 ,	 ..........
85 .6 2-^OCT7 17^-12 P0-? 47. 1 8N 7.21F
857 21OCT'?8 -173- 1200 - 1    39.02N 5.32E	 >. ,.	 C

..	 858 21OCT78.,.N, -17 8 -12480-2 ... 39. n2N. 5.32c C
859 210CT"a '1 7 1-125nO-1 45.0aN 3.358	 ,. C

:. ,..	 860 21 OCT7A , - 178-12r AO-? 45.08N 1. 38e.	 ,.•,	 -- G
861 22OCT78 178- 13080-1 46.28N 1 .20W.

864 ?20CT 7 8 1 1 7 0 -13 0 60-2 40, 2214 , ;,78	 , .. R	 ,.
865 23OCT78 180- 2270-3 52.22N 3.10W

_.. 866, R
867 240CT78 181- 13430-?, 42.10N S.57 305	 R
863 R 40CT73 181-13G50-1 4x.15"1 11 .^1 :; 1108	 R
869 744CT 7 8 181-13450-2 40'. 15 M 1 1+.01;~ Tod	 R

871 25 0 C;7? 7:2^-122?1-2 41.17 , 1 11'.588
872 25OCT7 5 182-122,50-1 403.14N .4F,^v
873 250CT78 ISP-122 ► 1-1 4 r .42N !%.5cjc
874 P50CT78 1fi'- 1 2 ? 5 1. 2 47.42 M ,P.56c
875 250CT78 IS?-1227-i-1 54,^.7N 6.198
876 P 50CT78 1c,?-12270-1 54.17V 1,.194
877 ?50CT78 182-12771-1 53.46 ! 1 6. 2-ac
878 250CT7S 182-12 271 -2 53.4 6 1 F.28G
879 26OCT 88 183-12410-1 58.501, f+.164
88n 26OCT 1 08 183-12410-1 38.5 n h 7.111E
881 260CT78 183-12420 -1 44.571 5.22r
88^ 2.i60C T 78 .183"1200-2 41,.57N 5.22E
883 2'"0CT?d .....134-12530- 10 S5.14N 3.45E C
884 270CT78 184-12550-2 S5.14N 1.1,5E ,c

885 270CT78 184-125 0 0- 1 41.22N 2,41E: 358	 R
886 270CT78 ..,_- 184-12590-2 41 . ?2N 7. 01 E	 _e	 __. 358	 _	 R
88' 270CT78 1 84-12590-3 40.451! -".11E C
884 270CT 7 8 184-13010-1 47.28"1 .00C C'

889 270CT78 184-13010-2 47.28N .1+10.1 C

890 27OCT73-184-13010-3 .. 4 A .51N .13c
891 270CT73 1t"4-130	 O-3 52,.55:1 2.M4
89? ?70CT78 184-13011-1 53.31`; 2.'26,10+
89 1 2 1 0CT78 184-13130-2 53.11 t i 2.2614

-894 2SOCT78 185-13'140-1 37.49N '1.2614 306	 R
895 2SOCT78 .., 1S5-131!0-2 57.4 9 N "..266 C
896 8OCT"8 185-13180-1 43.56! .3.17'+a 306	 R897

2SOCT78 185-13180-2 43.56N 't.17W 306	 R
898 280CT78 ,...._..185 -13?00-1 ._..50.01N .a	 5.27W ?06	 R
899 280CT78 ..., --185-13?(10-2 5n.01N ..,..5,27W- 306	 R

900 2 9OC T78 186--13300-1 45	 09tl 1. 13 11 C
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*,NO* 0ATC I)ENTIrICAT ION. ,.	 ..LOCATt4t!	 ,,,	 ScENR	 .,. ,,OD E. CTAT.,
r---.--.----------`•..r-------------}. a• ►.------.--rrr^•---------------r.-"

941 ?90CT78 .,,.,.1 s6-13360-^2a..45. n9N A.13t^	 ..., .,,.	 ,..	 C	 „

^.	 .902 290CT7 ._,1Sb • 1 , 33t10-^.,4 , ^1,13 N 	 10 ,2SW	 _^.^,.,...,.R_^^,_..... , tt
903 290C1'73 1 36 - 13"'0 - 2 51 , 13x1 ` ... ", O.2CW	 .,., .,^.,... ...
904 30OCT78 187-121'0-1 44.?^4N 11.44E 309	 R
905 30OCT*7 8 187-• 121 7 0-? 44.1414 11.448 309	 R
9017 300CT73 _,	 .187- 1218 0-1 - 50	 8N ^	 31 C

,...,. ,..947 31 OCT78 .... 1 &F-	 1370-3- 49.1314 a .01 G
90P 310CT7b 13R-	 1'4 01-3 43. 0)5)l 5.511. C
901 11OCT 7 8 18,1-	 1410- :57, n3tl 4.048 C

-.^..._.-.,, 9.1 n^^.,^ 1 N o V-^.^,.,,...^.1.^,,g,- .,1,5,,54-'::^y 1:-14 N r.	 •19 e-
,..,,,..-.,,a9 1	 1.	 ..... 1 N Q1,' 7 u - ,,,.^...1. g.Q.,..,•.1 S G ^1.w 3	 .._ -4 5	 1 Q N

912 1,NOV78 189-	 15,8-0 -3 S9	 5N .0£E C
913 I NOV78 -189-12500 -1 3 6. n1 N 5.17E

.914 .,.,.., - .__„^	 5^0	 7-	 4 6 . ra1 N 	 5, 17E	 „ ^-IN0V7<4180-12	 - ,..._	 C	 ,r
915 1NOV73- 1 1,..,rt2.0St^,

^ NOV
9y12520•-

916 y 8 139-125:0-2 42.OSM 3.31E	 • C
917 INOV 7 8 180-12530-1 4F.13N 1.2S r
91F 1 NOV73 ., a- .18 0 -125 ^0-2 48.13N	 ... 1 .28F C
91'' 1N'C;''ti 1u9- 12550 - 1 54,161; 1.02"
9?0 '1N01r-P8 1 8° - 12 550-2 54.16 x â 1.^2'•1
9?1 PN0V''o 19^-73141 -1 40 j 1 3,11 .?6r
92- 2NOV73 190- 13nQO-2 40.?3`J .26E
9?? 2N0V''8 1:0-1311;,-1 46,2'?t 2.24;`

t 46
9 25 N0 1 7 8 191-1 3 1 '91 -9 bs'.33 + 4.461"
926 2NOV7' 19-n-13110-? 4. 6v'
927 3NOV7 ,$ 101-131' x0-1 45.13'4 6.2814
92 7':0V78 191-132F:I-2 45.13;1 6.?^„
929 5NOV78 191-12760-1 40. 17M. 1 o.1 CAE
930 5NOV70' 193 - 12260 - 2 4n.17.N 11.16
'931 SNOV78 193-127,70-1 46.43N ;.17E
932 514OV78 197-12270-1, 46,431 8,17E
933 5NOV78 193-12?90•-1 52.471%, 5.55F,

__.. 934 „ 5NOV73 -R. 193-12290-2 52.47N 5.55E	 .,.
,.,.,..935 6NOV78 ,. ,,...194- 12410-1 38.22x; - .. 6.25x" ,.	 C

936 6NOV'8 194-12410-2 38.2?N, 0.25E r
937 6NOV~8 194-12450-1 44.?9N 4.34 F C938 6NOV78 --- 194-* '150 -2 44.;, 9N 1..3 41 C
939 6NOV78 194-12460-1 50. 14tl 7.21c
94 P 6M0V"W" 194•-12460-? 5^.^4N 2.2 ":E
941 7N0V	 8 195-	 2 n [O-3 4	 . ?,2 N •31E 310	 R
942 7;40V' 6 195-	 2 n5O - 3 o8. 50N , 41 C 31 C	 I R
943 7^l oV- 3 195-	 2070-3 42.171', 1 .3314 310	 R
944 7N 0 111 "B 195-	 2070--3 42.4".J 1.24,x' 310	 R
945 7NOV78 195-	 2080--3 36.4'1 sM 3'. 13th
946 ----7N0 V 78-,,,-.. 195-. 13010..1 . -40.491 - -R1 , 13C. ..,....	 ...
947 7NOV78 -	 195 - 13n10 - 2, 40.49N 1, 13E
948 7NOV78 195-13030-1 46.55 ► ; .45"e
949 7N0V78 195-13130-2 46.55W .451-

. ---95 0 -- -7N0V7S - .--195- 13050-1>-. ,a .	 -..52.9.9N	 09W-

r
i;

t!

4
	 t:

.F	 i
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POM QUALITY

*NO* DATC	 - IDENTIFICATION .,....	 LOCATION•.,.,..,.-..,.SCrNE . DOE VAT
.w .^lwww w .-rr-r A^ ^^^^^^^.rr,,.r 1.^^^ , r r^rrrr ^al^^^r^^r. rr-^rr^.^-^. ^.-49^.a a--^ . •.

9 51. ,WIl N 0 V ^ 8.,,,>.,,.1,9 5 -1 3 115 0 - 1 '.- 5 2. S 9 R"- 3 .0 9 bt
95 1

_
8 N 0 V 7 8 196-	 2240.-3 46.122 t,	 .36W u

951 9NOV78 ..:.:_,197- 2400-3 57.53N 6.3814 306	 R
954,-9NOV78.._ ..197---24?0-3..,.  363
955 1 ( 1 0 V" ^i 1? 3-	 1240-3 40.59 0 r, 4 3 E
9 s 6 IONOV78 195-12100-1 42.1 ON 11 .25E
957 1Ct)0V78 198-121 x 0-',? 42.10N 11.25E h
955 1 ONOV78 ., .¢.198-12710 -1 49	 14N - 9.21C.

5 9 N 0 V 7 810, 	 8
960

,.>
11NOV78 199- 1 470-3 44.27N 5.118

961 11NOV'1 8 190-	 1430-3 38.?2N 1	 19 U,
--962 .. 1.1 I^ p L! 78-r- 1	 9^- i 23G0-1_._.5	 ,.1 qN ._ __g.:,.31 E .^

963 ' ... 11,NAV78: .,..,..199- 12360-2 .. 36.19N .....	 S.31 E	 ....
964 11NOV78 199-12370-1 4 2.2 51+ 6.430
965 11NOV 7,8 199-1.2370-? 4?..25,N 6.43E
966 11NOV78 199 o, 12190-1 48.11N t,.38r
967 11,V, 0	 78 199-1200-2 48.31N 4. DOE
96e 1 40V,fi? 190-12410-1 54.?31w ?.C7E
969 11NOV78 19P-12410-? 54.13N ?.07C
974 12140V76) 200- 2AOO-3 44.50N .41L 299	 R
971 1 ?2011 7 -0 201-	 2n1 0 - 3 38.46N 1 . 1 C:: 1199	 R

•	 97-) 0„-r. 2^^- 17sl, ^ - 1 35.3 i,.07F
97 2NOV 7S 200 - 1254:1-? S5.11.1 1 '4	 07c
974 1?t4OV %'8 2AM-12550-1 41 .4,,14 ^.21 L
975 1 nct4ov -*8 20n-012S
97l• 12t,0V78 20'x - 1257n -1 47.4':s"! .19C 3.00	 ft
977 1 ?itOV	 8 200-12571-2 47 .46P .19F, 31)0	 R '}975 1414OV 78 20?-1333u- 1 45.35N .06w 758	 R

E	 979 14NOV78 2 ?2-1.33	 0 -2 45.35N ;:.0t w „58	 R
980 15NOV' 1 8 203-	 11SO-3 42.13x, 1n. 22C z63	 R x?
981 15N0V78 203-	 12n0-3 s6.ISM 8.35E C
982 16NOV78- .m 204-	 1340-3 49.53N A.28E
983 16NOV78 .. 204- ; 1360-3 43.502 fi.17E	 .• 300	 R
984 16NOV73 204-	 1 7,80-3 .57.46t; 4.26E

•	 985 17NOV -7 8 205-	 1 51.4t)H 4.35e
.. 98E 1 7 NOV 7 8	 _ .. 2n5-	 154^- ,; 45.17N ?.17E 300	 R

987 19NOV78 .... 20 7 - 2290- 3 50.7,22 5.04+1 t;
9PiF, 19NOV-8 207-	 271 ^,-3 44. 79tc 7.1710 354	 R
98 0 21NOV78 20 0 - 39.49N A.226 i
990 22140V73 4r. 21 n-	 1450-3 .. 55.23N' .	 ,. 7.38`	 _,...a.....-
99" ??NOV-3 210-	 147	 - z 4 r ,23M 5.31
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11 î 7 14JAK79 ,	 267-	 1320-3 52. 05N; .13E	 _ 302	 R
1148 14JAM79 263-	 1360-1 59.55N 1.55E 302	 R
1149 15JAM79 264-	 1500-3 `1.47tH 4.25E

.	 1 150 • 15 J W-11 ._....-,264-- 3 .510-3 ,,. 47.44N -1-.5-7-E-- -,354-.-. R



ORIGINAL PAGE 13

x-24	 OF POOR , QUAL ITY

,n,. \. RA•\R • RAfR a	 a	 - ., scN'A . M1\R R`.\x %x`x>sft p.,s,xS nne,,\4. \f .,. 	 ..\	 R'-	 .not, \. R1A\ .`• AARA A ,•nx.A AxLxa t q \1xAA R ,A A,..AAR„sA4.AA.\\Li AA . fAlx,.10 <\ t {,Y li .y\A^f.` t ♦ .. +R p.S :A`e1: • Rl x.l'

+140*	 'DATE	 I DUIITIFICATIO14	 LOCATIO14	 Src.NG	 ODE	 OTAT
..: ,.. . .Pw----w--r---.----A-r-t.-A----j---r-	 --------

,R..x\.1151.	 ,,1.SJAN79,.a.A..M64-	 -..A\15 3 0.. ;^;A..,,A 1.3 9 NA ,,aR°R.,R,. (10 ERA.R.*^...
1152	 16JAN79	 265- 209 0-3 - 48.104	 2.15td	 301	 R
115 	 16JAN79	 265-	 2110-3	 42.1ON4	 4.20W	 309	 R

., -. 115 4	 17 J A t4.7.9- 2 6 6 --- 2 2 6 0- 3- -5 2 .4 %1 to	 4 .5 7 W ^....^.... ^..^..
.115$	 17JA N 79 t.	 266- . 2270 -3-	 4 6	 37ti	 ,..-7.20 1-1, .;.. , ..RAA\. >, 	 .,,,...x.,.,,3.5 4 .•,...

n	
ft..g.

1156	 17JAt,	 2.b79	 6,	 -13-, ?^ r 1	 4^', 4 2N	 K.SG^rI^,
1157	 17JAN79	 266-13230-2	 40.4 2N 	5.5644
1.158	 17J AM79,-.-	 266-13250-1	 46.46 N 	M 7, 55.7
1159	 17JA#479.	 .	 266 :. 13250 -2 	 46.4611,	 `1.a" 5 .1
1.160	 17JAN79	 266-13260-1	 52.49N	 '10,18 !	 ....
1161	 17JAN79	 266-132110-2	 52.49N	 1n.18W

-...,.,.11.6 2 A-• 1 to J A.r4 7 9 .^...,^-.-2 6=7 ^ 13 4 ^ 0 ».1--..-^. 2.5 8 td ....^11 •. 0 ^i kr t,._...^.....^,,_._._:....,.^..^..,...,...,^,....^......
1 6 3 . -,.18 J A N 7 7.,,,..., 2 6"- 13  4 2 0- 2 ... 4 2.5 b ty..,.^,1.1,. 0 8 W'.	 ,..,,........... ..

1164	 19JAN79	 268-	 1290-3	 35.34".	 4.32E
1165	 ? I JAN79	 ?,7n-	 2 0 10-3	 51.18N	 .36E

- ..--1 1 66	 21 JA W ' 9.._._...27 n -...2 0 10 .. 3- ^)118 N	 3 6 E
1167	 ?. 7 J A N 7 9	 .270- 	 23,n	 ^ 101	 1.40W  	

. ^,..#..^......,,
;0 -'^	 4 5 .0	 1

1166	 2 1 JV 7 8	 2711- 7041-3	 39,
1165	 21 JAN, 79	 270-13n00-1	 46. 1 n,N	 1 .36W

.........117 n	 • 2,1 JAN•74-27(1-13 n n 0 - 2...,, 4 6.1	 614;
1 17 1	21 J At::'9	 27n-13n't C-1	 52.1111	 ^ ^ 56,.

1177	 ?l JAN 79	 27A-13010-?	 52.12N	 'x.56^^
1173	 2 )JAN79	 272-12nnO-1	 51.1311	 11.05E 
1174	 23JAN79	 274 - 12nn0-r?	 51.13n	 11.05r
1175	 2?JAt,79	 271- 13160 -1 	 44.19114	 11.47',.'
1176	 ;'1J Ai: 79	 272-13 x 64-'	 44, 7.9 ,	 1^.47.t
1177	 231AN11 9	 272-133 7 0-1	 50.43114	 11.01W
1:17 8	 2	 JAW79	 272-13370-2	 50.43N	 13.01 tit
1179	 2 4jA"! 79	 273-	 1210-1, 	 41 .20,	 ; .01 L	 C
118 	̂ 24JA":79	 27 1 -	 12'11^-3	 s..1.3t;	 5.111 G
-1181	 25JAM79	 274 - 12141 -2 	 40.19,'1	 5.33E
1187	 25JAN79	 274-126.1-1	 46.44,'4	 1.34c
1183	 25JA„79....	 274-12' 660-2	 46.4411:	 3.3 4 E,
1184	 25JAtv79	 274-12770-1	 52.47N	 4.11'c
1185	 25JAN1 79	 274- 12370-2	 52.47t4	 1.11E	 1
1186	 26JAN79	 .275-	 1590-3	 53. ,;3t4	 a.57w
1187	 ?EJAN79	 -275-125?G-1	 s9.4: 0 N 	1.14E
1188	 26JAN 7 9	 275-12520-I	 39.40111	 4, 1 42
1180	 26JAN79	 275-12550-1	 51 .4914	 7.584
11 9 x;	 245 JAIN"19....275-X12550-2	 51.49114	 4,	 2,58W
1191	 ?7J11:~79	 276-	 2140 -3 	 50.4^t	 2-
 79 JA N : 7 9 	 277-	 2 1 1'? - 3	 47.16M	 ^, 1 Get

119 7	2 ?JAN79	 277-13?`nO-1	 44.?9Ni 	 9.26W
1194	 28JAN79	 277-13lM-2	 44,;)9:4-	 0, 26',	 ^	 ...
1195	 28JAN79	 2,77-133?	 -1	 50.331«	 11.391.4
1196	 28JAN79	 277 - 1!3320 - 2	 50.?311:	 11,39;.1
1197	 29JAM79	 278-	 1 1 70-3	 36.1 2H 	 6.51 E
1194	 .10'JAN79	 .. 279- .17,,10-1	 •,43.00N	 -4.16E _.	 .....,.^ _.	 C
1199	 30JAN79	 279-	 1350 -3 	 36.54"1	 2.28E	 C
1200	 10JAtt"	 27 0-122,;,?-1	 40.7611,	 6.51r



i H-25	 `̂
A{	

) }y

^{.^9C^^J^'^6^ A^f f k r.- y3

OF POUR QUALITY
!a

a	 x .,, ,	 r'>1..	 ,.:'fe\e.9\\R\111\!'t!+	 11 • '''4 a. •.yR..a.l elRte:'a ra .xa^.	 ,
•

•	 •.	 ,.

rr rq..+Y^ w rrrrwrl..--r+-w rr rrrr - r--! - ^a.qrr,.r w!rrr ..---w - rw .^ wr w.wrrwrw a. ,.www ^• ..

...	 ,.	 -1201 3 A JA,N?9; ,.,--279-12280_2 40.30N 6.57e	 :	 R......	 ,
,,.....1202 31JAi379$----^2$l1,^0-3,..y1^

1a,+ae.	 1203 31 J Att7`^ ^ rR,a 280- .:1510-3 45.331;	 ,. a .. ax ,	 i. a. aaqu	 1aaa.fRRutR1a ♦ r+a,..,31 Ea .
:..1204 31JAN79 -	 2aQ- 1530-3 .39.?3M 1.23W C 1

1205 1FE079 281-	 2080-3 51.26N 4.50W	 R
120f, 1FEa79.,.--28A8--2090-3 •	 4

(
5
]
.23,'	 . -4,07 "d

#a.,.a , ar 1.2. 07 ... 2 F X079 as.,1':M,M^-	 ).^L
	

a1 xa	 ^!	 al SN,,...,-7,1 To	 ,,	 a4Ra#•	 .!,	 nR.+ Raa;, a3	 , r

1 ,20S 3FL:?9 28 3 -	 10O0-3 (r2.47N 1n.08s~	 . F,

1209 3F8R 7 9 281-	 1110 -3 36.61N 8.200 ^
#---,^„•.1214 -=---^4 F E R^•9 2 8 4---^'la2 5 4- 3 .,+.^ti 0 :^? G t^..,a . ^ .1 G E.^.......,..._ ._,,,.« o,,. 3{

1	 as	 1211 4FED79 ..,., 284- , 1270-3 x 44, 2 2,.',,.. ,<t.Oki,. ,.a.1•aaas#1a11i=a1 ,11a•.a,,.#,x,#, .... C1
• 121 +2 4FEf379 284- 1290-3 35.160 i..11r	 a C

1213 4FEE79 284--12220-1 39.01N F.41f? C
1214 4 F E E^ 7 2 F ^	 12	 ^ 0	 2 -„^^S q .: 41 y R-.-4a• G.^ _.	 _ ^ ^.« ,«	 "^

1215 5FE879 •+	 2F,5-	 141 11-3 . 50.5O N 5^
1216 5 FEF79 285- 1450-3 44, 461,1 1 .37E 54	 a
1217 5FE11379 285-	 1470-3 38.41N .16E E
121 A 5FLl79 ?,,9 - 12W-1 :58	 1N 4.24E C

1211 5FaQ79 2GS-124n0-2 68_.01N 4.24E C
1.220 5FE 179 285-121,30-1 *0.11x; .22% 1	 ^
122" SFi±v7'a 2?5M 12431-7 50.11' ,22G
1222 6FV079 -206- 2010-1 5>.41N .23E C	 i
122 13 1,FE ,̂ 7 2$6- 20?n- I 4".3btr ' .59" C

_ 1224 oFC6	 9 2F.6-12570 .»1 3	 3?. .2^r'
1225 aFL.	9 206-12570-2 3F	 ,31', .20E 4

122 A 7FEg7 9 267 -"1 3160-1 39	 7 f, 5.131.1
122" "FCF79 2x17-1316--2 .59.3':4 5.13'x;
122 A 7FE879 287-131 0V 45.4 3'; -.08,04 ^
122 4 7FE679 287-13180-2 45.4311 7,0.SW
123 A 10FEA 7 9 291-	 1371 ..3 49.31V 5.27E
1231 14FL0 1 9 294-12no0 .-1 42.041', 11,14E
1232 14FE679 27 4 -12onO- a 42.n4 N ; 11.14E
1237 15FE879 295-1?260-1 S$.46t4 7.40E 'k

1234 15FE'8 7 9 •-- 295-12260-2 32,46N ?.40E	 _- {
1235 16FE679 296-12450-1 40.4114 ?.32E
1236 17FES79 297-130: 0-1 38. nor: 1.13W
1237 1 7FE979 297-13na0-? 38:n4N 1.13n
123A 1 7FE6"9 . 297-13040-1 4.4.101', z.044t

x 12 .9 17FED79 ?97-13040-2 4 . 4.100, 1.041
124r Z rrFE579 30!1-12100-1 58.49tr •^9,13c,
1241 2GFE879 3o n -1219^,--2 ,SS.49% 0.1,3E
124? 20FE6 7 9 ,..30n-12210-1 - -44.55N .,. _7.20 LE
1243 2{'FE i79 300 -12210-2 44.551, '.2;:
1244 2CtF^S79 300-122,30-1 50.59;1 r,0 5E
1245 20FEB79 30f1-12230-2 50.59N 5.05E

-1246 ° » 21 FE 9 79.......T...301-12380-1.,„. 41 .351.1-- - -'A.53C-•,.	 ,.._.^.	 _..^.,	 .. C
1247 21FE579 ..	 3n1 -12 1,,H-2 41.35N 53C	 ..	 .. fK
124F. 21 FEB79 301-12400-1 4 7.4ntt 1 .50n: c
1249 21 FEY.79 301-124(10-2 47.40N 1.50E G
1250 2PFEB'79 -, ;,. 307-12550_1 .5F.53t; ,08C-	 ...,.	 .,..	 .^

r

.v 3



H-26i

ORIGINAL PAd910

M nF p40R QUALM
E^

.NS .Y.fYi ia's.eYmawswawea abY. xv: ,'.Mf wos -4iii ..HY , a.cfwY .]f . .^p M	 7

^x\^T-,` •.	 a
V

♦. i	 l,,bRk,i^>Aa,,;,TYx^114\,\`..•>,^\^..\'?'-'•a ,>'irTa. \.y,i iN`,^ b.	 ., e.	 , 	 ,cxx „•4 a	 i 	 •sa}.. ix . . 	 T e	 b	 x
.

*NO* DAT L . ...IDENTIFlCATION\ LOCATION r	 Sr.SNC	 ODE CTAT 
it ^!-^-•.r^!h-^.r^r^'^tww.w^.-4.«^.a.- w^^wr,..

n
^. w

C

. ^„w,^
^

^-..^^"!r^i^r^..«^ua,^^w.^^ti.,,,p^•
Q

..+

Q
^!+.

/M 	 a•2 51 . «. a Z 2 F E 5 7 [^..br , .bb^.:^ 3 0.2 - 12 .5 $ 0..- 2	 . s , .._1

r

^+
. «rww^..

J:G.I ^ r^ ^ 1\,+y<sx.a„e. 1^ F7 5^\ai,ab^saR?1.+. v11ti15.'.M S4.Y t	 ra+-'>.•b-.	
^+

x	 125? 22FEB79..,-302-125 1,'0-1 51.04N 4.00W C
x1	 +1251 22FE079 ,.,	 302-125 0 0-2 -51.04N 4.00W

,..^ . 1254 C.
„1:12 5 5 2.3FC579 0 3-1.3150-2 44.11x. 1 l,,,O O ; C

1256 2.7FEap9 3 03-1:160-1 $0.16N .:	 8.12W	 .T,	 >b.,.,	 \,	 ,...,	 .	 0,.
1257 23FE p79 303-13160-2 $0.16N 9.12W C	

+­12 2 4FE r,"'9---Z 04 -11580 - .1-. . 52.42h ^.. 1 n.33E
a>,,,,..1 25 9'T . ,_24F>"879i,>,x304-11580-? .. a2«421:5+i,>1n,33E	 ,,,.	 ,i,.{.	 ....	 w^rba	 >.,>b.............

1260 24FE879 .	 304-1 3 330-'1 44.19N 1c%.40W \
1244 24FEE179 ., 304-131 30-2 44.19N 1n.40tJ

--12 6 e ---2 5-F E B 7.9­ -3 0 .5 -1 ,21 . 3 0 1­-4.2, ,.4 4 N­4.4 2.E
1263.. 2	 a!'v L it5FU79.	 305-121?0^-2 ^	 .>air,.	 ,.^•	 42	 46N.	 ^	 42E^,.,,,ba,,.; 	 .,.....,..,b....^..	 ,.,,,. ,.,.,
1264 25 FCU79 ..	 305-'1 ^ 150-"1 485211 7.'360

•i	 1?65 29FE6 7 9 ­ . ; • 305- 12150-2 48.52N 7.36E
126A 25FW7 9- 305-12160-1-. -. 54.540 ... 	5.02E- .
126" 25FC-079,. .305-12160-2 54.541'. 5.02E
1263 26FED 79 306-12ln0-1 39.14"1 (b.16

d	 1269 p 6%E ll "9 306-127n0-? 39.14m 6.16e..,. 	,.

1 270 26FE B 79 ,---306-123?G-1 45.?0 N r,. 2'C
1271 26FL079 ..	 306-123?O-2 45. ?.Ot= '121E
1277 26FE?79 306-12.710-1 51,:^4N ^4i: j
127'3 26FER 7 9 , 306-12710-2 a1.,+ 4N ').1.4E
1274 27FFR'9 --•30'7-	 1530-3 45.15N .S1 C
1275 27FE$ 7 9 307 . 	 1550-3 49.3ON 2,46W 3
1276 27FES79 307••12440-1 'SS .'11N' ?.06L
1277 27F(.079 307-12410-2 =S. i1 N ?.06E 1

it	 1278 27FE8 7 9 --307-12490-1 44 .1)7N .14E	 359 R
12 1 79 P.7FE879 307-12490-2 44. 07,14 ,14E	 359 R
1280 27FEB79 307-12510-1. 50.1111 1.56',x' C
128 A 27FE8'9 307-12510-? 50.11N 1.56W C 

­12,82 . 1MAR79 309-13750-1 ­ 45.01N
1

1223 IMAR79- ... 309-13250--2 45.11Pi 9.0:4...
1284 141.1AR79 322-12270-1 38 42N ei	 07C C
12,85 14MAR79 322-12274-2 s8.42N 6.07E C

- _	 1286 14MAR 7 9 .._,. -322-12290-2 - . 44.47N 4 a 13E - 	 .. C
f	 ....1287 15MAR79- -- - .	 323-12460-1 59.55N' 1.08E

1281' 15MAR79 323-12460-2 39.55N 1.08E
1289 16MAR70 324-13040-1 39.04N '3.11w

^..:129n,a., 16MAR79-=_ , 324-13040-2 M, S9.n4+,i I.11
1291 16-MAR79 324 - 13n50 - 1 45. 19 5.'1514 C
1292 16MAR79 324-13050-2 45.09"1 5.05W C
1293 17MAR79 325-13210-1 41.n2N R.2c;W
1294= 1'rMAR 7 9-325-13230-2 _ . 41.02N 8,20W --

,,....,.4295, 17MAr79 , .,.,.32S-13740-1 47.n7r1 1n.20w
•	 1296 1714AR79 325-1 3 240-?, 47.p7N 1n.20W
1297 18MAR79 326- 12040-1 43.79N 1n..35E C

­ 129S .._._1gMAR-79..-..,5...326-12040-2• 43.?9h , a-Io.35E.....
.,.1299 .. 18t•1,:4R79 55.34N 5.50E

130 0 18MAP,79 3.26-12ngo-2 55.34N 4,500

5



a

'x

H-27

ORIGINAL PAGE IS 
OF POOR QUALITY.

....	 ..	 *NO*.... DATE -,,rJDC1vTlFICATTON . LOCAT101J....,..,..,,.SrFNE	 .,., SDE .ETA.T
^ 	 ..-^{}. ¢

13 t,.a 19MA979 327-12?	 0-1 57.19N 7.52E	 ; .	 .,
, R	

C	
. .

19MAR'9:...,--3271 4c 10-2 . «._.37,19N--7.'52£ C ._.
13+ 10,MAR79,,....327- 1x270-1 43^	 SN ...6^03C	 ,. .....	 ...	 ...........,.

,..1304 19MAR79 327-122?,0-2 43.25111 6.030
1305 19MAR79 327-"2260-1 55.30N 1.17F:

.......1306-- 19MAR•74 _327-•1.2260-2-55 .30N,-.---1
130' 20MAR79 -	 325-127,90 -1 36.41N 3.28f	 .,.	 ,.	 ,.. C

"	 130L 20MAR79 32R-12390-2 36.41N 3,285 C
1319 2014AR79 320-12400-1 42.47N 1.400 C

F	 ,	 ...	 1310. 2OMA R•79------323 - 12400 - 2•--42,47N..._._..1.,40E
,.,......1311	 . 2 0 M A R 7 9 .. 	 323 -1.24?0-1 . 48 ,  S 1 N ,	 . 25 E	 ..,.....,... .............. >....,,,,,,,,,,	 C

1	 1312. 20MAR79 328-12420*-2 43.51N .25C C
1313 38.56N 1.43W	 ....	 .,,: ..

.._-, 1311,..--?IMAR 7 4_- x..329-12570-2- 3•_58	 56N- _..^,43W.^.^.._..	 _^....,_<^...,-
.,	 1315 • 21MAR79329 -12590. 1 45.nIIN- ,	 I,37W,	 ....... ,...,,,., ..	 ..

1316 21 MAR79  329-X12590-7. 45.01N =.37:•1
1317 P.IVAR79 320-13	 1 n - 1 51.041; 5.511.-)
1318 21MAP79 ' 320-13nin-2 ^1. ,14N S.51W:
1319 21M1AR79 , 331-11580-1 43,?S-N 12,020
132 0 P.' 1 A t?79 .3!1r11r^•^,.7 47.29„ 17,^2'r.'
132 1 731MAR79 331-11!0n-1 49.32h ., o.5?C
13P. 2 3MAR7 q 331-11500-2 49, 12 IN 9.53:
1321 21IYAR79 55. T 4 ;d 7, 16 i: C
1374 ?3t'AR 7 9 3"1-12n1 a-7 55.74.4 7, 1 u C
1325 ?LIN'AR79 3a'-1 2^ 50-^ 39 . 07t1 ^.49E. C
1326 P4'-^AR79 332-12.450-2 '.59.071, Q,49c C
1327 24M,AR79 332-12160-1 45.12-N 6	 56L C
132° 20; AR79 31?-12!61-1 45.1 21, A .56E C
1329 24MAR"9 3!2-12 A p 0,1 51 ,1 5N 4.418 C
1330 24MAR79 33?-1'2180-2 51.15mt 4.41E r,

1331 25,MAR79 337- 12710 - 1 38.1911 14.32E
1332 25 4Ar,79 331-121 7 0-2 38. n9"11 4.32C

-'	 1333 26MAR 1 9 334-12530-1 46.59M 7.471,4,
1334 26HAR79 3.14-12530- 1. 46, 59M ?.47W
1335 1714AR79 335-13090-1 39.46M 5.00W
1336 271!AR79 3'5-13nnC-2 39.46N 5.001.1
1337 30MAP79 335-12260-1 3$.	 M 6.10E
1338 30MAP79 33A-12260-2 38,02N 6.10E
133 p 30MAR79 . 338-12270-1 44.n7N 4.19E
1340 3CPAR^9 3-78-12770-2 44.n7N 4.19E
1341 1 APR79 340-1 3n1 n,-1 37.12M ? . 1341
1347. 1A^ R79 34n - 13n,10 - 2 37.32%
1343 1APR79 340-13030-1 43. 37' 4.041,J
1344 1 APR''9 3Z r,1 3030-2 43.37111 4.04:+1
1345 1APR79 34n-13050-1 49.40N 6,14W

-_. 1346-•'---1APR79 .
--

...340 . 13050. 2--4 9.40N---6.14 W	 .--..___	 .,_..^....
2APR79 341 - 13710 - 1 41.59t1 -	 ,3.051.1

1348 2APR79 341-13210-2 41.59N 8.05-W
1349 ?APR79 341-13270-1 41.03N 1n,08W
1 .3 5P----2 A P R 7 9------3 41- T 3 ?. 7 0- 2 .--4 8 .•0.3 N-'--1 X} .-0 8 114 -_



H-20	 ORIGINAL PACT 19
OF POOR QUALITY

ya ,<"„ .. ,	 a . 	 w	 e,a	 .m,-q...	 ,\..w\.':\`!\\+, ,s•,. -. 	 ....•.-."`41 a; ^w.aw\ :...,\°w, a-awa.	 >^ ..

*No* D ATS . ID5 14 T1FICATrO N 	 LOCAT ION SrENE SDIC	 t;TAT

r.,a., \. 1351 ,., .	 7AP^?9., , ,,. 34^i-131it^-.1
_^^3•

41 P '.. 211 \,`•#,•#,r ♦ a\\,+a\\,.,a

1352 't An r,79 "i4 6- 1:5130-r rr3 .41 N ^..,	 \.., ♦ \,ylty'\,,11\ts

m.21W
1353 701179 •,, , 346-13150-1 49.45N 9.31W

.;.,.1354 ,,, 7APR79-J-46-13154-a, 49.45N -.,
1355 SA110,79 147-	 590-3 41,38N 1n.23E: 3^2	 1'c
1356 8APR79 - -347-133.10-1 49	 01N 11	 43W
1357 AAPR79 3 4 7-13330-P 49.01N 13.43W

S13
ry1

5
/

10APR7
1	 +9, 349-12290 -1 ;-:J9,14

{
N 4.44 E*, ' ,"-,m.1 3;5 ! - ! ^API	 7It ^ _.<: -..x.34 !12 2. q 0 ,- 2. ♦. 39 \ 14 11'. w,	 +4.i,4Y Mn,«,rtiy\\,..'.^#\i^\!„114*„ \'1\`^.^\\'."+.\^\M.,\„w•#4,M

1366 1 GAPR*79 1 4 0 -123?Q-1 tit ; c pi .37E C
1361 10APR79 . ,	 349-12570-2 51 „2 2N .37C C

--1362 =-1 1 APR 7 9:.,-^-•->3 5 0 -112 4 6 0 - 1=-.-S9 . 4 ON
,,.,...13 6 3 ... 1111 P R 7 9„ .,a,,3 S 0 - 1214 6 0 - 2 ,.- , S9 . 4  0 N .,	 ,.,	 .11

1364 11APR79 350- 12480-1 45.45N 1.44W
1365 11A.PR79 ,•,- 3$n-12480-2 45.45N 1.44W
1361 -_y12APR79 351-13AS0-1 39.13PJ 4.18W
1367 1"APR79 351 - 13n5O-2 3 6 ,13 m 4.15'
136P 12APPy9 35 1... 13060-1 45.1 7 N n.I P"r C
1369 12APr79 .	 351-1:060-2 45,1714 6.12W C
137(' 13APR79 a-352.-1 1490-1 50. '39N 11 .230
1371 13,APR79. 352- 1.1490.-2 50 .3911 1 1 , 24 :
1372 1 3APP 1 9 35P-11500-1 53.n4 t -k 1^.20
1373 13AP479 352 - 11500-a 53.n4N 16.26E
1374 1;SAPR79 352-11510 - 1 56.40N 9.4!,E
13?5 1?APR79 352-11510-? 56.4" t 1 ^.43C
1376 17AE)R"9 356-13nn	 -1 s9,130t 'I.1lu C
1377 i7APR79 356-13nn0-2 30.130 :,111• C
1373 17APR79 > * 356- 13n10-1 45.17N =_$.06W-_. 359	 R
1379 17APR79 356-6 13410-° 45.17,1 .06,4 359	 R
138A 17APR79 356-1303,E-" 51.2001 7.22W 359	 R
1381 17APR79 356-13n30 .4 2 51.2001 7.22W 359	 R

.1362 1SAPR79 357--13POO-1 45.05N 0	 41;J	 a	 n	 a	 +
,.,..: 1383 18APR79,., + 357-13220-2- 45	 n6 1 9,41:,

1384 19APR79 355-• I ROOO -1 41 .25N 11.1;E
1385 19APR79 358-12A60-2 41 . P5N 11,10E

---1386 19APR79 -.158-1 : ° $3. 3001 6.43E
.	 1387 ,, 19APR79 a,,. 355-12o;	 -2 53.300 6.430

1385 21APR79 360- 123 70-1 40.3011 6.10,5
138P ?1AP179 36n-1	 370-2 40.1001 7.10E;

_	 1390 ?3APR79 363-13160-1 49."1401 1n.0F)W
1391 R3APP79 362-13,4160-2 49.101 1n.081^;
139? 75APR79 364-	 1160-3 50.47'! R.or)r
1393 FSAPR79 364-	 11,Q Q-3 44,43~1 5.560 C

--i A 94....?.6AP.179 -365- -I 50-3 45.';1N P.40E
1395 ?6APR?9 65- 1370-3. 42:?601 3.9E:
1396 26APR79 3o-12;110-1 40. 06N 1.285 C
1397 26APR''9 , 3 65 . 123 10-? 4 0.0 6N 3.2se C
1398 26APR79^>,^,..3lb5-1211,0,-1 >a46	 10N .. 1,32E
1399 ?6APR - 9 365 - 12110 - 2 46.11M 1.322
1400 26APR79 365-12360-1 52.13 y .47 .E



♦

11- 9

♦

x

ORIQIT AL PAQe 1$

'
017 POORq	 QUALITY

..	 .`. a\\i_+1,^4^"-.a\.'i	 ...	 .l i♦,. T\t^ 1j11 ♦. .:5 	 a .,	 w	 e..,	 ..,	 ,.	 a	 .>.

*NO* CA'TC TUC UTYFIC.AT:t^1t ..,,	 40CATIO14	 S r E N E nari ERTAT
 -----wwR -'w r`I++rw^^ Mrl	 }^ ►. Y----w

A

rwl+ rl^
t

^r^..^^a MwAIrY♦ Mwa.rrr/^}w. w+w rw. ^yr^w^l^sl^^rr^.^ww^rM
/
r

^ +-^c♦+ \ a♦•. 	 1.401	 ... 29 AP079. .. 
-- 368-- 5 to 0-3 ' `^3 p ^11 N ^ 	 ,. ' i 1 l 18 E'US>♦:1 . ♦. s.;\\t.i	 :M\^\..sl a,.la.^1a ♦ -.. aw. ♦tr

.w^ 1402-, I MAY79- 370- =1310 -3-41 , 56N -. „.'1 364y _R
1to03 ..	 1MAY79 ♦♦ a..370-12250. 1 ... 37, ?8N	 .>.	 5	 '?t: 3;12 R
1404 1 MAY79 3101 -12250-2 ;i7. 2. 8N 5. r 9E p,	 :.4 X432 R
1 405 AMAY79 37n-1r k1 60-1 43;1It N 1.38E 332 R

1406 1MAY"'9 _- 370 -12P60-7 43.14N_ 138G<,,.	 ..,,<, 332 R
,,,♦...140? ?MAY79 ,..,.,♦3 	 1- r14il0 - 3 - 46, 58x1. ♦ 1.15-.1

1408 7MAY79 3i"1-	 15P0-3. 40..5 N1 '!.1+oiJ
1409 '3t«Ρ AY79 377- 2A40-3 55.53N 7.0814

-141 o- . 3MAY t p--3.;^2-..2
0 60-.3- 49	 50 N 4	 47W^	 .^♦.... ^.Wgq.gqq^.q^..q..q._.^Y. -q.^^

...,!!. 1411- a, SMAY79 , -!• . ,3 7 4-> , 1060-3 , 45,17N , £i	 460	 ,.!♦!._ 	 .,.,,..	 ,r.,;,. , ! C
♦ 	 1412 6MAY7 q 375- 1p'c0-3 50.43N 6	 044 

- 1411. ....	 6MAY "9 37 5- 1750-3 44.38N ... 't.51 C	 .. C
1414 - -eMAY^9 . 7 ►̂ -122..00-1 ---39 SON ... , 6.040 R
1415 0,10"9 375 -12 7, 00 .. 2 3Q. 90N 6.04r;
1416 6 M AY 9 575-12210-1 45.56N 1,.08 C-
1417 6MAY79 375-12?10-2 45.50N 4.080
141 PA N' ,. ,	 !^76 -	 100- 1 46.56N .01C C
1419 71.1079 376 •-	 14''40-3 40. " O N 1 .5 r""
1420 7MAY7`^ 376--121, 30 . 1 41 .O3N 1 .?9a G
1421 7MAY79 376-1Z110-? 41 . n31v 1 .09V C
1422 8MAY7 r ,._<,37 7-	 4000--3 403.5oN yr 5^'1^

>	 142' 10MAY79 370-	 1010-3 41 .12N 1,	 4" 6r, c
1 424 1 1 mAY ,' 9 380-	 11 A0-Z, 4 .) , [..''I( L c
147.5 1 1 PAY 79 340-12110.:1 38.4114 ,, 46L
14 416 11 MAY79 380 - 1',130-2 , A.41m 7,444 c
142' 11mAY79 380-1x150-1 44.46N 5.53" c
1428 11 00 AY79 U-0-12 1 $0-2 44,46N 5.530 r,

4! • 1 5. 1	 a . .	 ...	 .. *,...+\4... y...1 \.<,r\s. a.e. ♦a\♦♦ a\\\	 •A.....	 at ♦\	 axasi\\r \^ias k+. ai • 	.a\\'•.\\+•\. \^ • i\.	 •+	 ra..	 ,a.-.•\,r\!	 •...•	 .axai	 ♦ x

Ns i"^....^	 ,. ^	 . y.. _... _	 Y>,prs- x•..:Y:cam*Al.ear'sa+r.?vxh^^%x'.:» a .. 	 ..>.. b. q	 ,. E

su:sLgk ^':sx"-:.	..°.':: rz-	 i^ • _.:.rs'.y ' . .li'a'nTnt.^w.T.3r:Tn.?='.+x+1^ax.v . aro^zmwxaa .Ma...s. •v.'w+..e.Ax .. a g 4'Y	 :.	 y	 ^.k	 _	 •.. a•. -n

♦> a4 i ♦ y, 4 " .a x	 .	 i	 ^. .,.44 w .a\\^i`4r...♦ aaar.i.. a.a a.,saa! 	 i	 .. ,r	 ,.	 r	 .


	0035A02.pdf
	0035A03.pdf
	0035A04.pdf
	0035A05.pdf
	0035A06.pdf
	0035A07.pdf
	0035A08.pdf
	0035A09.pdf
	0035A10.pdf
	0035A11.pdf
	0035A12.pdf
	0035A13.pdf
	0035A14.pdf
	0035B01.pdf
	0035B02.pdf
	0035B03.pdf
	0035B04.pdf
	0035B05.pdf
	0035B06.pdf
	0035B07.pdf
	0035B08.pdf
	0035B09.pdf
	0035B10.pdf
	0035B11.pdf
	0035B12.pdf
	0035B13.pdf
	0035B14.pdf
	0035C01.pdf
	0035C02.pdf
	0035C03.pdf
	0035C04.pdf
	0035C05.pdf
	0035C06.pdf
	0035C07.pdf
	0035C08.pdf
	0035C09.pdf
	0035C10.pdf
	0035C11.pdf
	0035C12.pdf
	0035C13.pdf
	0035C14.pdf
	0035D01.pdf
	0035D02.pdf
	0035D03.pdf
	0035D04.pdf
	0035D05.pdf
	0035D06.pdf
	0035D07.pdf
	0035D08.pdf
	0035D09.pdf
	0035D10.pdf
	0035D11.pdf
	0035D12.pdf
	0035D13.pdf
	0035D14.pdf
	0035E01.pdf
	0035E02.pdf
	0035E03.pdf
	0035E04.pdf
	0035E05.pdf
	0035E06.pdf
	0035E07.pdf
	0035E08.pdf
	0035E09.pdf
	0035E10.pdf
	0035E11.pdf
	0035E12.pdf
	0035E13.pdf
	0035E14.pdf
	0035F01.pdf
	0035F02.pdf
	0035F03.pdf
	0035F04.pdf
	0035F05.pdf
	0035F06.pdf
	0035F08.pdf
	0035F09.pdf
	0035F10.pdf
	0035F11.pdf
	0035F12.pdf
	0035F13.pdf
	0035F14.pdf
	0035F15.pdf
	0035G01.pdf
	0035G02.pdf
	0035G03.pdf
	0035G04.pdf
	0035G05.pdf
	0035G06.pdf
	0035G07.pdf
	0035G08.pdf
	0035G09.pdf
	0035G10.pdf
	0035G11.pdf
	0035G12.pdf
	0035G13.pdf
	0035G14.pdf
	0036A02.pdf
	0036A03.pdf
	0036A04.pdf
	0036A05.pdf
	0036A06.pdf
	0036A07.pdf
	0036A08.pdf
	0036A09.pdf
	0036A10.pdf
	0036A11.pdf
	0036A12.pdf
	0036A13.pdf
	0036A14.pdf
	0036B01.pdf
	0036B02.pdf
	0036B03.pdf
	0036B04.pdf
	0036B05.pdf
	0036B06.pdf
	0036B07.pdf
	0036B08.pdf
	0036B09.pdf
	0036B10.pdf
	0036B11.pdf
	0036B12.pdf
	0036B13.pdf
	0036B14.pdf
	0036C01.pdf
	0036C02.pdf
	0036C03.pdf
	0036C04.pdf
	0036C05.pdf
	0036C06.pdf
	0036C07.pdf
	0036C08.pdf
	0036C09.pdf
	0036C10.pdf
	0036C11.pdf
	0036C12.pdf
	0036C13.pdf
	0036C14.pdf
	0036D01.pdf
	0036D02.pdf
	0036D03.pdf
	0036D04.pdf
	0036D05.pdf
	0036D06.pdf
	0036D07.pdf
	0036D08.pdf
	0036D09.pdf
	0036D10.pdf
	0036D11.pdf
	0036D12.pdf
	0036D13.pdf
	0036D14.pdf
	0036E01.pdf
	0036E02.pdf
	0036E03.pdf
	0036E04.pdf
	0036E05.pdf
	0036E06.pdf
	0036E07.pdf
	0036E08.pdf
	0036E09.pdf
	0036E10.pdf
	0036E11.pdf
	0036E12.pdf
	0036E13.pdf
	0036E14.pdf
	0036F01.pdf
	0036F02.pdf
	0036F03.pdf
	0036F04.pdf
	0036F05.pdf
	0036F06.pdf
	0036F07.pdf
	0036F08.pdf
	0036F09.pdf
	0036F10.pdf
	0036F11.pdf
	0036F12.pdf
	0036F13.pdf
	0036F14.pdf
	0036G01.pdf
	0036G02.pdf
	0036G03.pdf
	0036G04.pdf
	0036G05.pdf
	0036G06.pdf
	0036G07.pdf
	0036G08.pdf
	0036G09.pdf
	0036G10.pdf
	0036G11.pdf
	0036G12.pdf
	0036G13.pdf
	0036G14.pdf
	0037A01.pdf
	0037A02.pdf
	0037A03.pdf



